[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011130913A1 - 量子点-玻璃复合发光材料及其制备方法 - Google Patents

量子点-玻璃复合发光材料及其制备方法 Download PDF

Info

Publication number
WO2011130913A1
WO2011130913A1 PCT/CN2010/072052 CN2010072052W WO2011130913A1 WO 2011130913 A1 WO2011130913 A1 WO 2011130913A1 CN 2010072052 W CN2010072052 W CN 2010072052W WO 2011130913 A1 WO2011130913 A1 WO 2011130913A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
glass
luminescent material
nanoporous
composite luminescent
Prior art date
Application number
PCT/CN2010/072052
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
乔延波
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN2010800636089A priority Critical patent/CN102770386A/zh
Priority to JP2013505295A priority patent/JP5749792B2/ja
Priority to PCT/CN2010/072052 priority patent/WO2011130913A1/zh
Priority to US13/634,605 priority patent/US20130011551A1/en
Priority to EP10850047.1A priority patent/EP2562146A4/en
Publication of WO2011130913A1 publication Critical patent/WO2011130913A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/326Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/10Doped silica-based glasses containing boron or halide containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/58Doped silica-based glasses containing metals containing metals in non-oxide form, e.g. CdSe

Definitions

  • the invention relates to a luminescent material, in particular to a quantum dot-glass composite luminescent material and a preparation method thereof.
  • Quantum dot Dot also known as nanocrystal, is a quasi-zero-dimensional nanomaterial composed of II-VI or III-V elements, composed of a small number of atoms. Roughly speaking, the dimensions of the three dimensions of quantum dots are all below 100 nm, and the appearance is just like a very small dot. The movement of internal electrons in all directions is limited, so the quantum confinement effect (quantum) The confinement effect) is particularly remarkable. Quantum dots are also called “artificial atoms" because quantum confinement effects lead to discontinuous electronic energy levels like atoms. Atom).
  • Quantum dots have a wide range of excitation wavelengths, which allows a single wavelength to excite all quantum dots, ie, the same excitation source can be used simultaneously Multi-channel detection; (2) Quantum dots have precisely tunable emission wavelengths.
  • Differently emitted fluorescent quantum dots can be obtained by adjusting the particle size, and the same material can be used to achieve multi-color labeling without changing the composition and surface properties of the particles; (3) quantum dots have large Stokes shifts and stenosis Symmetrical fluorescence peaks allow the simultaneous use of quantum dots with different spectral features, while the emission spectra do not overlap, or only rarely overlap, making the fluorescent spectrum of the labeled biomolecules easy to distinguish and identify; (4) Quantum The point is relatively stable, the fluorescence spectrum is almost unaffected by the surrounding environment (such as solvent, pH, temperature, etc.), it can withstand repeated multiple excitations, and time-resolved techniques to detect its signal can greatly reduce the intensity of the background. High signal to noise ratio .
  • Nanoporous glass is a SiO 2 glass with uniformly connected nanopores.
  • the nanoporous glass is obtained by phase-separating alkali borosilicate glass and treating the boron-rich phase in the phase separation glass by multiple treatments in a hot acid solution. Since the SiO 2 content in the nanoporous glass exceeds 96% and has physical and chemical properties similar to those of quartz glass, nanoporous glass is a good luminescent material carrier material, for example, currently in nanoporous glass. There are many studies on the preparation of composite luminescent materials by incorporating rare earth luminescent ions and organic luminescent dyes.
  • the luminescent quantum dots can be uniformly dispersed and doped into the nanoporous glass, a composite material having excellent luminescent properties can be obtained.
  • luminescent materials such as quantum dot-glass composite luminescent materials.
  • the technical problem to be solved by the present invention is to provide a quantum dot-glass composite luminescent material with adjustable illuminating wavelength and a method for preparing a quantum dot-glass composite luminescent material which is simple in preparation process and suitable for industrial production.
  • the technical solution adopted to solve the technical problem of the present invention is to provide a quantum dot-glass composite luminescent material, wherein the substrate is a nanoporous glass, and the nanoporous glass is infiltrated with luminescent quantum dots.
  • the quantum dots are water-soluble or oil-soluble ZnO, ZnS, CdS, CdSe, or CdTe, or CdTe/ZnSe, CdSe/ZnSe having a core-shell structure, CdSe/ZnS, CdSe/CdS, CdS/ZnS, or CdS/HgS.
  • the nanoporous glass is a high SiO 2 glass having uniformly connected micropores, and the nanopore volume accounts for 25% to 40% of the total volume of the nanoporous glass.
  • the composition of the nanoporous glass is: SiO 2 accounts for 94.0% to 98.0%, B 2 O 3 accounts for 1.0% to 3.0%, and Al 2 is calculated by weight percentage. O 3 accounts for 1.0% to 3.0%.
  • Step one configuring an aqueous solution or an organic solution of a single luminescent quantum dot, or a mixed aqueous solution or an organic solution of two or more luminescent quantum dots;
  • Step two soaking the nanoporous glass into the solution in the first step for at least ten minutes;
  • step three the soaked nanoporous glass is taken out from the solution and dried, and the nanoporous glass is encapsulated and encapsulated by a resin, and the quantum dot-glass composite luminescent material is obtained after curing.
  • the soaking time in the second step is 0.5 to 5 hours.
  • the entire nanoporous glass surface is subjected to an air-encapsulation package.
  • the quantum dot-glass composite luminescent material of the present invention can generate blue, yellow, green, red, white and the like under the excitation of ultraviolet, violet or blue light.
  • the excitation spectrum is wide and continuous, the fluorescence emission peak is narrow and symmetrical, the light stability is good, the photobleaching is resistant, and the one-element excitation multi-emission can be realized.
  • the single material can emit fluorescence in different wavelength bands.
  • the quantum dot-glass composite luminescent material has a controllable emission wavelength and an adjustable color, and can realize broadband continuous illumination in the visible light range by changing the type and size of the quantum dots.
  • the quantum dot-glass composite luminescent material in the invention is simple in preparation method and simple in operation.
  • the composite luminescent material and the preparation method are suitable for industrial production, and have wide applications in the fields of illumination, LED, display and the like.
  • Example 1 is a UV-visible spectroscopic spectrum and an emission spectrum of a quantum dot-glass composite luminescent material prepared in Example 1 of the present invention
  • FIG. 2 is a flow chart of a method for preparing a quantum dot-glass composite luminescent material according to an embodiment of the present invention.
  • the embodiment of the invention discloses a quantum dot-glass composite luminescent material.
  • the matrix of the quantum dot-glass composite luminescent material is nanoporous glass, and the nanoporous glass is infiltrated with luminescent quantum dots.
  • the quantum dots are water-soluble or oil-soluble ZnO, ZnS, CdS, CdSe, or CdTe, or CdTe/ZnSe, CdSe/ZnSe having a core-shell structure, CdSe/ZnS, CdSe/CdS, CdS/ZnS, or CdS/HgS.
  • the nanoporous glass is a high SiO 2 glass having uniformly connected micropores, and the nanopore volume accounts for 25-40% of the total volume of the nanoporous glass.
  • the composition of the nanoporous glass is: SiO 2 accounts for 94.0% to 98.0%, B 2 O 3 accounts for 1.0% to 3.0%, and Al 2 O 3 accounts for 1.0% to 3.0%.
  • FIG. 2 illustrates a flow of a method for preparing a quantum dot-glass composite luminescent material according to an embodiment of the present invention.
  • the preparation method includes the following steps:
  • Step S01 configuring an aqueous solution or an organic solution of a single luminescent quantum dot, or a mixed aqueous solution or organic solution of two or more luminescent quantum dots;
  • Step S02 soaking the nanoporous glass into the solution in step S01 for at least ten minutes;
  • Step S03 taking the soaked nanoporous glass from the solution and drying it, encapsulating and packaging the nanoporous glass with a resin, and obtaining the quantum dot-glass composite luminescent material after curing.
  • the soaking time in the step S02 is preferably 0.5 to 5 hours.
  • the nanoporous glass immersed in the luminescent quantum dots is coated and protected, and the nanoporous glass is encapsulated by a resin to wrap the entire glass surface. air.
  • the quantum dot-glass composite luminescent material of the present invention is capable of generating blue, yellow, green, red, white, etc. light under ultraviolet, violet or blue light excitation. Compared with traditional phosphors or organic materials, it has many advantages, such as wide and continuous excitation spectrum, narrow and symmetrical fluorescence emission peaks, good light stability, photobleaching resistance, single-element excitation multi-emission, and single material can emit different wavelength bands. Fluorescence, and the quantum dot-glass composite luminescent material has a controllable emission wavelength and adjustable color, and can realize broadband continuous illumination in the visible light range by changing the type and size of the quantum dots.
  • the quantum dot-glass composite luminescent material in the invention has simple preparation method, convenient operation and stable performance of the prepared product.
  • the luminescent quantum dots and nanoporous glasses used are commercially available.
  • the composite luminescent material and the preparation method are suitable for industrial production, and have wide application in the fields of illumination, LED, display, etc., and have good practicability and investment value.
  • compositions of quantum dot-glass composite luminescent materials, methods for their preparation, and the like are exemplified below by various embodiments.
  • a commercially available water-soluble CdTe quantum dot solution having an emission peak wavelength of 600 nm was diluted with deionized water to obtain 10 ml of a 0.1 mg/ml CdTe luminescent quantum dot solution; then the nanoporous glass piece was immersed in the solution for 2 hours (h) After taking out, it is dried; the nanoporous glass piece is coated with epoxy resin, and after curing in an oven, a quantum dot-glass composite luminescent material is obtained.
  • the quantum dot-glass composite luminescent material generates red light under excitation of ultraviolet light, violet light, and blue light.
  • 1 is an ultraviolet-visible spectroscopic spectrum and an emission spectrum of a quantum dot-glass composite luminescent material in Example 1.
  • a commercially available water-soluble CdTe quantum dot solution having an emission peak wavelength of 600 nm was diluted with deionized water to obtain 10 ml of a 0.5 mg/ml CdTe luminescent quantum dot solution; then the nanoporous glass piece was immersed in the solution for 2 hours and then taken out. Drying; then coating the nanoporous glass piece with silica gel and solidifying in an oven to obtain a quantum dot-glass composite luminescent material.
  • the quantum dot-glass composite luminescent material generates red light under excitation of ultraviolet light, violet light, and blue light.
  • the commercially available water-soluble CdTe quantum dot solution with an emission peak wavelength of 540 nm was diluted with deionized water to obtain 10 ml of a 1 mg/ml CdTe luminescent quantum dot solution; then the nanoporous glass piece was immersed in the solution for 2 hours, and then taken out and dried. Dry; the nanoporous glass piece is coated with polymethyl methacrylate (PMMA), and after curing in an oven, a quantum dot-glass composite luminescent material is obtained.
  • PMMA polymethyl methacrylate
  • the quantum dot-glass composite luminescent material generates yellow light under excitation of ultraviolet light, violet light, and blue light.
  • a commercially available water-soluble CdS quantum dot solution having an emission peak wavelength of 600 nm was diluted with deionized water to obtain 5 ml of a 0.2 mg/ml CdS luminescent quantum dot solution, and a commercially available water-soluble ZnS quantum dot having an emission peak wavelength of 570 nm was used.
  • the solution was diluted with deionized water to obtain 5 ml of a 0.2 mg/ml ZnS luminescent quantum dot solution, and the two solutions were mixed to form a 10 ml mixed luminescent quantum dot solution.
  • the nanoporous glass piece was immersed in the solution for 2 hours, then taken out and dried; then the nanoporous glass piece was coated with epoxy resin, and after curing in an oven, a quantum dot-glass composite luminescent material was obtained.
  • the quantum dot-glass composite luminescent material generates yellow light and red light under excitation of ultraviolet light, violet light, and blue light.
  • a commercially available core-shell structured CdSe/ZnS water-soluble luminescent quantum dot solution having an emission peak wavelength of 630 nm was diluted with deionized water to obtain 10 ml of a 0.05 mg/ml CdTe luminescent quantum dot solution; then the nanoporous glass piece was immersed in After 5 hours in the solution, it was taken out and dried. The nanoporous glass piece was coated with epoxy resin and solidified in an oven to obtain a quantum dot-glass composite luminescent material.
  • the quantum dot-glass composite luminescent material generates red light under excitation of ultraviolet light, violet light, and blue light.
  • the water-soluble luminescent quantum dot solution is diluted with deionized water to obtain 10 ml of a 0.15 mg/ml CdTe luminescent quantum dot solution; then the nanoporous glass piece is immersed in the solution for 30 minutes, taken out, and then air-dried;
  • the apertured glass sheet is coated and cured in an oven to obtain a quantum dot-glass composite luminescent material.
  • the quantum dot-glass composite luminescent material generates yellow light under excitation of ultraviolet light, violet light, and blue light.
  • a commercially available oil-soluble ZnS luminescent quantum dot solution having an emission peak wavelength of 550 nm was diluted with cyclohexane to obtain 10 ml of a 2 mg/ml ZnS luminescent quantum dot solution; then the nanoporous glass piece was immersed in the solution for 4 hours and then taken out. Drying; after surface cleaning, the nanoporous glass piece is coated with silica gel, and after curing in an oven, a quantum dot-glass composite luminescent material is obtained.
  • the quantum dot-glass composite luminescent material generates yellow light under excitation of ultraviolet light, violet light, and blue light.
  • the commercially available oil-soluble CdSe luminescent quantum dot solution with an emission peak wavelength of 600 nm was diluted with chloroform to obtain 10 ml of a 3 mg/ml CdSe luminescent quantum dot solution; then the nanoporous glass piece was immersed in the solution for 1 hour, taken out, and dried. After the surface is cleaned, the nanoporous glass piece is coated with silica gel, and after curing in an oven, a quantum dot-glass composite luminescent material is obtained.
  • the quantum dot-glass composite luminescent material generates red light under excitation of ultraviolet light, violet light, and blue light.
  • a commercially available oil-soluble CdSe/CdS quantum dot solution having an emission peak wavelength of 630 nm was diluted with chloroform to obtain 5 ml of a 1 mg/ml CdSe/CdS luminescent quantum dot solution, and a commercially available oil-soluble CdS/ having an emission peak wavelength of 540 nm was used.
  • the ZnS quantum dot solution was diluted with dechloroform to obtain 5 ml of a 1 mg/ml CdS/ZnS luminescent quantum dot solution, and the two solutions were mixed to form a 10 ml mixed luminescent quantum dot solution.
  • the nanoporous glass piece was immersed in the solution for 3 hours, then taken out and dried; then the nanoporous glass piece was coated with silica gel and solidified in an oven to obtain a quantum dot-glass composite luminescent material.
  • the quantum dot-glass composite luminescent material generates yellow light and red light under excitation of ultraviolet light, violet light, and blue light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明提供一种量子点-玻璃复合发光材料,其基体为纳米微孔玻璃,所述纳米微孔玻璃中渗入有发光量子点。本发明还提供了上述发光材料的制备方法,包括如下步骤:步骤一,配置单一发光量子点的水溶液或有机溶液,或者是两种或两种以上发光量子点的混合水溶液或有机溶液;步骤二,将纳米微孔玻璃浸泡到步骤一中的溶液中至少十分钟;步骤三,将浸泡后的纳米微孔玻璃从溶液中取出后晾干,采用树脂对纳米微孔玻璃进行包裹封装,经固化后得到所述量子点-玻璃复合发光材料。该复合发光材料及制备方法适用于产业化生产,在照明、LED、显示等领域有广阔的应用。

Description

量子点-玻璃复合发光材料及其制备方法 技术领域
本发明涉及一种发光材料,具体涉及一种量子点-玻璃复合发光材料及其制备方法。
背景技术
量子点(quantum dot)又称纳米晶,是由II-VI族或III-V族元素组成准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应(quantum confinement effect)特别显著。由于量子局限效应会导致类似原子的不连续电子能级结构,因此量子点又被称为“人造原子”(artificial atom)。
量子点的粒径一般介于1~10纳米之间,由于电子和空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,受激后可以发射荧光。基于量子效应,量子点在太阳能电池,发光器件,光学生物标记等领域具有广泛的应用前景。与传统的有机染料相比,量子点具有以下无可比拟的荧光特性:(1)量子点的激发光波长范围很宽,这使得单个波长可激发所有的量子点,即使用同一激发光源可同时进行多通道的检测;(2)量子点具有可精确调谐的发射波长。可以通过调整粒子尺寸来得到不同发射的荧光量子点,无需改变粒子的组成和表面性质,即可使用同一种材料实现多色标记;(3)量子点具有较大的斯托克斯位移和狭窄对称的荧光谱峰,允许同时使用不同光谱特征的量子点,而发射光谱不出现交叠,或只出现很少交叠,使所标记的生物分子的荧光光谱易于区分和识别;(4)量子点比较稳定,荧光光谱几乎不受周围环境(如溶剂、pH值、温度等)的影响,它可以经受反复多次激发,采取时间分辨技术来检测其信号可大幅度降低背景的强度,获得较高的信噪比 。
纳米微孔玻璃是一种具有均匀联通纳米微孔的SiO2玻璃。通常纳米微孔玻璃是是通过碱硼硅酸盐玻璃分相,在热酸溶液中多次处理滤去分相玻璃中的富硼相得到的。由于纳米微孔玻璃中的SiO2含量超过96%,具有类似于石英玻璃的物理和化学性能,因此纳米微孔玻璃是一种良好的发光材料的载体材料,例如,目前通过在纳米微孔玻璃中掺入稀土发光离子和有机发光染料来制备复合发光材料的研究有很多。如果能够将发光量子点均匀地分散掺杂到纳米微孔玻璃中,就能够得到具有优异发光性能的复合材料。然而,到目前为止,未曾有关于量子点-玻璃复合发光材料等发光材料的报道。
技术问题
本发明所要解决的技术问题是提供一种发光波长可调的量子点-玻璃复合发光材料以及提供一种制备工艺简单、适用于工业化生产的量子点-玻璃复合发光材料制备方法。
技术解决方案
解决本发明的技术问题所采取的技术方案是:提供一种量子点-玻璃复合发光材料,其基体为纳米微孔玻璃,所述纳米微孔玻璃中渗入有发光量子点。
在本发明的量子点-玻璃复合发光材料中,所述量子点为水溶性或油溶性的ZnO、ZnS、CdS、CdSe、或CdTe,或者为具有核壳结构的CdTe/ZnSe、CdSe/ZnSe、CdSe/ZnS、CdSe/CdS、CdS/ZnS、或CdS/HgS。
在本发明的量子点-玻璃复合发光材料中,所述纳米微孔玻璃为具有均匀联通微孔的高SiO2玻璃,纳米微孔体积占纳米微孔玻璃总体积的25%~40%。
在本发明的量子点-玻璃复合发光材料中,所述纳米微孔玻璃的成分为:按重量百分比计算,SiO2占94.0%~98.0%,B2O3占1.0%~3.0%,Al2O3占1.0%~3.0%。
以及,一种量子点-玻璃复合发光材料制备方法,其包括如下步骤:
步骤一,配置单一发光量子点的水溶液或有机溶液,或者是两种或两种以上发光量子点的混合水溶液或有机溶液;
步骤二,将纳米微孔玻璃浸泡到步骤一中的溶液中至少十分钟;
步骤三,将浸泡后的纳米微孔玻璃从溶液中取出后晾干,采用树脂对纳米微孔玻璃进行包裹封装,经固化后得到所述量子点—玻璃复合发光材料。
在本发明的制备方法中,所述步骤二中的浸泡时间为0.5~5小时。
在本发明的制备方法中,在所述步骤三中,对其整个纳米微孔玻璃表面进行隔离空气包裹封装。
有益效果
与现有技术相比,本发明量子点-玻璃复合发光材料,在紫外、紫光或蓝光激发下能够产生蓝色、黄色、绿色、红色、白色等光。与传统的荧光粉或有机材料相比具有很多优势,激发光谱宽而连续、荧光发射峰窄而对称、光稳定性好、耐光漂白、能实现一元激发多元发射,单一材料可以发射不同波段的荧光,而且这种量子点-玻璃复合发光材料的发射波长可控、颜色可调,通过改变量子点种类和尺寸能够实现可见光范围的宽带连续发光。
此外,本发明中的量子点-玻璃复合发光材料制备方法简单、操作简便。该复合发光材料及制备方法适用于产业化生产,在照明、LED、显示等领域有广阔的应用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明实施例1中制备的量子点-玻璃复合发光材料的紫外可见分光光谱图和发射光谱图;
图2为本发明实施例的量子点-玻璃复合发光材料制备方法流程图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例揭示了一种量子点-玻璃复合发光材料,该量子点-玻璃复合发光材料的基体为纳米微孔玻璃,所述纳米微孔玻璃中渗入有发光量子点。
在本发明的量子点-玻璃复合发光材料中,所述量子点为水溶性或油溶性的ZnO、ZnS、CdS、CdSe、或CdTe,或者为具有核壳结构的CdTe/ZnSe、CdSe/ZnSe、CdSe/ZnS、CdSe/CdS、 CdS/ZnS、或CdS/HgS。所述纳米微孔玻璃为具有均匀联通微孔的高SiO2玻璃,纳米微孔体积占纳米微孔玻璃总体积的25~40%。所述纳米微孔玻璃的成分为:按重量百分比计算,SiO2占94.0%~98.0%,B2O3占1.0%~3.0%,Al2O3占1.0%~3.0%。
请参阅图2,图2说明本发明实施例量子点-玻璃复合发光材料制备方法的流程,该制备方法包括如下步骤:
步骤S01、配置单一发光量子点的水溶液或有机溶液,或者是两种或两种以上发光量子点的混合水溶液或有机溶液;
步骤S02、将纳米微孔玻璃浸泡到步骤S01中的溶液中至少十分钟;
步骤S03、将浸泡后的纳米微孔玻璃从溶液中取出后晾干,采用树脂对纳米微孔玻璃进行包裹封装,经固化后得到所述量子点-玻璃复合发光材料。
在本发明的制备方法中,所述步骤S02中的浸泡时间最佳为0.5~5小时。在所述步骤S03中,为保持复合发光材料的稳定性,对浸有发光量子点的纳米微孔玻璃进行包覆保护,采用树脂对纳米微孔玻璃进行封装,对其整个玻璃表面进行包裹隔离空气。
本发明的量子点-玻璃复合发光材料在紫外、紫光或蓝光激发下能够产生蓝色、黄色、绿色、红色、白色等光。与传统的荧光粉或有机材料相比具有很多优势,如激发光谱宽而连续、荧光发射峰窄而对称、光稳定性好、耐光漂白、能实现一元激发多元发射,单一材料可以发射不同波段的荧光,而且这种量子点-玻璃复合发光材料的发射波长可控、颜色可调,通过改变量子点种类和尺寸能够实现可见光范围的宽带连续发光。
本发明中的量子点-玻璃复合发光材料制备方法简单、操作方便、制备出来的产品性能稳定。所用的发光量子点和纳米微孔玻璃可从市场上购得。该复合发光材料及制备方法适用于产业化生产,在照明、LED、显示等领域有广阔的应用,具有较好的实用性和投资价值。
以下通过多个实施例来举例说明量子点-玻璃复合发光材料的不同组成及其制备方法等方面。
实施例1:
将市售的发光峰值波长为600nm的水溶性CdTe量子点溶液用去离子水稀释得到10ml的0.1mg/ml的CdTe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中2小时(h)后取出后晾干;再用环氧树脂对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生红光。图1为实施例1中量子点-玻璃复合发光材料的紫外可见分光光谱图和发射光谱。从图1中可以得出,能够在蓝光区域被有效激发,发出波长为600nm的红光。
实施例2:
将市售的发光峰值波长为600nm的水溶性CdTe量子点溶液用去离子水稀释得到10ml的0.5mg/ml的CdTe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中2h后取出后晾干;再用硅胶对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生红光。
实施例3:
将市售的发光峰值波长为540nm的水溶性CdTe量子点溶液用去离子水稀释得到10ml的1mg/ml的CdTe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中2h后取出后晾干;再用聚甲基丙烯酸甲酯(PMMA)对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生黄光。
实施例4:
将市售的发光峰值波长为600nm的水溶性CdS量子点溶液用去离子水稀释得到5ml的0.2mg/ml的CdS发光量子点溶液,将市售的发光峰值波长为570nm的水溶性ZnS量子点溶液用去离子水稀释得到5ml的0.2mg/ml的ZnS发光量子点溶液,再将两种溶液混合均匀制成10ml的混合发光量子点溶液。然后将纳米微孔玻璃片浸泡到溶液中2h后取出后晾干;再用环氧树脂对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生黄光和红光。
实施例5:
将市售的发光峰值波长为630nm的核壳结构CdSe/ZnS水溶性发光量子点溶液用去离子水稀释得到10ml的0.05mg/ml的CdTe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中5h后取出后晾干;再用环氧树脂对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生红光。
实施例6:
将市售的发光峰值波长为570nm的核壳结构CdTe/ZnSe 水溶性发光量子点溶液用去离子水稀释得到10ml的0.15mg/ml的CdTe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中30分钟后取出后晾干;再用硅胶对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生黄光。
实施例7:
将市售的发光峰值波长为550nm的油溶性ZnS发光量子点溶液用环己烷稀释得到10ml的2mg/ml的ZnS发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中4h后取出后晾干;表面清理后再用硅胶对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生黄光。
实施例8:
将市售的发光峰值波长为600nm的油溶性CdSe发光量子点溶液用氯仿稀释得到10ml的3mg/ml的CdSe发光量子点溶液;然后将纳米微孔玻璃片浸泡到溶液中1h后取出后晾干;表面清理后再用硅胶对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生红光。
实施例9:
将市售的发光峰值波长为630nm的油溶性CdSe/CdS量子点溶液用氯仿稀释得到5ml的1mg/ml的CdSe/CdS发光量子点溶液,将市售的发光峰值波长为540nm的油溶性CdS/ZnS量子点溶液用去氯仿稀释得到5ml的1mg/ml的CdS/ZnS发光量子点溶液,再将两种溶液混合均匀制成10ml的混合发光量子点溶液。然后将纳米微孔玻璃片浸泡到溶液中3h后取出后晾干;再用硅胶对纳米微孔玻璃片进行包覆,在烘箱中固化后,得到量子点-玻璃复合发光材料。该量子点-玻璃复合发光材料在紫外光、紫光、及蓝光激发下产生黄光和红光。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种量子点-玻璃复合发光材料,其基体为纳米微孔玻璃,其特征在于:所述纳米微孔玻璃中渗入有发光量子点。
  2. 如权利要求1所述的量子点-玻璃复合发光材料,其特征在于:所述量子点为水溶性或油溶性的ZnO、ZnS、CdS、CdSe、或CdTe,或者为具有核壳结构的CdTe/ZnSe、CdSe/ZnSe、CdSe/ZnS、CdSe/CdS、CdS/ZnS、或CdS/HgS。
  3. 如权利要求1所述的量子点-玻璃复合发光材料,其特征在于:所述纳米微孔玻璃为具有均匀联通微孔的高SiO2玻璃,纳米微孔体积占纳米微孔玻璃总体积的25%~40%。
  4. 如权利要求1或3所述的量子点-玻璃复合发光材料,其特征在于:所述纳米微孔玻璃的成分为:按重量百分比计算,SiO2占94.0%~98.0%,B2O3占1.0%~3.0%,Al2O3占1.0%~3.0%。
  5. 一种量子点-玻璃复合发光材料制备方法,其包括如下步骤:
    步骤一,配置单一发光量子点的水溶液或有机溶液,或者是两种或两种以上发光量子点的混合水溶液或有机溶液;
    步骤二,将纳米微孔玻璃浸泡到步骤一中的溶液中至少十分钟;
    步骤三,将浸泡后的纳米微孔玻璃从溶液中取出后晾干,采用树脂对纳米微孔玻璃进行包裹封装,经固化后得到所述量子点-玻璃复合发光材料。
  6. 如权利要求5所述的量子点-玻璃复合发光材料制备方法,其特征在于:所述步骤二中的浸泡时间为0.5~5小时。
  7. 如权利要求5所述的量子点-玻璃复合发光材料制备方法,其特征在于:在所述步骤三中,对其整个纳米微孔玻璃表面进行隔离空气包裹封装。
PCT/CN2010/072052 2010-04-22 2010-04-22 量子点-玻璃复合发光材料及其制备方法 WO2011130913A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800636089A CN102770386A (zh) 2010-04-22 2010-04-22 量子点-玻璃复合发光材料及其制备方法
JP2013505295A JP5749792B2 (ja) 2010-04-22 2010-04-22 量子ドット・ガラス複合発光材料及びその製造方法
PCT/CN2010/072052 WO2011130913A1 (zh) 2010-04-22 2010-04-22 量子点-玻璃复合发光材料及其制备方法
US13/634,605 US20130011551A1 (en) 2010-04-22 2010-04-22 Quantum dot-glass composite luminescent material and manufacturing method thereof
EP10850047.1A EP2562146A4 (en) 2010-04-22 2010-04-22 LUMINESCENTER QUANTUM POINT GLASS COMPOSITE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072052 WO2011130913A1 (zh) 2010-04-22 2010-04-22 量子点-玻璃复合发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2011130913A1 true WO2011130913A1 (zh) 2011-10-27

Family

ID=44833639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072052 WO2011130913A1 (zh) 2010-04-22 2010-04-22 量子点-玻璃复合发光材料及其制备方法

Country Status (5)

Country Link
US (1) US20130011551A1 (zh)
EP (1) EP2562146A4 (zh)
JP (1) JP5749792B2 (zh)
CN (1) CN102770386A (zh)
WO (1) WO2011130913A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433483A (zh) * 2013-08-21 2013-12-11 江南大学 一种金纳米粒子-半导体量子点异质结构手性组装体的制备方法
CN105916962A (zh) * 2013-11-19 2016-08-31 Qd视光有限公司 发光颗粒、包含其的材料和产品、以及方法
CN108947242A (zh) * 2018-08-14 2018-12-07 华南理工大学 一种水分环境智能响应玻璃及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936300B (zh) * 2014-03-26 2016-09-21 中国科学院上海光学精密机械研究所 量子点掺杂的磷酸铝介孔玻璃纳米复合物及其制备方法
US20160027966A1 (en) * 2014-07-25 2016-01-28 Nanosys, Inc. Porous Quantum Dot Carriers
JP6422598B2 (ja) * 2015-04-16 2018-11-14 スリーエム イノベイティブ プロパティズ カンパニー チオール−エポキシマトリックスを有する量子ドット物品
US11299670B2 (en) 2016-10-28 2022-04-12 Nexdot Glass composite particles and uses thereof
WO2018078147A1 (en) 2016-10-28 2018-05-03 Nexdot Glass composite particles and uses thereof
JP6872139B2 (ja) 2016-11-17 2021-05-19 日本電気硝子株式会社 無機ナノ蛍光体粒子複合体及び波長変換部材
WO2018235580A1 (ja) 2017-06-19 2018-12-27 日本電気硝子株式会社 ナノ蛍光体付着無機粒子及び波長変換部材
CN109423275B (zh) * 2017-08-29 2020-03-31 纳晶科技股份有限公司 量子点组合物、量子点发光材料、其制备方法及含有其的发光器件
PL242719B1 (pl) * 2018-09-14 2023-04-11 Instytut Tech Materialow Elektronicznych Materiał dielektryczny emitujący światło
KR102471078B1 (ko) * 2020-12-24 2022-11-28 공주대학교 산학협력단 발광 나노입자를 포함하는 유리복합체 및 이를 이용한 led 소자
TR202101278A1 (tr) * 2021-01-27 2022-08-22 Univ Yildiz Teknik CdSe ve CsPbBr3 kuantum nokta katkılı cam nanokompozit katmanlar içeren bir katı hal aydınlatma cihazı ve bunun üretim yöntemi.
US20220380249A1 (en) * 2021-05-28 2022-12-01 Nick F. Borrelli Quantum dot-doped glass
CN113562974A (zh) * 2021-07-20 2021-10-29 广东伟祺艺术玻璃有限公司 一种通透发光玻璃马赛克及其制备方法
CN114315164A (zh) * 2021-12-30 2022-04-12 苏州凯利昂光电科技有限公司 一种叠背式超薄玻璃减薄方法
CN115611520B (zh) * 2022-10-13 2024-05-14 深圳市赛尔美电子科技有限公司 多孔玻璃雾化芯及其制备方法和加热雾化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021868A1 (en) * 1995-01-11 1996-07-18 The Government Of The United States Of America, Represented By The Secretary Of The Navy Glass matrix doped with activated luminescent nanocrystalline particles
CN101088946A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途
CN101215093A (zh) * 2007-12-26 2008-07-09 中国科学院上海光学精密机械研究所 一体化彩色发光高硅氧玻璃的制造方法
CN101676233A (zh) * 2008-09-19 2010-03-24 中国科学院上海硅酸盐研究所 块体功能玻璃的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2286275A (en) * 1940-09-10 1942-06-16 Corning Glass Works Method of treating borosilicate glasses
US4605632A (en) * 1984-10-24 1986-08-12 Corning Glass Works Glass for tungsten-halogen lamps
JPH02135693A (ja) * 1988-11-16 1990-05-24 Midori Mark Seisakusho:Kk エレクトロフミネツセンスの封止方法
JPH04276724A (ja) * 1991-03-04 1992-10-01 Matsushita Electric Ind Co Ltd 半導体微粒子分散ガラスの製造方法
EP1566367B1 (en) * 2002-11-29 2015-01-07 Japan Science and Technology Agency Luminescent glass
US20050279966A1 (en) * 2004-06-16 2005-12-22 Dejneka Matthew J Nanocrystallite glass-ceramic and method for making same
JP2009088276A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 発光素子
JP5407242B2 (ja) * 2007-09-28 2014-02-05 大日本印刷株式会社 エレクトロルミネッセンス素子
EP2543646A4 (en) * 2010-03-05 2013-12-18 Oceans King Lighting Science LUMINOUS NANOVERRE CERAMIC AS A SOURCE OF WHITE LED AND METHOD FOR THE PREPARATION OF LUMINOUS NANOVERRE CERAMIC

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021868A1 (en) * 1995-01-11 1996-07-18 The Government Of The United States Of America, Represented By The Secretary Of The Navy Glass matrix doped with activated luminescent nanocrystalline particles
CN101088946A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 一种掺铒含氟化钇钠纳米晶的透明玻璃陶瓷及其制备和用途
CN101215093A (zh) * 2007-12-26 2008-07-09 中国科学院上海光学精密机械研究所 一体化彩色发光高硅氧玻璃的制造方法
CN101676233A (zh) * 2008-09-19 2010-03-24 中国科学院上海硅酸盐研究所 块体功能玻璃的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562146A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433483A (zh) * 2013-08-21 2013-12-11 江南大学 一种金纳米粒子-半导体量子点异质结构手性组装体的制备方法
CN103433483B (zh) * 2013-08-21 2015-08-26 江南大学 一种金纳米粒子-半导体量子点异质结构手性组装体的制备方法
CN105916962A (zh) * 2013-11-19 2016-08-31 Qd视光有限公司 发光颗粒、包含其的材料和产品、以及方法
CN105916962B (zh) * 2013-11-19 2019-02-05 三星电子株式会社 发光颗粒、包含其的材料和产品、以及方法
CN108947242A (zh) * 2018-08-14 2018-12-07 华南理工大学 一种水分环境智能响应玻璃及其制备方法和应用
CN108947242B (zh) * 2018-08-14 2021-07-20 华南理工大学 一种水分环境智能响应玻璃及其制备方法和应用

Also Published As

Publication number Publication date
JP5749792B2 (ja) 2015-07-15
EP2562146A4 (en) 2013-11-06
EP2562146A1 (en) 2013-02-27
CN102770386A (zh) 2012-11-07
JP2013525243A (ja) 2013-06-20
US20130011551A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011130913A1 (zh) 量子点-玻璃复合发光材料及其制备方法
KR101585430B1 (ko) 형광체용 나노하이브리드 복합체, 그를 이용한 광학 모듈 및 그의 제조방법
Sun et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes
US11746286B2 (en) Core-shell type quantum dot, preparation method and use thereof
US8674390B2 (en) Semiconductor nanoparticle-containing materials and light emitting devices incorporating the same
US20120281428A1 (en) Reflective nanofiber lighting devices
US7824767B2 (en) Fluorescent material with semiconductor nanoparticles dispersed in glass matrix at high concentration and method for manufacturing such fluorescent material
CN102687266B (zh) 基于紫光led的白光发光装置
EP2419673A1 (en) Stimulated lighting devices
KR20100120011A (ko) 다층 양자점 및 그 다층 양자점을 적용한 발광소자
CN107686727A (zh) 黄色碳量子点荧光粉及制备方法和应用
TWI683449B (zh) 複合量子點材料、製備方法及其顯示裝置
Li et al. Preparation and photochromic properties of phosphomolybdic acid/rare earth strontium aluminate luminous fiber
KR101895229B1 (ko) 양자점 컴포지트, 그의 제조방법 및 그를 포함한 디스플레이용 광학 모듈
CN107342348A (zh) 一种led器件的制备方法
KR101492015B1 (ko) 디스플레이 형광체용 나노하이브리드 복합체 및 이의 제조방법
JP5635189B2 (ja) 蛍光体の改良
CN109994592A (zh) 量子点胶体、光转换元件及发光装置
Ning et al. Dye doped concentric shell nanoparticles for enhanced photophysical performance of downconverting light emitting diodes
CN101928111B (zh) 发光玻璃的制造方法、发光玻璃及其用途
CN110875416B (zh) 一种led与薄膜的制备方法
Zhou et al. Superior hydrophobic silica-coated quantum dot for stable optical performance in humid environments
CN104119679B (zh) 硅树脂复合材料及其制造方法、照明器件、应用
CN116574507B (zh) 一种空心二氧化锰/碳点复合材料及其制备方法和应用
Chen et al. Alteration of the optical properties of poly 9, 9′-dioctylfluorene by TiO2 nanocrystalline

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063608.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634605

Country of ref document: US

Ref document number: 2010850047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013505295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE