WO2012042683A1 - レベルシフト回路 - Google Patents
レベルシフト回路 Download PDFInfo
- Publication number
- WO2012042683A1 WO2012042683A1 PCT/JP2011/000350 JP2011000350W WO2012042683A1 WO 2012042683 A1 WO2012042683 A1 WO 2012042683A1 JP 2011000350 W JP2011000350 W JP 2011000350W WO 2012042683 A1 WO2012042683 A1 WO 2012042683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nmos
- pmos
- drain
- level shift
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356104—Bistable circuits using complementary field-effect transistors
Definitions
- the present invention relates to a technique for realizing a high level breakdown voltage of a level shift circuit without increasing a gate oxide film of a MOS transistor in a level shift circuit that transmits a signal on a low power supply voltage side to a high power supply voltage side.
- the present invention relates to a technique useful for use in a level shift circuit and a semiconductor device used in a regulator or the like.
- the conventional level shift circuit has a configuration as shown in FIG.
- FIG. 13 shows a known level shift circuit disclosed in Patent Document 1 (Section 11, FIG. 6).
- 76 and 81 are inverters, 79 and 80 are PMOS transistors (hereinafter abbreviated as PMOS), 77 and 78 are NMOS transistors (hereinafter abbreviated as NMOS), Vdd1 is a first high potential side power supply, and Vdd2 is A second high potential side power source, Vss1 is a low potential side power source, VIN is a signal input terminal, and VOUT is a signal output terminal.
- PMOS PMOS transistors
- 77 and 78 are NMOS transistors (hereinafter abbreviated as NMOS)
- Vdd1 is a first high potential side power supply
- Vdd2 is A second high potential side power source
- Vss1 is a low potential side power source
- VIN is a signal input terminal
- VOUT is a signal output terminal.
- the signal input terminal VIN is connected to the gate of the NMOS (78) and the ground terminal to Vss1, and to the input terminal of the inverter (76) which connects the power supply terminal to Vdd1, and the inverter (76).
- the NMOS (77) is connected to the gate of the NMOS (77).
- the gates of PMOS (79) and PMOS (80) that connect sources to Vdd2 are interconnected to their respective drains, and the drain of PMOS (79) is connected to Vss1 via NMOS (77). The drain is connected to Vss1 through NMOS (78).
- the drain of the PMOS (80) is connected to the ground terminal to Vss1, is also connected to the input terminal of the inverter (81) which connects the power supply terminal to Vdd2, and the output of the inverter (81) is connected to the signal output terminal VOUT.
- the input signal VIN generated by the power supply voltage [Vdd1-Vss1 (GND)] is level-shifted to an amplitude output signal VOUT different from the input signal VIN by a power supply voltage [Vdd2-Vss1] different from the power supply voltage [Vdd1-Vss1]. Circuit.
- the level shift circuit shown in FIG. 13 can operate at a potential Vdd2 lower than Vdd1, but when Vdd2 increases, the gate-source voltage VGS of the PMOS (79) and PMOS (80) is reduced to [Vdd2]. Since a high potential difference of ⁇ Vss1] is applied, it is necessary to increase the breakdown voltage of the element. In general, by forming a thick gate oxide film of the device, the breakdown voltage is increased so that the device does not break down even if a large voltage is applied between the gate and the source. However, if the gate oxide film is thickened, the device size is reduced. This increases the cost of the IC, and there is a problem in that the threshold voltage Vth of the MOS transistor, that is, the operating voltage increases, and the inversion speed of the MOS transistor decreases.
- Patent Document 1 proposes a configuration as shown in FIG. 12.
- FIG. 12 shows a known level shift circuit disclosed in Patent Document 1 (Section 10, FIG. 1).
- drain high breakdown voltage NMOS drain high breakdown voltage transistors
- 62 and 70 are resistors
- 74 is a first constant current circuit
- 75 is a second constant current circuit
- Vdd1 is a first high potential side power supply
- Vdd2 is a second high potential side power supply
- Vss1 is a first low current circuit.
- a potential side power source, Vss2 is a second low potential side power source, VIN is a signal input terminal, and VOUT is a signal output terminal.
- the drain high breakdown voltage NMOS is an NMOS transistor whose breakdown is avoided even when a high voltage is applied between the gate and the drain or between the source and the drain because the drain is formed with a high breakdown voltage. .
- the input signal VIN generated by the power supply voltage [Vdd1-Vss1] is level-shifted to the output signal VOUT having a higher center potential than the input signal VIN by the power supply voltage [Vdd2-Vss2] having a higher potential than the power supply voltage [Vdd1-Vss1]. Circuit.
- Paragraph number 0009 in paragraph 3 has the following description.
- the power supply voltage [Vdd2 ⁇ Vss2] is a voltage in which the potential difference is substantially the same as the logic power supply voltage [Vdd1 ⁇ Vss1 (GND)] such as 10V ⁇ 5V and only the potential is increased.
- Vdd1 ⁇ Vss1 (GND) logic power supply voltage
- Vdd1 low power supply voltage
- Vss2 high potential side reference potential
- the level shift circuit of FIG. 12 includes a pair of input MOS transistors NMOS (60) and NMOS (61) that receive an input signal VIN and its inverted signal at the gate, and a current mirror-connected load MOS transistor PMOS with the source connected to Vdd2.
- NMOS drain high breakdown voltage NMOS connected in series between the input MOS transistors NMOS (60), NMOS (61) and load MOS transistors PMOS (68), PMOS (69), respectively (66), NMOS (67), NMOS (66), current limiting MOS transistors NMOS (64), NMOS (65) for limiting the current flowing through NMOS (67), and current limiting MOS transistor NMOS (64) , NMOS (65) the first constant current that determines the amount of current
- the sources of the NMOS (60) and NMOS (61) are connected to Vss1, and the input signal VIN is directly input to one of the gates.
- the other gate receives an inverted signal via an inverter (59), and the NMOS (60) and NMOS (61) are turned on / off according to the signal level of the input signal VIN. Yes.
- the sources of PMOS (68) and PMOS (69) are connected to Vdd2, the gate and drain of PMOS (68) are coupled, and the drain voltage of PMOS (68) is applied to the gate of PMOS (69). Yes.
- the drain high breakdown voltage NMOS (66) and the drain high breakdown voltage NMOS (67) have drains connected to the PMOS (68) and PMOS (69) sides, sources connected to the NMOS (60) and NMOS (61) sides, respectively.
- the gate is connected so that Vdd1 is applied.
- the source voltage is determined by the clamp voltage (Vdd1) and the MOS transistor threshold voltage Vth.
- Vdd1-Vth is fixed so that a high voltage is not applied to the source side elements NMOS (64), NMOS (65), NMOS (60), and NMOS (61).
- the NMOS (64) and NMOS (65) are connected in series between the NMOS (60) and NMOS (61) and the corresponding NMOS (66) and NMOS (67), respectively, and the first constant current.
- a current mirror connection is made with the NMOS (63) constituting the circuit (74), and when either the NMOS (60) or the NMOS (61) is in an ON state, the current flowing through the corresponding NMOS (66) or NMOS (67) Is limited to the amount of current determined by the constant current circuit (74).
- the first constant current circuit (74) is a circuit in which an NMOS (63) coupled with a gate and a drain and a resistor (62) are connected in series between Vdd1 and Vss1.
- the NMOS (71) is current mirror connected to the NMOS (72) of the second constant current circuit (75), and outputs a current determined by the second constant current circuit (75) when the potential of the output node N11 decreases.
- the voltage is supplied to the node N11 and controlled so that the potential of N11 does not become lower than the reference potential (lower power supply voltage) Vss2 on the high potential side. If the N11 potential is not lower than the reference potential Vss2 due to current limitation by the NMOS (64) and NMOS (65), the NMOS (71) and the second constant current circuit (75) It can be omitted.
- a resistor (70) and an NMOS (72) are connected in series between Vdd2 and Vss2.
- the level shift circuit configured as described above, when the input signal VIN is at the H level, one of the input NMOSs (61) is turned on, and a current is passed through the PMOS (69), NMOS (67), and NMOS (65). The other input NMOS (60) is turned off, and the current flowing through the PMOS (68), NMOS (66), and NMOS (64) is cut off. As a result, the potential of N11 is lowered, and the output signal VOUT of the inverter (73) becomes a signal having a level close to Vdd2.
- the non-saturated region refers to a region indicated by reference numeral 56 in FIG. 10 where the drain-source voltage VDS is low, the drain current ID is low, and the change of ID with respect to VDS is large.
- reference numeral 57 denotes a saturation region.
- a large voltage corresponding to the potential difference between Vss1 and Vdd2 is applied only between the gate and drain of the NMOS (66) and NMOS (67) and between the source and drain.
- NMOS (67) Since the drains of the NMOS (67) are formed with a high breakdown voltage, destruction of the element is avoided. That is, even if the level shift amount of the level shift circuit is increased, it is not necessary to increase the gate oxide film of the element, and as a result, the area occupied by the circuit is larger than that of the level shift circuit that increases the gate oxide film to increase the breakdown voltage. Reduction and improvement of operation speed can be aimed at.
- JP 2004-72829 A (pages 3, 5, 10-11, FIGS. 1, 6)
- the conventional level shift circuit shown in FIG. 13 can operate at a voltage Vdd2 lower than Vdd1, but when Vdd2 increases, the gate oxide film of the constituent elements of the level shift circuit is thickened to ensure a breakdown voltage. There was a need to do. When the gate oxide film is made thicker, the element size increases accordingly, so that the area occupied by the entire circuit increases and the cost of the IC increases. Further, there are problems that the threshold voltage Vth of the MOS transistor, that is, the operating voltage is increased, and that the inversion speed of the MOS transistor is decreased.
- the conventional level shift circuit shown in FIG. 12 has an operation condition that the potential difference of the power supply voltage [Vdd2-Vss1] is almost twice the power supply voltage [Vdd1-Vss1], and Vdd2 is set to Vdd1. It has a problem that it cannot be operated at a lower voltage.
- the time for raising the potential of the input part N11 of the inverter (73), which is the final stage, from the L level to the H level is such that the PMOS (69) charges the node connected to the N11 with the output current. Since it is determined by the operation entering the non-saturated region, it is necessary to increase the current of the current mirror circuit composed of PMOS (63), PMOS (64), and PMOS (65) in order to shorten the rise time. It also had the problem that the current increased.
- the present invention solves the above-mentioned conventional problems, and can operate even when Vdd2 is lower than Vdd1, and when Vdd2 becomes high, it can operate without exceeding the withstand voltage of the element used.
- Another object of the present invention is to provide a level shift circuit and a semiconductor device that can operate at a low voltage, have a high withstand voltage, have a low current consumption, and operate at a high speed without increasing current consumption.
- reference numerals and the like used in the examples described later are shown in parentheses in order to show the relevance to the examples described later and make the invention easier to understand.
- these reference numerals and the like are not intended to limit the present invention to the configuration of the embodiment described later, and the present invention includes various elements indicating functions and configurations similar to those described in the embodiment described later. It is.
- the input signal VIN having the first amplitude generated by the power supply voltage [Vdd1-Vss1 (GND)] is generated by the power supply voltage [Vdd2-Vss1].
- a circuit for level-shifting to an output signal VOUT having a second amplitude, and in order to achieve the above object, the first level-shift element (1) operates with the power ON when Vdd2 is lower than Vdd1.
- the device is provided with a low power supply voltage level shift circuit that secures the breakdown voltage of the element and is turned off and used in a stopped state.
- the second level shift element (2) has a voltage of Vdd2 When the voltage is low, the power supply is turned off and used in a stopped state. When the voltage of Vdd2 is high, the power supply is turned on while ensuring the withstand voltage of the element and used in the operating state.
- a level shift circuit including a comparator circuit (3), a resistor (4), a resistor (5), and a reference voltage source (6), the first level shift element (1) And ON / OFF of the power of the second level shift element (2) is determined by the output of the comparator circuit (3), and the comparator circuit (3) has a reference voltage supplied from the reference voltage source (6), A result of comparing the voltages obtained by dividing Vdd2 by the resistor (4) and the resistor (5) is output.
- the power ON / OFF operation state of the first level shift element (1) and the second level shift element (2) is determined by the voltage of Vdd2.
- the first level shift element (1) can be operated.
- the second level shift element According to 2
- the device can operate in a state where the withstand voltage of the element is ensured, and a low voltage operation, a high withstand voltage level shift circuit and a semiconductor device can be provided.
- the level shift circuit according to the second aspect of the present invention includes a first level shift element (1), a second level shift element (2), a comparator circuit (3), a resistor (4), and a resistor (5). And a level shift circuit including a reference voltage source (6), wherein the first level shift element (1) in the first aspect receives the input signal VIN having the first amplitude as the second level.
- a circuit that shifts the level to an amplitude output signal VOUT and outputs a second amplitude signal is a drain high voltage MOS transistor (hereinafter referred to as a drain) that can be turned on / off at a node where a high potential difference occurs.
- a high voltage MOS is abbreviated) and a constant voltage is applied to the drain or source of the drain high voltage MOS.
- the drain high breakdown voltage MOS is a MOS transistor in which the breakdown of the element is avoided even when a high voltage is applied between the gate and the drain or between the source and the drain because the drain is formed with a high breakdown voltage. .
- the level shift circuit of the second aspect configured as described above can operate even when the first level shift element (1) has a voltage Vdd2 lower than Vdd1, and when Vdd2 becomes high, When the power supply is turned off, the breakdown voltage of the element is secured by the drain high voltage MOS. Further, when the power is turned off, it is possible to confirm that the first level shift element (1) is stopped without adding a new circuit by monitoring the constant voltage applied to the drain high voltage MOS.
- the level shift circuit according to the third aspect of the present invention includes a first level shift element (1), a second level shift element (2), a comparator circuit (3), a resistor (4), and a resistor (5). And a level shift circuit composed of a reference voltage source (6), in which the second level shift element (2) in the first aspect receives the input signal VIN having the first amplitude as the second level shift circuit (2).
- the switching element (55) including the switching element (55) can be operated while ensuring the withstand voltage of the elements used in the circuit.
- the level shift circuit according to the third aspect configured as described above can operate in a state in which the second level shift element (2) does not exceed the withstand voltage of the transistor to be used when Vdd2 becomes high. Due to the action of the capability UP switching element (55), it is possible to operate at high speed with low current consumption.
- a level shift circuit according to a fourth aspect of the present invention is a level shift circuit that uses the first level shift element (1) alone in the level shift circuit according to the second aspect, and has a voltage Vdd2 lower than Vdd1. In this case, the operation can be performed. When Vdd2 becomes high, the device is stopped by turning off the power supply, so that the breakdown voltage of the element is secured. Furthermore, by monitoring the constant voltage when the power is turned off, it can be confirmed that the level shift circuit according to the fourth aspect is stopped without adding a new circuit.
- the level shift circuit according to the fifth aspect of the present invention is a level shift circuit that uses the second level shift element (2) alone in the level shift circuit according to the third aspect.
- Vdd2 becomes high, the transistor can operate without exceeding the withstand voltage of the transistor to be used, and can operate at high speed with low current consumption by the action of the current supply capability UP switching element (55).
- the level shift circuit for the low power supply voltage and the level shift circuit for the high power supply voltage are switched by the comparator circuit, and the level shift circuit to be used is switched by the applied power supply voltage so that Vdd2 is greater than Vdd1. Therefore, it is possible to provide a level shift circuit that can operate even with a low power supply voltage, and can ensure the breakdown voltage of the element even when the power supply voltage of Vdd2 is high, and can realize low current consumption and high speed operation.
- FIG. 1 is a diagram illustrating a configuration of a level shift circuit according to a first embodiment of the present invention.
- reference numeral 1 is a first level shift element
- reference numeral 2 is a second level shift element
- reference numeral 3 is a comparator circuit
- reference numerals 4 and 5 are resistors
- reference numeral 6 is a reference voltage source
- Vdd1 is a first high level shift element.
- a potential side power source Vdd2 is a second high potential side power source
- Vss1 is a low potential side power source
- VIN is a signal input terminal
- VOU is a signal output terminal
- TOUT is an ON / OFF discrimination terminal.
- the first level shift element (1) generates a first amplitude input signal VIN generated by the power supply voltage [Vdd1-Vss1] and a second amplitude generated by the power supply voltage [Vdd2-Vss1].
- This circuit shifts the level to the output signal VOUT.
- the power ON / OFF operation can be switched by a signal input from the SW terminal, and a signal can be output from the VOUT terminal even when Vdd2 is lower than Vdd1.
- Vdd2 is a high power supply voltage
- the device has a function of securing the withstand voltage of the element by a signal input from the SW end and turning off the power to stop the device.
- the TOUT terminal can monitor the internal voltage of the circuit, has a function of outputting a constant voltage when the power is turned off, and outputting a signal having substantially the same amplitude as the VOUT signal when the power is turned on.
- the second level shift element (2) is a circuit for level-shifting the input signal VIN having the first amplitude to the output signal VOUT having the second amplitude.
- the power supply OFF / ON operation can be switched by the inversion operation with the level shift element (1), and when Vdd2 is a high power supply voltage, the device has the function of ensuring the withstand voltage of the element and turning on the power supply.
- the comparator circuit (3) compares the reference voltage V6 given by the reference voltage source (6) with the input voltage obtained by dividing the power supply voltage [Vdd2-Vss1] by the resistor (4) and the resistor (5), and the reference voltage and the input It has a function of changing the output to L level / H level depending on the voltage difference.
- the output terminal of the comparator circuit (3) is connected to the SW terminal of the first level shift element (1) and the SWB terminal of the second level shift element (2).
- the VIN signal input terminal is connected to the VIN terminal of the first level shift element (1) and the VIN terminal of the second level shift element (2).
- the VOUT signal output terminal is connected to the VOUT end of the first level shift element (1) and the VOUT end of the second level shift element (2).
- the Vdd1 end of the first level shift element (1) is connected to Vdd1 as the first high potential side power supply, the Vdd2 end is connected to Vdd2 as the second high potential side power supply, and the ground end is on the low potential side. Connected to power.
- the Vdd1 end of the second level shift element (2) is connected to Vdd1 as the first high potential side power supply, the Vdd2 end is connected to Vdd2 as the second high potential side power supply, and the ground end is on the low potential side. Configured to connect to a power source.
- the input / output characteristics of the comparator circuit (3) are shown in FIG. 9 with a specific example.
- the output of the comparator circuit (3) is L level, and conversely, when the input voltage is higher than the reference voltage V6, the H level is output.
- Equation (1) R5 represents the resistance value of the resistor (5), and R4 represents the resistance value of the resistor (4).
- Reference voltage V6 5 [V] ⁇ R5 / (R4 + R5) (1)
- the reference voltage V6 at which the comparator output is switched from the L level to the H level or vice versa is set to a voltage that has a voltage Vdd2 higher than Vdd1 and that Vdd2 does not exceed the breakdown voltage of the element used in the semiconductor device.
- Table 1 is an example showing the breakdown voltage of each element used in a specific circuit example to be described later.
- the lowest pressure resistance listed in Table 1 is 6 [V].
- the voltage of Vdd2 higher than Vdd1 and Vdd2 not exceeding 6 [V] is exemplified as 5V.
- the level shift circuit configured as described above is configured such that the power ON / OFF operation state of the first level shift element (1) and the second level shift element (2) can be switched by the voltage value of Vdd2.
- Vdd2 When the voltage Vdd2 is lower than Vdd1, the first level shift element (1) operates with the power ON, and the input signal VIN having the first amplitude is level-shifted to the output signal having the second amplitude. Output to the VOUT terminal and a signal having substantially the same amplitude as the signal output to VOUT is output from the TOUT terminal.
- the second level shift element (2) is stopped when the power is turned off.
- the first level shift element (1) is in a stopped state while ensuring the withstand voltage of the element with the power off. A constant voltage is output from the TOUT terminal, and it can be confirmed that it is in a stopped state. Further, the second level shift element (2) is turned on and in an operating state with the withstand voltage of the element secured, and the level shift of the input signal VIN having the first amplitude to the output signal having the second amplitude. Thus, the operation of outputting to the VOUT terminal is realized.
- the operation can be performed even when Vdd2 is a low voltage lower than Vdd1, and even when Vdd2 is a high voltage, the device can operate with the breakdown voltage of the element secured, and further, the first level shift that is switched and stopped. There is an effect that the power OFF state of the element (1) can be easily determined.
- FIG. 2 shows the configuration of the level shift circuit in the second embodiment, and is a diagram showing a specific configuration suitable for use in the first level shift element (1) in the first embodiment.
- reference numerals 7 and 9 are inverters
- reference numeral 8 is AND
- reference numerals 10, 11, 28, 29, 32, and 33 are resistors
- reference numerals 13, 14, 18, 23, and 31 are PMOS transistors
- reference numerals 17, 22, and 24 are PMOS transistors
- drain high breakdown voltage PMOS drain high breakdown voltage PMOS transistor
- numerals 12, 15, 16, 19, 20, 21, 26, 27, 30, 34 are NMOS
- numeral 25 is a drain high breakdown voltage NMOS
- Vdd1 is First high potential side power supply
- Vdd2 is a second high potential side power supply
- Vss1 is a low potential side power supply
- SW is a power ON / OFF switching terminal
- VIN is a signal input terminal
- VOUT is a signal output terminal
- TOUT ON / OFF This is an OFF discrimination terminal.
- the drain high breakdown voltage PMOS is a PMOS transistor in which the element is prevented from being destroyed even when a high voltage is applied between the gate and the drain or between the source and the drain because the drain is formed with a high breakdown voltage. .
- the power supply terminals of the inverter (7), inverter (9), and AND (8) are connected to Vdd1, and the ground terminal is connected to Vss1.
- the SW terminal is input to the input of the inverter (7) and the gates of the NMOS (20), NMOS (21), NMOS (27), NMOS (30), NMOS (34), and the output of the inverter (7) is AND (8 ) And the gate of NMOS (12) and drain high breakdown voltage NMOS (25).
- the drain of the NMOS (12) is connected to the Vdd2 via the resistor (11) and the resistor (10), and the node where the resistors (11) and (10) are connected to each other is the drain high voltage PMOS (17), the drain height
- the breakdown voltage PMOS (22) is connected to the gate of the drain high breakdown voltage PMOS (24).
- the sources of the drain high breakdown voltage PMOS (17) and the drain high breakdown voltage PMOS (22) are connected to Vdd2.
- the VIN terminal is connected to the other input of the AND (8), and receives a pair of input MOS transistors NMOS (15) receiving the output of the AND (8) and the inverted signal by the inverter (9) at the gate.
- NMOS (16), NMOS (15), NMOS (16) has a source connected to Vss1, a drain of NMOS (15) connected to a drain of PMOS (13), and a drain of NMOS (16) Connected to the drain of the PMOS (14), the gates of the PMOS (13) and PMOS (14) are interconnected to the respective drains.
- the drain of the NMOS (16) is connected to the gates of the PMOS (18) and NMOS (19), the source of the NMOS (19) is connected to Vss1, and the drains of the PMOS (18) and NMOS (19) are connected to each other.
- the source of the NMOS (26) is connected to Vss1, and the drain is connected to the drain of the PMOS (23) via the drain high voltage NMOS (25) and the drain high voltage PMOS (24).
- the drain of the NMOS (20) is connected to the drain of the drain high voltage PMOS (17), and the drain of the NMOS (21) is NMOS
- the drain of the NMOS (27) is connected to the source of the drain high breakdown voltage NMOS (25).
- the drain of the NMOS (30) is connected to the Vdd2 via the resistors (29) and (28), and the node to which the resistors (29) and (28) are connected to each other.
- Is connected to the gate of the PMOS (31), and the drain of the NMOS (34) is connected to Vdd2 via the resistor (33), the resistor (32), and the PMOS (31), and the resistor (33) and the resistor (32) are connected.
- the nodes connected to each other are connected to the source of the drain high voltage PMOS (24) and the TOUT terminal.
- NMOS (12), NMOS (20), NMOS (21), NMOS (27), NMOS (30), and NMOS (34) are connected to Vss1.
- FIG. 3A is a diagram for explaining the state of the level shift circuit when an L level signal is input to the SW terminal and an H level signal is input to the VIN terminal.
- FIG. 3B is a diagram for explaining the state of the level shift circuit when an L level signal is input to the SW terminal and an L level signal is input to the VIN terminal.
- a thick line shown in FIGS. 3A and 3B represents a signal path asserted to H level and a current path formed by turning on the transistor.
- the NMOS (20), NMOS (21), NMOS (27), NMOS (30), and NMOS (34) are turned off, and the NMOS (12), the drain high breakdown voltage NMOS (25) is turned on, and the drain high breakdown voltage PMOS (17), the drain high breakdown voltage PMOS (22), and the drain high breakdown voltage PMOS (24) are turned on by the ON operation of the NMOS (12).
- the first level shift element (1) is powered on and is in an operating state.
- a signal of the first amplitude input to the VIN terminal is input to the gate of the NMOS (15) via the AND (8), and a signal input to the VIN terminal is input to the gate of the NMOS (16).
- the signal is input as an inverted signal through the AND (8) and the inverter (9), and the NMOS (15) and NMOS (16) are turned ON / OFF according to the signal level of the input signal VIN.
- the NMOS (15) and NMOS (16) drive the load PMOS (13) and PMOS (14) connected to the drain by the respective ON / OFF operations, and the drain voltage is supplied to the power supply voltage [Vdd2-Vss1]. Is changed with the second amplitude.
- the amplitude output to the drain of the NMOS (16) includes an inverter composed of PMOS (18) and NMOS (19), PMOS (23), NMOS (26), drain high breakdown voltage PMOS (24), drain high breakdown voltage.
- the signal is output to the VOUT terminal and the TOUT terminal through an inverter composed of NMOS (25).
- Vdd2 A description will be given of the voltage of Vdd2 that can operate when the circuit of the second embodiment is in the power-on operation state.
- the Vdd2 operable lower limit voltage is determined at a portion connected to Vss1 from the drain of the drain high breakdown voltage PMOS (17) via the PMOS (13), PMOS (14), NMOS (15), NMOS (16). Since it is determined as shown in Expression (2) and does not depend on Vdd1, the operation can be performed even when Vdd2 is lower than Vdd1.
- VDS (17) is the drain-source voltage of the drain high-voltage PMOS (17)
- VGS (13) is the gate-source voltage of the PMOS (13)
- VDS (16) is the drain-source of the NMOS (16). Voltage.
- FIG. 4 is a diagram for explaining the state of the level shift circuit when an H level signal is input to the SW terminal and an H level signal is input to the VIN terminal.
- a thick line shown in FIG. 4 represents a signal path asserted to H level and a current path formed by turning on the transistor.
- the circuit of the second embodiment When the H level is input to the SW terminal with the first amplitude input signal, the circuit of the second embodiment is turned off and is stopped.
- the NMOS (20), NMOS (21), NMOS (27), NMOS (30), and NMOS (34) are turned on, and the NMOS (12) and drain high voltage NMOS (25) are turned off, and the NMOS (12).
- the drain high breakdown voltage PMOS (17), the drain high breakdown voltage PMOS (22), and the drain high breakdown voltage PMOS (24) are turned OFF.
- the voltage of Vss1 is applied to the drain of the drain high breakdown voltage PMOS (17) via the NMOS (20), and the source of the drain high breakdown voltage PMOS (24) is NMOS (34), resistor (33), A constant voltage generated by impedance-dividing Vdd2 by the resistor (32) and the PMOS (31) is applied and output to TOUT.
- VGS indicates a gate-source breakdown voltage
- VGD indicates a gate-drain breakdown voltage
- VDS indicates a drain-source breakdown voltage. Except for the drain high breakdown voltage MOSs VGD and VDS, the breakdown voltage was 6V, and the drain high breakdown voltage MOSs VGD and VDS were 15V.
- a voltage close to Vss1 is applied to the source of the drain high withstand voltage NMOS (25) via the NMOS (27), and the drain of the drain high withstand voltage PMOS (22) has an NMOS (34), a resistor (33), and a resistor (32).
- the constant voltage generated by dividing the impedance of Vdd2 by the PMOS (31) is applied when the PMOS (23) enters the non-saturated region.
- the TOUT terminal that outputs the ON / OFF discrimination signal indicates the amplitude generated at the drain of the NMOS (16) as the PMOS (18), NMOS. (19) and an inverter composed of PMOS (23), NMOS (26), drain high breakdown voltage PMOS (24), and drain high breakdown voltage NMOS (25).
- the first level shift element (1) in the second embodiment can operate from a low voltage Vdd2 when the power is on, and can ensure the breakdown voltage of the element even when the voltage Vdd2 is high when the power is off.
- the operation / stop state can be easily discriminated.
- FIG. 5 shows the configuration of the level shift circuit in the third embodiment, and shows a specific configuration suitable for use in the second level shift element (2) in the first embodiment.
- reference numeral 35 is an inverter
- reference numeral 36 is NOR
- reference numeral 37 is AND
- reference numerals 38 and 39 are resistors
- reference numerals 41, 44, 45, 46, 48, 49, 51 and 52 are PMOS
- reference numeral 42 is NMOS
- Reference numeral 53 is a drain high breakdown voltage PMOS
- reference numerals 40, 47, 50 and 54 are drain high breakdown voltage NMOSs
- reference numeral 43 is a current source
- reference numeral 55 is a current supply capability UP switching element
- Vdd1 is a first high potential side power supply
- Vdd2 is A second high potential side power source
- Vss1 is a low potential side power source
- SWB is a power source OFF / ON switching terminal
- VIN is a signal input terminal
- VOUT is a signal output terminal.
- the power supply terminals of the inverter (35), NOR (36), and AND (37) are connected to Vdd1, and the ground terminal is connected to Vss1.
- the VIN terminal is connected to one input of NOR (36) and one input of AND (37), and the output of NOR (36) is connected to the gates of drain high voltage NMOS (50) and drain high voltage NMOS (54).
- the AND (37) output is connected to the gate of the drain high breakdown voltage NMOS (47).
- drain high breakdown voltage NMOS (47), the drain high breakdown voltage NMOS (50), and the drain high breakdown voltage NMOS (54) are connected to Vss1.
- the drain high voltage PMOS (53) has a source connected to Vdd2, and a drain connected to the drain of the drain high voltage NMOS (54) and the VOUT terminal.
- the drain of the drain high breakdown voltage NMOS (47) is connected to Vdd2 via the PMOS (46) and PMOS (45).
- the source of the PMOS (46) is connected to the gate of the drain high voltage PMOS (53), the drain of the PMOS (51), the drain of the PMOS (52), and the gate is connected to Vdd1.
- VGS (46) is the gate-source voltage of the PMOS (46).
- the current supply capacity UP switching element (55) is configured to limit the lower limit of the gate voltage of the PMOS (51) to the expression (4), and can ensure the withstand voltage of the element even when the voltage of Vdd2 is high, and has low current consumption and high speed operation. It becomes the composition which enables.
- VGS (49) is the gate-source voltage of the PMOS (49).
- the source of the NMOS (42) is connected to Vss1 through the current source (43), and the drain is connected to Vdd2 through the PMOS (41).
- the drain and gate of the PMOS (41) are connected to the gate of the PMOS (45) and the gate of the PMOS (48) to form a current mirror circuit, and the gate of the PMOS (41) is also connected to the drain of the PMOS (44). Is done.
- the source of the drain high breakdown voltage NMOS (40) is connected to Vss1, and the drain is connected to Vdd2 via the resistor (39) and the resistor (38).
- the node to which the resistors (39) and (38) are connected is connected to the gates of the PMOS (44) and the PMOS (52), and the sources of the PMOS (44) and the PMOS (52) are connected to Vdd2.
- the above connection includes a current supply capability UP switching element (55) having a function of switching current supply capability, which enables high-speed operation with low current consumption, and includes the current supply capability UP switching element (55). It is possible to operate with securing the withstand voltage of the elements used in the circuit.
- FIG. 7 is a diagram for explaining the state of the level shift circuit when an L level signal is input to the SWB terminal and an H level signal is input to the VIN terminal.
- a thick line shown in FIG. 7 represents a signal path asserted to H level and a current path formed by turning on the transistor.
- the NMOS (42) When the L level is input to the SWB terminal with the first amplitude input signal generated by the power supply voltage [Vdd1-Vss1], the NMOS (42) is turned off, and the current from the current source (43) is Blocked.
- the SWB signal inverted by the inverter (35) is input to the gate of the drain high withstand voltage NMOS (40) and is turned on.
- the gates of the PMOS (44) and PMOS (52) are connected to the resistors (38) and (39). A voltage obtained by dividing Vdd2 is applied to turn on each of them, and the drain high-voltage PMOS (53) is turned off.
- the L level signal input from the SWB is input to the gates of the drain high breakdown voltage NMOS (50) and the drain high breakdown voltage NMOS (54) via the inverter (35) and NOR (36) and is turned OFF, and AND (37 ) Is input to the gate of the drain high breakdown voltage NMOS (47) via the), and the circuit of the third embodiment is turned off and in a stopped state.
- FIG. 8A is a diagram for explaining the state of the level shift circuit when an H level signal is input to the SWB terminal and an H level signal is input to the VIN terminal.
- FIG. 8B is a diagram for explaining the state of the level shift circuit when an H level signal is input to the SWB terminal and an L level signal is input to the VIN terminal.
- the thick lines shown in FIGS. 8A and 8B represent the signal path asserted to the H level and the current path formed by turning on the transistor.
- the NMOS (42) When the H level is input to the SWB terminal with the first amplitude input signal, the NMOS (42) is turned on, the output current of the current source (43) is supplied to the PMOS (41), and the inverter (35). Inverted signal is input to the gate of the drain high breakdown voltage NMOS (40) via the gate, and is turned off, so that the PMOS (44) and PMOS (52) are turned off, and the circuit of the third embodiment is turned on and operates. It becomes a state.
- the PMOS (41), PMOS (45), and PMOS (48) constitute a current mirror circuit, and the output current of the current source (43) is connected to the PMOS (41) by the ON operation of the NMOS (42). Input to the gate / drain and output current from the PMOS (45) and PMOS (48) according to the transistor size ratio of the PMOS (41) and PMOS (45) and PMOS (48).
- the first amplitude signal input to the VIN terminal is input to the gates of the drain high breakdown voltage NMOS (50) and drain high breakdown voltage NMOS (54) as an inverted signal via the NOR (36).
- a signal input to the VIN terminal is input to the gate of the breakdown voltage NMOS (47) via the AND (37), and the drain high breakdown voltage NMOS (47) is turned on / off according to the signal level of the input signal VIN.
- the drain high breakdown voltage NMOS (50) and the drain high breakdown voltage NMOS (54) are turned OFF / ON by the inverted signals.
- the drain high withstand voltage NMOS (54) and the drain high withstand voltage NMOS (50) are turned off by the signal inverted through the NOR (36), and the current flowing through the PMOS (49) is cut off.
- the PMOS (48) enters the non-saturation region while charging the node connected to the gate of the PMOS (51) with the output current, and turns off the gate voltage of the PMOS (51) to a value close to Vdd2, and AND (37 ),
- the drain high breakdown voltage NMOS (47) is turned on, and the current output from the PMOS (45) is supplied to the PMOS (46).
- the gate of the drain high breakdown voltage PMOS (53) is expressed by the equation (3).
- the drain high breakdown voltage PMOS (53) is turned on, and a voltage close to Vdd2 is output to the VOUT terminal.
- the drain high withstand voltage NMOS (47) is turned off and the current flowing through the PMOS (46) is cut off, and the PMOS (45) is applied to the gate of the drain high withstand voltage PMOS (53) by the output current. While charging the connected node, it enters a non-saturation region, and the gate of the drain high breakdown voltage PMOS (53) is turned off with a voltage close to Vdd2.
- the current supply capability UP switching element (55) is also operating, and the drain high withstand voltage NMOS (50) is turned on, and the current output from the PMOS (48) flows to the PMOS (49), and the PMOS (51) Is fixed to the voltage of the equation (4), the PMOS (51) is turned on, the current supply capability to the gate of the drain high voltage PMOS (53) is increased, and the gate of the drain high voltage PMOS (53) is The voltage becomes close to Vdd2 and the time for turning it off is shortened.
- the drain high breakdown voltage NMOS (54) is turned on, and a voltage close to Vss1 is output to the VOUT terminal.
- the current supply capability UP switching element (55) is an element for increasing the speed at which the VOUT output falls from the H level to the L level when the input signal VIN changes from the H level to the L level.
- FIG. 6 is a circuit diagram obtained by removing the current supply capability UP switching element (55) from FIG. 5 for comparison. Since the reference numerals, connections, and operations of the respective parts are the same as those in FIG. 5 except that the current supply capability UP switching element (55) is omitted, the description thereof is omitted.
- FIG. 6 shows that the node to which the gate of the drain high breakdown voltage PMOS (53), which is an output transistor, is connected enters the non-saturation region while being charged by the output current of the PMOS (45) of the current mirror circuit and has a value close to Vdd2.
- 12 is the same as the operation of charging the input of the inverter (73) with the current output from the PMOS (69) of the current mirror circuit to a value close to Vdd2.
- FIG. 6 shows the fall time of FIG. It is the structure which becomes equivalent time.
- Table 2 shows the simulation result of the fall time of the VOUT signal using FIG. 5 and FIG.
- FIG. 11 is a diagram showing which part of the VOUT signal the fall time in Table 2 indicates.
- reference numeral 58 denotes a fall time, which indicates a fall time between a voltage that is 10% lower than the high potential peak of the VOUT signal and a voltage that is 10% higher than the low potential peak.
- Table 4 shows the resistance values of FIGS. 5 and 6 in the simulation in which the results of Table 2 were obtained. Resistance (38) was 250 k ⁇ and resistance (39) was 25 k ⁇ .
- Table 5 shows the transistor sizes of FIG. 5 and FIG. 6 in the simulation that obtained the results of Table 2.
- the fall time of the level shift circuit of Example 3 shown in FIG. It falls at the shortest time of 7.3 nsec shown in FIG.
- the circuit using the configuration excluding the current supply capability UP switching element (55) in FIG. 2 is 106.3 nsec, which is 14.6 times longer than the circuit of FIG. SIM No. 3 represents the current value of the current source (43) in FIG. This is the result of 15 times 1.
- the fall time is 7.6 nsec, which is less than the level shift circuit of the third embodiment shown in FIG. 5, the fall time is shortened to a difference of 0.3 nsec, but 15 times the current is required.
- the level shift circuit according to the third embodiment shown in FIG. 5 has the effect of performing high-speed operation with low current consumption by the operation of the current supply capability UP switching element (55).
- Table 1 shows an example of the breakdown voltage of each element.
- the drain high withstand voltage NMOS (50) is turned off to cut off the current flowing through the PMOS (49), and the PMOS (48) is connected to the gate of the PMOS (51) by the output current.
- the node enters the non-saturation region while charging the node, and the drain of the drain high-voltage NMOS (50) is set to a voltage close to Vdd2 via the PMOS (49).
- the current supply capability UP switching element (55) realizes the function of switching the current supply capability to the node to which the gate of the drain high breakdown voltage PMOS (53) is connected while ensuring the breakdown voltage. It is an element for performing low current consumption and high speed operation.
- Vdd2 A voltage close to Vdd2 is output to the VOUT terminal, but the VDS breakdown voltage of the drain high breakdown voltage NMOS (54) is 15V, and the breakdown voltage is secured.
- the drain high withstand voltage NMOS (47) When the input signal VIN is at L level, the drain high withstand voltage NMOS (47) is turned off and the current flowing through the PMOS (46) is cut off, and the PMOS (45) is applied to the gate of the drain high withstand voltage PMOS (53) by the output current.
- the non-saturated region is entered while charging the connected node, and the drain of the drain high-voltage NMOS (47) is set to a voltage close to Vdd2 via the PMOS (46), and the drain-source voltage of the drain high-voltage NMOS (47).
- drain high breakdown voltage NMOS (54) is turned on and a voltage close to Vss1 is output to the VOUT terminal, but the VDS breakdown voltage of the drain high breakdown voltage PMOS (53) is 15V, and the breakdown voltage is secured.
- the breakdown voltage of the element is ensured even at a high voltage Vdd2, and the high voltage resistance, low current consumption, and high speed operation are possible. Has an effect.
- FIG. 2 shows a configuration of the level shift circuit in the fourth embodiment, and is also a diagram showing a configuration in which the circuit of FIG. 2 is used alone.
- the first level shift element (1) in the level shift circuit of the first embodiment is operated when Vdd2 is a low voltage, and is stopped when Vdd2 is a high voltage. Therefore, it is also suitable for use alone as a level shift circuit suitable for an operation for securing a withstand voltage.
- the level shift circuit according to the fourth embodiment can operate from a low voltage Vdd2 when the power is on, and can ensure the withstand voltage of the element even when the voltage Vdd2 is high when the power is off, and the power on / off is switched by input from the SW terminal. Sometimes, the operation / stop state can be easily discriminated.
- FIG. 5 shows a configuration of the level shift circuit in the fifth embodiment, and is also a diagram showing a configuration in which the circuit of FIG. 5 is used alone.
- the second level shift element (2) in the level shift circuit of the first embodiment a low current consumption is obtained after ensuring the breakdown voltage of the element when Vdd2 becomes a high voltage. It is also suitable for use alone as a level shift circuit suitable for high-speed operation.
- the level shift circuit of the fifth embodiment it is possible to ensure the withstand voltage of the element even with a high Vdd2 voltage, and to achieve excellent effects such as high withstand voltage, low current consumption, and high speed operation.
- the level shift circuit of the present invention is useful as a component of a semiconductor device used for a switching regulator, as a component that realizes low voltage operation, high withstand voltage, low current consumption, improved operating frequency, and easy inspection.
Landscapes
- Logic Circuits (AREA)
Abstract
本発明のレベルシフト回路は、第1のレベルシフト要素(1)として、低い電圧の場合に電源ONで動作状態として用い、電源電圧が高い場合には素子の耐圧を確保して電源OFFし停止状態で用いる低電源電圧用レベルシフト回路を備え、第2のレベルシフト要素(2)として、電源電圧が低い場合には電源OFFし停止状態で用い、電源電圧が高い場合に、素子の耐圧を確保して電源ONし動作状態で用いる高電源電圧用レベルシフト回路とを備え、電源電圧によって切り替えられるように構成する。
Description
本発明は、低電源電圧側の信号を高電源電圧側へ伝達するレベルシフト回路において、MOSトランジスタのゲート酸化膜を厚くすることなくレベルシフト回路の高耐圧化を実現する技術に関し、例えばスイッチング・レギュレータ等に用いられるレベルシフト回路及び半導体装置に利用して有用な技術に関する。
従来のレベルシフト回路は、図13に示されるような構成を有していた。
図13は特許文献1(第11項、図6)で開示されている、公知のレベルシフト回路を示している。
図13を用いて、公知のレベルシフト回路について説明する。
図13において、76,81はインバータ、79,80はPMOSトランジスタ(以下、PMOSと略称)、77,78はNMOSトランジスタ(以下、NMOSと略称)、Vdd1は第1の高電位側電源、Vdd2は第2の高電位側電源、Vss1は低電位側電源、VINは信号入力端子、VOUTは信号出力端子である。
公知のレベルシフト回路として、信号入力端子VINをNMOS(78)のゲート及び、Vss1に接地端を接続し、Vdd1に電源端を接続するインバータ(76)の入力端に接続し、インバータ(76)の出力端は、NMOS(77)のゲートに接続される。Vdd2にソースを接続するPMOS(79)、PMOS(80)のゲートをそれぞれのドレインに相互接続し、PMOS(79)のドレインはNMOS(77)を介してVss1に接続し、PMOS(80)のドレインはNMOS(78)を介してVss1に接続する。PMOS(80)のドレインは、Vss1に接地端を接続し、Vdd2に電源端を接続するインバータ(81)の入力端にも接続し、インバータ(81)の出力を信号出力端子VOUTに接続して構成する。
電源電圧[Vdd1-Vss1(GND)]により生成される入力信号VINを、電源電圧[Vdd1-Vss1]とは異なる電源電圧[Vdd2-Vss1]によって入力信号VINとは異なる振幅出力信号VOUTにレベルシフトする回路である。
図13に示すレベルシフト回路は、Vdd2がVdd1より低い電位で動作が可能である半面、Vdd2が高くなった場合、PMOS(79),PMOS(80)のゲート・ソース間電圧VGSに、[Vdd2-Vss1]の高い電位差が印加されるため、素子の高耐圧化を図る必要があった。一般に素子のゲート酸化膜を厚く形成することで、ゲート・ソース間に大きな電圧がかかっても素子破壊が生じないように高耐圧化を図っているが、ゲート酸化膜を厚くすると、素子サイズが大きくなり、ICのコストが高くなってしまうと共に、MOSトランジスタの閾値電圧Vth、すなわち動作電圧が高くなったり、MOSトランジスタの反転スピードが遅くなるなどの不都合が生じる問題があった。
図13に示す回路の課題を解決すべく、特許文献1においては、図12に示すような構成が提案されている。図12は特許文献1(第10項、図1)で開示されている、公知のレベルシフト回路を示している。
図12を用いて、公知のレベルシフト回路について説明する。
図12において、59,73はインバータ、68,69はPMOS、60,61,63,64,65,71,72はNMOS、66,67はドレイン高耐圧NMOSトランジスタ(以下、ドレイン高耐圧NMOSと略称)、62,70は抵抗、74は第1定電流回路、75は第2定電流回路、Vdd1は第1の高電位側電源、Vdd2は第2の高電位側電源、Vss1は第1の低電位側電源、Vss2は第2の低電位側電源、VINは信号入力端子、VOUTは信号出力端子である。
ここで、ドレイン高耐圧NMOSは、ドレインが高耐圧に形成されていることで、ゲート・ドレイン間やソース・ドレイン間に高い電圧が印加されても、素子の破壊が回避されるNMOSトランジスタである。
電源電圧[Vdd1-Vss1]により生成される入力信号VINを、電源電圧[Vdd1-Vss1]より電位の高い電源電圧[Vdd2-Vss2]によって入力信号VINよりも中心電位の高い出力信号VOUTにレベルシフトする回路である。
図12に示す回路が動作する条件は、特許文献1によると、以下の通りである。
第3項の段落番号0009には以下の記載がある。
「上記電源電圧[Vdd2-Vss2]は、例えば10V-5Vのようなロジック系の電源電圧[Vdd1-Vss1(GND)]と電位差がほぼ同じで電位のみ高くされた電圧である。」
第5項の段落番号0016には以下の記載がある。
第5項の段落番号0016には以下の記載がある。
「高電位側の基準電位(低い方の電源電圧)Vss2」
この動作条件は、Vdd1(低い方の電源電圧)とVss2(高電位側の基準電位)が同じ電圧であり、電源電圧[Vdd2-Vss2]は、電源電圧[Vdd1-Vss1]と電位差がほぼ同じで電位のみ高くされた電圧であり、電源電圧[Vdd2-Vss1]の電位差は電源電圧[Vdd1-Vss1]のほぼ2倍が必要なことを示し、Vdd2はVdd1より高い電位での動作を条件としている。
この動作条件は、Vdd1(低い方の電源電圧)とVss2(高電位側の基準電位)が同じ電圧であり、電源電圧[Vdd2-Vss2]は、電源電圧[Vdd1-Vss1]と電位差がほぼ同じで電位のみ高くされた電圧であり、電源電圧[Vdd2-Vss1]の電位差は電源電圧[Vdd1-Vss1]のほぼ2倍が必要なことを示し、Vdd2はVdd1より高い電位での動作を条件としている。
図12のレベルシフト回路は、入力信号VINとその反転信号をゲートに受ける一対の入力MOSトランジスタNMOS(60),NMOS(61)と、Vdd2にソースが接続されたカレントミラー接続の負荷MOSトランジスタPMOS(68),PMOS(69)と、上記入力MOSトランジスタNMOS(60),NMOS(61)と負荷MOSトランジスタPMOS(68),PMOS(69)との間にそれぞれ直列に接続されたドレイン高耐圧NMOS(66),NMOS(67)およびNMOS(66),NMOS(67)に流れる電流を制限する電流制限用MOSトランジスタNMOS(64),NMOS(65)と、この電流制限用MOSトランジスタNMOS(64),NMOS(65)の電流量を決定する第1定電流回路(74)と、上記ドレイン高耐圧MOSトランジスタNMOS(67)のドレイン電位が下がり過ぎないように電流を供給する電流供給用MOSトランジスタNMOS(71)と、このNMOS(71)の電流量を決定する第2定電流回路(75)と、負荷MOSトランジスタPMOS(69)のドレインに生成された出力電圧を波形整形して出力するインバータ(73)等から構成される。
上記のNMOS(60),NMOS(61)は、ソースがVss1に接続され、その一方のゲートには入力信号VINが直接入力されている。また、他方のゲートにはインバータ(59)を介して反転された信号が入力され、入力信号VINの信号レベルに応じてNMOS(60),NMOS(61)がオン・オフ動作するようになっている。
PMOS(68),PMOS(69)は、ソースがVdd2に接続され、PMOS(68)のゲート・ドレイン間が結合され、PMOS(69)のゲートにはPMOS(68)のドレイン電圧が印加されている。
ドレイン高耐圧NMOS(66),ドレイン高耐圧NMOS(67)は、それぞれドレインがPMOS(68),PMOS(69)側に、ソースがNMOS(60),NMOS(61)側に接続され、且つ、ゲートにはVdd1が印加されるように接続されている。このようなNMOS(66),NMOS(67)によれば、そのドレインに高い電圧が印加された場合でも、ソース電位がゲート電位(Vdd1)とMOSトランジスタの閾値電圧Vthにより決定されるクランプ電圧(Vdd1-Vth)に固定され、高い電圧がソース側の素子NMOS(64),NMOS(65),NMOS(60),NMOS(61)に印加されないようにされる。
NMOS(64),NMOS(65)は、NMOS(60),NMOS(61)とそれらに対応するNMOS(66),NMOS(67)との間にそれぞれ直列に接続されるとともに、第1定電流回路(74)を構成するNMOS(63)とカレントミラー接続され、NMOS(60),NMOS(61)の何れかがオン状態の場合に、対応するNMOS(66),NMOS(67)に流れる電流を定電流回路(74)により決定される電流量に制限する。
第1定電流回路(74)は、ゲート・ドレインを結合したNMOS(63)と抵抗(62)とをVdd1,Vss1間に直列に接続したものである。
NMOS(71)は、第2定電流回路(75)のNMOS(72)とカレントミラー接続され、出力ノードN11の電位が下がったときに第2定電流回路(75)により決定される電流を出力ノードN11に供給してN11の電位を高電位側の基準電位(低い方の電源電圧)Vss2より低くならないように制御する。なお、NMOS(64),NMOS(65)による電流の制限等により、N11の電位が基準電位Vss2より低くならないように構成されていれば、NMOS(71)や第2定電流回路(75)は省略することが出来る。第2定電流回路(75)は、抵抗(70)とNMOS(72)とがVdd2,Vss2間に直列に接続されている。上記構成のレベルシフト回路によれば、入力信号VINがHレベルのときには、一方の入力NMOS(61)がオンされてPMOS(69),NMOS(67),NMOS(65)に電流が流されるとともに、他方の入力NMOS(60)がオフされてPMOS(68),NMOS(66),NMOS(64)に流れる電流が遮断される。その結果、N11の電位が低い状態にされてインバータ(73)の出力信号VOUTはVdd2に近いレベルの信号となる。
逆に、入力信号VINがLレベルのときには、一方の入力NMOS(61)がオフされてNMOS(67),NMOS(65)の電流が遮断されるとともに、他方の入力NMOS(60)がオンされてPMOS(68),NMOS(66),NMOS(64)に電流が流される。そして、PMOS(68)とPMOS(69)とがカレントミラー接続されているため、PMOS(69)のドレイン電圧はN11に接続されるノードを充電しながら非飽和領域に入り、その結果、N11の電位がVdd2に近いレベルにされてインバータ(73)の出力がVss2に近いレベルの信号となる。
ここで、非飽和領域とは、図10に符号56として示す、MOSトランジスタの静特性でドレイン・ソース間電圧VDSが低く、ドレイン電流IDも低く、VDSに対するIDの変化が大きい領域を示す。同図10中、符号57は飽和領域である。
このように構成されたレベルシフト回路によれば、NMOS(66),NMOS(67)のゲート・ドレイン間やソース・ドレイン間にのみVss1とVdd2との電位差に相当する大きな電圧がかかるが、NMOS(66),NMOS(67)のドレインが高耐圧に形成されていることで、素子の破壊が回避される。すなわち、レベルシフト回路のレベルシフト量が大きくなっても素子のゲート酸化膜を厚くする必要がなく、これによってゲート酸化膜を厚くして耐圧を図るレベルシフト回路に較べて、回路の占有面積の縮小や動作速度の向上を図ることが出来る。
しかしながら、図12の提案では、ゲート酸化膜を厚くすることなく素子の耐圧を確保できる反面、Vdd2はVdd1よりも低い電圧では動作せず、低電圧で動作できない問題があった。加えて、最終段であるインバータ(73)の入力部を電流源で充電して動作させる構成により、動作を早くするには消費電流が増大する問題もあった。
図13に示す従来のレベルシフト回路は、Vdd2がVdd1より低い電圧で動作が可能である半面、Vdd2が高くなった場合、耐圧を確保するためにレベルシフト回路の構成素子のゲート酸化膜を厚くする必要があった。ゲート酸化膜を厚くすると、それに伴って素子サイズが大きくなることから回路全体の占有面積が大きくなり、ICのコストが高くなってしまう。さらに、MOSトランジスタの閾値電圧Vthすなわち動作電圧が高くなったり、MOSトランジスタの反転スピードが遅くなるなどの不都合が生じる問題があった。
さらに、図12に示す従来のレベルシフト回路は、前述の通り、電源電圧[Vdd2-Vss1]の電位差は電源電圧[Vdd1-Vss1]のほぼ2倍であることが動作条件であり、Vdd2をVdd1よりも低い電圧で動作させられない問題点を有していた。
加えて、最終段であるインバータ(73)の入力部、N11の電位をLレベルからHレベルに立ち上げる時間は、N11に接続されるノードをPMOS(69)が、出力する電流によって充電しながら非飽和領域に入る動作で決定されるため、立ち上がり時間を短くするには、PMOS(63),PMOS(64),PMOS(65)で構成されるカレントミラー回路の電流を増やす必要があり、消費電流が増加する問題点をも有していた。
本発明は上記従来の問題点を解決するものであり、Vdd2がVdd1よりも低い電圧の場合にも動作でき、Vdd2が高くなった場合には、使用する素子の耐圧を超えない状態で動作でき、且つ、消費電流を増加させることなく、動作速度を高速にすることのできる、低電圧動作、高耐圧、低消費電流、高速動作のレベルシフト回路及び半導体装置を提供することを目的とする。
以下の課題を解決するための手段においては、後述する実施例との関連性を示すと共に、発明を理解しやすくするために、括弧内に後述する実施例において用いた参照符号等を記載した。但し、これらの参照符号等は本発明を後述する実施例の構成に限定するものではなく、本発明には後述する実施例に記載した機能、構成と同様の機能、構成を示す各種要素が含まれる。
本発明の第1の観点のレベルシフト回路は、電源電圧[Vdd1-Vss1(GND)]により生成される、第1の振幅の入力信号VINを、電源電圧[Vdd2-Vss1]により生成される、第2の振幅の出力信号VOUTにレベルシフトする回路であって、上記目的を達成するために、第1のレベルシフト要素(1)として、Vdd2がVdd1よりも低い電圧の場合に電源ONで動作状態として用い、Vdd2の電圧が高い場合には素子の耐圧を確保して電源OFFし停止状態で用いる低電源電圧用レベルシフト回路を備え、第2のレベルシフト要素(2)として、Vdd2の電圧が低い場合には電源OFFし停止状態で用い、Vdd2の電圧が高い場合に、素子の耐圧を確保して電源ONし動作状態で用いる高電源電圧用レベルシフト回路とを備え、コンパレータ回路(3)と抵抗(4)、抵抗(5)及び、基準電圧源(6)で構成されるレベルシフト回路であって、前記第1のレベルシフト要素(1)と前記第2のレベルシフト要素(2)の電源ON/OFFは前記コンパレータ回路(3)の出力により決定され、前記コンパレータ回路(3)は前記基準電圧源(6)より与えられる基準電圧と、Vdd2を抵抗(4)、抵抗(5)で分割した電圧を比較した結果を出力するように構成されている。
このように構成された第1の観点のレベルシフト回路は、前記第1のレベルシフト要素(1)と前記第2のレベルシフト要素(2)の電源ON/OFF動作状態を、Vdd2の電圧によって切り替えられるように構成されており、Vdd2がVdd1よりも低い低電圧では、前記第1のレベルシフト要素(1)によって動作でき、Vdd2が高い電圧の場合には、前記第2のレベルシフト要素(2)によって素子の耐圧が確保された状態で動作することができ、低電圧動作、高耐圧のレベルシフト回路及び半導体装置を提供することができる。
本発明の第2の観点のレベルシフト回路は、第1のレベルシフト要素(1)と、第2のレベルシフト要素(2)と、コンパレータ回路(3)と抵抗(4)、抵抗(5)及び、基準電圧源(6)で構成されるレベルシフト回路であって、前記の第1の観点における第1のレベルシフト要素(1)が、第1の振幅の入力信号VINを、第2の振幅の出力信号VOUTにレベルシフトする回路であって、第2の振幅の信号が出力される回路は、高い電位差が発生するノードにON/OFF動作が可能なドレイン高耐圧MOSトランジスタ(以下、ドレイン高耐圧MOSと略称)を設け、前記ドレイン高耐圧MOSのドレイン又はソースに定電圧を印加するように構成されている。
ここで、ドレイン高耐圧MOSは、ドレインが高耐圧に形成されていることで、ゲート・ドレイン間やソース・ドレイン間に高い電圧が印加されても、素子の破壊が回避されるMOSトランジスタである。
このように構成された第2の観点のレベルシフト回路は、第1のレベルシフト要素(1)が、Vdd2がVdd1よりも低い電圧の場合にも動作でき、Vdd2が高くなった場合には、電源OFFで停止状態になることで、前記ドレイン高耐圧MOSにより素子の耐圧が確保される。さらに電源OFF時には、ドレイン高耐圧MOSに印加する定電圧をモニタすることで、新たに回路を追加することなく、第1のレベルシフト要素(1)が停止していることを確認できる。
本発明の第3の観点のレベルシフト回路は、第1のレベルシフト要素(1)と、第2のレベルシフト要素(2)と、コンパレータ回路(3)と抵抗(4)、抵抗(5)及び、基準電圧源(6)で構成されるレベルシフト回路であって、前記の第1の観点における、第2のレベルシフト要素(2)が、第1の振幅の入力信号VINを、第2の振幅の出力信号VOUTにレベルシフトする回路であって、出力段のPMOSトランジスタのゲートに、電流供給能力を切替える機能を有した電流供給能力UP切換要素(55)を備え、前記電流供給能力UP切換要素(55)を含む、回路で使用する素子の耐圧を確保して動作させることができる構成としたものである。
このように構成された第3の観点のレベルシフト回路は、第2のレベルシフト要素(2)が、Vdd2が高くなった場合に、使用するトランジスタの耐圧を超えない状態で動作でき、電流供給能力UP切換要素(55)の作用により、低消費電流で高速動作することができる。
本発明の第4の観点のレベルシフト回路は、前記第2の観点のレベルシフト回路における第1のレベルシフト要素(1)を単独で使用するレベルシフト回路であり、Vdd2がVdd1よりも低い電圧の場合にも動作でき、Vdd2が高くなった場合には、電源OFFで停止状態になることで、素子の耐圧が確保される。さらに電源OFF時には、定電圧をモニタすることで、新たに回路を追加することなく、第4の観点のレベルシフト回路が停止していることを確認できる。
本発明の第5の観点のレベルシフト回路は、前記第3の観点のレベルシフト回路における第2のレベルシフト要素(2)を単独で使用するレベルシフト回路である。Vdd2が高くなった場合に、使用するトランジスタの耐圧を超えない状態で動作でき、電流供給能力UP切換要素(55)の作用により、低消費電流で高速動作することができる。
本発明においては、低電源電圧用レベルシフト回路と、高電源電圧用レベルシフト回路をコンパレータ回路により切替える構成にしており、印加される電源電圧により使用するレベルシフト回路を切替えられ、Vdd2がVdd1よりも低い電源電圧でも動作でき、Vdd2が高い電源電圧の場合でも素子の耐圧を確保し、低消費電流、高速動作を実現できるレベルシフト回路を提供することができる。
以下、本発明のレベルシフト回路の好適な実施例について、添付の図面を参照しながら説明する。なお、以下の実施例の説明において同じ符号を付した構成要素は実質的に同様の機能、構成、動作を示すものであり、記載が重複するときにはその説明を省略する場合がある。また、実施例の説明は例示として示したものであり、同様の技術的思想に基づく同様のレベルシフト回路は本発明に含まれるものである。
図1は、本発明に係る実施例1のレベルシフト回路の構成を示す図である。
図1において、符号1は第1のレベルシフト要素、符号2は第2のレベルシフト要素、符号3はコンパレータ回路、符号4,5は抵抗、符号6は基準電圧源、Vdd1は第1の高電位側電源、Vdd2は第2の高電位側電源、Vss1は低電位側電源、VINは信号入力端子、VOUは信号出力端子、TOUTはON/OFF判別端子である。
第1のレベルシフト要素(1)は、電源電圧[Vdd1-Vss1]により生成される、第1の振幅の入力信号VINを、電源電圧[Vdd2-Vss1]により生成される、第2の振幅の出力信号VOUTにレベルシフトする回路であって、SW端より入力される信号により、電源ON/OFF動作を切替えでき、Vdd2がVdd1よりも低い電圧の場合にもVOUT端子から信号を出力することができ、Vdd2が高い電源電圧の場合には、SW端より入力される信号により素子の耐圧を確保して電源OFFし停止状態になる機能を有する。
さらに、TOUT端子は回路内部の電圧をモニタでき、電源OFFの停止状態で定電圧が出力され、電源ONの動作状態でVOUT信号とほぼ同じ振幅の信号を出力する機能を有する。
第2のレベルシフト要素(2)は、第1の振幅の入力信号VINを、第2の振幅の出力信号VOUTにレベルシフトする回路であって、SWB端より入力される信号により、第1のレベルシフト要素(1)と反転の動作で電源OFF/ON動作を切替えでき、Vdd2が高い電源電圧の場合に、素子の耐圧を確保して電源ONし動作できる機能を有する。
コンパレータ回路(3)は基準電圧源(6)より与えられる基準電圧V6と、電源電圧[Vdd2-Vss1]を抵抗(4)、抵抗(5)で分割した入力電圧を比較し、基準電圧と入力電圧の差異により出力をLレベル/Hレベルに変化させる機能を有する。
コンパレータ回路(3)の出力端は、第1のレベルシフト要素(1)のSW端及び、第2のレベルシフト要素(2)のSWB端に接続される。VIN信号入力端子は、第1のレベルシフト要素(1)のVIN端及び、第2のレベルシフト要素(2)のVIN端に接続される。VOUT信号出力端子は第1のレベルシフト要素(1)のVOUT端及び、第2のレベルシフト要素(2)のVOUT端に接続される。
第1のレベルシフト要素(1)のVdd1端は第1の高電位側電源であるVdd1に接続され、Vdd2端は第2の高電位側電源であるVdd2に接続され、接地端は低電位側電源に接続される。
第2のレベルシフト要素(2)のVdd1端は第1の高電位側電源であるVdd1に接続され、Vdd2端は第2の高電位側電源であるVdd2に接続され、接地端は低電位側電源に接続するように構成されている。
以上のように構成される図1のレベルシフト回路について、その動作を詳細に説明する。
コンパレータ回路(3)の入出力特性を、具体的な例を挙げて図9に示す。
図9における条件は、前記基準電圧V6を式(1)に掲載される電圧とし、Vdd2=5Vの時に基準電圧V6と前記入力電圧とが一致するとし、入力電圧が基準電圧V6よりも低い場合は、コンパレータ回路(3)の出力はLレベル、逆に入力電圧が基準電圧V6よりも高い場合はHレベルが出力されるものとした例である。
なお、式(1)におけるR5は抵抗(5)の抵抗値、R4は抵抗(4)の抵抗値を示す。
基準電圧V6=5[V]×R5/(R4+R5)・・・(1)
コンパレータ出力がLレベルからHレベル、またはその逆に切替わる基準電圧V6は、Vdd1よりもVdd2の電圧が高く、Vdd2が半導体装置内で使用する素子の耐圧を超えない電圧に設定する。表1は、後述する具体的な回路例で使用する各素子の耐圧を示した例である。
コンパレータ出力がLレベルからHレベル、またはその逆に切替わる基準電圧V6は、Vdd1よりもVdd2の電圧が高く、Vdd2が半導体装置内で使用する素子の耐圧を超えない電圧に設定する。表1は、後述する具体的な回路例で使用する各素子の耐圧を示した例である。
表1に掲載の耐圧で最も低い値は6[V]である。図9ではVdd1よりもVdd2の電圧が高く、Vdd2が6[V]を超えない電圧を5Vとして例示している。
以上のように構成されたレベルシフト回路は、Vdd2の電圧値により、第1のレベルシフト要素(1)と第2のレベルシフト要素(2)の電源ON/OFF動作状態を切り替えられるように構成されており、Vdd2がVdd1よりも低い低電圧では第1のレベルシフト要素(1)が電源ONで動作し、第1の振幅の入力信号VINを、第2の振幅の出力信号にレベルシフトしてVOUT端子に出力すると共に、TOUT端子からは、VOUTに出力される信号とほぼ同じ振幅の信号が出力される。この時、第2のレベルシフト要素(2)は、電源OFFで停止状態になっている。
次に、Vdd2が高くなり、コンパレータへの入力電圧が基準電圧V6よりも高い電圧になった場合、第1のレベルシフト要素(1)は電源OFFで素子の耐圧を確保して停止状態となり、TOUT端子からは定電圧が出力され、停止状態であることが確認できる。さらに、第2のレベルシフト要素(2)は素子の耐圧が確保された状態で電源ONし動作状態となり、前記第1の振幅の入力信号VINを、前記第2の振幅の出力信号にレベルシフトし、VOUT端子に出力するという動作を実現している。
上記の動作を行うことにより、Vdd2がVdd1よりも低い低電圧の場合でも動作でき、Vdd2が高い電圧の場合でも素子の耐圧を確保した上で動作でき、さらに切替えて停止した第1のレベルシフト要素(1)の電源OFF状態を容易に判別できる効果を奏する。
図2は実施例2におけるレベルシフト回路の構成を示し、実施例1における第1のレベルシフト要素(1)での使用に好適な具体的構成を示す図である。
図2において、符号7,9はインバータ、符号8はAND、符号10,11,28,29,32,33は抵抗、符号13,14,18,23,31はPMOS、符号17,22,24はドレイン高耐圧PMOSトランジスタ(以下、ドレイン高耐圧PMOSと略称)、符号12,15,16,19,20,21,26,27,30,34はNMOS、符号25はドレイン高耐圧NMOS、Vdd1は第1の高電位側電源、Vdd2は第2の高電位側電源、Vss1は低電位側電源、SWは電源ON/OFF切替え端子、VINは信号入力端子、VOUTは信号出力端子、TOUTはON/OFF判別端子である。
ここで、ドレイン高耐圧PMOSは、ドレインが高耐圧に形成されていることで、ゲート・ドレイン間やソース・ドレイン間に高い電圧が印加されても、素子の破壊が回避されるPMOSトランジスタである。
インバータ(7),インバータ(9),AND(8)の電源端はVdd1に接続され、接地端はVss1に接続される。
SW端子はインバータ(7)の入力とNMOS(20),NMOS(21),NMOS(27),NMOS(30),NMOS(34)のゲートに入力され、インバータ(7)の出力はAND(8)の片方の入力とNMOS(12),ドレイン高耐圧NMOS(25)のゲートに接続される。
NMOS(12)のドレインは抵抗(11),抵抗(10)を介してVdd2に接続され、抵抗(11),抵抗(10)が互いに接続されるノードはドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22),ドレイン高耐圧PMOS(24)のゲートに接続される。
ドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22)のソースはVdd2に接続される。
VIN端子はAND(8)のもう片方の入力に接続され、AND(8)の出力とインバータ(9)によりその反転信号とされた出力とをゲートに受ける、一対の入力MOSトランジスタNMOS(15),NMOS(16)に接続され、NMOS(15),NMOS(16)はソースがVss1に接続され、NMOS(15)のドレインはPMOS(13)のドレインに接続され、NMOS(16)のドレインはPMOS(14)のドレインに接続され、PMOS(13),PMOS(14)のゲートはそれぞれのドレインに相互接続される。
NMOS(16)のドレインはPMOS(18),NMOS(19)のゲートに接続され、NMOS(19)のソースはVss1に接続され、PMOS(18),NMOS(19)のドレインはそれぞれが接続され、PMOS(23),NMOS(26)のゲートに入力される。
NMOS(26)のソースは、Vss1に接続され、ドレインはドレイン高耐圧NMOS(25),ドレイン高耐圧PMOS(24)を介してPMOS(23)のドレインに接続される。
Vdd2が高くなった場合に、ドレイン高耐圧MOSトランジスタを介することで電源OFFの停止状態で各素子の耐圧を確保するため、PMOS(13),PMOS(14),PMOS(18)のソースをドレイン高耐圧PMOS(17)のドレインに接続し、PMOS(23)のソースをドレイン高耐圧PMOS(22)のドレインに接続し、VOUT端子をドレイン高耐圧NMOS(25),ドレイン高耐圧PMOS(24)のドレインに接続する。
ドレイン高耐圧MOSトランジスタをOFF状態にした時のドレイン及び、ソース電圧を決定するため、NMOS(20)のドレインはドレイン高耐圧PMOS(17)のドレインに接続され、NMOS(21)のドレインはNMOS(26)のゲートに接続され、NMOS(27)のドレインはドレイン高耐圧NMOS(25)のソースに接続される。
ドレイン高耐圧MOSトランジスタをOFF状態にした時のドレイン及び、ソース電圧を決定すると共に、実施例2を用いた実施例1の第1のレベルシフト要素(1)が電源OFFで停止状態にあるとき、TOUT端子に定電圧を出力するため、NMOS(30)のドレインは抵抗(29),抵抗(28)を介してVdd2に接続され、抵抗(29),抵抗(28)が互いに接続されるノードはPMOS(31)のゲートに接続され、NMOS(34)のドレインは抵抗(33),抵抗(32),PMOS(31)を介してVdd2に接続され、抵抗(33),抵抗(32)が互いに接続されるノードはドレイン高耐圧PMOS(24)のソース及び、TOUT端子に接続される。
NMOS(12),NMOS(20),NMOS(21),NMOS(27),NMOS(30),NMOS(34)のソースはVss1に接続される。
以上のように構成された実施例2の第1のレベルシフト要素(1)の動作について説明する。
図3Aは、SW端子にLレベルの信号が入力され、かつVIN端子にHレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図3Bは、SW端子にLレベルの信号が入力され、かつVIN端子にLレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図3A及び図3Bに示される太線は、Hレベルにアサートされた信号経路及びトランジスタがオンすることによって形成された電流経路を表している。
SW端子に第1の振幅の入力信号でLレベルが入力されている場合、NMOS(20),NMOS(21),NMOS(27),NMOS(30),NMOS(34)はOFF動作し、NMOS(12),ドレイン高耐圧NMOS(25)はON動作し、NMOS(12)のON動作により、ドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22),ドレイン高耐圧PMOS(24)がON動作し、第1のレベルシフト要素(1)は電源ONし動作状態となる。
NMOS(15)のゲートには、VIN端子に入力される、第1の振幅の信号がAND(8)を介して入力され、NMOS(16)のゲートには、VIN端子に入力される信号がAND(8)とインバータ(9)を介し、反転された信号として入力され、入力信号VINの信号レベルに応じてNMOS(15),NMOS(16)がON/OFF動作する。
NMOS(15),NMOS(16)は、それぞれのON/OFF動作により、ドレインに接続される負荷PMOS(13),PMOS(14)を駆動し、そのドレイン電圧を、電源電圧[Vdd2-Vss1]により生成される、第2の振幅で変化させる。NMOS(16)のドレインに出力される振幅は、PMOS(18),NMOS(19)で構成されるインバータと、PMOS(23),NMOS(26),ドレイン高耐圧PMOS(24),ドレイン高耐圧NMOS(25)で構成されるインバータを介し、VOUT端子及び、TOUT端子に出力される。
実施例2の回路が電源ONの動作状態にある時、動作可能なVdd2の電圧について説明する。
Vdd2動作可能下限電圧は、ドレイン高耐圧PMOS(17)のドレインから、PMOS(13),PMOS(14)及び、NMOS(15),NMOS(16)を介してVss1に接続される部位で決定され、式(2)のように決定されており、Vdd1に依存していないため、Vdd2はVdd1より低い電圧でも動作が可能である。
なお、VDS(17)はドレイン高耐圧PMOS(17)のドレイン・ソース間電圧、VGS(13)はPMOS(13)のゲート・ソース間電圧、VDS(16)はNMOS(16)のドレイン・ソース間電圧である。
また、式(2)において、VGS(13)はVGS(14)に、VDS(16)はVDS(15)に置き換えても同じVdd2動作可能下限電圧を示す式となる。
Vdd2動作可能下限電圧=VDS(17)+VGS(13)+VDS(16) ・・・(2)
図4は、SW端子にHレベルの信号が入力され、かつVIN端子にHレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図4に示される太線は、Hレベルにアサートされた信号経路及びトランジスタがオンすることによって形成された電流経路を表している。
図4は、SW端子にHレベルの信号が入力され、かつVIN端子にHレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図4に示される太線は、Hレベルにアサートされた信号経路及びトランジスタがオンすることによって形成された電流経路を表している。
SW端子に第1の振幅の入力信号でHレベルが入力されている場合、実施例2の回路は電源OFFし停止状態となる。
NMOS(20),NMOS(21),NMOS(27),NMOS(30),NMOS(34)はON動作し、NMOS(12),ドレイン高耐圧NMOS(25)はOFF動作し、NMOS(12)のOFF動作により、ドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22),ドレイン高耐圧PMOS(24)がOFF動作する。この状態において、ドレイン高耐圧PMOS(17)のドレインにはNMOS(20)を介してVss1の電圧が印加され、ドレイン高耐圧PMOS(24)のソースにはNMOS(34),抵抗(33),抵抗(32),PMOS(31)によりVdd2をインピーダンス分割して生成される定電圧が印加され、TOUTに出力される。
この時、ドレイン高耐圧PMOS(24),ドレイン高耐圧NMOS(25)がOFF動作していることにより、VOUT端子からTOUT端子に信号が出力されることはない。
実施例2の回路が電源OFFの停止状態にある時、耐圧が確保される状態を表1を用いて説明する。
電源電圧[Vdd1-Vss1]=3V、電源電圧[Vdd2-Vss1]=7Vとして説明する。
表1は各素子の耐圧の一例を示す。表1において、VGSはゲート・ソース間耐圧、VGDはゲート・ドレイン間耐圧、VDSはドレイン・ソース間耐圧を示す。ドレイン高耐圧MOSのVGD,VDS以外は全て耐圧は6Vとし、ドレイン高耐圧MOSのVGD,VDSは15Vとした。
表1は各素子の耐圧の一例を示す。表1において、VGSはゲート・ソース間耐圧、VGDはゲート・ドレイン間耐圧、VDSはドレイン・ソース間耐圧を示す。ドレイン高耐圧MOSのVGD,VDS以外は全て耐圧は6Vとし、ドレイン高耐圧MOSのVGD,VDSは15Vとした。
図2において、電源OFFの停止状態にある場合、ドレイン高耐圧PMOS(17)のドレインはNMOS(20)を介してVss1に近い電圧になるため、ドレイン高耐圧PMOS(17)のドレインとVss1との間に接続される素子にはVdd2=7Vが印加されることはなくなる。ドレイン高耐圧PMOS(17)のVDSは[Vdd2-Vss1]=7Vの電圧が印加されることになるが、ここは、VDS耐圧が15Vあるため耐圧は確保されている。
ドレイン高耐圧NMOS(25)のソースはNMOS(27)を介してVss1に近い電圧が印加され、ドレイン高耐圧PMOS(22)のドレインにはNMOS(34),抵抗(33),抵抗(32),PMOS(31)によりVdd2をインピーダンス分割して生成される定電圧が、PMOS(23)が非飽和領域に入ることで印加される。
抵抗(33),抵抗(32)を調整しTOUT=5Vの定電圧にすることで、VOUT端子が第2のレベルシフト要素(2)の出力により電源電圧[Vdd2-Vss1]=7Vにより生成される、第2の振幅で振れた場合でも、ドレイン高耐圧PMOS(24),ドレイン高耐圧NMOS(25)がOFFしていることにより、表1にある耐圧を超えることなく各素子の耐圧を確保することができる。
ON/OFF判別信号を出力するTOUT端子は、第1のレベルシフト要素(1)が電源ONの動作状態にある時、NMOS(16)のドレインに生成される振幅を、PMOS(18),NMOS(19)で構成されるインバータと、PMOS(23),NMOS(26),ドレイン高耐圧PMOS(24),ドレイン高耐圧NMOS(25)で構成されるインバータを介して出力しているが、電源OFFの停止状態にある時は、NMOS(34),抵抗(33),抵抗(32),PMOS(31)によりVdd2をインピーダンス分割して生成される定電圧が印加され、ドレイン高耐圧PMOS(24),ドレイン高耐圧NMOS(25)がOFFしていることにより、VOUT端子が、第2の振幅で振れている場合でも、振幅のない定電圧を出力することができ、第1のレベルシフト要素(1)の動作/停止状態を、電源ONの動作状態で第2の振幅で振れる信号を出力しているか、電源OFFの停止状態で振幅のない定電圧を出力しているかによって、簡単に判別することができる。
上記の構成により、実施例2における第1のレベルシフト要素(1)は電源ON状態ではVdd2が低電圧から動作でき、電源OFF状態では、Vdd2が高い電圧でも素子の耐圧を確保でき、SW端子からの入力により電源ON/OFFを切替えた時に、その動作/停止状態を容易に判別できる効果を奏する。
図5は実施例3におけるレベルシフト回路の構成を示し、実施例1における第2のレベルシフト要素(2)での使用に好適な具体的構成を示す図である。
図5において、符号35はインバータ、符号36はNOR、符号37はAND、符号38,39は抵抗、符号41,44,45,46,48,49,51,52はPMOS、符号42はNMOS、符号53はドレイン高耐圧PMOS、符号40,47,50,54はドレイン高耐圧NMOS、符号43は電流源、符号55は電流供給能力UP切換要素、Vdd1は第1の高電位側電源、Vdd2は第2の高電位側電源、Vss1は低電位側電源、SWBは電源OFF/ON切替え端子、VINは信号入力端子、VOUTは信号出力端子である。
インバータ(35),NOR(36),AND(37)の電源端はVdd1に接続され、接地端はVss1に接続される。
VIN端子はNOR(36)の片方の入力及び、AND(37)の片方の入力に接続され、NOR(36)の出力はドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のゲートに入力され、AND(37)の出力はドレイン高耐圧NMOS(47)のゲートに接続される。
ドレイン高耐圧NMOS(47),ドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のソースはVss1に接続される。
ドレイン高耐圧PMOS(53)はソースがVdd2に接続され、ドレインはドレイン高耐圧NMOS(54)のドレイン及び、VOUT端子に接続される。
ドレイン高耐圧PMOS(53)のゲート電圧下限を式(3)に制限する構成として、ドレイン高耐圧NMOS(47)のドレインは、PMOS(46),PMOS(45)を介してVdd2に接続され、PMOS(46)のソースは、ドレイン高耐圧PMOS(53)のゲート,PMOS(51)のドレイン,PMOS(52)のドレインに接続され、ゲートはVdd1に接続される。式(3)において、VGS(46)はPMOS(46)のゲート・ソース間電圧である。
ドレイン高耐圧PMOS(53)のゲート電圧下限=Vdd1+VGS(46)・・・(3)
電流供給能力UP切換要素(55)の構成として、PMOS(51)のソースはVdd2に接続され、ドレイン高耐圧NMOS(50)のドレインは、PMOS(49),PMOS(48)を介してVdd2に接続され、PMOS(49)のソースは、PMOS(51)のゲートに接続され、ゲートはVdd1に接続される。
電流供給能力UP切換要素(55)の構成として、PMOS(51)のソースはVdd2に接続され、ドレイン高耐圧NMOS(50)のドレインは、PMOS(49),PMOS(48)を介してVdd2に接続され、PMOS(49)のソースは、PMOS(51)のゲートに接続され、ゲートはVdd1に接続される。
電流供給能力UP切換要素(55)はPMOS(51)のゲート電圧下限を式(4)に制限する構成になっており、Vdd2が高い電圧でも素子の耐圧が確保でき、低消費電流、高速動作を可能とする構成となっている。
式(4)において、VGS(49)はPMOS(49)のゲート・ソース間電圧である。
PMOS(51)のゲート電圧下限=Vdd1+VGS(49)・・・(4)
SWB端子はAND(37)のもう片方の入力,インバータ(35)の入力及び、NMOS(42)のゲートに接続され、インバータ(35)の出力は、NOR(36)のもう片方の入力及び、ドレイン高耐圧NMOS(40)のゲートに接続される。
SWB端子はAND(37)のもう片方の入力,インバータ(35)の入力及び、NMOS(42)のゲートに接続され、インバータ(35)の出力は、NOR(36)のもう片方の入力及び、ドレイン高耐圧NMOS(40)のゲートに接続される。
NMOS(42)のソースは電流源(43)を介してVss1に接続され、ドレインはPMOS(41)を介してVdd2に接続される。PMOS(41)のドレイン及びゲートはPMOS(45)のゲート,PMOS(48)のゲートに接続され、カレントミラー回路となっており、PMOS(41)のゲートはPMOS(44)のドレインにも接続される。
ドレイン高耐圧NMOS(40)のソースはVss1に接続され、ドレインは抵抗(39),抵抗(38)を介してVdd2に接続される。抵抗(39),抵抗(38)が互いに接続されるノードは、PMOS(44),PMOS(52)のゲートに接続され、PMOS(44),PMOS(52)のソースはVdd2に接続される。
以上の接続により、低消費電流で高速動作を可能とする、電流供給能力を切替える機能を有した電流供給能力UP切換要素(55)を備え、前記電流供給能力UP切換要素(55)を含む、回路で使用する素子の耐圧を確保して動作させることができる。
以上のように構成された実施例3のレベルシフト回路について動作を説明する。
図7は、SWB端子にLレベルの信号が入力され、かつVIN端子にHレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図7に示される太線は、Hレベルにアサートされた信号経路及びトランジスタがオンすることによって形成された電流経路を表している。
SWB端子に電源電圧[Vdd1-Vss1]により生成される、第1の振幅の入力信号でLレベルが入力されている場合、NMOS(42)はOFF動作し、電流源(43)からの電流が遮断される。ドレイン高耐圧NMOS(40)のゲートにはインバータ(35)により反転したSWBの信号が入力されON動作し、PMOS(44),PMOS(52)のゲートに抵抗(38),抵抗(39)でVdd2を分圧した電圧を印加し、それぞれをON動作させ、ドレイン高耐圧PMOS(53)をOFF状態とする。
SWBより入力されたLレベルの信号は、インバータ(35),NOR(36)を介してドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のゲートに入力されOFF状態とし、AND(37)を介してドレイン高耐圧NMOS(47)のゲートに入力されOFF状態として実施例3の回路は電源OFFし停止状態となる。
図8Aは、SWB端子にHレベルの信号が入力され、かつVIN端子にHレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図8Bは、SWB端子にHレベルの信号が入力され、かつVIN端子にLレベルの信号が入力された場合のレベルシフト回路の状態を説明するための図である。図8A及び図8Bに示される太線は、Hレベルにアサートされた信号経路及びトランジスタがオンすることによって形成された電流経路を表している。
SWB端子に第1の振幅の入力信号でHレベルが入力されている場合、NMOS(42)はON動作し、PMOS(41)に電流源(43)の出力電流が供給され、インバータ(35)を介して反転した信号がドレイン高耐圧NMOS(40)のゲートに入力され、OFF状態となることで、PMOS(44),PMOS(52)がOFFし、実施例3の回路は電源ONし動作状態となる。
PMOS(41),PMOS(45),PMOS(48)はカレントミラー回路を構成しており、電流源(43)の出力電流がNMOS(42)のON動作により、PMOS(41)の接続されたゲート・ドレインに入力され、PMOS(45),PMOS(48)から、PMOS(41)とPMOS(45),PMOS(48)のトランジスタサイズ比に応じた電流を出力する。
ドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のゲートには、VIN端子に入力される第1の振幅の信号がNOR(36)を介して反転された信号として入力され、ドレイン高耐圧NMOS(47)のゲートには、VIN端子に入力される信号がAND(37)を介して入力され、入力信号VINの信号レベルに応じてドレイン高耐圧NMOS(47)がON/OFF動作し、反転された信号でドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)がOFF/ON動作する。
入力信号VINがHレベルのときには、NOR(36)を介して反転された信号により、ドレイン高耐圧NMOS(54),ドレイン高耐圧NMOS(50)がOFFされてPMOS(49)に流れる電流が遮断され、PMOS(48)はその出力電流でPMOS(51)のゲートに接続されるノードを充電しながら非飽和領域に入りPMOS(51)のゲート電圧をVdd2に近い値としOFFさせ、AND(37)を介した信号によりドレイン高耐圧NMOS(47)がONされてPMOS(46)にPMOS(45)から出力される電流が流され、ドレイン高耐圧PMOS(53)のゲートは、式(3)の電圧に固定され、ドレイン高耐圧PMOS(53)がONされ、VOUT端子にはVdd2に近い電圧が出力される。
入力信号VINがLレベルのときには、ドレイン高耐圧NMOS(47)がOFFされてPMOS(46)に流れる電流が遮断され、PMOS(45)はその出力電流でドレイン高耐圧PMOS(53)のゲートに接続されるノードを充電しながら非飽和領域に入り、ドレイン高耐圧PMOS(53)のゲートをVdd2に近い電圧としOFFさせる。
さらに、電流供給能力UP切換要素(55)も動作しており、ドレイン高耐圧NMOS(50)がONされてPMOS(49)に、PMOS(48)から出力される電流が流れ、PMOS(51)のゲート電圧を式(4)の電圧に固定し、PMOS(51)をONさせ、ドレイン高耐圧PMOS(53)のゲートへの電流供給能力を増加させてドレイン高耐圧PMOS(53)のゲートがVdd2に近い電圧になりOFFする時間を早くする。
このとき、ドレイン高耐圧NMOS(54)がONされて、VOUT端子にはVss1に近い電圧が出力される。
ここで、電流供給能力UP切換要素(55)についてその効果を詳細に説明する。電流供給能力UP切換要素(55)は、入力信号VINがHレベルからLレベルに変化する場合に、VOUT出力がHレベルからLレベルに立ち下がるスピードを早くするための要素である。
図6は、比較のために図5から電流供給能力UP切換要素(55)を除いた回路図である。各部の符号、接続、動作は、電流供給能力UP切換要素(55)が除かれている以外は図5と同じであるため、説明は省略する。
図6は、出力トランジスタであるドレイン高耐圧PMOS(53)のゲートが接続されるノードをカレントミラー回路のPMOS(45)がその出力電流で充電しながら非飽和領域に入りVdd2に近い値にする構成であり、図12に示す公知のレベルシフト回路が、インバータ(73)の入力をカレントミラー回路のPMOS(69)が出力する電流で充電してVdd2に近い値にする動作と同じである。
VOUT信号の立下り時間については、図6 PMOS(45),図12 PMOS(69)の出力電流を同じとし、その負荷を同じ値とした場合には、図6は図12の立下り時間と同等の時間となる構成である。
表2は図5及び、図6を用いたVOUT信号の立下り時間のシミュレーション結果である。
図11は表2における立下り時間がVOUT信号のどの部位を差すか示した図である。図11中、符号58が立下り時間であり、VOUT信号の高電位ピークから10%下がった電圧と、低電位ピークに至るよりも10%高い電圧との間の立下り時間を指す。
表3は表2の結果を得たシミュレーションの条件である。条件は、Vdd1=3.0V、Vdd2=7.0V、温度=27℃、VIN振幅=3.0Vpp、SWB=3.0Vとした。
表4は表2の結果を得たシミュレーションにおける、図5、図6の抵抗値を示している。
抵抗(38)は250kΩ、抵抗(39)は25kΩとした。
抵抗(38)は250kΩ、抵抗(39)は25kΩとした。
表5は、表2の結果を得たシミュレーションにおける、図5、図6のトランジスタサイズを示している。
ドレイン高耐圧NMOS(40)はL=0.25μm,W=19.6μm、
PMOS(41)はL=1.5μm,W=12.5μm、
NMOS(42)はL=1.5μm,W=12.5μm、
PMOS(44)はL=0.6μm,W=0.9μm、
PMOS(45)はL=1.5μm,W=12.5μm、
PMOS(46)はL=1.5μm,W=25μm、
ドレイン高耐圧NMOS(47)はL=0.25μm,W=19.6μm、
PMOS(48)はL=1.5μm,W=12.5μm、
PMOS(49)はL=1.5μm,W=25μm、
ドレイン高耐圧NMOS(50)はL=0.25μm,W=19.6μm、
PMOS(52)はL=0.6μm,W=0.9μm、
ドレイン高耐圧PMOS(53)はL=1.6μm,W=240μm、
ドレイン高耐圧NMOS(54)はL=0.25μm,W=78.4μmとした。
PMOS(41)はL=1.5μm,W=12.5μm、
NMOS(42)はL=1.5μm,W=12.5μm、
PMOS(44)はL=0.6μm,W=0.9μm、
PMOS(45)はL=1.5μm,W=12.5μm、
PMOS(46)はL=1.5μm,W=25μm、
ドレイン高耐圧NMOS(47)はL=0.25μm,W=19.6μm、
PMOS(48)はL=1.5μm,W=12.5μm、
PMOS(49)はL=1.5μm,W=25μm、
ドレイン高耐圧NMOS(50)はL=0.25μm,W=19.6μm、
PMOS(52)はL=0.6μm,W=0.9μm、
ドレイン高耐圧PMOS(53)はL=1.6μm,W=240μm、
ドレイン高耐圧NMOS(54)はL=0.25μm,W=78.4μmとした。
表2より、図5に示す、実施例3のレベルシフト回路の立下り時間はSIM No.1に示す7.3nsecと、最も短い時間で立ち下がっている。図6に示す図5中の電流供給能力UP切換要素(55)を除いた構成を用いた回路では、SIM No.2に示す106.3nsecと、図5の回路に比べ、14.6倍の時間を要している。SIM No.3は、図6において電流源(43)の電流値をSIM No.1の15倍にした結果である。立下り時間は7.6nsecと図5に示す、実施例3のレベルシフト回路には及ばないものの、0.3nsec差まで立下り時間が早くなっているが、15倍の電流を要することを示しており、図5に示す、実施例3のレベルシフト回路は、電流供給能力UP切換要素(55)の動作により低消費電流で高速動作を行う効果を奏する。
ここで、図5に示す、実施例3のレベルシフト回路が電源ONの動作状態にある時、耐圧が確保される状態を表1を用いて説明する。
電源電圧[Vdd1-Vss1]=3V、電源電圧[Vdd2-Vss1]=7Vとして説明する。
表1は各素子の耐圧の一例を示している。
電流供給能力UP切換要素(55)の状態から説明する。
入力信号VINがHレベルのときには、ドレイン高耐圧NMOS(50)がOFFされてPMOS(49)に流れる電流が遮断され、PMOS(48)はその出力電流でPMOS(51)のゲートに接続されるノードを充電しながら非飽和領域に入りPMOS(49)を介してドレイン高耐圧NMOS(50)のドレインをVdd2に近い電圧とし、ドレイン高耐圧NMOS(50)のドレイン・ソース間電圧VDSは[Vdd2-Vss1]=7Vに近い電圧が印加されているが、ドレイン高耐圧NMOS(50)のVDS耐圧は15Vであり、耐圧は確保されている。
入力信号VINがLレベルのときには、ドレイン高耐圧NMOS(50)がONされてPMOS(49)にPMOS(48)から出力される電流が流されることで、PMOS(51)のゲートは、式(4)の電圧に固定され、ゲート・ソース間電圧VGSに[Vdd2-Vss1]=7Vの電位差が印加されることはなく、耐圧が確保される。
以上より、電流供給能力UP切換要素(55)は耐圧を確保した上で、ドレイン高耐圧PMOS(53)のゲートが接続されるノードへの電流供給能力を切替える機能を実現しており、高耐圧、低消費電流、高速動作を行うための要素となっている。
次に、電流供給能力UP切換要素(55)以外の耐圧確保の状態を説明する。
入力信号VINがHレベルのときに、ドレイン高耐圧NMOS(47)がONされてPMOS(46)にPMOS(45)から出力される電流が流されることで、ドレイン高耐圧PMOS(53)のゲートは、式(3)の電圧に固定され、ゲート・ソース間電圧VGSに[Vdd2-Vss1]=7Vの電位差が印加されることはなく、耐圧が確保される。
VOUT端子にはVdd2に近い電圧が出力されるが、ドレイン高耐圧NMOS(54)のVDS耐圧は15Vであり、耐圧は確保されている。
入力信号VINがLレベルのときには、ドレイン高耐圧NMOS(47)がOFFされてPMOS(46)に流れる電流が遮断され、PMOS(45)はその出力電流でドレイン高耐圧PMOS(53)のゲートに接続されるノードを充電しながら非飽和領域に入り、PMOS(46)を介してドレイン高耐圧NMOS(47)のドレインをVdd2に近い電圧とし、ドレイン高耐圧NMOS(47)のドレイン・ソース間電圧VDSは[Vdd2-Vss1]=7Vに近い電位差が印加されているが、ドレイン高耐圧NMOS(47)のVDS耐圧は15Vであり、耐圧は確保されている。
さらに、ドレイン高耐圧NMOS(54)がONされて、VOUT端子にはVss1に近い電圧が出力されるが、ドレイン高耐圧PMOS(53)のVDS耐圧は15Vであり、耐圧は確保されている。
SWBがHレベル状態では、ドレイン高耐圧NMOS(40)はOFF状態にあり、ドレインはVdd2に近い電圧となり、このとき、ドレイン高耐圧NMOS(40)のドレイン・ソース間電圧VDSは[Vdd2-Vss1]=7Vに近い電位差が印加されているが、ドレイン高耐圧NMOS(40)のVDS耐圧は15Vであり、耐圧は確保されている。
以上より、図5に示す、実施例3のレベルシフト回路は電源ONの動作状態にある時、Vdd2が高い電圧でも素子の耐圧が確保され、高耐圧、低消費電流、高速動作が可能という優れた効果を奏する。
図2は実施例4におけるレベルシフト回路の構成を示し、図2の回路を単独で使用する構成を示す図でもある。
実施例1のレベルシフト回路における、第1のレベルシフト要素(1)に使用することも可能であるが、Vdd2が低電圧の場合に動作させ、Vdd2が高い電圧になった場合には停止させて耐圧を確保する動作に好適なレベルシフト回路として単独での使用にも適する。
構成と動作説明については、実施例2と同じであるため省略する。
実施例4におけるレベルシフト回路は電源ON状態ではVdd2が低電圧から動作でき、電源OFF状態では、Vdd2が高い電圧でも素子の耐圧を確保でき、SW端子からの入力により電源ON/OFFを切替えた時に、その動作/停止状態を容易に判別できる効果を奏する。
図5は実施例5におけるレベルシフト回路の構成を示し、図5の回路を単独で使用する構成を示す図でもある。
実施例1のレベルシフト回路における、第2のレベルシフト要素(2)に使用することも可能であるが、Vdd2が高い電圧になった場合に素子の耐圧を確保した上で、低消費電流、高速動作に好適なレベルシフト回路として単独での使用にも適する。
構成と動作説明については、実施例3と同じであるため省略する。
実施例5のレベルシフト回路では、Vdd2が高い電圧でも素子の耐圧が確保でき、高耐圧、低消費電流、高速動作が可能という優れた効果を奏する。
本発明のレベルシフト回路は、スイッチング・レギュレータに用いられる半導体装置の構成要素として低電圧動作、高耐圧、低消費電流、動作周波数の向上、検査容易化を実現するものとして有用である。
1 第1のレベルシフト要素
2 第2のレベルシフト要素
3 コンパレータ回路
4 抵抗
5 抵抗
6 基準電圧源
7 インバータ
8 AND
9 インバータ
10 抵抗
11 抵抗
12 NMOS
13 PMOS
14 PMOS
15 NMOS
16 NMOS
17 ドレイン高耐圧PMOS
18 PMOS
19 NMOS
20 NMOS
21 NMOS
22 ドレイン高耐圧PMOS
23 PMOS
24 ドレイン高耐圧PMOS
25 ドレイン高耐圧NMOS
26 NMOS
27 NMOS
28 抵抗
29 抵抗
30 NMOS
31 PMOS
32 抵抗
33 抵抗
34 NMOS
35 インバータ
36 NOR
37 AND
38 抵抗
39 抵抗
40 ドレイン高耐圧NMOS
41 PMOS
42 NMOS
43 電流源
44 PMOS
45 PMOS
46 PMOS
47 ドレイン高耐圧NMOS
48 PMOS
49 PMOS
50 ドレイン高耐圧NMOS
51 PMOS
52 PMOS
53 ドレイン高耐圧PMOS
54 ドレイン高耐圧NMOS
55 電流供給能力UP切換要素
56 非飽和領域
57 飽和領域
58 立下り時間
59 インバータ
60 NMOS
61 NMOS
62 抵抗
63 NMOS
64 NMOS
65 NMOS
66 ドレイン高耐圧NMOS
67 ドレイン高耐圧NMOS
68 PMOS
69 PMOS
70 抵抗
71 NMOS
72 NMOS
73 インバータ
74 第1定電流回路
75 第2定電流回路
76 インバータ
77 NMOS
78 NMOS
79 PMOS
80 PMOS
81 インバータ
2 第2のレベルシフト要素
3 コンパレータ回路
4 抵抗
5 抵抗
6 基準電圧源
7 インバータ
8 AND
9 インバータ
10 抵抗
11 抵抗
12 NMOS
13 PMOS
14 PMOS
15 NMOS
16 NMOS
17 ドレイン高耐圧PMOS
18 PMOS
19 NMOS
20 NMOS
21 NMOS
22 ドレイン高耐圧PMOS
23 PMOS
24 ドレイン高耐圧PMOS
25 ドレイン高耐圧NMOS
26 NMOS
27 NMOS
28 抵抗
29 抵抗
30 NMOS
31 PMOS
32 抵抗
33 抵抗
34 NMOS
35 インバータ
36 NOR
37 AND
38 抵抗
39 抵抗
40 ドレイン高耐圧NMOS
41 PMOS
42 NMOS
43 電流源
44 PMOS
45 PMOS
46 PMOS
47 ドレイン高耐圧NMOS
48 PMOS
49 PMOS
50 ドレイン高耐圧NMOS
51 PMOS
52 PMOS
53 ドレイン高耐圧PMOS
54 ドレイン高耐圧NMOS
55 電流供給能力UP切換要素
56 非飽和領域
57 飽和領域
58 立下り時間
59 インバータ
60 NMOS
61 NMOS
62 抵抗
63 NMOS
64 NMOS
65 NMOS
66 ドレイン高耐圧NMOS
67 ドレイン高耐圧NMOS
68 PMOS
69 PMOS
70 抵抗
71 NMOS
72 NMOS
73 インバータ
74 第1定電流回路
75 第2定電流回路
76 インバータ
77 NMOS
78 NMOS
79 PMOS
80 PMOS
81 インバータ
Claims (6)
- 第1のレベルシフト要素と、第2のレベルシフト要素と、コンパレータ回路と、基準電圧源とを備えるレベルシフト回路であって、VIN端子は、前記第1のレベルシフト要素と、前記第2のレベルシフト要素のVIN端に接続され、前記第1のレベルシフト要素の第1の電源端は第1の高電位側電源に接続され、第2の電源端は第2の高電位側電源に接続され、接地端は低電位側電源に接続され、前記第2のレベルシフト要素の第1の電源端は第1の高電位側電源に接続され、第2の電源端は第2の高電位側電源に接続され、接地端は低電位側電源に接続され、前記第1のレベルシフト要素と前記第2のレベルシフト要素の電源ON/OFF動作は、前記コンパレータの出力により制御され、前記コンパレータは基準電圧源の出力電圧と外部より入力される第2の高電位側電源電圧とを比較するよう構成されたレベルシフト回路。
- 前記第1のレベルシフト要素と、前記第2のレベルシフト要素と、前記コンパレータ回路と、前記基準電圧源とを備えるレベルシフト回路であって、前記第1のレベルシフト要素は、インバータ(7),インバータ(9),AND(8)の電源端は第1の高電位側電源に接続され、接地端は低電位側電源に接続され、SW端子はインバータ(7)の入力とNMOS(20),NMOS(21),NMOS(27)のゲートに入力され、インバータ(7)の出力はAND(8)の片方の入力とNMOS(12),ドレイン高耐圧NMOS(25)のゲートに接続され、NMOS(12)のドレインは抵抗(11),抵抗(10)を介して第2の高電位側電源に接続され、抵抗(11),抵抗(10)が互いに接続されるノードはドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22),ドレイン高耐圧PMOS(24)のゲートに接続され、ドレイン高耐圧PMOS(17),ドレイン高耐圧PMOS(22)のソースは第2の高電位側電源に接続され、VIN端子はAND(8)のもう片方の入力に接続され、AND(8)の出力とインバータ(9)によりその反転信号とされた出力とをゲートに受ける、一対の入力MOSトランジスタNMOS(15),NMOS(16)に接続され、NMOS(15),NMOS(16)はソースが低電位側電源に接続され、NMOS(15)のドレインはPMOS(13)のドレインに接続され、NMOS(16)のドレインはPMOS(14)のドレインに接続され、PMOS(13),PMOS(14)のゲートはそれぞれのドレインに相互接続され、NMOS(16)のドレインはPMOS(18),NMOS(19)のゲートに接続され、NMOS(19)のソースは低電位側電源に接続され、PMOS(18),NMOS(19)のドレインはそれぞれが接続され、PMOS(23),NMOS(26)のゲートに入力され、NMOS(26)のソースは、低電位側電源に接続され、ドレインはドレイン高耐圧NMOS(25),ドレイン高耐圧PMOS(24)を介してPMOS(23)のドレインに接続され、PMOS(13),PMOS(14),PMOS(18)のソースはドレイン高耐圧PMOS(17)のドレインに接続され、PMOS(23)のソースはドレイン高耐圧PMOS(22)のドレインに接続され、VOUT端子はドレイン高耐圧NMOS(25),ドレイン高耐圧PMOS(24)のドレインに接続され、NMOS(20)のドレインはドレイン高耐圧PMOS(17)のドレインに接続され、NMOS(21)のドレインはNMOS(26)のゲートに接続され、NMOS(27)のドレインはドレイン高耐圧NMOS(25)のソースに接続され、NMOS(12),NMOS(20),NMOS(21),NMOS(27)のソースは低電位側電源に接続され構成された、請求項1に記載のレベルシフト回路。
- NMOS(30)のドレインは抵抗(29),抵抗(28)を介して第2の高電位側電源に接続され、抵抗(29),抵抗(28)が互いに接続されるノードはPMOS(31)のゲートに接続され、NMOS(34)のドレインは抵抗(33),抵抗(32),PMOS(31)を介して第2の高電位側電源に接続され、抵抗(33),抵抗(32)が互いに接続されるノードはドレイン高耐圧PMOS(24)のソース及び、TOUT端子に接続され、NMOS(30),NMOS(34)のソースは低電位側電源に接続され、ゲートはSW端子に接続され、構成された、請求項2に記載のレベルシフト回路。
- 前記第1のレベルシフト要素と、前記第2のレベルシフト要素と、前記コンパレータ回路と、前記基準電圧源とを備えるレベルシフト回路であって、前記第2のレベルシフト要素は、インバータ(35),NOR(36),AND(37)の電源端は第1の高電位側電源に接続され、接地端は低電位側電源に接続され、VIN端子はNOR(36)の片方の入力及び、AND(37)の片方の入力に接続され、NOR(36)の出力はドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のゲートに入力され、AND(37)の出力はドレイン高耐圧NMOS(47)のゲートに接続され、ドレイン高耐圧NMOS(47),ドレイン高耐圧NMOS(50),ドレイン高耐圧NMOS(54)のソースは低電位側電源に接続され、ドレイン高耐圧PMOS(53)はソースが第2の高電位側電源に接続され、ドレインはドレイン高耐圧NMOS(54)のドレイン及び、VOUT端子に接続され、ドレイン高耐圧NMOS(47)のドレインは、PMOS(46),PMOS(45)を介して第2の高電位側電源に接続され、PMOS(46)のソースは、ドレイン高耐圧PMOS(53)のゲート,PMOS(51)のドレイン,PMOS(52)のドレインに接続され、ゲートは第1の高電位側電源に接続され、PMOS(51)のソースは第2の高電位側電源に接続され、ドレイン高耐圧NMOS(50)のドレインは、PMOS(49),PMOS(48)を介して第2の高電位側電源に接続され、PMOS(49)のソースは、PMOS(51)のゲートに接続され、ゲートは第1の高電位側電源に接続され、SWB端子はAND(37)のもう片方の入力,インバータ(35)の入力及び、NMOS(42)のゲートに接続され、インバータ(35)の出力は、NOR(36)のもう片方の入力及び、ドレイン高耐圧NMOS(40)のゲートに接続され、NMOS(42)のソースは電流源(43)を介して低電位側電源に接続され、ドレインはPMOS(41)を介して第2の高電位側電源に接続され、PMOS(41)のドレイン及びゲートはPMOS(45)のゲート,PMOS(48)のゲートに接続され、PMOS(41)のゲートはPMOS(44)のドレインに接続され、ドレイン高耐圧NMOS(40)のソースは低電位側電源に接続され、ドレインは抵抗(39),抵抗(38)を介して第2の高電位側電源に接続され、抵抗(39),抵抗(38)が互いに接続されるノードは、PMOS(44),PMOS(52)のゲートに接続され、PMOS(44),PMOS(52)のソースは第2の高電位側電源に接続され構成された、請求項1に記載のレベルシフト回路。
- 前記第1のレベルシフト要素を単独で使用するレベルシフト回路であって、請求項2と同じ前記第1のレベルシフト要素で構成され、電源ON/OFF動作は、外部より入力される信号で制御されるよう構成された、請求項2又は3に記載のレベルシフト回路。
- 前記第2のレベルシフト要素を単独で使用するレベルシフト回路であって、請求項4と同じ前記第2のレベルシフト要素で構成され、電源ON/OFF動作は、外部より入力される信号で制御されるよう構成された、請求項4に記載のレベルシフト回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011900006525U CN203119868U (zh) | 2010-09-30 | 2011-01-24 | 电平移位电路 |
US13/781,031 US8779829B2 (en) | 2010-09-30 | 2013-02-28 | Level shift circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-221400 | 2010-09-30 | ||
JP2010221400A JP5389762B2 (ja) | 2010-09-30 | 2010-09-30 | レベルシフト回路 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/781,031 Continuation US8779829B2 (en) | 2010-09-30 | 2013-02-28 | Level shift circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042683A1 true WO2012042683A1 (ja) | 2012-04-05 |
Family
ID=45892186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000350 WO2012042683A1 (ja) | 2010-09-30 | 2011-01-24 | レベルシフト回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8779829B2 (ja) |
JP (1) | JP5389762B2 (ja) |
CN (1) | CN203119868U (ja) |
WO (1) | WO2012042683A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236234A (zh) * | 2013-04-28 | 2013-08-07 | 合肥京东方光电科技有限公司 | 一种栅极驱动器及显示装置 |
JP6419024B2 (ja) * | 2015-05-27 | 2018-11-07 | 日立オートモティブシステムズ株式会社 | 電源回路及び車載用電源システム |
JP6524829B2 (ja) * | 2015-07-13 | 2019-06-05 | 株式会社デンソー | レベルシフト回路 |
CN107317578B (zh) * | 2016-04-26 | 2020-06-02 | 台湾类比科技股份有限公司 | 电压准位移位电路 |
US11003605B2 (en) * | 2018-12-19 | 2021-05-11 | Texas Instruments Incorporated | Input/output (I/O) level shifter for half duplex sim card interface |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007306042A (ja) * | 2006-05-08 | 2007-11-22 | Sony Corp | レベル変換回路及びこれを用いた入出力装置 |
JP2008040543A (ja) * | 2006-08-01 | 2008-02-21 | Renesas Technology Corp | 半導体集積回路 |
JP2009081805A (ja) * | 2007-09-27 | 2009-04-16 | Oki Semiconductor Co Ltd | レベルシフタ回路 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4271910B2 (ja) | 2002-08-01 | 2009-06-03 | 株式会社ルネサステクノロジ | 半導体集積回路および電源回路 |
JP4866158B2 (ja) * | 2006-06-20 | 2012-02-01 | 富士通セミコンダクター株式会社 | レギュレータ回路 |
-
2010
- 2010-09-30 JP JP2010221400A patent/JP5389762B2/ja not_active Expired - Fee Related
-
2011
- 2011-01-24 WO PCT/JP2011/000350 patent/WO2012042683A1/ja active Application Filing
- 2011-01-24 CN CN2011900006525U patent/CN203119868U/zh not_active Expired - Fee Related
-
2013
- 2013-02-28 US US13/781,031 patent/US8779829B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007306042A (ja) * | 2006-05-08 | 2007-11-22 | Sony Corp | レベル変換回路及びこれを用いた入出力装置 |
JP2008040543A (ja) * | 2006-08-01 | 2008-02-21 | Renesas Technology Corp | 半導体集積回路 |
JP2009081805A (ja) * | 2007-09-27 | 2009-04-16 | Oki Semiconductor Co Ltd | レベルシフタ回路 |
Also Published As
Publication number | Publication date |
---|---|
CN203119868U (zh) | 2013-08-07 |
JP2012080207A (ja) | 2012-04-19 |
US8779829B2 (en) | 2014-07-15 |
JP5389762B2 (ja) | 2014-01-15 |
US20130176066A1 (en) | 2013-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3481121B2 (ja) | レベルシフト回路 | |
US8643426B2 (en) | Voltage level shifter | |
US7649384B2 (en) | High-voltage tolerant output driver | |
JP4979955B2 (ja) | レベルシフタ回路 | |
KR20100016050A (ko) | 트랜지스터 스냅백 보호를 탑재한 레벨 시프터 회로 | |
JP4768300B2 (ja) | 電圧レベル変換回路及び半導体集積回路装置 | |
JP5389762B2 (ja) | レベルシフト回路 | |
US7724069B1 (en) | Analog switch for operation outside power rails with low supply current | |
JP3657243B2 (ja) | レベルシフタ、半導体集積回路及び情報処理システム | |
JP5160320B2 (ja) | スイッチング駆動回路 | |
JP4823024B2 (ja) | レベル変換回路 | |
US20180069537A1 (en) | Level shift circuit and semiconductor device | |
JP5421075B2 (ja) | 入力回路 | |
JP2010056677A (ja) | デューティ可変回路 | |
JP3581955B2 (ja) | インバータ回路 | |
US11894843B2 (en) | Level shift circuit | |
US7808275B1 (en) | Input buffer with adaptive trip point | |
JP6610223B2 (ja) | 半導体集積回路 | |
JP4774287B2 (ja) | 出力回路 | |
JP2006025085A (ja) | Cmos駆動回路 | |
EP2760134B1 (en) | Level-shifting device | |
CN108206689B (zh) | 电平转换驱动电路 | |
JP2010045522A (ja) | 半導体装置 | |
JP2004007831A (ja) | レベルシフト回路 | |
US20230208407A1 (en) | Semiconductor integrated circuit device and level shifter circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201190000652.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11828253 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11828253 Country of ref document: EP Kind code of ref document: A1 |