WO2012042628A1 - Gas turbine power generation device, gas turbine power generation system, and method of controlling the system - Google Patents
Gas turbine power generation device, gas turbine power generation system, and method of controlling the system Download PDFInfo
- Publication number
- WO2012042628A1 WO2012042628A1 PCT/JP2010/067031 JP2010067031W WO2012042628A1 WO 2012042628 A1 WO2012042628 A1 WO 2012042628A1 JP 2010067031 W JP2010067031 W JP 2010067031W WO 2012042628 A1 WO2012042628 A1 WO 2012042628A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas turbine
- turbine power
- power generation
- hot water
- generation system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
- F02C3/305—Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/04—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
- F01K21/047—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
- F02C7/143—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/064—Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/72—Application in combination with a steam turbine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the present invention relates to a gas turbine power generation apparatus, and more particularly to a gas turbine power generation apparatus, a gas turbine power generation system, and a control method thereof for a high-humidity gas turbine cycle power generation facility using high-humidity air.
- Thermal power plants use gas turbine power generators that generate gas by combusting gas with a combustor and rotating the gas turbine with the high-temperature and high-pressure combustion gas, and exhaust heat recovery boilers using exhaust gas combusted in the gas turbine.
- gas turbine power generators that generate gas by combusting gas with a combustor and rotating the gas turbine with the high-temperature and high-pressure combustion gas
- exhaust heat recovery boilers using exhaust gas combusted in the gas turbine.
- There is a combined cycle power generation device that generates steam and rotates the steam turbine with the steam.
- any apparatus is equipped with a gas turbine
- the output of the gas turbine decreases as the inlet side intake air temperature increases and the mass flow rate of the combustion gas decreases. Accordingly, in operation in summer when the outside air temperature is high or in operation in a region where the outside air temperature is originally high, the mass flow rate of the combustion gas is reduced, so that it may be lower than the rated output. Therefore, by spraying water at the compressor inlet, the intake temperature on the inlet side of the gas turbine is reduced to prevent the mass flow rate from decreasing, and devices and methods for maintaining the rated output even when the outside air temperature is high are devised. Has been.
- Patent Document 1 discloses a technique for improving the output and the thermal efficiency by spraying droplets in the intake air introduced into the inlet of the compressor.
- Patent Document 1 it is possible to improve the output and the thermal efficiency by spraying droplets in the intake air introduced into the inlet of the compressor. However, further improvement in the output and the thermal efficiency are desired.
- the present invention provides a gas turbine power generation apparatus, a gas turbine power generation system, and a control method thereof that can improve output and power generation efficiency by using hot water obtained from solar heat or thermal energy of combustion exhaust gas. With the goal.
- a gas turbine power generation apparatus is a gas turbine power generation apparatus that generates power with a gas turbine, and combusts a compressor that compresses air, compressed air from the compressor, and fuel A combustor, a gas turbine driven by combustion gas of the combustor, a generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine, and a feed water pump for feeding water Heating means for heating the feed water using the exhaust gas of the gas turbine, and heating means for heating at least one of a heat collecting pipe for heating the feed water with a solar heat collecting device for collecting solar heat, and the compression An intake air cooling chamber for cooling the intake air of the vessel, and a spray nozzle for spraying the hot water heated by the heating means or the water supply into the intake air cooling chamber.
- the gas turbine power generation system includes a gas turbine power generation apparatus according to claim 1 and information of measurement signals from a measuring instrument for measuring a physical quantity of the gas turbine power generation apparatus.
- the operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input.
- a related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation
- An interface unit, and the control unit includes a gas turbine power generator according to a state of equipment provided in the gas turbine power generator, a condition of the obtained hot water, and an operating condition of the gas turbine power generator. Is controlling.
- the gas turbine power generation system includes a gas turbine power generation apparatus according to claim 1 and measurement signal information from a measuring instrument for measuring a physical quantity of the gas turbine power generation apparatus.
- the operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input.
- a related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation
- At least one of the measurement signal information, the outside air state information, or the control method determined by the control unit is output to the outside.
- An interface unit, and the control unit predicts the temperature of the hot water from the state information of the outside air.
- the gas turbine power generation system includes a gas turbine power generation apparatus according to claim 1 and information on measurement signals from a measuring instrument that measures a physical quantity of the gas turbine power generation apparatus.
- the operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input.
- a related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation
- As a result of calculation by the condition determination unit at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit is output to the outside.
- An interface unit, and the control unit predicts the temperature of the hot water from the outside air state information, and predicts the temperature of the hot water from the outside air state information, and is provided in the gas turbine power generator.
- the gas turbine power generator is controlled in accordance with the state of the equipment, the obtained hot water conditions, and the operating conditions of the gas turbine power generator.
- a control method for a gas turbine power generation system according to claim 14 of the present invention is a control method for a gas turbine power generation system according to claim 5.
- a control method for a gas turbine power generation system according to claim 15 of the present invention is a control method for a gas turbine power generation system according to claim 6.
- a control method for a gas turbine power generation system according to claim 16 of the present invention is a control method for a gas turbine power generation system according to claim 7.
- the present invention it is possible to improve the output and the power generation efficiency by using the hot water obtained by the thermal energy of solar heat or combustion exhaust gas.
- FIG. 4 is a diagram illustrating a predicted value data table representing predicted values.
- FIG. 1 is a conceptual configuration diagram of a gas turbine power generator 100 according to an embodiment.
- the gas turbine power generation apparatus 100 combusts the compressed air and fuel supplied from the compressor 2 as a basic component for power generation, and outputs compressed air that is compressed into high pressure by compressing the sucked air.
- a combustor 4 a gas turbine 1 that is rotationally driven by combustion (exhaust) gas from the compressor 2, and power generation that is connected to the gas turbine 1 via a gas turbine shaft 1 a and converts the kinetic energy of the gas turbine 1 into electrical energy.
- Machine 3
- the gas turbine power generation apparatus 100 includes, as components for obtaining hot water used for improving power generation output and power generation efficiency, a water supply pump 5 that supplies water and exhaust gas discharged from the gas turbine 1.
- a feed water heater 6 that heats using heat
- a solar heat collecting device 7 that collects heat obtained by solar sunshine
- a heat collecting tube 8 that heats feed water sent from the feed water pump 5 by the collected heat. I have.
- the gas turbine power generation apparatus 100 includes an intake air cooling chamber 9 that cools the intake air of the compressor 2 with hot water heated by the heat collecting pipe 8 and / or the feed water heater 6 as components for using hot water, A spray nozzle 10 that sprays the inside of the intake air cooling chamber 9, an evaporator 11 that evaporates hot water and throws it into the combustor 4, and a high-temperature (for example, about 400 ° C.) gas turbine 1 that is discharged from the outlet of the compressor 2. And an intercooler 12 for cooling the turbine blades with the hot water (about 150 ° C. to 180 ° C.) by adding cooling air to the turbine blades to the cooling water.
- an intake air cooling chamber 9 that cools the intake air of the compressor 2 with hot water heated by the heat collecting pipe 8 and / or the feed water heater 6 as components for using hot water
- a spray nozzle 10 that sprays the inside of the intake air cooling chamber 9, an evaporator 11 that evaporates hot water and throws it into the combustor 4, and a high-
- the mass flow rate of the air entering the compressor 2 increases. Due to this effect, the mass of combustion (exhaust) gas from the compressor 2 impinging on the turbine blade (not shown) increases, and the kinetic energy given to the turbine blade increases. Thereby, the rotational driving force of the gas turbine 1 is increased, and the output of the gas turbine 1 is increased.
- the advantage (merit) of using warm water in comparison with the conventionally used water is that the boiling water is sprayed in the intake air cooling chamber 9 due to the lowering of the boiling point due to the reduced pressure, and the sprayed liquid. The droplets become finer. For this reason, more spray water (hot water) can be sprayed, and the mass flow rate further increases. As a result, further output improvement can be obtained by spraying warm water.
- the temperature of hot water at which reduced-pressure boiling easily occurs is about 150 ° C. to 180 ° C.
- the mass flow rate which enters into the gas turbine 1 from the combustor 4 can be increased by injecting the steam obtained by letting warm water through the evaporator 11 to the combustor 4, the effect of the gas turbine 1 can be increased. Output increases.
- the air discharged from the compressor 2 (about 400 ° C.) is recooled by the latent heat of evaporation of hot water (about 150 ° C. to 180 ° C.) in the intercooler 12 to cool the turbine blades supplied from the intercooler 12. The amount of cooling air that is the amount of air to be reduced is reduced.
- the cooling air (for example, about 400 ° C.) discharged from the outlet of the compressor 2 is warm water (about 150 ° C. to about 180 ° C.) by cooling the cooling air in the intercooler 12 using hot water. Since it cools, the energy using the cooling water for cooling the cooling air by the intercooler 12 can be saved. In addition, since the cooling air has a lower temperature than before, the amount of cooling air is reduced. Therefore, the energy required for cooling the air discharged from the outlet of the compressor 2 by the intercooler 12 is reduced as compared with the conventional case, and the power generation efficiency of the gas turbine power generator 100 is improved.
- FIG. 2 is a conceptual diagram of the gas turbine power generation system S showing the relationship between the gas turbine power generation apparatus 100 shown in FIG. 1 and the control apparatus 200 for controlling the same.
- the gas turbine power generation system S including the gas turbine power generation device 100, the control device 200 for controlling the gas turbine power generation device, the support tool 910, the input device 900, and the image display device 950 will be described.
- the gas turbine power generation device 100 is provided with regulating valves 101 to 109 that operate in response to the control signal 130 from the control device 200 and control the flow of water supplied from the water supply pump 5.
- the adjustment valve 101 is for adjusting the amount of water supplied to the gas turbine power generation device 100 by opening and closing the pipeline from the water supply pump 5.
- the adjustment valve 102 is provided downstream of the adjustment valve 101, and is for adjusting the amount of water supplied to the feed water heater 6 that heats the feed water from the feed water pump 5 with the exhaust gas of the gas turbine 1.
- the adjustment valve 103 is provided downstream of the adjustment valve 101 and adjusts the amount of water supplied from the water supply pump 5 to the heat collecting pipe 8 heated by the solar heat collecting device 7.
- the regulating valve 104 is provided downstream of the heat collecting pipe 8 of the solar heat collecting apparatus 7 and is for bypassing and discharging hot water heated by the heat collecting pipe 8.
- the regulating valve 105 is provided downstream of the feed water heater 6 and serves to bypass the hot water heated by the exhaust gas from the gas turbine 1 by the feed water heater 6 and discharge it.
- the adjusting valve 106 is provided downstream of the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting device 7 and adjusts the amount of hot water supplied to the spray nozzle 10 in the intake air cooling chamber 9.
- the regulating valve 107 is provided downstream of the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting device 7 and is for adjusting the amount of hot water supplied to the evaporator 11.
- the regulating valve 108 is provided downstream of the feed water heater 6 and the heat collecting pipe 8 of the solar heat collecting apparatus 7 and adjusts the amount of hot water supplied to the intercooler 12.
- the regulating valve 109 is provided downstream of the feed water pump 5 and the regulating valve 101 and supplies normal water from the feed water pump 5 to the spray nozzle 10 when hot water from the feed water heater 6 and / or the heat collecting pipe 8 is not used. Thus, the amount sprayed into the intake cooling chamber 9 is adjusted.
- the gas turbine power generator 100 is provided with a measuring instrument (not shown) for measuring various physical quantities thereof.
- a flow sensor, a temperature sensor, and a pressure sensor are provided at locations s1 to s9 of the gas turbine power generation device 100 illustrated in FIG. 2, respectively, and a concentration sensor that measures the concentration of NOx and the like is provided at locations n1 and n2.
- a power measuring device (not shown) is provided on the output side of the generator 3.
- the positions where these flow sensors, temperature sensors, pressure sensors, and concentration sensors are provided are examples and are not limited.
- the control device 200 Based on a measurement signal 120 from a measuring instrument (not shown) of the gas turbine power generation device 100, the control device 200 adjusts the opening degree of the adjustment valves 101 to 109 so that the gas turbine power generation device 100 enters an appropriate operation state. Then, the hot water heated by the feed water heater 6 by the hot water of the heat collecting pipe 8 heated by the solar heat or the exhaust gas of the gas turbine 1 is supplied to the intake cooling chamber 9, the evaporator 11, and the intercooler 12. The control signal 130 is output to
- the related information database 300 of the control device 200 determines the information of the measurement signal 120 from the measuring instrument of the gas turbine power generation device 100, the operation condition thereof, information for use in controlling the gas turbine power generation device 100, and the like. Storing.
- the operation condition determination unit 400 of the control device 200 determines the operation condition (state) of the gas turbine power generation device 100 based on information obtained from the measurement signal 120 and data necessary for determining the operation condition.
- the data necessary for determining the operating condition includes, for example, the outside air temperature, and information on sunshine data when solar heat is used in the solar heat collecting device 7. The form of these data will be described in detail later.
- the control unit 500 of the control device 200 receives the determination result of the operation condition determination unit 400 and outputs a control signal 130 suitable for controlling the operation of the gas turbine power generation device 100. Based on the control signal 130, the opening degree of the regulating valves 101 to 109 in the gas turbine power generator 100 is adjusted.
- the control device 200 is, for example, a PLC (Programmable Logic Controller), a CPU (Central Processing Unit), a ROM (Read Only Memory)), a RAM (Random Access Memory), a memory such as a flash memory, an I / O port, and the like. Consists of including.
- the memory stores a control program for the operation condition determination unit 400 and the control unit 500, and a related information database 300 in which data is partially updated.
- the operation condition determination unit 400 and the control unit 500 are realized by the CPU developing and executing the control program of the operation condition determination unit 400 and the control unit 500 stored in the ROM in the RAM.
- the control device 200 may be configured by a circuit such as an IC (Integrated Circuit) or an LSI (Large Scale Integration). If the function of the control device 200 can be fulfilled, the implementation is exemplified. It can select suitably without being limited to a thing.
- control device 200 is provided with an input / output interface such as an A / D converter, a D / A converter, and an amplifier circuit for amplifying signals of various measuring instruments, which are not shown, between the control device 200 and the gas turbine power generation device 100. ing.
- Information 210 such as a signal generated inside the control device 200 is output to the support tool 910 as needed, and information 210 necessary for the control device 200 is output from the support tool 910.
- a user related to the gas turbine power generation device 100 uses a support tool 910 connected to an image display device 950 and an input device 900 including a keyboard 901, a mouse 902, a touch panel (not shown), etc.
- Various information regarding the turbine power generation device 100 can be viewed on the image display device 950. Further, the user can access information in the control device 200 via the support tool 910.
- the support tool 910 includes an external input / output interface 920, a data transmission / reception processing unit 930, and an external output interface 940.
- An input signal 800 generated by the input device 900 by an input from the user's keyboard 901 or mouse 902 is taken into the data transmission / reception processing unit 930 of the support tool 910 via the external input / output interface 920 as an input signal 801 of a digital signal.
- the information 210 from the control device 200 is also taken into the data transmission / reception processing unit 930 of the support tool 910 via the external input / output interface 920 as the input signal 801.
- necessary information 210 is output from the support tool 910 to the control device 200 via the external input / output interface 920.
- the data transmission / reception processing unit 930 processes the information 210 from the control device 200 and the input / output information 210 to the control device 200 according to the information of the input signal 800 input by the user, and outputs the output signal 802 to the external output interface 940.
- the output signal 802 is converted into an output signal 803 by the external output interface 940 and displayed on an image display device 950 such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube).
- the support tool 910 is a monitoring control device in the plant, for example, a dedicated computer, and may be configured as a stand-alone, or a plurality of dedicated computers may be connected by a local LAN (Local Area Network). , Not limited.
- the implementation mode of the support tool 910 is not particularly limited as long as it can perform the functions described.
- FIG. 3 is a diagram showing an aspect of information related to the measurement signal 120 stored in the related information database 300.
- the PID number is a unique number assigned to the measurement value of each measuring instrument so that the data stored in the related information database 300 can be easily identified or utilized.
- the alphabet below the PID number is a symbol indicating what the physical quantity to be measured is. For example, it is included in the flow rate value F of warm water produced by the heat collecting pipe 8 and / or the feed water heater 6, the temperature value T of warm water, the pressure value P of warm water, the power generation output value E, and the combustion (exhaust) gas of the combustor 4. This is the NOx concentration value D.
- the sampling period of data collection changes with the gas turbine power generator 100 used as object.
- FIG. 4 is a diagram showing a format of information on measured values and predicted values of the climatic state around the gas turbine power generation apparatus 100.
- FIG. 4 (a) shows the measured values and
- FIG. 4 (b) shows the predicted values.
- Indicates. 4 are stored in the related information database 300, but may be stored in a temporary storage area (work area) of the control device 200.
- the actual measurement value and the predicted value shown in FIG. 4 are stored including time (time), weather, temperature (Celsius), wind direction, wind speed, humidity (relative humidity), and solar radiation.
- the period of time (time) is determined by a measurable time width.
- the weather is expressed using, for example, 15 types transmitted by the Japan Meteorological Agency to the general public. The 15 types are clear, clear, light cloudy, cloudy, haze, dust storm, blizzard, fog, drizzle, rain, sleet, snow, hail, hail, and thunder.
- the wind direction is generally 16 azimuths.
- 360 azimuths expressed by dividing 360 degrees in the clockwise direction on the basis of true north are used. In FIG. 4, it is expressed by 360 azimuths, but even in 16 azimuths, if expressed by giving a ratio of 22.5 degrees to each azimuth, it can be quantified in degrees as well.
- Each actually measured value is stored in the actually measured value data table of FIG.
- respective numerical values are stored based on, for example, a calculation result in a prediction model and distribution data from the Japan Meteorological Agency or a weather company. Depending on the location, the hour (time), weather, temperature (degrees Celsius), wind direction, wind speed, etc. may be distributed every hour, but otherwise, based on past data. A model for calculating the predicted value is required.
- This prediction model includes, for example, a meso-meteorological model WRF (Weather Research and Forecasting) model, which is a model for predicting atmospheric conditions based on physical formulas.
- WRF Weight Research and Forecasting
- this model since it is necessary to make a setting for forecasting a desired region, there is also a simple method of obtaining using a regression equation or the like based on past data. Here, any method may be used.
- the actual measurement value data table in FIG. 4A and the predicted value data table in FIG. 4B show an example of outside air state information, and other expressions may of course be used.
- the information stored in the related information database 300 may be configured to be stored in a temporary storage area (work area) as necessary.
- FIG. 5 shows a neural network that estimates the temperature of hot water discharged from the heat collecting pipe 8 using data stored in the predicted value data table shown in FIG. 4B stored in the related information database 300. It is a figure which shows a model.
- the neural network model has an input layer, an intermediate layer, and an output layer, and each layer includes a plurality of nodes (indicated by ⁇ in FIG. 5). These nodes are linked from the input layer to the output layer, and a weighting coefficient representing the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes.
- the model of this neural network simulates a human cranial nerve network.
- the correlation of the input value can be expressed as a model.
- the process of adjusting this weighting factor is called learning.
- the weighting coefficient is determined.
- the function set for the node is generally an exponential function called a sigmoid function, but is not limited thereto.
- many algorithms have been devised that appropriately adjust the weighting factor during learning. In general, the back propagation method is used. For details on these calculation algorithms, see “Basics and Practice, Neural Networks, Shiro Usui et al., Corona, Inc.”.
- FIG. 6 is a flowchart showing the operation (processing) in the operating condition determination unit 400.
- S (step) 401 it is determined whether or not there is the solar heat collecting device 7 from input information from the input device 900, setting information to the gas turbine power generation system S, and the like. If yes, go to Step 402, otherwise go to Step 409.
- S402 it is determined whether or not there is a feed water heater 6 that can generate hot water by heating the feed water using heat from the exhaust gas of the gas turbine 1. The determination is made based on the input information from the input device 900 and the setting information for the gas turbine power generation system S.
- the process proceeds to S403, and the temperature of the hot water due to the solar heat of the solar heat collecting device 7 is calculated from the current temperature and the amount of solar radiation using the model shown in FIG. It is determined whether hot water can be supplied when the estimated value is equal to or higher than a set temperature (for example, about 150 ° C.
- the hot water may be adjusted by increasing or decreasing the flow rate so as to be an appropriate temperature at a place where it is actually used, for example, 150 ° C.
- the process proceeds to S406, and in the situation where only the solar heat collecting device 7 is installed, the estimated value of the temperature of the hot water by solar heat is the reduced pressure. It is determined whether supply is possible at a set temperature (for example, about 150 ° C. to 180 ° C.) or higher at which the boiling effect is obtained.
- step 406 When it is determined that only the solar heat collecting device 7 is installed and the estimated value of the temperature of the hot water by the solar heat can be supplied at the set temperature or more (Yes in S406), the process proceeds to step 407, and the solar heat collecting device Since only hot water by the solar heat of the device 7 can be supplied, “1” is set in the flag of the solar heat collecting hot water, and “0” is set in the flag of the exhaust gas heating hot water.
- Step 403 If it is determined that there is a feed water heater 6 by heating the exhaust gas of the gas turbine 1 (Yes in S409), the procedure is the same as in Step 403 in the situation where there is no solar heat collecting device 7 by solar heat. Since there is no device 7, the flag of solar heat collecting hot water is set to “0”, and the hot water supply of the feed water heater 6 by exhaust gas is possible, so the flag of exhaust gas heating hot water is set to “1”.
- both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are “0”. Is set.
- the processing in the operating condition determination unit 400 in FIG. 6 ends.
- the case where it is determined whether or not the estimated value of the temperature of the hot water is equal to or higher than the set temperature is exemplified.
- the measured value of the temperature of the hot water measured by the measuring instrument provided in the gas turbine power generation device 100. May be used to determine whether the temperature is equal to or higher than the set temperature.
- FIGS. 7 to 10 are diagrams illustrating functions of the control unit 500 according to the determination results of the operation condition determination unit 400 in each operation state of the gas turbine power generation apparatus 100 in normal, start-up, stop, and load interruption. It is.
- FIG. 7 is a diagram showing a control method by the regulating valves 101 to 109 during normal operation of the gas turbine power generator 100.
- both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are “1” (first row of the control method during normal operation in FIG. 7)
- the regulating valve 109 which forms the line for spraying the normal water provided in case the both hot water of the solar heat collecting apparatus 7 and the feed water heater 6 cannot be utilized is closed.
- the solar collecting hot water shown in FIG. Since only the hot water by the solar heat of the heat device 7 can be used, the regulating valve 104 that forms the bypass line from the heat collecting tube 8 of the solar heat collecting device 7 is closed, and the hot water from the heat collecting tube 8 does not pass through the bypass line. Like that. Further, the regulating valve 102 upstream of the feed water heater 6 on the feed water side is closed, and the exhaust gas side line of the gas turbine 1 of the feed water heater 6 is isolated from the feed water pump 5.
- the regulating valve 105 forming the hot water bypass line of the feed water heater 6 is a pressure fluctuation of the hot water of the heat collecting pipe 8 of the solar heat collecting apparatus 7 or a sudden fluctuation during operation. Open in case the hot water flows back to the exhaust gas side line (the line following the feed water heater 6).
- the regulating valve 109 that forms a line for spraying normal water provided in case the hot water of the solar heat collecting device 7 and the feed water heater 6 cannot be used is closed.
- the gas turbine shown in FIG. Since only the hot water of the feed water heater 6 by the exhaust gas of 1 can be used, the regulating valve 105 forming the bypass line of the feed water heater 6 is closed so that the warm water of the feed water heater 6 does not pass through the bypass line. . Furthermore, the regulating valve 103 that supplies water to the heat collecting pipe 8 of the solar heat collecting apparatus 7 is closed, and the line that continues from the water supply pump 5 to the heat collecting pipe 8 on the solar heat side is isolated.
- the regulating valve 104 forming the hot water bypass line of the heat collecting pipe 8 of the solar heat collecting apparatus 7 is a feed water heater on the exhaust gas side of the gas turbine 1 due to pressure fluctuations in the hot water of the feed water heater 6 or sudden fluctuations during operation. 6 is opened in preparation for the case where the warm water 6 flows back to the solar heat collecting tube 8 line. On the other hand, the line for spraying normal water provided in case the hot water of the solar heat collecting device 7 and the feed water heater 6 cannot be used is closed by the regulating valve 109.
- FIG. 2 shows the case where the flag of the solar heat collecting hot water during the last normal operation is “0” and the flag of the exhaust gas heating hot water is “0” (fourth row of the control method during normal operation in FIG. 7).
- the hot water of the heat collecting pipe 8 of the solar heat collecting device 7 and the hot water of the feed water heater 6 on the exhaust gas side of the gas turbine 1 cannot be used. Therefore, the regulating valves 102 to 108 used when both hot waters are used are closed. Then, the adjustment valve 101 and the adjustment valve 109 that form a water supply line from the water supply pump 5 to the spray nozzle 10 in the intake air cooling chamber 9 are opened so that normal water spray can be performed from the spray nozzle 10 into the intake air cooling chamber 9. To.
- Each opening degree of the regulating valve 109 that supplies water to the spray nozzle 10 in the inside measures the pressure, temperature, and flow rate of the fluid (hot water) flowing through each line so that each measured value becomes a desired value. Controlled.
- the heat collecting tube 8 of the solar heat collecting device 7 is used. Open the regulating valve 104 that forms the bypass line of the hot water and the regulating valve 105 that forms the bypass line of the feed water heater 6 on the exhaust gas side of the gas turbine 1, and discharge the fluid (hot water or water) from each bypass line. Prevent fluid (warm water or water) that does not meet the conditions from flowing. The same applies when the temperature of the hot water is too higher than the set temperature for boiling under reduced pressure. The temperature of the hot water is measured by a temperature sensor of a measuring instrument provided in the gas turbine power generator 100.
- FIG. 8 is a diagram showing a control method by the regulating valves 101 to 109 when the gas turbine power generator 100 is started.
- both the solar heat collection hot water flag and the exhaust gas heating hot water flag are “1” (first row of the control method at the start of FIG. 8)
- control valve 101 on the supply side of water from the water supply pump 5 also performs flow control from “closed” to “open” according to the conditions of the temperature, pressure, and flow rate of the hot water flowing through the system.
- the adjustment valve 101 is the same under all the conditions at the time of startup shown in FIG.
- a normal water spray line (prepared from the water supply pump 5 to the spray nozzle 10 in the intake cooling chamber 9) provided in case the hot water by the solar heat collecting device 7 and / or the feed water heater 6 cannot be used. Line) is closed by the regulating valve 109.
- the adjustment valve 104 that forms the bypass line of the hot water collecting pipe 8 by solar heat is changed from “open” to “closed” so that the hot water of the heat collecting pipe 8 gradually does not pass through the bypass line. .
- the regulating valve 102 on the upstream side of the feed water heater 6 is closed.
- a normal water spray line (prepared from the water supply pump 5 to the spray nozzle 10 in the intake cooling chamber 9) provided in case the hot water by the solar heat collecting device 7 and / or the feed water heater 6 cannot be used. Line) is closed by the regulating valve 109.
- the solar heat collecting device 7 shown in FIG. The hot water of both the heat collecting pipe 8 and the feed water heater 6 cannot be used. Therefore, the regulating valves 102 to 108 relating to the supply of hot water of both the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting apparatus 7 are closed, and the regulating valve 101 of the main water supply valve is gradually opened. And the adjustment valve 109 for supplying the normal water provided in case warm water is not available is opened so that normal water spraying can be performed.
- FIG. 9 shows a control method by the regulating valves 101 to 109 when the gas turbine power generator 100 is stopped.
- the solar heat collecting device shown in FIG. Since only the hot water by the solar heat of the heat collecting tube 8 is used, the adjusting valve 104 forming the hot water bypass line of the heat collecting tube 8 is opened, thereby passing the hot water of the heat collecting tube 8 through the bypass line.
- the adjustment valve 101 for the water supply main plug, the adjustment valve 106 following the spray nozzle 10 in the intake air cooling chamber 9, the adjustment valve 107 following the evaporator 11, and the adjustment valve 108 following the intercooler 12 are closed.
- the gas turbine 1 of FIG. Since only the hot water of the feed water heater 6 by exhaust gas is used, the warm water of the feed water heater 6 is caused to pass through the bypass line by opening the adjustment valve 105 that forms the bypass line of the hot water of the feed water heater 6.
- the adjustment valve 101 for the water supply main plug, the adjustment valve 106 following the spray nozzle 10 in the intake air cooling chamber 9, the adjustment valve 107 following the evaporator 11, and the adjustment valve 108 following the intercooler 12 are closed.
- the solar heat collection hot water shown in FIG. The hot water of both the heating device 7 and the feed water heater 6 is not used, and is normal water spray. Therefore, the adjustment valve 101 for the main water supply valve and the adjustment valve 109 for supplying normal water to the spray nozzle 10 in the intake cooling chamber 9 are closed.
- FIG. 10 shows a control method using a regulating valve when the load of the gas turbine power generator 100 is interrupted.
- the regulating valve 106 following the spray nozzle 10 in the intake cooling chamber 9, the regulating valve 107 following the evaporator 11, and the regulating valve 108 following the intercooler 12 are closed.
- the gas turbine shown in FIG. Since only the hot water of the feed water heater 6 using the exhaust gas of 1 is used, the warm water of the feed water heater 6 is caused to pass through the bypass line by opening the adjustment valve 105 that forms the bypass line of the hot water of the feed water heater 6. .
- the regulating valve 106 following the spray nozzle 10 in the intake cooling chamber 9, the regulating valve 107 following the evaporator 11, and the regulating valve 108 following the intercooler 12 are closed.
- FIG. 2 shows the case where the flag of the solar heat collecting hot water at the time of the last load interruption is “0” and the flag of the exhaust gas heating hot water is “0” (fourth column of the control method at the time of load interruption in FIG. 10).
- This is a normal water spray in which the adjustment valve 101 of the main plug of water supply and the adjustment valve 109 following the spray nozzle 10 in the intake air cooling chamber 9 are opened. Therefore, the regulating valve 101 and the regulating valve 109 are closed.
- the user displays the information of the measurement signal 120, the information of the control signal 130, the determination result of the driving condition determination unit 400, and the information of the related information database 300 on the image display device 950 using the support tool 910 shown in FIG.
- the method of making it explain. 11 to 14 are examples of screens displayed on the image display device 950 (see FIG. 2).
- FIG. 11 is an initial screen G1 displayed on the image display device 950.
- FIG. 12 is an operation state display screen G2 that displays the operation state.
- FIG. 13 is a display setting screen G3 for displaying the trend of the driving state on the image display device 950.
- the user selects a required button from the operation state display button 951 and the trend display button 952 on the initial screen G1 in FIG. 11, moves the cursor 953 using the mouse 902 (see FIG. 2), and clicks with the mouse 902.
- a desired screen (the operation state display screen G2 in FIG. 12 or the display setting screen G3 in FIG. 13) is displayed. That is, by clicking the operation state display button 951 on the initial screen G1 in FIG. 11, the operation state display screen G2 in FIG. 12 is displayed.
- the user inputs the time (time) of the system information display field 961 to be displayed on the image display device 950 (see FIG. 2) in the time input field 962.
- the display button 963 is clicked, the data transmission / reception processing unit 930 of the support tool 910 shown in FIG. 2 displays various states at that time in the system information display field 961 from the information in the related information database 300 or the like. Specifically, from the information in the related information database 300, at that time, any hot water of solar heat collection hot water (hot water by the heat collection pipe 8) or exhaust gas hot water (hot water by the feed water heater 6) or water spray that does not use hot water is used. The state of spraying is displayed on the spray state display 964.
- the display in a state where “1” is set in the flag of the solar heat collecting hot water and / or the exhaust gas heating hot water flag changes to highlighted display.
- the water spray display changes to highlighted display.
- the flow rate, pressure, and temperature of the fluid in the case of the flag “1” are numerically displayed from the measurement values of the measuring instruments at s3 and s5 in FIG.
- the state of the outside air is displayed in the related information display column 965 from the information in the actual measurement value data table in FIG. 4A or the information in the predicted value data table in FIG.
- the user can select information on the measurement signal to be displayed on the image display device 950 or information on the operation signal in the input field 981 (such as a pull-down list or a combo box). And select the range (upper limit / lower limit value). Further, the time zone (start time and end time) to be displayed is input in the time input field 982.
- the data transmission / reception processing unit 930 of the support tool 910 shown in FIG. 2 displays the trend graph driving state trend screen G4 shown in FIG. 950 is displayed.
- the horizontal axis of the driving state trend screen G4 indicates the time zone input in the time input field 982 of the display setting screen G3, and the vertical axis indicates the magnitude of the measurement signal information or the operation signal information.
- the screen returns to the display setting screen G3 in FIG.
- the related information display field 984 of the display setting screen G3 in FIG. 13 any of weather, air temperature, wind direction, wind speed, humidity, and solar radiation amount is selected and information corresponding information is described by clicking a display button 986. 2 is retrieved from the related information database 300 or the like and displayed on the trend screen G4 in FIG.
- the weather is expressed using 15 types sent to the general public by the Japan Meteorological Agency. A number is assigned according to each type, and this is displayed as a trend. That is, numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness.
- the trend graph of the operation state trend screen G4 in FIG. 14 is displayed on the image display device 950 from the information in the related information database 300 or the like. Is done.
- the predicted hot water temperature is compared with the actual hot water temperature.
- a time zone to be compared is input to the time input field 987 and the display button 988 is clicked, each trend graph of the hot water temperature predicted on the operation state trend screen G4 in FIG. 14 and the actual hot water temperature is displayed on the image display device 950. Is displayed.
- the return button 991 on the operation state trend screen G4 is clicked, the screen returns to the display setting screen G3 in FIG. Then, the user can return to the initial screen G1 of FIG. 11 by clicking the return button 989 on the display setting screen G3.
- either the hot water is sprayed into the intake cooling chamber 9 from the spray nozzle 10 or the hot water is evaporated by the evaporator 11 and sent to the combustor 4 as steam, whereby the gas turbine Increase the mass flow rate at the inlet of 1.
- the output of the gas turbine power generator 100 can be improved.
- the air in the combustor 4 becomes air in a stable combustion range, and the combustion of the combustor 4 is stabilized. Therefore, NOx contained in the combustion (exhaust) gas of the combustor 4 is reduced.
- the mass flow rate at the entrance of the gas turbine 1 is increased, and the output of the gas turbine power generator 100 is improved.
- the cooling air of the turbine blade of the gas turbine 1 sent from the outlet of the compressor 2 is re-cooled by the latent heat of evaporation of hot water in the intercooler 12 to reduce the amount of cooling air, so that it is used for the cooling air of the turbine blade. Energy is reduced and power generation efficiency is improved. Therefore, the gas turbine power generator 10 can maintain the rated output even during a period when the outside air temperature is high. In other periods, it is possible to contribute to operations such as improving the output or suppressing the fuel with a constant output.
- the hot water of the heat collecting pipe 8 of the solar heat collecting device 7 and the hot water of the feed water heater 6 are transferred to the spray nozzle 10 in the intake air cooling chamber 9, the evaporator 11, and the intercooler 12.
- the adjustment valve 106 following the spray nozzle 10 and the adjustment valve 107 following the evaporator 11 in the intake air cooling chamber 9 are closed until the temperature of the hot water reaches the low-temperature boiling set value range, and the intercooler 12 is turned on.
- the subsequent adjustment valve 108 is opened.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
The purpose is to improve the output and the power generation efficiency utilizing hot water produced with a solar heat or a thermal energy of a combustion exhaust gas.
This gas turbine power generation device (100) comprises: a compressor (2) which compresses air; a combustor (4) which combusts compressed air supplied from the compressor (2) and a fuel; a gas turbine (1) which is driven by a combustion gas generated in the combustor (4); a power generator (3) which is connected to the gas turbine (1) through a shaft (1a) and is driven by the rotation of the gas turbine (1) to generate an electric power; a water supply pump (5) which supplies feed water; at least one heating means selected from a feed water heater (6) which heats the feed water utilizing an exhaust gas from the gas turbine (1) and a heat collection tube (8) which heats the feed water by means of a solar heat collection unit (7) that collects a solar heat; an inlet air cooling chamber (9) for cooling inlet air supplied from the compressor (2); and an spray nozzle (10) for spraying hot water that has been heated by the heating means or the feed water into the inlet air cooling chamber (9).
Description
本発明は、ガスタービンによる発電装置において、特に、高湿分空気を利用する高湿分ガスタービンサイクル発電設備のガスタービン発電装置、ガスタービン発電システムおよびその制御方法に関する。
The present invention relates to a gas turbine power generation apparatus, and more particularly to a gas turbine power generation apparatus, a gas turbine power generation system, and a control method thereof for a high-humidity gas turbine cycle power generation facility using high-humidity air.
火力発電プラントには、燃焼器によってガスを燃焼させ、その高温高圧な燃焼ガスによってガスタービンを回転駆動させて発電するガスタービン発電装置や、ガスタービンで燃焼した排ガスを利用し、排熱回収ボイラにて蒸気を発生させ、その蒸気にて蒸気タービンを回転駆動させるコンバインドサイクル発電装置がある。
Thermal power plants use gas turbine power generators that generate gas by combusting gas with a combustor and rotating the gas turbine with the high-temperature and high-pressure combustion gas, and exhaust heat recovery boilers using exhaust gas combusted in the gas turbine. There is a combined cycle power generation device that generates steam and rotates the steam turbine with the steam.
何れの装置にもガスタービンが備わっているが、ガスタービンの出力は、入口側吸気温度が高くなると燃焼ガスの質量流量が少なくなり、低下することが知られている。従って、外気温度が高くなる夏季での運用や、もともと外気温度の高い地域での運用では、燃焼ガスの質量流量が少なくなることから、定格出力を下回ることもある。その為、圧縮器入口で水を噴霧することでガスタービンの入口側吸気温度を低下させて質量流量の低下を防ぎ、外気温度の高い場合でも、定格出力を維持するための装置や方法が考案されている。
Although any apparatus is equipped with a gas turbine, it is known that the output of the gas turbine decreases as the inlet side intake air temperature increases and the mass flow rate of the combustion gas decreases. Accordingly, in operation in summer when the outside air temperature is high or in operation in a region where the outside air temperature is originally high, the mass flow rate of the combustion gas is reduced, so that it may be lower than the rated output. Therefore, by spraying water at the compressor inlet, the intake temperature on the inlet side of the gas turbine is reduced to prevent the mass flow rate from decreasing, and devices and methods for maintaining the rated output even when the outside air temperature is high are devised. Has been.
一方、近年、二酸化炭素低減の観点から自然エネルギを利用した発電が注目されている。
特に、太陽光発電あるいは太陽熱を利用した発電が急速に広まっている。前者は、大容量の発電を得るために広大な設置スペースが必要となる。後者は、単独での発電よりは、既設の発電プラントへの熱供給利用という範囲にとどまっている。
従来技術としては、ガスタービンの燃焼排ガスの熱エネルギを回収し得られた蒸気をガスタービン燃料用の空気に混入し燃焼器で得られた高湿分の燃焼排ガスでタービンを駆動することで、出力および発電効率の向上を実現するガスタービンサイクルがある。 On the other hand, in recent years, power generation using natural energy has attracted attention from the viewpoint of reducing carbon dioxide.
In particular, photovoltaic power generation or power generation using solar heat is rapidly spreading. The former requires a large installation space in order to obtain a large-capacity power generation. The latter is limited to the use of heat supply to existing power plants rather than power generation alone.
As a prior art, by driving the turbine with the high-humidity combustion exhaust gas obtained by the combustor by mixing the steam obtained by recovering the thermal energy of the combustion exhaust gas of the gas turbine into the air for the gas turbine fuel, There are gas turbine cycles that provide improved power and power generation efficiency.
特に、太陽光発電あるいは太陽熱を利用した発電が急速に広まっている。前者は、大容量の発電を得るために広大な設置スペースが必要となる。後者は、単独での発電よりは、既設の発電プラントへの熱供給利用という範囲にとどまっている。
従来技術としては、ガスタービンの燃焼排ガスの熱エネルギを回収し得られた蒸気をガスタービン燃料用の空気に混入し燃焼器で得られた高湿分の燃焼排ガスでタービンを駆動することで、出力および発電効率の向上を実現するガスタービンサイクルがある。 On the other hand, in recent years, power generation using natural energy has attracted attention from the viewpoint of reducing carbon dioxide.
In particular, photovoltaic power generation or power generation using solar heat is rapidly spreading. The former requires a large installation space in order to obtain a large-capacity power generation. The latter is limited to the use of heat supply to existing power plants rather than power generation alone.
As a prior art, by driving the turbine with the high-humidity combustion exhaust gas obtained by the combustor by mixing the steam obtained by recovering the thermal energy of the combustion exhaust gas of the gas turbine into the air for the gas turbine fuel, There are gas turbine cycles that provide improved power and power generation efficiency.
また、下記の特許文献1には、圧縮機の入口に導入される吸気中に液滴を噴霧して出力の向上と熱効率の向上を図る技術が開示されている。
Also, the following Patent Document 1 discloses a technique for improving the output and the thermal efficiency by spraying droplets in the intake air introduced into the inlet of the compressor.
ところで、ガスタービンで所望の出力あるいは発電効率を得るためには、その入口側吸気温度を低下させ燃焼空気の質量流量が少なくなるのを抑制し、燃焼器に供給される圧縮空気に大量の水を注入する必要がある。しかしながら、これによって、燃焼器での燃焼に不安定が生じる。特に、ガスタービンを用いた発電装置では、高温高圧での燃焼に伴う燃焼排ガスに含まれるNOxを低減させるべく、安定燃焼範囲の狭い空気と燃料の予混合燃焼を行うため影響が大きい。
By the way, in order to obtain a desired output or power generation efficiency in the gas turbine, it is possible to suppress a reduction in the mass flow rate of the combustion air by lowering the inlet side intake air temperature, and to add a large amount of water to the compressed air supplied to the combustor. Need to be injected. However, this causes instability in combustion in the combustor. In particular, in a power generator using a gas turbine, in order to reduce NOx contained in combustion exhaust gas accompanying combustion at high temperature and pressure, the influence is large because premixed combustion of air and fuel having a narrow stable combustion range is performed.
前記の従来技術のガスタービンサイクルでは、大量の水を利用するため、この問題に対応するのは困難である。一方、特許文献1では、圧縮機の入口に導入される吸気中に液滴を噴霧することで、出力の向上と熱効率の向上を図れるが、更なる出力の向上と熱効率の向上が望まれる。
In the conventional gas turbine cycle, a large amount of water is used, so it is difficult to cope with this problem. On the other hand, in Patent Document 1, it is possible to improve the output and the thermal efficiency by spraying droplets in the intake air introduced into the inlet of the compressor. However, further improvement in the output and the thermal efficiency are desired.
本発明は上記実状に鑑み、太陽熱あるいは燃焼排ガスの熱エネルギで得られた温水を利用することで出力の向上および発電効率の向上を図れるガスタービン発電装置、ガスタービン発電システムおよびその制御方法の提供を目的とする。
In view of the above circumstances, the present invention provides a gas turbine power generation apparatus, a gas turbine power generation system, and a control method thereof that can improve output and power generation efficiency by using hot water obtained from solar heat or thermal energy of combustion exhaust gas. With the goal.
本発明の請求の範囲第1項に関わるガスタービン発電装置は、ガスタービンで発電を行うガスタービン発電装置であって、空気を圧縮する圧縮器と、前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、前記燃焼器の燃焼ガスにより駆動されるガスタービンと、前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動され発電する発電機と、給水を送り込む給水ポンプと、前記ガスタービンの排ガスを用いて前記給水を加熱する給水加熱器、並びに、太陽熱を集熱する太陽集熱装置で前記給水を加熱する集熱管のうちの少なくとも何れかの加熱手段と、前記圧縮器の吸気を冷却するための吸気冷却室と、前記加熱手段で加熱された温水または前記給水を前記吸気冷却室に噴霧するための噴霧ノズルとを備えている。
A gas turbine power generation apparatus according to claim 1 of the present invention is a gas turbine power generation apparatus that generates power with a gas turbine, and combusts a compressor that compresses air, compressed air from the compressor, and fuel A combustor, a gas turbine driven by combustion gas of the combustor, a generator connected to the gas turbine via a shaft and driven by rotation of the gas turbine, and a feed water pump for feeding water Heating means for heating the feed water using the exhaust gas of the gas turbine, and heating means for heating at least one of a heat collecting pipe for heating the feed water with a solar heat collecting device for collecting solar heat, and the compression An intake air cooling chamber for cooling the intake air of the vessel, and a spray nozzle for spraying the hot water heated by the heating means or the water supply into the intake air cooling chamber.
本発明の請求の範囲第5項に関わるガスタービン発電システムは、請求の範囲第1項に関わるガスタービン発電装置と、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、前記制御部は、前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御している。
The gas turbine power generation system according to claim 5 of the present invention includes a gas turbine power generation apparatus according to claim 1 and information of measurement signals from a measuring instrument for measuring a physical quantity of the gas turbine power generation apparatus. The operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input. A related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation As a result of calculation by the condition determination unit, at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit is output to the outside. An interface unit, and the control unit includes a gas turbine power generator according to a state of equipment provided in the gas turbine power generator, a condition of the obtained hot water, and an operating condition of the gas turbine power generator. Is controlling.
本発明の請求の範囲第6項に関わるガスタービン発電システムは、請求の範囲第1項に関わるガスタービン発電装置と、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、前記制御部は、前記外気の状態情報より前記温水の温度を予測している。
The gas turbine power generation system according to claim 6 of the present invention includes a gas turbine power generation apparatus according to claim 1 and measurement signal information from a measuring instrument for measuring a physical quantity of the gas turbine power generation apparatus. The operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input. A related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation As a result of calculation by the condition determination unit, at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit is output to the outside. An interface unit, and the control unit predicts the temperature of the hot water from the state information of the outside air.
本発明の請求の範囲第7項に関わるガスタービン発電システムは、請求の範囲第1項に関わるガスタービン発電装置と、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、前記制御部は、前記外気の状態情報より前記温水の温度を予測し、前記外気の状態情報より前記温水の温度を予測した結果と、前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御している。
The gas turbine power generation system according to claim 7 of the present invention includes a gas turbine power generation apparatus according to claim 1 and information on measurement signals from a measuring instrument that measures a physical quantity of the gas turbine power generation apparatus. The operation condition determination unit that determines whether the hot water heated by the heating means or the water supply is supplied to the spray nozzle, and the measurement signal information and the operation condition determination unit are input. A related information storage unit that stores the result of the operation and the state information of the outside air, a control unit that determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit, and the operation As a result of calculation by the condition determination unit, at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit is output to the outside. An interface unit, and the control unit predicts the temperature of the hot water from the outside air state information, and predicts the temperature of the hot water from the outside air state information, and is provided in the gas turbine power generator. The gas turbine power generator is controlled in accordance with the state of the equipment, the obtained hot water conditions, and the operating conditions of the gas turbine power generator.
本発明の請求の範囲第14項に関わるガスタービン発電システムの制御方法は、請求の範囲第5項に関わるガスタービン発電システムの制御方法である。
A control method for a gas turbine power generation system according to claim 14 of the present invention is a control method for a gas turbine power generation system according to claim 5.
本発明の請求の範囲第15項に関わるガスタービン発電システムの制御方法は、請求の範囲第6項に関わるガスタービン発電システムの制御方法である。
A control method for a gas turbine power generation system according to claim 15 of the present invention is a control method for a gas turbine power generation system according to claim 6.
本発明の請求の範囲第16項に関わるガスタービン発電システムの制御方法は、請求の範囲第7項に関わるガスタービン発電システムの制御方法である。
A control method for a gas turbine power generation system according to claim 16 of the present invention is a control method for a gas turbine power generation system according to claim 7.
本発明によれば、太陽熱あるいは燃焼排ガスの熱エネルギで得られた温水を利用することで出力の向上および発電効率の向上を図れる。
According to the present invention, it is possible to improve the output and the power generation efficiency by using the hot water obtained by the thermal energy of solar heat or combustion exhaust gas.
以下、本発明の実施形態について添付図面を参照して説明する。
図1は、実施形態に係るガスタービン発電装置100の概念的構成図である。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual configuration diagram of a gasturbine power generator 100 according to an embodiment.
図1は、実施形態に係るガスタービン発電装置100の概念的構成図である。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual configuration diagram of a gas
ガスタービン発電装置100は、発電のための基本構成要素として、吸入した空気を圧縮して高圧にした圧縮空気を出力する圧縮機2と、圧縮器2から供給される圧縮空気と燃料を燃焼する燃焼器4と、圧縮器2からの燃焼(排)ガスで回転駆動するガスタービン1と、ガスタービン1にガスタービン軸1aを介して連結されガスタービン1の運動エネルギを電気エネルギに変換する発電機3とを備えている。
The gas turbine power generation apparatus 100 combusts the compressed air and fuel supplied from the compressor 2 as a basic component for power generation, and outputs compressed air that is compressed into high pressure by compressing the sucked air. A combustor 4, a gas turbine 1 that is rotationally driven by combustion (exhaust) gas from the compressor 2, and power generation that is connected to the gas turbine 1 via a gas turbine shaft 1 a and converts the kinetic energy of the gas turbine 1 into electrical energy. Machine 3.
また、ガスタービン発電装置100は、発電出力および発電効率の向上のために使用する温水を得るための構成要素として、給水を行う給水ポンプ5と、該給水をガスタービン1から排出される排ガスの熱を用いて加熱する給水加熱器6と、太陽の日照で得られる熱を集熱する太陽集熱装置7および該集熱した熱によって給水ポンプ5から送られる給水を加熱する集熱管8とを備えている。
In addition, the gas turbine power generation apparatus 100 includes, as components for obtaining hot water used for improving power generation output and power generation efficiency, a water supply pump 5 that supplies water and exhaust gas discharged from the gas turbine 1. A feed water heater 6 that heats using heat, a solar heat collecting device 7 that collects heat obtained by solar sunshine, and a heat collecting tube 8 that heats feed water sent from the feed water pump 5 by the collected heat. I have.
そして、ガスタービン発電装置100は、温水を用いるための構成要素として、集熱管8および/または給水加熱器6で加熱された温水にて圧縮器2の吸気を冷却する吸気冷却室9と、温水を吸気冷却室9内で噴霧する噴霧ノズル10と、温水を蒸発させ燃焼器4に投入する蒸発器11と、圧縮器2の出口から排出される高温(例えば、約400℃)のガスタービン1のタービン翼の冷却用空気を冷却水に加えて当該温水(約150℃~180℃程度)を用いて冷却するインタークーラ12とを備えている。
The gas turbine power generation apparatus 100 includes an intake air cooling chamber 9 that cools the intake air of the compressor 2 with hot water heated by the heat collecting pipe 8 and / or the feed water heater 6 as components for using hot water, A spray nozzle 10 that sprays the inside of the intake air cooling chamber 9, an evaporator 11 that evaporates hot water and throws it into the combustor 4, and a high-temperature (for example, about 400 ° C.) gas turbine 1 that is discharged from the outlet of the compressor 2. And an intercooler 12 for cooling the turbine blades with the hot water (about 150 ° C. to 180 ° C.) by adding cooling air to the turbine blades to the cooling water.
次に、本ガスタービン発電装置100にて発電出力および発電効率が向上する作用(現象)について説明する。
集熱管8および/または給水加熱器6で加熱した温水を吸気冷却室9内にある噴霧ノズル10から吸気冷却室9内に噴霧することで、その一部が蒸発して蒸発潜熱により空気が冷却される。ここで、空気は冷却されると分子の運動エネルギが低下し密度が高くなる。
冷却された空気は吸気冷却室9から圧縮器2に入る。 Next, the action (phenomenon) of improving the power generation output and power generation efficiency in the gas turbinepower generation apparatus 100 will be described.
By spraying the hot water heated by theheat collecting pipe 8 and / or the feed water heater 6 from the spray nozzle 10 in the intake cooling chamber 9 into the intake cooling chamber 9, a part thereof is evaporated and the air is cooled by latent heat of evaporation. Is done. Here, when air is cooled, the kinetic energy of molecules decreases and the density increases.
The cooled air enters thecompressor 2 from the intake cooling chamber 9.
集熱管8および/または給水加熱器6で加熱した温水を吸気冷却室9内にある噴霧ノズル10から吸気冷却室9内に噴霧することで、その一部が蒸発して蒸発潜熱により空気が冷却される。ここで、空気は冷却されると分子の運動エネルギが低下し密度が高くなる。
冷却された空気は吸気冷却室9から圧縮器2に入る。 Next, the action (phenomenon) of improving the power generation output and power generation efficiency in the gas turbine
By spraying the hot water heated by the
The cooled air enters the
冷却された空気は密度が高くなることから、圧縮器2に入る空気の質量流量が増加する。この効果によって、タービン翼(図示せず)に当たる圧縮器2からの燃焼(排)ガスの質量が増加してタービン翼に与えられる運動エネルギが増加する。これにより、ガスタービン1の回転駆動力が大きくなり、ガスタービン1の出力が増加する。
従来、用いていた水に比較した場合の温水を利用することの利点(メリット)は、温水を吸気冷却室9内に噴霧することで減圧による沸点の低下で減圧沸騰が生じ、噴霧される液滴が一層微粒子化する。このため、より多くの噴霧水(温水)を噴霧することができ、更に質量流量が増加する。この結果、温水を噴霧することで、更なる出力向上を得ることが可能となる。なお、本実施形態では、減圧沸騰が生じ易い温水の温度として、約150℃~180℃を想定している。 Since the density of the cooled air increases, the mass flow rate of the air entering thecompressor 2 increases. Due to this effect, the mass of combustion (exhaust) gas from the compressor 2 impinging on the turbine blade (not shown) increases, and the kinetic energy given to the turbine blade increases. Thereby, the rotational driving force of the gas turbine 1 is increased, and the output of the gas turbine 1 is increased.
The advantage (merit) of using warm water in comparison with the conventionally used water is that the boiling water is sprayed in the intakeair cooling chamber 9 due to the lowering of the boiling point due to the reduced pressure, and the sprayed liquid. The droplets become finer. For this reason, more spray water (hot water) can be sprayed, and the mass flow rate further increases. As a result, further output improvement can be obtained by spraying warm water. In the present embodiment, it is assumed that the temperature of hot water at which reduced-pressure boiling easily occurs is about 150 ° C. to 180 ° C.
従来、用いていた水に比較した場合の温水を利用することの利点(メリット)は、温水を吸気冷却室9内に噴霧することで減圧による沸点の低下で減圧沸騰が生じ、噴霧される液滴が一層微粒子化する。このため、より多くの噴霧水(温水)を噴霧することができ、更に質量流量が増加する。この結果、温水を噴霧することで、更なる出力向上を得ることが可能となる。なお、本実施形態では、減圧沸騰が生じ易い温水の温度として、約150℃~180℃を想定している。 Since the density of the cooled air increases, the mass flow rate of the air entering the
The advantage (merit) of using warm water in comparison with the conventionally used water is that the boiling water is sprayed in the intake
また、温水を蒸発器11に通すことで得られる蒸気を燃焼器4に噴射することにより、燃焼器4からガスタービン1に入る質量流量を増やすことができるため、この効果によって、ガスタービン1の出力が増加する。
加えて、圧縮器2から排出される空気(約400℃)を、インタークーラ12において温水(約150℃~180℃)の蒸発潜熱で再冷却し、インタークーラ12から供給されるタービン翼を冷却するための空気の量である冷却空気量を低減する。 Moreover, since the mass flow rate which enters into the gas turbine 1 from the combustor 4 can be increased by injecting the steam obtained by letting warm water through theevaporator 11 to the combustor 4, the effect of the gas turbine 1 can be increased. Output increases.
In addition, the air discharged from the compressor 2 (about 400 ° C.) is recooled by the latent heat of evaporation of hot water (about 150 ° C. to 180 ° C.) in theintercooler 12 to cool the turbine blades supplied from the intercooler 12. The amount of cooling air that is the amount of air to be reduced is reduced.
加えて、圧縮器2から排出される空気(約400℃)を、インタークーラ12において温水(約150℃~180℃)の蒸発潜熱で再冷却し、インタークーラ12から供給されるタービン翼を冷却するための空気の量である冷却空気量を低減する。 Moreover, since the mass flow rate which enters into the gas turbine 1 from the combustor 4 can be increased by injecting the steam obtained by letting warm water through the
In addition, the air discharged from the compressor 2 (about 400 ° C.) is recooled by the latent heat of evaporation of hot water (about 150 ° C. to 180 ° C.) in the
このように、温水を用いるインタークーラ12での冷却用空気の冷却により、圧縮器2の出口から排出される冷却用空気(例えば、約400℃)が温水(約150℃~180℃程度)で冷却されるため、インタークーラ12で冷却用空気を冷却するための冷却水を用いるエネルギを節約できる。また、冷却用空気が従来より低温になるために冷却用空気量が低減される。
従って、従来に比べインタークーラ12で圧縮器2の出口から排出される空気を冷却するために必要とされるエネルギが低減され、ガスタービン発電装置100の発電効率が向上する。 Thus, the cooling air (for example, about 400 ° C.) discharged from the outlet of thecompressor 2 is warm water (about 150 ° C. to about 180 ° C.) by cooling the cooling air in the intercooler 12 using hot water. Since it cools, the energy using the cooling water for cooling the cooling air by the intercooler 12 can be saved. In addition, since the cooling air has a lower temperature than before, the amount of cooling air is reduced.
Therefore, the energy required for cooling the air discharged from the outlet of thecompressor 2 by the intercooler 12 is reduced as compared with the conventional case, and the power generation efficiency of the gas turbine power generator 100 is improved.
従って、従来に比べインタークーラ12で圧縮器2の出口から排出される空気を冷却するために必要とされるエネルギが低減され、ガスタービン発電装置100の発電効率が向上する。 Thus, the cooling air (for example, about 400 ° C.) discharged from the outlet of the
Therefore, the energy required for cooling the air discharged from the outlet of the
<ガスタービン発電システムS>
図2は図1で示すガスタービン発電装置100とこれを制御するための制御装置200との関係を示すガスタービン発電システムSの概念図である。
次に、ガスタービン発電装置100と、これを制御するための制御装置200と、支援ツール910および入力装置900および画像表示装置950とを具備するガスタービン発電システムSについて説明する。 <Gas turbine power generation system S>
FIG. 2 is a conceptual diagram of the gas turbine power generation system S showing the relationship between the gas turbinepower generation apparatus 100 shown in FIG. 1 and the control apparatus 200 for controlling the same.
Next, the gas turbine power generation system S including the gas turbinepower generation device 100, the control device 200 for controlling the gas turbine power generation device, the support tool 910, the input device 900, and the image display device 950 will be described.
図2は図1で示すガスタービン発電装置100とこれを制御するための制御装置200との関係を示すガスタービン発電システムSの概念図である。
次に、ガスタービン発電装置100と、これを制御するための制御装置200と、支援ツール910および入力装置900および画像表示装置950とを具備するガスタービン発電システムSについて説明する。 <Gas turbine power generation system S>
FIG. 2 is a conceptual diagram of the gas turbine power generation system S showing the relationship between the gas turbine
Next, the gas turbine power generation system S including the gas turbine
ガスタービン発電装置100には、制御装置200からの制御信号130を受けて動作し、給水ポンプ5から送られる給水の流れを制御する調整弁101~109が設けられている。
調整弁101は、給水ポンプ5からの管路を開閉することで、ガスタービン発電装置100への給水量を調節するためのものである。
調整弁102は、調整弁101の下流に設けられ、ガスタービン1の排ガスで給水ポンプ5からの給水を加熱する給水加熱器6への給水の量を調節するためのものである。 The gas turbinepower generation device 100 is provided with regulating valves 101 to 109 that operate in response to the control signal 130 from the control device 200 and control the flow of water supplied from the water supply pump 5.
Theadjustment valve 101 is for adjusting the amount of water supplied to the gas turbine power generation device 100 by opening and closing the pipeline from the water supply pump 5.
Theadjustment valve 102 is provided downstream of the adjustment valve 101, and is for adjusting the amount of water supplied to the feed water heater 6 that heats the feed water from the feed water pump 5 with the exhaust gas of the gas turbine 1.
調整弁101は、給水ポンプ5からの管路を開閉することで、ガスタービン発電装置100への給水量を調節するためのものである。
調整弁102は、調整弁101の下流に設けられ、ガスタービン1の排ガスで給水ポンプ5からの給水を加熱する給水加熱器6への給水の量を調節するためのものである。 The gas turbine
The
The
調整弁103は、調整弁101の下流に設けられ、給水ポンプ5から太陽集熱装置7で加熱する集熱管8への給水の量を調節するためのものである。
また、調整弁104は、太陽集熱装置7の集熱管8の下流に設けられ、集熱管8で温められた温水をバイパスさせ排出するためのものである。調整弁105は、給水加熱器6の下流に設けられ、給水加熱器6にてガスタービン1の排ガスで加熱された温水をパイパスさせ排出するためのものである。 Theadjustment valve 103 is provided downstream of the adjustment valve 101 and adjusts the amount of water supplied from the water supply pump 5 to the heat collecting pipe 8 heated by the solar heat collecting device 7.
The regulatingvalve 104 is provided downstream of the heat collecting pipe 8 of the solar heat collecting apparatus 7 and is for bypassing and discharging hot water heated by the heat collecting pipe 8. The regulating valve 105 is provided downstream of the feed water heater 6 and serves to bypass the hot water heated by the exhaust gas from the gas turbine 1 by the feed water heater 6 and discharge it.
また、調整弁104は、太陽集熱装置7の集熱管8の下流に設けられ、集熱管8で温められた温水をバイパスさせ排出するためのものである。調整弁105は、給水加熱器6の下流に設けられ、給水加熱器6にてガスタービン1の排ガスで加熱された温水をパイパスさせ排出するためのものである。 The
The regulating
調整弁106は、太陽集熱装置7の集熱管8および給水加熱器6の下流に設けられ、吸気冷却室9内の噴霧ノズル10に供給する温水の量を調節するためのものである。調整弁107は、太陽集熱装置7の集熱管8および給水加熱器6の下流に設けられ、蒸発器11に供給する温水の量を調節するためのものである。調整弁108は、給水加熱器6および太陽集熱装置7の集熱管8の下流に設けられ、インタークーラ12に供給する温水の量を、調節するためのものである。調整弁109は、給水ポンプ5、調整弁101の下流に設けられ、給水加熱器6および/または集熱管8による温水が用いられない場合に給水ポンプ5からの通常の水を噴霧ノズル10に供給して吸気冷却室9に噴霧する量を調節するためのものである。
The adjusting valve 106 is provided downstream of the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting device 7 and adjusts the amount of hot water supplied to the spray nozzle 10 in the intake air cooling chamber 9. The regulating valve 107 is provided downstream of the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting device 7 and is for adjusting the amount of hot water supplied to the evaporator 11. The regulating valve 108 is provided downstream of the feed water heater 6 and the heat collecting pipe 8 of the solar heat collecting apparatus 7 and adjusts the amount of hot water supplied to the intercooler 12. The regulating valve 109 is provided downstream of the feed water pump 5 and the regulating valve 101 and supplies normal water from the feed water pump 5 to the spray nozzle 10 when hot water from the feed water heater 6 and / or the heat collecting pipe 8 is not used. Thus, the amount sprayed into the intake cooling chamber 9 is adjusted.
ガスタービン発電装置100には、その各種物理量を計測する計測器(図示せず)が設けられている。例えば、図2に示すガスタービン発電装置100のs1からs9の箇所にそれぞれ流量センサ、温度センサ、圧力センサが設けられ、n1、n2の箇所にNOxなどの濃度を計測する濃度センサが設けられ、発電機3の出力側に図示しない電力測定器が設けられている。なお、これらの流量センサ、温度センサ、圧力センサ、濃度センサを設けた位置は一例を挙げたものであり、限定されない。
The gas turbine power generator 100 is provided with a measuring instrument (not shown) for measuring various physical quantities thereof. For example, a flow sensor, a temperature sensor, and a pressure sensor are provided at locations s1 to s9 of the gas turbine power generation device 100 illustrated in FIG. 2, respectively, and a concentration sensor that measures the concentration of NOx and the like is provided at locations n1 and n2. A power measuring device (not shown) is provided on the output side of the generator 3. The positions where these flow sensors, temperature sensors, pressure sensors, and concentration sensors are provided are examples and are not limited.
制御装置200は、ガスタービン発電装置100の計測器(図示せず)からの計測信号120を基に、ガスタービン発電装置100が適切な運転状態となるよう調整弁101~109の開度を調節し、太陽熱で暖められた集熱管8の温水またはガスタービン1の排ガスによって給水加熱器6で加熱された温水を、吸気冷却室9、蒸発器11、インタークーラ12に適切な量を供給するように制御信号130を出力する。
Based on a measurement signal 120 from a measuring instrument (not shown) of the gas turbine power generation device 100, the control device 200 adjusts the opening degree of the adjustment valves 101 to 109 so that the gas turbine power generation device 100 enters an appropriate operation state. Then, the hot water heated by the feed water heater 6 by the hot water of the heat collecting pipe 8 heated by the solar heat or the exhaust gas of the gas turbine 1 is supplied to the intake cooling chamber 9, the evaporator 11, and the intercooler 12. The control signal 130 is output to
制御装置200の関連情報データベース300は、ガスタービン発電装置100の計測器からの計測信号120の情報やその運転条件を判定したり、ガスタービン発電装置100を制御する際に用いるための情報などを格納している。
制御装置200の運転条件判定部400では、計測信号120から得られる情報および運転条件を判定するために必要なデータを基にガスタービン発電装置100の運転条件(状態)を判定する。ここで、運転条件を判定するために必要なデータとは、例えば、外気温度、太陽集熱装置7で太陽熱を利用している場合には日照データの情報などが挙げられる。これらデータの形態については、後に詳述する。 Therelated information database 300 of the control device 200 determines the information of the measurement signal 120 from the measuring instrument of the gas turbine power generation device 100, the operation condition thereof, information for use in controlling the gas turbine power generation device 100, and the like. Storing.
The operationcondition determination unit 400 of the control device 200 determines the operation condition (state) of the gas turbine power generation device 100 based on information obtained from the measurement signal 120 and data necessary for determining the operation condition. Here, the data necessary for determining the operating condition includes, for example, the outside air temperature, and information on sunshine data when solar heat is used in the solar heat collecting device 7. The form of these data will be described in detail later.
制御装置200の運転条件判定部400では、計測信号120から得られる情報および運転条件を判定するために必要なデータを基にガスタービン発電装置100の運転条件(状態)を判定する。ここで、運転条件を判定するために必要なデータとは、例えば、外気温度、太陽集熱装置7で太陽熱を利用している場合には日照データの情報などが挙げられる。これらデータの形態については、後に詳述する。 The
The operation
制御装置200の制御部500では、運転条件判定部400の判定結果を受け、ガスタービン発電装置100の運転の制御に適切な制御信号130を出力する。この制御信号130に基づいて、ガスタービン発電装置100内の調整弁101~109の開度を調節する。
制御装置200は、例えば、PLC(Programmable Logic Controller)であり、CPU(Central Processing Unit)、ROM(Read Only Memory))、RAM(Random Access Memory)、フラッシュメモリなどのメモリ、I/Oポートなどを含んで構成される。 Thecontrol unit 500 of the control device 200 receives the determination result of the operation condition determination unit 400 and outputs a control signal 130 suitable for controlling the operation of the gas turbine power generation device 100. Based on the control signal 130, the opening degree of the regulating valves 101 to 109 in the gas turbine power generator 100 is adjusted.
Thecontrol device 200 is, for example, a PLC (Programmable Logic Controller), a CPU (Central Processing Unit), a ROM (Read Only Memory)), a RAM (Random Access Memory), a memory such as a flash memory, an I / O port, and the like. Consists of including.
制御装置200は、例えば、PLC(Programmable Logic Controller)であり、CPU(Central Processing Unit)、ROM(Read Only Memory))、RAM(Random Access Memory)、フラッシュメモリなどのメモリ、I/Oポートなどを含んで構成される。 The
The
メモリには、運転条件判定部400、制御部500の制御プログラムが格納され、また、データが一部更新される関連情報データベース300が格納される。
運転条件判定部400、制御部500は、CPUが、ROMに格納される運転条件判定部400、制御部500の制御プログラムをRAMに展開し実行することで具体化される。
なお、制御装置200は、その少なくとも一部をIC(Integrated Circuit)、LSI(Large Scale Integration)などの回路で構成してもよく、制御装置200の機能が果たせればその実現形態は、例示したものに限定されず適宜選択可能である。 The memory stores a control program for the operationcondition determination unit 400 and the control unit 500, and a related information database 300 in which data is partially updated.
The operationcondition determination unit 400 and the control unit 500 are realized by the CPU developing and executing the control program of the operation condition determination unit 400 and the control unit 500 stored in the ROM in the RAM.
Note that at least a part of thecontrol device 200 may be configured by a circuit such as an IC (Integrated Circuit) or an LSI (Large Scale Integration). If the function of the control device 200 can be fulfilled, the implementation is exemplified. It can select suitably without being limited to a thing.
運転条件判定部400、制御部500は、CPUが、ROMに格納される運転条件判定部400、制御部500の制御プログラムをRAMに展開し実行することで具体化される。
なお、制御装置200は、その少なくとも一部をIC(Integrated Circuit)、LSI(Large Scale Integration)などの回路で構成してもよく、制御装置200の機能が果たせればその実現形態は、例示したものに限定されず適宜選択可能である。 The memory stores a control program for the operation
The operation
Note that at least a part of the
また、制御装置200には、ガスタービン発電装置100との間に、図示しないA/D変換器、D/A変換器、各種計測器の信号を増幅する増幅回路などの入出力インターフェースが設けられている。
制御装置200の内部で生成した信号などの情報210は、必要に応じて、支援ツール910にも出力されるとともに、支援ツール910から制御装置200に必要な情報210が出力される。 Further, thecontrol device 200 is provided with an input / output interface such as an A / D converter, a D / A converter, and an amplifier circuit for amplifying signals of various measuring instruments, which are not shown, between the control device 200 and the gas turbine power generation device 100. ing.
Information 210 such as a signal generated inside the control device 200 is output to the support tool 910 as needed, and information 210 necessary for the control device 200 is output from the support tool 910.
制御装置200の内部で生成した信号などの情報210は、必要に応じて、支援ツール910にも出力されるとともに、支援ツール910から制御装置200に必要な情報210が出力される。 Further, the
制御装置200の運転条件判定部400による判定結果および制御装置200からの制御信号130を求めるアルゴリズムについては、後に詳述する。
ガスタービン発電装置100に関わるユーザは、キーボード901やマウス902、タッチパネル(図示せず)などで構成される入力装置900と画像表示装置950とに接続されている支援ツール910を用いることにより、ガスタービン発電装置100に関する様々な情報を画像表示装置950で見ることが可能である。
また、ユーザは、支援ツール910を介して、制御装置200内の情報にアクセスすることができる。 The determination result by the operationcondition determination unit 400 of the control device 200 and the algorithm for obtaining the control signal 130 from the control device 200 will be described in detail later.
A user related to the gas turbinepower generation device 100 uses a support tool 910 connected to an image display device 950 and an input device 900 including a keyboard 901, a mouse 902, a touch panel (not shown), etc. Various information regarding the turbine power generation device 100 can be viewed on the image display device 950.
Further, the user can access information in thecontrol device 200 via the support tool 910.
ガスタービン発電装置100に関わるユーザは、キーボード901やマウス902、タッチパネル(図示せず)などで構成される入力装置900と画像表示装置950とに接続されている支援ツール910を用いることにより、ガスタービン発電装置100に関する様々な情報を画像表示装置950で見ることが可能である。
また、ユーザは、支援ツール910を介して、制御装置200内の情報にアクセスすることができる。 The determination result by the operation
A user related to the gas turbine
Further, the user can access information in the
支援ツール910は、外部入出力インターフェイス920、データ送受信処理部930、外部出力インターフェイス940を含んで構成される。
ユーザのキーボード901やマウス902などの入力により入力装置900で生成した入力信号800は、外部入出力インターフェイス920を介して、デジタル信号の入力信号801として支援ツール910のデータ送受信処理部930に取り込まれる。また、制御装置200からの情報210についても、同様に外部入出力インターフェイス920を介して、入力信号801として支援ツール910のデータ送受信処理部930に取り込まれる。一方、支援ツール910から制御装置200に、外部入出力インターフェイス920を介して、必要な情報210が出力される。 Thesupport tool 910 includes an external input / output interface 920, a data transmission / reception processing unit 930, and an external output interface 940.
Aninput signal 800 generated by the input device 900 by an input from the user's keyboard 901 or mouse 902 is taken into the data transmission / reception processing unit 930 of the support tool 910 via the external input / output interface 920 as an input signal 801 of a digital signal. . Similarly, the information 210 from the control device 200 is also taken into the data transmission / reception processing unit 930 of the support tool 910 via the external input / output interface 920 as the input signal 801. On the other hand, necessary information 210 is output from the support tool 910 to the control device 200 via the external input / output interface 920.
ユーザのキーボード901やマウス902などの入力により入力装置900で生成した入力信号800は、外部入出力インターフェイス920を介して、デジタル信号の入力信号801として支援ツール910のデータ送受信処理部930に取り込まれる。また、制御装置200からの情報210についても、同様に外部入出力インターフェイス920を介して、入力信号801として支援ツール910のデータ送受信処理部930に取り込まれる。一方、支援ツール910から制御装置200に、外部入出力インターフェイス920を介して、必要な情報210が出力される。 The
An
データ送受信処理部930では、ユーザの入力による入力信号800の情報に従って、制御装置200からの情報210および制御装置200への入力または出力の情報210を処理し、出力信号802として外部出力インターフェイス940に送信する。出力信号802は外部出力インターフェイス940で出力信号803とされ、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)などの画像表示装置950に表示される。
The data transmission / reception processing unit 930 processes the information 210 from the control device 200 and the input / output information 210 to the control device 200 according to the information of the input signal 800 input by the user, and outputs the output signal 802 to the external output interface 940. Send. The output signal 802 is converted into an output signal 803 by the external output interface 940 and displayed on an image display device 950 such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube).
なお、支援ツール910は、プラント内の監視制御装置、例えば、専用コンピュータであり、スタンドアローンとしても構成してもよいし、構内LAN(Local Area Network)で複数の専用コンピュータを接続してもよく、限定されない。支援ツール910は、説明する機能を果たせれば、その実現態様は特に限定されない。
The support tool 910 is a monitoring control device in the plant, for example, a dedicated computer, and may be configured as a stand-alone, or a plurality of dedicated computers may be connected by a local LAN (Local Area Network). , Not limited. The implementation mode of the support tool 910 is not particularly limited as long as it can perform the functions described.
<関連情報データベース300の情報>
次に、関連情報データベース300に格納されている計測信号120の情報、運転条件判定用データについて説明する。
始めに、ガスタービン発電装置100から得られる計測信号120の情報について説明する。
図3は関連情報データベース300に保存されている計測信号120に係わる情報の態様を示す図である。 <Information ofrelated information database 300>
Next, the information of themeasurement signal 120 and the operation condition determination data stored in the related information database 300 will be described.
First, the information of themeasurement signal 120 obtained from the gas turbine power generator 100 will be described.
FIG. 3 is a diagram showing an aspect of information related to themeasurement signal 120 stored in the related information database 300.
次に、関連情報データベース300に格納されている計測信号120の情報、運転条件判定用データについて説明する。
始めに、ガスタービン発電装置100から得られる計測信号120の情報について説明する。
図3は関連情報データベース300に保存されている計測信号120に係わる情報の態様を示す図である。 <Information of
Next, the information of the
First, the information of the
FIG. 3 is a diagram showing an aspect of information related to the
ガスタービン発電装置100において各種の計測器で計測した情報が、図3に示すように、計測器毎(図3の縦列)に各計測時刻(図3の横列)と共に保存される。
PID番号とは、関連情報データベース300に格納されているデータを容易に識別または活用できるように、各計測器の計測値に割り付けられた固有の番号である。
PID番号の下にあるアルファベットは、被計測対象の物理量が何であるかを示す記号である。例えば、集熱管8および/または給水加熱器6で作られる温水の流量値F、温水の温度値T、温水の圧力値P、発電出力値E、燃焼器4の燃焼(排)ガスに含まれるNOxの濃度値Dである。なお、図3では1秒周期でデータを保存する場合を例示しているが、データ収集のサンプリング周期は対象となるガスタービン発電装置100によって異なる。 As shown in FIG. 3, information measured by various measuring instruments in the gas turbinepower generation apparatus 100 is stored for each measuring instrument (column in FIG. 3) together with each measurement time (row in FIG. 3).
The PID number is a unique number assigned to the measurement value of each measuring instrument so that the data stored in therelated information database 300 can be easily identified or utilized.
The alphabet below the PID number is a symbol indicating what the physical quantity to be measured is. For example, it is included in the flow rate value F of warm water produced by theheat collecting pipe 8 and / or the feed water heater 6, the temperature value T of warm water, the pressure value P of warm water, the power generation output value E, and the combustion (exhaust) gas of the combustor 4. This is the NOx concentration value D. In addition, although the case where data is preserve | saved at a 1 second period is illustrated in FIG. 3, the sampling period of data collection changes with the gas turbine power generator 100 used as object.
PID番号とは、関連情報データベース300に格納されているデータを容易に識別または活用できるように、各計測器の計測値に割り付けられた固有の番号である。
PID番号の下にあるアルファベットは、被計測対象の物理量が何であるかを示す記号である。例えば、集熱管8および/または給水加熱器6で作られる温水の流量値F、温水の温度値T、温水の圧力値P、発電出力値E、燃焼器4の燃焼(排)ガスに含まれるNOxの濃度値Dである。なお、図3では1秒周期でデータを保存する場合を例示しているが、データ収集のサンプリング周期は対象となるガスタービン発電装置100によって異なる。 As shown in FIG. 3, information measured by various measuring instruments in the gas turbine
The PID number is a unique number assigned to the measurement value of each measuring instrument so that the data stored in the
The alphabet below the PID number is a symbol indicating what the physical quantity to be measured is. For example, it is included in the flow rate value F of warm water produced by the
次に、ガスタービン発電装置100の運転条件を判定する際に必要となる情報について説明する。
図4は、ガスタービン発電装置100の周辺の気候状態の実測値および予測値の情報の様式を示した図であり、図4(a)は実測値を示し、図4(b)は予測値を示す。
なお、図4に示す実測値および予測値は、関連情報データベース300に格納されるが、制御装置200の一時記憶エリア(ワークエリア)に記憶するようにしてもよい。 Next, information necessary for determining the operating condition of the gas turbinepower generation device 100 will be described.
FIG. 4 is a diagram showing a format of information on measured values and predicted values of the climatic state around the gas turbinepower generation apparatus 100. FIG. 4 (a) shows the measured values and FIG. 4 (b) shows the predicted values. Indicates.
4 are stored in therelated information database 300, but may be stored in a temporary storage area (work area) of the control device 200.
図4は、ガスタービン発電装置100の周辺の気候状態の実測値および予測値の情報の様式を示した図であり、図4(a)は実測値を示し、図4(b)は予測値を示す。
なお、図4に示す実測値および予測値は、関連情報データベース300に格納されるが、制御装置200の一時記憶エリア(ワークエリア)に記憶するようにしてもよい。 Next, information necessary for determining the operating condition of the gas turbine
FIG. 4 is a diagram showing a format of information on measured values and predicted values of the climatic state around the gas turbine
4 are stored in the
図4に示す実測値および予測値とも、時間(時刻)、天気、気温(摂氏)、風向、風速、湿度(相対湿度)、日射量を含んで格納されている。
時間(時刻)の周期は、計測可能な時間幅により決定される。天気は、例えば、気象庁が一般向けに発信している15種類を用いて表現する。15種類とは、快晴、晴れ、薄曇り、曇り、煙霧、砂塵嵐、地吹雪、霧、霧雨、雨、みぞれ、雪、あられ、ひょう、雷である。
風向きは日本では16方位を用いるのが一般的であるが、国際式では、真北を基準とし、時計回りの方向に360度に分割して表現する360方位が用いられている。図4中では、360方位で表現しているが、16方位においてもそれぞれの方位に対して22.5度の割合を与えて表現すれば、同様に度で数値化できる。 The actual measurement value and the predicted value shown in FIG. 4 are stored including time (time), weather, temperature (Celsius), wind direction, wind speed, humidity (relative humidity), and solar radiation.
The period of time (time) is determined by a measurable time width. The weather is expressed using, for example, 15 types transmitted by the Japan Meteorological Agency to the general public. The 15 types are clear, clear, light cloudy, cloudy, haze, dust storm, blizzard, fog, drizzle, rain, sleet, snow, hail, hail, and thunder.
In Japan, the wind direction is generally 16 azimuths. However, in the international style, 360 azimuths expressed by dividing 360 degrees in the clockwise direction on the basis of true north are used. In FIG. 4, it is expressed by 360 azimuths, but even in 16 azimuths, if expressed by giving a ratio of 22.5 degrees to each azimuth, it can be quantified in degrees as well.
時間(時刻)の周期は、計測可能な時間幅により決定される。天気は、例えば、気象庁が一般向けに発信している15種類を用いて表現する。15種類とは、快晴、晴れ、薄曇り、曇り、煙霧、砂塵嵐、地吹雪、霧、霧雨、雨、みぞれ、雪、あられ、ひょう、雷である。
風向きは日本では16方位を用いるのが一般的であるが、国際式では、真北を基準とし、時計回りの方向に360度に分割して表現する360方位が用いられている。図4中では、360方位で表現しているが、16方位においてもそれぞれの方位に対して22.5度の割合を与えて表現すれば、同様に度で数値化できる。 The actual measurement value and the predicted value shown in FIG. 4 are stored including time (time), weather, temperature (Celsius), wind direction, wind speed, humidity (relative humidity), and solar radiation.
The period of time (time) is determined by a measurable time width. The weather is expressed using, for example, 15 types transmitted by the Japan Meteorological Agency to the general public. The 15 types are clear, clear, light cloudy, cloudy, haze, dust storm, blizzard, fog, drizzle, rain, sleet, snow, hail, hail, and thunder.
In Japan, the wind direction is generally 16 azimuths. However, in the international style, 360 azimuths expressed by dividing 360 degrees in the clockwise direction on the basis of true north are used. In FIG. 4, it is expressed by 360 azimuths, but even in 16 azimuths, if expressed by giving a ratio of 22.5 degrees to each azimuth, it can be quantified in degrees as well.
図4(a)の実測値データテーブルには、実際に実測されたそれぞれの数値が格納される。
図4(b)の予測値データテーブルには、例えば予測モデルでの計算結果や、気象庁や気象会社などからの配信データを基にそれぞれの数値が格納される。場所によっては、現在、1時間毎に、時間(時刻)、天気、気温(摂氏)、風向、風速などの各数値を配信している場合もあるが、それ以外では、過去のデータを基に予測値を計算するモデルが必要となる。 Each actually measured value is stored in the actually measured value data table of FIG.
In the predicted value data table of FIG. 4B, respective numerical values are stored based on, for example, a calculation result in a prediction model and distribution data from the Japan Meteorological Agency or a weather company. Depending on the location, the hour (time), weather, temperature (degrees Celsius), wind direction, wind speed, etc. may be distributed every hour, but otherwise, based on past data. A model for calculating the predicted value is required.
図4(b)の予測値データテーブルには、例えば予測モデルでの計算結果や、気象庁や気象会社などからの配信データを基にそれぞれの数値が格納される。場所によっては、現在、1時間毎に、時間(時刻)、天気、気温(摂氏)、風向、風速などの各数値を配信している場合もあるが、それ以外では、過去のデータを基に予測値を計算するモデルが必要となる。 Each actually measured value is stored in the actually measured value data table of FIG.
In the predicted value data table of FIG. 4B, respective numerical values are stored based on, for example, a calculation result in a prediction model and distribution data from the Japan Meteorological Agency or a weather company. Depending on the location, the hour (time), weather, temperature (degrees Celsius), wind direction, wind speed, etc. may be distributed every hour, but otherwise, based on past data. A model for calculating the predicted value is required.
この予測モデルには、例えば、物理式を基に大気の状態を予測するためのモデルであるメソ気象モデルWRF(Weather Research and Forecasting)modelがある。本モデルでは、所望の地域を予報するための設定が必要なため、過去のデータを基に回帰式などを用いて、簡易的に求める方法もある。ここでは、何れの方式であっても構わない。
なお、図4(a)の実測値データテーブルおよび図4(b)の予測値データテーブルは外気の状態情報の一例を示したものであり、その他の表現を用いてもよいのは勿論である。
また、関連情報データベース300に格納される情報は、必要に応じて適宜、一時記憶領域(ワークエリア)に記憶するように構成してもよい。 This prediction model includes, for example, a meso-meteorological model WRF (Weather Research and Forecasting) model, which is a model for predicting atmospheric conditions based on physical formulas. In this model, since it is necessary to make a setting for forecasting a desired region, there is also a simple method of obtaining using a regression equation or the like based on past data. Here, any method may be used.
It should be noted that the actual measurement value data table in FIG. 4A and the predicted value data table in FIG. 4B show an example of outside air state information, and other expressions may of course be used. .
The information stored in therelated information database 300 may be configured to be stored in a temporary storage area (work area) as necessary.
なお、図4(a)の実測値データテーブルおよび図4(b)の予測値データテーブルは外気の状態情報の一例を示したものであり、その他の表現を用いてもよいのは勿論である。
また、関連情報データベース300に格納される情報は、必要に応じて適宜、一時記憶領域(ワークエリア)に記憶するように構成してもよい。 This prediction model includes, for example, a meso-meteorological model WRF (Weather Research and Forecasting) model, which is a model for predicting atmospheric conditions based on physical formulas. In this model, since it is necessary to make a setting for forecasting a desired region, there is also a simple method of obtaining using a regression equation or the like based on past data. Here, any method may be used.
It should be noted that the actual measurement value data table in FIG. 4A and the predicted value data table in FIG. 4B show an example of outside air state information, and other expressions may of course be used. .
The information stored in the
図5は、関連情報データベース300に格納されている図4(b)に示す予測値データテーブルに格納されているデータを用いて、集熱管8から吐出される温水の温度を推定するニューラルネットワークのモデルを示す図である。
ニューラルネットワークのモデルは、入力層、中間層、出力層を持ち、それぞれの層には、複数のノード(図5中、○で示す)が備わっている。これらのノードは、入力層から出力層に向かって、リンクされており、リンクの強さを表す重み係数が設定されている。つまり、重み係数はノード間の連結数だけ存在する。本ニューラルネットワークのモデルは、人間の持つ脳神経ネットワークを模擬したものである。 FIG. 5 shows a neural network that estimates the temperature of hot water discharged from theheat collecting pipe 8 using data stored in the predicted value data table shown in FIG. 4B stored in the related information database 300. It is a figure which shows a model.
The neural network model has an input layer, an intermediate layer, and an output layer, and each layer includes a plurality of nodes (indicated by ◯ in FIG. 5). These nodes are linked from the input layer to the output layer, and a weighting coefficient representing the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes. The model of this neural network simulates a human cranial nerve network.
ニューラルネットワークのモデルは、入力層、中間層、出力層を持ち、それぞれの層には、複数のノード(図5中、○で示す)が備わっている。これらのノードは、入力層から出力層に向かって、リンクされており、リンクの強さを表す重み係数が設定されている。つまり、重み係数はノード間の連結数だけ存在する。本ニューラルネットワークのモデルは、人間の持つ脳神経ネットワークを模擬したものである。 FIG. 5 shows a neural network that estimates the temperature of hot water discharged from the
The neural network model has an input layer, an intermediate layer, and an output layer, and each layer includes a plurality of nodes (indicated by ◯ in FIG. 5). These nodes are linked from the input layer to the output layer, and a weighting coefficient representing the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes. The model of this neural network simulates a human cranial nerve network.
本モデルに、入力値を与え、その入力値に対する所望の出力値が出力されるよう重み係数を調整することで、入力値のもつ相関関係をモデルとして表現できるようになる。この重み係数を調整する過程を学習と呼んでいる。学習が完了すると重み係数が決まるので、本モデルに入力値を入力することで、その時の入力値のもつ重み係数に依る相関関係をもとに、出力値を推定することが可能となる。ノードに設定する関数はシグモイド関数と呼ばれる指数関数を用いるのが一般的であるが、それに限定するものではない。また、学習時に、重み係数を適切に調整するアルゴリズムは多数考案されている。一般的には、バックプロパゲーション法を用いる。これらの詳しい計算アルゴリズムについては、「基礎と実践 ニューラルネットワーク、臼井支朗他著、コロナ社」に詳しい。
与 え By giving an input value to this model and adjusting the weighting coefficient so that the desired output value for the input value is output, the correlation of the input value can be expressed as a model. The process of adjusting this weighting factor is called learning. When the learning is completed, the weighting coefficient is determined. By inputting an input value into this model, it is possible to estimate the output value based on the correlation depending on the weighting coefficient of the input value at that time. The function set for the node is generally an exponential function called a sigmoid function, but is not limited thereto. In addition, many algorithms have been devised that appropriately adjust the weighting factor during learning. In general, the back propagation method is used. For details on these calculation algorithms, see "Basics and Practice, Neural Networks, Shiro Usui et al., Corona, Inc.".
<制御装置200の運転条件判定部400と制御部500での演算機能>
次に、図2に示す制御装置200における運転条件判定部400での演算機能の動作について説明する。
図6に、運転条件判定部400での動作(処理)をフローチャートにて示す。
始めに、S(ステップ)401では、太陽集熱装置7があるか否かを、入力装置900からの入力情報やガスタービン発電システムSへの設定情報などから判断する。あればステップ402へ、なければステップ409に進む。 <Calculation Function in OperationCondition Determination Unit 400 and Control Unit 500 of Control Device 200>
Next, the operation of the calculation function in the operatingcondition determination unit 400 in the control device 200 shown in FIG. 2 will be described.
FIG. 6 is a flowchart showing the operation (processing) in the operatingcondition determination unit 400.
First, in S (step) 401, it is determined whether or not there is the solarheat collecting device 7 from input information from the input device 900, setting information to the gas turbine power generation system S, and the like. If yes, go to Step 402, otherwise go to Step 409.
次に、図2に示す制御装置200における運転条件判定部400での演算機能の動作について説明する。
図6に、運転条件判定部400での動作(処理)をフローチャートにて示す。
始めに、S(ステップ)401では、太陽集熱装置7があるか否かを、入力装置900からの入力情報やガスタービン発電システムSへの設定情報などから判断する。あればステップ402へ、なければステップ409に進む。 <Calculation Function in Operation
Next, the operation of the calculation function in the operating
FIG. 6 is a flowchart showing the operation (processing) in the operating
First, in S (step) 401, it is determined whether or not there is the solar
太陽集熱装置7があると判断された場合(S401でYes)、S402で、ガスタービン1の排ガスによる熱を用いて給水を加熱して温水を生成できる給水加熱器6があるか否かを、入力装置900からの入力情報やガスタービン発電システムSへの設定情報などから判定する。
給水加熱器6があると判定された場合(S402でYes)、S403へ進み、図5で示したモデルを用いて、現在の気温や日射量から太陽集熱装置7の太陽熱による温水の温度の推定値が減圧沸騰の効果を得る設定温度(例えば、約150℃~180℃)以上で温水が供給可能か否かを判定する。なお、温水による減圧沸騰の効果を得るためには、150℃を温水の温度の設定温度とするのが適しているが、発電設備のガスタービン発電装置100の状況によって、本設定温度は多少前後する。また、温水は、実際に使用される箇所で適温、例えば150℃になるように流量などを増減して調整すればよい。 When it is determined that there is the solar heat collecting device 7 (Yes in S401), in S402, it is determined whether or not there is afeed water heater 6 that can generate hot water by heating the feed water using heat from the exhaust gas of the gas turbine 1. The determination is made based on the input information from the input device 900 and the setting information for the gas turbine power generation system S.
When it is determined that there is the feed water heater 6 (Yes in S402), the process proceeds to S403, and the temperature of the hot water due to the solar heat of the solarheat collecting device 7 is calculated from the current temperature and the amount of solar radiation using the model shown in FIG. It is determined whether hot water can be supplied when the estimated value is equal to or higher than a set temperature (for example, about 150 ° C. to 180 ° C.) at which the effect of boiling under reduced pressure is obtained. In order to obtain the effect of boiling under reduced pressure with hot water, it is suitable to set the temperature of 150 ° C. as the temperature of the hot water, but this set temperature is slightly different depending on the situation of the gas turbine power generation device 100 of the power generation facility. To do. Further, the hot water may be adjusted by increasing or decreasing the flow rate so as to be an appropriate temperature at a place where it is actually used, for example, 150 ° C.
給水加熱器6があると判定された場合(S402でYes)、S403へ進み、図5で示したモデルを用いて、現在の気温や日射量から太陽集熱装置7の太陽熱による温水の温度の推定値が減圧沸騰の効果を得る設定温度(例えば、約150℃~180℃)以上で温水が供給可能か否かを判定する。なお、温水による減圧沸騰の効果を得るためには、150℃を温水の温度の設定温度とするのが適しているが、発電設備のガスタービン発電装置100の状況によって、本設定温度は多少前後する。また、温水は、実際に使用される箇所で適温、例えば150℃になるように流量などを増減して調整すればよい。 When it is determined that there is the solar heat collecting device 7 (Yes in S401), in S402, it is determined whether or not there is a
When it is determined that there is the feed water heater 6 (Yes in S402), the process proceeds to S403, and the temperature of the hot water due to the solar heat of the solar
太陽集熱装置7の集熱管8の太陽熱による温水の温度の推定値が設定温度以上で供給可能であると判定された場合(S403でYes)、S404へ進み、太陽集熱装置7による温水および給水加熱器6のガスタービン1の排ガスの加熱による温水の両方が供給可能であるので、太陽集熱温水のフラグおよび排ガス加熱温水のフラグはともに“1”が設定される。
When it is determined that the estimated value of the temperature of the hot water by the solar heat of the heat collecting tube 8 of the solar heat collecting device 7 can be supplied at a set temperature or higher (Yes in S403), the process proceeds to S404, and the hot water by the solar heat collecting device 7 and Since both hot water by heating the exhaust gas of the gas turbine 1 of the feed water heater 6 can be supplied, both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are set to “1”.
一方、S403で、太陽集熱装置7の集熱管8の太陽熱による温水の温度の推定値が設定温度以上で供給可能でないと判定された場合(S403でNo)、S405に進み、太陽集熱装置7の太陽熱による温水を供給できないため、太陽集熱温水のフラグに“0”が設定され、排ガス加熱温水のフラグに“1”が設定される。
On the other hand, when it is determined in S403 that the estimated value of the temperature of the hot water by the solar heat of the heat collecting tube 8 of the solar heat collecting device 7 cannot be supplied above the set temperature (No in S403), the process proceeds to S405, where the solar heat collecting device Since hot water by solar heat 7 cannot be supplied, “0” is set in the flag of the solar heat collecting hot water, and “1” is set in the flag of the exhaust gas heating hot water.
S402で、給水加熱器6がないと判定された場合(S402でNo)、S406に進み、太陽集熱装置7のみが設置されている状況で、太陽熱による温水の温度の推定値が前記の減圧沸騰の効果を得る設定温度(例えば、約150℃~180℃)以上で供給可能であるか否か判定される。
太陽集熱装置7のみが設置されている状況で、太陽熱による温水の温度の推定値が設定温度以上で供給可能であると判定された場合(S406でYes)、ステップ407へ進み、太陽集熱装置7の太陽熱による温水のみ供給可能となるため、太陽集熱温水のフラグに“1”が設定され、排ガス加熱温水のフラグに“0”が設定される。 If it is determined in S402 that there is no feed water heater 6 (No in S402), the process proceeds to S406, and in the situation where only the solarheat collecting device 7 is installed, the estimated value of the temperature of the hot water by solar heat is the reduced pressure. It is determined whether supply is possible at a set temperature (for example, about 150 ° C. to 180 ° C.) or higher at which the boiling effect is obtained.
When it is determined that only the solarheat collecting device 7 is installed and the estimated value of the temperature of the hot water by the solar heat can be supplied at the set temperature or more (Yes in S406), the process proceeds to step 407, and the solar heat collecting device Since only hot water by the solar heat of the device 7 can be supplied, “1” is set in the flag of the solar heat collecting hot water, and “0” is set in the flag of the exhaust gas heating hot water.
太陽集熱装置7のみが設置されている状況で、太陽熱による温水の温度の推定値が設定温度以上で供給可能であると判定された場合(S406でYes)、ステップ407へ進み、太陽集熱装置7の太陽熱による温水のみ供給可能となるため、太陽集熱温水のフラグに“1”が設定され、排ガス加熱温水のフラグに“0”が設定される。 If it is determined in S402 that there is no feed water heater 6 (No in S402), the process proceeds to S406, and in the situation where only the solar
When it is determined that only the solar
一方、S406で、太陽集熱装置7のみが設置されている状況で、太陽熱による温水の温度の推定値が設定温度以上で供給可能でないと判定された場合(S406でNo)、S408へ進み、全ての温水が利用不可となるため、太陽集熱温水のフラグに“0”が設定され、かつ、排ガス加熱温水のフラグに“0”が設定される。
S401で、太陽集熱装置7がないと判断された場合(S401でNo)、S409に進み、ガスタービン1の排ガスの加熱による給水加熱器6があるか否か判定される。 On the other hand, when it is determined in S406 that only the solarheat collecting device 7 is installed and it is determined that the estimated value of the temperature of the hot water by solar heat cannot be supplied at the set temperature or higher (No in S406), the process proceeds to S408. Since all the hot water is unavailable, “0” is set in the flag of the solar heat collecting hot water, and “0” is set in the flag of the exhaust gas heating hot water.
If it is determined in S401 that there is no solar heat collector 7 (No in S401), the process proceeds to S409, where it is determined whether there is afeed water heater 6 by heating the exhaust gas of the gas turbine 1.
S401で、太陽集熱装置7がないと判断された場合(S401でNo)、S409に進み、ガスタービン1の排ガスの加熱による給水加熱器6があるか否か判定される。 On the other hand, when it is determined in S406 that only the solar
If it is determined in S401 that there is no solar heat collector 7 (No in S401), the process proceeds to S409, where it is determined whether there is a
ガスタービン1の排ガスの加熱による給水加熱器6があると判定された場合(S409でYes)、太陽熱による太陽集熱装置7がない状況でのステップ403と同様となり、S405に進み、太陽集熱装置7がないために太陽集熱温水のフラグに“0”が設定され、排ガスによる給水加熱器6の温水供給が可能であるので排ガス加熱温水のフラグに“1”が設定される。
If it is determined that there is a feed water heater 6 by heating the exhaust gas of the gas turbine 1 (Yes in S409), the procedure is the same as in Step 403 in the situation where there is no solar heat collecting device 7 by solar heat. Since there is no device 7, the flag of solar heat collecting hot water is set to “0”, and the hot water supply of the feed water heater 6 by exhaust gas is possible, so the flag of exhaust gas heating hot water is set to “1”.
S409で、ガスタービン1の排ガスの加熱による給水加熱器6がないと判定された場合(S409でNo)、S408へ進み、太陽集熱温水のフラグおよび排ガス加熱温水のフラグともに、それぞれ“0”が設定される。
このように、太陽集熱温水のフラグおよび排ガス加熱温水のフラグに、“0”または“1”の値が設定されれば、図6の運転条件判定部400での処理は終了する。
なお、図6の例では、温水の温度の推定値が設定温度以上であるか否か判断する場合を例示したが、ガスタービン発電装置100に設けた計測器で計測した温水の温度の計測値を用いて、設定温度以上であるか否か判断してもよい。 If it is determined in S409 that there is nofeed water heater 6 by heating the exhaust gas of the gas turbine 1 (No in S409), the process proceeds to S408, and both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are “0”. Is set.
As described above, when the value of “0” or “1” is set in the flag of the solar heat collecting hot water and the flag of the exhaust gas heating hot water, the processing in the operatingcondition determination unit 400 in FIG. 6 ends.
In the example of FIG. 6, the case where it is determined whether or not the estimated value of the temperature of the hot water is equal to or higher than the set temperature is exemplified. However, the measured value of the temperature of the hot water measured by the measuring instrument provided in the gas turbinepower generation device 100. May be used to determine whether the temperature is equal to or higher than the set temperature.
このように、太陽集熱温水のフラグおよび排ガス加熱温水のフラグに、“0”または“1”の値が設定されれば、図6の運転条件判定部400での処理は終了する。
なお、図6の例では、温水の温度の推定値が設定温度以上であるか否か判断する場合を例示したが、ガスタービン発電装置100に設けた計測器で計測した温水の温度の計測値を用いて、設定温度以上であるか否か判断してもよい。 If it is determined in S409 that there is no
As described above, when the value of “0” or “1” is set in the flag of the solar heat collecting hot water and the flag of the exhaust gas heating hot water, the processing in the operating
In the example of FIG. 6, the case where it is determined whether or not the estimated value of the temperature of the hot water is equal to or higher than the set temperature is exemplified. However, the measured value of the temperature of the hot water measured by the measuring instrument provided in the gas turbine
<制御装置200の制御部500での演算機能>
次に、図2に示す制御装置200における制御部500での演算機能の動作について説明する。
図7~図10は、それぞれガスタービン発電装置100の通常、起動時、停止時、負荷遮断時の各運転状態における運転条件判定部400の判定結果に応じた制御部500での機能を示す図である。 <Calculation Function inControl Unit 500 of Control Device 200>
Next, the operation of the calculation function in thecontrol unit 500 in the control device 200 shown in FIG. 2 will be described.
FIGS. 7 to 10 are diagrams illustrating functions of thecontrol unit 500 according to the determination results of the operation condition determination unit 400 in each operation state of the gas turbine power generation apparatus 100 in normal, start-up, stop, and load interruption. It is.
次に、図2に示す制御装置200における制御部500での演算機能の動作について説明する。
図7~図10は、それぞれガスタービン発電装置100の通常、起動時、停止時、負荷遮断時の各運転状態における運転条件判定部400の判定結果に応じた制御部500での機能を示す図である。 <Calculation Function in
Next, the operation of the calculation function in the
FIGS. 7 to 10 are diagrams illustrating functions of the
<ガスタービン発電装置100の通常運転時>
ガスタービン発電装置100の通常運転時の図2に示す調整弁101~109による制御方法を説明する。
図7は、ガスタービン発電装置100の通常運転時の調整弁101~109による制御方法を示した図である。 <During normal operation of the gasturbine power generator 100>
A control method using the regulatingvalves 101 to 109 shown in FIG. 2 during normal operation of the gas turbine power generator 100 will be described.
FIG. 7 is a diagram showing a control method by the regulatingvalves 101 to 109 during normal operation of the gas turbine power generator 100.
ガスタービン発電装置100の通常運転時の図2に示す調整弁101~109による制御方法を説明する。
図7は、ガスタービン発電装置100の通常運転時の調整弁101~109による制御方法を示した図である。 <During normal operation of the gas
A control method using the regulating
FIG. 7 is a diagram showing a control method by the regulating
通常運転時、太陽集熱温水のフラグおよび排ガス加熱温水のフラグが両方“1”の場合(図7の通常運転時の制御方法の1列目)、図2に示す太陽集熱装置7、給水加熱器6の両方の温水を利用できるため、太陽集熱装置7の集熱管8からの温水のバイパスラインを形成する調整弁104と給水加熱器6からの温水のバイパスラインを形成する調調整弁105を閉じて、集熱管8からの温水および給水加熱器6からのからの温水が、バイパスラインを経由しないようにする。また、太陽集熱装置7、給水加熱器6の両温水が利用できない場合に備えて設けた通常の水を噴霧をするためのラインを形成する調整弁109は閉じておく。
During normal operation, when both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are “1” (first row of the control method during normal operation in FIG. 7), the solar heat collecting device 7 shown in FIG. Since both hot water of the heater 6 can be used, a regulating valve 104 that forms a bypass line of hot water from the heat collecting pipe 8 of the solar heat collector 7 and a regulating valve that forms a bypass line of hot water from the feed water heater 6 105 is closed so that the hot water from the heat collecting pipe 8 and the hot water from the feed water heater 6 do not pass through the bypass line. Moreover, the regulating valve 109 which forms the line for spraying the normal water provided in case the both hot water of the solar heat collecting apparatus 7 and the feed water heater 6 cannot be utilized is closed.
通常運転時、太陽集熱温水のフラグが“1”で、排ガス加熱温水のフラグが“0”の場合(図7の通常運転時の制御方法の2列目)は、図2に示す太陽集熱装置7の太陽熱による温水のみが利用可能であるため、太陽集熱装置7の集熱管8からのバイパスラインを形成する調整弁104を閉じて、集熱管8からの温水がバイパスラインを経由しないようにする。さらに、給水加熱器6の給水側上流の調整弁102を閉じて、給水ポンプ5から給水加熱器6のガスタービン1の排ガス側のラインを孤立させる。
During normal operation, when the solar heat collecting hot water flag is “1” and the exhaust gas heating hot water flag is “0” (second row of the control method during normal operation in FIG. 7), the solar collecting hot water shown in FIG. Since only the hot water by the solar heat of the heat device 7 can be used, the regulating valve 104 that forms the bypass line from the heat collecting tube 8 of the solar heat collecting device 7 is closed, and the hot water from the heat collecting tube 8 does not pass through the bypass line. Like that. Further, the regulating valve 102 upstream of the feed water heater 6 on the feed water side is closed, and the exhaust gas side line of the gas turbine 1 of the feed water heater 6 is isolated from the feed water pump 5.
ここで、給水加熱器6の温水のバイパスラインを形成する調整弁105は、太陽集熱装置7の集熱管8の温水の圧力変動や運転中の突発的変動で、太陽熱側の集熱管8の温水が排ガス側のライン(給水加熱器6に続くライン)に逆流してきた場合に備えて開けておく。一方、太陽集熱装置7、給水加熱器6の温水が利用できない場合に備えて設けた通常の水を噴霧するためのラインを形成する調整弁109は閉じておく。
Here, the regulating valve 105 forming the hot water bypass line of the feed water heater 6 is a pressure fluctuation of the hot water of the heat collecting pipe 8 of the solar heat collecting apparatus 7 or a sudden fluctuation during operation. Open in case the hot water flows back to the exhaust gas side line (the line following the feed water heater 6). On the other hand, the regulating valve 109 that forms a line for spraying normal water provided in case the hot water of the solar heat collecting device 7 and the feed water heater 6 cannot be used is closed.
通常運転時、太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“1”の場合(図7の通常運転時の制御方法の3列目)は、図2に示すガスタービン1の排ガスによる給水加熱器6の温水のみが利用可能であるため、給水加熱器6のバイパスラインを形成する調整弁105を閉じて、給水加熱器6の温水がバイパスラインを経由しないようにする。さらに、太陽集熱装置7の集熱管8に給水する調整弁103を閉じて、給水ポンプ5から太陽熱側の集熱管8に続くラインを孤立させる。
During normal operation, when the flag of the solar heat collecting hot water is “0” and the flag of the exhaust gas heating hot water is “1” (third row of the control method during normal operation in FIG. 7), the gas turbine shown in FIG. Since only the hot water of the feed water heater 6 by the exhaust gas of 1 can be used, the regulating valve 105 forming the bypass line of the feed water heater 6 is closed so that the warm water of the feed water heater 6 does not pass through the bypass line. . Furthermore, the regulating valve 103 that supplies water to the heat collecting pipe 8 of the solar heat collecting apparatus 7 is closed, and the line that continues from the water supply pump 5 to the heat collecting pipe 8 on the solar heat side is isolated.
太陽集熱装置7の集熱管8の温水のバイパスラインを形成する調整弁104は、給水加熱器6の温水の圧力変動や運転中の突発的変動で、ガスタービン1の排ガス側の給水加熱器6の温水が、太陽熱側の集熱管8のラインに逆流してきた場合に備えて開けておく。一方、太陽集熱装置7、給水加熱器6の温水が利用できない場合に備えて設けた通常の水を噴霧するためのラインは、調整弁109にて閉じておく。
The regulating valve 104 forming the hot water bypass line of the heat collecting pipe 8 of the solar heat collecting apparatus 7 is a feed water heater on the exhaust gas side of the gas turbine 1 due to pressure fluctuations in the hot water of the feed water heater 6 or sudden fluctuations during operation. 6 is opened in preparation for the case where the warm water 6 flows back to the solar heat collecting tube 8 line. On the other hand, the line for spraying normal water provided in case the hot water of the solar heat collecting device 7 and the feed water heater 6 cannot be used is closed by the regulating valve 109.
最後の通常運転時の太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“0”の場合(図7の通常運転時の制御方法の4列目)は、図2に示す太陽集熱装置7の集熱管8の温水およびガスタービン1の排ガス側の給水加熱器6の温水が利用できない。そのため、両温水を用いる際に使用する調整弁102~108を閉じる。そして、給水ポンプ5から吸気冷却室9内の噴霧ノズル10への給水ラインを形成する調整弁101と調整弁109を開いて、噴霧ノズル10から吸気冷却室9内に通常の水噴霧ができるようにする。
FIG. 2 shows the case where the flag of the solar heat collecting hot water during the last normal operation is “0” and the flag of the exhaust gas heating hot water is “0” (fourth row of the control method during normal operation in FIG. 7). The hot water of the heat collecting pipe 8 of the solar heat collecting device 7 and the hot water of the feed water heater 6 on the exhaust gas side of the gas turbine 1 cannot be used. Therefore, the regulating valves 102 to 108 used when both hot waters are used are closed. Then, the adjustment valve 101 and the adjustment valve 109 that form a water supply line from the water supply pump 5 to the spray nozzle 10 in the intake air cooling chamber 9 are opened so that normal water spray can be performed from the spray nozzle 10 into the intake air cooling chamber 9. To.
なお、吸気冷却室9内の噴霧ノズル10に温水を供給する調整弁106、蒸発器11に温水を供給する調整弁107、インタークーラ12に温水を供給する調整弁108、および、吸気冷却室9内の噴霧ノズル10に水を供給する調整弁109のそれぞれの開度は、各ラインを流れる流体(温水)の圧力、温度、流量をそれぞれ計測し、それぞれの計測値が所望の値になるように制御される。
The adjustment valve 106 for supplying warm water to the spray nozzle 10 in the intake cooling chamber 9, the adjustment valve 107 for supplying warm water to the evaporator 11, the adjustment valve 108 for supplying warm water to the intercooler 12, and the intake cooling chamber 9 Each opening degree of the regulating valve 109 that supplies water to the spray nozzle 10 in the inside measures the pressure, temperature, and flow rate of the fluid (hot water) flowing through each line so that each measured value becomes a desired value. Controlled.
特に、温水を利用する場合は、温水を減圧沸騰させるための温度条件が重要であるため、減圧沸騰のための設定温度に温水の温度が満たない場合は、太陽集熱装置7の集熱管8の温水のバイパスラインを形成する調整弁104や、ガスタービン1の排ガス側の給水加熱器6のバイパスラインを形成する調整弁105を開き、それぞれのバイパスラインから流体(温水または水)を排出し、条件を満たさない流体(温水または水)が流れないようにする。温水の温度が減圧沸騰のための設定温度よりも高過ぎる場合も同様である。なお、温水の温度は、ガスタービン発電装置100に設けた計測器の温度センサで計測する。
In particular, when using warm water, the temperature condition for boiling the warm water under pressure is important. Therefore, when the temperature of the warm water does not satisfy the set temperature for boiling under reduced pressure, the heat collecting tube 8 of the solar heat collecting device 7 is used. Open the regulating valve 104 that forms the bypass line of the hot water and the regulating valve 105 that forms the bypass line of the feed water heater 6 on the exhaust gas side of the gas turbine 1, and discharge the fluid (hot water or water) from each bypass line. Prevent fluid (warm water or water) that does not meet the conditions from flowing. The same applies when the temperature of the hot water is too higher than the set temperature for boiling under reduced pressure. The temperature of the hot water is measured by a temperature sensor of a measuring instrument provided in the gas turbine power generator 100.
<ガスタービン発電装置100の起動時>
次に、ガスタービン発電装置100の起動時の調整弁101~109(図2参照)による制御方法を説明する。
図8は、ガスタービン発電装置100の起動時の調整弁101~109による制御方法を示した図である。 <When starting up the gas turbinepower generation device 100>
Next, a control method using the regulatingvalves 101 to 109 (see FIG. 2) when starting up the gas turbine power generator 100 will be described.
FIG. 8 is a diagram showing a control method by the regulatingvalves 101 to 109 when the gas turbine power generator 100 is started.
次に、ガスタービン発電装置100の起動時の調整弁101~109(図2参照)による制御方法を説明する。
図8は、ガスタービン発電装置100の起動時の調整弁101~109による制御方法を示した図である。 <When starting up the gas turbine
Next, a control method using the regulating
FIG. 8 is a diagram showing a control method by the regulating
ガスタービン発電装置100の起動時、太陽集熱温水のフラグおよび排ガス加熱温水のフラグが両方“1”の場合(図8の起動時の制御方法の1列目)、図2に示す太陽集熱装置7、給水加熱器6の両方の温水を利用できるため、太陽集熱装置7の集熱管8からの温水のバイパスラインを形成する調整弁104と給水加熱器6からの温水のバイパスラインを形成する調整弁105を、それぞれ「開」から「閉」とする。このときの開度調整は、温水の温度が設定温度に達した場合である。設定温度に達しない場合は、系統(吸気冷却室9内の噴霧ノズル10に続くライン、蒸発器11に続くライン、インタークーラ12に続くライン)に流すことができないため、調整弁104および/または調整弁105を開いた状態で温水をバイパスさせる。
When the gas turbine power generation device 100 is started, when both the solar heat collection hot water flag and the exhaust gas heating hot water flag are “1” (first row of the control method at the start of FIG. 8), the solar heat collection shown in FIG. Since the hot water of both the device 7 and the feed water heater 6 can be used, the bypass valve for the hot water from the heat collecting pipe 8 of the solar heat collecting device 7 and the bypass line of the hot water from the feed water heater 6 are formed. The adjustment valves 105 to be changed from “open” to “closed”, respectively. The opening adjustment at this time is when the temperature of the hot water reaches the set temperature. If it does not reach the set temperature, it cannot flow to the system (the line following the spray nozzle 10 in the intake air cooling chamber 9, the line following the evaporator 11, the line following the intercooler 12). The hot water is bypassed with the regulating valve 105 open.
また、給水ポンプ5からの水の供給側の調節弁101も、系統に流す温水の温度、圧力、流量の条件に応じて、「閉」から「開」という流量制御を実施する。以下、図8に示す起動時の全ての条件で調整弁101は、同様である。
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 In addition, thecontrol valve 101 on the supply side of water from the water supply pump 5 also performs flow control from “closed” to “open” according to the conditions of the temperature, pressure, and flow rate of the hot water flowing through the system. Hereinafter, the adjustment valve 101 is the same under all the conditions at the time of startup shown in FIG.
On the other hand, a normal water spray line (prepared from thewater supply pump 5 to the spray nozzle 10 in the intake cooling chamber 9) provided in case the hot water by the solar heat collecting device 7 and / or the feed water heater 6 cannot be used. Line) is closed by the regulating valve 109.
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 In addition, the
On the other hand, a normal water spray line (prepared from the
起動時の太陽集熱温水のフラグが“1”で、排ガス加熱温水のフラグが“0”の場合(図8の制御方法の2列目)は、図2に示す太陽熱による集熱管8の温水のみが利用可能であるため、太陽熱による集熱管8の温水のバイパスラインを形成する調整弁104を「開」から「閉」とし、徐々に集熱管8の温水がバイパスラインを経由しないようにする。給水加熱器6の上流側の調整弁102は閉じておく。
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 When the solar heat collecting hot water flag at start-up is “1” and the exhaust gas heating hot water flag is “0” (second row of the control method of FIG. 8), the hot water of theheat collecting tube 8 by solar heat shown in FIG. Therefore, the adjustment valve 104 that forms the bypass line of the hot water collecting pipe 8 by solar heat is changed from “open” to “closed” so that the hot water of the heat collecting pipe 8 gradually does not pass through the bypass line. . The regulating valve 102 on the upstream side of the feed water heater 6 is closed.
On the other hand, a normal water spray line (prepared from thewater supply pump 5 to the spray nozzle 10 in the intake cooling chamber 9) provided in case the hot water by the solar heat collecting device 7 and / or the feed water heater 6 cannot be used. Line) is closed by the regulating valve 109.
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 When the solar heat collecting hot water flag at start-up is “1” and the exhaust gas heating hot water flag is “0” (second row of the control method of FIG. 8), the hot water of the
On the other hand, a normal water spray line (prepared from the
起動時の太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“1”の場合(図8の制御方法の3列目)は、図2に示すガスタービン1の排ガスによる給水加熱器6の温水のみが利用可能であるため、給水加熱器6の温水のバイパスラインを形成する調整弁105を「開」から「閉」とし、徐々にバイパスラインを経由しないようにする。集熱管8の上流側の調整弁103は閉じておく。
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 When the solar heat collecting hot water flag at start-up is “0” and the exhaust gas heating hot water flag is “1” (third row of the control method of FIG. 8), water supply by the exhaust gas of the gas turbine 1 shown in FIG. Since only the hot water of theheater 6 can be used, the regulating valve 105 that forms the bypass line of the hot water of the feed water heater 6 is changed from “open” to “closed” so as not to gradually pass through the bypass line. The regulating valve 103 on the upstream side of the heat collecting tube 8 is closed.
On the other hand, a normal water spray line (prepared from thewater supply pump 5 to the spray nozzle 10 in the intake cooling chamber 9) provided in case the hot water by the solar heat collecting device 7 and / or the feed water heater 6 cannot be used. Line) is closed by the regulating valve 109.
一方、太陽集熱装置7および/または給水加熱器6による温水が利用できない場合に備えて設けた通常の水噴霧をするためのライン(給水ポンプ5から吸気冷却室9内の噴霧ノズル10に続くライン)は、調整弁109にて閉じておく。 When the solar heat collecting hot water flag at start-up is “0” and the exhaust gas heating hot water flag is “1” (third row of the control method of FIG. 8), water supply by the exhaust gas of the gas turbine 1 shown in FIG. Since only the hot water of the
On the other hand, a normal water spray line (prepared from the
最後の太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“0”の場合(図8の起動時の制御方法の4列目)は、図2に示す太陽集熱装置7の集熱管8、給水加熱器6両者の温水が利用できない。そのため、太陽集熱装置7の集熱管8、給水加熱器6両者の温水の供給に関る調整弁102~108を閉じ、給水の元栓の調整弁101を徐々に開く。そして、温水が利用できない場合に備えて設けた通常の水を供給するための調整弁109を開いて、通常の水噴霧ができるようにする。
When the last solar heat collecting hot water flag is “0” and the exhaust gas heating hot water flag is “0” (fourth row of the control method at the start-up in FIG. 8), the solar heat collecting device 7 shown in FIG. The hot water of both the heat collecting pipe 8 and the feed water heater 6 cannot be used. Therefore, the regulating valves 102 to 108 relating to the supply of hot water of both the heat collecting pipe 8 and the feed water heater 6 of the solar heat collecting apparatus 7 are closed, and the regulating valve 101 of the main water supply valve is gradually opened. And the adjustment valve 109 for supplying the normal water provided in case warm water is not available is opened so that normal water spraying can be performed.
<ガスタービン発電装置100の停止時>
次に、ガスタービン発電装置100の停止時の図2に示す調整弁101~109による制御方法を説明する。
図9は、ガスタービン発電装置100の停止時の調整弁101~109による制御方法を示したものである。 <When the gasturbine power generator 100 is stopped>
Next, a control method by the regulatingvalves 101 to 109 shown in FIG. 2 when the gas turbine power generator 100 is stopped will be described.
FIG. 9 shows a control method by the regulatingvalves 101 to 109 when the gas turbine power generator 100 is stopped.
次に、ガスタービン発電装置100の停止時の図2に示す調整弁101~109による制御方法を説明する。
図9は、ガスタービン発電装置100の停止時の調整弁101~109による制御方法を示したものである。 <When the gas
Next, a control method by the regulating
FIG. 9 shows a control method by the regulating
ガスタービン発電装置100の停止時、太陽集熱温水のフラグおよび排ガス加熱温水のフラグが両方“1”の場合(図9の停止時の制御方法の1列目)、図2に示す太陽集熱装置7、給水加熱器6の両方の温水を利用しているため、閉じていた太陽集熱装置7の温水のバイパスラインを形成する調整弁104および閉じていた給水加熱器6の温水の調整弁105を開くことでバイパスラインを経由させる。元栓の調整弁101、吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
When the gas turbine power generation device 100 is stopped and the flags of the solar heat collection hot water and the exhaust gas heating hot water are both “1” (first row of the control method at the time of stop in FIG. 9), the solar heat collection shown in FIG. Since the hot water of both the apparatus 7 and the feed water heater 6 is used, the regulating valve 104 that forms the bypass line of the warm water of the closed solar heat collecting apparatus 7 and the warm water regulating valve of the closed feed water heater 6 By opening 105, a bypass line is passed. The main valve adjustment valve 101, the adjustment valve 106 following the spray nozzle 10 in the intake air cooling chamber 9, the adjustment valve 107 following the evaporator 11, and the adjustment valve 108 following the intercooler 12 are closed.
停止時、太陽集熱温水のフラグが“1”で、排ガス加熱温水のフラグが“0”の場合(図9の停止時の制御方法の2列目)は、図2に示す太陽集熱装置7の集熱管8の太陽熱による温水のみを利用しているため、集熱管8の温水のバイパスラインを形成する調整弁104を開くことで、集熱管8の温水をバイパスラインに経由させる。給水の元栓の調整弁101、吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
When the flag of the solar heat collecting hot water is “1” and the exhaust gas heating hot water flag is “0” at the time of stop (the second row of the control method at the time of stop in FIG. 9), the solar heat collecting device shown in FIG. Since only the hot water by the solar heat of the heat collecting tube 8 is used, the adjusting valve 104 forming the hot water bypass line of the heat collecting tube 8 is opened, thereby passing the hot water of the heat collecting tube 8 through the bypass line. The adjustment valve 101 for the water supply main plug, the adjustment valve 106 following the spray nozzle 10 in the intake air cooling chamber 9, the adjustment valve 107 following the evaporator 11, and the adjustment valve 108 following the intercooler 12 are closed.
停止時、太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“1”の場合(図9の停止時の制御方法の3列目)は、図2に示すガスタービン1の排ガスによる給水加熱器6の温水のみを利用しているため、給水加熱器6の温水のバイパスラインを形成する調整弁105を開くことで、給水加熱器6の温水をバイパスラインに経由させる。給水の元栓の調整弁101、吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
At the time of stoppage, when the flag of the solar heat collecting hot water is “0” and the flag of the exhaust gas heating hot water is “1” (third row of the control method at the time of stop in FIG. 9), the gas turbine 1 of FIG. Since only the hot water of the feed water heater 6 by exhaust gas is used, the warm water of the feed water heater 6 is caused to pass through the bypass line by opening the adjustment valve 105 that forms the bypass line of the hot water of the feed water heater 6. The adjustment valve 101 for the water supply main plug, the adjustment valve 106 following the spray nozzle 10 in the intake air cooling chamber 9, the adjustment valve 107 following the evaporator 11, and the adjustment valve 108 following the intercooler 12 are closed.
最後の停止時の太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“0”の場合(図9の停止時の制御方法の4列目)は、図2に示す太陽集熱装置7、給水加熱器6両者の温水を利用しておらず、通常の水噴霧である。従って、給水の元栓の調整弁101と通常の水を吸気冷却室9内の噴霧ノズル10に供給する調整弁109を閉じる。
When the flag of the solar heat collection hot water at the time of the last stop is “0” and the flag of the exhaust gas heating hot water is “0” (fourth row of the control method at the time of stop in FIG. 9), the solar heat collection hot water shown in FIG. The hot water of both the heating device 7 and the feed water heater 6 is not used, and is normal water spray. Therefore, the adjustment valve 101 for the main water supply valve and the adjustment valve 109 for supplying normal water to the spray nozzle 10 in the intake cooling chamber 9 are closed.
<ガスタービン発電装置100の負荷遮断時>
次に、ガスタービン発電装置100の負荷遮断時の図2に示す調整弁101~109による制御方法を説明する。
図10は、ガスタービン発電装置100の負荷遮断時の調整弁による制御方法を示したものである。 <At the time of load interruption of gasturbine power generator 100>
Next, a control method using the regulatingvalves 101 to 109 shown in FIG. 2 when the load of the gas turbine power generator 100 is interrupted will be described.
FIG. 10 shows a control method using a regulating valve when the load of the gasturbine power generator 100 is interrupted.
次に、ガスタービン発電装置100の負荷遮断時の図2に示す調整弁101~109による制御方法を説明する。
図10は、ガスタービン発電装置100の負荷遮断時の調整弁による制御方法を示したものである。 <At the time of load interruption of gas
Next, a control method using the regulating
FIG. 10 shows a control method using a regulating valve when the load of the gas
ガスタービン発電装置100の負荷遮断時、太陽集熱温水のフラグおよび排ガス加熱温水のフラグが両方“1”の場合(図10の負荷遮断時の制御方法の1列目)、図2に示す太陽集熱装置7の集熱管8、給水加熱器6の両方の温水を利用しているため、集熱管8の温水のバイパスラインを形成する温水調整弁104および給水加熱器6の温水のバイパスラインを形成する調整弁105を開くことで、集熱管8の温水および給水加熱器6の温水を、バイパスラインを経由させる。吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
When the load of the gas turbine power generation device 100 is cut off, when both the solar heat collecting hot water flag and the exhaust gas heating hot water flag are “1” (first row of the control method at the time of load cutting in FIG. 10), the sun shown in FIG. Since the hot water of both the heat collecting pipe 8 of the heat collecting apparatus 7 and the feed water heater 6 is used, the hot water regulating valve 104 and the hot water bypass line of the feed water heater 6 forming the hot water bypass line of the heat collecting pipe 8 are provided. By opening the regulating valve 105 to be formed, the hot water of the heat collecting pipe 8 and the hot water of the feed water heater 6 are caused to pass through the bypass line. The regulating valve 106 following the spray nozzle 10 in the intake cooling chamber 9, the regulating valve 107 following the evaporator 11, and the regulating valve 108 following the intercooler 12 are closed.
負荷遮断時、太陽集熱温水のフラグが“1”で、排ガス加熱温水のフラグが“0”の場合(図10の負荷遮断時の制御方法の2列目)は、図2に示す太陽集熱装置7の集熱管8の太陽熱による温水のみを利用しているため、集熱管8の温水のバイパスラインを形成する調整弁104を開くことで、集熱管8の温水を、バイパスラインを経由させる。吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
At the time of load interruption, when the flag of the solar heat collection hot water is “1” and the flag of the exhaust gas heating hot water is “0” (second row of the control method at the time of load interruption in FIG. 10), the solar collection heat shown in FIG. Since only the hot water by the solar heat of the heat collecting pipe 8 of the heat device 7 is used, the hot water of the heat collecting pipe 8 is caused to pass through the bypass line by opening the adjustment valve 104 that forms the bypass line of the hot water of the heat collecting pipe 8. . The regulating valve 106 following the spray nozzle 10 in the intake cooling chamber 9, the regulating valve 107 following the evaporator 11, and the regulating valve 108 following the intercooler 12 are closed.
負荷遮断時、太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“1”の場合(図10の負荷遮断時の制御方法の3列目)は、図2に示すガスタービン1の排ガスによる給水加熱器6の温水のみを利用しているため、給水加熱器6の温水のバイパスラインを形成する調整弁105を開くことで、給水加熱器6の温水をバイパスラインを経由させる。吸気冷却室9内の噴霧ノズル10に続く調整弁106、蒸発器11に続く調整弁107、インタークーラ12に続く調整弁108は閉じる。
At the time of load interruption, when the flag of the solar heat collecting hot water is “0” and the flag of the exhaust gas heating hot water is “1” (third row of the control method at the time of load interruption in FIG. 10), the gas turbine shown in FIG. Since only the hot water of the feed water heater 6 using the exhaust gas of 1 is used, the warm water of the feed water heater 6 is caused to pass through the bypass line by opening the adjustment valve 105 that forms the bypass line of the hot water of the feed water heater 6. . The regulating valve 106 following the spray nozzle 10 in the intake cooling chamber 9, the regulating valve 107 following the evaporator 11, and the regulating valve 108 following the intercooler 12 are closed.
最後の負荷遮断時の太陽集熱温水のフラグが“0”で、排ガス加熱温水のフラグが“0”の場合(図10の負荷遮断時の制御方法の4列目)は、図2に示す給水の元栓の調整弁101と吸気冷却室9内の噴霧ノズル10に続く調整弁109とを開いた通常の水噴霧である。従って、調整弁101と調整弁109を閉じる。
FIG. 2 shows the case where the flag of the solar heat collecting hot water at the time of the last load interruption is “0” and the flag of the exhaust gas heating hot water is “0” (fourth column of the control method at the time of load interruption in FIG. 10). This is a normal water spray in which the adjustment valve 101 of the main plug of water supply and the adjustment valve 109 following the spray nozzle 10 in the intake air cooling chamber 9 are opened. Therefore, the regulating valve 101 and the regulating valve 109 are closed.
<ガスタービン発電システムSのユーザへの表示>
次に、ユーザが図2に示す支援ツール910を用いて、画像表示装置950に計測信号120の情報、制御信号130の情報、運転条件判定部400の判定結果や関連情報データベース300の情報を表示させる方法について説明する。
図11~図14は、画像表示装置950(図2参照)に表示される画面の一例である。 <Display to the user of the gas turbine power generation system S>
Next, the user displays the information of themeasurement signal 120, the information of the control signal 130, the determination result of the driving condition determination unit 400, and the information of the related information database 300 on the image display device 950 using the support tool 910 shown in FIG. The method of making it explain.
11 to 14 are examples of screens displayed on the image display device 950 (see FIG. 2).
次に、ユーザが図2に示す支援ツール910を用いて、画像表示装置950に計測信号120の情報、制御信号130の情報、運転条件判定部400の判定結果や関連情報データベース300の情報を表示させる方法について説明する。
図11~図14は、画像表示装置950(図2参照)に表示される画面の一例である。 <Display to the user of the gas turbine power generation system S>
Next, the user displays the information of the
11 to 14 are examples of screens displayed on the image display device 950 (see FIG. 2).
ユーザは、キーボード901、マウス902を用いてこれら図11~図13に示す画面G1~G3の空欄となっている箇所にパラメータ値を入力する、選択肢から選択するなどの操作を実行する。
図11は、画像表示装置950に表示される初期画面G1である。図12は、運転状態を表示する運転状態表示画面G2である。図13は、運転状態のトレンドを画像表示装置950に表示させるための表示設定画面G3である。 The user uses thekeyboard 901 and the mouse 902 to perform operations such as inputting parameter values in blank spaces on the screens G1 to G3 shown in FIGS. 11 to 13 and selecting from options.
FIG. 11 is an initial screen G1 displayed on theimage display device 950. FIG. 12 is an operation state display screen G2 that displays the operation state. FIG. 13 is a display setting screen G3 for displaying the trend of the driving state on the image display device 950.
図11は、画像表示装置950に表示される初期画面G1である。図12は、運転状態を表示する運転状態表示画面G2である。図13は、運転状態のトレンドを画像表示装置950に表示させるための表示設定画面G3である。 The user uses the
FIG. 11 is an initial screen G1 displayed on the
ユーザは、図11の初期画面G1で、運転状態表示ボタン951、トレンド表示ボタン952のうちから必要なボタンを選び、マウス902(図2参照)を用いてカーソル953を移動させてマウス902でクリックすることにより、所望の画面(図12の運転状態表示画面G2または図13の表示設定画面G3)を表示させる。
すなわち、図11の初期画面G1において、運転状態表示ボタン951をクリックすることにより、図12の運転状態表示画面G2が表示される。 The user selects a required button from the operationstate display button 951 and the trend display button 952 on the initial screen G1 in FIG. 11, moves the cursor 953 using the mouse 902 (see FIG. 2), and clicks with the mouse 902. By doing so, a desired screen (the operation state display screen G2 in FIG. 12 or the display setting screen G3 in FIG. 13) is displayed.
That is, by clicking the operationstate display button 951 on the initial screen G1 in FIG. 11, the operation state display screen G2 in FIG. 12 is displayed.
すなわち、図11の初期画面G1において、運転状態表示ボタン951をクリックすることにより、図12の運転状態表示画面G2が表示される。 The user selects a required button from the operation
That is, by clicking the operation
運転状態表示画面G2の系統情報表示欄961の表示については、ユーザは、画像表示装置950(図2参照)に表示させたい系統情報表示欄961の時間(時刻)を、時刻入力欄962に入力する。そして、表示ボタン963をクリックすることにより、図2に示す支援ツール910のデータ送受信処理部930が関連情報データベース300の情報などから、系統情報表示欄961にその時間での各種状態を表示する。
具体的には、関連情報データベース300の情報から、その時間に、太陽集熱温水(集熱管8による温水)または排ガス温水(給水加熱器6による温水)のどの温水または温水を用いない水噴霧を、どのような状態で噴霧しているのかを噴霧状態表示964にて表示する。 Regarding the display of the systeminformation display field 961 on the operation state display screen G2, the user inputs the time (time) of the system information display field 961 to be displayed on the image display device 950 (see FIG. 2) in the time input field 962. To do. When the display button 963 is clicked, the data transmission / reception processing unit 930 of the support tool 910 shown in FIG. 2 displays various states at that time in the system information display field 961 from the information in the related information database 300 or the like.
Specifically, from the information in therelated information database 300, at that time, any hot water of solar heat collection hot water (hot water by the heat collection pipe 8) or exhaust gas hot water (hot water by the feed water heater 6) or water spray that does not use hot water is used. The state of spraying is displayed on the spray state display 964.
具体的には、関連情報データベース300の情報から、その時間に、太陽集熱温水(集熱管8による温水)または排ガス温水(給水加熱器6による温水)のどの温水または温水を用いない水噴霧を、どのような状態で噴霧しているのかを噴霧状態表示964にて表示する。 Regarding the display of the system
Specifically, from the information in the
図6で示した運転状態の判定結果を基に、太陽集熱温水のフラグおよび/または排ガス加熱温水フラグで“1”が立っている状態の表示が強調表示に変化する。両方のフラグが0のときは、水噴霧の表示が強調表示に変化する。さらに、フラグ“1”の場合の流体の流量、圧力、温度が、図2のs3、s5箇所の計測器の計測値から、数値で表示される。また、外気の状態については、図4(a)の実測値データテーブルの情報または図4(b)の予測値データテーブルの情報から、関連情報表示欄965にて表示される。
Based on the determination result of the operation state shown in FIG. 6, the display in a state where “1” is set in the flag of the solar heat collecting hot water and / or the exhaust gas heating hot water flag changes to highlighted display. When both flags are 0, the water spray display changes to highlighted display. Further, the flow rate, pressure, and temperature of the fluid in the case of the flag “1” are numerically displayed from the measurement values of the measuring instruments at s3 and s5 in FIG. Further, the state of the outside air is displayed in the related information display column 965 from the information in the actual measurement value data table in FIG. 4A or the information in the predicted value data table in FIG.
図12の運転状態表示画面G2において、戻るボタン966をクリックすることにより、図11の初期画面G1に戻ることができる。
図11の初期画面G1において、ユーザが、トレンド表示ボタン952をクリックすることにより、図13の表示設定画面G3が表示される。 By clicking thereturn button 966 on the operation state display screen G2 in FIG. 12, it is possible to return to the initial screen G1 in FIG.
When the user clicks thetrend display button 952 on the initial screen G1 in FIG. 11, the display setting screen G3 in FIG. 13 is displayed.
図11の初期画面G1において、ユーザが、トレンド表示ボタン952をクリックすることにより、図13の表示設定画面G3が表示される。 By clicking the
When the user clicks the
ユーザは、表示設定画面G3の計測信号表示欄981には、画像表示装置950に表示させたい計測信号の情報、あるいは操作信号の情報を入力欄981の名称の選択肢(プルダウンリストやコンボボックスなど)から選択するとともに、そのレンジ(上限/下限の値)を入力する。また、表示させたい時間帯(始点と終点の時刻)を時刻入力欄982に入力する。
In the measurement signal display field 981 of the display setting screen G3, the user can select information on the measurement signal to be displayed on the image display device 950 or information on the operation signal in the input field 981 (such as a pull-down list or a combo box). And select the range (upper limit / lower limit value). Further, the time zone (start time and end time) to be displayed is input in the time input field 982.
そして、表示ボタン983をクリックすることにより、図2に示す支援ツール910のデータ送受信処理部930が関連情報データベース300の情報などから、図14に示すトレンドグラフの運転状態トレンド画面G4を画像表示装置950に表示する。運転状態トレンド画面G4の横軸は、表示設定画面G3の時刻入力欄982に入力された時間帯を示し、縦軸は、計測信号の情報または操作信号の情報の大きさを表す。
When the display button 983 is clicked, the data transmission / reception processing unit 930 of the support tool 910 shown in FIG. 2 displays the trend graph driving state trend screen G4 shown in FIG. 950 is displayed. The horizontal axis of the driving state trend screen G4 indicates the time zone input in the time input field 982 of the display setting screen G3, and the vertical axis indicates the magnitude of the measurement signal information or the operation signal information.
図14の運転状態トレンド画面G4の戻るボタン991をクリックすることにより、図13の表示設定画面G3に戻る。
図13の表示設定画面G3の関連情報表示欄984では、天気、気温、風向、風速、湿度、日射量の任意を選択し、表示ボタン986をクリックすることで、該当情報が記載されている情報を、図2に示すデータ送受信処理部930が関連情報データベース300などから検索し、図14のトレンド画面G4に表示する。 When thereturn button 991 on the operation state trend screen G4 in FIG. 14 is clicked, the screen returns to the display setting screen G3 in FIG.
In the relatedinformation display field 984 of the display setting screen G3 in FIG. 13, any of weather, air temperature, wind direction, wind speed, humidity, and solar radiation amount is selected and information corresponding information is described by clicking a display button 986. 2 is retrieved from the related information database 300 or the like and displayed on the trend screen G4 in FIG.
図13の表示設定画面G3の関連情報表示欄984では、天気、気温、風向、風速、湿度、日射量の任意を選択し、表示ボタン986をクリックすることで、該当情報が記載されている情報を、図2に示すデータ送受信処理部930が関連情報データベース300などから検索し、図14のトレンド画面G4に表示する。 When the
In the related
なお、天気については、前記したように、気象庁が一般向けに発信している15種類を用いて表現する。各種類に応じて番号を割り振り、これを数値でトレンド表示する。つまり、快晴を0、晴れを1、薄曇を2というように、順次14まで番号を割り振る。表示させたい時間帯を時刻入力欄985に入力し、表示ボタン986をクリックすることで、関連情報データベース300の情報などから、図14の運転状態トレンド画面G4のトレンドグラフが画像表示装置950に表示される。
In addition, as described above, the weather is expressed using 15 types sent to the general public by the Japan Meteorological Agency. A number is assigned according to each type, and this is displayed as a trend. That is, numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness. By inputting the time zone to be displayed in the time input field 985 and clicking the display button 986, the trend graph of the operation state trend screen G4 in FIG. 14 is displayed on the image display device 950 from the information in the related information database 300 or the like. Is done.
図13の表示設定画面G3の温水温度比較表示では、予測した温水温度と実際の温水温度を比較表示する。時刻入力欄987に比較させたい時間帯を入力し、表示ボタン988をクリックすると、図14の運転状態トレンド画面G4に予測した温水温度と実際の温水温度との各トレンドグラフが画像表示装置950に表示される。運転状態トレンド画面G4の戻るボタン991をクリックすると、図13の表示設定画面G3に戻る。
そして、表示設定画面G3の戻るボタン989をクリックすることにより、図11の初期画面G1に戻ることができる。 In the hot water temperature comparison display on the display setting screen G3 in FIG. 13, the predicted hot water temperature is compared with the actual hot water temperature. When a time zone to be compared is input to thetime input field 987 and the display button 988 is clicked, each trend graph of the hot water temperature predicted on the operation state trend screen G4 in FIG. 14 and the actual hot water temperature is displayed on the image display device 950. Is displayed. When the return button 991 on the operation state trend screen G4 is clicked, the screen returns to the display setting screen G3 in FIG.
Then, the user can return to the initial screen G1 of FIG. 11 by clicking thereturn button 989 on the display setting screen G3.
そして、表示設定画面G3の戻るボタン989をクリックすることにより、図11の初期画面G1に戻ることができる。 In the hot water temperature comparison display on the display setting screen G3 in FIG. 13, the predicted hot water temperature is compared with the actual hot water temperature. When a time zone to be compared is input to the
Then, the user can return to the initial screen G1 of FIG. 11 by clicking the
上記構成によれば、温水を噴霧ノズル10から吸気冷却室9内に噴霧するか、または、温水を蒸発器11で蒸発させて蒸気として燃焼器4に送り込むか何れかを行うことで、ガスタービン1の入り口の質量流量を増加させる。これにより、ガスタービン発電装置100の出力の向上を図れる。
また、燃焼器4に蒸気を送り込むことで、燃焼器4内では安定燃焼範囲の空気となり、燃焼器4の燃焼が安定化する。そのため、燃焼器4の燃焼(排)ガスに含まれるNOxが低減される。また、ガスタービン1の入り口の質量流量を増加し、ガスタービン発電装置100の出力が向上する。 According to the above configuration, either the hot water is sprayed into theintake cooling chamber 9 from the spray nozzle 10 or the hot water is evaporated by the evaporator 11 and sent to the combustor 4 as steam, whereby the gas turbine Increase the mass flow rate at the inlet of 1. Thereby, the output of the gas turbine power generator 100 can be improved.
Moreover, by sending steam into the combustor 4, the air in the combustor 4 becomes air in a stable combustion range, and the combustion of the combustor 4 is stabilized. Therefore, NOx contained in the combustion (exhaust) gas of the combustor 4 is reduced. In addition, the mass flow rate at the entrance of the gas turbine 1 is increased, and the output of the gasturbine power generator 100 is improved.
また、燃焼器4に蒸気を送り込むことで、燃焼器4内では安定燃焼範囲の空気となり、燃焼器4の燃焼が安定化する。そのため、燃焼器4の燃焼(排)ガスに含まれるNOxが低減される。また、ガスタービン1の入り口の質量流量を増加し、ガスタービン発電装置100の出力が向上する。 According to the above configuration, either the hot water is sprayed into the
Moreover, by sending steam into the combustor 4, the air in the combustor 4 becomes air in a stable combustion range, and the combustion of the combustor 4 is stabilized. Therefore, NOx contained in the combustion (exhaust) gas of the combustor 4 is reduced. In addition, the mass flow rate at the entrance of the gas turbine 1 is increased, and the output of the gas
また、圧縮機2の出口から送られるガスタービン1のタービン翼の冷却空気を、インタークーラ12において温水の蒸発潜熱で再冷却し冷却空気量を低減することで、タービン翼の冷却空気に用いられるエネルギが低減され、発電効率が向上する。
従って、外気温度が高い期間においても、ガスタービン発電装置10は定格出力を維持できる。それ以外の期間では、出力向上やあるいは出力一定として燃料を抑制するなどの運用に寄与できる。 Moreover, the cooling air of the turbine blade of the gas turbine 1 sent from the outlet of thecompressor 2 is re-cooled by the latent heat of evaporation of hot water in the intercooler 12 to reduce the amount of cooling air, so that it is used for the cooling air of the turbine blade. Energy is reduced and power generation efficiency is improved.
Therefore, the gasturbine power generator 10 can maintain the rated output even during a period when the outside air temperature is high. In other periods, it is possible to contribute to operations such as improving the output or suppressing the fuel with a constant output.
従って、外気温度が高い期間においても、ガスタービン発電装置10は定格出力を維持できる。それ以外の期間では、出力向上やあるいは出力一定として燃料を抑制するなどの運用に寄与できる。 Moreover, the cooling air of the turbine blade of the gas turbine 1 sent from the outlet of the
Therefore, the gas
なお、前記実施形態においては、太陽集熱装置7の集熱管8の温水と給水加熱器6の温水とを、吸気冷却室9内の噴霧ノズル10と、蒸発器11と、インタークーラ12とに用いる場合を例示したが、吸気冷却室9内の噴霧ノズル10、蒸発器11、インタークーラ12のうちの少なくとも何れかに用いるように構成してもよい。また、太陽集熱装置7の集熱管8と給水加熱器6とを備える場合を例示したが、太陽集熱装置7の集熱管8と給水加熱器6との何れかを備えるように構成してもよい。
In the embodiment, the hot water of the heat collecting pipe 8 of the solar heat collecting device 7 and the hot water of the feed water heater 6 are transferred to the spray nozzle 10 in the intake air cooling chamber 9, the evaporator 11, and the intercooler 12. Although the case where it uses is illustrated, you may comprise so that it may be used for at least any one of the spray nozzle 10 in the intake air cooling chamber 9, the evaporator 11, and the intercooler 12. FIG. Moreover, although the case where the heat collecting pipe 8 of the solar heat collecting apparatus 7 and the feed water heater 6 were provided was illustrated, it comprised so that either the heat collecting pipe 8 of the solar heat collecting apparatus 7 and the feed water heater 6 might be provided. Also good.
また、前記実施形態においては、インタークーラ12へも、低温沸騰の設定値の範囲内の温水をインタークーラ12に供給する場合を例示したが、必ずしも低温沸騰の設定値の範囲内の温水をインタークーラ12に供給しなくともよい。この場合には、低温沸騰の設定値の範囲に温水の温度が達するまで、吸気冷却室9内の噴霧ノズル10に続く調整弁106および蒸発器11に続く調整弁107を閉じ、インタークーラ12に続く調整弁108を開くことになる。
Moreover, in the said embodiment, although the case where the hot water in the range of the setting value of low-temperature boiling was supplied to the intercooler 12 also to the intercooler 12 was illustrated, The cooler 12 may not be supplied. In this case, the adjustment valve 106 following the spray nozzle 10 and the adjustment valve 107 following the evaporator 11 in the intake air cooling chamber 9 are closed until the temperature of the hot water reaches the low-temperature boiling set value range, and the intercooler 12 is turned on. The subsequent adjustment valve 108 is opened.
1 ガスタービン
1a ガスタービン軸(軸)
2 圧縮機
3 発電機
4 燃焼器
5 給水ポンプ
6 給水加熱器(加熱手段)
7 太陽集熱装置(加熱手段)
8 集熱管(加熱手段)
9 吸気冷却室
10 噴霧ノズル
11 蒸発器
12 インタークーラ
100 ガスタービン発電装置
104 調整弁(集熱管のバイパスラインの調整弁)
105 調整弁(給水加熱器のバイパスラインの調整弁)
200 制御装置(制御部、運転条件判定部)
300 関連情報データベース(関連情報記憶部)
400 運転条件判定部
500 制御部
910 支援ツール(第1表示部、第2表示部)
920 外部入出力インターフェイス(インターフェイス部)
930 データ送受信処理部(第1表示部、第2表示部)
940 外部出力インターフェイス(インターフェイス部)
950 画像表示装置(表示装置)
G1 初期画面(第1表示部、第2表示部)
G2 運転状態表示画面(第1表示部)
G3 表示設定画面(第2表示部)
G4 トレンド画面(第2表示部)
S ガスタービン発電システム 1Gas turbine 1a Gas turbine shaft (shaft)
2Compressor 3 Generator 4 Combustor 5 Feed water pump 6 Feed water heater (heating means)
7 Solar collector (heating means)
8 Heat collection tube (heating means)
9Intake Cooling Chamber 10 Spray Nozzle 11 Evaporator 12 Intercooler 100 Gas Turbine Power Generator 104 Regulating Valve (Adjusting Valve for Heat Collector Tube Bypass Line)
105 Regulating valve (regulating valve for bypass line of feed water heater)
200 Control device (control unit, operating condition determination unit)
300 Related Information Database (Related Information Storage Unit)
400 Operatingcondition determination unit 500 Control unit 910 Support tool (first display unit, second display unit)
920 External I / O interface (interface part)
930 Data transmission / reception processing unit (first display unit, second display unit)
940 External output interface (interface part)
950 Image display device (display device)
G1 initial screen (first display, second display)
G2 Operation status display screen (first display)
G3 display setting screen (second display)
G4 trend screen (second display)
S gas turbine power generation system
1a ガスタービン軸(軸)
2 圧縮機
3 発電機
4 燃焼器
5 給水ポンプ
6 給水加熱器(加熱手段)
7 太陽集熱装置(加熱手段)
8 集熱管(加熱手段)
9 吸気冷却室
10 噴霧ノズル
11 蒸発器
12 インタークーラ
100 ガスタービン発電装置
104 調整弁(集熱管のバイパスラインの調整弁)
105 調整弁(給水加熱器のバイパスラインの調整弁)
200 制御装置(制御部、運転条件判定部)
300 関連情報データベース(関連情報記憶部)
400 運転条件判定部
500 制御部
910 支援ツール(第1表示部、第2表示部)
920 外部入出力インターフェイス(インターフェイス部)
930 データ送受信処理部(第1表示部、第2表示部)
940 外部出力インターフェイス(インターフェイス部)
950 画像表示装置(表示装置)
G1 初期画面(第1表示部、第2表示部)
G2 運転状態表示画面(第1表示部)
G3 表示設定画面(第2表示部)
G4 トレンド画面(第2表示部)
S ガスタービン発電システム 1
2
7 Solar collector (heating means)
8 Heat collection tube (heating means)
9
105 Regulating valve (regulating valve for bypass line of feed water heater)
200 Control device (control unit, operating condition determination unit)
300 Related Information Database (Related Information Storage Unit)
400 Operating
920 External I / O interface (interface part)
930 Data transmission / reception processing unit (first display unit, second display unit)
940 External output interface (interface part)
950 Image display device (display device)
G1 initial screen (first display, second display)
G2 Operation status display screen (first display)
G3 display setting screen (second display)
G4 trend screen (second display)
S gas turbine power generation system
Claims (22)
- ガスタービンで発電を行うガスタービン発電装置であって、
空気を圧縮する圧縮器と、
前記圧縮器からの圧縮空気と燃料を燃焼する燃焼器と、
前記燃焼器の燃焼ガスにより駆動されるガスタービンと、
前記ガスタービンと軸を介して連結され、前記ガスタービンの回転によって駆動され発電する発電機と、
給水を送り込む給水ポンプと、
前記ガスタービンの排ガスを用いて前記給水を加熱する給水加熱器、並びに、太陽熱を集熱する太陽集熱装置で前記給水を加熱する集熱管のうちの少なくとも何れかの加熱手段と、
前記圧縮器の吸気を冷却するための吸気冷却室と、
前記加熱手段で加熱された温水または前記給水を前記吸気冷却室に噴霧するための噴霧ノズルとを
備えたことを特徴とするガスタービン発電装置。 A gas turbine power generator that generates power with a gas turbine,
A compressor for compressing air;
A combustor for combusting compressed air and fuel from the compressor;
A gas turbine driven by the combustion gas of the combustor;
A generator connected to the gas turbine via a shaft and driven by the rotation of the gas turbine to generate electricity;
A water supply pump for feeding water,
Heating means for heating the feed water using the exhaust gas of the gas turbine, and heating means for at least one of the heat collecting pipes for heating the feed water with a solar heat collecting device for collecting solar heat;
An intake air cooling chamber for cooling the intake air of the compressor;
A gas turbine power generator comprising: a spray nozzle for spraying the hot water heated by the heating means or the water supply into the intake air cooling chamber. - 請求の範囲第1項に記載のガスタービン発電装置において、
前記温水を蒸発させて前記燃焼器に送り込む蒸発器を備えたことを特徴とするガスタービン発電装置。 In the gas turbine power generator according to claim 1,
A gas turbine power generator comprising an evaporator that evaporates the warm water and sends the warm water to the combustor. - 請求の範囲第1項に記載のガスタービン発電装置において、
前記ガスタービンのタービン翼に送られ該タービン翼を冷却するための前記圧縮器の出口からの空気を、前記温水で冷却するインタークーラを備えたことを特徴とするガスタービン発電装置。 In the gas turbine power generator according to claim 1,
A gas turbine power generator comprising an intercooler that cools air from an outlet of the compressor that is sent to a turbine blade of the gas turbine to cool the turbine blade with the hot water. - 請求の範囲第1項に記載のガスタービン発電装置において、
前記温水を蒸発させて前記燃焼器に送り込む蒸発器と、
前記ガスタービンのタービン翼に送られ該タービン翼を冷却するための前記圧縮器の出口からの空気を、前記温水で冷却するインタークーラとを
備えたことを特徴とするガスタービン発電装置。 In the gas turbine power generator according to claim 1,
An evaporator that evaporates the hot water and sends it to the combustor;
An intercooler that cools air from an outlet of the compressor that is sent to the turbine blades of the gas turbine and cools the turbine blades with the hot water. - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、
前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、
前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、
前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、
前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、
前記制御部は、
前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御する
ことを特徴としたガスタービン発電システム。 A gas turbine power generator according to any one of claims 1 to 4,
An operation for inputting information of a measurement signal from a measuring instrument for measuring a physical quantity of the gas turbine power generator and determining which of hot water heated by the heating means or the water supply is supplied to the spray nozzle A condition determination unit;
A related information storage unit for storing the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air;
A control unit for determining a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit;
An interface unit that outputs at least one of the information of the measurement signal, the state information of the outside air, or the control method determined by the control unit, as a result calculated by the operation condition determination unit;
The controller is
Gas turbine power generation characterized in that the gas turbine power generation device is controlled according to the state of equipment provided in the gas turbine power generation device, the condition of the obtained hot water, and the operating condition of the gas turbine power generation device. system. - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、
前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、
前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、
前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、
前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、
前記制御部は、前記外気の状態情報より前記温水の温度を予測する
ことを特徴としたガスタービン発電システム。 A gas turbine power generator according to any one of claims 1 to 4,
An operation for inputting information of a measurement signal from a measuring instrument for measuring a physical quantity of the gas turbine power generator and determining which of hot water heated by the heating means or the water supply is supplied to the spray nozzle A condition determination unit;
A related information storage unit for storing the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air;
A control unit for determining a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit;
An interface unit that outputs at least one of the information of the measurement signal, the state information of the outside air, or the control method determined by the control unit, as a result calculated by the operation condition determination unit;
The control unit predicts a temperature of the hot water from state information of the outside air. A gas turbine power generation system, wherein: - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、
前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定する運転条件判定部と、
前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存する関連情報記憶部と、
前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定する制御部と、
前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力するインターフェイス部とを備え、
前記制御部は、
前記外気の状態情報より前記温水の温度を予測し、
前記外気の状態情報より前記温水の温度を予測した結果と、前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御する
ことを特徴としたガスタービン発電システム。 A gas turbine power generator according to any one of claims 1 to 4,
An operation for inputting information of a measurement signal from a measuring instrument for measuring a physical quantity of the gas turbine power generator and determining which of hot water heated by the heating means or the water supply is supplied to the spray nozzle A condition determination unit;
A related information storage unit for storing the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air;
A control unit for determining a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit;
An interface unit that outputs at least one of the information of the measurement signal, the state information of the outside air, or the control method determined by the control unit, as a result calculated by the operation condition determination unit;
The controller is
Predicting the temperature of the hot water from the state information of the outside air,
According to the result of predicting the temperature of the hot water from the state information of the outside air, the state of the equipment provided in the gas turbine power generation device, the condition of the obtained hot water, and the operating condition of the gas turbine power generation device, A gas turbine power generation system, characterized in that the gas turbine power generation device is controlled. - 請求の範囲第5項に記載のガスタービン発電システムにおいて、
前記ガスタービン発電装置は、前記集熱管からの前記温水をバイパスするバイパスラインを備え、
前記制御部は、前記ガスタービン発電装置の運転状態に応じて、前記バイパスラインに取り付けられた調整弁にて前記温水の流量を制御する
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 5,
The gas turbine power generator includes a bypass line that bypasses the hot water from the heat collecting pipe,
The said control part controls the flow volume of the said warm water with the adjustment valve attached to the said bypass line according to the driving | running state of the said gas turbine power generator. The gas turbine power generation system characterized by the above-mentioned. - 請求の範囲第5項に記載のガスタービン発電システムにおいて、
前記ガスタービン発電装置は、前記給水加熱器からの前記温水をバイパスするバイパスラインを備え、
前記制御部は、前記ガスタービン発電装置の運転状態に応じて、前記バイパスラインに取り付けられた調整弁にて前記温水の流量を制御する
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 5,
The gas turbine power generator includes a bypass line that bypasses the hot water from the feed water heater,
The said control part controls the flow volume of the said warm water with the adjustment valve attached to the said bypass line according to the driving | running state of the said gas turbine power generator. The gas turbine power generation system characterized by the above-mentioned. - 請求の範囲第5項に記載のガスタービン発電システムにおいて、
前記制御部は、前記温水が設定条件温度に達しない場合に、前記温水と切り替えて前記給水を前記噴霧ノズルで噴霧する
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 5,
The said control part is switched to the said warm water, and sprays the said water supply with the said spray nozzle when the said warm water does not reach setting condition temperature. The gas turbine power generation system characterized by the above-mentioned. - 請求の範囲第5項に記載のガスタービン発電システムにおいて、
前記運転条件判定部にて判定された結果を任意の時間幅で表示装置にて表示する第1表示部を備える
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 5,
A gas turbine power generation system comprising: a first display unit that displays a result determined by the operating condition determination unit on a display device at an arbitrary time width. - 請求の範囲第6項に記載のガスタービン発電システムにおいて、
前記運転条件判定部にて予測した温水温度の結果と実際に得られた温水温度の結果を任意の時間幅で表示装置にて比較表示する第2表示部を備える
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 6,
A gas turbine power generation comprising: a second display unit for comparing and displaying the result of the hot water temperature predicted by the operating condition determination unit and the result of the actually obtained hot water temperature on a display device at an arbitrary time width system. - 請求の範囲第5項に記載のガスタービン発電システムにおいて、
前記ガスタービン発電装置に、前記集熱管からの前記温水をバイパスするラインと、前記給水加熱器からの前記温水をバイパスするラインとを備え、
前記制御部は、
前記ガスタービン発電装置の運転状態に応じて、前記集熱管からの前記温水または前記給水加熱器からの前記温水の何れか一方の温水が利用できないとき、前記利用できない方のバイパスラインに取り付けられた調整弁を開き、前記利用できない側への逆流を抑制する
ことを特徴としたガスタービン発電システム。 In the gas turbine power generation system according to claim 5,
The gas turbine power generator includes a line that bypasses the hot water from the heat collecting pipe, and a line that bypasses the hot water from the feed water heater,
The controller is
Depending on the operating state of the gas turbine power generation device, when either one of the hot water from the heat collecting pipe or the hot water from the feed water heater is not available, it is attached to the bypass line that cannot be used. A gas turbine power generation system, wherein a regulating valve is opened to suppress backflow to the unusable side. - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、運転条件判定部と、関連情報記憶部と、制御部と、インターフェイス部とを備えるガスタービン発電システムの制御方法であって、
前記運転条件判定部は、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定し、
前記関連情報記憶部は、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存し、
前記制御部は、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定し、
前記インターフェイス部は、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力し、
前記制御部は、前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御する
ことを特徴としたガスタービン発電システムの制御方法。 A gas turbine power generation system comprising the gas turbine power generation device according to any one of claims 1 to 4, an operating condition determination unit, a related information storage unit, a control unit, and an interface unit. A control method,
The operating condition determination unit receives information of a measurement signal from a measuring instrument that measures a physical quantity of the gas turbine power generation device, and supplies either the hot water heated by the heating means or the water supply to the spray nozzle. To determine whether to supply
The related information storage unit stores the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air,
The control unit determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit,
The interface unit outputs to the outside at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit, as a result of the operation condition determination unit.
The control unit controls the gas turbine power generation device according to the state of equipment provided in the gas turbine power generation device, the obtained condition of the hot water, and the operating condition of the gas turbine power generation device. A method for controlling a gas turbine power generation system. - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、運転条件判定部と、関連情報記憶部、制御部と、インターフェイス部とを備えるガスタービン発電システムの制御方法であって、
前記運転条件判定部は、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水の何れを前記噴霧ノズルに供給するか判定し、
前記関連情報記憶部は、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存し、
前記制御部は、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定し、
前記インターフェイス部は、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力し、
前記制御部は、前記外気の状態情報より前記温水の温度を予測する
ことを特徴としたガスタービン発電システムの制御方法。 Control of a gas turbine power generation system comprising the gas turbine power generation device according to any one of claims 1 to 4, an operating condition determination unit, a related information storage unit, a control unit, and an interface unit. A method,
The operating condition determination unit receives information of a measurement signal from a measuring instrument that measures a physical quantity of the gas turbine power generation device, and supplies either the hot water heated by the heating means or the water supply to the spray nozzle. To determine whether to supply
The related information storage unit stores the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air,
The control unit determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit,
The interface unit outputs to the outside at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit, as a result of the operation condition determination unit.
The control unit predicts the temperature of the hot water from state information of the outside air. A control method of a gas turbine power generation system, characterized in that: - 請求の範囲第1項から第4項の何れか一項に記載のガスタービン発電装置と、運転条件判定部と、関連情報記憶部と、制御部と、インターフェイス部とを備えるガスタービン発電システムの制御方法であって、
前記運転条件判定部は、前記ガスタービン発電装置の物理量を計測する計測器からの計測信号の情報が入力されるとともに、前記加熱手段で加熱された温水、または、前記給水を前記噴霧ノズルの何れに供給するか判定し、
前記関連情報記憶部は、前記計測信号の情報および前記運転条件判定部で演算された結果や外気の状態情報を保存し、
前記制御部は、前記運転条件判定部で演算された結果を基に前記ガスタービン発電装置を制御するための制御方法を決定し、
前記インターフェイス部は、前記運転条件判定部で演算された結果、前記計測信号の情報、前記外気の状態情報、または前記制御部で決定された制御方法のうちの少なくとも何れかを外部に出力し、
前記制御部は、前記外気の状態情報より前記温水の温度を予測し、前記温水の温度を予測した結果と、前記ガスタービン発電装置に設けられた機器の状態、得られた前記温水の条件、および前記ガスタービン発電装置の運転条件に応じて、前記ガスタービン発電装置を制御する
ことを特徴としたガスタービン発電システムの制御方法。 A gas turbine power generation system comprising the gas turbine power generation device according to any one of claims 1 to 4, an operating condition determination unit, a related information storage unit, a control unit, and an interface unit. A control method,
The operating condition determination unit receives information of a measurement signal from a measuring instrument that measures a physical quantity of the gas turbine power generation device, and supplies either hot water heated by the heating means or the water supply to the spray nozzle. To determine whether to supply
The related information storage unit stores the information of the measurement signal and the result calculated by the operation condition determination unit and the state information of the outside air,
The control unit determines a control method for controlling the gas turbine power generation device based on a result calculated by the operation condition determination unit,
The interface unit outputs to the outside at least one of the measurement signal information, the outside air state information, or the control method determined by the control unit, as a result of the operation condition determination unit.
The controller predicts the temperature of the hot water from the state information of the outside air, the result of predicting the temperature of the hot water, the state of the equipment provided in the gas turbine power generator, the condition of the obtained hot water, And a control method for a gas turbine power generation system, wherein the gas turbine power generation device is controlled according to operating conditions of the gas turbine power generation device. - 請求の範囲第14項に記載のガスタービン発電システムの制御方法において、
前記ガスタービン発電装置は、前記集熱管からの前記温水をバイパスするバイパスラインを備え、
前記制御部は、前記ガスタービン発電装置の運転状態に応じて、前記バイパスラインに取り付けられた調整弁にて前記温水の流量を制御する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 14,
The gas turbine power generator includes a bypass line that bypasses the hot water from the heat collecting pipe,
The said control part controls the flow volume of the said warm water with the adjustment valve attached to the said bypass line according to the driving | running state of the said gas turbine electric power generating apparatus. The control method of the gas turbine electric power generation system characterized by the above-mentioned. - 請求の範囲第14項に記載のガスタービン発電システムの制御方法において、
前記ガスタービン発電装置は、前記給水加熱器からの前記温水をバイパスするバイパスラインを備え、
前記制御部は、前記ガスタービン発電装置の運転状態に応じて、前記バイパスラインに取り付けられた調整弁にて前記温水の流量を制御する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 14,
The gas turbine power generator includes a bypass line that bypasses the hot water from the feed water heater,
The said control part controls the flow volume of the said warm water with the adjustment valve attached to the said bypass line according to the driving | running state of the said gas turbine electric power generating apparatus. The control method of the gas turbine electric power generation system characterized by the above-mentioned. - 請求の範囲第14項に記載のガスタービン発電システムの制御方法において、
前記制御部は、前記温水が設定条件温度に達しない場合に、前記温水と切り替えて前記給水を前記噴霧ノズルで噴霧する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 14,
The said control part is switched to the said warm water, and sprays the said water supply with the said spray nozzle when the said warm water does not reach setting condition temperature. The control method of the gas turbine power generation system characterized by the above-mentioned. - 請求の範囲第14項に記載のガスタービン発電システムの制御方法において、
前記ガスタービン発電システムは、第1表示部と表示装置とを備え、
前記第1表示部は、前記運転条件判定部にて判定された結果を任意の時間幅で前記表示装置にて表示する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 14,
The gas turbine power generation system includes a first display unit and a display device,
The said 1st display part displays the result determined in the said operating condition determination part on the said display apparatus by arbitrary time widths. The control method of the gas turbine power generation system characterized by the above-mentioned. - 請求の範囲第15項に記載のガスタービン発電システムの制御方法において、
前記ガスタービン発電システムは、第2表示部と表示装置とを備え、
前記第2表示部は、前記運転条件判定部にて予測した温水温度の結果と実際に得られた温水温度の結果を任意の時間幅で前記表示装置にて比較表示する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 15,
The gas turbine power generation system includes a second display unit and a display device,
The second display unit compares and displays the result of the hot water temperature predicted by the operating condition determination unit and the result of the actually obtained hot water temperature on the display device at an arbitrary time width. A method for controlling a turbine power generation system. - 請求の範囲第14項に記載のガスタービン発電システムの制御方法において、
前記ガスタービン発電装置は、前記集熱管からの前記温水をバイパスするラインと、前記給水加熱器からの前記温水をバイパスするラインとを備え、
前記制御部は、
前記ガスタービン発電装置の運転状態に応じて、前記集熱管からの前記温水または前記給水加熱器からの前記温水の何れか一方の温水が利用できないとき、利用している温水のラインから利用できない方のラインに温水が逆流した場合に前記利用できない方のバイパスラインに取り付けられた調整弁を開き、前記利用できない側への逆流を抑制する
ことを特徴としたガスタービン発電システムの制御方法。 In the control method of the gas turbine power generation system according to claim 14,
The gas turbine power generator includes a line that bypasses the hot water from the heat collecting pipe, and a line that bypasses the hot water from the feed water heater,
The controller is
One that cannot be used from the hot water line that is used when either the hot water from the heat collecting pipe or the hot water from the feed water heater is not available, depending on the operating state of the gas turbine power generator A control method for a gas turbine power generation system, comprising: opening a regulating valve attached to the unusable bypass line when hot water flows backward in the line to suppress backflow to the unusable side.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012536074A JP5514322B2 (en) | 2010-09-30 | 2010-09-30 | Gas turbine power generation apparatus, gas turbine power generation system and control method thereof |
PCT/JP2010/067031 WO2012042628A1 (en) | 2010-09-30 | 2010-09-30 | Gas turbine power generation device, gas turbine power generation system, and method of controlling the system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/067031 WO2012042628A1 (en) | 2010-09-30 | 2010-09-30 | Gas turbine power generation device, gas turbine power generation system, and method of controlling the system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042628A1 true WO2012042628A1 (en) | 2012-04-05 |
Family
ID=45892132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067031 WO2012042628A1 (en) | 2010-09-30 | 2010-09-30 | Gas turbine power generation device, gas turbine power generation system, and method of controlling the system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5514322B2 (en) |
WO (1) | WO2012042628A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8978386B2 (en) | 2010-09-30 | 2015-03-17 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine system, control device for gas turbine system, and control method for gas turbine system |
JP2016102415A (en) * | 2014-11-27 | 2016-06-02 | 東京電力株式会社 | Turbine plant and intake air cooling method for turbine plant |
US9359953B2 (en) | 2010-09-30 | 2016-06-07 | Mitsubishi Hitachi Power Systems, Ltd. | Combined cycle power plant with solar assisted cooling of compressor inlet air |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001214757A (en) * | 2000-01-27 | 2001-08-10 | Hitachi Ltd | Gas turbine facility |
JP2002519558A (en) * | 1998-06-24 | 2002-07-02 | ナムローゼ・フェンノートシャップ・ケマ | Apparatus for compressing gaseous medium and compression system using the apparatus |
JP2002371861A (en) * | 2001-06-12 | 2002-12-26 | Ishikawajima Harima Heavy Ind Co Ltd | Steam injection gas turbine generator |
JP2003206750A (en) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | Regenerative type gas turbine combined cycle electric power generating system |
-
2010
- 2010-09-30 WO PCT/JP2010/067031 patent/WO2012042628A1/en active Application Filing
- 2010-09-30 JP JP2012536074A patent/JP5514322B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002519558A (en) * | 1998-06-24 | 2002-07-02 | ナムローゼ・フェンノートシャップ・ケマ | Apparatus for compressing gaseous medium and compression system using the apparatus |
JP2001214757A (en) * | 2000-01-27 | 2001-08-10 | Hitachi Ltd | Gas turbine facility |
JP2002371861A (en) * | 2001-06-12 | 2002-12-26 | Ishikawajima Harima Heavy Ind Co Ltd | Steam injection gas turbine generator |
JP2003206750A (en) * | 2002-01-15 | 2003-07-25 | Hitachi Ltd | Regenerative type gas turbine combined cycle electric power generating system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8978386B2 (en) | 2010-09-30 | 2015-03-17 | Mitsubishi Hitachi Power Systems, Ltd. | Gas turbine system, control device for gas turbine system, and control method for gas turbine system |
US9359953B2 (en) | 2010-09-30 | 2016-06-07 | Mitsubishi Hitachi Power Systems, Ltd. | Combined cycle power plant with solar assisted cooling of compressor inlet air |
JP2016102415A (en) * | 2014-11-27 | 2016-06-02 | 東京電力株式会社 | Turbine plant and intake air cooling method for turbine plant |
Also Published As
Publication number | Publication date |
---|---|
JP5514322B2 (en) | 2014-06-04 |
JPWO2012042628A1 (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rist et al. | Economic dispatch of a single micro-gas turbine under CHP operation | |
Caresana et al. | Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior | |
US7356383B2 (en) | Methods and apparatus for optimizing combined cycle/combined process facilities | |
CN102812303B (en) | HVAC control system and method | |
US8103465B2 (en) | System and method for monitoring and managing energy performance | |
JPWO2015079508A1 (en) | Renewable energy compatible gas turbine and control method thereof | |
JP6025237B2 (en) | Method and system for predicting power plant performance | |
JP4635207B2 (en) | Power system stabilization system using communication line | |
JP5400969B2 (en) | Gas turbine system, control device for gas turbine system, and control method for gas turbine system | |
Lu et al. | Operational optimization of district heating system based on an integrated model in TRNSYS | |
EP2724200A1 (en) | Thermo-economic modeling and optimization of a combined cooling, heating, and power plant | |
JP5514322B2 (en) | Gas turbine power generation apparatus, gas turbine power generation system and control method thereof | |
CN111400937A (en) | Load flow calculation method of comprehensive energy system | |
JP5876153B2 (en) | Thermal power plant, natural energy power plant and control method thereof | |
JP5766295B2 (en) | Gas turbine power generator and operation method thereof | |
JP2006340461A (en) | Green power controlling system and computer program | |
Wang et al. | Field demonstration of priority stack-based controls in an office building for demand response | |
KR102539203B1 (en) | Method and apparatus for making energy-simulation-model and, method and apparatus for managing building energy by using the energy-simulation-model | |
JP7034193B2 (en) | Heat source operation support system | |
US20140013757A1 (en) | Solar Thermal Gas Turbine System | |
CN111091227A (en) | Comprehensive energy system dispatching management platform | |
US20240266866A1 (en) | Energy management system and method | |
Wang | Future Directions in Energy Engineering: Challenges, Opportunities, and Sustainability | |
Sigounis et al. | Modelling Building-Integrated Photovoltaic/Thermal Systems: Sensitivity Analysis Insights | |
Pepe et al. | Heat Pump Management for Building's Indoor Temperature Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012536074 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10857841 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10857841 Country of ref document: EP Kind code of ref document: A1 |