[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011136194A1 - Radiation imaging device and radiation imaging system - Google Patents

Radiation imaging device and radiation imaging system Download PDF

Info

Publication number
WO2011136194A1
WO2011136194A1 PCT/JP2011/060100 JP2011060100W WO2011136194A1 WO 2011136194 A1 WO2011136194 A1 WO 2011136194A1 JP 2011060100 W JP2011060100 W JP 2011060100W WO 2011136194 A1 WO2011136194 A1 WO 2011136194A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control unit
radiation
imaging
panel
Prior art date
Application number
PCT/JP2011/060100
Other languages
French (fr)
Japanese (ja)
Inventor
中津川晴康
大田恭義
西納直行
成行書史
今井真二
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011136194A1 publication Critical patent/WO2011136194A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/04Holders for X-ray films
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • a radiation image capturing apparatus comprising: a radiation image capturing apparatus having a panel accommodating unit containing a radiation conversion panel for converting radiation into a radiation image; a radiation image capturing apparatus; and a control apparatus for controlling the radiation image capturing apparatus.
  • a radiation image capturing apparatus which applies radiation to a subject, guides the radiation transmitted through the subject to a radiation conversion panel, and captures a radiation image.
  • a radiation conversion panel a conventional radiation film on which the radiation image is exposed and recorded, or radiation energy as the radiation image is accumulated in a fluorescent material, and the radiation image is irradiated with excitation light to stimulate the radiation image.
  • Storage phosphor panels are known which can be extracted as light. These radiation conversion panels supply the radiation film on which the radiation image is recorded to a developing device to perform development processing, or supply the stimulable phosphor panel to a reading device to perform reading processing. A visible image can be obtained.
  • the thickness of the panel accommodation unit is made as thin as possible, and a control unit and communication unit that generate heat during operation And it is desirable to accommodate a power supply part in units (control unit) other than the above-mentioned panel accommodation unit.
  • the control unit is disposed on the radiation receiving surface (imaging surface) of the panel storage unit as a protruding portion with respect to the panel storage unit, it is desirable that the subject and the protruding portion be as far apart as possible. .
  • the subject may have an unnatural posture depending on the imaging site, and the subject may feel discomfort.
  • the protruding portion is a portion that does not contribute to the conversion of radiation into a radiation image, depending on the location of the protruding portion, there is a possibility that it may interfere with imaging.
  • Japanese Patent Laid-Open No. 2009-80103 proposes that a subject be photographed while the control unit is separated from the panel storage unit.
  • control unit and the panel storage unit are separated, the doctor or the radiologist needs to handle the radiographic imaging apparatus with both hands, so that preparation for imaging such as positioning of the subject on the imaging surface becomes complicated.
  • control unit, the communication unit, and the power supply unit, which are heavy in weight, are accommodated in the control unit, handling of the control unit after separation is not easy.
  • the object of the present invention is to facilitate the preparation for shooting and shooting and the handling of the apparatus by separating the subject from the projecting portion without separating the panel housing unit and the projecting portion at the time of shooting. It is about realizing improvement together.
  • a radiation imaging apparatus has a panel accommodation unit that accommodates a radiation conversion panel for converting radiation into a radiation image
  • the panel storage unit is provided with a photographing surface to which the radiation is irradiated, and a projecting portion which protrudes in the incident direction of the radiation, At least one of the at least one portion of the projecting portion and the panel accommodating unit is characterized in that the projecting portion and the panel accommodating unit are movable without being separated.
  • a radiation imaging system comprises a radiation imaging apparatus having a panel accommodation unit that accommodates a radiation conversion panel for converting radiation into a radiation image, and a control device for controlling the radiation imaging apparatus.
  • the panel storage unit is provided with a photographing surface to which the radiation is irradiated, and a projecting portion which protrudes in the incident direction of the radiation, At least one of the at least one portion of the projecting portion and the panel accommodating unit is characterized in that the projecting portion and the panel accommodating unit are movable without being separated.
  • the irradiation area (projected area) of the radiation irradiated to the imaging surface can be changed according to the imaging region of the object, imaging is performed without making the object feel discomfort. It is possible to prevent the projection from being in the way of shooting. Therefore, according to the present invention, it is possible to realize both the imaging preparation and imaging facilitation and the improvement of the handling of the apparatus.
  • the protruding portion may be a portion of the protruding portion, or may be the entire protruding portion.
  • the panel accommodating unit may be movable with respect to at least a portion of the projecting portion, or in other words, at least a portion of the projecting portion is movable, or at least a portion of the projecting portion and the panel storage unit are movable together. For example, it refers to a state in which at least a portion of the projecting portion is movable relative to the panel storage unit, based on the panel storage unit.
  • the protruding portion is movable in contact with the panel storage unit or another portion of the protruding portion, while the panel storage unit is in contact with the protruding portion. It should be movable. Thereby, at the time of photographing, the projection area can be changed while separating the subject and at least a part of the projecting portion.
  • the projecting portion is a control unit that controls the radiation conversion panel, and the panel storage unit and the control unit can move at least a part of the control unit relative to the imaging surface.
  • the projected area can be easily changed without separating the
  • the irradiation area of the radiation on the imaging plane may be an imaging area that can be converted to the radiation image, and at least a part of the control unit may be movable in a direction away from the imaging area.
  • (1) can be slid in a direction away from the imaging region; (2)
  • the size of the imaging region can be obtained by rotating around a rotation axis substantially orthogonal to the imaging plane, or (3) rotating around a rotation axis along a direction parallel to the imaging plane. Depending on the size, the projected area can be changed.
  • At least a part of the control unit is a portion that generates heat when the control unit operates, and the control unit detects a temperature detection unit that detects the temperature of at least a part of the control unit, and the temperature detection unit detects And a notification unit for notifying information related to the temperature.
  • a doctor or a radiologist can displace at least a part of the control unit in a direction to be separated from the imaging surface according to the information notified from the notification unit.
  • contact between the subject and at least a portion of the control unit as a heating element can be reliably avoided at the time of shooting.
  • the sense of incongruity that the subject feels is the presence of a load (unnaturalness) on the subject at the time of positioning the subject on the photographing surface at the time of shooting due to the presence of the projecting portion (the control unit).
  • the feeling of heat is also included when the subject contacts a portion (at least a part of the control unit) that generates heat during operation of the control unit.
  • the notification unit is a temperature display unit that displays the temperature, or a warning that warns the outside by at least one of a sound and a screen display when the temperature display unit and the temperature reach a predetermined temperature. It is desirable to be a department. As a result, since various information related to the temperature can be reliably notified to the doctor or the radiographer, it is possible to more efficiently displace at least a part of the control unit with respect to the imaging surface.
  • the temperature display unit may display the temperature in a plurality of stages or may display the temperature in the form of a thermo label.
  • the doctor or the radiologist can easily grasp the current temperature of at least a part of the control unit and the state of the temperature change (whether the temperature is rising or not).
  • reporting part should just alert
  • the doctor or the radiologist may move at least a part of the control unit when notified by the notification unit, without making a judgment of itself.
  • the usability of the radiation image capturing apparatus is further improved.
  • control unit further includes a communication unit capable of transmitting and receiving signals to and from the outside, and the communication unit transmits the information to a control device that controls the radiographic imaging device.
  • the information may be notified via the control device.
  • the doctor or the radiologist can displace at least a portion of the control unit according to the information notified via the control device, so that the contact between the subject and at least a portion of the control unit It is possible to avoid.
  • control unit supplies power to a communication unit capable of transmitting and receiving signals with the outside, a control unit that controls the control unit and the panel accommodation unit, and each unit of the control unit and the panel accommodation unit.
  • a power supply unit at least the power supply unit being disposed in at least a portion of the control unit.
  • the power supply unit is a component that generates a relatively large amount of heat among the components constituting the control unit, so the power supply unit is disposed in at least a part of the control unit, and the photographing surface By moving at least a part of the control unit in the direction of separation, it is possible to further reduce the discomfort of the subject.
  • control unit further includes a movement information display unit that displays information related to movement of at least a part of the control unit, and the communication unit receives order information related to the irradiation of the radiation to the subject from the outside.
  • the control unit may cause the movement information display unit to display the necessity of movement of at least a part of the control unit based on the order information. Since the order information also includes information such as the imaging region of the subject, the radiation image can be obtained by moving at least a part of the control unit based on the order information to change the projection area. The usability of the photographing device can be further improved.
  • FIG. 7A is a side view showing the position of the control unit before movement
  • FIG. 7B is a side view showing the position of the control unit after movement. It is a block diagram of the cassette of FIG.
  • FIG. 10A to FIG. 10C are explanatory views showing a state in which the temperature of the control unit and the notification of necessity / completion of movement of the control unit are displayed on the display unit of the control unit.
  • 11A to 11C are explanatory views showing a state in which the temperature of the control unit and the notification of necessity or completion of the movement of the control unit are displayed on the display unit of the control unit.
  • 12A to 12C are explanatory diagrams showing a state in which the order information and the notification of necessity / completion of movement of the control unit are displayed on the display unit of the control unit.
  • FIG. 14A and 14B are a plan view and a side view of a cassette according to a first modification.
  • 15A and 15B are a plan view and a side view showing a state in which the control unit is disposed at the end of the imaging area.
  • FIG. 16A and FIG. 16B are a plan view and a side view showing a state in which the control unit is disposed at the central part of the imaging region.
  • 17A and 17B are a plan view and a side view showing the position of the control unit at the time of shooting.
  • 18A and 18B are side views of a cassette according to a second modification. It is a perspective view of the cassette of the 3rd modification.
  • FIG. 20A is a side view showing the position of the control unit before movement
  • FIG. 20B is a side view showing the position of the control unit after movement
  • FIG. 21 is a perspective view of an essential part showing the arrangement of the flexible substrate in the hinge part of FIGS. 19 to 20B. It is a perspective view of the cassette of the 4th modification.
  • FIG. 23A is a plan view showing the position of the control unit before movement
  • FIG. 23B is a plan view showing the position of the control unit after movement.
  • It is a block diagram of the radiographic imaging system to which the cassette which concerns on 2nd Embodiment is applied.
  • FIG. 25 is a perspective view of the cassette of FIG. 24.
  • FIG. 26A is a side view showing the position of the control unit before movement
  • FIG. 26B is a side view showing the position of the control unit after movement. It is a perspective view of the cassette of the 5th modification.
  • FIG. 28A is a side view showing the position of the control unit before movement
  • FIG. 28B is a side view showing the position of the control unit after movement.
  • FIG. 30A is a plan view showing the position of the control unit before movement
  • FIG. 30B is a plan view showing the position of the control unit after movement. It is a block diagram of the radiographic imaging system to which the cassette which concerns on 3rd Embodiment is applied.
  • FIG. 32A is a side view showing the position of the control unit before movement
  • FIG. 32A is a side view showing the position of the control unit before movement
  • FIG. 32B is a side view showing the position of the control unit after movement.
  • FIG. 33A is a side view showing the position of the control unit before movement in the cassette according to the seventh modification
  • FIG. 33B is a side view showing the position of the control unit after movement.
  • FIG. 34A is a plan view showing the position of the control unit before movement in the cassette of the eighth modification
  • FIG. 34B is a plan view showing the position of the control unit after movement.
  • It is a block diagram of the radiographic imaging system to which the cassette which concerns on 4th Embodiment is applied. It is a perspective view of the cassette of FIG.
  • FIG. 37A is a perspective view showing a state of the cassette at the time of transportation, and FIG.
  • FIG. 37B is a side view showing a state in which the panel storage unit is rotated from the state of FIG. 37A.
  • 38A is a perspective view showing a state in which a part of the control unit is rotated from the state of FIG. 37B
  • FIG. 38B is a perspective view showing a state of the cassette after the rotation completion of FIG. 38A.
  • 39A is a side view showing the state of FIG. 38B
  • FIG. 39B is a side view showing the state of the cassette after moving a part of the control unit.
  • FIG. 40A is a side view showing the position of the control unit before movement in the cassette of the ninth modification
  • FIG. 40B is a side view showing the position of the control unit after movement.
  • FIG. 42 is a perspective view of the cassette of FIG. 41.
  • FIG. 43A is a perspective view showing a state of the cassette at the time of transportation, and
  • FIG. 43B is a side view showing a state in which the panel storage unit is rotated from the state of FIG. 43A.
  • 44A is a side view showing a state in which the cassette is turned upside down from the state of FIG. 43B, and
  • FIG. 44B is a side view showing a state of the cassette after the control unit is moved.
  • FIG. 45A is a side view showing the position of the control unit before movement in the cassette of the tenth modification, and FIG.
  • FIG. 45B is a side view showing the position of the control unit after movement.
  • FIG. 46A is a plan view showing a cassette according to an eleventh modification
  • FIG. 46B is a side view of the cassette.
  • FIG. 47A is a schematic explanatory view schematically showing an internal configuration of a cassette of a twelfth modified example
  • FIG. 47B is a schematic explanatory view schematically showing an example of the scintillator of FIG. 47A.
  • a radiation imaging system 10A includes a radiation source 18 for irradiating a subject 14 such as a patient lying on an imaging table 12 such as a bed with a radiation 16 having a dose according to imaging conditions; An electronic cassette (radiographic image capturing apparatus) 20A that detects radiation 16 transmitted through the subject 14 and converts it into a radiation image, a console (control device) 22 that controls the radiation source 18 and the electronic cassette 20A, and a radiation image is displayed And a display device 24.
  • a radiation source 18 for irradiating a subject 14 such as a patient lying on an imaging table 12 such as a bed with a radiation 16 having a dose according to imaging conditions
  • An electronic cassette (radiographic image capturing apparatus) 20A that detects radiation 16 transmitted through the subject 14 and converts it into a radiation image
  • a console (control device) 22 that controls the radiation source 18 and the electronic cassette 20A, and a radiation image is displayed
  • a display device 24 controls the radiation source 18 and the electronic cassette 20A
  • UWB Ultra Wide Band
  • IEEE 802.11 Transmission and reception of signals are performed by wireless communication using a wireless LAN (Local Area Network) such as a / g / n or millimeter wave.
  • a wireless LAN Local Area Network
  • the signal may be transmitted and received by wired communication using a cable.
  • a radiology information system (RIS) 26 that comprehensively manages radiation images and other information handled in the radiology department in the hospital is connected to the console 22.
  • medical information in the hospital is provided in the RIS 26
  • a medical information system (HIS) 28 that manages the entire content of the computer is connected.
  • the electronic cassette 20A is disposed on the panel housing unit 30 so as to protrude toward the incident direction of the radiation 16 (the direction toward the radiation source 18) and the panel housing unit 30 disposed between the imaging table 12 and the subject 14. It is a portable electronic cassette provided with the control unit (protrusion part) 32 arrange
  • the thickness of the panel storage unit 30 is set to be thinner than the thickness of the control unit 32.
  • the panel storage unit 30 has a substantially rectangular casing 40 made of a material capable of transmitting the radiation 16, and the upper surface of the casing 40 on which the subject 14 lies is a radiation 16. It is considered as a photographing surface (irradiated surface) 42 to which light is emitted.
  • a guide line 44 serving as an index of the photographing position of the subject 14 is formed substantially at the center of the photographing surface 42.
  • the guide line 44 indicating the outer frame becomes the imaging area 46 indicating the area where the radiation 16 can be irradiated.
  • the center position of the guide line 44 (the intersection of two guide lines 44 intersecting in a cross shape) is the center position of the imaging region 46.
  • the imaging area 46 is the maximum area where the radiation 16 can be irradiated (projected), and accordingly, the irradiation area (projected area) of the radiation 16 is taken as the imaging area 46 according to the imaging region of the subject 14. Alternatively, it may be set to a predetermined area (for example, in the direction of the arrow X1 in the imaging area 46) smaller than the imaging area 46.
  • the control unit 32 has a substantially rectangular housing 48 disposed on the imaging surface 42 and made of a material non-transparent to the radiation 16. That is, the housing 48 is a projecting portion with respect to the panel accommodation unit 30 protruding in the incident direction of the radiation 16 and is a component that does not contribute to the conversion of the radiation 16 into a radiation image. In an area other than the imaging area 46 (a position on the arrow X2 direction side), it extends along the arrow Y direction.
  • a communication unit 54 capable of wirelessly transmitting and receiving signals between the cassette control unit 50, the power supply unit 52 such as a battery, and the console 22 is provided in the housing 48, and the vicinity of the power supply unit 52 And a temperature sensor (temperature detection unit) 56 for detecting the temperature of. Further, a hole 58 along the direction of the arrow X is formed near the cassette control unit 50 on the bottom surface of the housing 48, while the housing 40 of the panel accommodation unit 30 faces the hole 58. Holes 60 are formed, and a flexible substrate 62 is disposed to penetrate the holes 58, 60. Therefore, the power supply unit 52 supplies power to the panel accommodation unit 30 via the flexible substrate 62, and also supplies power to each unit in the control unit 32, such as the cassette control unit 50 and the communication unit 54. In addition, the cassette control unit 50 transmits and receives signals to and from the panel accommodation unit 30 via the flexible substrate 62.
  • the cassette control unit 50, the power supply unit 52, and the communication unit 54 housed in the housing 48 serve as a heating element that emits heat to the outside during operation (during photographing), and the heat is transmitted to the housing 48. Heat is dissipated to the outside via Therefore, it is desirable that the subject 14 and the case 48 be separated as much as possible to avoid contact between the subject 14 and the case 48 so that the subject 14 does not feel the heat due to the heat at the time of photographing.
  • the imaging site is positioned relative to the imaging area 46 so as to avoid the housing 48, the subject 14 may have an unnatural posture depending on the size of the imaging site and the like, and the subject 14 may feel discomfort.
  • the photographing region can be positioned with respect to the photographing region 46 so that the subject 14 can maintain a more natural posture while avoiding contact between the subject 14 and the housing 48.
  • the sense of incongruity that the subject 14 feels is that the presence of the control unit 32 imposes a load (unnatural posture) on the subject 14 when positioning the subject 14 in the imaging area 46 at the time of shooting.
  • the subject's feeling of heat is also included when the subject 14 contacts the control unit 32 that generates heat during operation.
  • the panel storage unit is configured so that (the housing 40 of) the panel storage unit 30 and (the housing 48 of) the control unit 32 do not separate. 30 by moving (sliding) the control unit 32 in the direction (arrow X2 direction) away from the imaging region 46 while maintaining the integrated state of the control unit 32 and the control unit 32. Ensure that they are separated.
  • groove-shaped guide portions 64 and 66 are formed along the arrow X direction on the imaging surface 42 of the housing 40 so as to face the control unit 32, and the bottom surface of the housing 48 is a guide Sliding members 68, 70 are provided which are guided along the sections 64, 66 respectively.
  • the range of the imaging region 46 on the imaging surface 42 is illustrated by a thick line for the sake of convenience for easy description.
  • the sliding members 68 and 70 may be positioned and fixed at the predetermined position.
  • a USB (Universal Serial Bus) terminal 74 and a card slot 78 for loading a memory card 76 such as a PC card are provided.
  • a handle 80 for gripping by a doctor or a radiologist is provided on the side of the housing 48 in the direction of the arrow X2. Further, on the top surface of the housing 48, a display unit (notification unit, temperature display unit, warning unit, movement information display unit) 82 for displaying various information, and a speaker (notification unit, warning unit) 84; A power switch 86 of the electronic cassette 20A is disposed.
  • FIG. 4 FIG. 5, FIG. 7A and FIG.
  • the grid 90, the radiation conversion panel 92, and the lead plate 94 substantially coincide with the imaging region 46 in plan view (see FIG. 5).
  • the imaging surface 42 may be configured as a grid 90.
  • the radiation conversion panel 92 for example, a solid detection element (hereinafter referred to as a solid detection element (hereinafter referred to as “the radiation detection panel”) made of a material such as amorphous silicon (a-Si) Indirect conversion type radiation conversion panel which converts it into electric signal by the pixel), and direct conversion type which directly converts the dose of radiation 16 into electric signal by solid detection element which consists of substances such as amorphous selenium (a-Se) Radiation conversion panels can be employed.
  • a-Si amorphous silicon
  • a-Se amorphous selenium
  • the radiation conversion panel 92 is electrically connected to the drive circuit unit 96, and the drive circuit unit 96 communicates with the cassette control unit 50 and the like in the control unit 32 via the flexible substrate 62. It is electrically connected.
  • the drive circuit unit 96 drives and controls the radiation conversion panel 92 in accordance with a control signal (address signal) from the cassette control unit 50, reads a radiation image from the radiation conversion panel 92, and outputs the radiation image to the cassette control unit 50.
  • the power supply unit 52 supplies power to the drive circuit unit 96 through the flexible substrate 62 to drive the radiation conversion panel 92 through the drive circuit unit 96.
  • FIG. 4 illustrates the case where the drive circuit unit 96 is disposed on the side of the panel accommodation unit 30 in the direction of the arrow X2.
  • the drive circuit unit 96 in addition to the drive circuit unit 96, other drive circuit units are disposed along the direction of the arrow X, but in this specification, for the sake of simplicity, the description will be made. Illustration of other drive circuit units is omitted.
  • a position detection sensor 98 such as a proximity sensor for detecting the position of the sliding member 68 is also disposed in the panel storage unit 30 (see FIGS. 5 and 6).
  • the position detection sensor 98 is disposed in the vicinity of the side surface in the direction of the arrow X2 along the guide portion 64, and the sliding members 68 and 70 move as shown in FIGS.
  • an output signal indicating that the sliding member 68 has reached the position is output to the cassette control unit 50 via the flexible substrate 62.
  • a large number of pixels 100 are arranged on a substrate (not shown), and a large number of control signals are supplied from the drive circuit unit 96 to these pixels 100.
  • a gate line 102 and a large number of signal lines 104 for reading out electric signals output from a large number of pixels 100 and outputting the electric signals to a driver circuit portion 96 are arranged.
  • the radiation conversion panel 92 has a structure in which a photoelectric conversion layer in which each pixel 100 made of a substance such as a-Si for converting visible light into an electric signal is formed on an array of TFTs 106 in matrix.
  • a photoelectric conversion layer in which each pixel 100 made of a substance such as a-Si for converting visible light into an electric signal is formed on an array of TFTs 106 in matrix.
  • the TFTs 106 connected to the respective pixels 100 are connected with gate lines 102 extending in parallel with the column direction and signal lines 104 extending in parallel with the row direction.
  • Each gate line 102 is connected to a gate drive circuit 110, and each signal line 104 is connected to a multiplexer 112.
  • a control signal for controlling on / off of the TFTs 106 arranged in the column direction is supplied from the gate drive circuit 110 to the gate line 102.
  • an address signal is supplied to the gate drive circuit 110 from the cassette control unit 50 via the flexible substrate 62.
  • the multiplexer 112 is connected to the amplifier 114 via the sample and hold circuit 116.
  • the multiplexer 112 includes an FET (field effect transistor) switch 118 which switches the signal line 104 and a multiplexer drive circuit 120 which outputs a selection signal for turning on one FET switch 118.
  • the multiplexer drive circuit 120 is supplied with an address signal from the cassette control unit 50.
  • the A / D converter 122 is connected to the FET switch 118, and a radiation image converted into a digital signal by the A / D converter 122 is supplied to the cassette control unit 50 via the flexible substrate 62.
  • the TFT 106 functioning as a switching element may be realized in combination with another imaging element such as a complementary metal-oxide semiconductor (CMOS) image sensor. Furthermore, it is possible to replace it with a CCD (Charge-Coupled Device) image sensor which transfers charges while shifting charges by a shift pulse corresponding to a gate signal in TFT.
  • CMOS complementary metal-oxide semiconductor
  • the cassette control unit 50 includes an address signal generation unit 130, an image memory 132, a cassette ID memory 134, a movement instruction unit 136, and an order information storage unit 138.
  • the address signal generator 130 supplies an address signal to the gate drive circuit 110 and the multiplexer drive circuit 120.
  • the image memory 132 stores the radiation image detected by the radiation conversion panel 92.
  • the cassette ID memory 134 stores cassette ID information for specifying the electronic cassette 20A.
  • the order information storage unit 138 stores order information received from the console 22 (see FIG. 1) via the communication unit 54.
  • the order information is created by the doctor using the RIS 26, and in addition to the subject information for specifying the subject 14, such as the name, age, sex of the subject 14, a photographing apparatus used for photographing, photographing
  • the site and shooting conditions are included.
  • the imaging conditions are, for example, conditions for determining the radiation amount to be irradiated to the subject 14, such as the tube voltage of the radiation source 18, the tube current, and the irradiation time of the radiation 16.
  • the movement instruction unit 136 causes the display unit 82 to display whether or not movement of the control unit 32 is necessary based on the order information of the subject 14 and / or the temperature of the control unit 32 detected by the temperature sensor 56.
  • the sound is output from the speaker 84.
  • the movement instruction unit 136 compares the imaging region of the subject 14 contained in the order information with the imaging area 46, and even if the control unit 32 is not moved, the contact between the subject 14 and the control unit 32 When it is expected that the unnatural posture of the subject 14 (posture giving a sense of discomfort) is not caused and the control unit 32 does not interfere with photographing, the movement of the control unit 32 is unnecessary. Information indicating the presence is displayed on the display unit 82, and is further output as a sound from the speaker 84.
  • the movement instruction unit 136 is expected to be a temperature at which the temperature of the control unit 32 does not feel that the subject 14 is hot, without moving the control unit 32.
  • the control unit 32 causes the display unit 82 to display information indicating that the movement of the control unit 32 is unnecessary, and further causes the speaker 84 to output the sound.
  • the doctor or the radiologist visually recognizes the display content of the display unit 82 described above or listens to the sound from the speaker 84, so that the movement of the control unit 32 is unnecessary (see FIG. 7) can be recognized.
  • the movement instruction unit 136 compares the imaging region with the imaging region 46, and if the control unit 32 is not moved at the time of imaging, the subject 14 and the control unit 32 contact or the subject 14 is unnatural.
  • information indicating a movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 Output as a warning sound from.
  • the movement instruction unit 136 may control the control unit 32 if it is expected that the temperature of the subject 14 is hot unless the control unit 32 is moved with respect to the temperature detected by the temperature sensor 56.
  • the information indicating the movement instruction of 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 is output as a warning sound.
  • the doctor or radiologist needs to move the control unit 32 by visually recognizing the warning display contents on the display unit 82 or listening to the warning sound from the speaker 84 (see FIG. 6 and FIG. 7B, and then grasping the handle 80 and pulling it in the direction of the arrow X2 to guide the control unit 32 under the guidance of the guide portions 64, 66 and the sliding members 68, 70. Slide in the direction of arrow X2.
  • the movement instruction unit 136 determines that the control unit 32 has reached the position shown in FIGS. 6 and 7B and the movement of the control unit 32 is completed.
  • the information indicating the completion of the movement of 32 is displayed on the display unit 82, and the sound is output from the speaker 84. Therefore, the doctor or the radiologist visually recognizes the display content of the display unit 82 or listens to the sound from the speaker 84, and the movement of the control unit 32 is completed (the control unit 32 shown in FIGS. 6 and 7B). It can be recognized that the position has been reached.
  • the movement instruction unit 136 displays a movement instruction of the control unit 32 as a warning via the display unit 82, and further, after outputting as a warning sound from the speaker 84, the position detection sensor 98 can be used.
  • warning information for prompting the movement of the control unit 32 is displayed on the display unit 82, and the speaker A warning sound may be output from 84.
  • the radiation imaging system 10A including the electronic cassette 20A according to the first embodiment is basically configured as described above. Next, the operation thereof will be described with reference to the flowchart of FIG. The description of FIG. 9 will be made with reference to FIGS. 1 to 8 as necessary.
  • step S1 the doctor or radiologist holds the handle 80 to transport the electronic cassette 20A from the predetermined storage location to the imaging table 12, and then places the electronic cassette 20A at the predetermined position on the imaging table 12.
  • the power switch 86 is turned on.
  • the power supply unit 52 starts power supply to the respective units in the control unit 32 due to the turning on of the power switch 86, and starts power supply to the panel accommodation unit 30 via the flexible substrate 62.
  • the communication unit 54 can transmit and receive signals wirelessly with the console 22.
  • the temperature sensor 56 starts detection of the temperature of the control unit 32.
  • the display unit 82 can display various information.
  • the drive circuit unit 96 is activated by the power supply from the power supply unit 52, and the bias circuit 108 supplies a bias voltage to each pixel 100 to charge each pixel 100. Bring to a good state.
  • the electronic cassette 20A shifts from the sleep state to the active state due to the power switch 86 being turned on.
  • step S1 the control unit 32 is disposed at the position shown in FIGS. 5 and 7A. That is, by carrying the electronic cassette 20A in a state where the position of the control unit 32 is not the position shown in FIGS. 6 and 7B but the position shown in FIGS. 5 and 7A, the electronic cassette 20A can be made compact. It becomes possible to carry.
  • step S2 the communication unit 54 requests the console 22 (see FIG. 1) to transmit the order information, and the console 22 transmits the order information to the communication unit 54 in response to the transmission request.
  • the order information received by the communication unit 54 is stored in the order information storage unit 138 (see FIG. 8) of the cassette control unit 50.
  • the doctor or radiologist may register the imaging conditions of the subject 14 to be imaged by operating the console 22.
  • the console 22 may transmit order information including the imaging condition to the communication unit 54 in response to the transmission request after the imaging condition is registered.
  • step S3 the movement instruction unit 136 of the cassette control unit 50 should move the control unit 32 based on the order information stored in the order information storage unit 138 or the temperature of the control unit 32 detected by the temperature sensor 56. It is determined whether or not.
  • the movement instruction unit 136 compares the imaging region of the subject 14 contained in the order information with the size of the imaging area 46, and the subject 14 and the control unit 32 do not move the control unit 32. It is determined whether the subject 14 is in contact with the subject 14 or the subject 14 has an unnatural posture (a posture giving a sense of discomfort), or the control unit 32 interferes with photographing, and if there is such a possibility (step S3: YES), information indicating the movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 is output as a warning sound.
  • the movement instruction unit 136 determines whether the temperature detected by the temperature sensor 56 is such a temperature that the subject 14 does not feel hot even if the control unit 32 is not moved, and may feel hot. If there is (step S3: YES), information indicating a movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and furthermore, the speaker 84 outputs it as a warning sound.
  • step S3 the movement instructing unit 136 can execute the determination process using the order information and the determination process using the temperature of the control unit 32.
  • step S4 the doctor or the radiologist visually recognizes the warning display content of the display unit 82, or after hearing that the control unit 32 needs to be moved by hearing the warning sound from the speaker 84, the handle The control unit 32 is pulled in the direction of the arrow X2 by gripping the grip 80.
  • the control unit 32 maintains the integrated state in which the control unit 32 is not separated from the panel storage unit 30 under the guiding action of the guide portions 64 and 66 and the sliding members 68 and 70. Slide away from the
  • step S5 when the sliding members 68, 70 reach the positions shown in FIG. 6 and FIG. 7B under the guiding action of the guide portions 64, 66, the position detecting sensor 98 detects the positions of the sliding members 68.
  • An output signal indicating that has been reached is output to the cassette control unit 50 via the flexible substrate 62.
  • the movement instruction unit 136 determines that the control unit 32 has reached the position of FIGS. 6 and 7B and the movement of the control unit 32 is completed (step S5: YES).
  • Information indicating the completion of movement is displayed on the display unit 82 instead of the above-described warning display content, and a sound indicating the completion of movement is output from the speaker 84 instead of the warning sound. Therefore, the doctor or the radiologist can recognize the movement completion of the control unit 32 by visually recognizing the display content of the display unit 82 or by listening to the sound from the speaker 84.
  • the movement instruction unit 136 determines that the movement of the control unit 32 is not completed (step S5: NO), and the doctor or radiation by the display unit 82 and the speaker 84 Maintain alert notification to the technician.
  • the movement instruction unit 136 displays a movement instruction of the control unit 32 as a warning via the display unit 82, and further, after outputting a warning sound from the speaker 84, the position detection sensor 98 even if a predetermined time has elapsed. If the output signal is not input from the display unit 82, a warning for prompting the movement of the control unit 32 may be displayed on the display unit 82, and may be output as a warning sound from the speaker 84.
  • step S3 even if the position of the control unit 32 is as shown in FIGS. 5 and 7A, the movement instructing unit 136 does not have a possibility that the subject 14 contacts the control unit 32, and the subject 14 is more natural. If it is determined that the posture is maintained and the control unit 32 does not interfere with photographing (step S3: NO), the temperature of the control unit 32 is such that the subject 14 does not feel hot (Step S3: NO), the processing in steps S4 and S5 is not performed, and information indicating that the movement of the control unit 32 is unnecessary is displayed on the display unit 82, and further, the sound from the speaker 84 Output as.
  • FIGS. 10A to 12C are explanatory diagrams illustrating the contents displayed on the screen of the display unit 82 in the processes of steps S3 to S5.
  • 10A to 10C display the temperature (TEMP) of the control unit 32 in a step display (10 steps from LO to HI) and display the necessity or the completion of the movement of the control unit 32 on the screen.
  • TMP temperature
  • step display (10 steps from LO to HI)
  • the display unit 82 displays the temperature of the control unit 32 on the screen as the first stage temperature (low temperature) out of 10, and indicates that movement of the control unit 32 is unnecessary. "It is unnecessary” is displayed on the screen. Thereby, the doctor or radiologist can immediately recognize that the control unit 32 does not need to be moved because the control unit 32 is at a low temperature by visually recognizing the screen display of FIG. 10A.
  • the display unit 82 displays the temperature of the control unit 32 on the screen as the temperature of the fifth stage among the 10 stages, and “moves” indicating that the control unit 32 needs to be moved.
  • the word "warning" is displayed on the screen. That is, FIG. 10B illustrates a screen display when, for example, the movement instructing unit 136 determines that the movement of the control unit 32 is necessary when the temperature of the control unit 32 reaches the temperature of the fifth stage. .
  • the doctor or the radiographer needs to move the control unit 32 because the temperature of the control unit 32 has risen to a temperature that the subject 14 feels hot by visually recognizing the screen display of FIG. 10B. It can be recognized immediately.
  • the temperature of the control unit 32 is displayed on the screen as the fifth stage temperature in 10 steps on the display unit 82, and “movement completed” indicating that the movement of the control unit 32 is completed.
  • the words are displayed on the screen.
  • the doctor or the radiologist can immediately recognize that imaging has become possible because movement of the control unit 32 is completed by visually recognizing the screen display of FIG. 10C.
  • 11A to 11C display the temperature of the control unit 32 on the screen with thermo labels (three steps of °° C., ⁇ ° C., ⁇ ° C.), and also display the necessity or complete movement of the control unit 32 It is a figure showing an example displayed.
  • ⁇ ⁇ ° C. ⁇ ° C. ⁇ ° C. and the ⁇ mark on the upper side of each display temperature lights up (shaded in FIGS. 11A to 11C). It is illustrated that 32 temperatures have reached the indicated temperature.
  • the display unit 82 displays that the temperature of the control unit 32 has reached ⁇ ° C. on the screen, and indicates that the movement of the control unit 32 is unnecessary. The words are displayed on the screen. Thereby, the doctor or the radiologist immediately recognizes that the control unit 32 does not need to be moved because the control unit 32 is at a relatively low temperature of ⁇ ° C. by visually recognizing the screen display of FIG. 11A. Can.
  • FIG. 11B illustrates a screen display when, for example, the movement instructing unit 136 determines that the movement of the control unit 32 is necessary when the temperature of the control unit 32 reaches ⁇ ° C. It is necessary for the doctor or radiologist to move the control unit 32 because the temperature of the control unit 32 has reached the degree of ⁇ ° C. that the subject 14 feels hot by visually recognizing the screen display of FIG. 11B. Can be recognized immediately.
  • the display unit 82 displays on the screen that the temperature of the control unit 32 has reached ⁇ ° C., and indicates that the movement of the control unit 32 has been completed. The words are displayed on the screen. As a result, the doctor or the radiologist can immediately recognize that imaging has become possible since the movement of the control unit 32 is completed by visually recognizing the screen display of FIG. 11C.
  • the current temperature of the control unit 32 and the status of the temperature change (temperature rise) are collectively displayed on the screen in addition to the instruction of necessity of movement and notification of movement completion. Therefore, the doctor or the radiologist can easily grasp the situation of the control unit 32 and the like.
  • 12A to 12C illustrate an example in which the imaging region of the subject 14 included in the order information is displayed on the screen, and the necessity of movement of the control unit 32 or the movement completion is displayed on the screen.
  • the display unit 82 displays the wording of “order information shooting of hand” indicating that the order information is shooting of the hand of the subject 14 and the movement of the control unit 32 is unnecessary.
  • the wording “No movement required” is displayed on the screen. That is, when the area (projected area) of the imaging region 46 is large compared to the area of the hand, the possibility of contact between the hand and the control unit 32 is low without moving the control unit 32 during imaging. . Thereby, the doctor or radiologist can immediately recognize that it is not necessary to move the control unit 32 by visually recognizing the screen display of FIG. 12A.
  • the display unit 82 displays the wording “order information chest imaging” indicating that the order information is imaging the chest of the subject 14 and the control unit 32 needs to be moved.
  • the words "Please move” are displayed on the screen. That is, if the area of the chest is such that the subject 14 contacts the control unit 32, there is a possibility that the subject 14 may have an unnatural posture and feel uncomfortable when shooting, and the control unit 32 moves It is necessary to have a screen display to indicate. Therefore, the doctor or radiologist can immediately recognize that the control unit 32 needs to be moved by viewing the screen display of FIG. 12B.
  • the display unit 82 displays on the screen “order information chest imaging” indicating that the order information is imaging of the chest of the subject 14 and indicates that the movement of the control unit 32 is completed.
  • the word "Moved complete” is displayed on the screen.
  • the order information is also displayed collectively on the screen in addition to the instruction of necessity of movement and the notification of movement completion, so the doctor or radiologist The situation of the control unit 32 can be easily grasped.
  • step S3 the movement instructing unit 136 performs both the determination processing related to order information and the determination processing related to the temperature of the control unit 32, so the screen display of FIGS. 10A to 12C is combined.
  • the display unit 82 displays the temperature display of the control unit 32 (FIGS. 10A to 11C), the display related to movement (FIGS. 10A to 12C), and the display of the order information (FIGS. 12A to 12C). It is also possible to display them collectively on the screen of.
  • the movement instructing unit 136 performs only one of the judgment processing related to the order information and the judgment processing related to the temperature of the control unit 32, and FIGS. 10A to 10C and FIGS. 11A to 11C.
  • One of the screen displays of FIGS. 12A to 12C may be displayed on the display unit 82.
  • step S6 the doctor or radiologist adjusts the inter-imaging distance between the radiation source 18 and the radiation conversion panel 92 to SID (inter-source-image distance), while the imaging surface 42 Position the subject 14 so that the imaging region of the subject 14 enters the imaging region 46 and the center position of the imaging region substantially matches the center position of the imaging region 46 with the object 14 placed.
  • SID inter-source-image distance
  • the above-described positioning is mainly performed when imaging is performed using the entire imaging region 46, that is, when the projection area of the radiation 16 is the area of the imaging region 46, in this case, the subject 14
  • the control unit 32 has previously moved to the position shown in FIGS. 6 and 7B.
  • the projection area of the radiation 16 may be reduced and imaging may be further performed. Even if the position of the point is in the positions of FIG. 5 and FIG. 7A, the possibility that the subject 14 and the control unit 32 touch is low. In such a case, the imaging region may be positioned in the area on the side of the arrow X1 in the imaging area 46 or the area at the center position of the guide line 44 without moving the control unit 32.
  • step S6 can be performed at the stage of steps S1 to S5. In this case, for example, after the panel accommodation unit 30 is inserted between the subject 14 and the imaging stand 12 and the positioning of step S6 is performed, steps S1 to S5 may be performed. Alternatively, after the panel accommodation unit 30 is inserted between the subject 14 and the imaging stand 12, steps S1 to S5 may be performed, and then the positioning of step S6 may be performed.
  • step S7 after the imaging preparation in steps S1 to S6 is completed, the cassette control unit 50, for example, irradiates (photographs) radiation 16 based on the determination of the movement completion by the movement instruction unit 136.
  • a photographing permission signal indicating that it has become possible is transmitted to the console 22 via the communication unit 54.
  • a doctor or a radiologist turns on a radiation switch (not shown) provided on the console 22 or the radiation source 18.
  • the console 22 receives radiographing conditions from the console 22 by radio communication on the condition that the radiographing permission signal has already been received.
  • transmission of imaging conditions is requested from the radiation source 18 to the console 22 by wireless communication after the exposure switch is turned on.
  • the imaging conditions are transmitted to the radiation source 18 by wireless communication in response to a transmission request from the radiation source 18 on the condition that the imaging permission signal has already been received.
  • the radiation source 18 When receiving the imaging condition, the radiation source 18 irradiates the object 14 with a radiation 16 having a predetermined dose for a predetermined exposure time according to the imaging condition.
  • the radiation 16 passes through the subject 14 and reaches the radiation conversion panel 92 in the panel storage unit 30.
  • step S9 when the radiation conversion panel 92 is an indirect conversion type radiation conversion panel, the scintillator constituting the radiation conversion panel 92 emits visible light of an intensity corresponding to the intensity of the radiation 16, and the photoelectric conversion layer Each of the pixels 100 constituting the pixel converts visible light into an electric signal and stores it as a charge. Subsequently, charge information which is a radiation image of the subject 14 held in each pixel 100 is read out according to the address signal supplied to the gate drive circuit 110 and the multiplexer drive circuit 120 from the address signal generating unit 130 constituting the cassette control unit 50 Be
  • the gate drive circuit 110 supplies a control signal to the gate of the TFT 106 connected to the gate line 102 corresponding to the address signal supplied from the address signal generation unit 130.
  • the multiplexer drive circuit 120 outputs a selection signal according to the address signal supplied from the address signal generation unit 130 to sequentially switch the FET switches 118 (turn on and off sequentially), and the gate line selected by the gate drive circuit 110.
  • a radiation image as charge information held in each pixel 100 connected to 102 is sequentially read out via the signal line 104.
  • the radiation image read out from each pixel 100 connected to the selected gate line 102 is amplified by each amplifier 114 and then sampled by each sample and hold circuit 116 and A / D converted via the FET switch 118 It is supplied to the unit 122 and converted into a digital signal.
  • the radiation image converted into the digital signal is temporarily stored in the image memory 132 of the cassette control unit 50 (step S10).
  • the gate drive circuit 110 sequentially switches the gate line 102 for outputting the control signal, and is held in each pixel 100 connected to each gate line 102.
  • the radiation image which is the charge information, is read out through the signal line 104 and stored in the image memory 132 of the cassette control unit 50 through the FET switch 118 and the A / D converter 122 (step S10).
  • the radiation image stored in the image memory 132 is transmitted to the console 22 by wireless communication via the communication unit 54 together with the cassette ID information stored in the cassette ID memory 134.
  • the console 22 performs predetermined image processing on the received radiation image, and transmits the radiation image after the image processing to the display device 24 by wireless communication.
  • the display device 24 displays the received radiation image (step S11).
  • step S11 since the electronic cassette 20A is provided with the display unit 82, the display unit 82 may display (low data or thinned data of) a radiation image.
  • step S12 after the doctor or radiologist visually recognizes the radiation image displayed on the display device 24 or the display unit 82 and confirms that the appropriate radiation image of the subject 14 has been obtained, the doctor or radiologist The subject 14 is released to complete imaging, and then, when the control unit 32 is disposed in the position of FIGS. 6 and 7B, the grip 80 is gripped to push the control unit 32 in the direction of the arrow X1. .
  • the control unit 32 slides in the direction of the arrow X1 under the guiding action of the guide portions 64 and 66 and the sliding members 68 and 70 and returns to the position shown in FIGS. 5 and 7A, and the electronic cassette 20A is transported It will be possible compact state.
  • the doctor or radiologist presses the power switch 86 to stop the electronic cassette 20A.
  • the power supply unit 52 stops the power supply to each part of the control unit 32 and also stops the power supply to the panel accommodation unit 30 via the flexible substrate 62.
  • the electronic cassette 20A shifts from the active state to the sleep state.
  • the doctor or radiologist holds the handle 80 and transports the compacted electronic cassette 20A to a predetermined storage location.
  • the control unit 32 (at least a part of the projecting portion) and the panel accommodation unit 30 that protrude in the incident direction of the radiation 16
  • the control unit 32 By making the control unit 32 movable in a state in which the control unit 32 is not separated, it becomes possible to easily separate the control unit 32 from the subject 14 positioned on the imaging surface 42.
  • the irradiation area (projected area) of the radiation irradiated to the imaging surface 42 can be changed according to the imaging region of the subject 14, imaging is performed without making the subject 14 feel uncomfortable. It is possible to prevent the control unit 32 from getting in the way of imaging. Therefore, in the first embodiment, it is possible to realize both the imaging preparation and imaging facilitation and the improvement of the handling of the apparatus.
  • control unit 32 since the control unit 32 is movable in a state of being in contact with the panel storage unit 30, the projection area of the radiation 16 can be changed while separating the subject 14 and the control unit 32 at the time of photographing.
  • control unit 32 is movable in the direction (arrow X2 direction) away from the imaging region 46 in a state of being in contact with the imaging surface 42, the object 14 is separated from the object 14 during imaging.
  • the projection area of the radiation 16 can be efficiently varied (increased) according to the imaging site of
  • the cassette control unit 50, the power supply unit 52, and the communication unit 54 accommodated in the control unit 32 function as a heating element that emits heat to the outside during operation.
  • the power supply unit 52 is a component having a relatively large amount of heat generation among the components constituting the control unit 32. Therefore, in the first embodiment, the temperature of the control unit 32 is detected by the temperature sensor 56, and information related to the detected temperature is displayed on the screen via the display unit 82, and output as sound from the speaker 84.
  • the radiographer can displace the control unit 32 in a direction away from the imaging surface 42 according to the screen display content of the display unit 82 and the sound from the speaker 84. As a result, it is possible to reliably avoid the approach of the subject 14 and the control unit 32 as a heating element at the time of shooting, and to further reduce the discomfort of the subject 14.
  • the display unit 82 can display the temperature of the control unit 32, and can also display that the temperature has reached a predetermined temperature (the temperature of the control unit 32 to the extent that the subject 14 feels hot).
  • the speaker 84 can also output, as a warning sound, that the temperature of the control unit 32 has reached the predetermined temperature.
  • the display unit 82 displays the temperature of the control unit 32 in multiple stages or in the form of a thermo label, the doctor or radiologist can change the current temperature of the control unit 32 or the status of the temperature change. Can be easily grasped.
  • the display unit 82 displays the necessity or completion of the movement of the control unit 32 based on the temperature of the control unit 32, while the speaker 84 controls the control unit 32 based on the temperature of the control unit 32. It outputs the necessity or the completion of the movement of as a sound (warning sound). Therefore, the doctor or the radiologist may move the control unit 32 or stop the moving operation when there is a notification (screen display, sound) without making a judgment of itself. As a result, the usability of the electronic cassette 20A is further improved.
  • the communication unit 54 receives order information from the console 22, and the display unit 82 displays necessity of movement of the control unit 32 based on the order information, while the speaker 84 is based on the order information.
  • the necessity of movement of the control unit 32 is output as a sound.
  • the order information also includes information such as the imaging region of the subject 14. Therefore, by moving the control unit 32 based on the order information to change the projection area of the radiation 16, the usability of the electronic cassette 20 A can be improved. It can be further improved.
  • the position detection sensor 98 detects the position of the sliding member 68, and outputs the detection result as an output signal to the cassette control unit 50, thereby instructing the movement of the control unit 32 to move.
  • the determination in the section 136 has been described.
  • the movement amount of the sliding members 68 and 70 is detected by movement amount detection means such as a linear encoder, and the movement instruction unit 136 controls the control unit 32 based on the movement amount.
  • the movement completion of may be determined, and the display content of the display unit 82 may be changed or the sound output from the speaker 84 may be changed according to the determination result.
  • the cassette control unit 50 generates a photographing permission signal based on the completion of movement of the control unit 32.
  • the movement instruction unit 136 can determine whether the movement of the control unit 32 is necessary based on the size of the imaging region of the subject 14 included in the order information. Instead of such determination or in addition to this determination, the movement instruction unit 136 can also determine that movement of the control unit 32 is necessary, for example, in the case of order information including video shooting. is there.
  • the information related to the temperature detected by the temperature sensor 56 is displayed by the display unit 82 or the speaker 84 of the control unit 32 or notified to the outside as a sound.
  • the information may be transmitted to the console 22 by communication, and the information may be notified to the outside through the console 22.
  • the console 22 may display the information via the display device 24 or may notify the outside as a sound through a speaker (not shown). Even in this case, each effect by informing the information can be easily obtained.
  • the electronic cassette 20A according to the first embodiment is not limited to the above description, and the embodiments shown in FIGS. 13 to 23B can also be realized.
  • FIG. 13 is a perspective view showing the charging process of the power supply unit 52 (see FIG. 2, FIG. 5, FIG. 6, and FIG. 8) by the cradle 140 disposed at a necessary place in the medical institution.
  • the electronic cassette 20A and the cradle 140 are electrically connected by the USB cable 146 having the connectors 142 and 144.
  • the cradle 140 performs transmission and reception of necessary information with the console 22 and the RIS 26 in a medical institution using not only the charging of the power supply unit 52 but also the wireless communication function or the wired communication function of the cradle 140. Good.
  • the information to be transmitted and received can include a radiation image recorded in the image memory 132 (see FIG. 8) of the electronic cassette 20A.
  • the display unit 148 may be disposed on the cradle 140, and the display unit 148 may display the charge state of the electronic cassette 20A and necessary information including a radiation image acquired from the electronic cassette 20A. .
  • a plurality of cradles 140 can be connected to the network, and the charge states of the electronic cassettes 20A connected to each cradle 140 can be collected via the network to confirm the whereabouts of the electronic cassettes 20A in the usable charge state. It can also be configured.
  • the electronic cassette 20A of the first modification shown in FIGS. 14A to 17B has two groove-shaped guide portions 150 and 152 provided on the imaging surface 42 so as to sandwich the imaging region 46 in plan view.
  • the embodiment differs from the embodiment of FIGS. 1 to 13 in that a handle 154 is also provided on the side surface of the housing 40 in the direction of the arrow X1.
  • the control unit 32 includes the guide portions 150 and 152 and the sliding member Under the guiding action of 68 and 70, along the arrow X direction, the position on the arrow X1 direction side shown in FIG. 15A and FIG. 15B, and a part of the control unit 32 shown in FIG. It is movable between positions 30 and 30.
  • the control unit 32 can be easily disposed at a desired position along the arrow X direction with respect to the panel accommodation unit 30. Further, since the control unit 32 is movable on the photographing surface 42, the entire electronic cassette 20A can be made compact and easy to carry. In particular, when the control unit 32 is moved to the central portion of the panel accommodation unit 30 shown in FIGS. 16A and 16B, the weight balance in carrying is good.
  • the projection area of the radiation 16 in the imaging region 46 is controlled according to the imaging region of the subject 14 included in the order information and / or According to the temperature of the unit 32, it becomes possible to change suitably.
  • the control unit 32 may be moved to the positions of FIGS. 14A and 14B or to the positions of FIGS. 17A and 17B.
  • the control unit 32 may be moved to the positions of FIGS. 15A and 15B or the positions of FIGS. 16A and 16B. In the case of FIGS.
  • radiation 16 can be irradiated to the region on the side of the arrow X2 direction in the imaging region 46, and in the case of FIGS. 16A and 16B, the side on the arrow X1 direction or the arrow X2 in the imaging region 46 Radiation 16 can be applied to the area on the direction side.
  • the doctor or the radiologist grasps and transports the handle 80 or the handle 154 in the state of FIGS. 14A and 14B, or FIG. 15A and FIG.
  • the handle 154 may be held and transported in the state of 15B.
  • the case 48 constituting the control unit 32 includes the base portion 48a (the other portion of the protruding portion) on the panel accommodation unit 30 side, and the base portion 48a. It differs from the embodiment of FIGS. 1-17B in that it is configured with a movable portion 48 b (at least a portion of the projecting portion) that is movable with respect to.
  • the base portion 48a is fixed to the panel accommodation unit 30, and groove-like guide portions 160 and 162 having the same function as the guide portions 64 and 66 described above are provided on the upper surface of the base portion 48a.
  • sliding members 164 and 166 having the same function as the sliding members 68 and 70 are provided on the side of the base portion 48a (bottom surface side) of the movable portion 48b.
  • a large cassette control unit 50, a power supply unit 52, and a communication unit 54 are accommodated.
  • the temperature sensor 56 is also disposed on the movable portion 48b.
  • the position detection sensor 98 may be disposed on the side of the case 40 in the direction of the arrow X2, or the arrow X2 of the base portion 48a. It may be disposed on the side of the direction.
  • the movable unit 48b which is a part of the control unit 32 can be moved with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the movable unit 48b. By doing this, it is possible to easily change the projection area of the radiation 16, so that the same effect as in FIGS. 1 to 17B can be obtained.
  • the case 40 of the panel accommodation unit 30 and the case 48 of the control unit 32 are connected via a hinge portion (rotational shaft) 170. In that it differs from the embodiment of FIGS. 1-18B.
  • the hinge portion 170 is provided along the arrow Y direction on the side surface of the housing 40 in the arrow X 2 direction, and the handle 80 is provided on the upper surface of the housing 48.
  • the movement instruction unit 136 is a doctor or a radiologist via the display unit 82 and the speaker 84 according to the imaging region included in the order information and / or according to the temperature of the control unit 32.
  • the doctor or radiologist holds the handle 80 and instructs the housing 48 to rotate about the hinge portion 170 when the control unit 32 is instructed to rotate the control unit 32, the housing 48 is separated from the imaging region 46. Turn in the direction
  • the radiation 16 is made rotatable by making the housing 48 rotatable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the housing 48. Since it is possible to easily change the projected area of the lens, it is possible to obtain the same effect as the effect of FIGS. 1 to 18B.
  • the flexible substrate 62 for transmitting and receiving signals and supplying power between the panel accommodation unit 30 and the control unit 32 is disposed in a state of being rotated once in the hinge portion 170, as shown in FIG. Therefore, as described above, even when the control unit 32 is rotated with respect to the panel accommodation unit 30, the tension associated with the rotation can be effectively suppressed from being applied to the flexible substrate 62.
  • a shaft portion (rotation shaft) 172 is erected at a corner portion of the housing 40 of the panel accommodation unit 30 on the control unit 32 side.
  • This embodiment differs from the embodiment of FIGS. 1 to 21 in that the housing 40 and the housing 48 of the control unit 32 are connected to each other.
  • the movement instructing unit 136 transmits the control unit 32 to the doctor or radiologist via the display unit 82 and the speaker 84.
  • the housing 48 rotates in a direction away from the imaging region 46 Do.
  • the housing 48 is mounted on (the imaging area 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the housing 48. Since the projection area of the radiation 16 can be easily changed by making it rotatable, the same effect as in FIGS. 1 to 21 can be obtained.
  • the flexible substrate 62 for transmitting and receiving signals and supplying power between the panel accommodation unit 30 and the control unit 32 as in the case of FIG. Even when the control unit 32 is rotated with respect to the panel accommodation unit 30, the tension accompanying the rotation can be effectively suppressed from being applied to the flexible substrate 62.
  • the first embodiment can also be applied to the case of acquiring a radiation image by using a light conversion type radiation conversion panel.
  • a light reading type radiation conversion panel when radiation is incident on each solid detection element, an electrostatic latent image corresponding to the dose is accumulated and recorded on the solid detection element.
  • the radiation conversion panel When reading the electrostatic latent image, the radiation conversion panel is irradiated with the reading light, and the value of the generated current is acquired as a radiation image.
  • the radiation conversion panel can erase and reuse the radiation image, which is the remaining electrostatic latent image, by irradiating the radiation conversion panel with the erasing light (see JP-A-2000-105297).
  • the entire device in order to prevent the possibility of blood or other bacteria from adhering, for example, the entire device is made waterproof and airtight, and if necessary, it is sterilized and cleaned to make one electronic
  • the cassette 20A can be used repeatedly and continuously.
  • the first embodiment is not limited to radiographing in a medical institution, and may be installed in a disaster site, a home nursing home, or a medical examination car, and may be applied to radiographing a subject in a health checkup. Is possible. Furthermore, the first embodiment is not limited to the radiographing of medical-related radiation images as described above, and is naturally applicable to radiographing of radiographs in various nondestructive inspections, for example.
  • the same components as those of the electronic cassette 20A and the radiation imaging system 10A (see FIGS. 1 to 23B) according to the first embodiment are denoted by the same reference numerals. The detailed description is omitted.
  • the electronic cassette 20B and the radiation imaging system 10B according to the second embodiment are the first embodiment in that the control unit 32 is connected to the side surface (outside of the imaging surface 42) of the panel accommodation unit 30 in the arrow X2 direction.
  • This embodiment is different from the electronic cassette 20A and the radiation imaging system 10A (see FIGS. 1 to 23B) according to the present invention.
  • the base portion 48a constituting the housing 48 of the control unit 32 is fixed to the side surface of the housing 40 of the panel storage unit 30 in the direction of the arrow X2, and the movable portion 48b is formed on the base portion 48a. It is slidably disposed along the arrow X direction (see FIGS. 26A and 26B).
  • the movable portion 48b configuring the control unit 32 according to the imaging region included in the order information.
  • the movement instructing unit 136 instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84
  • the doctor or radiologist holds the handle 80 depending on the temperature of the
  • the movable portion 48b is pulled in the direction of the arrow X2
  • the movable portion 48b slides from the position shown in FIG. 26A to the position shown in FIG. 26B under the guiding action of the guide portions 160, 162 and the sliding members 164, 166.
  • the movable unit 48b which is a part of the control unit 32 is movable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the movable unit 48b.
  • the projected area of the radiation 16 can be easily changed, and therefore, the same effect as that of the first embodiment including the second modification can be obtained.
  • the base portion 48a and the movable portion 48b of the housing 48 are connected via the hinge portion (rotational shaft) 170. Different from the embodiment of FIG. 26B.
  • the hinge portion 170 is provided along the arrow Y direction on the side surface of the base portion 48a in the arrow X2 direction, and the handle 80 is provided on the upper surface of the movable portion 48b.
  • the movement instruction unit 136 instructs the doctor or radiologist to turn the control unit 32 (the movable unit 48b) via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80, and the hinge unit When the movable portion 48 b is rotated about 170, the movable portion 48 b is rotated in a direction away from the imaging region 46.
  • the radiation 16 can be rotated by making the movable portion 48b rotatable relative to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since it is possible to easily change the projected area of the lens, it is possible to obtain the same effects as those of the first embodiment including the effects of FIGS. 24 to 26B and the third modification.
  • the flexible substrate 62 may be disposed in a state of being rotated once in the hinge portion 170, as in the case of FIG.
  • the base portion 48a and the movable portion 48b of the housing 48 are connected via the shaft portion 172, as shown in FIGS. It differs from the embodiment.
  • the shaft portion 172 is provided upright on the side of the upper surface of the base portion 48a in the direction of the arrow Y1.
  • the movement instruction unit 136 instructs the doctor or radiologist to rotate the control unit 32 (the movable unit 48b) via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80, and the shaft unit When the movable portion 48 b is pivoted about the point 172, the movable portion 48 b is pivoted away from the imaging region 46.
  • the radiation 16 can be rotated by making the movable portion 48b rotatable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since it is possible to easily change the projection area of the second embodiment, the same effects as those of the first embodiment including the effects of FIGS. 24 to 28B and the fourth modification can be obtained. As in the case of the fourth modification, the flexible substrate 62 may be disposed in a state of being rotated once in the shaft portion 172.
  • the electronic cassette 20C and the radiation imaging system 10C according to the third embodiment control the two side surfaces (the outside of the imaging surface 42) of the side surface in the arrow X1 direction and the side surface in the arrow X2 direction of the panel storage unit 30.
  • the electronic cassette 20B and the radiation imaging system 10B according to the second embodiment are different in that the units 32 are respectively connected, and the casings 48 of the two control units 32 are respectively constituted by the base portion 48a and the movable portion 48b. This is different from FIGS. 24 to 30B). Therefore, as shown in FIGS. 31 to 32B, the electronic cassette 20C has a symmetrical structure with the panel accommodation unit 30 as a center.
  • the electronic cassette 20C balances the weight of the entire electronic cassette 20C, and for the purpose of avoiding an increase in weight due to provision of two control units 32 as much as possible.
  • the power supply unit 52 is accommodated in the movable unit 48b of the control unit 32 in the arrow X1 direction
  • the cassette control unit 50 and the communication unit 54 are accommodated in the movable unit 48b of the control unit 32 in the arrow X2 direction.
  • the cassette control unit 50, the power supply unit 52, and the communication unit 54 may be accommodated in each of the movable units 48b if the weight does not increase significantly even if two control units 32 are provided.
  • the temperature of the movable portion 48b configuring each control unit 32 according to the imaging region included in the order information In response to the movement instruction unit 136 (see FIG. 8) instructing the doctor or the radiologist to move each movable unit 48b via the display unit 82 and the speaker 84, the doctor or the radiographer controls the arrow X1 direction side Holding the handle 80 of the unit 32 and pulling the movable portion 48b in the direction of the arrow X1, the movable portion 48b is positioned as shown in FIG. 32A under the guidance of the guide portions 160 and 162 and the sliding members 164 and 166. To the position shown in FIG. 32B.
  • the projection of the radiation 16 is enabled by making the movable portion 48b slidable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since the area can be easily changed, the same effects as those of the first and second embodiments can be obtained.
  • the base portion 48a and the movable portion 48b of each housing 48 are connected via the hinge portion 170, as shown in FIGS. 31 to 32B.
  • the hinge portion 170 is provided on the side surface of the base portion 48a along the arrow Y direction (direction perpendicular to the sheet of FIGS. 33A and 33B),
  • the handle 80 is provided on the upper surface of the movable portion 48b.
  • the movement instructing unit 136 includes the display unit 82 and the speaker according to the imaging region included in the order information and / or according to the temperature of the movable unit 48b.
  • the doctor or radiologist instructs rotation of the movable portion 48b via 84, the doctor or radiologist holds the handle 80 and rotates the movable portion 48b around the hinge portion 170, the movable portion The 48 b rotates in the direction away from the imaging region 46.
  • the radiation 16 can be rotated by making the movable portion 48b rotatable with respect to (the imaging region 46 of) the panel housing unit 30 according to the temperature of the imaging portion and the movable portion 48b. It is possible to easily change the projection area of the second embodiment, so that the same effects as those of the second embodiment including the effects of FIGS. 31 to 32B and the fifth modification can be obtained.
  • the base portion 48a and the movable portion 48b of each housing 48 are connected via the shaft portion 172, as shown in FIGS. 31 to 33B. Is different from the embodiment of FIG.
  • the shaft portion 172 is provided upright on the upper surface of the base portion 48a, as in the sixth modification (FIGS. 29 to 30B).
  • the movement instructing unit 136 displays the display unit 82 and the speaker according to the imaging region included in the order information and / or according to the temperature of the movable unit 48b.
  • the doctor or radiologist instructs the doctor or radiologist to turn each movable portion via 84
  • the doctor or radiologist holds the handle 80 and turns the movable portion b around the shaft portion 172, the movable portion
  • the portion 48 b pivots (moves) in a direction away from the imaging region 46.
  • the radiation 16 can be rotated by making the movable portion 48b pivotable with respect to (the imaging region 46 of) the panel housing unit 30 according to the temperature of the imaging portion and the movable portion 48b. It is possible to easily change the projection area of the second embodiment, so that the same effects as those of the second embodiment including the effects of FIGS. 31 to 32B and the sixth modification can be obtained.
  • FIGS. 37B to 39B The electronic cassette 20D and the radiographic imaging system 10D according to the fourth embodiment are shown in FIGS. 37B to 39B from a state in which the panel storage unit 30 and the control unit 32 are compactly folded via the hinge 170 as shown in FIG.
  • the electronic cassette 20A according to the first to the third embodiments is that the bottom side of the electronic cassette 20D is made flat by the control unit 32 and the panel accommodation unit 30 being developed sequentially to make the photographing possible.
  • 20C and radiation imaging systems 10A to 10C see FIGS. 1 to 34B).
  • FIG. 37A illustrates the state of the electronic cassette 20D when the doctor or radiologist transports the electronic cassette 20D.
  • the housing 48 constituting the control unit 32 includes a first base portion 48c connected to the hinge portion 170, a second base portion 48d connected to the first base portion 48c via the shaft portion 180, and a groove shape.
  • the movable portion 48b is slidable relative to the second base portion 48d under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166.
  • the cassette control unit 50, the power supply unit 52, and the communication unit 54 are accommodated in the movable unit 48b.
  • the doctor or radiologist expands the electronic cassette 20D from the compact state shown in FIG. 37A to the state shown in FIG. 39B, and sets the electronic cassette 20D in the imaging ready state (state shown in FIGS. 35 and 36).
  • the working steps for achieving the above will be described.
  • the doctor or radiologist transports the electronic cassette 20D to a predetermined place (for example, the imaging table 12) in a compact state shown in FIG. 37A, and then the case of the panel accommodation unit 30 with the hinge 170 as a central axis. 40 is pivoted to the position of FIG. 37B.
  • a predetermined place for example, the imaging table 12
  • the doctor or radiologist integrally pivots the second base portion 48d and the movable portion 48b with the shaft portion 180 as a central axis (see FIG. 38A).
  • the doctor or the radiologist turns the second base portion 48d and the movable portion 48b to a position where the movable portion 48b is upward (see FIGS. 38B and 39A).
  • the movement instructing unit 136 (according to the imaging region included in the order information and / or according to the temperature of the movable portion 48b that constitutes the control unit 32 8) instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80 to move the movable unit 48b in the direction of the arrow X2. pull.
  • the movable portion 48b slides from the position shown in FIG. 39A to the position shown in FIG. 39B under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166.
  • the electronic cassette 20D reaches a state capable of photographing shown in FIGS.
  • imaging may be performed in the state shown in FIGS. 38B and 39A.
  • the total length of the second base portion 48d is only slightly shorter than the total length of the housing 40 (see FIG. 37A). Therefore, the total length of the guide portions 160 and 162 is the second modification (FIG. 18A and FIG. Compared to the case of 18 B), it is set longer. Therefore, the distance between the imaging region 46 and the movable portion 48b can be easily made large.
  • the movable portion 48 b can slide and turn with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48 b. Since the panel accommodation unit 30 is also pivotable with respect to the control unit 32, the projected area of the radiation 16 can be easily changed, so that the same effects as in the first to third embodiments can be obtained. it can.
  • the second base portion 48d and the movable portion 48b are connected via the third base portion 48e, and the control unit 32 is entirely made into a telescopic structure.
  • the control unit 32 is entirely made into a telescopic structure.
  • the housing 48 in a side view, the first base portion 48c, the second base portion 48d, the third base portion 48e, and the movable portion 48b are connected in this order, and the shape of each component becomes larger in this order. Therefore, when the doctor or the radiologist pulls the handle 80 in the direction of the arrow X2 in the state shown in FIG. 40A, the movable portion 48b can be easily separated from the imaging region 46.
  • the movable portion 48b can be moved relative to the imaging region 46 according to the temperature of the imaging portion and the movable portion 48b, the projection area of the radiation 16 can be easily changed. Can be obtained, and the same effect as in FIGS. 35 to 39B can be obtained.
  • FIG. 43A illustrates the state of the electronic cassette 20E when the doctor or radiologist transports the electronic cassette 20E in a compact state.
  • the housing 48 constituting the control unit 32 is guided by the base portion 48a connected to the hinge portion 170, the grooved guide portions 160 and 162 provided on the base portion 48a, and the sliding members 164 and 166. And a movable portion 48b slidable with respect to the base portion 48a.
  • the cassette control unit 50, the power supply unit 52, and the communication unit 54 are accommodated in the movable unit 48b.
  • the doctor or radiologist expands the electronic cassette 20E from the compact state shown in FIG. 43A to the state shown in FIG. 44B, and sets the electronic cassette 20E in the imaging ready state (state shown in FIGS. 41 and 42)
  • the working steps for achieving the above will be described.
  • the doctor or radiologist transports the electronic cassette 20E to a predetermined place (for example, the imaging table 12) in the state of FIG. 43A, and then the case 40 of the panel accommodation unit 30 of FIG. Rotate to position.
  • a predetermined place for example, the imaging table 12
  • the imaging region 46 is directed downward, the doctor or the radiologist turns the electronic cassette 20E upside down as a whole (see FIG. 44A). As a result, the imaging region 46 is directed upward, and in the control unit 32, the base portion 48a is positioned on the bottom side and the movable portion 48b is positioned on the top side.
  • the movement instruction unit 136 (according to the imaging region included in the order information and / or according to the temperature of the movable part 8) instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80 to move the movable unit 48b in the direction of the arrow X2. pull.
  • the movable portion 48b slides from the position shown in FIG. 44A to the position shown in FIG. 44B under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166.
  • the electronic cassette 20E reaches a state capable of photographing shown in FIGS.
  • imaging may be performed in the state shown in FIG. 44A.
  • the total length of the base portion 48a is substantially the same as the total length of the housing 40 of the panel storage unit 30 (see FIG. 43A), the total length of the guide portions 160 and 162 can be set longer. The distance between the imaging region 46 and the movable portion 48b can be easily made large.
  • the first base portion 48c, the second base portion 48d, and the movable portion 48b are connected to the hinge portion 170 in this order, and the control unit 32 is entirely It differs from the embodiment of FIGS. 41-44B in that it is telescopically structured. That is, in the control unit 32, the shapes become larger in the order of the first base portion 48c, the second base portion 48d, and the movable portion 48b in a side view. Therefore, the doctor or the radiologist handles in the state shown in FIG. By pulling 80 in the direction of the arrow X2, the movable portion 48b can be easily separated from the imaging region 46.
  • the guide portions 150 and 152 are provided on the imaging surface 42 which is the upper surface of the housing 40 (see FIGS. 14A to 17B), or on the upper surface of the base portion 48a of the housing 48.
  • the guide portions 160 and 162 may be provided (see FIGS. 18A, 18B, 26A, 26B, 32A, 32B, 42, 43B, 44A and 44B) or the second base portion 48d. Guide portions 160 and 162 were provided on the upper surface (FIGS. 36, 37B, 39A and 39B).
  • the first to fifth embodiments are not limited to such an embodiment, and the guide portions 150 and 152 may be provided on the side surface of the housing 40, the side surface of the base portion 48a, or the side surface of the second base portion 48d. It goes without saying that even if 160 and 162 are provided, the respective effects of providing the guide portions 150, 152, 160 and 162 can be easily obtained.
  • the first modified example (see FIGS. 14A to 17B) is partially modified to provide the guide portions 150 and 152 on the side surface in the arrow Y1 direction and the side surface in the arrow Y2 direction in the housing 40, respectively.
  • the case (an eleventh modification) is shown in FIGS. 46A and 46B.
  • both end portions of the case 48 of the control unit 32 respectively project in the arrow Y1 direction and the arrow Y2 direction more than the case 40 of the panel accommodation unit 30 in plan view of FIG.
  • each protruding portion is provided to be engaged with the guide portions 150 and 152. Therefore, also in this eleventh modification, the same effect as in the first modification can be easily obtained.
  • the radiation conversion panel 92 may be configured as shown in FIGS. 47A and 47B (Twelfth Modified Example).
  • the radiation conversion panel 92 converts the radiation 16 transmitted through the subject 14 into visible light (absorbs the radiation 16 and emits visible light), and the scintillator 200.
  • the radiation detection unit 202 is configured to convert the visible light converted at 200 into an electrical signal (charge) corresponding to the radiation image.
  • a surface reading method in which the radiation detection unit 202 and the scintillator 200 are disposed in order with respect to the imaging surface 42 to which the radiation 16 is irradiated
  • ISS Irradiation Side Sampling
  • PSS method Penetration Side Sampling
  • the scintillator 200 emits light more strongly on the imaging surface 42 side where the radiation 16 is incident. Therefore, in the ISS method, since the scintillator 200 is disposed closer to the imaging surface 42 as compared with the PSS method, the resolution of the radiation image obtained by imaging is high, and the visibility of the radiation detection unit 202 is The amount of light received also increases. Therefore, the ISS method can improve the sensitivity of the radiation conversion panel 92 (electronic cassettes 20A to 20E) than the PSS method.
  • the scintillator 200 can use, for example, materials such as CsI: Tl (cesium iodide to which thallium is added), CsI: Na (sodium activated cesium iodide), GOS (Gd 2 O 2 S: Tb), etc. .
  • materials such as CsI: Tl (cesium iodide to which thallium is added), CsI: Na (sodium activated cesium iodide), GOS (Gd 2 O 2 S: Tb), etc. .
  • FIG. 47B illustrates, as an example, a case where a scintillator 200 including a columnar crystal region is formed by depositing a material containing CsI on the deposition substrate 204.
  • a columnar crystal region formed of the columnar crystal 200 a is formed on the imaging surface 42 side (the radiation detection unit 202 side) to which the radiation 16 is incident, and on the opposite side of the imaging surface 42 side.
  • a non-columnar crystal region composed of the non-columnar crystal 200b is formed.
  • substrate 204 a material with high heat resistance is desirable, for example, aluminum (Al) is suitable from a viewpoint of low cost.
  • the average diameter of the columnar crystals 200a is approximately uniform along the longitudinal direction of the columnar crystals 200a.
  • the scintillator 200 has a configuration formed of columnar crystal regions (columnar crystals 200 a) and non-columnar crystal regions (non-columnar crystals 200 b), and also includes columns consisting of columnar crystals 200 a from which light emission with high efficiency can be obtained.
  • the crystal region is disposed on the radiation detection unit 202 side. Therefore, visible light generated by the scintillator 200 travels in the columnar crystal 200 a and is emitted to the radiation detection unit 202. As a result, diffusion of visible light emitted to the radiation detection unit 202 side is suppressed, and blurring of the radiation image detected by the electronic cassettes 20A to 20E is suppressed.
  • the visible light reaching the deep portion (non-columnar crystal region) of the scintillator 200 is also reflected by the non-columnar crystal 200b toward the radiation detection unit 202, the amount of visible light incident on the radiation detection unit 202 (in the scintillator 200) The detection efficiency of the emitted visible light can also be improved.
  • the thickness of the columnar crystal region located on the imaging surface 42 side of the scintillator 200 is t1 and the thickness of the non-columnar crystal region located on the deposition substrate 204 side of the scintillator 200 is t2, then between t1 and t2 It is desirable to satisfy the relationship of 0.01 ⁇ (t2 / t1) ⁇ 0.25.
  • the region (pillar crystal region) having high luminous efficiency and preventing the diffusion of visible light is a suitable range, and the luminous efficiency of the scintillator 200, detection efficiency of visible light emitted by the scintillator 200, and radiation image Resolution is improved.
  • (t2 / t1) is 0.02 or more and 0.1 or less. More preferably, it is in the range of
  • the scintillator 200 in which the columnar crystal region and the non-columnar crystal region are continuously formed has been described, but, for example, light reflection made of Al or the like instead of the non-columnar crystal region A layer may be provided to form only the columnar crystal region, or another configuration may be used.
  • the radiation detection unit 202 detects visible light emitted from the light emission side (columnar crystal 200a) of the scintillator 200, and in the side view of FIG. 47A, along the incident direction of the radiation 16, on the imaging surface 42
  • the insulating substrate 208, the TFT layer 210, and the photoelectric conversion unit 212 are stacked in order.
  • a planarization layer 214 is formed on the bottom of the TFT layer 210 so as to cover the photoelectric conversion unit 212.
  • the radiation detection unit 202 includes a plurality of pixel units 220 each including a photoelectric conversion unit 212 including a photodiode (PD: Photo Diode) or the like, a storage capacitor 216, and a TFT 218 in a matrix on the insulating substrate 208. It is configured as a formed TFT active matrix substrate (hereinafter, also referred to as a TFT substrate).
  • the TFT 218 corresponds to the TFT 106 (see FIG. 8) described in the first embodiment, and the photoelectric conversion unit 212 and the storage capacitor 216 correspond to the pixel 100.
  • the photoelectric conversion unit 212 is configured by disposing a photoelectric conversion film 212 c between the lower electrode 212 a on the scintillator 200 side and the upper electrode 212 b on the TFT layer 210 side.
  • the photoelectric conversion film 212 c absorbs visible light emitted from the scintillator 200 and generates a charge according to the absorbed visible light.
  • the lower electrode 212 a is preferably made of a conductive material that is transparent to at least the emission wavelength of the scintillator 200 because the visible light emitted from the scintillator 200 needs to be incident on the photoelectric conversion film 212 c. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high transmittance to visible light and a small resistance value.
  • TCO transparent conductive oxide
  • the lower electrode 212a Although a metal thin film of Au or the like can be used as the lower electrode 212a, TCO is more preferable because the resistance value tends to increase if it is attempted to obtain a light transmittance of 90% or more.
  • TCO is more preferable because the resistance value tends to increase if it is attempted to obtain a light transmittance of 90% or more.
  • ITO Indium Tin Oxide
  • IZO Indium Tin Oxide
  • AZO Alluminium doped Zinc Oxide
  • FTO Fluorine doped Tin Oxide
  • SnO 2 , TiO 2 , ZnO 2 or the like is most preferable from the viewpoints of resistance, low resistance and transparency.
  • the lower electrode 212 a may be configured as a single sheet common to all the pixel units 220 or may be divided for each pixel unit 220.
  • the photoelectric conversion film 212c may be made of a material which absorbs visible light to generate an electric charge, and for example, amorphous silicon (a-Si), an organic photoelectric conversion material (OPC), or the like can be used.
  • a-Si amorphous silicon
  • OPC organic photoelectric conversion material
  • the photoelectric conversion film 212 c is made of amorphous silicon, the visible light emitted from the scintillator 200 can be absorbed over a wide wavelength range.
  • the formation of the photoelectric conversion film 212 c made of amorphous silicon needs to be performed by evaporation, and when the insulating substrate 208 is made of synthetic resin, the heat resistance of the insulating substrate 208 also needs to be considered.
  • the photoelectric conversion film 212c is made of a material containing an organic photoelectric conversion material, an absorption spectrum showing high absorption mainly in the visible light region can be obtained, so in the photoelectric conversion film 212c, visible light emitted from the scintillator 200 There is almost no absorption of electromagnetic waves other than light. As a result, it is possible to suppress noise generated by the absorption of the radiation 16 such as X-rays and ⁇ -rays by the photoelectric conversion film 212 c.
  • the photoelectric conversion film 212c made of an organic photoelectric conversion material can be formed by depositing the organic photoelectric conversion material on a formation target using a droplet discharge head such as an inkjet head, the formation Heat resistance to the body is not required. Therefore, in the twelfth modification, the photoelectric conversion film 212c is made of an organic photoelectric conversion material.
  • the photoelectric conversion film 212c is made of an organic photoelectric conversion material
  • the radiation 16 is hardly absorbed by the photoelectric conversion film 212c, so in the ISS method in which the radiation detection unit 202 is disposed to transmit the radiation 16, radiation detection The attenuation of the radiation 16 transmitted through the portion 202 can be suppressed, and the decrease in sensitivity to the radiation 16 can be suppressed. Therefore, it is particularly preferable to configure the photoelectric conversion film 212c with an organic photoelectric conversion material in the ISS method.
  • the absorption peak wavelength of the organic photoelectric conversion material constituting the photoelectric conversion film 212 c be closer to the emission peak wavelength of the scintillator 200 in order to absorb the visible light emitted from the scintillator 200 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 34.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 200 with respect to the radiation 16 is preferably 10 nm or less, and more preferably 5 nm or less.
  • a quinacridone organic compound and a phthalocyanine organic compound are mentioned, for example.
  • the absorption peak wavelength of quinacridone in the visible region is 560 nm
  • the difference between the above peak wavelengths can be made within 5 nm by using quinacridone as the organic photoelectric conversion material and CsI: Tl as the material of the scintillator 200.
  • the amount of charge generated in the photoelectric conversion film 212c can be substantially maximized.
  • the electromagnetic wave absorption / photoelectric conversion site in the radiation conversion panel 92 is an organic layer including the upper electrode 212 b and the lower electrode 212 a, and the photoelectric conversion film 212 c sandwiched between the upper electrode 212 b and the lower electrode 212 a. More specifically, the organic layer is a site that absorbs electromagnetic waves, a photoelectric conversion site, an electron transport site, a hole transport site, an electron blocking site, a hole blocking site, a crystallization prevention site, an electrode, and an interlayer contact. It can form by piling up or mixing improvement site
  • the organic layer preferably contains an organic p-type compound or an organic n-type compound.
  • the organic p-type semiconductor (compound) is a donor type organic semiconductor (compound) mainly represented by a hole transporting organic compound, and is an organic compound having a property of easily giving an electron. More specifically, when two organic materials are used in contact with each other, it is an organic compound having a smaller ionization potential. Therefore, any organic compound can be used as the donor organic compound, as long as it has an electron donating property.
  • the organic n-type semiconductor (compound) is an acceptor-type organic semiconductor (compound) mainly represented by an electron transporting organic compound, and is an organic compound having a property of easily accepting an electron. More specifically, when the two organic compounds are brought into contact with each other and used, it is the one having the larger electron affinity. Accordingly, any organic compound can be used as the acceptor type organic compound, as long as it has an electron accepting property.
  • the photoelectric conversion unit 212 may include at least the upper electrode 212 b, the lower electrode 212 a, and the photoelectric conversion film 212 c. However, in order to suppress an increase in dark current, at least one of the electron blocking film and the hole blocking film Preferably, it is preferable to provide both.
  • the electron blocking film can be provided between the upper electrode 212b and the photoelectric conversion film 212c, and when a bias voltage is applied between the upper electrode 212b and the lower electrode 212a, the upper electrode 212b to the photoelectric conversion film 212c It can be suppressed that electrons are injected and dark current increases.
  • An electron donating organic material can be used for the electron blocking film.
  • the material used for the electron blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 212c, etc., and the work function (Wf) of the material of the adjacent electrode is 1.3 eV or more It is preferable to have a large affinity (Ea) and an Ip equal to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 212c.
  • the material applicable as the electron donating organic material is described in detail in JP-A-2009-32854, and thus the description thereof is omitted.
  • the thickness of the electron blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, in order to reliably exhibit the dark current suppressing effect and to prevent the decrease in photoelectric conversion efficiency of the photoelectric conversion unit 212. Is 50 nm or more and 100 nm or less.
  • the hole blocking film can be provided between the photoelectric conversion film 212c and the lower electrode 212a, and when a bias voltage is applied between the upper electrode 212b and the lower electrode 212a, the lower electrode 212a to the photoelectric conversion film 212c. It is possible to suppress an increase in dark current due to the injection of holes into the An electron accepting organic material can be used for the hole blocking film.
  • the material used for the hole blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 212c, etc., and the work function (Wf) of the material of the adjacent electrode is 1.3 eV or more It is preferable that the ionization potential (Ip) is large and Ea equal to the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 212 c or Ea larger than that.
  • the materials applicable as the electron-accepting organic material are described in detail in JP-A-2009-32854, and the description thereof is omitted.
  • the thickness of the hole blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, in order to reliably exhibit the dark current suppressing effect and to prevent the decrease in photoelectric conversion efficiency of the photoelectric conversion unit 212. Is 50 nm or more and 100 nm or less.
  • the position of the electron blocking film and the holes are set.
  • the position of the blocking film may be reversed. Further, it is not essential to provide both the electron blocking film and the hole blocking film, and if any one is provided, it is possible to obtain a certain dark current suppressing effect.
  • a gate electrode, a gate insulating film, and an active layer are stacked, and further, a source electrode and a drain electrode are formed on the active layer at predetermined intervals.
  • the active layer can be formed of, for example, any of amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube and the like, but materials which can form the active layer are not limited thereto. Absent.
  • an amorphous oxide which can form an active layer for example, an oxide containing at least one of In, Ga and Zn (for example, In—O-based) is preferable, and at least one of In, Ga and Zn An oxide containing two (eg, In-Zn-O-based, In-Ga-O-based, Ga-Zn-O-based) is more preferable, and an oxide containing In, Ga and Zn is particularly preferable.
  • the In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in the crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO 4 is more preferable.
  • the amorphous oxide which can form an active layer is not limited to these.
  • organic-semiconductor material which can form an active layer
  • a phthalocyanine compound pentacene, vanadyl phthalocyanine etc. are mentioned, for example, it is not limited to these.
  • the configuration of the phthalocyanine compound is described in detail in JP-A-2009-212389, and thus the description is omitted.
  • the active layer of the TFT 218 is formed of any of amorphous oxide, organic semiconductor material, carbon nanotube, etc.
  • the radiation 16 such as X-ray will not be absorbed, or if it is absorbed, it will remain in a very small amount.
  • the generation of noise in the radiation detection unit 202 can be effectively suppressed.
  • the switching speed of the TFT 218 can be increased, and the degree of absorption of light in the visible light range of the TFT 218 can be reduced.
  • the performance of the TFT 218 is significantly reduced if only a very small amount of metallic impurities are mixed in the active layer, so separation and extraction of very high purity carbon nanotubes by centrifugation etc. It must be used to form the active layer.
  • the photoelectric conversion film 212 c formed of the organic photoelectric conversion material and the active layer are If the configuration is combined with the TFT 218 formed of an organic semiconductor material, it is not always necessary to increase the rigidity of the radiation detection unit 202 to which the weight of the body of the subject 14 is applied as a load.
  • the insulating substrate 208 may be any substrate as long as it has optical transparency and little absorption of radiation.
  • film formation at a low temperature is possible for both the amorphous oxide forming the active layer of the TFT 218 and the organic photoelectric conversion material forming the photoelectric conversion film 212 c of the photoelectric conversion portion 212. Therefore, the insulating substrate 208 is not limited to a highly heat resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate made of a synthetic resin, an aramid, and a bionanofiber can also be used.
  • Substrate can be used. If such a flexible substrate made of synthetic resin is used, weight reduction can be achieved, which is advantageous, for example, for portability.
  • the insulating substrate 208 may be an insulating layer for securing insulation, a gas barrier layer for preventing permeation of moisture or oxygen, an undercoat layer for improving flatness, adhesion with an electrode, or the like. May be provided.
  • the transparent electrode material can be cured at high temperature to reduce resistance, and can cope with automatic mounting of a driver IC including a solder reflow process.
  • aramid has a thermal expansion coefficient close to that of ITO or a glass substrate, there is little warpage after manufacture and it is difficult to be broken.
  • aramid can make a substrate thinner than a glass substrate or the like.
  • the insulating substrate 208 may be formed by stacking an ultrathin glass substrate and an aramid.
  • the bio-nanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter, Acetobacter Xylinum) and a transparent resin.
  • the cellulose microfibril bundle is 50 nm in width and 1/10 in size with respect to visible light wavelength, and is high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as an acrylic resin or an epoxy resin
  • Bionanofibers have a low coefficient of thermal expansion (3 ppm to 7 ppm) comparable to silicon crystals, and have strength comparable to steel (460 MPa), high elasticity (30 GPa), and are flexible compared to glass substrates etc. Thus, the insulating substrate 208 can be thinned.
  • the thickness of the entire radiation detection unit 202 is, for example, about 0.7 mm, but in the twelfth modification, thinning of the electronic cassettes 20A to 20E is performed.
  • the insulating substrate 208 a thin substrate made of a synthetic resin having light transparency is used as the insulating substrate 208.
  • the thickness of the radiation detection unit 202 as a whole can be reduced to, for example, about 0.1 mm, and the radiation detection unit 202 can be made flexible.
  • the radiation detection unit 202 flexible, the impact resistance of the electronic cassettes 20A to 20E is improved, and the electronic cassettes 20A to 20E become difficult to be damaged even when an impact is applied thereto.
  • plastic resins, aramids, bio-nanofibers and the like all have low absorption of radiation 16, and when insulating substrate 208 is formed of these materials, the amount of absorption of radiation 16 by insulating substrate 208 also decreases. Even in the configuration in which the radiation 16 passes through the radiation detection unit 202 by the ISS method, the decrease in sensitivity to the radiation 16 can be suppressed.
  • a synthetic resin substrate as the insulating substrate 208 of the electronic cassettes 20A to 20E, and although the thickness of the electronic cassettes 20A to 20E is increased, a substrate made of another material such as a glass substrate is used.
  • the insulating substrate 208 may be used.
  • a planarization layer 214 for flattening the radiation detection unit 202 is formed on the side (scintillator 200 side) opposite to the arrival direction of the radiation 16.
  • the radiation conversion panel 92 may be configured as follows.
  • the photoelectric conversion unit 212 including a PD may be formed of an organic photoelectric conversion material, and the TFT layer 210 may be formed using a CMOS sensor. In this case, since only the PD is made of an organic material, the TFT layer 210 including the CMOS sensor may not have flexibility.
  • the photoelectric conversion unit 212 made of an organic photoelectric conversion material and the CMOS sensor are described in Japanese Patent Laid-Open No. 2009-212377, and thus the detailed description thereof is omitted.
  • the photoelectric conversion portion 212 including PD may be made of an organic photoelectric conversion material
  • the flexible TFT layer 210 may be realized by a CMOS circuit provided with a TFT made of an organic material.
  • pentacene may be employed as the material of the p-type organic semiconductor used in the CMOS circuit
  • copper fluoride phthalocyanine (F 16 CuPc) may be employed as the material of the n-type organic semiconductor.
  • the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or less.
  • CMOS circuits can also be fabricated directly on the flexible insulating substrate 208.
  • TFTs made of an organic material can be miniaturized by the manufacturing process in accordance with the scaling law.
  • the insulating substrate 208 when a polyimide precursor is applied by a spin coating method on a thin polyimide substrate and heated, the polyimide precursor is changed to a polyimide, so that a flat substrate without unevenness can be realized. it can.
  • a self-aligned placement technique (Fluidic Self-Assembly) in which a plurality of micron-order device blocks are disposed at specified positions on a substrate, PD and TFT composed of crystalline Si are insulated as resin substrates It may be disposed on the substrate 208.
  • PDs and TFTs as micron-order micro device blocks are fabricated on another substrate in advance and then separated from the substrates, and the PDs and the TFTs are dispersed on the insulating substrate 208 as a target substrate in a liquid. And place them statistically.
  • the insulating substrate 208 is previously processed to conform to the device block, and the device block can be selectively disposed on the insulating substrate 208.
  • the optimum device block (PD and TFT) made of the optimum material can be integrated on the optimum substrate (insulating substrate 208), and the non-crystalline insulating substrate 208 (resin substrate) can be PD and It becomes possible to integrate the TFT.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

Disclosed is a radiation imaging device (20A-20E) configuring a radiation imaging system (10A-10E). Specifically disclosed is a radiation imaging device (20A-20E) wherein a panel housing unit (30) is provided with a photographic surface (42) to be irradiated with radiation (16) and a projecting portion (32) projecting in the incident direction of the radiation (16). The panel housing unit (30) and/or at least a portion (32, 48b) of the projecting portion (32) are movable without separating the panel housing unit (30) and the projecting portion (32) from each other.

Description

放射線画像撮影装置及び放射線画像撮影システムRadiation image capturing apparatus and radiation image capturing system
 本発明は、放射線を放射線画像に変換する放射線変換パネルを収容したパネル収容ユニットを有する放射線画像撮影装置と、前記放射線画像撮影装置及び該放射線画像撮影装置を制御する制御装置を備える放射線画像撮影システムとに関する。 According to the present invention, there is provided a radiation image capturing apparatus comprising: a radiation image capturing apparatus having a panel accommodating unit containing a radiation conversion panel for converting radiation into a radiation image; a radiation image capturing apparatus; and a control apparatus for controlling the radiation image capturing apparatus. About and.
 医療分野において、被写体に放射線を照射し、該被写体を透過した前記放射線を放射線変換パネルに導いて放射線画像を撮影する放射線画像撮影装置が広汎に使用されている。前記放射線変換パネルとしては、前記放射線画像が露光記録される従来からの放射線フイルムや、蛍光体に前記放射線画像としての放射線エネルギを蓄積し、励起光を照射することで前記放射線画像を輝尽発光光として取り出すことのできる蓄積性蛍光体パネルが知られている。これらの放射線変換パネルは、前記放射線画像が記録された放射線フイルムを現像装置に供給して現像処理を行い、あるいは、前記蓄積性蛍光体パネルを読取装置に供給して読取処理を行うことで、可視画像を得ることができる。 2. Description of the Related Art In the medical field, a radiation image capturing apparatus is widely used which applies radiation to a subject, guides the radiation transmitted through the subject to a radiation conversion panel, and captures a radiation image. As the radiation conversion panel, a conventional radiation film on which the radiation image is exposed and recorded, or radiation energy as the radiation image is accumulated in a fluorescent material, and the radiation image is irradiated with excitation light to stimulate the radiation image. Storage phosphor panels are known which can be extracted as light. These radiation conversion panels supply the radiation film on which the radiation image is recorded to a developing device to perform development processing, or supply the stimulable phosphor panel to a reading device to perform reading processing. A visible image can be obtained.
 一方、手術室等においては、患者に対して迅速且つ的確な処置を施すため、撮影後の放射線変換パネルから直ちに放射線画像を読み出して表示できることが必要である。このような要求に対応可能な放射線変換パネルとして、放射線を電気信号に直接変換する固体検出素子を用いた直接変換型の放射線変換パネル、あるいは、放射線を可視光に一旦変換するシンチレータと、前記可視光を電気信号に変換する固体検出素子とを用いた間接変換型の放射線変換パネルが開発されている。 On the other hand, in the operating room or the like, it is necessary to be able to immediately read out and display a radiation image from the radiation conversion panel after imaging in order to perform a prompt and appropriate treatment on the patient. As a radiation conversion panel capable of meeting such requirements, a direct conversion type radiation conversion panel using a solid-state detection element that directly converts radiation into an electric signal, or a scintillator that once converts radiation into visible light, An indirect conversion type radiation conversion panel has been developed using a solid state detection element that converts light into an electrical signal.
 上述した直接変換型又は間接変換型の放射線変換パネルと、該放射線変換パネルを制御して前記放射線画像を電気信号として読み出す制御部と、外部との間で前記電気信号を含めた信号の送受信を行う通信部と、電源部とがパネル収容ユニットに収容されることにより、電子カセッテと呼称される放射線画像撮影装置が構成される。従って、前記電子カセッテは、蓄積性蛍光体パネルを用いた放射線画像撮影装置と比較して、厚みがあると共に重量が大きくなる。 Transmission and reception of signals including the electric signal between the above-described direct conversion type or indirect conversion type radiation conversion panel, a control unit that controls the radiation conversion panel to read out the radiation image as an electric signal, and the outside The communication unit to be performed and the power supply unit are accommodated in the panel accommodation unit, whereby a radiation imaging apparatus called an electronic cassette is configured. Therefore, the electronic cassette is thicker and heavier than a radiographic imaging device using a stimulable phosphor panel.
 そこで、蓄積性蛍光体パネルを用いた放射線画像撮影装置と同等程度の軽量化及び薄型化を図るためには、パネル収容ユニットの厚みをできる限り薄くすると共に、動作時に発熱する制御部、通信部及び電源部を前記パネル収容ユニット以外のユニット(制御ユニット)に収容することが望ましい。また、前記パネル収容ユニットにおける放射線の照射面(撮影面)に、前記パネル収容ユニットに対する突出部分として前記制御ユニットを配置した場合には、被写体と前記突出部分とができる限り離れていることが望ましい。しかしながら、前記突出部分を避けるように前記撮影面に対して撮影部位を位置決めすると、該撮影部位によっては前記被写体が不自然な姿勢となり、該被写体が違和感を感じるおそれがある。また、前記突出部分は、放射線から放射線画像への変換に寄与しない部分であるため、該突出部分の配置箇所によっては、撮影の邪魔になるおそれがある。 Therefore, in order to achieve weight reduction and thickness reduction equivalent to those of a radiation imaging apparatus using a stimulable phosphor panel, the thickness of the panel accommodation unit is made as thin as possible, and a control unit and communication unit that generate heat during operation And it is desirable to accommodate a power supply part in units (control unit) other than the above-mentioned panel accommodation unit. When the control unit is disposed on the radiation receiving surface (imaging surface) of the panel storage unit as a protruding portion with respect to the panel storage unit, it is desirable that the subject and the protruding portion be as far apart as possible. . However, if the imaging site is positioned with respect to the imaging plane so as to avoid the projecting portion, the subject may have an unnatural posture depending on the imaging site, and the subject may feel discomfort. In addition, since the protruding portion is a portion that does not contribute to the conversion of radiation into a radiation image, depending on the location of the protruding portion, there is a possibility that it may interfere with imaging.
 特開2009-80103号公報には、制御ユニットをパネル収容ユニットから分離させた状態で、被写体に対する撮影を行うことが提案されている。 Japanese Patent Laid-Open No. 2009-80103 proposes that a subject be photographed while the control unit is separated from the panel storage unit.
 しかしながら、制御ユニットとパネル収容ユニットとを分離させた場合に、医師又は放射線技師は、両手で放射線画像撮影装置を取り扱う必要があるので、撮影面に対する被写体の位置決め等の撮影準備が煩雑になる。また、前記制御ユニットには、重量の大きな制御部、通信部及び電源部が収容されているので、分離後の前記制御ユニットの取り扱いが容易ではない。 However, when the control unit and the panel storage unit are separated, the doctor or the radiologist needs to handle the radiographic imaging apparatus with both hands, so that preparation for imaging such as positioning of the subject on the imaging surface becomes complicated. Moreover, since the control unit, the communication unit, and the power supply unit, which are heavy in weight, are accommodated in the control unit, handling of the control unit after separation is not easy.
 本発明の目的は、撮影時に、パネル収容ユニットと突出部分とを分離させることなく、被写体と前記突出部分とが離れるようにすることで、撮影準備及び撮影の容易化と、装置の取り扱い性の向上とを共に実現することにある。 SUMMARY OF THE INVENTION The object of the present invention is to facilitate the preparation for shooting and shooting and the handling of the apparatus by separating the subject from the projecting portion without separating the panel housing unit and the projecting portion at the time of shooting. It is about realizing improvement together.
 上記の目的を達成するために、本発明に係る放射線画像撮影装置は、放射線を放射線画像に変換する放射線変換パネルを収容したパネル収容ユニットを有し、
 前記パネル収容ユニットには、前記放射線が照射される撮影面と、前記放射線の入射方向に向かって突出した突出部分とが設けられ、
 前記突出部分の少なくとも一部分と前記パネル収容ユニットとのうち、少なくとも一方は、前記突出部分と前記パネル収容ユニットとを分離させない状態で移動可能であることを特徴としている。
In order to achieve the above object, a radiation imaging apparatus according to the present invention has a panel accommodation unit that accommodates a radiation conversion panel for converting radiation into a radiation image,
The panel storage unit is provided with a photographing surface to which the radiation is irradiated, and a projecting portion which protrudes in the incident direction of the radiation,
At least one of the at least one portion of the projecting portion and the panel accommodating unit is characterized in that the projecting portion and the panel accommodating unit are movable without being separated.
 また、本発明に係る放射線画像撮影システムは、放射線を放射線画像に変換する放射線変換パネルを収容したパネル収容ユニットを有する放射線画像撮影装置と、前記放射線画像撮影装置を制御する制御装置とを備え、
 前記パネル収容ユニットには、前記放射線が照射される撮影面と、前記放射線の入射方向に向かって突出した突出部分とが設けられ、
 前記突出部分の少なくとも一部分と前記パネル収容ユニットとのうち、少なくとも一方は、前記突出部分と前記パネル収容ユニットとを分離させない状態で移動可能であることを特徴としている。
Further, a radiation imaging system according to the present invention comprises a radiation imaging apparatus having a panel accommodation unit that accommodates a radiation conversion panel for converting radiation into a radiation image, and a control device for controlling the radiation imaging apparatus.
The panel storage unit is provided with a photographing surface to which the radiation is irradiated, and a projecting portion which protrudes in the incident direction of the radiation,
At least one of the at least one portion of the projecting portion and the panel accommodating unit is characterized in that the projecting portion and the panel accommodating unit are movable without being separated.
 これらの発明によれば、突出部分の少なくとも一部分とパネル収容ユニットとのうち、少なくとも一方を、前記突出部分と前記パネル収容ユニットとを分離させない状態で移動させることにより、撮影面に位置決めされた被写体と前記突出部分とを容易に離間させることが可能となる。これにより、撮影時には、前記被写体の撮影部位に応じて前記撮影面に照射される放射線の照射面積(投影面積)を変化させることができるので、前記被写体に違和感を感じさせることなく、撮影を遂行することができると共に、前記突出部分が撮影の邪魔になることを回避できる。従って、本発明では、撮影準備及び撮影の容易化と、装置の取り扱い性の向上とを共に実現することができる。 According to these inventions, an object positioned on the photographing surface by moving at least one of the projecting portion and the panel accommodating unit without separating the projecting portion and the panel accommodating unit. And the protruding portion can be easily separated. Thereby, at the time of imaging, since the irradiation area (projected area) of the radiation irradiated to the imaging surface can be changed according to the imaging region of the object, imaging is performed without making the object feel discomfort. It is possible to prevent the projection from being in the way of shooting. Therefore, according to the present invention, it is possible to realize both the imaging preparation and imaging facilitation and the improvement of the handling of the apparatus.
 なお、前記突出部分の少なくとも一部分とは、前記突出部分の一部であってもよいし、あるいは、前記突出部分の全体であってもよい。また、前記突出部分の少なくとも一部分と前記パネル収容ユニットとのうち、少なくとも一方が移動可能とは、前記突出部分の少なくとも一部分に対して前記パネル収容ユニットが移動可能であるか、前記パネル収容ユニットに対して前記突出部分の少なくとも一部分が移動可能であるか、あるいは、前記突出部分の少なくとも一部分及び前記パネル収容ユニットが共に移動可能であることをいう。例えば、前記パネル収容ユニットを基準としたときに、該パネル収容ユニットに対して前記突出部分の少なくとも一部分が相対的に移動可能な状態をいう。 Note that at least a portion of the protruding portion may be a portion of the protruding portion, or may be the entire protruding portion. In the movable at least one of the at least one portion of the projecting portion and the panel accommodating unit, the panel accommodating unit may be movable with respect to at least a portion of the projecting portion, or In other words, at least a portion of the projecting portion is movable, or at least a portion of the projecting portion and the panel storage unit are movable together. For example, it refers to a state in which at least a portion of the projecting portion is movable relative to the panel storage unit, based on the panel storage unit.
 ここで、前記突出部分の少なくとも一部分は、前記パネル収容ユニット又は前記突出部分の他の部分に接触した状態で移動可能であり、一方で、前記パネル収容ユニットは、前記突出部分に接触した状態で移動可能であればよい。これにより、撮影時には、前記被写体と前記突出部分の少なくとも一部分とを離間しつつ、前記投影面積を変更することができる。 Here, at least a portion of the protruding portion is movable in contact with the panel storage unit or another portion of the protruding portion, while the panel storage unit is in contact with the protruding portion. It should be movable. Thereby, at the time of photographing, the projection area can be changed while separating the subject and at least a part of the projecting portion.
 この場合、前記突出部分が前記放射線変換パネルを制御する制御ユニットであり、前記制御ユニットの少なくとも一部分が前記撮影面に対して相対的に移動可能であれば、前記パネル収容ユニットと前記制御ユニットとを分離させることなく、前記投影面積を容易に変更することができる。 In this case, the projecting portion is a control unit that controls the radiation conversion panel, and the panel storage unit and the control unit can move at least a part of the control unit relative to the imaging surface. The projected area can be easily changed without separating the
 また、前記撮影面における前記放射線の照射領域は、前記放射線画像に変換可能な撮影領域であり、前記制御ユニットの少なくとも一部分は、前記撮影領域から離間する方向に移動可能であればよい。これにより、撮影時には、前記被写体から前記制御ユニットの少なくとも一部分を離しつつ、前記被写体の撮影部位に応じて前記投影面積を可変する(大きくする)ことができる。 Further, the irradiation area of the radiation on the imaging plane may be an imaging area that can be converted to the radiation image, and at least a part of the control unit may be movable in a direction away from the imaging area. As a result, at the time of shooting, it is possible to change (increase) the projection area according to the shooting region of the subject while separating at least a part of the control unit from the subject.
 また、前記制御ユニットの少なくとも一部分が、前記撮影面及び前記制御ユニットの他の部分の少なくともいずれか一方に接触した状態で、(1)前記撮影領域から離間する方向に摺動可能であるか、(2)前記撮影面に略直交する回転軸を中心として回動するか、あるいは、(3)前記撮影面に平行な方向に沿った回転軸を中心として回動すれば、前記撮影部位の大きさに応じて前記投影面積を変更することができる。 Furthermore, in a state in which at least a part of the control unit is in contact with at least one of the imaging surface and the other part of the control unit, (1) can be slid in a direction away from the imaging region; (2) The size of the imaging region can be obtained by rotating around a rotation axis substantially orthogonal to the imaging plane, or (3) rotating around a rotation axis along a direction parallel to the imaging plane. Depending on the size, the projected area can be changed.
 ここで、前記制御ユニットの少なくとも一部分は、該制御ユニットの動作時に発熱する箇所であり、前記制御ユニットは、該制御ユニットの少なくとも一部分の温度を検出する温度検出部と、前記温度検出部が検出した前記温度に関わる情報を報知する報知部とを有する。これにより、医師又は放射線技師は、前記報知部から報知された前記情報に従って、前記撮影面から離間させる方向に前記制御ユニットの少なくとも一部分を変位させることができる。この結果、撮影時における、前記被写体と、発熱体としての前記制御ユニットの少なくとも一部分との接触を確実に回避することができる。 Here, at least a part of the control unit is a portion that generates heat when the control unit operates, and the control unit detects a temperature detection unit that detects the temperature of at least a part of the control unit, and the temperature detection unit detects And a notification unit for notifying information related to the temperature. Thereby, a doctor or a radiologist can displace at least a part of the control unit in a direction to be separated from the imaging surface according to the information notified from the notification unit. As a result, contact between the subject and at least a portion of the control unit as a heating element can be reliably avoided at the time of shooting.
 従って、前記被写体が感じる違和感とは、前記突出部分(前記制御ユニット)の存在によって、撮影時における前記撮影面への前記被写体の位置決めの際に、前記被写体に対して負荷のかかる体勢(不自然な姿勢)を強いることによる前記被写体が感じる負担に加え、前記制御ユニットの動作時に発熱する箇所(前記制御ユニットの少なくとも一部分)に前記被写体が接触することで、熱さを感じることも含まれる。 Therefore, the sense of incongruity that the subject feels is the presence of a load (unnaturalness) on the subject at the time of positioning the subject on the photographing surface at the time of shooting due to the presence of the projecting portion (the control unit). In addition to the burden felt by the subject due to forcing the subject posture, the feeling of heat is also included when the subject contacts a portion (at least a part of the control unit) that generates heat during operation of the control unit.
 また、前記報知部は、前記温度を表示する温度表示部であるか、あるいは、該温度表示部と、前記温度が所定温度に到達したときに音及び画面表示の少なくとも一方により外部に警告する警告部とであることが望ましい。これにより、医師又は放射線技師に対して前記温度に関わる各種情報を確実に報知することができるので、前記撮影面に対する前記制御ユニットの少なくとも一部分の変位を一層効率よく行うことが可能となる。 Further, the notification unit is a temperature display unit that displays the temperature, or a warning that warns the outside by at least one of a sound and a screen display when the temperature display unit and the temperature reach a predetermined temperature. It is desirable to be a department. As a result, since various information related to the temperature can be reliably notified to the doctor or the radiographer, it is possible to more efficiently displace at least a part of the control unit with respect to the imaging surface.
 また、前記温度表示部は、前記温度を複数段階で表示するか、あるいは、前記温度をサーモラベルの形式で表示できればよい。これにより、医師又は放射線技師は、前記制御ユニットの少なくとも一部分の現在の温度や、温度変化の状況(温度上昇中であるか否か)を容易に把握することができる。 In addition, the temperature display unit may display the temperature in a plurality of stages or may display the temperature in the form of a thermo label. Thereby, the doctor or the radiologist can easily grasp the current temperature of at least a part of the control unit and the state of the temperature change (whether the temperature is rising or not).
 また、前記報知部は、前記温度に基づいて、前記制御ユニットの少なくとも一部分の移動の要否を報知できればよい。これにより、医師又は放射線技師は、自身が判断しなくても、前記報知部からの報知があったときに、前記制御ユニットの少なくとも一部分を移動させればよい。この結果、前記放射線画像撮影装置の使い勝手が一層向上する。 Moreover, the said alerting | reporting part should just alert | report the necessity of the movement of at least one part of the said control unit based on the said temperature. Thereby, the doctor or the radiologist may move at least a part of the control unit when notified by the notification unit, without making a judgment of itself. As a result, the usability of the radiation image capturing apparatus is further improved.
 また、前記制御ユニットは、外部との信号の送受信が可能な通信部をさらに有し、前記通信部から、前記放射線画像撮影装置を制御する制御装置に対して前記情報を送信することにより、該制御装置を介して前記情報を報知させてもよい。この場合でも、医師又は放射線技師は、前記制御装置を介して報知された前記情報に従って、前記制御ユニットの少なくとも一部分を変位させることができるので、前記被写体と前記制御ユニットの少なくとも一部分との接触を回避することが可能である。 In addition, the control unit further includes a communication unit capable of transmitting and receiving signals to and from the outside, and the communication unit transmits the information to a control device that controls the radiographic imaging device. The information may be notified via the control device. Even in this case, the doctor or the radiologist can displace at least a portion of the control unit according to the information notified via the control device, so that the contact between the subject and at least a portion of the control unit It is possible to avoid.
 また、前記制御ユニットは、外部との信号の送受信が可能な通信部と、前記制御ユニット及び前記パネル収容ユニットを制御する制御部と、前記制御ユニット及び前記パネル収容ユニットの各部に電力を供給する電源部とをさらに有し、少なくとも前記電源部は、前記制御ユニットの少なくとも一部分に配置される。前記電源部は、前記制御ユニットを構成する各部品のうち、発熱量が比較的大きな部品であるため、該電源部を前記制御ユニットの少なくとも一部分に配置し、撮影時に、前記撮影面に対して離間する方向に前記制御ユニットの少なくとも一部分を移動させることで、前記被写体の違和感を一層低減することが可能となる。 Further, the control unit supplies power to a communication unit capable of transmitting and receiving signals with the outside, a control unit that controls the control unit and the panel accommodation unit, and each unit of the control unit and the panel accommodation unit. And a power supply unit, at least the power supply unit being disposed in at least a portion of the control unit. The power supply unit is a component that generates a relatively large amount of heat among the components constituting the control unit, so the power supply unit is disposed in at least a part of the control unit, and the photographing surface By moving at least a part of the control unit in the direction of separation, it is possible to further reduce the discomfort of the subject.
 また、前記制御ユニットは、該制御ユニットの少なくとも一部分の移動に関わる情報を表示する移動情報表示部をさらに有し、前記通信部は、被写体に対する前記放射線の照射に関わるオーダ情報を外部から受信し、前記制御部は、前記オーダ情報に基づいて、前記制御ユニットの少なくとも一部分の移動の要否を前記移動情報表示部に表示させてもよい。前記オーダ情報には、前記被写体の撮影部位等の情報も含まれているので、該オーダ情報に基づき、前記制御ユニットの少なくとも一部分を移動させて、前記投影面積を変更することにより、前記放射線画像撮影装置の使い勝手を一層向上することができる。 In addition, the control unit further includes a movement information display unit that displays information related to movement of at least a part of the control unit, and the communication unit receives order information related to the irradiation of the radiation to the subject from the outside. The control unit may cause the movement information display unit to display the necessity of movement of at least a part of the control unit based on the order information. Since the order information also includes information such as the imaging region of the subject, the radiation image can be obtained by moving at least a part of the control unit based on the order information to change the projection area. The usability of the photographing device can be further improved.
第1実施形態に係るカセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the cassette which concerns on 1st Embodiment is applied. 図1のカセッテの斜視図である。It is a perspective view of the cassette of FIG. 図1のカセッテの斜視図である。It is a perspective view of the cassette of FIG. 図2のIV-IV線に沿った撮影時のカセッテの断面図である。FIG. 4 is a cross-sectional view of the cassette at the time of imaging, taken along line IV-IV of FIG. 2; 図1のカセッテの一部を破断して図示した平面図である。It is the top view which fractured | ruptured and showed a part of cassette of FIG. 制御ユニットが移動したときのカセッテの平面図である。It is a top view of a cassette when a control unit moves. 図7Aは、移動前の制御ユニットの位置を示す側面図であり、図7Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 7A is a side view showing the position of the control unit before movement, and FIG. 7B is a side view showing the position of the control unit after movement. 図1のカセッテのブロック図である。It is a block diagram of the cassette of FIG. 図1の放射線画像撮影システムによる被写体の撮影を説明するためのフローチャートである。It is a flowchart for demonstrating imaging | photography of the to-be-photographed object by the radiographic imaging system of FIG. 図10A~図10Cは、制御ユニットの温度と、該制御ユニットの移動の要否又は完了の通知とを、前記制御ユニットの表示部に画面表示させた状態を示す説明図である。FIG. 10A to FIG. 10C are explanatory views showing a state in which the temperature of the control unit and the notification of necessity / completion of movement of the control unit are displayed on the display unit of the control unit. 図11A~図11Cは、制御ユニットの温度と、該制御ユニットの移動の要否又は完了の通知とを、前記制御ユニットの表示部に画面表示させた状態を示す説明図である。11A to 11C are explanatory views showing a state in which the temperature of the control unit and the notification of necessity or completion of the movement of the control unit are displayed on the display unit of the control unit. 図12A~図12Cは、オーダ情報と制御ユニットの移動の要否又は完了の通知とを、該制御ユニットの表示部に画面表示させた状態を示す説明図である。12A to 12C are explanatory diagrams showing a state in which the order information and the notification of necessity / completion of movement of the control unit are displayed on the display unit of the control unit. 図1のカセッテに対する充電処理の状態を示す斜視図である。It is a perspective view which shows the state of the charge process with respect to the cassette of FIG. 図14A及び図14Bは、第1変形例のカセッテの平面図及び側面図である。14A and 14B are a plan view and a side view of a cassette according to a first modification. 図15A及び図15Bは、制御ユニットが撮影領域の端部に配置された状態を示す平面図及び側面図である。15A and 15B are a plan view and a side view showing a state in which the control unit is disposed at the end of the imaging area. 図16A及び図16Bは、制御ユニットが撮影領域の中央部に配置された状態を示す平面図及び側面図である。FIG. 16A and FIG. 16B are a plan view and a side view showing a state in which the control unit is disposed at the central part of the imaging region. 図17A及び図17Bは、撮影時の制御ユニットの位置を示す平面図及び側面図である。17A and 17B are a plan view and a side view showing the position of the control unit at the time of shooting. 図18A及び図18Bは、第2変形例のカセッテの側面図である。18A and 18B are side views of a cassette according to a second modification. 第3変形例のカセッテの斜視図である。It is a perspective view of the cassette of the 3rd modification. 図20Aは、移動前の制御ユニットの位置を示す側面図であり、図20Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 20A is a side view showing the position of the control unit before movement, and FIG. 20B is a side view showing the position of the control unit after movement. 図19~図20Bのヒンジ部におけるフレキシブル基板の配置を示す要部斜視図である。FIG. 21 is a perspective view of an essential part showing the arrangement of the flexible substrate in the hinge part of FIGS. 19 to 20B. 第4変形例のカセッテの斜視図である。It is a perspective view of the cassette of the 4th modification. 図23Aは、移動前の制御ユニットの位置を示す平面図であり、図23Bは、移動後の制御ユニットの位置を示す平面図である。FIG. 23A is a plan view showing the position of the control unit before movement, and FIG. 23B is a plan view showing the position of the control unit after movement. 第2実施形態に係るカセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the cassette which concerns on 2nd Embodiment is applied. 図24のカセッテの斜視図である。FIG. 25 is a perspective view of the cassette of FIG. 24. 図26Aは、移動前の制御ユニットの位置を示す側面図であり、図26Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 26A is a side view showing the position of the control unit before movement, and FIG. 26B is a side view showing the position of the control unit after movement. 第5変形例のカセッテの斜視図である。It is a perspective view of the cassette of the 5th modification. 図28Aは、移動前の制御ユニットの位置を示す側面図であり、図28Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 28A is a side view showing the position of the control unit before movement, and FIG. 28B is a side view showing the position of the control unit after movement. 第6変形例のカセッテの斜視図である。It is a perspective view of the cassette of the 6th modification. 図30Aは、移動前の制御ユニットの位置を示す平面図であり、図30Bは、移動後の制御ユニットの位置を示す平面図である。FIG. 30A is a plan view showing the position of the control unit before movement, and FIG. 30B is a plan view showing the position of the control unit after movement. 第3実施形態に係るカセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the cassette which concerns on 3rd Embodiment is applied. 図32Aは、移動前の制御ユニットの位置を示す側面図であり、図32Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 32A is a side view showing the position of the control unit before movement, and FIG. 32B is a side view showing the position of the control unit after movement. 図33Aは、第7変形例のカセッテにおける移動前の制御ユニットの位置を示す側面図であり、図33Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 33A is a side view showing the position of the control unit before movement in the cassette according to the seventh modification, and FIG. 33B is a side view showing the position of the control unit after movement. 図34Aは、第8変形例のカセッテにおける移動前の制御ユニットの位置を示す平面図であり、図34Bは、移動後の制御ユニットの位置を示す平面図である。FIG. 34A is a plan view showing the position of the control unit before movement in the cassette of the eighth modification, and FIG. 34B is a plan view showing the position of the control unit after movement. 第4実施形態に係るカセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the cassette which concerns on 4th Embodiment is applied. 図35のカセッテの斜視図である。It is a perspective view of the cassette of FIG. 図37Aは、運搬時のカセッテの状態を示す斜視図であり、図37Bは、図37Aの状態からパネル収容ユニットを回動させた状態を示す側面図である。FIG. 37A is a perspective view showing a state of the cassette at the time of transportation, and FIG. 37B is a side view showing a state in which the panel storage unit is rotated from the state of FIG. 37A. 図38Aは、図37Bの状態から制御ユニットの一部を回動させている状態を示す斜視図であり、図38Bは、図38Aの回動完了後のカセッテの状態を示す斜視図である。38A is a perspective view showing a state in which a part of the control unit is rotated from the state of FIG. 37B, and FIG. 38B is a perspective view showing a state of the cassette after the rotation completion of FIG. 38A. 図39Aは、図38Bの状態を示す側面図であり、図39Bは、制御ユニットの一部を移動させた後のカセッテの状態を示す側面図である。39A is a side view showing the state of FIG. 38B, and FIG. 39B is a side view showing the state of the cassette after moving a part of the control unit. 図40Aは、第9変形例のカセッテにおける移動前の制御ユニットの位置を示す側面図であり、図40Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 40A is a side view showing the position of the control unit before movement in the cassette of the ninth modification, and FIG. 40B is a side view showing the position of the control unit after movement. 第5実施形態に係るカセッテが適用される放射線画像撮影システムの構成図である。It is a block diagram of the radiographic imaging system to which the cassette which concerns on 5th Embodiment is applied. 図41のカセッテの斜視図である。FIG. 42 is a perspective view of the cassette of FIG. 41. 図43Aは、運搬時のカセッテの状態を示す斜視図であり、図43Bは、図43Aの状態からパネル収容ユニットを回動させた状態を示す側面図である。FIG. 43A is a perspective view showing a state of the cassette at the time of transportation, and FIG. 43B is a side view showing a state in which the panel storage unit is rotated from the state of FIG. 43A. 図44Aは、図43Bの状態からカセッテを上下反転させた状態を示す側面図であり、図44Bは、制御ユニットを移動させた後のカセッテの状態を示す側面図である。44A is a side view showing a state in which the cassette is turned upside down from the state of FIG. 43B, and FIG. 44B is a side view showing a state of the cassette after the control unit is moved. 図45Aは、第10変形例のカセッテにおける移動前の制御ユニットの位置を示す側面図であり、図45Bは、移動後の制御ユニットの位置を示す側面図である。FIG. 45A is a side view showing the position of the control unit before movement in the cassette of the tenth modification, and FIG. 45B is a side view showing the position of the control unit after movement. 図46Aは、第11変形例のカセッテを示す平面図であり、図46Bは、該カセッテの側面図である。FIG. 46A is a plan view showing a cassette according to an eleventh modification, and FIG. 46B is a side view of the cassette. 図47Aは、第12変形例のカセッテの内部構成を模式的に示す概略説明図であり、図47Bは、図47Aのシンチレータの一例を模式的に示す概略説明図である。FIG. 47A is a schematic explanatory view schematically showing an internal configuration of a cassette of a twelfth modified example, and FIG. 47B is a schematic explanatory view schematically showing an example of the scintillator of FIG. 47A.
 本発明に係る放射線画像撮影装置及び放射線画像撮影システムの好適な実施形態について、図1~図47Bを参照しながら以下詳細に説明する。 Preferred embodiments of a radiographic imaging device and a radiographic imaging system according to the present invention will be described in detail below with reference to FIGS. 1 to 47B.
[第1実施形態の構成]
 先ず、第1実施形態に係る放射線画像撮影システム10Aについて、図1~図23Bを参照しながら説明する。
Configuration of First Embodiment
First, a radiation imaging system 10A according to the first embodiment will be described with reference to FIGS. 1 to 23B.
 図1に示すように、放射線画像撮影システム10Aは、ベッド等の撮影台12に横臥した患者等の被写体14に対して、撮影条件に従った線量からなる放射線16を照射する放射線源18と、被写体14を透過した放射線16を検出して放射線画像に変換する電子カセッテ(放射線画像撮影装置)20Aと、放射線源18及び電子カセッテ20Aを制御するコンソール(制御装置)22と、放射線画像を表示する表示装置24とを備える。 As shown in FIG. 1, a radiation imaging system 10A includes a radiation source 18 for irradiating a subject 14 such as a patient lying on an imaging table 12 such as a bed with a radiation 16 having a dose according to imaging conditions; An electronic cassette (radiographic image capturing apparatus) 20A that detects radiation 16 transmitted through the subject 14 and converts it into a radiation image, a console (control device) 22 that controls the radiation source 18 and the electronic cassette 20A, and a radiation image is displayed And a display device 24.
 コンソール22と、放射線源18、電子カセッテ20A及び表示装置24との間は、例えば、UWB(Ultra Wide Band)、IEEE802.11.a/g/n等の無線LAN(Local Area Network)又はミリ波等を用いた無線通信により信号の送受信が行われる。なお、ケーブルを用いた有線通信により信号の送受信を行ってもよいことは勿論である。 Between the console 22, the radiation source 18, the electronic cassette 20A and the display 24, for example, UWB (Ultra Wide Band), IEEE 802.11. Transmission and reception of signals are performed by wireless communication using a wireless LAN (Local Area Network) such as a / g / n or millimeter wave. Of course, the signal may be transmitted and received by wired communication using a cable.
 また、コンソール22には、病院内の放射線科において取り扱われる放射線画像やその他の情報を統括的に管理する放射線科情報システム(RIS)26が接続され、また、RIS26には、病院内の医事情報を統括的に管理する医事情報システム(HIS)28が接続される。 In addition, a radiology information system (RIS) 26 that comprehensively manages radiation images and other information handled in the radiology department in the hospital is connected to the console 22. In addition, medical information in the hospital is provided in the RIS 26 A medical information system (HIS) 28 that manages the entire content of the computer is connected.
 電子カセッテ20Aは、撮影台12と被写体14との間に配置されるパネル収容ユニット30と、放射線16の入射方向(放射線源18へ向う方向)に向かって突出するようにパネル収容ユニット30上に配置された制御ユニット(突出部分)32とを備える可搬型の電子カセッテである。なお、パネル収容ユニット30の厚みは、制御ユニット32の厚みよりも薄く設定されている。 The electronic cassette 20A is disposed on the panel housing unit 30 so as to protrude toward the incident direction of the radiation 16 (the direction toward the radiation source 18) and the panel housing unit 30 disposed between the imaging table 12 and the subject 14. It is a portable electronic cassette provided with the control unit (protrusion part) 32 arrange | positioned. The thickness of the panel storage unit 30 is set to be thinner than the thickness of the control unit 32.
 図2~図6に示すように、パネル収容ユニット30は、放射線16を透過可能な材料からなる略矩形状の筐体40を有し、被写体14が横臥する筐体40の上面は、放射線16が照射される撮影面(照射面)42とされている。該撮影面42の略中央部には、被写体14の撮影位置の指標となるガイド線44が形成されている。この場合、外枠を示すガイド線44が放射線16の照射可能領域を示す撮影領域46になる。また、ガイド線44の中心位置(十字状に交差する2本のガイド線44の交点)は、該撮影領域46の中心位置である。 As shown in FIGS. 2 to 6, the panel storage unit 30 has a substantially rectangular casing 40 made of a material capable of transmitting the radiation 16, and the upper surface of the casing 40 on which the subject 14 lies is a radiation 16. It is considered as a photographing surface (irradiated surface) 42 to which light is emitted. A guide line 44 serving as an index of the photographing position of the subject 14 is formed substantially at the center of the photographing surface 42. In this case, the guide line 44 indicating the outer frame becomes the imaging area 46 indicating the area where the radiation 16 can be irradiated. Further, the center position of the guide line 44 (the intersection of two guide lines 44 intersecting in a cross shape) is the center position of the imaging region 46.
 なお、撮影面42における放射線16が照射される領域の面積を該放射線16の投影面積とした場合、撮影領域46の面積は、投影面積の最大値となる。すなわち、撮影領域46とは、放射線16を照射(投影)することが可能な最大の範囲であり、従って、被写体14の撮影部位に応じて、放射線16の照射範囲(投影面積)を撮影領域46に設定してもよいし、あるいは、撮影領域46よりも小さな該撮影領域46内の所定領域(例えば、撮影領域46内の矢印X1方向側)に設定してもよい。 In addition, when the area of the area | region where the radiation 16 in the imaging surface 42 is irradiated is made into the projection area of the said radiation 16, the area of the imaging area 46 turns into the maximum value of a projection area. That is, the imaging area 46 is the maximum area where the radiation 16 can be irradiated (projected), and accordingly, the irradiation area (projected area) of the radiation 16 is taken as the imaging area 46 according to the imaging region of the subject 14. Alternatively, it may be set to a predetermined area (for example, in the direction of the arrow X1 in the imaging area 46) smaller than the imaging area 46.
 制御ユニット32は、撮影面42上に配置され、且つ、放射線16に対して非透過性の材料からなる略矩形状の筐体48を有する。すなわち、筐体48は、放射線16の入射方向に向かって突出したパネル収容ユニット30に対する突出部分であって、且つ、放射線16から放射線画像への変換に寄与しない構成要素であり、撮影面42における撮影領域46以外の領域(矢印X2方向側の箇所)において、矢印Y方向に沿って延在している。 The control unit 32 has a substantially rectangular housing 48 disposed on the imaging surface 42 and made of a material non-transparent to the radiation 16. That is, the housing 48 is a projecting portion with respect to the panel accommodation unit 30 protruding in the incident direction of the radiation 16 and is a component that does not contribute to the conversion of the radiation 16 into a radiation image. In an area other than the imaging area 46 (a position on the arrow X2 direction side), it extends along the arrow Y direction.
 筐体48の内部には、カセッテ制御部50と、バッテリ等の電源部52と、コンソール22との間で無線による信号の送受信が可能な通信部54と、筐体48(における電源部52近傍)の温度を検出する温度センサ(温度検出部)56とが配置されている。また、筐体48の底面におけるカセッテ制御部50近傍には、矢印X方向に沿った孔58が形成され、一方で、パネル収容ユニット30の筐体40には、該孔58と対向するように孔60が形成され、これらの孔58、60を貫通するようにフレキシブル基板62が配置されている。従って、電源部52は、フレキシブル基板62を介してパネル収容ユニット30に電力供給を行う一方で、カセッテ制御部50及び通信部54等の制御ユニット32内の各部に対しても電力供給を行う。また、カセッテ制御部50は、フレキシブル基板62を介してパネル収容ユニット30との間で信号の送受信を行う。 A communication unit 54 capable of wirelessly transmitting and receiving signals between the cassette control unit 50, the power supply unit 52 such as a battery, and the console 22 is provided in the housing 48, and the vicinity of the power supply unit 52 And a temperature sensor (temperature detection unit) 56 for detecting the temperature of. Further, a hole 58 along the direction of the arrow X is formed near the cassette control unit 50 on the bottom surface of the housing 48, while the housing 40 of the panel accommodation unit 30 faces the hole 58. Holes 60 are formed, and a flexible substrate 62 is disposed to penetrate the holes 58, 60. Therefore, the power supply unit 52 supplies power to the panel accommodation unit 30 via the flexible substrate 62, and also supplies power to each unit in the control unit 32, such as the cassette control unit 50 and the communication unit 54. In addition, the cassette control unit 50 transmits and receives signals to and from the panel accommodation unit 30 via the flexible substrate 62.
 ところで、筐体48に収容されたカセッテ制御部50、電源部52及び通信部54は、動作時(撮影時)には、熱を外部に放出する発熱体となり、前記熱は、筐体48を介して外部に放熱される。従って、撮影時には、前記熱による熱さを被写体14に感じさせないように、被写体14と筐体48とをできる限り離して、該被写体14と筐体48との接触を回避させることが望ましい。また、筐体48を避けるように撮影領域46に対して撮影部位を位置決めすると、該撮影部位の大きさ等によっては被写体14が不自然な姿勢となり、該被写体14が違和感を感じるおそれもあるので、撮影時には、被写体14と筐体48との接触を回避しつつ、被写体14がより自然な姿勢を保てるように、撮影領域46に対して撮影部位を位置決めできることが望ましい。 By the way, the cassette control unit 50, the power supply unit 52, and the communication unit 54 housed in the housing 48 serve as a heating element that emits heat to the outside during operation (during photographing), and the heat is transmitted to the housing 48. Heat is dissipated to the outside via Therefore, it is desirable that the subject 14 and the case 48 be separated as much as possible to avoid contact between the subject 14 and the case 48 so that the subject 14 does not feel the heat due to the heat at the time of photographing. In addition, if the imaging site is positioned relative to the imaging area 46 so as to avoid the housing 48, the subject 14 may have an unnatural posture depending on the size of the imaging site and the like, and the subject 14 may feel discomfort. At the time of photographing, it is desirable that the photographing region can be positioned with respect to the photographing region 46 so that the subject 14 can maintain a more natural posture while avoiding contact between the subject 14 and the housing 48.
 なお、被写体14が感じる違和感とは、制御ユニット32の存在によって、撮影時における撮影領域46への被写体14の位置決めの際に、被写体14に対して負荷のかかる体勢(不自然な姿勢)を強いることによる被写体14が感じる負担に加え、動作時に発熱する制御ユニット32に被写体14が接触することで、熱さを感じることも含まれる。 The sense of incongruity that the subject 14 feels is that the presence of the control unit 32 imposes a load (unnatural posture) on the subject 14 when positioning the subject 14 in the imaging area 46 at the time of shooting. In addition to the burden that the subject 14 feels due to, the subject's feeling of heat is also included when the subject 14 contacts the control unit 32 that generates heat during operation.
 そこで、第1実施形態では、図5~図7Bに示すように、撮影時に、パネル収容ユニット30(の筐体40)と制御ユニット32(の筐体48)とが分離しないよう、パネル収容ユニット30と制御ユニット32との一体化状態を維持しつつ、撮影領域46から離間する方向(矢印X2方向)に制御ユニット32を移動(摺動)可能とすることで、被写体14と筐体48とを確実に離間させるようにしている。 Therefore, in the first embodiment, as shown in FIG. 5 to FIG. 7B, the panel storage unit is configured so that (the housing 40 of) the panel storage unit 30 and (the housing 48 of) the control unit 32 do not separate. 30 by moving (sliding) the control unit 32 in the direction (arrow X2 direction) away from the imaging region 46 while maintaining the integrated state of the control unit 32 and the control unit 32. Ensure that they are separated.
 具体的に、筐体40の撮影面42には、制御ユニット32と対向するように溝状のガイド部64、66が矢印X方向に沿って形成され、該筐体48の底面には、ガイド部64、66に沿って案内される摺動部材68、70がそれぞれ設けられている。ガイド部64、66及び摺動部材68、70の案内作用下に、筐体48を矢印X方向に沿って摺動可能とすることで(図5~図7B参照)、被写体14と筐体48との離間を確実に図るようにしている。 Specifically, groove-shaped guide portions 64 and 66 are formed along the arrow X direction on the imaging surface 42 of the housing 40 so as to face the control unit 32, and the bottom surface of the housing 48 is a guide Sliding members 68, 70 are provided which are guided along the sections 64, 66 respectively. By making the case 48 slidable along the arrow X direction under the guiding action of the guide portions 64 and 66 and the sliding members 68 and 70 (see FIGS. 5 to 7B), the subject 14 and the case 48 To make sure of separation from
 なお、図7A及び図7Bの側面図では、説明の容易化のため、撮影面42における撮影領域46の範囲を便宜的に太線で図示している。また、摺動部材68、70をガイド部64、66中の所定位置にロックしたい場合には、例えば、該所定位置でのガイド部64、66の幅を他の箇所よりも狭く形成して、摺動部材68、70を前記所定位置で位置決め固定できるようにしておけばよい。 Note that, in the side views of FIGS. 7A and 7B, the range of the imaging region 46 on the imaging surface 42 is illustrated by a thick line for the sake of convenience for easy description. When it is desired to lock the sliding members 68 and 70 at predetermined positions in the guide portions 64 and 66, for example, the width of the guide portions 64 and 66 at the predetermined positions is formed narrower than at other places, The sliding members 68 and 70 may be positioned and fixed at the predetermined position.
 筐体48の矢印Y2方向の側面には、外部の電源から電源部52に対して充電を行なうためのACアダプタの入力端子72と、外部機器との間で情報の送受信が可能なインターフェース手段としてのUSB(Universal Serial Bus)端子74と、PCカード等のメモリカード76を装填するためのカードスロット78とが設けられている。 As an interface means capable of transmitting and receiving information between an external device and the input terminal 72 of the AC adapter for charging the power supply unit 52 from the external power supply on the side surface in the direction of arrow Y2 of the housing 48 A USB (Universal Serial Bus) terminal 74 and a card slot 78 for loading a memory card 76 such as a PC card are provided.
 筐体48の矢印X2方向の側面には、医師又は放射線技師が把持するための取っ手80が設けられている。また、筐体48の上面には、各種の情報を表示するための表示部(報知部、温度表示部、警告部、移動情報表示部)82と、スピーカ(報知部、警告部)84と、電子カセッテ20Aの電源スイッチ86とが配置されている。 A handle 80 for gripping by a doctor or a radiologist is provided on the side of the housing 48 in the direction of the arrow X2. Further, on the top surface of the housing 48, a display unit (notification unit, temperature display unit, warning unit, movement information display unit) 82 for displaying various information, and a speaker (notification unit, warning unit) 84; A power switch 86 of the electronic cassette 20A is disposed.
 一方、パネル収容ユニット30(の筐体40)の内部には、図4、図5、図7A及び図7Bに示すように、放射線源18から被写体14に放射線16を照射した際に、被写体14による放射線16の散乱線を除去するグリッド90、被写体14を透過した放射線16を検出する放射線変換パネル92、及び、放射線16のバック散乱線を吸収する鉛板94が、被写体14側の撮影面42に対して順に配設される。この場合、グリッド90、放射線変換パネル92及び鉛板94は、平面視で、撮影領域46と略一致する(図5参照)。なお、撮影面42をグリッド90として構成してもよい。 On the other hand, as shown in FIG. 4, FIG. 5, FIG. 7A and FIG. The grid 90 for removing scattered radiation of the radiation 16, the radiation conversion panel 92 for detecting the radiation 16 transmitted through the subject 14, and the lead plate 94 for absorbing the back scattered radiation of the radiation 16 Are arranged in order. In this case, the grid 90, the radiation conversion panel 92, and the lead plate 94 substantially coincide with the imaging region 46 in plan view (see FIG. 5). The imaging surface 42 may be configured as a grid 90.
 放射線変換パネル92としては、例えば、被写体14を透過した放射線16をシンチレータにより可視光に一旦変換し、変換した前記可視光をアモルファスシリコン(a-Si)等の物質からなる固体検出素子(以下、画素ともいう。)により電気信号に変換する間接変換型の放射線変換パネルや、放射線16の線量をアモルファスセレン(a-Se)等の物質からなる固体検出素子により電気信号に直接変換する直接変換型の放射線変換パネルを採用することができる。 As the radiation conversion panel 92, for example, a solid detection element (hereinafter referred to as a solid detection element (hereinafter referred to as “the radiation detection panel”) made of a material such as amorphous silicon (a-Si) Indirect conversion type radiation conversion panel which converts it into electric signal by the pixel), and direct conversion type which directly converts the dose of radiation 16 into electric signal by solid detection element which consists of substances such as amorphous selenium (a-Se) Radiation conversion panels can be employed.
 また、パネル収容ユニット30の内部では、放射線変換パネル92が駆動回路部96と電気的に接続され、該駆動回路部96は、フレキシブル基板62を介して制御ユニット32内のカセッテ制御部50等と電気的に接続されている。駆動回路部96は、カセッテ制御部50からの制御信号(アドレス信号)に従って放射線変換パネル92を駆動制御すると共に、放射線変換パネル92から放射線画像を読み出してカセッテ制御部50に出力する。また、電源部52は、フレキシブル基板62を介して駆動回路部96に電力供給を行うことにより、該駆動回路部96を介して放射線変換パネル92を駆動させる。 Further, inside the panel accommodation unit 30, the radiation conversion panel 92 is electrically connected to the drive circuit unit 96, and the drive circuit unit 96 communicates with the cassette control unit 50 and the like in the control unit 32 via the flexible substrate 62. It is electrically connected. The drive circuit unit 96 drives and controls the radiation conversion panel 92 in accordance with a control signal (address signal) from the cassette control unit 50, reads a radiation image from the radiation conversion panel 92, and outputs the radiation image to the cassette control unit 50. Further, the power supply unit 52 supplies power to the drive circuit unit 96 through the flexible substrate 62 to drive the radiation conversion panel 92 through the drive circuit unit 96.
 なお、図4では、パネル収容ユニット30の矢印X2方向側に駆動回路部96が配置されている場合を図示している。但し、パネル収容ユニット30内には、実際上、駆動回路部96以外にも矢印X方向に沿って他の駆動回路部も配置されるが、この明細書では、説明の容易化のため、該他の駆動回路部の図示を省略する。 Note that FIG. 4 illustrates the case where the drive circuit unit 96 is disposed on the side of the panel accommodation unit 30 in the direction of the arrow X2. However, in the panel accommodation unit 30, in addition to the drive circuit unit 96, other drive circuit units are disposed along the direction of the arrow X, but in this specification, for the sake of simplicity, the description will be made. Illustration of other drive circuit units is omitted.
 パネル収容ユニット30内には、摺動部材68の位置を検出する近接センサ等の位置検出センサ98も配設されている(図5及び図6参照)。この場合、位置検出センサ98は、ガイド部64に沿うように、矢印X2方向の側面近傍に配設され、ガイド部64、66の案内作用下に、摺動部材68、70が図6及び図7Bに示す位置に到達したときに、摺動部材68が当該位置に到達したことを示す出力信号をフレキシブル基板62を介してカセッテ制御部50に出力する。 A position detection sensor 98 such as a proximity sensor for detecting the position of the sliding member 68 is also disposed in the panel storage unit 30 (see FIGS. 5 and 6). In this case, the position detection sensor 98 is disposed in the vicinity of the side surface in the direction of the arrow X2 along the guide portion 64, and the sliding members 68 and 70 move as shown in FIGS. When the position shown by 7 B is reached, an output signal indicating that the sliding member 68 has reached the position is output to the cassette control unit 50 via the flexible substrate 62.
 次に、一例として、間接変換型の放射線変換パネル92を採用した場合の電子カセッテ20Aの回路構成及びブロック図に関し、図8を参照しながら詳細に説明する。 Next, as an example, the circuit configuration and block diagram of the electronic cassette 20A in the case of adopting the indirect conversion type radiation conversion panel 92 will be described in detail with reference to FIG.
 図8で模式的に示すように、放射線変換パネル92では、多数の画素100が図示しない基板上に配列され、さらに、これらの画素100に対して駆動回路部96から制御信号を供給する多数のゲート線102と、多数の画素100から出力される電気信号を読み出して駆動回路部96に出力する多数の信号線104とが配列されている。 As schematically shown in FIG. 8, in the radiation conversion panel 92, a large number of pixels 100 are arranged on a substrate (not shown), and a large number of control signals are supplied from the drive circuit unit 96 to these pixels 100. A gate line 102 and a large number of signal lines 104 for reading out electric signals output from a large number of pixels 100 and outputting the electric signals to a driver circuit portion 96 are arranged.
 すなわち、放射線変換パネル92は、可視光を電気信号に変換するa-Si等の物質からなる各画素100が形成された光電変換層を、行列状のTFT106のアレイの上に配置した構造を有する。この場合、駆動回路部96を構成するバイアス回路108からバイアス電圧が供給される各画素100では、可視光を電気信号(アナログ信号)に変換することにより発生した電荷が蓄積され、各列毎にTFT106を順次オンにすることにより前記電荷を画像信号として読み出すことができる。 That is, the radiation conversion panel 92 has a structure in which a photoelectric conversion layer in which each pixel 100 made of a substance such as a-Si for converting visible light into an electric signal is formed on an array of TFTs 106 in matrix. . In this case, in each pixel 100 to which a bias voltage is supplied from the bias circuit 108 constituting the drive circuit unit 96, charges generated by converting visible light into an electric signal (analog signal) are accumulated, and for each column The charges can be read out as an image signal by sequentially turning on the TFTs 106.
 各画素100に接続されるTFT106には、列方向と平行に延びるゲート線102と、行方向と平行に延びる信号線104とが接続される。各ゲート線102は、ゲート駆動回路110に接続され、各信号線104は、マルチプレクサ112に接続される。ゲート線102には、列方向に配列されたTFT106をオンオフ制御する制御信号がゲート駆動回路110から供給される。この場合、ゲート駆動回路110には、カセッテ制御部50からフレキシブル基板62を介してアドレス信号が供給される。 The TFTs 106 connected to the respective pixels 100 are connected with gate lines 102 extending in parallel with the column direction and signal lines 104 extending in parallel with the row direction. Each gate line 102 is connected to a gate drive circuit 110, and each signal line 104 is connected to a multiplexer 112. A control signal for controlling on / off of the TFTs 106 arranged in the column direction is supplied from the gate drive circuit 110 to the gate line 102. In this case, an address signal is supplied to the gate drive circuit 110 from the cassette control unit 50 via the flexible substrate 62.
 また、信号線104には、行方向に配列されたTFT106を介して各画素100に保持されている電荷が流出する。この電荷は、増幅器114によって増幅される。増幅器114には、サンプルホールド回路116を介してマルチプレクサ112が接続される。マルチプレクサ112は、信号線104を切り替えるFET(電界効果トランジスタ)スイッチ118と、1つのFETスイッチ118をオンにする選択信号を出力するマルチプレクサ駆動回路120とを備える。マルチプレクサ駆動回路120には、カセッテ制御部50からアドレス信号が供給される。FETスイッチ118には、A/D変換器122が接続され、A/D変換器122によってデジタル信号に変換された放射線画像がフレキシブル基板62を介してカセッテ制御部50に供給される。 Further, the charge held in each pixel 100 flows out to the signal line 104 through the TFTs 106 arranged in the row direction. This charge is amplified by the amplifier 114. The multiplexer 112 is connected to the amplifier 114 via the sample and hold circuit 116. The multiplexer 112 includes an FET (field effect transistor) switch 118 which switches the signal line 104 and a multiplexer drive circuit 120 which outputs a selection signal for turning on one FET switch 118. The multiplexer drive circuit 120 is supplied with an address signal from the cassette control unit 50. The A / D converter 122 is connected to the FET switch 118, and a radiation image converted into a digital signal by the A / D converter 122 is supplied to the cassette control unit 50 via the flexible substrate 62.
 なお、スイッチング素子として機能するTFT106は、CMOS(Complementary Metal-Oxside Semiconductor)イメージセンサ等、他の撮像素子と組み合わせて実現してもよい。さらにまた、TFTで言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えることも可能である。 Note that the TFT 106 functioning as a switching element may be realized in combination with another imaging element such as a complementary metal-oxide semiconductor (CMOS) image sensor. Furthermore, it is possible to replace it with a CCD (Charge-Coupled Device) image sensor which transfers charges while shifting charges by a shift pulse corresponding to a gate signal in TFT.
 カセッテ制御部50は、アドレス信号発生部130と、画像メモリ132と、カセッテIDメモリ134と、移動指示部136と、オーダ情報記憶部138とを備える。 The cassette control unit 50 includes an address signal generation unit 130, an image memory 132, a cassette ID memory 134, a movement instruction unit 136, and an order information storage unit 138.
 アドレス信号発生部130は、ゲート駆動回路110及びマルチプレクサ駆動回路120に対してアドレス信号を供給する。画像メモリ132は、放射線変換パネル92によって検出された放射線画像を記憶する。カセッテIDメモリ134は、電子カセッテ20Aを特定するためのカセッテID情報を記憶する。 The address signal generator 130 supplies an address signal to the gate drive circuit 110 and the multiplexer drive circuit 120. The image memory 132 stores the radiation image detected by the radiation conversion panel 92. The cassette ID memory 134 stores cassette ID information for specifying the electronic cassette 20A.
 オーダ情報記憶部138は、コンソール22(図1参照)から通信部54を介して受信されたオーダ情報を記憶する。なお、オーダ情報は、RIS26を用いて医師により作成されるものであり、被写体14の氏名、年齢、性別等、被写体14を特定するための被写体情報に加えて、撮影に使用する撮影装置、撮影部位、撮影条件が含まれる。また、撮影条件とは、例えば、放射線源18の管電圧、管電流、放射線16の照射時間等、被写体14に照射される放射線量を決定するための条件である。 The order information storage unit 138 stores order information received from the console 22 (see FIG. 1) via the communication unit 54. The order information is created by the doctor using the RIS 26, and in addition to the subject information for specifying the subject 14, such as the name, age, sex of the subject 14, a photographing apparatus used for photographing, photographing The site and shooting conditions are included. The imaging conditions are, for example, conditions for determining the radiation amount to be irradiated to the subject 14, such as the tube voltage of the radiation source 18, the tube current, and the irradiation time of the radiation 16.
 移動指示部136は、被写体14のオーダ情報、及び/又は、温度センサ56が検出した制御ユニット32の温度に基づいて、制御ユニット32の移動の要否を表示部82に表示させ、さらには、スピーカ84から音として出力させる。 The movement instruction unit 136 causes the display unit 82 to display whether or not movement of the control unit 32 is necessary based on the order information of the subject 14 and / or the temperature of the control unit 32 detected by the temperature sensor 56. The sound is output from the speaker 84.
 具体的に、移動指示部136は、前記オーダ情報に含まれる被写体14の撮影部位と撮影領域46とを比較し、制御ユニット32を移動させなくても、被写体14と制御ユニット32との接触や、被写体14の不自然な姿勢(違和感を感じさせる姿勢)が惹起されず、しかも、該制御ユニット32が撮影の邪魔にもならないことが予想される場合には、制御ユニット32の移動が不要であることを示す情報を表示部82に表示させ、さらには、スピーカ84から音として出力させる。 Specifically, the movement instruction unit 136 compares the imaging region of the subject 14 contained in the order information with the imaging area 46, and even if the control unit 32 is not moved, the contact between the subject 14 and the control unit 32 When it is expected that the unnatural posture of the subject 14 (posture giving a sense of discomfort) is not caused and the control unit 32 does not interfere with photographing, the movement of the control unit 32 is unnecessary. Information indicating the presence is displayed on the display unit 82, and is further output as a sound from the speaker 84.
 また、移動指示部136は、温度センサ56が検出した温度について、制御ユニット32を移動させなくても、該制御ユニット32の温度が被写体14が熱いと感じない程度の温度であることが予想される場合には、制御ユニット32の移動が不要であることを示す情報を表示部82に表示させ、さらには、スピーカ84から音として出力させる。 In addition, regarding the temperature detected by the temperature sensor 56, the movement instruction unit 136 is expected to be a temperature at which the temperature of the control unit 32 does not feel that the subject 14 is hot, without moving the control unit 32. In this case, the control unit 32 causes the display unit 82 to display information indicating that the movement of the control unit 32 is unnecessary, and further causes the speaker 84 to output the sound.
 従って、医師又は放射線技師は、上述した表示部82の表示内容を視認し、あるいは、スピーカ84からの音を聞くことにより、制御ユニット32の移動が不要であること(制御ユニット32を図5及び図7Aの位置に維持すること)を認識することができる。 Therefore, the doctor or the radiologist visually recognizes the display content of the display unit 82 described above or listens to the sound from the speaker 84, so that the movement of the control unit 32 is unnecessary (see FIG. 7) can be recognized.
 一方、移動指示部136は、前記撮影部位と撮影領域46とを比較し、撮影時に、制御ユニット32を移動させなければ、被写体14と制御ユニット32とが接触したり、被写体14が不自然な姿勢となったり、あるいは、制御ユニット32が撮影の邪魔になってしまうことが予想される場合には、制御ユニット32の移動指示を示す情報を表示部82に警告表示させ、さらには、スピーカ84から警告音として出力させる。 On the other hand, the movement instruction unit 136 compares the imaging region with the imaging region 46, and if the control unit 32 is not moved at the time of imaging, the subject 14 and the control unit 32 contact or the subject 14 is unnatural. When it is expected that the posture becomes or the control unit 32 gets in the way of photographing, information indicating a movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 Output as a warning sound from.
 また、移動指示部136は、温度センサ56が検出した温度について、制御ユニット32を移動させなければ、被写体14が熱いと感じてしまう程度の温度であることが予想される場合には、制御ユニット32の移動指示を示す情報を表示部82に警告表示させ、さらには、スピーカ84から警告音として出力させる。 In addition, the movement instruction unit 136 may control the control unit 32 if it is expected that the temperature of the subject 14 is hot unless the control unit 32 is moved with respect to the temperature detected by the temperature sensor 56. The information indicating the movement instruction of 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 is output as a warning sound.
 従って、医師又は放射線技師は、表示部82の警告表示内容を視認し、あるいは、スピーカ84からの警告音を聞くことにより、制御ユニット32の移動が必要であること(制御ユニット32を図6及び図7Bの位置にすること)を認識し、その後、取っ手80を把持して矢印X2方向に引っ張ることにより、ガイド部64、66及び摺動部材68、70の案内作用下に、制御ユニット32を矢印X2方向に摺動させる。 Therefore, the doctor or radiologist needs to move the control unit 32 by visually recognizing the warning display contents on the display unit 82 or listening to the warning sound from the speaker 84 (see FIG. 6 and FIG. 7B, and then grasping the handle 80 and pulling it in the direction of the arrow X2 to guide the control unit 32 under the guidance of the guide portions 64, 66 and the sliding members 68, 70. Slide in the direction of arrow X2.
 さらに、移動指示部136は、位置検出センサ98から出力信号が入力された場合、制御ユニット32が図6及び図7Bの位置に到達して制御ユニット32の移動が完了したと判定し、制御ユニット32の移動完了を示す情報を表示部82に表示させ、さらには、スピーカ84から音として出力させる。従って、医師又は放射線技師は、表示部82の表示内容を視認し、あるいは、スピーカ84からの音を聞くことにより、制御ユニット32の移動が完了したこと(制御ユニット32が図6及び図7Bの位置に到達したこと)を認識することができる。 Furthermore, when the output signal is input from the position detection sensor 98, the movement instruction unit 136 determines that the control unit 32 has reached the position shown in FIGS. 6 and 7B and the movement of the control unit 32 is completed. The information indicating the completion of the movement of 32 is displayed on the display unit 82, and the sound is output from the speaker 84. Therefore, the doctor or the radiologist visually recognizes the display content of the display unit 82 or listens to the sound from the speaker 84, and the movement of the control unit 32 is completed (the control unit 32 shown in FIGS. 6 and 7B). It can be recognized that the position has been reached.
 なお、移動指示部136は、制御ユニット32の移動指示を表示部82を介して警告表示させ、さらには、スピーカ84から警告音として出力した後に、所定時間経過しても、位置検出センサ98からの出力信号が入力されず、従って、図6及び図7Bの位置にまだ到達していないと判定したときには、制御ユニット32の移動を催促する警告情報を表示部82に表示させ、さらには、スピーカ84から警告音として出力させてもよい。 Note that the movement instruction unit 136 displays a movement instruction of the control unit 32 as a warning via the display unit 82, and further, after outputting as a warning sound from the speaker 84, the position detection sensor 98 can be used. When it is determined that the position signal of FIG. 6 and FIG. 7B has not been reached yet, warning information for prompting the movement of the control unit 32 is displayed on the display unit 82, and the speaker A warning sound may be output from 84.
[第1実施形態の動作]
 第1実施形態に係る電子カセッテ20Aを含む放射線画像撮影システム10Aは、基本的には以上のように構成されるものであり、次にその動作について、図9のフローチャートを参照しながら説明する。なお、図9の説明では、必要に応じて、図1~図8も参照しながら説明する。
Operation of First Embodiment
The radiation imaging system 10A including the electronic cassette 20A according to the first embodiment is basically configured as described above. Next, the operation thereof will be described with reference to the flowchart of FIG. The description of FIG. 9 will be made with reference to FIGS. 1 to 8 as necessary.
 ステップS1において、医師又は放射線技師は、取っ手80を把持して電子カセッテ20Aを所定の保管場所から撮影台12にまで運搬した後に、該撮影台12上の所定位置に電子カセッテ20Aを配置して、電源スイッチ86を投入する。電源部52は、電源スイッチ86の投入に起因して、制御ユニット32内の各部に対する電力供給を開始すると共に、フレキシブル基板62を介してパネル収容ユニット30に対する電力供給を開始する。 In step S1, the doctor or radiologist holds the handle 80 to transport the electronic cassette 20A from the predetermined storage location to the imaging table 12, and then places the electronic cassette 20A at the predetermined position on the imaging table 12. , The power switch 86 is turned on. The power supply unit 52 starts power supply to the respective units in the control unit 32 due to the turning on of the power switch 86, and starts power supply to the panel accommodation unit 30 via the flexible substrate 62.
 これにより、制御ユニット32内において、通信部54は、コンソール22との間での無線による信号の送受信が可能な状態となる。また、温度センサ56は、制御ユニット32の温度の検出を開始する。さらに、表示部82は、各種の情報を表示可能な状態に至る。一方、パネル収容ユニット30において、駆動回路部96は、電源部52からの電力供給によって起動し、バイアス回路108は、バイアス電圧を各画素100に供給して、該各画素100を電荷蓄積が可能な状態に至らせる。このように、電子カセッテ20Aは、電源スイッチ86の投入に起因して、スリープ状態からアクティブ状態に移行する。 Thus, in the control unit 32, the communication unit 54 can transmit and receive signals wirelessly with the console 22. In addition, the temperature sensor 56 starts detection of the temperature of the control unit 32. Further, the display unit 82 can display various information. On the other hand, in the panel accommodation unit 30, the drive circuit unit 96 is activated by the power supply from the power supply unit 52, and the bias circuit 108 supplies a bias voltage to each pixel 100 to charge each pixel 100. Bring to a good state. Thus, the electronic cassette 20A shifts from the sleep state to the active state due to the power switch 86 being turned on.
 なお、ステップS1において、制御ユニット32は、図5及び図7Aに示す位置に配置されている。すなわち、制御ユニット32の位置を、図6及び図7Bに示す位置ではなく、図5及び図7Aに示す位置とした状態で電子カセッテ20Aを運搬することにより、該電子カセッテ20Aをコンパクトな状態で運搬することが可能となる。 In step S1, the control unit 32 is disposed at the position shown in FIGS. 5 and 7A. That is, by carrying the electronic cassette 20A in a state where the position of the control unit 32 is not the position shown in FIGS. 6 and 7B but the position shown in FIGS. 5 and 7A, the electronic cassette 20A can be made compact. It becomes possible to carry.
 ステップS2において、通信部54は、コンソール22(図1参照)に対してオーダ情報の送信を要求し、コンソール22は、この送信要求に応じて、通信部54にオーダ情報を送信する。通信部54が受信したオーダ情報は、カセッテ制御部50のオーダ情報記憶部138(図8参照)に記憶される。 In step S2, the communication unit 54 requests the console 22 (see FIG. 1) to transmit the order information, and the console 22 transmits the order information to the communication unit 54 in response to the transmission request. The order information received by the communication unit 54 is stored in the order information storage unit 138 (see FIG. 8) of the cassette control unit 50.
 なお、医師又は放射線技師は、コンソール22を操作することにより、撮影対象である被写体14の撮影条件を登録してもよい。また、コンソール22は、撮影条件の登録後に、該撮影条件を含むオーダ情報を前記送信要求に応じて通信部54に送信してもよい。 The doctor or radiologist may register the imaging conditions of the subject 14 to be imaged by operating the console 22. In addition, the console 22 may transmit order information including the imaging condition to the communication unit 54 in response to the transmission request after the imaging condition is registered.
 ステップS3において、カセッテ制御部50の移動指示部136は、オーダ情報記憶部138に記憶されたオーダ情報や、温度センサ56が検出した制御ユニット32の温度に基づいて、制御ユニット32を移動させるべきか否かを判定する。 In step S3, the movement instruction unit 136 of the cassette control unit 50 should move the control unit 32 based on the order information stored in the order information storage unit 138 or the temperature of the control unit 32 detected by the temperature sensor 56. It is determined whether or not.
 具体的に、移動指示部136は、前記オーダ情報に含まれる被写体14の撮影部位と撮影領域46の大きさとを比較し、制御ユニット32を移動させなくても、被写体14と制御ユニット32とが接触するか、被写体14が不自然な姿勢(違和感を感じさせる姿勢)になるか、あるいは、制御ユニット32が撮影の邪魔になるかを判定し、そのような可能性があれば(ステップS3:YES)、制御ユニット32の移動指示を示す情報を表示部82に警告表示させ、さらには、スピーカ84から警告音として出力させる。 Specifically, the movement instruction unit 136 compares the imaging region of the subject 14 contained in the order information with the size of the imaging area 46, and the subject 14 and the control unit 32 do not move the control unit 32. It is determined whether the subject 14 is in contact with the subject 14 or the subject 14 has an unnatural posture (a posture giving a sense of discomfort), or the control unit 32 interferes with photographing, and if there is such a possibility (step S3: YES), information indicating the movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and further, the speaker 84 is output as a warning sound.
 また、移動指示部136は、温度センサ56の検出した温度が、制御ユニット32を移動させなくても、被写体14が熱いと感じない程度の温度であるかを判定し、熱いと感じる可能性があれば(ステップS3:YES)、制御ユニット32の移動指示を示す情報を表示部82に警告表示させ、さらには、スピーカ84から警告音として出力させる。 In addition, the movement instruction unit 136 determines whether the temperature detected by the temperature sensor 56 is such a temperature that the subject 14 does not feel hot even if the control unit 32 is not moved, and may feel hot. If there is (step S3: YES), information indicating a movement instruction of the control unit 32 is displayed on the display unit 82 as a warning, and furthermore, the speaker 84 outputs it as a warning sound.
 従って、ステップS3において、移動指示部136は、オーダ情報を用いた判定処理と、制御ユニット32の温度を用いた判定処理とを実行することが可能である。 Therefore, in step S3, the movement instructing unit 136 can execute the determination process using the order information and the determination process using the temperature of the control unit 32.
 ステップS4において、医師又は放射線技師は、表示部82の警告表示内容を視認し、あるいは、スピーカ84からの警告音を聞くことにより、制御ユニット32の移動が必要であることを認識した後に、取っ手80を把持して制御ユニット32を矢印X2方向に引っ張る。これにより、制御ユニット32は、ガイド部64、66及び摺動部材68、70の案内作用下に、パネル収容ユニット30と分離しない一体化された状態を維持しつつ、矢印X2方向(撮影領域46から離間する方向)に摺動する。 In step S4, the doctor or the radiologist visually recognizes the warning display content of the display unit 82, or after hearing that the control unit 32 needs to be moved by hearing the warning sound from the speaker 84, the handle The control unit 32 is pulled in the direction of the arrow X2 by gripping the grip 80. Thus, the control unit 32 maintains the integrated state in which the control unit 32 is not separated from the panel storage unit 30 under the guiding action of the guide portions 64 and 66 and the sliding members 68 and 70. Slide away from the
 そして、ステップS5において、ガイド部64、66の案内作用下に、摺動部材68、70が図6及び図7Bに示す位置に到達したとき、位置検出センサ98は、摺動部材68が当該位置に到達したことを示す出力信号をフレキシブル基板62を介してカセッテ制御部50に出力する。移動指示部136は、前記出力信号が入力されたときに、制御ユニット32が図6及び図7Bの位置に到達して該制御ユニット32の移動が完了したと判定し(ステップS5:YES)、上述した警告表示内容に代えて、移動完了を示す情報を表示部82に表示させ、さらには、スピーカ84から、前記警告音に代えて、前記移動完了を示す音を出力させる。従って、医師又は放射線技師は、表示部82の表示内容を視認し、あるいは、スピーカ84からの音を聞くことにより、制御ユニット32の移動完了を認識することができる。 Then, in step S5, when the sliding members 68, 70 reach the positions shown in FIG. 6 and FIG. 7B under the guiding action of the guide portions 64, 66, the position detecting sensor 98 detects the positions of the sliding members 68. An output signal indicating that has been reached is output to the cassette control unit 50 via the flexible substrate 62. When the output signal is input, the movement instruction unit 136 determines that the control unit 32 has reached the position of FIGS. 6 and 7B and the movement of the control unit 32 is completed (step S5: YES). Information indicating the completion of movement is displayed on the display unit 82 instead of the above-described warning display content, and a sound indicating the completion of movement is output from the speaker 84 instead of the warning sound. Therefore, the doctor or the radiologist can recognize the movement completion of the control unit 32 by visually recognizing the display content of the display unit 82 or by listening to the sound from the speaker 84.
 なお、位置検出センサ98が出力信号を出力しない場合、移動指示部136は、制御ユニット32の移動が完了していないと判定し(ステップS5:NO)、表示部82及びスピーカ84による医師又は放射線技師に対する警告報知を維持させる。 When the position detection sensor 98 does not output an output signal, the movement instruction unit 136 determines that the movement of the control unit 32 is not completed (step S5: NO), and the doctor or radiation by the display unit 82 and the speaker 84 Maintain alert notification to the technician.
 また、移動指示部136は、制御ユニット32の移動指示を表示部82を介して警告表示させ、さらには、スピーカ84から警告音として出力させた後、所定時間経過しても、位置検出センサ98から出力信号が入力されない場合には、制御ユニット32の移動を催促するための警告を表示部82に表示させ、さらには、スピーカ84から警告音として出力させてもよい。 In addition, the movement instruction unit 136 displays a movement instruction of the control unit 32 as a warning via the display unit 82, and further, after outputting a warning sound from the speaker 84, the position detection sensor 98 even if a predetermined time has elapsed. If the output signal is not input from the display unit 82, a warning for prompting the movement of the control unit 32 may be displayed on the display unit 82, and may be output as a warning sound from the speaker 84.
 なお、上述のステップS3において、移動指示部136は、制御ユニット32の位置が図5及び図7Aであっても、被写体14と制御ユニット32とが接触するおそれがなく、被写体14がより自然な姿勢を保持し、且つ、制御ユニット32が撮影の邪魔にもならないと判定した場合や(ステップS3:NO)、制御ユニット32の温度が、被写体14が熱いと感じない程度の温度であると判定した場合(ステップS3:NO)には、ステップS4、S5の処理を行わせず、制御ユニット32の移動が不要であることを示す情報を表示部82に表示させ、さらには、スピーカ84から音として出力させる。 In the above-mentioned step S3, even if the position of the control unit 32 is as shown in FIGS. 5 and 7A, the movement instructing unit 136 does not have a possibility that the subject 14 contacts the control unit 32, and the subject 14 is more natural. If it is determined that the posture is maintained and the control unit 32 does not interfere with photographing (step S3: NO), the temperature of the control unit 32 is such that the subject 14 does not feel hot (Step S3: NO), the processing in steps S4 and S5 is not performed, and information indicating that the movement of the control unit 32 is unnecessary is displayed on the display unit 82, and further, the sound from the speaker 84 Output as.
 図10A~図12Cは、ステップS3~S5の処理において、表示部82に画面表示される内容を図示した説明図である。 FIGS. 10A to 12C are explanatory diagrams illustrating the contents displayed on the screen of the display unit 82 in the processes of steps S3 to S5.
 図10A~図10Cは、制御ユニット32の温度(TEMP)を階段表示(LOからHIまでの間の10段階)で画面表示させると共に、制御ユニット32の移動の要否又は移動完了を画面表示させた一例を図示したものである。 10A to 10C display the temperature (TEMP) of the control unit 32 in a step display (10 steps from LO to HI) and display the necessity or the completion of the movement of the control unit 32 on the screen. An example is illustrated.
 図10Aの場合、表示部82には、制御ユニット32の温度が10段階中、1段目の温度(低温)として画面表示されると共に、制御ユニット32の移動が不要であることを示す「移動は不要です」の文言が画面表示されている。これにより、医師又は放射線技師は、図10Aの画面表示を視認することにより、制御ユニット32が低温であるため、制御ユニット32を移動させる必要がないことを直ちに認識することができる。 In the case of FIG. 10A, the display unit 82 displays the temperature of the control unit 32 on the screen as the first stage temperature (low temperature) out of 10, and indicates that movement of the control unit 32 is unnecessary. "It is unnecessary" is displayed on the screen. Thereby, the doctor or radiologist can immediately recognize that the control unit 32 does not need to be moved because the control unit 32 is at a low temperature by visually recognizing the screen display of FIG. 10A.
 図10Bの場合、表示部82には、制御ユニット32の温度が10段階中、5段目の温度として画面表示されると共に、制御ユニット32の移動が必要であることを示す「移動させて下さい」の文言(警告)が画面表示がされている。すなわち、図10Bは、例えば、制御ユニット32の温度が5段目の温度に到達した時点で、制御ユニット32の移動が必要と移動指示部136が判定した場合の画面表示を図示したものである。医師又は放射線技師は、図10Bの画面表示を視認することにより、制御ユニット32の温度が、被写体14が熱いと感じる程度の温度にまで上昇したので、制御ユニット32を移動させる必要があることを直ちに認識することができる。 In the case of FIG. 10B, the display unit 82 displays the temperature of the control unit 32 on the screen as the temperature of the fifth stage among the 10 stages, and “moves” indicating that the control unit 32 needs to be moved. The word "warning" is displayed on the screen. That is, FIG. 10B illustrates a screen display when, for example, the movement instructing unit 136 determines that the movement of the control unit 32 is necessary when the temperature of the control unit 32 reaches the temperature of the fifth stage. . The doctor or the radiographer needs to move the control unit 32 because the temperature of the control unit 32 has risen to a temperature that the subject 14 feels hot by visually recognizing the screen display of FIG. 10B. It can be recognized immediately.
 図10Cの場合、表示部82には、制御ユニット32の温度が10段階中、5段目の温度として画面表示されると共に、制御ユニット32の移動が完了したことを示す「移動完了しました」の文言が画面表示されている。これにより、医師又は放射線技師は、図10Cの画面表示を視認することにより、制御ユニット32の移動が完了したので、撮影が可能な状態に至ったことを直ちに認識することができる。 In the case of FIG. 10C, the temperature of the control unit 32 is displayed on the screen as the fifth stage temperature in 10 steps on the display unit 82, and “movement completed” indicating that the movement of the control unit 32 is completed. The words are displayed on the screen. As a result, the doctor or the radiologist can immediately recognize that imaging has become possible because movement of the control unit 32 is completed by visually recognizing the screen display of FIG. 10C.
 図11A~図11Cは、制御ユニット32の温度をサーモラベル(○○℃、□□℃、△△℃の3段階)で画面表示させると共に、制御ユニット32の移動の要否又は移動完了を画面表示させた一例を図示したものである。なお、図11A~図11Cでは、○○℃<□□℃<△△℃であり、それぞれの表示温度の上側の○印が点灯(図11A~図11Cでは斜線表示)することで、制御ユニット32の温度が当該表示温度に到達したことを図示している。 11A to 11C display the temperature of the control unit 32 on the screen with thermo labels (three steps of °° C., □□ ° C., ΔΔ ° C.), and also display the necessity or complete movement of the control unit 32 It is a figure showing an example displayed. In FIGS. 11A to 11C, 制 御 ° C. <□□ ° C. <ΔΔ ° C., and the ○ mark on the upper side of each display temperature lights up (shaded in FIGS. 11A to 11C). It is illustrated that 32 temperatures have reached the indicated temperature.
 図11Aの場合、表示部82には、制御ユニット32の温度が○○℃に到達していることが画面表示されると共に、制御ユニット32の移動が不要であることを示す「移動は不要です」の文言が画面表示されている。これにより、医師又は放射線技師は、図11Aの画面表示を視認することにより、制御ユニット32が比較的低温の○○℃であるため、制御ユニット32を移動させる必要がないことを直ちに認識することができる。 In the case of FIG. 11A, the display unit 82 displays that the temperature of the control unit 32 has reached ○ ° C. on the screen, and indicates that the movement of the control unit 32 is unnecessary. The words are displayed on the screen. Thereby, the doctor or the radiologist immediately recognizes that the control unit 32 does not need to be moved because the control unit 32 is at a relatively low temperature of ○ ° C. by visually recognizing the screen display of FIG. 11A. Can.
 図11Bの場合、表示部82には、制御ユニット32の温度が□□℃に到達していることが画面表示されると共に、制御ユニット32の移動が必要であることを示す「移動させて下さい」の文言(警告)が画面表示がされている。すなわち、図11Bは、例えば、制御ユニット32の温度が□□℃に到達した時点で、制御ユニット32の移動が必要と移動指示部136が判定した場合の画面表示を図示したものである。医師又は放射線技師は、図11Bの画面表示を視認することにより、制御ユニット32の温度が、被写体14が熱いと感じる程度の□□℃に到達したので、制御ユニット32を移動させる必要があることを直ちに認識することができる。 In the case of FIG. 11B, the display unit 82 displays that the temperature of the control unit 32 has reached □□ ° C., and indicates that “the control unit 32 needs to be moved. The word "warning" is displayed on the screen. That is, FIG. 11B illustrates a screen display when, for example, the movement instructing unit 136 determines that the movement of the control unit 32 is necessary when the temperature of the control unit 32 reaches □□ ° C. It is necessary for the doctor or radiologist to move the control unit 32 because the temperature of the control unit 32 has reached the degree of □□ ° C. that the subject 14 feels hot by visually recognizing the screen display of FIG. 11B. Can be recognized immediately.
 図11Cの場合、表示部82には、制御ユニット32の温度が□□℃に到達していることが画面表示されると共に、制御ユニット32の移動が完了したことを示す「移動完了しました」の文言が画面表示されている。これにより、医師又は放射線技師は、図11Cの画面表示を視認することにより、制御ユニット32の移動が完了したので、撮影が可能な状態に至ったことを直ちに認識することができる。 In the case of FIG. 11C, the display unit 82 displays on the screen that the temperature of the control unit 32 has reached □□ ° C., and indicates that the movement of the control unit 32 has been completed. The words are displayed on the screen. As a result, the doctor or the radiologist can immediately recognize that imaging has become possible since the movement of the control unit 32 is completed by visually recognizing the screen display of FIG. 11C.
 このように、図10A~図11Cの場合、移動の要否の指示や移動完了の通知に加え、制御ユニット32の現在の温度や、温度変化(温度上昇)の状況も一括して画面表示されているので、医師又は放射線技師は、制御ユニット32の状況等を容易に把握することができる。 Thus, in the case of FIGS. 10A to 11C, the current temperature of the control unit 32 and the status of the temperature change (temperature rise) are collectively displayed on the screen in addition to the instruction of necessity of movement and notification of movement completion. Therefore, the doctor or the radiologist can easily grasp the situation of the control unit 32 and the like.
 図12A~図12Cは、オーダ情報に含まれる被写体14の撮影部位を画面表示させると共に、制御ユニット32の移動の要否又は移動完了を画面表示させた一例を図示したものである。 12A to 12C illustrate an example in which the imaging region of the subject 14 included in the order information is displayed on the screen, and the necessity of movement of the control unit 32 or the movement completion is displayed on the screen.
 図12Aの場合、表示部82には、オーダ情報が被写体14の手の撮影であることを示す「オーダ情報 手の撮影」の文言が画面表示されると共に、制御ユニット32の移動が不要であることを示す「移動は不要です」の文言が画面表示されている。すなわち、手の面積と比較して撮影領域46の面積(投影面積)が広い場合、撮影時には、制御ユニット32を移動させなくても、前記手と制御ユニット32とが接触する可能性等が低い。これにより、医師又は放射線技師は、図12Aの画面表示を視認することにより、制御ユニット32を移動させる必要がないことを直ちに認識することができる。 In the case of FIG. 12A, the display unit 82 displays the wording of “order information shooting of hand” indicating that the order information is shooting of the hand of the subject 14 and the movement of the control unit 32 is unnecessary. The wording “No movement required” is displayed on the screen. That is, when the area (projected area) of the imaging region 46 is large compared to the area of the hand, the possibility of contact between the hand and the control unit 32 is low without moving the control unit 32 during imaging. . Thereby, the doctor or radiologist can immediately recognize that it is not necessary to move the control unit 32 by visually recognizing the screen display of FIG. 12A.
 図12Bの場合、表示部82には、オーダ情報が被写体14の胸部の撮影であることを示す「オーダ情報 胸部撮影」の文言が画面表示されると共に、制御ユニット32の移動が必要であることを示す「移動させて下さい」の文言が画面表示されている。すなわち、前記胸部の面積が、被写体14が制御ユニット32に接触するような大きさであれば、撮影時に被写体14が不自然な姿勢になって違和感を感じる可能性があり、制御ユニット32の移動を指示する画面表示が必要であるためである。従って、医師又は放射線技師は、図12Bの画面表示を視認することにより、制御ユニット32を移動させる必要があることを直ちに認識することができる。 In the case of FIG. 12B, the display unit 82 displays the wording “order information chest imaging” indicating that the order information is imaging the chest of the subject 14 and the control unit 32 needs to be moved. The words "Please move" are displayed on the screen. That is, if the area of the chest is such that the subject 14 contacts the control unit 32, there is a possibility that the subject 14 may have an unnatural posture and feel uncomfortable when shooting, and the control unit 32 moves It is necessary to have a screen display to indicate. Therefore, the doctor or radiologist can immediately recognize that the control unit 32 needs to be moved by viewing the screen display of FIG. 12B.
 図12Cの場合、表示部82には、オーダ情報が被写体14の胸部の撮影であることを示す「オーダ情報 胸部撮影」が画面表示されると共に、制御ユニット32の移動が完了したことを示す「移動完了しました」の文言が画面表示されている。これにより、医師又は放射線技師は、図12Cの画面表示を視認することにより、撮影が可能な状態に至ったことを直ちに認識することができる。 In the case of FIG. 12C, the display unit 82 displays on the screen “order information chest imaging” indicating that the order information is imaging of the chest of the subject 14 and indicates that the movement of the control unit 32 is completed. The word "Moved complete" is displayed on the screen. As a result, the doctor or radiologist can immediately recognize that imaging has become possible by visually recognizing the screen display of FIG. 12C.
 このように、図12A~図12Cの場合、移動の要否の指示や移動完了の通知に加え、オーダ情報も一括して画面表示されているので、医師又は放射線技師は、被写体14の撮影部位や制御ユニット32の状況等を容易に把握することができる。 As described above, in the case of FIGS. 12A to 12C, the order information is also displayed collectively on the screen in addition to the instruction of necessity of movement and the notification of movement completion, so the doctor or radiologist The situation of the control unit 32 can be easily grasped.
 なお、ステップS3において、移動指示部136は、オーダ情報に関わる判定処理と、制御ユニット32の温度に関わる判定処理との双方の処理を行っているので、図10A~図12Cの画面表示を組み合わせて、制御ユニット32の温度の画面表示(図10A~図11C)と、移動に関わる画面表示(図10A~図12C)と、オーダ情報の画面表示(図12A~図12C)とを表示部82の画面上に一括表示させることも可能である。 Note that, in step S3, the movement instructing unit 136 performs both the determination processing related to order information and the determination processing related to the temperature of the control unit 32, so the screen display of FIGS. 10A to 12C is combined. The display unit 82 displays the temperature display of the control unit 32 (FIGS. 10A to 11C), the display related to movement (FIGS. 10A to 12C), and the display of the order information (FIGS. 12A to 12C). It is also possible to display them collectively on the screen of.
 勿論、移動指示部136は、オーダ情報に関わる判定処理と、制御ユニット32の温度に関わる判定処理とのうち、いずれか一方の判定処理のみ行い、図10A~図10Cと、図11A~図11Cと、図12A~図12Cとのうち、いずれかの画面表示を表示部82に行わせてもよい。 Of course, the movement instructing unit 136 performs only one of the judgment processing related to the order information and the judgment processing related to the temperature of the control unit 32, and FIGS. 10A to 10C and FIGS. 11A to 11C. One of the screen displays of FIGS. 12A to 12C may be displayed on the display unit 82.
 図9に戻り、ステップS6において、医師又は放射線技師は、放射線源18と放射線変換パネル92との間の撮影間距離をSID(線源受像画間距離)に調整する一方で、撮影面42に被写体14を配置させて、被写体14の撮影部位が撮影領域46に入り、且つ、該撮影部位の中心位置が撮影領域46の中心位置と略一致するように、該被写体14の位置決め(ポジショニング)を行う。 Returning to FIG. 9, in step S6, the doctor or radiologist adjusts the inter-imaging distance between the radiation source 18 and the radiation conversion panel 92 to SID (inter-source-image distance), while the imaging surface 42 Position the subject 14 so that the imaging region of the subject 14 enters the imaging region 46 and the center position of the imaging region substantially matches the center position of the imaging region 46 with the object 14 placed. Do.
 なお、上述したポジショニングは、主として、撮影領域46全体を利用して撮影を行う場合、すなわち、放射線16の投影面積が撮影領域46の面積であるときのポジショニングであり、この場合には、被写体14(の撮影部位)と制御ユニット32との接触を回避するために、該制御ユニット32は、図6及び図7Bの位置に予め移動している。 The above-described positioning is mainly performed when imaging is performed using the entire imaging region 46, that is, when the projection area of the radiation 16 is the area of the imaging region 46, in this case, the subject 14 In order to avoid contact between (the region to be imaged) and the control unit 32, the control unit 32 has previously moved to the position shown in FIGS. 6 and 7B.
 これに対して、例えば、撮影領域46に対して面積の小さな撮影部位(被写体14の手)については、放射線16の投影面積を小さくして撮影を行ってもよいし、さらには、制御ユニット32の位置が図5及び図7Aの位置にあっても、被写体14と制御ユニット32とが接触する可能性は低い。このような場合には、制御ユニット32を移動させることなく、撮影領域46における矢印X1方向側の領域又はガイド線44の中心位置の領域に前記撮影部位を位置決めすればよい。 On the other hand, for example, with respect to an imaging region (the hand of the subject 14) having a small area with respect to the imaging region 46, the projection area of the radiation 16 may be reduced and imaging may be further performed. Even if the position of the point is in the positions of FIG. 5 and FIG. 7A, the possibility that the subject 14 and the control unit 32 touch is low. In such a case, the imaging region may be positioned in the area on the side of the arrow X1 in the imaging area 46 or the area at the center position of the guide line 44 without moving the control unit 32.
 また、ステップS6のポジショニングは、ステップS1~S5の段階で行うことも可能である。この場合、例えば、被写体14と撮影台12との間にパネル収容ユニット30を挿入してステップS6のポジショニングを実行した後に、ステップS1~S5を実行すればよい。あるいは、被写体14と撮影台12との間にパネル収容ユニット30を挿入した後に、ステップS1~S5を実行し、その後、ステップS6のポジショニングを実行してもよい。 Also, the positioning of step S6 can be performed at the stage of steps S1 to S5. In this case, for example, after the panel accommodation unit 30 is inserted between the subject 14 and the imaging stand 12 and the positioning of step S6 is performed, steps S1 to S5 may be performed. Alternatively, after the panel accommodation unit 30 is inserted between the subject 14 and the imaging stand 12, steps S1 to S5 may be performed, and then the positioning of step S6 may be performed.
 このようにして、ステップS1~S6の撮影準備が完了した後のステップS7において、カセッテ制御部50は、例えば、移動指示部136による移動完了の判定に基づいて、放射線16の照射(撮影)が可能になったことを示す撮影許可信号を通信部54を介してコンソール22に送信する。 Thus, in step S7 after the imaging preparation in steps S1 to S6 is completed, the cassette control unit 50, for example, irradiates (photographs) radiation 16 based on the determination of the movement completion by the movement instruction unit 136. A photographing permission signal indicating that it has become possible is transmitted to the console 22 via the communication unit 54.
 ステップS8において、医師又は放射線技師がコンソール22又は放射線源18に備わる図示しない曝射スイッチを投入する。コンソール22に曝射スイッチが備わっている場合には、曝射スイッチの投入後、コンソール22は、前記撮影許可信号を既に受信したことを条件として、コンソール22から無線通信によって撮影条件を放射線源18に送信する。また、放射線源18に曝射スイッチが備わっている場合には、曝射スイッチの投入後、放射線源18から無線通信によりコンソール22に対して撮影条件の送信が要求され、該コンソール22は、前記撮影許可信号を既に受信したことを条件として、放射線源18からの送信要求に応じて、前記撮影条件を無線通信により放射線源18に送信する。 In step S8, a doctor or a radiologist turns on a radiation switch (not shown) provided on the console 22 or the radiation source 18. When the console 22 is equipped with an exposure switch, after the exposure switch is turned on, the console 22 receives radiographing conditions from the console 22 by radio communication on the condition that the radiographing permission signal has already been received. Send to When the radiation source 18 is equipped with an exposure switch, transmission of imaging conditions is requested from the radiation source 18 to the console 22 by wireless communication after the exposure switch is turned on. The imaging conditions are transmitted to the radiation source 18 by wireless communication in response to a transmission request from the radiation source 18 on the condition that the imaging permission signal has already been received.
 放射線源18は、撮影条件を受信すると、該撮影条件に従って、所定の線量からなる放射線16を所定の曝射時間だけ被写体14に照射する。放射線16は、被写体14を透過してパネル収容ユニット30内の放射線変換パネル92に至る。 When receiving the imaging condition, the radiation source 18 irradiates the object 14 with a radiation 16 having a predetermined dose for a predetermined exposure time according to the imaging condition. The radiation 16 passes through the subject 14 and reaches the radiation conversion panel 92 in the panel storage unit 30.
 ステップS9において、放射線変換パネル92が間接変換型の放射線変換パネルである場合に、該放射線変換パネル92を構成するシンチレータは、放射線16の強度に応じた強度の可視光を発光し、光電変換層を構成する各画素100は、可視光を電気信号に変換し、電荷として蓄積する。次いで、各画素100に保持された被写体14の放射線画像である電荷情報は、カセッテ制御部50を構成するアドレス信号発生部130からゲート駆動回路110及びマルチプレクサ駆動回路120に供給されるアドレス信号に従って読み出される。 In step S9, when the radiation conversion panel 92 is an indirect conversion type radiation conversion panel, the scintillator constituting the radiation conversion panel 92 emits visible light of an intensity corresponding to the intensity of the radiation 16, and the photoelectric conversion layer Each of the pixels 100 constituting the pixel converts visible light into an electric signal and stores it as a charge. Subsequently, charge information which is a radiation image of the subject 14 held in each pixel 100 is read out according to the address signal supplied to the gate drive circuit 110 and the multiplexer drive circuit 120 from the address signal generating unit 130 constituting the cassette control unit 50 Be
 すなわち、ゲート駆動回路110は、アドレス信号発生部130から供給されるアドレス信号に対応するゲート線102に接続されたTFT106のゲートに制御信号を供給する。一方、マルチプレクサ駆動回路120は、アドレス信号発生部130から供給されるアドレス信号に従って、選択信号を出力してFETスイッチ118を順次切り替え(順次オンオフして)、ゲート駆動回路110によって選択されたゲート線102に接続される各画素100に保持された電荷情報としての放射線画像を信号線104を介して順次読み出す。 That is, the gate drive circuit 110 supplies a control signal to the gate of the TFT 106 connected to the gate line 102 corresponding to the address signal supplied from the address signal generation unit 130. On the other hand, the multiplexer drive circuit 120 outputs a selection signal according to the address signal supplied from the address signal generation unit 130 to sequentially switch the FET switches 118 (turn on and off sequentially), and the gate line selected by the gate drive circuit 110. A radiation image as charge information held in each pixel 100 connected to 102 is sequentially read out via the signal line 104.
 選択されたゲート線102に接続された各画素100から読み出された放射線画像は、各増幅器114によって増幅された後、各サンプルホールド回路116によってサンプリングされ、FETスイッチ118を介してA/D変換器122に供給され、デジタル信号に変換される。デジタル信号に変換された放射線画像は、カセッテ制御部50の画像メモリ132に一旦記憶される(ステップS10)。 The radiation image read out from each pixel 100 connected to the selected gate line 102 is amplified by each amplifier 114 and then sampled by each sample and hold circuit 116 and A / D converted via the FET switch 118 It is supplied to the unit 122 and converted into a digital signal. The radiation image converted into the digital signal is temporarily stored in the image memory 132 of the cassette control unit 50 (step S10).
 同様にして、ゲート駆動回路110は、アドレス信号発生部130から供給されるアドレス信号に従って、制御信号を出力するゲート線102を順次切り替え、各ゲート線102に接続されている各画素100に保持された電荷情報である放射線画像を信号線104を介して読み出し、FETスイッチ118及びA/D変換器122を介してカセッテ制御部50の画像メモリ132に記憶させる(ステップS10)。 Similarly, in accordance with the address signal supplied from the address signal generation unit 130, the gate drive circuit 110 sequentially switches the gate line 102 for outputting the control signal, and is held in each pixel 100 connected to each gate line 102. The radiation image, which is the charge information, is read out through the signal line 104 and stored in the image memory 132 of the cassette control unit 50 through the FET switch 118 and the A / D converter 122 (step S10).
 画像メモリ132に記憶された放射線画像は、カセッテIDメモリ134に記憶されたカセッテID情報と共に、通信部54を介して無線通信によりコンソール22に送信される。コンソール22は、受信した放射線画像に対して所定の画像処理を行い、画像処理後の放射線画像を無線通信により表示装置24に送信する。表示装置24は、受信した放射線画像を表示する(ステップS11)。 The radiation image stored in the image memory 132 is transmitted to the console 22 by wireless communication via the communication unit 54 together with the cassette ID information stored in the cassette ID memory 134. The console 22 performs predetermined image processing on the received radiation image, and transmits the radiation image after the image processing to the display device 24 by wireless communication. The display device 24 displays the received radiation image (step S11).
 なお、ステップS11において、電子カセッテ20Aには、表示部82が備わっているので、該表示部82に放射線画像(のローデータ又は間引きデータ)を表示させてもよい。 In step S11, since the electronic cassette 20A is provided with the display unit 82, the display unit 82 may display (low data or thinned data of) a radiation image.
 医師又は放射線技師が表示装置24又は表示部82に表示された放射線画像を視認して、適切な被写体14の放射線画像が得られたことを確認した後のステップS12において、医師又は放射線技師は、被写体14を解放して撮影を完了させ、次に、制御ユニット32が図6及び図7Bの位置に配置されている場合には、取っ手80を把持して該制御ユニット32を矢印X1方向に押す。これによりガイド部64、66及び摺動部材68、70の案内作用下に、制御ユニット32は、矢印X1方向に摺動し、図5及び図7Aに示す位置に戻り、電子カセッテ20Aは、運搬可能なコンパクトな状態となる。 In step S12 after the doctor or radiologist visually recognizes the radiation image displayed on the display device 24 or the display unit 82 and confirms that the appropriate radiation image of the subject 14 has been obtained, the doctor or radiologist The subject 14 is released to complete imaging, and then, when the control unit 32 is disposed in the position of FIGS. 6 and 7B, the grip 80 is gripped to push the control unit 32 in the direction of the arrow X1. . Thus, the control unit 32 slides in the direction of the arrow X1 under the guiding action of the guide portions 64 and 66 and the sliding members 68 and 70 and returns to the position shown in FIGS. 5 and 7A, and the electronic cassette 20A is transported It will be possible compact state.
 なお、制御ユニット32を移動させずに被写体14の撮影が行われた場合には、医師又は放射線技師による制御ユニット32の移動は行われない。 In addition, when imaging | photography of the to-be-photographed object 14 is performed without moving the control unit 32, the movement of the control unit 32 by a doctor or a radiologist is not performed.
 次のステップS13において、医師又は放射線技師は、電源スイッチ86を押して、電子カセッテ20Aを停止させる。これにより、電源部52は、制御ユニット32の各部に対する電力供給を停止すると共に、フレキシブル基板62を介したパネル収容ユニット30に対する電力供給も停止する。この結果、電子カセッテ20Aは、アクティブ状態からスリープ状態に移行する。そして、医師又は放射線技師は、取っ手80を把持して、コンパクトな状態となった電子カセッテ20Aを所定の保管場所にまで運搬する。 In the next step S13, the doctor or radiologist presses the power switch 86 to stop the electronic cassette 20A. Thus, the power supply unit 52 stops the power supply to each part of the control unit 32 and also stops the power supply to the panel accommodation unit 30 via the flexible substrate 62. As a result, the electronic cassette 20A shifts from the active state to the sleep state. Then, the doctor or radiologist holds the handle 80 and transports the compacted electronic cassette 20A to a predetermined storage location.
[第1実施形態の効果]
 以上説明したように、第1実施形態に係る電子カセッテ20A及び放射線画像撮影システム10Aによれば、放射線16の入射方向に向かって突出した制御ユニット32(突出部分の少なくとも一部分)とパネル収容ユニット30とを分離させない状態で、該制御ユニット32を移動可能としたことにより、撮影面42に位置決めされた被写体14と制御ユニット32とを容易に離間させることが可能となる。これにより、撮影時には、被写体14の撮影部位に応じて撮影面42に照射される放射線の照射面積(投影面積)を変化させることができるので、被写体14に違和感を感じさせることなく、撮影を遂行することができると共に、制御ユニット32が撮影の邪魔になることを回避できる。従って、第1実施形態では、撮影準備及び撮影の容易化と、装置の取り扱い性の向上とを共に実現することができる。
[Effect of First Embodiment]
As described above, according to the electronic cassette 20A and the radiographic imaging system 10A according to the first embodiment, the control unit 32 (at least a part of the projecting portion) and the panel accommodation unit 30 that protrude in the incident direction of the radiation 16 By making the control unit 32 movable in a state in which the control unit 32 is not separated, it becomes possible to easily separate the control unit 32 from the subject 14 positioned on the imaging surface 42. Thereby, at the time of imaging, since the irradiation area (projected area) of the radiation irradiated to the imaging surface 42 can be changed according to the imaging region of the subject 14, imaging is performed without making the subject 14 feel uncomfortable. It is possible to prevent the control unit 32 from getting in the way of imaging. Therefore, in the first embodiment, it is possible to realize both the imaging preparation and imaging facilitation and the improvement of the handling of the apparatus.
 この場合、制御ユニット32は、パネル収容ユニット30に接触した状態で移動可能であるため、撮影時には、被写体14と制御ユニット32とを離間しつつ、放射線16の投影面積を変更することができる。 In this case, since the control unit 32 is movable in a state of being in contact with the panel storage unit 30, the projection area of the radiation 16 can be changed while separating the subject 14 and the control unit 32 at the time of photographing.
 また、制御ユニット32は、撮影面42に接触した状態で、撮影領域46から離間する方向(矢印X2方向)に移動可能であるため、撮影時には、被写体14から制御ユニット32を離しつつ、被写体14の撮影部位に応じて放射線16の投影面積を効率よく可変する(大きくする)ことができる。 Further, since the control unit 32 is movable in the direction (arrow X2 direction) away from the imaging region 46 in a state of being in contact with the imaging surface 42, the object 14 is separated from the object 14 during imaging. The projection area of the radiation 16 can be efficiently varied (increased) according to the imaging site of
 さらに、制御ユニット32に収容されているカセッテ制御部50、電源部52及び通信部54は、動作時には、外部に熱を放出する発熱体として機能する。特に、電源部52は、制御ユニット32を構成する各部品のうち、発熱量が比較的大きな部品である。そこで、第1実施形態では、制御ユニット32の温度を温度センサ56で検出し、検出した温度に関する情報を表示部82を介して画面表示すると共に、スピーカ84から音として出力することにより、医師又は放射線技師は、表示部82の画面表示内容や、スピーカ84からの音に従って、撮影面42から離間させる方向に制御ユニット32を変位させることが可能となる。この結果、撮影時における、被写体14と、発熱体としての制御ユニット32との接近を確実に回避して、被写体14の違和感を一層低減することが可能となる。 Furthermore, the cassette control unit 50, the power supply unit 52, and the communication unit 54 accommodated in the control unit 32 function as a heating element that emits heat to the outside during operation. In particular, the power supply unit 52 is a component having a relatively large amount of heat generation among the components constituting the control unit 32. Therefore, in the first embodiment, the temperature of the control unit 32 is detected by the temperature sensor 56, and information related to the detected temperature is displayed on the screen via the display unit 82, and output as sound from the speaker 84. The radiographer can displace the control unit 32 in a direction away from the imaging surface 42 according to the screen display content of the display unit 82 and the sound from the speaker 84. As a result, it is possible to reliably avoid the approach of the subject 14 and the control unit 32 as a heating element at the time of shooting, and to further reduce the discomfort of the subject 14.
 この場合、表示部82は、制御ユニット32の温度を表示し、さらには、該温度が所定温度(被写体14が熱いと感じる程度の制御ユニット32の温度)に到達したことも表示可能である。一方、スピーカ84は、制御ユニット32の温度が前記所定温度に到達したことを警告音として出力することも可能である。これにより、医師又は放射線技師に対して制御ユニット32の温度に関わる各種情報を確実に報知することができるので、撮影面42に対する制御ユニット32の変位を一層効率よく行うことが可能となる。 In this case, the display unit 82 can display the temperature of the control unit 32, and can also display that the temperature has reached a predetermined temperature (the temperature of the control unit 32 to the extent that the subject 14 feels hot). On the other hand, the speaker 84 can also output, as a warning sound, that the temperature of the control unit 32 has reached the predetermined temperature. As a result, various information related to the temperature of the control unit 32 can be reliably notified to the doctor or the radiographer, so displacement of the control unit 32 with respect to the imaging surface 42 can be performed more efficiently.
 しかも、表示部82は、制御ユニット32の温度を複数段階で表示するか、あるいは、サーモラベルの形式で表示するので、医師又は放射線技師は、制御ユニット32の現在の温度や、温度変化の状況を容易に把握することができる。 Moreover, since the display unit 82 displays the temperature of the control unit 32 in multiple stages or in the form of a thermo label, the doctor or radiologist can change the current temperature of the control unit 32 or the status of the temperature change. Can be easily grasped.
 さらに、表示部82は、制御ユニット32の温度に基づく、該制御ユニット32の移動の要否又は完了を画面表示し、一方で、スピーカ84は、制御ユニット32の温度に基づく、該制御ユニット32の移動の要否又は完了を音(警告音)として出力する。従って、医師又は放射線技師は、自身が判断しなくても、これらの報知(画面表示、音)があったときに、制御ユニット32を移動させ、あるいは、移動作業を停止させればよい。この結果、電子カセッテ20Aの使い勝手が一層向上する。 Furthermore, the display unit 82 displays the necessity or completion of the movement of the control unit 32 based on the temperature of the control unit 32, while the speaker 84 controls the control unit 32 based on the temperature of the control unit 32. It outputs the necessity or the completion of the movement of as a sound (warning sound). Therefore, the doctor or the radiologist may move the control unit 32 or stop the moving operation when there is a notification (screen display, sound) without making a judgment of itself. As a result, the usability of the electronic cassette 20A is further improved.
 さらにまた、通信部54は、コンソール22からオーダ情報を受信し、表示部82は、オーダ情報に基づく、制御ユニット32の移動の要否を表示し、一方で、スピーカ84は、オーダ情報に基づく、制御ユニット32の移動の要否を音として出力する。オーダ情報には、被写体14の撮影部位等の情報も含まれているので、該オーダ情報に基づき制御ユニット32を移動させて、放射線16の投影面積を変更することにより、電子カセッテ20Aの使い勝手を一層向上することができる。 Furthermore, the communication unit 54 receives order information from the console 22, and the display unit 82 displays necessity of movement of the control unit 32 based on the order information, while the speaker 84 is based on the order information. The necessity of movement of the control unit 32 is output as a sound. The order information also includes information such as the imaging region of the subject 14. Therefore, by moving the control unit 32 based on the order information to change the projection area of the radiation 16, the usability of the electronic cassette 20 A can be improved. It can be further improved.
 なお、上記の説明では、位置検出センサ98が摺動部材68の位置を検出し、検出結果を出力信号としてカセッテ制御部50に出力することに起因して、制御ユニット32の移動完了を移動指示部136で判定することについて説明した。第1実施形態では、位置検出センサ98に代えて、リニアエンコーダ等の移動量検出手段により摺動部材68、70の移動量を検出し、移動指示部136が前記移動量に基づいて制御ユニット32の移動完了を判定し、その判定結果に応じて、表示部82の表示内容を変更し、あるいは、スピーカ84から出力される音を変更してもよい。この場合、カセッテ制御部50は、制御ユニット32の移動完了に基づいて、撮影許可信号を生成することになる。 In the above description, the position detection sensor 98 detects the position of the sliding member 68, and outputs the detection result as an output signal to the cassette control unit 50, thereby instructing the movement of the control unit 32 to move. The determination in the section 136 has been described. In the first embodiment, instead of the position detection sensor 98, the movement amount of the sliding members 68 and 70 is detected by movement amount detection means such as a linear encoder, and the movement instruction unit 136 controls the control unit 32 based on the movement amount. The movement completion of may be determined, and the display content of the display unit 82 may be changed or the sound output from the speaker 84 may be changed according to the determination result. In this case, the cassette control unit 50 generates a photographing permission signal based on the completion of movement of the control unit 32.
 また、上記の説明では、オーダ情報に含まれる被写体14の撮影部位の大きさ等に基づいて、制御ユニット32の移動が必要か否かを移動指示部136で判定できるようにしている。このような判定に代えて、あるいは、この判定に加えて、移動指示部136は、例えば、動画撮影が含まれたオーダ情報であれば、制御ユニット32の移動が必要と判定することも可能である。 In the above description, the movement instruction unit 136 can determine whether the movement of the control unit 32 is necessary based on the size of the imaging region of the subject 14 included in the order information. Instead of such determination or in addition to this determination, the movement instruction unit 136 can also determine that movement of the control unit 32 is necessary, for example, in the case of order information including video shooting. is there.
 さらに、上記の説明では、制御ユニット32の表示部82又はスピーカ84により、温度センサ56が検出した温度に関わる情報を表示し、あるいは、音として外部に報知していたが、通信部54から無線通信により前記情報をコンソール22に送信し、コンソール22を介して前記情報を外部に報知してもよい。この場合、コンソール22は、例えば、表示装置24を介して前記情報を表示させてもよいし、図示しないスピーカにより音として外部に報知してもよい。この場合でも、前記情報を報知することによる各効果を容易に得ることができる。 Furthermore, in the above description, the information related to the temperature detected by the temperature sensor 56 is displayed by the display unit 82 or the speaker 84 of the control unit 32 or notified to the outside as a sound. The information may be transmitted to the console 22 by communication, and the information may be notified to the outside through the console 22. In this case, for example, the console 22 may display the information via the display device 24 or may notify the outside as a sound through a speaker (not shown). Even in this case, each effect by informing the information can be easily obtained.
 第1実施形態に係る電子カセッテ20Aは、上述した説明に限定されることはなく、図13~図23Bに示す実施形態も実現可能である。 The electronic cassette 20A according to the first embodiment is not limited to the above description, and the embodiments shown in FIGS. 13 to 23B can also be realized.
 図13は、医療機関内の必要な箇所に配置されたクレードル140による電源部52(図2、図5、図6及び図8参照)の充電処理を示す斜視図である。 FIG. 13 is a perspective view showing the charging process of the power supply unit 52 (see FIG. 2, FIG. 5, FIG. 6, and FIG. 8) by the cradle 140 disposed at a necessary place in the medical institution.
 この場合、電子カセッテ20Aとクレードル140との間をコネクタ142、144を有するUSBケーブル146で電気的に接続する。 In this case, the electronic cassette 20A and the cradle 140 are electrically connected by the USB cable 146 having the connectors 142 and 144.
 クレードル140は、電源部52の充電だけでなく、クレードル140の無線通信機能又は有線通信機能を用いて、医療機関内のコンソール22やRIS26との間で必要な情報の送受信を行うようにしてもよい。送受信する情報には、電子カセッテ20Aの画像メモリ132(図8参照)に記録された放射線画像を含めることができる。 The cradle 140 performs transmission and reception of necessary information with the console 22 and the RIS 26 in a medical institution using not only the charging of the power supply unit 52 but also the wireless communication function or the wired communication function of the cradle 140. Good. The information to be transmitted and received can include a radiation image recorded in the image memory 132 (see FIG. 8) of the electronic cassette 20A.
 また、クレードル140に表示部148を配設し、この表示部148に対して、電子カセッテ20Aの充電状態や、電子カセッテ20Aから取得した放射線画像を含む必要な情報を表示させるようにしてもよい。 In addition, the display unit 148 may be disposed on the cradle 140, and the display unit 148 may display the charge state of the electronic cassette 20A and necessary information including a radiation image acquired from the electronic cassette 20A. .
 さらに、複数のクレードル140をネットワークに接続し、各クレードル140に接続されている電子カセッテ20Aの充電状態をネットワークを介して収集し、使用可能な充電状態にある電子カセッテ20Aの所在を確認できるように構成することもできる。 Furthermore, a plurality of cradles 140 can be connected to the network, and the charge states of the electronic cassettes 20A connected to each cradle 140 can be collected via the network to confirm the whereabouts of the electronic cassettes 20A in the usable charge state. It can also be configured.
[第1実施形態の変形例]
 次に、第1実施形態に係る電子カセッテ20Aの変形例(以下、第1~第4変形例ともいう。)について、図14A~図23Bを参照しながら説明する。
Modified Example of First Embodiment
Next, modified examples of the electronic cassette 20A according to the first embodiment (hereinafter also referred to as first to fourth modified examples) will be described with reference to FIGS. 14A to 23B.
 先ず、図14A~図17Bに示す第1変形例の電子カセッテ20Aは、平面視で、撮影領域46を挟むように、2つの溝状のガイド部150、152が撮影面42にそれぞれ設けられると共に、筐体40の矢印X1方向の側面にも取っ手154が設けられている点で、図1~図13の実施形態とは異なる。 First, the electronic cassette 20A of the first modification shown in FIGS. 14A to 17B has two groove-shaped guide portions 150 and 152 provided on the imaging surface 42 so as to sandwich the imaging region 46 in plan view. The embodiment differs from the embodiment of FIGS. 1 to 13 in that a handle 154 is also provided on the side surface of the housing 40 in the direction of the arrow X1.
 この場合、ガイド部150、152は、ガイド部64、66を単純に矢印X1方向の側面近傍にまで延在させたものであり、従って、制御ユニット32は、ガイド部150、152及び摺動部材68、70の案内作用下に、矢印X方向に沿って、図15A及び図15Bに示す矢印X1方向側の位置と、図17A及び図17Bに示す制御ユニット32の一部分が平面視でパネル収容ユニット30からはみ出した位置との間を移動自在である。 In this case, the guide portions 150 and 152 simply extend the guide portions 64 and 66 to the vicinity of the side surface in the direction of the arrow X1. Therefore, the control unit 32 includes the guide portions 150 and 152 and the sliding member Under the guiding action of 68 and 70, along the arrow X direction, the position on the arrow X1 direction side shown in FIG. 15A and FIG. 15B, and a part of the control unit 32 shown in FIG. It is movable between positions 30 and 30.
 そのため、この第1変形例では、パネル収容ユニット30に対して制御ユニット32を矢印X方向に沿った所望の位置に容易に配置することができる。また、撮影面42上を制御ユニット32が移動可能であるため、電子カセッテ20A全体をコンパクト化することができ、持ち運びも容易となる。特に、図16A及び図16Bに示すパネル収容ユニット30の中央部分に制御ユニット32を移動させた場合には、持ち運びの際の重量バランスが良好である。 Therefore, in the first modification, the control unit 32 can be easily disposed at a desired position along the arrow X direction with respect to the panel accommodation unit 30. Further, since the control unit 32 is movable on the photographing surface 42, the entire electronic cassette 20A can be made compact and easy to carry. In particular, when the control unit 32 is moved to the central portion of the panel accommodation unit 30 shown in FIGS. 16A and 16B, the weight balance in carrying is good.
 このように、矢印X方向に沿ってガイド部150、152を設けることにより、撮影領域46における放射線16の投影面積を、オーダ情報に含まれる被写体14の撮影部位に応じて、及び/又は、制御ユニット32の温度に応じて、適宜変更することが可能となる。例えば、比較的大きな投影面積が要求される胸部撮影の場合には、制御ユニット32を図14A及び図14Bの位置、あるいは、図17A及び図17Bの位置に移動させればよい。また、比較的小さな投影面積である手又は膝の撮影の場合には、制御ユニット32を図15A及び図15Bの位置、あるいは、図16A及び図16Bの位置に移動させればよい。図15A及び図15Bの場合には、撮影領域46における矢印X2方向側の領域に放射線16を照射可能であり、図16A及び図16Bの場合には、撮影領域46における矢印X1方向側又は矢印X2方向側の領域に放射線16を照射可能である。 Thus, by providing the guide portions 150 and 152 along the arrow X direction, the projection area of the radiation 16 in the imaging region 46 is controlled according to the imaging region of the subject 14 included in the order information and / or According to the temperature of the unit 32, it becomes possible to change suitably. For example, in the case of chest imaging where a relatively large projection area is required, the control unit 32 may be moved to the positions of FIGS. 14A and 14B or to the positions of FIGS. 17A and 17B. Further, in the case of photographing a hand or a knee having a relatively small projection area, the control unit 32 may be moved to the positions of FIGS. 15A and 15B or the positions of FIGS. 16A and 16B. In the case of FIGS. 15A and 15B, radiation 16 can be irradiated to the region on the side of the arrow X2 direction in the imaging region 46, and in the case of FIGS. 16A and 16B, the side on the arrow X1 direction or the arrow X2 in the imaging region 46 Radiation 16 can be applied to the area on the direction side.
 なお、医師又は放射線技師は、第1変形例の電子カセッテ20Aを運搬する場合には、図14A及び図14Bの状態で取っ手80又は取っ手154を把持して運搬するか、あるいは、図15A及び図15Bの状態で取っ手154を把持して運搬すればよい。 When the doctor or radiologist transports the electronic cassette 20A of the first modification, the doctor or the radiologist grasps and transports the handle 80 or the handle 154 in the state of FIGS. 14A and 14B, or FIG. 15A and FIG. The handle 154 may be held and transported in the state of 15B.
 図18A及び図18Bに示す第2変形例の電子カセッテ20Aでは、制御ユニット32を構成する筐体48が、パネル収容ユニット30側のベース部48a(突出部分の他の部分)と、ベース部48aに対して移動可能な可動部48b(突出部分の少なくとも一部分)とで構成されている点で、図1~図17Bの実施形態とは異なる。 In the electronic cassette 20A of the second modified example shown in FIGS. 18A and 18B, the case 48 constituting the control unit 32 includes the base portion 48a (the other portion of the protruding portion) on the panel accommodation unit 30 side, and the base portion 48a. It differs from the embodiment of FIGS. 1-17B in that it is configured with a movable portion 48 b (at least a portion of the projecting portion) that is movable with respect to.
 この場合、ベース部48aは、パネル収容ユニット30に固着され、該ベース部48aの上面には、前述したガイド部64、66と同様の機能を有する溝状のガイド部160、162が設けられている。また、可動部48bのベース部48a側(底面側)には、摺動部材68、70と同様の機能を有する摺動部材164、166が設けられ、該可動部48b内には、発熱量の大きなカセッテ制御部50、電源部52及び通信部54が収容されている。なお、温度センサ56も可動部48bに配置されていることが望ましい。また、位置検出センサ98(図5、図6及び図8参照)は、前述のように、筐体40の矢印X2方向の側面側に配置してもよいし、あるいは、ベース部48aの矢印X2方向の側面側に配置してもよい。 In this case, the base portion 48a is fixed to the panel accommodation unit 30, and groove- like guide portions 160 and 162 having the same function as the guide portions 64 and 66 described above are provided on the upper surface of the base portion 48a. There is. Further, on the side of the base portion 48a (bottom surface side) of the movable portion 48b, sliding members 164 and 166 having the same function as the sliding members 68 and 70 are provided. A large cassette control unit 50, a power supply unit 52, and a communication unit 54 are accommodated. Preferably, the temperature sensor 56 is also disposed on the movable portion 48b. Further, as described above, the position detection sensor 98 (see FIGS. 5, 6 and 8) may be disposed on the side of the case 40 in the direction of the arrow X2, or the arrow X2 of the base portion 48a. It may be disposed on the side of the direction.
 そして、第2変形例では、図1~図17Bの場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32を構成する可動部48bの温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に可動部48bの移動を指示したときに、医師又は放射線技師が取っ手80を把持して矢印X2方向に引っ張ると、該可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図18Aに示す位置から図18Bに示す位置に摺動する。 Then, in the second modification, as in the case of FIGS. 1 to 17B, movement is performed according to the imaging region included in the order information and / or according to the temperature of the movable portion 48b configuring the control unit 32. When the instruction unit 136 instructs the doctor or the radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or the radiologist holds the handle 80 and pulls it in the direction of the arrow X2 to move the movable unit 48b slides from the position shown in FIG. 18A to the position shown in FIG. 18B under the guiding action of the guide portions 160, 162 and the sliding members 164, 166.
 このように、第2変形例においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して制御ユニット32の一部である可動部48bを移動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図1~図17Bと同様の効果を得ることができる。 As described above, also in the second modification, the movable unit 48b which is a part of the control unit 32 can be moved with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the movable unit 48b. By doing this, it is possible to easily change the projection area of the radiation 16, so that the same effect as in FIGS. 1 to 17B can be obtained.
 図19~図21に示す第3変形例の電子カセッテ20Aでは、パネル収容ユニット30の筐体40と、制御ユニット32の筐体48とが、ヒンジ部(回転軸)170を介して連結されている点で、図1~図18Bの実施形態とは異なる。 In the electronic cassette 20A of the third modification shown in FIGS. 19 to 21, the case 40 of the panel accommodation unit 30 and the case 48 of the control unit 32 are connected via a hinge portion (rotational shaft) 170. In that it differs from the embodiment of FIGS. 1-18B.
 この場合、ヒンジ部170は、筐体40の矢印X2方向の側面において、矢印Y方向に沿って設けられ、取っ手80は、筐体48の上面に設けられている。 In this case, the hinge portion 170 is provided along the arrow Y direction on the side surface of the housing 40 in the arrow X 2 direction, and the handle 80 is provided on the upper surface of the housing 48.
 そして、第3変形例では、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32の温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に制御ユニット32の回動を指示したときに、医師又は放射線技師が取っ手80を把持し、ヒンジ部170を中心として筐体48を回動させると、該筐体48は、撮影領域46から離間する方向に回動する。 Then, in the third modification, the movement instruction unit 136 is a doctor or a radiologist via the display unit 82 and the speaker 84 according to the imaging region included in the order information and / or according to the temperature of the control unit 32. When the doctor or radiologist holds the handle 80 and instructs the housing 48 to rotate about the hinge portion 170 when the control unit 32 is instructed to rotate the control unit 32, the housing 48 is separated from the imaging region 46. Turn in the direction
 このように、第3変形例においても、撮影部位や筐体48の温度に応じて、パネル収容ユニット30(の撮影領域46)に対して筐体48を回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図1~図18Bの効果と同様の効果を得ることができる。 As described above, also in the third modification, the radiation 16 is made rotatable by making the housing 48 rotatable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the housing 48. Since it is possible to easily change the projected area of the lens, it is possible to obtain the same effect as the effect of FIGS. 1 to 18B.
 なお、パネル収容ユニット30と制御ユニット32との間で信号の送受信や電力供給を行うフレキシブル基板62は、図21に示すように、ヒンジ部170内で一回転した状態で配置されている。そのため、上述のように、パネル収容ユニット30に対して制御ユニット32を回動させても、該回動に伴うテンションがフレキシブル基板62にかかることを効果的に抑制することができる。 The flexible substrate 62 for transmitting and receiving signals and supplying power between the panel accommodation unit 30 and the control unit 32 is disposed in a state of being rotated once in the hinge portion 170, as shown in FIG. Therefore, as described above, even when the control unit 32 is rotated with respect to the panel accommodation unit 30, the tension associated with the rotation can be effectively suppressed from being applied to the flexible substrate 62.
 図22~図23Bに示す第4変形例の電子カセッテ20Aでは、パネル収容ユニット30の筐体40における制御ユニット32側の隅部に軸部(回転軸)172が立設し、この軸部172を介して、該筐体40と、制御ユニット32の筐体48とが連結されている点で、図1~図21の実施形態とは異なる。 In the electronic cassette 20A of the fourth modification shown in FIGS. 22 to 23B, a shaft portion (rotation shaft) 172 is erected at a corner portion of the housing 40 of the panel accommodation unit 30 on the control unit 32 side. This embodiment differs from the embodiment of FIGS. 1 to 21 in that the housing 40 and the housing 48 of the control unit 32 are connected to each other.
 この場合、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32の温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に制御ユニット32の回動を指示したときに、医師又は放射線技師が取っ手80を把持し、軸部172を中心として筐体48を回動させると、該筐体48は、撮影領域46から離間する方向に回動する。 In this case, according to the imaging region included in the order information and / or according to the temperature of the control unit 32, the movement instructing unit 136 transmits the control unit 32 to the doctor or radiologist via the display unit 82 and the speaker 84. When a doctor or a radiologist holds the handle 80 and instructs the housing 48 to rotate about the shaft 172 when rotation is instructed, the housing 48 rotates in a direction away from the imaging region 46 Do.
 このように、第4変形例においても、第3変形例の場合と同様に、撮影部位や筐体48の温度に応じて、パネル収容ユニット30(の撮影領域46)に対して筐体48を回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図1~図21と同様の効果を得ることができる。 As described above, also in the fourth modification, as in the case of the third modification, the housing 48 is mounted on (the imaging area 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the housing 48. Since the projection area of the radiation 16 can be easily changed by making it rotatable, the same effect as in FIGS. 1 to 21 can be obtained.
 また、パネル収容ユニット30と制御ユニット32との間で信号の送受信や電力供給を行うフレキシブル基板62についても、図21の場合と同様に、軸部172内で一回転した状態で配置すれば、パネル収容ユニット30に対して制御ユニット32を回動させても、該回動に伴うテンションがフレキシブル基板62にかかることを効果的に抑制することができる。 In addition, as for the flexible substrate 62 for transmitting and receiving signals and supplying power between the panel accommodation unit 30 and the control unit 32, as in the case of FIG. Even when the control unit 32 is rotated with respect to the panel accommodation unit 30, the tension accompanying the rotation can be effectively suppressed from being applied to the flexible substrate 62.
 なお、第1実施形態は、光読出方式の放射線変換パネルを利用して放射線画像を取得する場合にも適用することが可能である。この光読出方式の放射線変換パネルでは、各固体検出素子に放射線が入射すると、その線量に応じた静電潜像が固体検出素子に蓄積記録される。静電潜像を読み取る際には、放射線変換パネルに読取光を照射し、発生した電流の値を放射線画像として取得する。なお、放射線変換パネルは、消去光を放射線変換パネルに照射することで、残存する静電潜像である放射線画像を消去して再使用することができる(特開2000-105297号公報参照)。 The first embodiment can also be applied to the case of acquiring a radiation image by using a light conversion type radiation conversion panel. In the light reading type radiation conversion panel, when radiation is incident on each solid detection element, an electrostatic latent image corresponding to the dose is accumulated and recorded on the solid detection element. When reading the electrostatic latent image, the radiation conversion panel is irradiated with the reading light, and the value of the generated current is acquired as a radiation image. The radiation conversion panel can erase and reuse the radiation image, which is the remaining electrostatic latent image, by irradiating the radiation conversion panel with the erasing light (see JP-A-2000-105297).
 また、電子カセッテ20Aでは、血液やその他の雑菌が付着するおそれを防止するために、例えば、装置全体を防水性、密閉性を有する構造とし、必要に応じて殺菌洗浄することにより、1つの電子カセッテ20Aを繰り返し続けて使用することができる。 Further, in the electronic cassette 20A, in order to prevent the possibility of blood or other bacteria from adhering, for example, the entire device is made waterproof and airtight, and if necessary, it is sterilized and cleaned to make one electronic The cassette 20A can be used repeatedly and continuously.
 また、第1実施形態は、医療機関内での放射線画像の撮影に限らず、災害現場、在宅看護の現場、さらには、検診車に搭載して、健康診断における被写体の撮影にも適用することが可能である。さらに、第1実施形態は、このような医療関連の放射線画像の撮影に限定されるものではなく、例えば、各種の非破壊検査における放射線画像の撮影にも適用可能であることは勿論である。 In addition, the first embodiment is not limited to radiographing in a medical institution, and may be installed in a disaster site, a home nursing home, or a medical examination car, and may be applied to radiographing a subject in a health checkup. Is possible. Furthermore, the first embodiment is not limited to the radiographing of medical-related radiation images as described above, and is naturally applicable to radiographing of radiographs in various nondestructive inspections, for example.
[第2実施形態の説明]
 次に、第2実施形態に係る電子カセッテ20B及び放射線画像撮影システム10Bについて、図24~図30Bを参照しながら説明する。
Description of Second Embodiment
Next, an electronic cassette 20B and a radiation imaging system 10B according to the second embodiment will be described with reference to FIGS. 24 to 30B.
 なお、電子カセッテ20B及び放射線画像撮影システム10Bにおいて、第1実施形態に係る電子カセッテ20A及び放射線画像撮影システム10A(図1~図23B参照)と同じ構成要素については、同じ参照符号を付けて、その詳細な説明を省略する。 In the electronic cassette 20B and the radiation imaging system 10B, the same components as those of the electronic cassette 20A and the radiation imaging system 10A (see FIGS. 1 to 23B) according to the first embodiment are denoted by the same reference numerals. The detailed description is omitted.
 第2実施形態に係る電子カセッテ20B及び放射線画像撮影システム10Bは、パネル収容ユニット30の矢印X2方向の側面(撮影面42の外側)に制御ユニット32が連結されている点で、第1実施形態に係る電子カセッテ20A及び放射線画像撮影システム10A(図1~図23B参照)とは異なる。 The electronic cassette 20B and the radiation imaging system 10B according to the second embodiment are the first embodiment in that the control unit 32 is connected to the side surface (outside of the imaging surface 42) of the panel accommodation unit 30 in the arrow X2 direction. This embodiment is different from the electronic cassette 20A and the radiation imaging system 10A (see FIGS. 1 to 23B) according to the present invention.
 すなわち、電子カセッテ20Bにおいて、パネル収容ユニット30の筐体40の矢印X2方向の側面に、制御ユニット32の筐体48を構成するベース部48aが固着され、このベース部48a上に可動部48bが矢印X方向に沿って摺動可能に配置されている(図26A及び図26B参照)。 That is, in the electronic cassette 20B, the base portion 48a constituting the housing 48 of the control unit 32 is fixed to the side surface of the housing 40 of the panel storage unit 30 in the direction of the arrow X2, and the movable portion 48b is formed on the base portion 48a. It is slidably disposed along the arrow X direction (see FIGS. 26A and 26B).
 従って、電子カセッテ20Bにおいても、第2変形例(図18A及び図18B参照)の場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32を構成する可動部48bの温度に応じて、移動指示部136(図8参照)が表示部82及びスピーカ84を介して医師又は放射線技師に可動部48bの移動を指示したときに、医師又は放射線技師が取っ手80を把持して矢印X2方向に引っ張ると、該可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図26Aに示す位置から図26Bに示す位置に摺動する。 Therefore, also in the electronic cassette 20B, as in the case of the second modification (see FIGS. 18A and 18B), the movable portion 48b configuring the control unit 32 according to the imaging region included in the order information. When the movement instructing unit 136 (see FIG. 8) instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80 depending on the temperature of the Then, when the movable portion 48b is pulled in the direction of the arrow X2, the movable portion 48b slides from the position shown in FIG. 26A to the position shown in FIG. 26B under the guiding action of the guide portions 160, 162 and the sliding members 164, 166.
 そのため、第2実施形態においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して制御ユニット32の一部である可動部48bを移動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、第2変形例を含む第1実施形態と同様の効果を得ることができる。 Therefore, also in the second embodiment, the movable unit 48b which is a part of the control unit 32 is movable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging region and the movable unit 48b. Thus, the projected area of the radiation 16 can be easily changed, and therefore, the same effect as that of the first embodiment including the second modification can be obtained.
[第2実施形態の変形例]
 次に、第2実施形態に係る電子カセッテ20Bの変形例(以下、第5及び第6変形例ともいう。)について、図27~図30Bを参照しながら説明する。
Modified Example of Second Embodiment
Next, modified examples of the electronic cassette 20B according to the second embodiment (hereinafter, also referred to as fifth and sixth modified examples) will be described with reference to FIGS. 27 to 30B.
 図27~図28Bに示す第5変形例の電子カセッテ20Bでは、筐体48のベース部48aと可動部48bとが、ヒンジ部(回転軸)170を介して連結されている点で、図24~図26Bの実施形態とは異なる。 In the electronic cassette 20B of the fifth modification shown in FIGS. 27 to 28B, the base portion 48a and the movable portion 48b of the housing 48 are connected via the hinge portion (rotational shaft) 170. Different from the embodiment of FIG. 26B.
 この場合、ヒンジ部170は、ベース部48aの矢印X2方向の側面において、矢印Y方向に沿って設けられ、取っ手80は、可動部48bの上面に設けられている。 In this case, the hinge portion 170 is provided along the arrow Y direction on the side surface of the base portion 48a in the arrow X2 direction, and the handle 80 is provided on the upper surface of the movable portion 48b.
 そして、第5変形例では、第3変形例(図19~図21参照)の場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、可動部48bの温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に制御ユニット32(の可動部48b)の回動を指示したときに、医師又は放射線技師が取っ手80を把持し、ヒンジ部170を中心として可動部48bを回動させると、該可動部48bは、撮影領域46から離間する方向に回動する。 Then, in the fifth modification, as in the case of the third modification (see FIGS. 19 to 21), according to the imaging region included in the order information and / or according to the temperature of the movable portion 48b, When the movement instruction unit 136 instructs the doctor or radiologist to turn the control unit 32 (the movable unit 48b) via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80, and the hinge unit When the movable portion 48 b is rotated about 170, the movable portion 48 b is rotated in a direction away from the imaging region 46.
 このように、第5変形例においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図24~図26Bの効果や、第3変形例を含む第1実施形態と同様の効果を得ることができる。なお、フレキシブル基板62は、図21の場合と同様に、ヒンジ部170内で一回転した状態で配置すればよい。 As described above, also in the fifth modification, the radiation 16 can be rotated by making the movable portion 48b rotatable relative to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since it is possible to easily change the projected area of the lens, it is possible to obtain the same effects as those of the first embodiment including the effects of FIGS. 24 to 26B and the third modification. The flexible substrate 62 may be disposed in a state of being rotated once in the hinge portion 170, as in the case of FIG.
 図29~図30Bに示す第6変形例の電子カセッテ20Bでは、筐体48のベース部48aと可動部48bとが、軸部172を介して連結されている点で、図24~図28Bの実施形態とは異なる。この場合、軸部172は、ベース部48aの上面における矢印Y1方向側において立設して設けられている。 In the electronic cassette 20B of the sixth modification shown in FIGS. 29 to 30B, the base portion 48a and the movable portion 48b of the housing 48 are connected via the shaft portion 172, as shown in FIGS. It differs from the embodiment. In this case, the shaft portion 172 is provided upright on the side of the upper surface of the base portion 48a in the direction of the arrow Y1.
 そして、第6変形例では、第4変形例(図22~図23B参照)の場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、可動部48bの温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に制御ユニット32(の可動部48b)の回動を指示したときに、医師又は放射線技師が取っ手80を把持し、軸部172を中心として可動部48bを回動させると、該可動部48bは、撮影領域46から離間する方向に回動する。 Then, in the sixth modification, as in the fourth modification (see FIGS. 22 to 23B), according to the imaging region included in the order information and / or according to the temperature of the movable portion 48b, When the movement instruction unit 136 instructs the doctor or radiologist to rotate the control unit 32 (the movable unit 48b) via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80, and the shaft unit When the movable portion 48 b is pivoted about the point 172, the movable portion 48 b is pivoted away from the imaging region 46.
 このように、第6変形例においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図24~図28Bの効果や、第4変形例を含む第1実施形態と同様の効果を得ることができる。なお、フレキシブル基板62は、第4変形例の場合と同様に、軸部172内で一回転した状態で配置すればよい。 As described above, also in the sixth modification, the radiation 16 can be rotated by making the movable portion 48b rotatable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since it is possible to easily change the projection area of the second embodiment, the same effects as those of the first embodiment including the effects of FIGS. 24 to 28B and the fourth modification can be obtained. As in the case of the fourth modification, the flexible substrate 62 may be disposed in a state of being rotated once in the shaft portion 172.
[第3実施形態の説明]
 次に、第3実施形態に係る電子カセッテ20C及び放射線画像撮影システム10Cについて、図31~図34Bを参照しながら説明する。
Description of Third Embodiment
Next, an electronic cassette 20C and a radiation imaging system 10C according to a third embodiment will be described with reference to FIGS. 31 to 34B.
 第3実施形態に係る電子カセッテ20C及び放射線画像撮影システム10Cは、パネル収容ユニット30の矢印X1方向の側面と矢印X2方向の側面との2つの側面(撮影面42の外側)に対して、制御ユニット32がそれぞれ連結され、2つの制御ユニット32の筐体48がベース部48aと可動部48bとからそれぞれ構成されている点で、第2実施形態に係る電子カセッテ20B及び放射線画像撮影システム10B(図24~図30B参照)とは異なる。従って、図31~図32Bに示すように、電子カセッテ20Cは、パネル収容ユニット30を中心とした左右対称の構造である。 The electronic cassette 20C and the radiation imaging system 10C according to the third embodiment control the two side surfaces (the outside of the imaging surface 42) of the side surface in the arrow X1 direction and the side surface in the arrow X2 direction of the panel storage unit 30. The electronic cassette 20B and the radiation imaging system 10B according to the second embodiment are different in that the units 32 are respectively connected, and the casings 48 of the two control units 32 are respectively constituted by the base portion 48a and the movable portion 48b. This is different from FIGS. 24 to 30B). Therefore, as shown in FIGS. 31 to 32B, the electronic cassette 20C has a symmetrical structure with the panel accommodation unit 30 as a center.
 なお、図32A及び図32Bに示すように、電子カセッテ20Cでは、該電子カセッテ20C全体の重量バランスを図り、且つ、制御ユニット32を2つ設けたことによる重量の増大をできる限り回避する目的で、矢印X1方向の制御ユニット32の可動部48bに電源部52を収容すると共に、矢印X2方向の制御ユニット32の可動部48bにカセッテ制御部50及び通信部54を収容している。但し、制御ユニット32を2つ設けても重量が著しく増大しないのであれば、各可動部48bにカセッテ制御部50、電源部52及び通信部54をそれぞれ収容させてもよい。 As shown in FIGS. 32A and 32B, the electronic cassette 20C balances the weight of the entire electronic cassette 20C, and for the purpose of avoiding an increase in weight due to provision of two control units 32 as much as possible. The power supply unit 52 is accommodated in the movable unit 48b of the control unit 32 in the arrow X1 direction, and the cassette control unit 50 and the communication unit 54 are accommodated in the movable unit 48b of the control unit 32 in the arrow X2 direction. However, the cassette control unit 50, the power supply unit 52, and the communication unit 54 may be accommodated in each of the movable units 48b if the weight does not increase significantly even if two control units 32 are provided.
 図31~図32Bに示す電子カセッテ20Cでは、図24~図26Bの場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、各制御ユニット32を構成する可動部48bの温度に応じて、移動指示部136(図8参照)が表示部82及びスピーカ84を介して医師又は放射線技師に各可動部48bの移動を指示した際、医師又は放射線技師が矢印X1方向側の制御ユニット32の取っ手80を把持して、可動部48bを矢印X1方向に引っ張ると、該可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図32Aに示す位置から図32Bに示す位置に摺動する。同様にして、医師又は放射線技師が矢印X2方向側の制御ユニット32の取っ手80を把持して、可動部48bを矢印X2方向に引っ張ると、該可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図32Aに示す位置から図32Bに示す位置に摺動する。 In the electronic cassette 20C shown in FIGS. 31 to 32B, as in the case of FIGS. 24 to 26B, the temperature of the movable portion 48b configuring each control unit 32 according to the imaging region included in the order information In response to the movement instruction unit 136 (see FIG. 8) instructing the doctor or the radiologist to move each movable unit 48b via the display unit 82 and the speaker 84, the doctor or the radiographer controls the arrow X1 direction side Holding the handle 80 of the unit 32 and pulling the movable portion 48b in the direction of the arrow X1, the movable portion 48b is positioned as shown in FIG. 32A under the guidance of the guide portions 160 and 162 and the sliding members 164 and 166. To the position shown in FIG. 32B. Similarly, when the doctor or radiologist holds the handle 80 of the control unit 32 on the arrow X2 direction side and pulls the movable portion 48b in the arrow X2 direction, the movable portion 48b slides on the guide portions 160 and 162 and the slide. Under the guidance of members 164, 166, they slide from the position shown in FIG. 32A to the position shown in FIG. 32B.
 そのため、第3実施形態においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを摺動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、第1及び第2実施形態と同様の効果を得ることができる。 Therefore, also in the third embodiment, the projection of the radiation 16 is enabled by making the movable portion 48b slidable with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48b. Since the area can be easily changed, the same effects as those of the first and second embodiments can be obtained.
[第3実施形態の変形例]
 次に、第3実施形態に係る電子カセッテ20Cの変形例(以下、第7及び第8変形例ともいう。)について、図33A~図34Bを参照しながら説明する。
Modified Example of Third Embodiment
Next, modifications of the electronic cassette 20C according to the third embodiment (hereinafter also referred to as seventh and eighth modifications) will be described with reference to FIGS. 33A to 34B.
 図33A及び図33Bに示す第7変形例の電子カセッテ20Cでは、各筐体48のベース部48aと可動部48bとが、ヒンジ部170を介して連結されている点で、図31~図32Bの実施形態とは異なる。なお、ヒンジ部170は、第5変形例(図27~図28B)と同様に、ベース部48aの側面で矢印Y方向(図33A及び図33Bの紙面に垂直な方向)に沿って設けられ、取っ手80は、可動部48bの上面に設けられている。 In the electronic cassette 20C of the seventh modification shown in FIGS. 33A and 33B, the base portion 48a and the movable portion 48b of each housing 48 are connected via the hinge portion 170, as shown in FIGS. 31 to 32B. Is different from the embodiment of FIG. As in the fifth modification (FIGS. 27 to 28B), the hinge portion 170 is provided on the side surface of the base portion 48a along the arrow Y direction (direction perpendicular to the sheet of FIGS. 33A and 33B), The handle 80 is provided on the upper surface of the movable portion 48b.
 そのため、第7変形例では、第5変形例と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、可動部48bの温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に可動部48bの回動を指示したときに、医師又は放射線技師が取っ手80を把持し、ヒンジ部170を中心として可動部48bを回動させると、該可動部48bは、撮影領域46から離間する方向に回動する。 Therefore, in the seventh modification, as in the fifth modification, the movement instructing unit 136 includes the display unit 82 and the speaker according to the imaging region included in the order information and / or according to the temperature of the movable unit 48b. When the doctor or radiologist instructs rotation of the movable portion 48b via 84, the doctor or radiologist holds the handle 80 and rotates the movable portion 48b around the hinge portion 170, the movable portion The 48 b rotates in the direction away from the imaging region 46.
 このように、第7変形例においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図31~図32Bの効果や、第5変形例を含む第2実施形態と同様の効果を得ることができる。 As described above, also in the seventh modification, the radiation 16 can be rotated by making the movable portion 48b rotatable with respect to (the imaging region 46 of) the panel housing unit 30 according to the temperature of the imaging portion and the movable portion 48b. It is possible to easily change the projection area of the second embodiment, so that the same effects as those of the second embodiment including the effects of FIGS. 31 to 32B and the fifth modification can be obtained.
 図34A及び図34Bに示す第8変形例の電子カセッテ20Cでは、各筐体48のベース部48aと可動部48bとが、軸部172を介して連結されている点で、図31~図33Bの実施形態とは異なる。なお、軸部172は、第6変形例(図29~図30B)と同様に、ベース部48aの上面で立設して設けられている。 In the electronic cassette 20C of the eighth modification shown in FIGS. 34A and 34B, the base portion 48a and the movable portion 48b of each housing 48 are connected via the shaft portion 172, as shown in FIGS. 31 to 33B. Is different from the embodiment of FIG. The shaft portion 172 is provided upright on the upper surface of the base portion 48a, as in the sixth modification (FIGS. 29 to 30B).
 そして、第8変形例では、第6変形例と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、可動部48bの温度に応じて、移動指示部136が表示部82及びスピーカ84を介して医師又は放射線技師に各可動部48bの回動を指示したときに、医師又は放射線技師が取っ手80を把持し、軸部172を中心として可動部48bを回動させると、該可動部48bは、撮影領域46から離間する方向に回動(移動)する。 In the eighth modification, as in the sixth modification, the movement instructing unit 136 displays the display unit 82 and the speaker according to the imaging region included in the order information and / or according to the temperature of the movable unit 48b. When the doctor or radiologist instructs the doctor or radiologist to turn each movable portion via 84, the doctor or radiologist holds the handle 80 and turns the movable portion b around the shaft portion 172, the movable portion The portion 48 b pivots (moves) in a direction away from the imaging region 46.
 このように、第8変形例においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを回動可能とすることで、放射線16の投影面積を容易に変更することが可能となるので、図31~図32Bの効果や、第6変形例を含む第2実施形態と同様の効果を得ることができる。 As described above, also in the eighth modification, the radiation 16 can be rotated by making the movable portion 48b pivotable with respect to (the imaging region 46 of) the panel housing unit 30 according to the temperature of the imaging portion and the movable portion 48b. It is possible to easily change the projection area of the second embodiment, so that the same effects as those of the second embodiment including the effects of FIGS. 31 to 32B and the sixth modification can be obtained.
[第4実施形態の説明]
 次に、第4実施形態に係る電子カセッテ20D及び放射線画像撮影システム10Dについて、図35~図40Bを参照しながら説明する。
Description of the Fourth Embodiment
Next, an electronic cassette 20D and a radiation imaging system 10D according to a fourth embodiment will be described with reference to FIGS. 35 to 40B.
 第4実施形態に係る電子カセッテ20D及び放射線画像撮影システム10Dは、図37Aのようにヒンジ部170を介してパネル収容ユニット30及び制御ユニット32をコンパクトに折り畳んだ状態から、図37B~図39Bのように制御ユニット32及びパネル収容ユニット30を順次展開させていくことにより、電子カセッテ20Dの底面側を平坦にして撮影可能な状態にした点で、第1~第3実施形態に係る電子カセッテ20A~20C及び放射線画像撮影システム10A~10C(図1~図34B参照)とは異なる。なお、図37Aは、医師又は放射線技師が電子カセッテ20Dを運搬するときの該電子カセッテ20Dの状態を図示したものである。 The electronic cassette 20D and the radiographic imaging system 10D according to the fourth embodiment are shown in FIGS. 37B to 39B from a state in which the panel storage unit 30 and the control unit 32 are compactly folded via the hinge 170 as shown in FIG. As described above, the electronic cassette 20A according to the first to the third embodiments is that the bottom side of the electronic cassette 20D is made flat by the control unit 32 and the panel accommodation unit 30 being developed sequentially to make the photographing possible. 20C and radiation imaging systems 10A to 10C (see FIGS. 1 to 34B). FIG. 37A illustrates the state of the electronic cassette 20D when the doctor or radiologist transports the electronic cassette 20D.
 制御ユニット32を構成する筐体48は、ヒンジ部170に連結された第1ベース部48cと、第1ベース部48cと軸部180を介して連結された第2ベース部48dと、溝状のガイド部160、162及び摺動部材164、166の案内作用下に第2ベース部48dに対して摺動可能な可動部48bとから構成される。なお、カセッテ制御部50、電源部52及び通信部54(図8参照)は、可動部48bに収容されている。 The housing 48 constituting the control unit 32 includes a first base portion 48c connected to the hinge portion 170, a second base portion 48d connected to the first base portion 48c via the shaft portion 180, and a groove shape. The movable portion 48b is slidable relative to the second base portion 48d under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166. The cassette control unit 50, the power supply unit 52, and the communication unit 54 (see FIG. 8) are accommodated in the movable unit 48b.
 ここで、医師又は放射線技師が電子カセッテ20Dを図37Aに示すコンパクトな状態から図39Bに示す状態にまで展開させて、該電子カセッテ20Dを撮影可能状態(図35及び図36に示す状態)にまで至らせるための作業工程について説明する。 Here, the doctor or radiologist expands the electronic cassette 20D from the compact state shown in FIG. 37A to the state shown in FIG. 39B, and sets the electronic cassette 20D in the imaging ready state (state shown in FIGS. 35 and 36). The working steps for achieving the above will be described.
 先ず、医師又は放射線技師は、図37Aに示すコンパクトな状態で電子カセッテ20Dを所定の場所(例えば、撮影台12)まで運搬した後、ヒンジ部170を中心軸として、パネル収容ユニット30の筐体40を図37Bの位置にまで回動させる。 First, the doctor or radiologist transports the electronic cassette 20D to a predetermined place (for example, the imaging table 12) in a compact state shown in FIG. 37A, and then the case of the panel accommodation unit 30 with the hinge 170 as a central axis. 40 is pivoted to the position of FIG. 37B.
 次に、医師又は放射線技師は、軸部180を中心軸として、第2ベース部48d及び可動部48bを一体的に回動させる(図38A参照)。この場合、医師又は放射線技師は、可動部48bが上方となる位置にまで第2ベース部48d及び可動部48bを回動させる(図38B及び図39A参照)。 Next, the doctor or radiologist integrally pivots the second base portion 48d and the movable portion 48b with the shaft portion 180 as a central axis (see FIG. 38A). In this case, the doctor or the radiologist turns the second base portion 48d and the movable portion 48b to a position where the movable portion 48b is upward (see FIGS. 38B and 39A).
 そして、第1~第3実施形態の場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32を構成する可動部48bの温度に応じて、移動指示部136(図8参照)が表示部82及びスピーカ84を介して医師又は放射線技師に可動部48bの移動を指示したとき、医師又は放射線技師は、取っ手80を把持して、可動部48bを矢印X2方向に引っ張る。これにより、可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図39Aに示す位置から図39Bに示す位置に摺動する。この結果、電子カセッテ20Dは、図35及び図36に示す撮影可能な状態に至る。 Then, in the same manner as in the first to third embodiments, the movement instructing unit 136 (according to the imaging region included in the order information and / or according to the temperature of the movable portion 48b that constitutes the control unit 32 8) instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80 to move the movable unit 48b in the direction of the arrow X2. pull. Thus, the movable portion 48b slides from the position shown in FIG. 39A to the position shown in FIG. 39B under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166. As a result, the electronic cassette 20D reaches a state capable of photographing shown in FIGS.
 なお、撮影部位及び/又は可動部48bの温度によっては、可動部48bの移動が不要な場合もある。このような場合には、図38B及び図39Aに示す状態にて撮影を遂行してもよい。 Depending on the temperature of the imaging region and / or the movable portion 48b, the movement of the movable portion 48b may not be necessary. In such a case, imaging may be performed in the state shown in FIGS. 38B and 39A.
 また、第2ベース部48dの全長は、筐体40の全長よりも僅かに短い程度であり(図37A参照)、従って、ガイド部160、162の全長は、第2変形例(図18A及び図18B参照)の場合と比較して、長く設定されている。そのため、撮影領域46と可動部48bとの距離を容易に大きく取ることができる。 Further, the total length of the second base portion 48d is only slightly shorter than the total length of the housing 40 (see FIG. 37A). Therefore, the total length of the guide portions 160 and 162 is the second modification (FIG. 18A and FIG. Compared to the case of 18 B), it is set longer. Therefore, the distance between the imaging region 46 and the movable portion 48b can be easily made large.
 このように、第4実施形態においても、撮影部位や可動部48bの温度に応じて、パネル収容ユニット30(の撮影領域46)に対して可動部48bを摺動及び回動可能にすると共に、制御ユニット32に対してパネル収容ユニット30も回動可能であるため、放射線16の投影面積を容易に変更することが可能となるので、第1~第3実施形態と同様の効果を得ることができる。 As described above, also in the fourth embodiment, the movable portion 48 b can slide and turn with respect to (the imaging region 46 of) the panel accommodation unit 30 according to the temperature of the imaging portion and the movable portion 48 b. Since the panel accommodation unit 30 is also pivotable with respect to the control unit 32, the projected area of the radiation 16 can be easily changed, so that the same effects as in the first to third embodiments can be obtained. it can.
[第4実施形態の変形例]
 次に、第4実施形態に係る電子カセッテ20Dの変形例(以下、第9変形例ともいう。)について、図40A及び図40Bを参照しながら説明する。
[Modification of Fourth Embodiment]
Next, a modified example of the electronic cassette 20D according to the fourth embodiment (hereinafter, also referred to as a ninth modified example) will be described with reference to FIGS. 40A and 40B.
 図40A及び図40Bに示す第9変形例の電子カセッテ20Dでは、第2ベース部48dと可動部48bとが第3ベース部48eを介して連結され、制御ユニット32が全体的にテレスコピック構造とされている点で、図35~図39Bの実施形態とは異なる。すなわち、筐体48では、側面視で、第1ベース部48c、第2ベース部48d、第3ベース部48e、可動部48bの順に連結されると共に、この順に各構成要素の形状が大きくなっており、従って、医師又は放射線技師は、図40Aに示す状態で取っ手80を矢印X2方向に引っ張ると、撮影領域46に対して可動部48bを容易に離間させることができる。 In the electronic cassette 20D of the ninth modification shown in FIGS. 40A and 40B, the second base portion 48d and the movable portion 48b are connected via the third base portion 48e, and the control unit 32 is entirely made into a telescopic structure. In that it differs from the embodiment of FIGS. 35-39B. That is, in the housing 48, in a side view, the first base portion 48c, the second base portion 48d, the third base portion 48e, and the movable portion 48b are connected in this order, and the shape of each component becomes larger in this order. Therefore, when the doctor or the radiologist pulls the handle 80 in the direction of the arrow X2 in the state shown in FIG. 40A, the movable portion 48b can be easily separated from the imaging region 46.
 このように、第9変形例においても、撮影部位や可動部48bの温度に応じて、撮影領域46に対して可動部48bを移動可能であるため、放射線16の投影面積を容易に変更することが可能となり、図35~図39Bと同様の効果を得ることができる。 As described above, also in the ninth modification, since the movable portion 48b can be moved relative to the imaging region 46 according to the temperature of the imaging portion and the movable portion 48b, the projection area of the radiation 16 can be easily changed. Can be obtained, and the same effect as in FIGS. 35 to 39B can be obtained.
[第5実施形態の説明]
 次に、第5実施形態に係る電子カセッテ20E及び放射線画像撮影システム10Eについて、図41~図45Bを参照しながら説明する。
Description of Fifth Embodiment
Next, an electronic cassette 20E and a radiation imaging system 10E according to the fifth embodiment will be described with reference to FIGS. 41 to 45B.
 第5実施形態に係る電子カセッテ20E及び放射線画像撮影システム10Eは、図43Aのようにヒンジ部170を介してパネル収容ユニット30及び制御ユニット32をコンパクトに折り畳んだ状態から、図43B~図44Bのように制御ユニット32及びパネル収容ユニット30を順次展開させていくことにより、電子カセッテ20Eの底面側を平坦にして撮影可能な状態にした点で、第1~第4実施形態に係る電子カセッテ20A~20D及び放射線画像撮影システム10A~10D(図1~図40B参照)とは異なる。なお、図43Aは、医師又は放射線技師がコンパクトな状態の電子カセッテ20Eを運搬するときの該電子カセッテ20Eの状態を図示したものである。 In the electronic cassette 20E and the radiation imaging system 10E according to the fifth embodiment, as shown in FIG. 43A, from the state where the panel storage unit 30 and the control unit 32 are compactly folded via the hinge portion 170, as shown in FIGS. As described above, the electronic cassette 20A according to the first to the fourth embodiments is that the bottom side of the electronic cassette 20E is made flat by the control unit 32 and the panel accommodation unit 30 being developed sequentially to make the imaging possible. To 20D and radiation imaging systems 10A to 10D (see FIGS. 1 to 40B). FIG. 43A illustrates the state of the electronic cassette 20E when the doctor or radiologist transports the electronic cassette 20E in a compact state.
 制御ユニット32を構成する筐体48は、ヒンジ部170に連結されたベース部48aと、ベース部48aに設けられた溝状のガイド部160、162と摺動部材164、166との案内作用下に該ベース部48aに対して摺動可能な可動部48bとから構成される。なお、カセッテ制御部50、電源部52及び通信部54(図8参照)は、可動部48bに収容されている。 The housing 48 constituting the control unit 32 is guided by the base portion 48a connected to the hinge portion 170, the grooved guide portions 160 and 162 provided on the base portion 48a, and the sliding members 164 and 166. And a movable portion 48b slidable with respect to the base portion 48a. The cassette control unit 50, the power supply unit 52, and the communication unit 54 (see FIG. 8) are accommodated in the movable unit 48b.
 ここで、医師又は放射線技師が電子カセッテ20Eを図43Aに示すコンパクトな状態から図44Bに示す状態にまで展開させて、該電子カセッテ20Eを撮影可能状態(図41及び図42に示す状態)にまで至らせるための作業工程について説明する。 Here, the doctor or radiologist expands the electronic cassette 20E from the compact state shown in FIG. 43A to the state shown in FIG. 44B, and sets the electronic cassette 20E in the imaging ready state (state shown in FIGS. 41 and 42) The working steps for achieving the above will be described.
 医師又は放射線技師は、図43Aの状態で電子カセッテ20Eを所定の場所(例えば、撮影台12)まで運搬した後、ヒンジ部170を中心軸として、パネル収容ユニット30の筐体40を図43Bの位置にまで回動させる。 The doctor or radiologist transports the electronic cassette 20E to a predetermined place (for example, the imaging table 12) in the state of FIG. 43A, and then the case 40 of the panel accommodation unit 30 of FIG. Rotate to position.
 この場合、撮影領域46が下方に向いた状態となるので、医師又は放射線技師は、電子カセッテ20Eを全体的に上下反転させる(図44A参照)。これにより、撮影領域46が上方を向いた状態になると共に、制御ユニット32においてもベース部48aが底面側に且つ可動部48bが上面側に位置することになる。 In this case, since the imaging region 46 is directed downward, the doctor or the radiologist turns the electronic cassette 20E upside down as a whole (see FIG. 44A). As a result, the imaging region 46 is directed upward, and in the control unit 32, the base portion 48a is positioned on the bottom side and the movable portion 48b is positioned on the top side.
 そして、第1~第4実施形態の場合と同様に、オーダ情報に含まれる撮影部位に応じて、及び/又は、制御ユニット32を構成する可動部48bの温度に応じて、移動指示部136(図8参照)が表示部82及びスピーカ84を介して医師又は放射線技師に可動部48bの移動を指示したとき、医師又は放射線技師は、取っ手80を把持して、可動部48bを矢印X2方向に引っ張る。これにより、可動部48bは、ガイド部160、162及び摺動部材164、166の案内作用下に、図44Aに示す位置から図44Bに示す位置に摺動する。この結果、電子カセッテ20Eは、図41及び図42に示す撮影可能な状態に至る。 Then, as in the case of the first to fourth embodiments, the movement instruction unit 136 (according to the imaging region included in the order information and / or according to the temperature of the movable part 8) instructs the doctor or radiologist to move the movable unit 48b via the display unit 82 and the speaker 84, the doctor or radiologist holds the handle 80 to move the movable unit 48b in the direction of the arrow X2. pull. Thereby, the movable portion 48b slides from the position shown in FIG. 44A to the position shown in FIG. 44B under the guiding action of the guide portions 160 and 162 and the sliding members 164 and 166. As a result, the electronic cassette 20E reaches a state capable of photographing shown in FIGS.
 なお、撮影部位及び/又は可動部48bの温度によっては、可動部48bの移動が不要な場合もある。このような場合には、図44Aに示す状態にて撮影を遂行してもよい。 Depending on the temperature of the imaging region and / or the movable portion 48b, the movement of the movable portion 48b may not be necessary. In such a case, imaging may be performed in the state shown in FIG. 44A.
 また、ベース部48aの全長は、パネル収容ユニット30の筐体40の全長と略同じ長さであるため(図43A参照)、ガイド部160、162の全長を長く設定することができ、従って、撮影領域46と可動部48bとの距離を容易に大きく取ることができる。 In addition, since the total length of the base portion 48a is substantially the same as the total length of the housing 40 of the panel storage unit 30 (see FIG. 43A), the total length of the guide portions 160 and 162 can be set longer. The distance between the imaging region 46 and the movable portion 48b can be easily made large.
 このように、第5実施形態においても、第4実施形態と同様の効果を得ることができる。 Thus, also in the fifth embodiment, the same effect as that of the fourth embodiment can be obtained.
[第5実施形態の変形例]
 次に、第5実施形態に係る電子カセッテ20Eの変形例(以下、第10変形例ともいう。)について、図45A及び図45Bを参照しながら説明する。
Modified Example of Fifth Embodiment
Next, a modified example of the electronic cassette 20E according to the fifth embodiment (hereinafter, also referred to as a tenth modified example) will be described with reference to FIGS. 45A and 45B.
 図45A及び図45Bに示す第10変形例の電子カセッテ20Eでは、ヒンジ部170に対して第1ベース部48c、第2ベース部48d及び可動部48bの順に連結され、制御ユニット32が全体的にテレスコピック構造とされている点で、図41~図44Bの実施形態とは異なる。すなわち、制御ユニット32では、側面視で、第1ベース部48c、第2ベース部48d、可動部48bの順に形状が大きくなっており、従って、医師又は放射線技師は、図45Aに示す状態で取っ手80を矢印X2方向に引っ張ると、撮影領域46に対して可動部48bを容易に離間させることができる。 In the electronic cassette 20E of the tenth modification shown in FIGS. 45A and 45B, the first base portion 48c, the second base portion 48d, and the movable portion 48b are connected to the hinge portion 170 in this order, and the control unit 32 is entirely It differs from the embodiment of FIGS. 41-44B in that it is telescopically structured. That is, in the control unit 32, the shapes become larger in the order of the first base portion 48c, the second base portion 48d, and the movable portion 48b in a side view. Therefore, the doctor or the radiologist handles in the state shown in FIG. By pulling 80 in the direction of the arrow X2, the movable portion 48b can be easily separated from the imaging region 46.
 このように、第10変形例においても、可動部48bが移動可能であるため、第9変形例(図40A及び図40B参照)と同様の効果を得ることができる。 As described above, also in the tenth modification, since the movable portion 48b is movable, the same effect as that of the ninth modification (see FIGS. 40A and 40B) can be obtained.
[第1~第5実施形態の他の構成例]
 上述した第1~第5実施形態では、筐体40の上面である撮影面42にガイド部150、152が設けられるか(図14A~図17B参照)、筐体48のベース部48aの上面にガイド部160、162が設けられるか(図18A、図18B、図26A、図26B、図32A、図32B、図42、図43B、図44A及び図44B参照)、あるいは、第2ベース部48dの上面にガイド部160、162が設けられていた(図36、図37B、図39A及び図39B)。
[Another configuration example of the first to fifth embodiments]
In the first to fifth embodiments described above, the guide portions 150 and 152 are provided on the imaging surface 42 which is the upper surface of the housing 40 (see FIGS. 14A to 17B), or on the upper surface of the base portion 48a of the housing 48. The guide portions 160 and 162 may be provided (see FIGS. 18A, 18B, 26A, 26B, 32A, 32B, 42, 43B, 44A and 44B) or the second base portion 48d. Guide portions 160 and 162 were provided on the upper surface (FIGS. 36, 37B, 39A and 39B).
 第1~第5実施形態は、このような実施形態に限定されることはなく、筐体40の側面、ベース部48aの側面、あるいは、第2ベース部48dの側面にガイド部150、152、160、162をそれぞれ設けても、該ガイド部150、152、160、162を設けたことによる各効果を容易に得られることは勿論である。 The first to fifth embodiments are not limited to such an embodiment, and the guide portions 150 and 152 may be provided on the side surface of the housing 40, the side surface of the base portion 48a, or the side surface of the second base portion 48d. It goes without saying that even if 160 and 162 are provided, the respective effects of providing the guide portions 150, 152, 160 and 162 can be easily obtained.
 ここで、一例として、第1変形例(図14A~図17B参照)を一部改変して、ガイド部150、152を筐体40における矢印Y1方向の側面と矢印Y2方向の側面とにそれぞれ設けた場合(第11変形例)を図46A及び図46Bに示す。 Here, as an example, the first modified example (see FIGS. 14A to 17B) is partially modified to provide the guide portions 150 and 152 on the side surface in the arrow Y1 direction and the side surface in the arrow Y2 direction in the housing 40, respectively. The case (an eleventh modification) is shown in FIGS. 46A and 46B.
 第11変形例の電子カセッテ20Aにおいて、制御ユニット32の筐体48の両端部は、図46Aの平面視で、パネル収容ユニット30の筐体40よりも矢印Y1方向及び矢印Y2方向にそれぞれ突出すると共に、図46Bの側面視で、各突出部分がガイド部150、152にかかるように設けられている。従って、この第11変形例においても、第1変形例と同様の効果を容易に得ることができる。 In the electronic cassette 20A of the eleventh modification, both end portions of the case 48 of the control unit 32 respectively project in the arrow Y1 direction and the arrow Y2 direction more than the case 40 of the panel accommodation unit 30 in plan view of FIG. In addition, in the side view of FIG. 46B, each protruding portion is provided to be engaged with the guide portions 150 and 152. Therefore, also in this eleventh modification, the same effect as in the first modification can be easily obtained.
 また、第1~第5実施形態において、放射線変換パネル92は、図47A及び図47Bのように構成してもよい(第12変形例)。 In the first to fifth embodiments, the radiation conversion panel 92 may be configured as shown in FIGS. 47A and 47B (Twelfth Modified Example).
 図47A及び図47Bの第12変形例において、放射線変換パネル92は、被写体14を透過した放射線16を可視光に変換する(放射線16を吸収して可視光を放出する)シンチレータ200と、該シンチレータ200で変換された可視光を放射線画像に応じた電気信号(電荷)に変換する放射線検出部202とから構成される。 In the twelfth modification shown in FIGS. 47A and 47B, the radiation conversion panel 92 converts the radiation 16 transmitted through the subject 14 into visible light (absorbs the radiation 16 and emits visible light), and the scintillator 200. The radiation detection unit 202 is configured to convert the visible light converted at 200 into an electrical signal (charge) corresponding to the radiation image.
 なお、放射線変換パネル92としては、図47A及び図47Bに示すように、放射線16が照射される撮影面42に対して放射線検出部202とシンチレータ200との順に配置された表面読取方式(ISS方式、ISS:Irradiation Side Sampling)と、撮影面42に対してシンチレータ200と放射線検出部202との順に配置された裏面読取方式(PSS方式、PSS:Penetration Side Sampling)とがある。 As the radiation conversion panel 92, as shown in FIGS. 47A and 47B, a surface reading method (ISS method in which the radiation detection unit 202 and the scintillator 200 are disposed in order with respect to the imaging surface 42 to which the radiation 16 is irradiated) ISS: Irradiation Side Sampling), and a back side reading method (PSS method, PSS: Penetration Side Sampling) in which the scintillator 200 and the radiation detection unit 202 are disposed in order with respect to the imaging surface 42.
 シンチレータ200は、放射線16が入射される撮影面42側がより強く発光する。そのため、ISS方式は、PSS方式と比較して、シンチレータ200が撮影面42に接近した状態で配置されているため、撮影によって得られる放射線画像の分解能が高く、且つ、放射線検出部202での可視光の受光量も増大する。従って、ISS方式は、PSS方式よりも、放射線変換パネル92(電子カセッテ20A~20E)の感度を向上させることができる。 The scintillator 200 emits light more strongly on the imaging surface 42 side where the radiation 16 is incident. Therefore, in the ISS method, since the scintillator 200 is disposed closer to the imaging surface 42 as compared with the PSS method, the resolution of the radiation image obtained by imaging is high, and the visibility of the radiation detection unit 202 is The amount of light received also increases. Therefore, the ISS method can improve the sensitivity of the radiation conversion panel 92 (electronic cassettes 20A to 20E) than the PSS method.
 また、シンチレータ200は、例えば、CsI:Tl(タリウムを添加したヨウ化セシウム)、CsI:Na(ナトリウム賦活ヨウ化セシウム)、GOS(GdS:Tb)等の材料を用いることができる。 The scintillator 200 can use, for example, materials such as CsI: Tl (cesium iodide to which thallium is added), CsI: Na (sodium activated cesium iodide), GOS (Gd 2 O 2 S: Tb), etc. .
 図47Bは、一例として、蒸着基板204にCsIを含む材料を蒸着させることにより、柱状結晶領域を含むシンチレータ200を形成した場合を図示している。 FIG. 47B illustrates, as an example, a case where a scintillator 200 including a columnar crystal region is formed by depositing a material containing CsI on the deposition substrate 204.
 具体的に、図47Bのシンチレータ200では、放射線16が入射される撮影面42側(放射線検出部202側)に柱状結晶200aからなる柱状結晶領域が形成され、該撮影面42側の反対側に非柱状結晶200bからなる非柱状結晶領域が形成された構成となっている。なお、蒸着基板204としては、耐熱性の高い材料が望ましく、例えば、低コストという観点からアルミニウム(Al)が好適である。また、シンチレータ200は、柱状結晶200aの平均径が該柱状結晶200aの長手方向に沿っておよそ均一とされている。 Specifically, in the scintillator 200 of FIG. 47B, a columnar crystal region formed of the columnar crystal 200 a is formed on the imaging surface 42 side (the radiation detection unit 202 side) to which the radiation 16 is incident, and on the opposite side of the imaging surface 42 side. A non-columnar crystal region composed of the non-columnar crystal 200b is formed. In addition, as the vapor deposition board | substrate 204, a material with high heat resistance is desirable, for example, aluminum (Al) is suitable from a viewpoint of low cost. In the scintillator 200, the average diameter of the columnar crystals 200a is approximately uniform along the longitudinal direction of the columnar crystals 200a.
 上記のように、シンチレータ200は、柱状結晶領域(柱状結晶200a)及び非柱状結晶領域(非柱状結晶200b)で形成された構成であると共に、高効率の発光が得られる柱状結晶200aからなる柱状結晶領域が放射線検出部202側に配置されている。そのため、シンチレータ200で発生された可視光は、柱状結晶200a内を進行して放射線検出部202へ射出される。この結果、放射線検出部202側へ射出される可視光の拡散が抑制され、電子カセッテ20A~20Eによって検出される放射線画像のボケが抑制される。また、シンチレータ200の深部(非柱状結晶領域)に到達した可視光も、非柱状結晶200bによって放射線検出部202側へ反射するので、放射線検出部202に入射される可視光の光量(シンチレータ200で発光された可視光の検出効率)を向上させることもできる。 As described above, the scintillator 200 has a configuration formed of columnar crystal regions (columnar crystals 200 a) and non-columnar crystal regions (non-columnar crystals 200 b), and also includes columns consisting of columnar crystals 200 a from which light emission with high efficiency can be obtained. The crystal region is disposed on the radiation detection unit 202 side. Therefore, visible light generated by the scintillator 200 travels in the columnar crystal 200 a and is emitted to the radiation detection unit 202. As a result, diffusion of visible light emitted to the radiation detection unit 202 side is suppressed, and blurring of the radiation image detected by the electronic cassettes 20A to 20E is suppressed. Further, since the visible light reaching the deep portion (non-columnar crystal region) of the scintillator 200 is also reflected by the non-columnar crystal 200b toward the radiation detection unit 202, the amount of visible light incident on the radiation detection unit 202 (in the scintillator 200) The detection efficiency of the emitted visible light can also be improved.
 なお、シンチレータ200の撮影面42側に位置する柱状結晶領域の厚みをt1とし、シンチレータ200の蒸着基板204側に位置する非柱状結晶領域の厚みをt2とすれば、t1とt2との間では、0.01≦(t2/t1)≦0.25の関係を満足することが望ましい。 If the thickness of the columnar crystal region located on the imaging surface 42 side of the scintillator 200 is t1 and the thickness of the non-columnar crystal region located on the deposition substrate 204 side of the scintillator 200 is t2, then between t1 and t2 It is desirable to satisfy the relationship of 0.01 ≦ (t2 / t1) ≦ 0.25.
 このように、柱状結晶領域の厚みt1と非柱状結晶領域の厚みt2とが上記の関係を満たすことで、発光効率が高く且つ可視光の拡散を防止する領域(柱状結晶領域)と、可視光を反射する領域(非柱状結晶領域)とのシンチレータ200の厚み方向に沿った比率が好適な範囲となり、シンチレータ200の発光効率、該シンチレータ200で発光された可視光の検出効率、及び、放射線画像の解像度が向上する。 As described above, when the thickness t1 of the columnar crystal region and the thickness t2 of the non-columnar crystal region satisfy the above relationship, the region (pillar crystal region) having high luminous efficiency and preventing the diffusion of visible light; The ratio along the thickness direction of the scintillator 200 with the region (non-columnar crystal region) that reflects the light is a suitable range, and the luminous efficiency of the scintillator 200, detection efficiency of visible light emitted by the scintillator 200, and radiation image Resolution is improved.
 なお、非柱状結晶領域の厚みt2が厚すぎると発光効率の低い領域が増え、電子カセッテ20A~20Eの感度の低下につながることから、(t2/t1)は0.02以上且つ0.1以下の範囲であることがより好ましい。 Note that if the thickness t2 of the non-columnar crystal region is too large, the region with low light emission efficiency is increased, which leads to a decrease in the sensitivity of the electronic cassettes 20A to 20E, so (t2 / t1) is 0.02 or more and 0.1 or less. More preferably, it is in the range of
 また、上記の説明では、柱状結晶領域と非柱状結晶領域とが連続的に形成された構成のシンチレータ200について説明したが、例えば、上記の非柱状結晶領域に代えて、Al等から成る光反射層を設けて、柱状結晶領域のみ形成された構成としてもよいし、他の構成であってもよい。 Further, in the above description, the scintillator 200 in which the columnar crystal region and the non-columnar crystal region are continuously formed has been described, but, for example, light reflection made of Al or the like instead of the non-columnar crystal region A layer may be provided to form only the columnar crystal region, or another configuration may be used.
 放射線検出部202は、シンチレータ200の光射出側(柱状結晶200a)から射出された可視光を検出するものであり、図47Aの側面視では、放射線16の入射方向に沿って、撮影面42に対して、絶縁性基板208、TFT層210及び光電変換部212が順に積層されている。TFT層210の底面には、光電変換部212を覆うように平坦化層214が形成されている。 The radiation detection unit 202 detects visible light emitted from the light emission side (columnar crystal 200a) of the scintillator 200, and in the side view of FIG. 47A, along the incident direction of the radiation 16, on the imaging surface 42 In contrast, the insulating substrate 208, the TFT layer 210, and the photoelectric conversion unit 212 are stacked in order. A planarization layer 214 is formed on the bottom of the TFT layer 210 so as to cover the photoelectric conversion unit 212.
 また、放射線検出部202は、フォトダイオード(PD:Photo Diode)等からなる光電変換部212、蓄積容量216及びTFT218を備えた画素部220を、絶縁性基板208上に平面視でマトリクス状に複数形成した、TFTアクティブマトリクス基板(以下、TFT基板ともいう。)として構成される。 In addition, the radiation detection unit 202 includes a plurality of pixel units 220 each including a photoelectric conversion unit 212 including a photodiode (PD: Photo Diode) or the like, a storage capacitor 216, and a TFT 218 in a matrix on the insulating substrate 208. It is configured as a formed TFT active matrix substrate (hereinafter, also referred to as a TFT substrate).
 なお、TFT218は、第1実施形態で説明したTFT106(図8参照)に対応し、光電変換部212及び蓄積容量216は、画素100に対応する。 The TFT 218 corresponds to the TFT 106 (see FIG. 8) described in the first embodiment, and the photoelectric conversion unit 212 and the storage capacitor 216 correspond to the pixel 100.
 光電変換部212は、シンチレータ200側の下部電極212aと、TFT層210側の上部電極212bとの間に、光電変換膜212cを配置して構成される。光電変換膜212cは、シンチレータ200から放出された可視光を吸収し、吸収した可視光に応じた電荷を発生する。 The photoelectric conversion unit 212 is configured by disposing a photoelectric conversion film 212 c between the lower electrode 212 a on the scintillator 200 side and the upper electrode 212 b on the TFT layer 210 side. The photoelectric conversion film 212 c absorbs visible light emitted from the scintillator 200 and generates a charge according to the absorbed visible light.
 下部電極212aは、シンチレータ200から放出された可視光を光電変換膜212cに入射させる必要があるため、少なくともシンチレータ200の発光波長に対して透明な導電性材料で構成することが好ましい。具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いることが好ましい。 The lower electrode 212 a is preferably made of a conductive material that is transparent to at least the emission wavelength of the scintillator 200 because the visible light emitted from the scintillator 200 needs to be incident on the photoelectric conversion film 212 c. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high transmittance to visible light and a small resistance value.
 なお、下部電極212aとしてAu等の金属薄膜を用いることもできるが、90%以上の光透過率を得ようとすると抵抗値が増大しやすくなるため、TCOの方が好ましい。例えば、ITO(Indium Tin Oxide)、IZO(Indium Tin Oxide)、AZO(Aluminium doped Zinc Oxide)、FTO(Fluorine doped Tin Oxide)、SnO、TiO、ZnO等を用いることが好ましいが、プロセス簡易性、低抵抗性、透明性の観点からITOが最も好ましい。また、下部電極212aは、全ての画素部220で共通する一枚構成としてもよいし、画素部220毎に分割してもよい。 Although a metal thin film of Au or the like can be used as the lower electrode 212a, TCO is more preferable because the resistance value tends to increase if it is attempted to obtain a light transmittance of 90% or more. For example, it is preferable to use ITO (Indium Tin Oxide), IZO (Indium Tin Oxide), AZO (Aluminium doped Zinc Oxide), FTO (Fluorine doped Tin Oxide), SnO 2 , TiO 2 , ZnO 2 or the like. ITO is most preferable from the viewpoints of resistance, low resistance and transparency. Further, the lower electrode 212 a may be configured as a single sheet common to all the pixel units 220 or may be divided for each pixel unit 220.
 また、光電変換膜212cは、可視光を吸収して電荷を発生する材料から構成すればよく、例えば、アモルファスシリコン(a-Si)や有機光電変換材料(OPC)等を用いることができる。光電変換膜212cをアモルファスシリコンで構成した場合、シンチレータ200から放出された可視光を広い波長域にわたって吸収するように構成することができる。但し、アモルファスシリコンからなる光電変換膜212cの形成には蒸着を行う必要があり、絶縁性基板208が合成樹脂製である場合、絶縁性基板208の耐熱性も考慮する必要がある。 Further, the photoelectric conversion film 212c may be made of a material which absorbs visible light to generate an electric charge, and for example, amorphous silicon (a-Si), an organic photoelectric conversion material (OPC), or the like can be used. When the photoelectric conversion film 212 c is made of amorphous silicon, the visible light emitted from the scintillator 200 can be absorbed over a wide wavelength range. However, the formation of the photoelectric conversion film 212 c made of amorphous silicon needs to be performed by evaporation, and when the insulating substrate 208 is made of synthetic resin, the heat resistance of the insulating substrate 208 also needs to be considered.
 一方、光電変換膜212cを有機光電変換材料を含む材料で構成した場合、主に可視光域で高い吸収を示す吸収スペクトルが得られるので、光電変換膜212cにおいては、シンチレータ200から放出された可視光以外の電磁波の吸収はほとんどなくなる。この結果、X線やγ線等の放射線16の光電変換膜212cでの吸収により発生するノイズを抑制することができる。 On the other hand, when the photoelectric conversion film 212c is made of a material containing an organic photoelectric conversion material, an absorption spectrum showing high absorption mainly in the visible light region can be obtained, so in the photoelectric conversion film 212c, visible light emitted from the scintillator 200 There is almost no absorption of electromagnetic waves other than light. As a result, it is possible to suppress noise generated by the absorption of the radiation 16 such as X-rays and γ-rays by the photoelectric conversion film 212 c.
 また、有機光電変換材料からなる光電変換膜212cは、インクジェットヘッド等の液滴吐出ヘッドを用いて、有機光電変換材料を被形成体上に付着させることにより形成することができるので、該被形成体に対する耐熱性は要求されない。このため、第12変形例では、光電変換膜212cを有機光電変換材料で構成している。 In addition, since the photoelectric conversion film 212c made of an organic photoelectric conversion material can be formed by depositing the organic photoelectric conversion material on a formation target using a droplet discharge head such as an inkjet head, the formation Heat resistance to the body is not required. Therefore, in the twelfth modification, the photoelectric conversion film 212c is made of an organic photoelectric conversion material.
 さらに、光電変換膜212cを有機光電変換材料で構成した場合、光電変換膜212cで放射線16がほとんど吸収されないので、放射線16が透過するように放射線検出部202が配置されるISS方式において、放射線検出部202を透過する放射線16の減衰を抑制することができ、該放射線16に対する感度の低下を抑えることができる。従って、光電変換膜212cを有機光電変換材料で構成することは、特にISS方式において好適である。 Furthermore, when the photoelectric conversion film 212c is made of an organic photoelectric conversion material, the radiation 16 is hardly absorbed by the photoelectric conversion film 212c, so in the ISS method in which the radiation detection unit 202 is disposed to transmit the radiation 16, radiation detection The attenuation of the radiation 16 transmitted through the portion 202 can be suppressed, and the decrease in sensitivity to the radiation 16 can be suppressed. Therefore, it is particularly preferable to configure the photoelectric conversion film 212c with an organic photoelectric conversion material in the ISS method.
 光電変換膜212cを構成する有機光電変換材料は、シンチレータ200から放出された可視光を最も効率良く吸収するために、その吸収ピーク波長が、シンチレータ200の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ34の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ、シンチレータ200から放出された可視光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ200の放射線16に対する発光ピーク波長との差が10nm以内であることが好ましく、5nm以内であることがより好ましい。 It is preferable that the absorption peak wavelength of the organic photoelectric conversion material constituting the photoelectric conversion film 212 c be closer to the emission peak wavelength of the scintillator 200 in order to absorb the visible light emitted from the scintillator 200 most efficiently. Ideally, the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 34. However, if the difference between the two is small, it is possible to sufficiently absorb visible light emitted from the scintillator 200. It is. Specifically, the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the scintillator 200 with respect to the radiation 16 is preferably 10 nm or less, and more preferably 5 nm or less.
 このような条件を満たすことが可能な有機光電変換材料としては、例えば、キナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えば、キナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ200の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜212cで発生する電荷量を略最大にすることができる。 As an organic photoelectric conversion material which can satisfy such conditions, a quinacridone organic compound and a phthalocyanine organic compound are mentioned, for example. For example, since the absorption peak wavelength of quinacridone in the visible region is 560 nm, the difference between the above peak wavelengths can be made within 5 nm by using quinacridone as the organic photoelectric conversion material and CsI: Tl as the material of the scintillator 200. Thus, the amount of charge generated in the photoelectric conversion film 212c can be substantially maximized.
 次に、放射線変換パネル92に適用可能な光電変換膜212cについて、より具体的に説明する。 Next, the photoelectric conversion film 212 c applicable to the radiation conversion panel 92 will be described more specifically.
 放射線変換パネル92における電磁波吸収/光電変換部位は、上部電極212b及び下部電極212aと、該上部電極212b及び下部電極212aに挟まれた光電変換膜212cを含む有機層である。この有機層は、より具体的には、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び、層間接触改良部位等を積み重ねるか、若しくは、混合することで形成することができる。 The electromagnetic wave absorption / photoelectric conversion site in the radiation conversion panel 92 is an organic layer including the upper electrode 212 b and the lower electrode 212 a, and the photoelectric conversion film 212 c sandwiched between the upper electrode 212 b and the lower electrode 212 a. More specifically, the organic layer is a site that absorbs electromagnetic waves, a photoelectric conversion site, an electron transport site, a hole transport site, an electron blocking site, a hole blocking site, a crystallization prevention site, an electrode, and an interlayer contact. It can form by piling up or mixing improvement site | parts etc.
 上記有機層は、有機p型化合物又は有機n型化合物を含有することが好ましい。有機p型半導体(化合物)は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体(化合物)であり、電子を供与しやすい性質を有する有機化合物である。さらに詳しくは、2つの有機材料を接触させて用いたときに、イオン化ポテンシャルの小さい方の有機化合物である。従って、ドナー性有機化合物としては、電子供与性を有する有機化合物であれば、いずれの有機化合物も使用可能である。有機n型半導体(化合物)は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体(化合物)であり、電子を受容しやすい性質を有する有機化合物である。さらに詳しくは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物である。従って、アクセプター性有機化合物は、電子受容性を有する有機化合物であれば、いずれの有機化合物も使用可能である。 The organic layer preferably contains an organic p-type compound or an organic n-type compound. The organic p-type semiconductor (compound) is a donor type organic semiconductor (compound) mainly represented by a hole transporting organic compound, and is an organic compound having a property of easily giving an electron. More specifically, when two organic materials are used in contact with each other, it is an organic compound having a smaller ionization potential. Therefore, any organic compound can be used as the donor organic compound, as long as it has an electron donating property. The organic n-type semiconductor (compound) is an acceptor-type organic semiconductor (compound) mainly represented by an electron transporting organic compound, and is an organic compound having a property of easily accepting an electron. More specifically, when the two organic compounds are brought into contact with each other and used, it is the one having the larger electron affinity. Accordingly, any organic compound can be used as the acceptor type organic compound, as long as it has an electron accepting property.
 有機p型半導体及び有機n型半導体として適用可能な材料や、光電変換膜212cの構成については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The materials applicable as the organic p-type semiconductor and the organic n-type semiconductor, and the configuration of the photoelectric conversion film 212c are described in detail in JP 2009-32854 A, and thus the description thereof is omitted.
 また、光電変換部212は、少なくとも上部電極212b及び下部電極212aと光電変換膜212cとを含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜及び正孔ブロッキング膜の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。 The photoelectric conversion unit 212 may include at least the upper electrode 212 b, the lower electrode 212 a, and the photoelectric conversion film 212 c. However, in order to suppress an increase in dark current, at least one of the electron blocking film and the hole blocking film Preferably, it is preferable to provide both.
 電子ブロッキング膜は、上部電極212bと光電変換膜212cとの間に設けることができ、上部電極212bと下部電極212aとの間にバイアス電圧を印加したときに、上部電極212bから光電変換膜212cに電子が注入されて暗電流が増加してしまうことを抑制することができる。電子ブロッキング膜には電子供与性有機材料を用いることができる。実際に電子ブロッキング膜に用いる材料は、隣接する電極の材料及び隣接する光電変換膜212cの材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、且つ、隣接する光電変換膜212cの材料のイオン化ポテンシャル(Ip)と同等のIp、若しくは、それより小さいIpを有するものが好ましい。この電子供与性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The electron blocking film can be provided between the upper electrode 212b and the photoelectric conversion film 212c, and when a bias voltage is applied between the upper electrode 212b and the lower electrode 212a, the upper electrode 212b to the photoelectric conversion film 212c It can be suppressed that electrons are injected and dark current increases. An electron donating organic material can be used for the electron blocking film. Actually, the material used for the electron blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 212c, etc., and the work function (Wf) of the material of the adjacent electrode is 1.3 eV or more It is preferable to have a large affinity (Ea) and an Ip equal to or smaller than the ionization potential (Ip) of the material of the adjacent photoelectric conversion film 212c. The material applicable as the electron donating organic material is described in detail in JP-A-2009-32854, and thus the description thereof is omitted.
 電子ブロッキング膜の厚みは、暗電流抑制効果を確実に発揮させると共に、光電変換部212の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、より好ましくは、30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the electron blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, in order to reliably exhibit the dark current suppressing effect and to prevent the decrease in photoelectric conversion efficiency of the photoelectric conversion unit 212. Is 50 nm or more and 100 nm or less.
 正孔ブロッキング膜は、光電変換膜212cと下部電極212aとの間に設けることができ、上部電極212bと下部電極212aとの間にバイアス電圧を印加したときに、下部電極212aから光電変換膜212cに正孔が注入されて暗電流が増加してしまうことを抑制することができる。正孔ブロッキング膜には電子受容性有機材料を用いることができる。実際に正孔ブロッキング膜に用いる材料は、隣接する電極の材料及び隣接する光電変換膜212cの材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が大きく、且つ、隣接する光電変換膜212cの材料の電子親和力(Ea)と同等のEa、若しくは、それより大きいEaを有するものが好ましい。この電子受容性有機材料として適用可能な材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 The hole blocking film can be provided between the photoelectric conversion film 212c and the lower electrode 212a, and when a bias voltage is applied between the upper electrode 212b and the lower electrode 212a, the lower electrode 212a to the photoelectric conversion film 212c. It is possible to suppress an increase in dark current due to the injection of holes into the An electron accepting organic material can be used for the hole blocking film. Actually, the material used for the hole blocking film may be selected according to the material of the adjacent electrode, the material of the adjacent photoelectric conversion film 212c, etc., and the work function (Wf) of the material of the adjacent electrode is 1.3 eV or more It is preferable that the ionization potential (Ip) is large and Ea equal to the electron affinity (Ea) of the material of the adjacent photoelectric conversion film 212 c or Ea larger than that. The materials applicable as the electron-accepting organic material are described in detail in JP-A-2009-32854, and the description thereof is omitted.
 正孔ブロッキング膜の厚みは、暗電流抑制効果を確実に発揮させると共に、光電変換部212の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、より好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。 The thickness of the hole blocking film is preferably 10 nm or more and 200 nm or less, more preferably 30 nm or more and 150 nm or less, in order to reliably exhibit the dark current suppressing effect and to prevent the decrease in photoelectric conversion efficiency of the photoelectric conversion unit 212. Is 50 nm or more and 100 nm or less.
 なお、光電変換膜212cで発生した電荷のうち、正孔が下部電極212aに移動し、電子が上部電極212bに移動するようにバイアス電圧を設定する場合には、電子ブロッキング膜の位置と正孔ブロッキング膜の位置とを逆にすればよい。また、電子ブロッキング膜及び正孔ブロッキング膜を両方設けることは必須ではなく、いずれかを設けておけば、ある程度の暗電流抑制効果を得ることができる。 When a bias voltage is set so that holes among the charges generated in the photoelectric conversion film 212c move to the lower electrode 212a and electrons move to the upper electrode 212b, the position of the electron blocking film and the holes are set. The position of the blocking film may be reversed. Further, it is not essential to provide both the electron blocking film and the hole blocking film, and if any one is provided, it is possible to obtain a certain dark current suppressing effect.
 TFT層210のTFT218では、ゲート電極、ゲート絶縁膜及び活性層(チャネル層)が積層され、さらに、活性層上にソース電極とドレイン電極とが所定の間隔を隔てて形成されている。活性層は、例えば、アモルファスシリコンや非晶質酸化物、有機半導体材料、カーボンナノチューブ等のうちのいずれかにより形成することができるが、活性層を形成可能な材料はこれらに限定されるものではない。 In the TFT 218 of the TFT layer 210, a gate electrode, a gate insulating film, and an active layer (channel layer) are stacked, and further, a source electrode and a drain electrode are formed on the active layer at predetermined intervals. The active layer can be formed of, for example, any of amorphous silicon, amorphous oxide, organic semiconductor material, carbon nanotube and the like, but materials which can form the active layer are not limited thereto. Absent.
 活性層を形成可能な非晶質酸化物としては、例えば、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。なお、活性層を形成可能な非晶質酸化物はこれらに限定されるものではない。 As an amorphous oxide which can form an active layer, for example, an oxide containing at least one of In, Ga and Zn (for example, In—O-based) is preferable, and at least one of In, Ga and Zn An oxide containing two (eg, In-Zn-O-based, In-Ga-O-based, Ga-Zn-O-based) is more preferable, and an oxide containing In, Ga and Zn is particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in the crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and in particular, InGaZnO 4 is more preferable. In addition, the amorphous oxide which can form an active layer is not limited to these.
 また、活性層を形成可能な有機半導体材料としては、例えば、フタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等が挙げられるが、これらに限定されるものではない。なお、フタロシアニン化合物の構成については、特開2009-212389号公報で詳細に説明されているため、説明を省略する。 Moreover, as an organic-semiconductor material which can form an active layer, although a phthalocyanine compound, pentacene, vanadyl phthalocyanine etc. are mentioned, for example, it is not limited to these. The configuration of the phthalocyanine compound is described in detail in JP-A-2009-212389, and thus the description is omitted.
 非晶質酸化物や有機半導体材料、カーボンナノチューブ等のうちのいずれかによってTFT218の活性層を形成すれば、X線等の放射線16を吸収せず、あるいは、吸収したとしても極めて微量に留まるため、放射線検出部202におけるノイズの発生を効果的に抑制することができる。 If the active layer of the TFT 218 is formed of any of amorphous oxide, organic semiconductor material, carbon nanotube, etc., the radiation 16 such as X-ray will not be absorbed, or if it is absorbed, it will remain in a very small amount. The generation of noise in the radiation detection unit 202 can be effectively suppressed.
 また、活性層をカーボンナノチューブで形成した場合、TFT218のスイッチング速度を高速化することができ、また、TFT218における可視光域の光の吸収度合いを低下させることができる。なお、活性層をカーボンナノチューブで形成する場合、活性層にごく微量の金属性不純物が混入しただけでTFT218の性能が著しく低下するため、遠心分離等により非常に純度の高いカーボンナノチューブを分離・抽出して活性層の形成に用いる必要がある。 When the active layer is formed of carbon nanotubes, the switching speed of the TFT 218 can be increased, and the degree of absorption of light in the visible light range of the TFT 218 can be reduced. In the case where the active layer is formed of carbon nanotubes, the performance of the TFT 218 is significantly reduced if only a very small amount of metallic impurities are mixed in the active layer, so separation and extraction of very high purity carbon nanotubes by centrifugation etc. It must be used to form the active layer.
 また、有機光電変換材料で形成した膜及び有機半導体材料で形成した膜は、いずれも十分な可撓性を有しているので、有機光電変換材料で形成した光電変換膜212cと、活性層を有機半導体材料で形成したTFT218とを組み合わせた構成であれば、被写体14の体の重みが荷重として加わる放射線検出部202の高剛性化は必ずしも必要ではなくなる。 Further, since both the film formed of the organic photoelectric conversion material and the film formed of the organic semiconductor material have sufficient flexibility, the photoelectric conversion film 212 c formed of the organic photoelectric conversion material and the active layer are If the configuration is combined with the TFT 218 formed of an organic semiconductor material, it is not always necessary to increase the rigidity of the radiation detection unit 202 to which the weight of the body of the subject 14 is applied as a load.
 また、絶縁性基板208は、光透過性を有し且つ放射線の吸収が少ないものであればよい。ここで、TFT218の活性層を構成する非晶質酸化物や、光電変換部212の光電変換膜212cを構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板208としては、半導体基板、石英基板、及び、ガラス基板等の耐熱性の高い基板に限定されず、合成樹脂製の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このような合成樹脂製の可撓性基板を用いれば、軽量化を図ることもでき、例えば、持ち運び等に有利となる。なお、絶縁性基板208には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 In addition, the insulating substrate 208 may be any substrate as long as it has optical transparency and little absorption of radiation. Here, film formation at a low temperature is possible for both the amorphous oxide forming the active layer of the TFT 218 and the organic photoelectric conversion material forming the photoelectric conversion film 212 c of the photoelectric conversion portion 212. Therefore, the insulating substrate 208 is not limited to a highly heat resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate made of a synthetic resin, an aramid, and a bionanofiber can also be used. Specifically, polyethylene terephthalate, polybutylene phthalate, polyester such as polyethylene naphthalate, polystyrene, polycarbonate, polyether sulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, poly (chlorotrifluoroethylene), etc. Substrate can be used. If such a flexible substrate made of synthetic resin is used, weight reduction can be achieved, which is advantageous, for example, for portability. Note that the insulating substrate 208 may be an insulating layer for securing insulation, a gas barrier layer for preventing permeation of moisture or oxygen, an undercoat layer for improving flatness, adhesion with an electrode, or the like. May be provided.
 なお、アラミドは200℃以上の高温プロセスを適用できるため、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドはITOやガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて基板を薄型化できる。なお、超薄型ガラス基板とアラミドとを積層して絶縁性基板208を形成してもよい。 In addition, since aramid can apply a high temperature process of 200 ° C. or higher, the transparent electrode material can be cured at high temperature to reduce resistance, and can cope with automatic mounting of a driver IC including a solder reflow process. In addition, since aramid has a thermal expansion coefficient close to that of ITO or a glass substrate, there is little warpage after manufacture and it is difficult to be broken. In addition, aramid can make a substrate thinner than a glass substrate or the like. Note that the insulating substrate 208 may be formed by stacking an ultrathin glass substrate and an aramid.
 また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、且つ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60%~70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3ppm~7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、且つ、フレキシブルであることから、ガラス基板等と比べて絶縁性基板208を薄型化できる。 The bio-nanofiber is a composite of a cellulose microfibril bundle (bacterial cellulose) produced by bacteria (Acetobacter, Acetobacter Xylinum) and a transparent resin. The cellulose microfibril bundle is 50 nm in width and 1/10 in size with respect to visible light wavelength, and is high strength, high elasticity, and low thermal expansion. By impregnating and curing bacterial cellulose with a transparent resin such as an acrylic resin or an epoxy resin, a bionanofiber exhibiting a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60% to 70% of fibers. Bionanofibers have a low coefficient of thermal expansion (3 ppm to 7 ppm) comparable to silicon crystals, and have strength comparable to steel (460 MPa), high elasticity (30 GPa), and are flexible compared to glass substrates etc. Thus, the insulating substrate 208 can be thinned.
 絶縁性基板208としてガラス基板を用いた場合、放射線検出部202(TFT基板)全体としての厚みは、例えば、0.7mm程度になるが、第12変形例では、電子カセッテ20A~20Eの薄型化を考慮し、絶縁性基板208として、光透過性を有する合成樹脂からなる薄型の基板を用いている。これにより、放射線検出部202全体としての厚みを、例えば、0.1mm程度に薄型化できると共に、放射線検出部202に可撓性を持たせることができる。また、放射線検出部202に可撓性をもたせることで、電子カセッテ20A~20Eの耐衝撃性が向上し、電子カセッテ20A~20Eに衝撃が加わった場合にも破損し難くなる。また、プラスチック樹脂や、アラミド、バイオナノファイバ等は、いずれも放射線16の吸収が少なく、絶縁性基板208をこれらの材料で形成した場合、絶縁性基板208による放射線16の吸収量も少なくなるため、ISS方式により放射線検出部202を放射線16が透過する構成であっても、放射線16に対する感度の低下を抑えることができる。 When a glass substrate is used as the insulating substrate 208, the thickness of the entire radiation detection unit 202 (TFT substrate) is, for example, about 0.7 mm, but in the twelfth modification, thinning of the electronic cassettes 20A to 20E is performed. In consideration of the above, as the insulating substrate 208, a thin substrate made of a synthetic resin having light transparency is used. Thus, the thickness of the radiation detection unit 202 as a whole can be reduced to, for example, about 0.1 mm, and the radiation detection unit 202 can be made flexible. In addition, by making the radiation detection unit 202 flexible, the impact resistance of the electronic cassettes 20A to 20E is improved, and the electronic cassettes 20A to 20E become difficult to be damaged even when an impact is applied thereto. In addition, plastic resins, aramids, bio-nanofibers and the like all have low absorption of radiation 16, and when insulating substrate 208 is formed of these materials, the amount of absorption of radiation 16 by insulating substrate 208 also decreases. Even in the configuration in which the radiation 16 passes through the radiation detection unit 202 by the ISS method, the decrease in sensitivity to the radiation 16 can be suppressed.
 なお、電子カセッテ20A~20Eの絶縁性基板208として合成樹脂製の基板を用いることは必須ではなく、電子カセッテ20A~20Eの厚さは増大するものの、ガラス基板等の他の材料からなる基板を絶縁性基板208として用いるようにしてもよい。 It is not essential to use a synthetic resin substrate as the insulating substrate 208 of the electronic cassettes 20A to 20E, and although the thickness of the electronic cassettes 20A to 20E is increased, a substrate made of another material such as a glass substrate is used. The insulating substrate 208 may be used.
 また、放射線検出部202(TFT基板)のうち、放射線16の到来方向の反対側(シンチレータ200側)には、放射線検出部202を平坦にするための平坦化層214が形成されている。 Further, in the radiation detection unit 202 (TFT substrate), a planarization layer 214 for flattening the radiation detection unit 202 is formed on the side (scintillator 200 side) opposite to the arrival direction of the radiation 16.
 第12変形例では、放射線変換パネル92を下記のように構成してもよい。 In the twelfth modification, the radiation conversion panel 92 may be configured as follows.
 (1)PDを含む光電変換部212を有機光電変換材料で構成し、CMOSセンサを用いてTFT層210を構成してもよい。この場合、PDのみが有機系材料からなるので、CMOSセンサを含むTFT層210は可撓性を有しなくてもよい。なお、有機光電変換材料からなる光電変換部212と、CMOSセンサとについては、特開2009-212377号公報に記載されているため、その詳細な説明は省略する。 (1) The photoelectric conversion unit 212 including a PD may be formed of an organic photoelectric conversion material, and the TFT layer 210 may be formed using a CMOS sensor. In this case, since only the PD is made of an organic material, the TFT layer 210 including the CMOS sensor may not have flexibility. The photoelectric conversion unit 212 made of an organic photoelectric conversion material and the CMOS sensor are described in Japanese Patent Laid-Open No. 2009-212377, and thus the detailed description thereof is omitted.
 (2)PDを含む光電変換部212を有機光電変換材料で構成すると共に、有機材料からなるTFTを備えたCMOS回路によって可撓性を有するTFT層210を実現してもよい。この場合、CMOS回路で用いられるp型有機半導体の材料としてペンタセンを採用すると共に、n型有機半導体の材料としてフッ化銅フタロシアニン(F16CuPc)を採用すればよい。これにより、より小さな曲げ半径にすることが可能な可撓性を有するTFT層210を実現することができる。また、このようにTFT層210を構成することにより、ゲート絶縁膜を大幅に薄くすることができ、駆動電圧を低下させることも可能となる。さらに、ゲート絶縁膜、半導体、各電極を室温又は100℃以下で作製することができる。さらにまた、可撓性を有する絶縁性基板208上にCMOS回路を直接作製することもできる。しかも、有機材料からなるTFTは、スケーリング則に沿った製造プロセスにより微細化することが可能となる。なお、絶縁性基板208は、薄厚のポリイミド基板上にポリイミド前駆体をスピンコート法で塗布して加熱すれば、ポリイミド前駆体がポリイミドに変化するので、凹凸のない平坦な基板を実現することができる。 (2) The photoelectric conversion portion 212 including PD may be made of an organic photoelectric conversion material, and the flexible TFT layer 210 may be realized by a CMOS circuit provided with a TFT made of an organic material. In this case, pentacene may be employed as the material of the p-type organic semiconductor used in the CMOS circuit, and copper fluoride phthalocyanine (F 16 CuPc) may be employed as the material of the n-type organic semiconductor. Thereby, it is possible to realize the flexible TFT layer 210 which can be made to have a smaller bending radius. Further, by forming the TFT layer 210 in this manner, the gate insulating film can be made extremely thin, and the driving voltage can also be reduced. Furthermore, the gate insulating film, the semiconductor, and each electrode can be manufactured at room temperature or 100 ° C. or less. Furthermore, CMOS circuits can also be fabricated directly on the flexible insulating substrate 208. Moreover, TFTs made of an organic material can be miniaturized by the manufacturing process in accordance with the scaling law. In the insulating substrate 208, when a polyimide precursor is applied by a spin coating method on a thin polyimide substrate and heated, the polyimide precursor is changed to a polyimide, so that a flat substrate without unevenness can be realized. it can.
 (3)ミクロンオーダの複数のデバイスブロックを基板上の指定位置に配置する自己整合配置技術(Fluidic Self-Assembly法)を適用して、結晶SiからなるPD及びTFTを、樹脂基板からなる絶縁性基板208上に配置してもよい。この場合、ミクロンオーダの微小デバイスブロックとしてのPD及びTFTを他の基板に予め作製した後に該基板から切り離し、液体中で、前記PD及び前記TFTをターゲット基板としての絶縁性基板208上に散布して統計的に配置する。絶縁性基板208には、デバイスブロックに適合させるための加工が予め施されており、デバイスブロックを選択的に絶縁性基板208に配置することができる。従って、最適な材料で作られた最適なデバイスブロック(PD及びTFT)を最適な基板(絶縁性基板208)上に集積化させることができ、結晶でない絶縁性基板208(樹脂基板)にPD及びTFTを集積化することが可能となる。 (3) By applying a self-aligned placement technique (Fluidic Self-Assembly) in which a plurality of micron-order device blocks are disposed at specified positions on a substrate, PD and TFT composed of crystalline Si are insulated as resin substrates It may be disposed on the substrate 208. In this case, PDs and TFTs as micron-order micro device blocks are fabricated on another substrate in advance and then separated from the substrates, and the PDs and the TFTs are dispersed on the insulating substrate 208 as a target substrate in a liquid. And place them statistically. The insulating substrate 208 is previously processed to conform to the device block, and the device block can be selectively disposed on the insulating substrate 208. Therefore, the optimum device block (PD and TFT) made of the optimum material can be integrated on the optimum substrate (insulating substrate 208), and the non-crystalline insulating substrate 208 (resin substrate) can be PD and It becomes possible to integrate the TFT.
 なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。 The present invention is not limited to the above-described embodiment, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention.

Claims (16)

  1.  放射線(16)を放射線画像に変換する放射線変換パネル(92)を収容したパネル収容ユニット(30)を有し、
     前記パネル収容ユニット(30)には、前記放射線(16)が照射される撮影面(42)と、前記放射線(16)の入射方向に向かって突出した突出部分(32)とが設けられ、
     前記突出部分(32)の少なくとも一部分(32、48b)と前記パネル収容ユニット(30)とのうち、少なくとも一方は、前記突出部分(32)と前記パネル収容ユニット(30)とを分離させない状態で移動可能であることを特徴とする放射線画像撮影装置。
    A panel storage unit (30) containing a radiation conversion panel (92) for converting radiation (16) into a radiation image;
    The panel accommodation unit (30) is provided with an imaging surface (42) to which the radiation (16) is irradiated, and a projecting portion (32) projecting in the incident direction of the radiation (16).
    At least one of at least a portion (32, 48b) of the projecting portion (32) and the panel accommodating unit (30) does not separate the projecting portion (32) and the panel accommodating unit (30) A radiation imaging apparatus characterized in that it is movable.
  2.  請求項1記載の装置(20A-20E)において、
     前記突出部分(32)の少なくとも一部分(32、48b)は、前記パネル収容ユニット(30)又は前記突出部分(32)の他の部分(48a、48c、48d、48e)に接触した状態で移動可能であり、
     前記パネル収容ユニット(30)は、前記突出部分(32)に接触した状態で移動可能であることを特徴とする放射線画像撮影装置。
    Device (20A-20E) according to claim 1
    At least a portion (32, 48b) of the projecting portion (32) is movable in contact with the panel receiving unit (30) or another portion (48a, 48c, 48d, 48e) of the projecting portion (32) And
    The radiation imaging apparatus according to claim 1, wherein the panel storage unit (30) is movable in contact with the projecting portion (32).
  3.  請求項2記載の装置(20A-20E)において、
     前記突出部分(32)は、前記放射線変換パネル(92)を制御する制御ユニットであり、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、前記撮影面(42)に対して相対的に移動可能であることを特徴とする放射線画像撮影装置。
    Device (20A-20E) according to claim 2
    The projecting portion (32) is a control unit that controls the radiation conversion panel (92),
    At least a portion (32, 48b) of the control unit (32) is movable relative to the imaging surface (42).
  4.  請求項3記載の装置(20A-20E)において、
     前記撮影面(42)における前記放射線(16)の照射領域(46)は、前記放射線画像に変換可能な撮影領域であり、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、前記撮影領域(46)から離間する方向に移動可能であることを特徴とする放射線画像撮影装置。
    Device (20A-20E) according to claim 3
    The irradiation area (46) of the radiation (16) on the imaging surface (42) is an imaging area that can be converted to the radiation image,
    At least a portion (32, 48b) of the control unit (32) is movable in a direction away from the imaging area (46).
  5.  請求項4記載の装置(20A-20E)において、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、前記撮影面(42)及び前記制御ユニット(32)の他の部分(48a、48c、48d、48e)の少なくともいずれか一方に接触した状態で、前記撮影領域(46)から離間する方向に摺動可能であることを特徴とする放射線画像撮影装置。
    Device (20A-20E) according to claim 4
    At least a portion (32, 48b) of the control unit (32) contacts at least one of the imaging surface (42) and the other portions (48a, 48c, 48d, 48e) of the control unit (32) A radiographic imaging device characterized in that it is slidable in a direction away from the imaging region (46) in a state.
  6.  請求項4記載の装置(20A-20C)において、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、前記撮影面(42)及び前記制御ユニット(32)の他の部分(48a)の少なくともいずれか一方に接触した状態で、前記撮影面(42)に略直交する回転軸(172)を中心として回動することを特徴とする放射線画像撮影装置。
    Device (20A-20C) according to claim 4
    At least a portion (32, 48b) of the control unit (32) is in contact with at least one of the imaging surface (42) and the other portion (48a) of the control unit (32). A radiation image capturing apparatus characterized by rotating around a rotation axis (172) substantially orthogonal to (42).
  7.  請求項4記載の装置(20A-20E)において、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、前記撮影面(42)及び前記制御ユニット(32)の他の部分(48a、48c、48d、48e)の少なくともいずれか一方に接触した状態で、前記撮影面(42)に平行な方向に沿った回転軸(170)を中心として回動することを特徴とする放射線画像撮影装置。
    Device (20A-20E) according to claim 4
    At least a portion (32, 48b) of the control unit (32) contacts at least one of the imaging surface (42) and the other portions (48a, 48c, 48d, 48e) of the control unit (32) A radiation image capturing apparatus characterized in that, in a state, it rotates about a rotation axis (170) along a direction parallel to the image capturing surface (42).
  8.  請求項3~7のいずれか1項に記載の装置(20A)において、
     前記制御ユニット(32)の少なくとも一部分(32、48b)は、該制御ユニット(32)の動作時に発熱する箇所であり、
     前記制御ユニット(32)は、該制御ユニット(32)の少なくとも一部分(32、48b)の温度を検出する温度検出部(56)と、前記温度検出部(56)が検出した前記温度に関わる情報を報知する報知部(82、84)とを有する
     ことを特徴とする放射線画像撮影装置。
    The device (20A) according to any one of claims 3 to 7
    At least a part (32, 48b) of the control unit (32) is a place where heat is generated when the control unit (32) operates;
    The control unit (32) is a temperature detection unit (56) that detects the temperature of at least a part (32, 48b) of the control unit (32), and information related to the temperature detected by the temperature detection unit (56) And a notification unit (82, 84) for notifying the user.
  9.  請求項8記載の装置(20A)において、
     前記報知部(82)は、前記温度を表示する温度表示部であることを特徴とする放射線画像撮影装置。
    Device (20A) according to claim 8
    The radiographic imaging device, wherein the notification unit (82) is a temperature display unit that displays the temperature.
  10.  請求項8記載の装置(20A)において、
     前記報知部(82、84)は、前記温度を表示する温度表示部(82)と、前記温度が所定温度に到達したときに音及び画面表示の少なくとも一方により外部に警告する警告部(82、84)とであることを特徴とする放射線画像撮影装置。
    Device (20A) according to claim 8
    The notification unit (82, 84) is a temperature display unit (82) for displaying the temperature, and a warning unit (82) for warning the outside by at least one of a sound and a screen display when the temperature reaches a predetermined temperature. 84) and a radiation imaging apparatus characterized in that
  11.  請求項9又は10記載の装置(20A)において、
     前記温度表示部(82)は、前記温度を複数段階で表示するか、あるいは、前記温度をサーモラベルの形式で表示することを特徴とする放射線画像撮影装置。
    Device (20A) according to claim 9 or 10
    The radiation image capturing apparatus, wherein the temperature display unit (82) displays the temperature in a plurality of stages, or displays the temperature in the form of a thermo label.
  12.  請求項8~11のいずれか1項に記載の装置(20A)において、
     前記報知部(82、84)は、前記温度に基づいて、前記制御ユニット(32)の少なくとも一部分(32、48b)の移動の要否を報知することを特徴とする放射線画像撮影装置。
    A device (20A) according to any one of claims 8 to 11,
    The informing unit (82, 84) notifies, based on the temperature, whether or not at least a part (32, 48b) of the control unit (32) needs to be moved.
  13.  請求項8~12のいずれか1項に記載の装置(20A)において、
     前記制御ユニット(32)は、外部との信号の送受信が可能な通信部(54)をさらに有し、前記通信部(54)から、前記放射線画像撮影装置(20A)を制御する制御装置(22)に対して前記情報を送信することにより、該制御装置(22)を介して前記情報を報知させることを特徴とする放射線画像撮影装置。
    Device (20A) according to any of the claims 8-12.
    The control unit (32) further includes a communication unit (54) capable of transmitting and receiving signals to and from the outside, and the control unit (22) controls the radiation imaging device (20A) from the communication unit (54). And transmitting the information to the user to notify the information via the control device (22).
  14.  請求項3~13のいずれか1項に記載の装置(20A-20C)において、
     前記制御ユニット(32)は、外部との信号の送受信が可能な通信部(54)と、前記制御ユニット(32)及び前記パネル収容ユニット(30)を制御する制御部(50)と、前記制御ユニット(32)及び前記パネル収容ユニット(30)の各部に電力を供給する電源部(52)とをさらに有し、
     少なくとも前記電源部(52)は、前記制御ユニット(32)の少なくとも一部分(32、48b)に配置されることを特徴とする放射線画像撮影装置。
    The device (20A-20C) according to any one of claims 3 to 13
    The control unit (32) includes a communication unit (54) capable of transmitting and receiving signals to and from the outside, a control unit (50) for controlling the control unit (32) and the panel accommodation unit (30), and the control A power supply unit (52) for supplying power to the unit (32) and each part of the panel accommodation unit (30);
    At least the said power supply part (52) is arrange | positioned at at least one part (32, 48b) of said control unit (32), The radiographic imaging apparatus characterized by the above-mentioned.
  15.  請求項14記載の装置(20A-20C)において、
     前記制御ユニット(32)は、該制御ユニット(32)の少なくとも一部分(32、48b)の移動に関わる情報を表示する移動情報表示部(82)をさらに有し、
     前記通信部(54)は、被写体(14)に対する前記放射線(16)の照射に関わるオーダ情報を外部から受信し、
     前記制御部(50)は、前記オーダ情報に基づいて、前記制御ユニット(32)の少なくとも一部分(32、48b)の移動の要否を前記移動情報表示部(82)に表示させることを特徴とする放射線画像撮影装置。
    Device (20A-20C) according to claim 14
    The control unit (32) further includes a movement information display unit (82) that displays information related to the movement of at least a part (32, 48b) of the control unit (32),
    The communication unit (54) receives from the outside the order information related to the irradiation of the radiation (16) to the subject (14),
    The control unit (50) causes the movement information display unit (82) to display the necessity of movement of at least a part (32, 48b) of the control unit (32) based on the order information. Radiation imaging device.
  16.  放射線(16)を放射線画像に変換する放射線変換パネル(92)を収容したパネル収容ユニット(30)を有する放射線画像撮影装置(20A-20E)と、
     前記放射線画像撮影装置(20A-20E)を制御する制御装置(22)と、
     を備え、
     前記パネル収容ユニット(30)には、前記放射線(16)が照射される撮影面(42)と、前記放射線(16)の入射方向に向かって突出した突出部分(32)とが設けられ、
     前記突出部分(32)の少なくとも一部分(32、48b)と前記パネル収容ユニット(30)とのうち、少なくとも一方は、前記突出部分(32)と前記パネル収容ユニット(30)とを分離させない状態で移動可能であることを特徴とする放射線画像撮影システム。
    A radiation imaging apparatus (20A-20E) having a panel accommodation unit (30) accommodating a radiation conversion panel (92) for converting radiation (16) into a radiation image;
    A control device (22) for controlling the radiation imaging device (20A-20E);
    Equipped with
    The panel accommodation unit (30) is provided with an imaging surface (42) to which the radiation (16) is irradiated, and a projecting portion (32) projecting in the incident direction of the radiation (16).
    At least one of at least a portion (32, 48b) of the projecting portion (32) and the panel accommodating unit (30) does not separate the projecting portion (32) and the panel accommodating unit (30) A radiation imaging system characterized in that it is movable.
PCT/JP2011/060100 2010-04-30 2011-04-26 Radiation imaging device and radiation imaging system WO2011136194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010105385A JP2011232693A (en) 2010-04-30 2010-04-30 Radiation image photographing device and radiation image photographing system
JP2010-105385 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011136194A1 true WO2011136194A1 (en) 2011-11-03

Family

ID=44861493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060100 WO2011136194A1 (en) 2010-04-30 2011-04-26 Radiation imaging device and radiation imaging system

Country Status (2)

Country Link
JP (1) JP2011232693A (en)
WO (1) WO2011136194A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10617380B2 (en) 2016-10-05 2020-04-14 Canon Kabushiki Kaisha Radiographic imaging apparatus and radiographic imaging system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294221A (en) * 2009-09-09 2009-12-17 Konica Minolta Holdings Inc Cassette type radiation image reading device and transportable type radiographic image reading system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294221A (en) * 2009-09-09 2009-12-17 Konica Minolta Holdings Inc Cassette type radiation image reading device and transportable type radiographic image reading system

Also Published As

Publication number Publication date
JP2011232693A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5620249B2 (en) Radiation imaging system
US9513379B2 (en) Radiographic image capture device, system, program storage medium and method
WO2012014538A1 (en) Radiation detector panel
WO2012014738A1 (en) Radiographic imaging device, radiographic imaging system, and radiographic imaging method
WO2012056899A1 (en) Radiographic imaging device and program
WO2011105271A1 (en) Radiological imaging device
JP2011227047A (en) Radiation imaging apparatus and radiation imaging system
JP5622541B2 (en) Radiation image capturing apparatus and radiation image capturing system
WO2013015016A1 (en) Radiographic equipment
JP2012047723A (en) Radiation detection panel
JP2011224338A (en) Radiation imaging apparatus and radiation imaging system
WO2011136194A1 (en) Radiation imaging device and radiation imaging system
JP5666276B2 (en) Radiation imaging equipment
JP5638372B2 (en) Radiation imaging equipment
JP5608533B2 (en) Radiation imaging equipment
JP2012066064A (en) Radiographic image capturing system and radiographic image capturing method
JP5608532B2 (en) Radiation imaging equipment
WO2013015062A1 (en) Radiographic equipment
JP5635894B2 (en) Radiation imaging apparatus and power supply method for radiation imaging apparatus
JP5635893B2 (en) Radiation image capturing apparatus, radiation image capturing system, and power supply method for radiation image capturing apparatus
JP2012066060A (en) Radiographic image capturing system and radiographic image capturing method
JP2012063343A (en) Radiation detection panel
JP5629202B2 (en) Radiation image capturing apparatus, radiation image capturing system, and power supply method for radiation image capturing apparatus
JP5629201B2 (en) Radiation image capturing apparatus, radiation image capturing system, and power supply method for radiation image capturing apparatus
JP2011172906A (en) Radiographic image capturing apparatus, radiographic image capturing system, and power supply method for radiographic image capturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774975

Country of ref document: EP

Kind code of ref document: A1