[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011129658A2 - 고순도 알루미나 제조방법 - Google Patents

고순도 알루미나 제조방법 Download PDF

Info

Publication number
WO2011129658A2
WO2011129658A2 PCT/KR2011/002717 KR2011002717W WO2011129658A2 WO 2011129658 A2 WO2011129658 A2 WO 2011129658A2 KR 2011002717 W KR2011002717 W KR 2011002717W WO 2011129658 A2 WO2011129658 A2 WO 2011129658A2
Authority
WO
WIPO (PCT)
Prior art keywords
mother liquor
purity alumina
high purity
aging
impurities
Prior art date
Application number
PCT/KR2011/002717
Other languages
English (en)
French (fr)
Other versions
WO2011129658A3 (ko
Inventor
허재훈
Original Assignee
주식회사 해마루머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 해마루머티리얼즈 filed Critical 주식회사 해마루머티리얼즈
Priority to US13/641,203 priority Critical patent/US8784754B2/en
Publication of WO2011129658A2 publication Critical patent/WO2011129658A2/ko
Publication of WO2011129658A3 publication Critical patent/WO2011129658A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a high-purity alumina manufacturing method, more specifically, unlike a high-purity alumina manufacturing method using aluminum or aluminum alkoxide compound as a starting material, which is a conventional production method that is difficult to mass production and expensive equipment and maintenance costs ,
  • a high-purity alumina manufacturing method using aluminum or aluminum alkoxide compound as a starting material
  • a high-purity alumina manufacturing method using aluminum or aluminum alkoxide compound as a starting material
  • the Bayer process is carried out by adding the bauxite to a caustic soda (NaOH) solution in order to extract the aluminum hydroxide present in the bauxite ore to elute the aluminum hydroxide (melting process)
  • the sludge is discarded and the aluminum hydroxide dissolved in the caustic soda is precipitated (precipitation step).
  • the aluminum hydroxide produced by such a via process contains a large amount of impurities due to impurities introduced from the bauxite and residues in the subsidiary materials used in the via process. Accordingly, there is a problem in that alumina having high purity cannot be manufactured by the manufacturing method including the general via process as described above.
  • the present invention has been made in order to solve the above problems, after dissolving the general aluminum hydroxide in sodium hydroxide (NaOH) solution (dissolution step), by aging the dissolved solution to activate the impurities (maturation step), After the adsorbed impurities in the dissolved liquid by using pulp (purification process), the purified solution was effectively purified by filtration (first filtration process), and then the purified liquid was manufactured using a via process to produce high purity aluminum hydroxide.
  • the purpose of the present invention is to provide a high-quality, high-purity alumina manufacturing method in a low-cost, high-efficiency, environmentally friendly method at low cost by removing a small amount of impurities by a secondary purification step (precipitation step).
  • a preferred embodiment of the method for preparing high purity alumina according to the present invention is a mother liquor preparation step of dissolving and aging general aluminum hydroxide, and a purification step of adsorbing impurities from the mature mother liquor by adding a small amount of pulp after the mother liquor preparation step.
  • an acquisition step of acquiring high purity alumina wherein the acquisition step includes seeding into the mother liquor from which impurities are removed, and the precipitate is filtered and washed, dissolved, and then neutralized to recrystallize. After filtration and washing again, ) Is mixed with a small amount and calcined to obtain high purity alumina.
  • the mother liquor preparation step the dissolution step of dissolving the general aluminum hydroxide by adding a caustic soda (NaOH) solution and the general aluminum hydroxide in the dissolution tank to form a mother liquor, and the temperature of the mother liquor dissolved through the dissolution step to a predetermined aging It may include a aging process to ripen impurities while slowly falling over time.
  • a caustic soda (NaOH) solution and the general aluminum hydroxide in the dissolution tank to form a mother liquor
  • the temperature of the mother liquor dissolved through the dissolution step to a predetermined aging It may include a aging process to ripen impurities while slowly falling over time.
  • the dissolving step of dissolving the general aluminum hydroxide in the dissolution tank by adding a caustic soda (NaOH) solution and a general aluminum hydroxide, and the mother liquid dissolved through the dissolution step A ripening step of ripening the impurities while slowly lowering the temperature of a predetermined time; and a purifying step of adsorbing and dispersing the impurities in the mother liquor to the adsorbent by adding and dispersing an adsorbent made of pulp into the mother liquor aged through the aging step;
  • the pulp to which the impurities are adsorbed is separated, and the mother liquor is filtered through a first filtration process and the aluminum hydride seed is administered to the mother liquor of the precipitation tank after the first filtration process.
  • a second filtration step of separating the precipitates, a second filtration step of filtering the mother liquor containing large precipitates in the polarization step and recycling the filtrate to the caustic soda solution, and the precipitates remaining in the second filtration step after washing A recrystallization step of dissolving aluminum hydroxide in an acid, neutralizing it with alkali and reprecipitating, a third filtration step of recovering, filtering and washing solids in the recrystallization step, and a small amount of aluminum fluoride in the precipitate in the third filtration step ( ) And a firing step of firing at least 1 hour at 1050 °C.
  • the dissolution step the aluminum oxide (sodium hydroxide) It is preferable that the weight ratio of) is 0.68 or more.
  • the concentration of caustic soda in the dissolution step is sodium carbonate ( ) May be greater than or equal to 230 g / l.
  • the maturing temperature of the mother liquid in the aging step can be maintained at 130 °C to 90 °C or more for a predetermined time.
  • the aging time for aging the impurities in the aging process may be 1 hour or more.
  • the precipitation process may be performed at an initial temperature of 70 °C or more.
  • the precipitation time for depositing aluminum hydroxide may be performed for 72 hours or more.
  • the weight ratio of aluminum oxide to sodium hydroxide finally obtained ( ) May be performed up to 0.40.
  • the precipitate precipitated in the precipitation step is dissolved in an acidic compound of any one of hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and acetic acid, and then neutralized with an alkaline compound of any one of caustic soda, ammonia and sodium acetate. Can be recrystallized.
  • the aluminum fluoride (0.3% or more of the product weight) in the cake made by the recrystallization process ( ) May be mixed and then fired.
  • the high purity alumina production method according to the present invention has the effect of producing high purity alumina in an environmentally friendly manner by adsorbing impurities using an adsorbent such as pulp.
  • the general aluminum hydroxide is dissolved and dissolved in caustic soda, and then adsorbed and removed organic and inorganic impurities using a small amount of pulp, and then precipitated at a high temperature to minimize Na content.
  • the precipitated aluminum hydroxide was dissolved in weak acid and recrystallized, followed by aluminum fluoride ( By mixing a small amount of) and calcining, it has the effect of being able to mass-produce high purity alumina with better quality and lower cost than the existing one.
  • FIG. 1 is a block diagram showing a sequential manufacturing process of a high purity alumina manufacturing method according to the present invention.
  • FIG. 1 is a block diagram showing a sequential manufacturing process of a high purity alumina manufacturing method according to the present invention.
  • sodium aluminate (Sodium aluminate, ) Use a supersaturated solution.
  • This sodium aluminate supersaturated solution is made by dissolving bauxite in a high concentration of caustic soda (NaOH) solution under heating and pressing.
  • the sodium aluminate supersaturated solution thus prepared is aged, and then the impurities present in the sodium aluminate solution are adsorbed using an impurity adsorbent that adsorbs the impurities.
  • the precipitated sodium aluminate solution is precipitated at a low temperature in a process of slowly decreasing the temperature over a long time to start precipitation at a high temperature.
  • the precipitated solid is dissolved in acid, neutralized and recrystallized, and a small amount of aluminum fluoride ) Is mixed and calcined at 1050 ° C. to produce high purity alumina.
  • One preferred embodiment of the high purity alumina manufacturing method according to the present invention provides a variety of experimental processes for increasing the purity of the finally obtained alumina, as shown in FIG.
  • a high-purity alumina manufacturing method as shown in Figure 1, the mother liquor preparation step (S100) and the mother liquor preparation step (S100) to dissolve after aging general aluminum hydroxide Thereafter, a purification step (S200) of adsorbing impurities from the mother liquor prepared by adding pulp, and an acquisition step (S300) of acquiring high purity alumina after the purification step (S200).
  • the seed is added to the mother liquor from which impurities are removed, and the precipitate is precipitated, and the precipitate is filtered and washed, dissolved, and then neutralized and recrystallized.
  • the seed is added to the mother liquor from which impurities are removed, and the precipitate is precipitated, and the precipitate is filtered and washed, dissolved, and then neutralized and recrystallized.
  • the process of recrystallization of the precipitate in the acquisition step (S300) is a unique process of the present invention for reducing the Na content, which is one kind of impurities, and details thereof will be described later.
  • the purification step (S200) is also unique in that it adsorbs impurities using an impurity adsorbent such as pulp instead of the coprecipitation method of co-precipitation of impurities in the mother liquor with conventional aluminum hydroxide seeds.
  • the mother liquor preparation step (S100) by dissolving the general aluminum hydroxide and sodium hydroxide (NaOH) in the dissolution tank to dissolve the general aluminum hydroxide to make a mother liquor, and dissolution through the dissolution step (S110) Aging process (S120) for aging the impurities while slowly lowering the temperature of the prepared mother liquor for a predetermined aging time.
  • another embodiment of the high-purity alumina manufacturing method according to the present invention can obtain the final alumina through a more detailed process than the above-described embodiment under more precise conditions.
  • the pulp to which the impurities are adsorbed is separated, and the mother liquor is filtered
  • the filtrate is recycled to the caustic soda solution (S340), and the precipitate remaining in the second filtration process (S340) is dissolved in aluminum acid after washing and neutralized with alkali and reprecipitated.
  • a solution of caustic soda (NaOH) was added to a sodium carbonate solution to prepare a sodium aluminate process mother liquor in a melting tank made of stainless steel (Sus 316L) that can raise the temperature.
  • a melting tank made of stainless steel (Sus 316L) that can raise the temperature.
  • Applicant has identified the process mother liquor as shown in Table 1 and Table 2 below.
  • the caustic soda concentration is To 270g / l based on the temperature was put in the dissolution tank and the temperature was raised to 125 °C and maintained for 10 minutes in that state.
  • the stirrer is slowly operated at a rate of about 3 RPM to stir the process mother liquor, and the mother liquor temperature is maintained for 1 hour or more. Aged slowly by lowering to 90 °C.
  • the reason for aging the process mother liquor is to increase the particle size of the impurities so as to easily remove the impurities contained in the process mother liquor as described above. (Maturation process (S120))
  • the Applicant can see that the impurity content according to the aging time in the aging step (S120) with reference to Table 3, the A / C of the process mother liquor is 0.70, the concentration of caustic soda 270g based on sodium carbonate We found that the most suitable maturation time under / l should last at least 1 hour.
  • the A / C of the process mother liquor is not necessarily 0.70, preferably, as also referred to in Table 1, when the content of impurities (Fe, Na) is the lowest when it is 0.68 or more, the process mother liquor A / C may be adopted as 0.68 or more, and more preferably, it may be adopted in the range of 0.68 to 0.74 as shown in Table 1.
  • the pulp adsorbed impurities from the process mother liquor is removed in a first filtration process (S310) that is the next process, where the mother liquor 1 to remove the pulp
  • the clean process mother liquor was removed by filtering at 2 atmosphere pressure using a filter press attached with a polyfoam filter cloth of 25cm ⁇ 25cm width and length.
  • the pulp is sent to the precipitation tank for adsorption, and the pulp adsorbed with impurities is treated as recycled waste after washing (first filtration step (S310)).
  • the purified process mother liquor from which impurities are removed is then subjected to a precipitation process.
  • the process mother liquor The weight ratio of is 0.70, and the temperature is maintained at 90 ° C.
  • the precipitation process is to increase the speed of the stirrer to 15RPM so that the precipitates and seeds can be floated, and 40g per 1L of the mother hydroxide seed (average particle size 30um) to help precipitation, as shown in Table 7 above 90 °C Precipitation is started at, and the precipitation time is maintained at 72 hours or more as shown in Table 8.
  • the precipitate precipitated through the precipitation process becomes high purity alumina having a smaller impurity content ratio as the content of the caustic soda (NaOH) is minimized.
  • the initial precipitation temperature 90 °C, the final precipitation temperature 40 °C, the precipitation time was 72 hours or more Case, the final precipitate It was found that the weight ratio (A / C) of became 0.34 or less. As such, when the weight ratio (A / C) of the final precipitate is 0.34 or less, it is a condition of having quality and competitiveness.
  • the polarization process (S330) is started.
  • precipitates having less growth are separated as precipitates having an average particle size of 30 ⁇ m or less using a cyclone polarizer, and are used as aluminum hydroxide seeds administered during the precipitation process, and particles having a well-grown precipitate (average) Particle size 60um) is subjected to the second filtration process (S340) that follows (polarization process (S330)).
  • the well-grown precipitate having an average particle size of 60um is separated into a solid and a filtrate by using a filter, and the filtrate is recycled to the caustic soda solution required for the dissolution step (S110).
  • Filtration step (S340) the precipitate of high-purity aluminum hydroxide is washed with clean water of 80 °C or more, put into a weak acid (preferably 10% dilute sulfuric acid) compound and completely dissolved, then weak alkali (preferably 10% ammonia water) compound After neutralization with recrystallization (recrystallization step (S350)), filtration and washing are performed to obtain a cake as a white solid (third filtration step (S360)).
  • aluminum fluoride ( ) 1% (based on the weight of the aluminum product) is mixed and then calcined at 1050 ° C. for 1 hour (calcination step (S370)) to produce high purity alumina (S380).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 고순도 알루미나 제조방법에 관한 것으로서, 특히, 일반수산화알루미늄을 용해한 후 숙성시키는 모액 준비단계와, 상기 모액 준비단계 후, 펄프를 첨가하여 준비된 모액으로부터 불순물을 흡착시키는 정제단계와, 상기 정제단계 후, 모액에 종자를 투입하여 석출시킨 후, 석출된 물질을 여과, 세척 및 재결정하여 소성시키는 고순도 알루미나를 취득하는 취득단계를 포함함으로써, 친환경적이면서도 저비용으로 순도가 높은 알루미나를 제조할 수 있는 이점을 제공한다.

Description

고순도 알루미나 제조방법
본 발명은 고순도 알루미나 제조방법에 관한 것으로서, 보다 상세하게는, 대량생산이 어렵고 고가의 장비 및 유지비가 소요되는 기존의 제조방법인 알루미늄 또는 알미늄알콕사이드 화합물을 출발물질로 하는 고순도 알루미나 제조방법과는 달리, 일반수산화알루미늄을 가성소다(NaOH) 용액에 용해시켜 용해된 액을 숙성시킨 소량의 흡착제를 사용하여 숙성된 용액 속의 불순물만을 선택적으로 제거한 후 정제된 액을 바이어 공정을 이용하여 고순도 알루미나를 제조함으로써 대량생산성을 향상시킴은 물론 저비용으로 고품질의 순도가 높은 알루미나를 제조할 수 있는 고순도 알루미나 제조방법에 관한 것이다.
일반적으로, 바이어 공정(Bayer Process)은 보오크싸이트(Bauxite) 광석에 존재하는 수산화알루미늄을 추출하기 위해 가성소다(NaOH) 용액에 상기 보오크싸이트를 넣고 가열하여 수산화알루미늄을 용출시킨 후(용해공정), 슬러지는 버리고 상기 가성소다에 용해된 수산화알루미늄을 석출(석출공정)시키는 공법이다.
이와 같은 바이어 공정으로 생산된 상기 수산화알루미늄은 상기 보오크싸이트에서 유입된 불순물과 바이어 공정에 사용하는 부원료 속의 잔유물에 의해 다량의 불순물이 함유되어 있다. 따라서, 상술한 바와 같은 일반적인 바이어 공정을 포함하는 제조방법으로는 순도가 높은 알루미나를 제조할 수 없는 문제점이 있다.
종래에 이용되었던 고순도 알루미나를 제조하기 위한 기술들은 미량의 불순물만 있는 고순도 알루미늄을 산(Acid)에 용해시킨 후, 수산화알루미늄으로 재결정 또는 고순도 알루미늄 화합물을 초고온으로 기화시켜 알루미나를 포집하는 방법을 이용되는 것이 일반적이었으나, 이는 대량생산성이 낮고 그 조작이 어려우며, 특히 고가의 장치 및 원료를 이용하여야 하기 때문에 비용이 많이 소요되고, 제조 과정에서의 제품손실 및 환경오염 등을 초래하는 문제점이 발생되었다.
본 발명은, 상기한 문제점을 해결하기 위하여 안출된 것으로서, 일반수산화알루미늄을 가성소다(NaOH) 용액에 용해시키고(용해공정), 그 용해된 액을 숙성시켜 불순물들을 활성화시킨 후(숙성공정), 펄프을 이용하여 용해된 액에 존재하는 불순물을 흡착시킨 후(정제공정) 여과하여 용해된 액을 효과적으로 정제한 다음(제1여과공정), 그 정제된 액을 바이어공정을 이용하여 고순도 수산화알루미늄을 제조하고(석출공정), 2차 정제공정으로 미량의 불순물을 제거함으로써(제3여과공정) 저비용으로 고수율의 친환경적인 방법으로 고품질의 고순도 알루미나 제조방법을 제공하는 데 목적이 있다.
본 발명에 따른 고순도 알루미나 제조방법의 바람직한 일실시예는, 일반수산화알루미늄을 용해한 후 숙성시키는 모액 준비단계와, 상기 모액 준비단계 후, 소량의 펄프를 첨가하여 숙성된 모액으로부터 불순물을 흡착시키는 정제단계와, 상기 정제단계 후, 순도가 높은 알루미나를 취득하는 취득단계를 포함하고, 상기 취득단계는, 불순물이 제거된 모액에 종자를 투입하여 석출시키고, 석출물을 여과 및 세척 후 용해한 다음 중화하여 재결정시키고, 다시 여과 및 세척 후 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000001
)를 소량 혼입 후 소성시켜 순도가 높은 알루미나를 취득하는 단계이다.
여기서, 상기 모액 준비단계는, 가성소다(NaOH) 용액과 일반수산화알루미늄을 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정과, 상기 용해공정을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정을 포함할 수 있다.
본 발명에 따른 고순도 알루미나 제조방법의 다른 실시예는, 가성소다(NaOH) 용액과 일반수산화알루미늄을 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정과, 상기 용해공정을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정과, 상기 숙성공정을 거쳐 숙성된 모액에 펄프 재질의 흡착제를 첨가 분산시켜 모액 중의 불순물을 상기 흡착제에 흡착시키는 정제공정과, 상기 정제공정이 완료된 후 불순물을 흡착시킨 상기 펄프를 분리함과 아울러, 모액을 여과한 후 석출조로 보내는 제1여과공정과, 상기 제1여과공정 후 상기 석출조의 모액에 수산화알루미늄 종자를 투여하여 수산화알루미늄을 석출하는 석출공정과, 상기 석출공정 후, 입자크기가 작은 석출물과 입자크기가 큰 석출물을 분리하는 분극공정과, 상기 분극공정에서 입자가 큰 석출물을 함유한 모액을 여과하여 여액은 상기 가성소다 용액으로 재순환시키는 제2여과공정과, 상기 제2여과공정에서 남아있는 석출물은 세척 후 수산화알루미늄을 산에 용해시킨 후 알카리로 중화하여 재석출시키는 재결정공정과, 상기 재결정공정에서 고형물을 회수하여 여과 및 세척하는 제3여과공정과, 상기 제3여과공정에서 석출물에 소량의 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000002
)를 혼입 후 1050℃ 이상에서 1시간 이상 소성시키는 소성공정을 포함한다.
여기서, 상기 용해공정은, 용해된 모액의 수산화나트륨에 대한 산화알루미늄(
Figure PCTKR2011002717-appb-I000003
)의 중량비가 0.68 이상인 것이 바람직하다.
또한, 상기 용해공정에서 상기 가성소다의 농도는 탄산나트륨(
Figure PCTKR2011002717-appb-I000004
)을 기준으로 230g/l 이상일 수 있다.
또한, 상기 숙성공정에서 모액의 숙성온도는 130℃ ∼ 90℃로 소정시간 이상 유지할 수 있다.
또한, 상기 숙성공정에서 불순물을 숙성시키는 숙성시간은 1시간 이상일 수 있다.
또한, 상기 석출공정은 초기온도가 70℃ 이상에서 수행될 수 있다.
또한, 상기 석출공정은, 수산화알루미늄을 석출하는 석출시간이 72시간 이상 수행될 수 있다.
또한, 상기 석출공정은, 최종적으로 얻어지는 수산화나트륨에 대한 산화알루미늄의 중량비(
Figure PCTKR2011002717-appb-I000005
)가 0.40 이하까지 수행될 수 있다.
또한, 상기 재결정공정은, 상기 석출공정에서 석출된 석출물을 염산, 황산, 인산, 질산, 아세트산 중 어느 하나의 산성 화합물에 용해시킨 후 가성소다, 암모니아, 소듐 아세테이트 중 어느 하나의 알카리성 화합물로 중화시켜 재결정시킬 수 있다.
또한, 상기 재결정공정에 의하여 만들어진 케이크에 제품 중량대비 0.3% 이상의 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000006
)를 혼입한 후 소성시킬 수 있다.
본 발명에 따른 고순도 알루미나 제조방법은, 펄프와 같은 흡착제를 이용하여 불순물을 흡착시킴으로써 친환경적으로 고순도 알루미나를 제조할 수 있는 효과를 가진다.
본 발명에 따른 고순도 알루미나 제조방법은, 일반수산화알루미늄을 가성소다에 용해시켜 숙성시킨 뒤 소량의 펄프를 이용하여 유·무기 불순물들을 흡착시켜 제거한 다음, Na함량을 최소화시키기 위해 고온에서 석출시키고, 그 석출된 수산화알루미늄을 약산에 용해시킨 후 재결정시킨 다음 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000007
)를 소량 혼입 후 소성시킴으로써, 기존보다 품질이 우수하고 저비용으로도 고순도 알루미나를 대량생산할 수 있는 효과를 가진다.
도 1은 본 발명에 따른 고순도 알루미나 제조방법의 순차적 제조 공정을 나타낸 블록도이다.
이하, 본 발명에 따른 고순도 알루미나 제조방밥의 바람직한 일실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
도 1은 본 발명에 따른 고순도 알루미나 제조방법의 순차적 제조 공정을 나타낸 블록도이다.
본 발명에 따른 고순도 알루미나를 제조하기 위해서는 출발물질로써 소듐 알루미네이트(Sodium aluminate,
Figure PCTKR2011002717-appb-I000008
) 과포화 용액을 사용한다. 이와 같은 상기 소듐 알루미네이트 과포화 용액은, 보오크싸이트(Bauxite)를 가열·가압 상태에서 고농도의 가성소다(NaOH) 용액에 녹여 만든다.
본 발명에 따른 고순도 알루미나 제조방법의 바람직한 일실시예는, 이와 같이 만들어진 상기 소듐 알루미네이트 과포화 용액을 숙성시킨 후, 불순물을 흡착시키는 불순물 흡착제를 사용하여 상기 소듐 알루미네이트 용액에 존재하는 불순물을 흡착시켜 상기 소듐 알루미네이트 용액을 정제하고, 불순물이 흡착된 흡착제는 제거한 후, 정제된 상기 소듐 알루미네이트 용액은 고온에서 석출을 시작하도록 하여 장시간에 걸쳐 온도를 천천히 하강시키는 공정으로 저온에서 석출물을 석출시킨 후, 석출된 고형물을 산에 용해시킨 후 중화하여 재결정하고, 알파상 전이온도를 내리고 소듐을 제거하기 위해 소량의 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000009
)를 혼입 한 후 1050℃로 소성하여 고순도 알루미나를 제조하는 것이다.
본 발명에 따른 고순도 알루미나 제조방법의 바람직한 일실시예는, 도 1에 참조된 바와 같이, 최종적으로 취득되는 알루미나의 순도를 높이기 위한 다양하고도 실험적인 공정을 제공한다.
이를 보다 상세하게 설명하면, 바람직한 일실시예에 따른 고순도 알루미나 제조방법은, 도 1에 참조된 바와 같이, 일반수산화알루미늄을 용해한 후 숙성시키는 모액 준비단계(S100)와, 상기 모액 준비단계(S100) 후, 펄프를 첨가하여 준비된 모액으로부터 불순물을 흡착시키는 정제단계(S200)와, 상기 정제단계(S200) 후, 순도가 높은 알루미나를 취득하는 취득단계(S300)를 포함한다.
특히, 상기 취득단계(S300)는, 불순물이 제거된 모액에 종자를 투입하여 석출시키고, 석출물을 여과 및 세척 후 용해한 다음 중화하여 재결정시키고, 다시 여과 및 세척 후 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000010
)를 소량 혼입 후 소성시켜 순도가 높은 알루미나를 취득하는 본 발명만의 특유한 단계이다.
특히, 상기 취득단계(S300) 중 석출물을 재결정시키는 공정은, 불순물의 한 종류인 Na함량을 줄이기 위한 본 발명만의 특유의 공정으로써 이에 대한 자세한 내용은 후술하기로 한다.
한편, 상기 정제단계(S200)는, 종래 모액 속의 불순물을 수산화알루미늄 종자와 함께 공침시키는 공침방법 대신 펄플와 같은 불순물 흡착제를 이용하여 불순물을 흡착시킨다는 점에서 또한 특이할 만하다.
여기서, 상기 모액 준비단계(S100)는, 일반수산화알루미늄과 가성소다(NaOH)를 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정(S110)과, 상기 용해공정(S110)을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정(S120)을 포함한다.
본 발명에 따른 고순도 알루미나 제조방법에 있어서, 가장 큰 특징은 상기 취득단계(S300)에 있다고 할 것이나, 그 외의 세분화된 공정들도 순도가 높은 알루미나를 제조함에 있어서 중요한 조건들을 가지고 있는 바, 상술한 바와 같은 실시예에 의하여 본 발명의 권리범위가 한정되는 것은 아님에 주의하여야 한다.
예를 들면, 본 발명에 따른 고순도 알루미나 제조방법의 다른 실시예는, 보다 정밀한 조건들 하에서 상술한 실시예보다 상세하게 세분화된 공정을 거쳐 최종적인 알루미나를 취득할 수 있게 된다.
즉, 본 발명에 따른 고순도 알루미늄 제조방법의 다른 실시예는, 도 1에 참조된 바와 같이, 가성소다(NaOH) 용액과 일반수산화알루미늄을 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정(S110)과, 상기 용해공정(S110)을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정(S120)과, 상기 숙성공정(S120)을 거쳐 숙성된 모액에 펄프 재질의 흡착제를 첨가 분산시켜 모액 중의 불순물을 상기 흡착제에 흡착시키는 정제공정(S210)과, 상기 정제공정(S210)이 완료된 후 불순물을 흡착시킨 상기 펄프를 분리함과 아울러, 모액을 여과한 후 석출조로 보내는 제1여과공정(S310)과, 상기 제1여과공정(S310) 후 상기 석출조의 모액에 수산화알루미늄 종자를 투여하여 수산화알루미늄을 석출하는 석출공정(S320)과, 상기 석출공정(S320) 후, 입자크기가 작은 석출물과 입자크기가 큰 석출물을 분리하는 분극공정(S330)과, 상기 분극공정(S330)에서 입자가 큰 석출물을 함유한 모액을 여과하여 여액은 상기 가성소다 용액으로 재순환시키는 제2여과공정(S340)과, 상기 제2여과공정(S340)에서 남아있는 석출물은 세척 후 수산화알루미늄을 산에 용해시킨 후 알카리로 중화하여 재석출시키는 재결정공정(S350)과, 상기 재결정공정(S350)에서 고형물을 회수하여 여과 및 세척하는 제3여과공정(S360)과, 상기 제3여과공정(S360)에서 석출물에 소량의 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000011
)를 혼입 후 1050℃ 이상에서 1시간 이상 소성시키는 소성공정(S370)을 포함한다.
상기와 같이 구성되는 본 발명에 따른 고순도 알루미나 제조방법에 대하여 보다 상세하게 설명하면 다음과 같다.
먼저, 온도를 올릴 수 있는 스테인리스 스틸(Sus 316L) 재질로 만든 용해조에 소듐 알루미네이트(Sodium Aluminate) 공정모액을 제조하기 위해 가성소다(NaOH) 용액을 탄산나트륨(
Figure PCTKR2011002717-appb-I000012
)을 기준으로 250∼300g/l 로 만들어 넣고, 수분이 함유된 일반수산화알루미늄을
Figure PCTKR2011002717-appb-I000013
의 중량비(A/C : weight ratio)가 0.68∼0.74가 되도록 일반수산화알루미늄을 첨가한 후, 수산화알루미늄을 분산시키기 위하여 교반속도를 30RPM으로 교반하면서 온도를 120∼130℃로 상승시킨 후, 10분 정도 유지시킨다.(용해공정(S110))
출원인은 상술한 대략의 조건 중 아래의 표 1 및 표 2에서 보이는 바와 같이, 공정모액의
Figure PCTKR2011002717-appb-I000014
의 중량비(A/C)를 0.70인 상태에서 상기 수산화알루미늄을 완전히 용해시킨 공정모액을 만들기 위하여, 상기 가성소다 농도는
Figure PCTKR2011002717-appb-I000015
를 기준으로 270g/l 이 되도록 하여 용해조에 넣고 온도를 125℃까지 승온시킨 후 그 상태에서 10분간 유지하였다.
이와 같이, 공정모액의 A/C가 0.70이 되도록 상기 수산화알루미늄이 완전히 용해된 상태에서, 상기 공정모액을 숙성시키기 위해 교반기를 3RPM 정도의 속도로 천천히 가동시켜 교반하고, 1시간 이상에 걸쳐 모액 온도를 90℃로 천천히 낮추어 숙성시켰다. 여기서, 공정모액을 숙성시키는 이유는 앞서 설명한 바와 같이, 공정모액에 함유되어 있는 불순물을 제거하기 용이하도록 불순물의 입자 크기를 크게 하기 위함이다.(숙성공정(S120))
표 1
Figure PCTKR2011002717-appb-T000001
공정모액의
Figure PCTKR2011002717-appb-I000016
의 중량비에 따른 제품의 영향
표 2
Figure PCTKR2011002717-appb-T000002
공정모액의 가성소다(NaOH) 농도에 따른 제품의 영향(공정모액
Figure PCTKR2011002717-appb-I000017
:0.70)
한편, 출원인은 상기 숙성공정(S120) 중 숙성시간에 따른 불순물의 함량관계를 표 3을 참조하여 살펴보면 알 수 있듯이, 상기 공정모액의 A/C는 0.70, 상기 가성소다의 농도를 탄산나트륨 기준으로 270g/l이라는 조건에서 가장 적당한 숙성시간은 1시간 이상 지속되어야 함을 알게 되었다. 그러나, 반드시 상기 공정모액의 A/C가 정확하게 0.70이어야 한다는 것은 아니고, 바람직하게는 표 1에서도 참조된 바와 같이, 0.68 이상이면 불순물(Fe, Na)의 함량이 가장 낮은 경우인 바, 상기 공정모액의 A/C는 0.68 이상으로 채택될 수 있고, 더욱 바람직하게는, 표 1에서 나타낸 바와 같이 0.68 내지 0.74의 범위로 채택될 수 있다.
표 3
Figure PCTKR2011002717-appb-T000003
공정모액의 숙성시간에 따른 고순도 알루미나 제품의 불순물 함량관계
다음으로, 상기 공정모액에 함유된 불순물을 제거하기 위해 잘 숙성된 상기 공정모액에 표 4 및 표 5에 나타난 바와 같이, 리터당 제품 생산량이 가장 많으면서 불순물 제거율이 가장 높은 조건인 리터당 1g에 해당하는 펄프를 투입하고, 교반기 속도를 표 6에 나타난 바와 같이 5RPM 속도로 올려 상기 펄프를 모액에 분산시켜 10분간 불순물을 흡착시킨다.(정제공정(S210))
표 4
Figure PCTKR2011002717-appb-T000004
공정모액 속의 불순물 제거를 위한 흡착제 펄프량에 따른 공정모액의 영향(모액온도 100℃, 교반속도 5RPM. 교반시간 10분)
표 5
Figure PCTKR2011002717-appb-T000005
10분 반응시간 중 교반기 속도(RPM)에 따른 공정모액의 변화
표 6
Figure PCTKR2011002717-appb-T000006
흡착시간에 따른 공정모액의 변화(온도 95℃, 펄프사용량 1g/l, 교반속도 5RPM)
한편, 상기 공정모액으로부터 불순물을 흡착시킨 상기 펄프는 그 다음 공정인 제1여과공정(S310)에서 제거되는데, 여기서 상기 펄프를 제거하기 위해 모액 1
Figure PCTKR2011002717-appb-I000018
당 가로 및 세로 25cm×25cm 여과 면적의 폴리에틸렌(Poly ethylene) 재질의 여포를 부착한 필터 여과기(Filter press)를 이용하여 2기압 압력으로 여과하여 불순물이 제거된 깨끗한 공정모액은 그 다음 공정인 석출공정을 위해 석출조로 보내고, 불순물을 흡착시킨 상기 펄프는 세척 후 재활용 폐기물로 처리한다.(제1여과공정(S310))
이처럼, 불순물을 제거한 정제된 공정모액은 다음으로 석출공정을 거치게 된다. 이때, 상기 공정모액은
Figure PCTKR2011002717-appb-I000019
의 중량비가 0.70이고, 온도는 90℃로 유지된 상태다. 상기 석출공정은 석출물과 종자가 부상될 수 있도록 교반기의 속도를 15RPM으로 증가시키고, 석출을 돕기 위해 수산화알루미늄 종자(평균입도 30um)를 모액 1L당 40g을 넣어 표 7에 나타나 있는 바와 같이 90℃ 이상에서 석출을 시작하고, 표 8에 나타난 바와 같이 그 석출시간은 72시간 이상으로 유지시킨다.(석출공정)
표 7
Figure PCTKR2011002717-appb-T000007
초기 석출온도에 따른 석출물의 Na% 함량관계(석출시간 72시간)
표 8
Figure PCTKR2011002717-appb-T000008
석출시간에 따른 석출물의 Na함량 및 석출 후 공정액의 최종
Figure PCTKR2011002717-appb-I000020
중량비(최종 석출온도 40℃, 초기 석출온도 90℃, 종자 65g/l, 평균입도 40um)
상기 석출공정을 통해 석출된 석출물은 상기 가성소다(NaOH)의 함량이 최소화되면 될수록 불순물 함량비가 작은 고순도 알루미나가 된다. 이와 같이 상기 가성소다의 함량이 최소화될 수 있도록 하는 석출조건으로서, 출원인은 표 7 및 8에 참조된 바와 같이, 초기 석출온도 90℃, 최종 석출온도 40℃, 그 석출시간은 72시간 이상으로 하였을 경우, 최종 석출액의
Figure PCTKR2011002717-appb-I000021
의 중량비(A/C)가 0.34 이하로 됨을 알 수 있었다. 이처럼, 최종 석출액의 중량비(A/C)가 0.34 이하일 경우에는 품질과 경쟁성을 갖추는 조건이 된다.
다음으로, 상기 석출공정이 끝나면, 분극공정(S330)을 시작한다. 상기 분극공정(S330)은 성장이 덜된 석출물을 사이클론(Cyclone) 분극기를 이용하여 평균입도가 30um 이하인 석출물을 별도로 분리하여 상기 석출공정 시 투여되는 수산화알루미늄 종자로 사용하고, 입자가 잘 성장한 석출물(평균입도 60um)은 이어지는 제2여과공정(S340)을 거치도록 한다.(분극공정(S330))
상기 분극공정(S330) 후, 평균입도 60um인 잘 성장한 석출물은 필터를 이용하여 고형물과 여액으로 분리한 후 여액은 다시 상기 용해공정(S110)에 필요한 가성소다 용액의 용도로 보내어 재순환시키고(제2여과공정(S340)), 고순도 수산화알루미늄인 석출물은 80℃ 이상의 깨끗한 물로 세척 후 약산(바람직하게는 10%의 묽은황산) 화합물에 넣고 완전히 용해시킨 다음 약알카리(바람직하게는 10%의 암모니아수) 화합물로 중화시켜 재결정시킨 후(재결정공정(S350)), 여과·세척하여 흰색의 고형물인 케이크를 얻는다(제3여과공정(S360)). 이와 같은 상기 흰색의 고형물에 표 9에 참조된 바와 같이, 알루미늄 플로라이드(
Figure PCTKR2011002717-appb-I000022
) 1%(알루미늄 제품 무게 대비)를 혼입한 후 1050℃에서 1시간 소성시켜(소성공정(S370)) 고순도의 알루미나를 제조하게 되는 것이다(S380).
표 9
Figure PCTKR2011002717-appb-T000009
Figure PCTKR2011002717-appb-I000023
사용량에 따른 고순도 알루미나에 함유된 Na 불순물 함량관계
이와 같이 건조되어 얻게되는 상기 고순도 알루미나는 최종적으로 포장되어 완성되게 된다.(포장공정(S380))
표 10
Figure PCTKR2011002717-appb-T000010
본 발명에 따른 제조방법으로 제조한 고순도 알루미나와 종래 고순도 알루미나의 비교
이상, 본 발명에 따른 고순도 수산화알루미늄 제조방법의 바람직한 일실시예 및 다른 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의하여 본 발명과 균등한 범위에 속하는 다양한 변형 또는 다른 실시예의 구현이 가능함은 당연하다. 따라서, 본 발명의 진정한 권리범위는 후술하는 특허청구범위에 의하여 정해져야 할 것이다.

Claims (12)

  1. 일반수산화알루미늄을 용해한 후 숙성시키는 모액 준비단계와;
    상기 모액 준비단계 후, 소량의 펄프를 첨가하여 숙성된 모액으로부터 불순물을 흡착시키는 정제단계와;
    상기 정제단계 후, 순도가 높은 알루미나를 취득하는 취득단계를 포함하고,
    상기 취득단계는, 불순물이 제거된 모액에 종자를 투입하여 석출시키고, 석출물을 여과 및 세척 후 용해한 다음 중화하여 재결정시키고, 다시 여과 및 세척 후 알루미늄 플로라이드(
    Figure PCTKR2011002717-appb-I000024
    )를 소량 혼입 후 소성시켜 순도가 높은 알루미나를 취득하는 단계인 고순도 알루미나 제조방법.
  2. 청구항 1에 있어서,
    상기 모액 준비단계는,
    가성소다(NaOH) 용액과 일반수산화알루미늄을 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정과;
    상기 용해공정을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정을 포함하는 고순도 알루미나 제조방법.
  3. 가성소다(NaOH) 용액과 일반수산화알루미늄을 용해조에 넣어 상기 일반수산화알루미늄을 용해시켜 모액을 만드는 용해공정과;
    상기 용해공정을 통해 용해된 모액의 온도를 소정의 숙성시간 동안 천천히 내리면서 불순물을 숙성시키는 숙성공정과;
    상기 숙성공정을 거쳐 숙성된 모액에 펄프 재질의 흡착제를 첨가 분산시켜 모액 중의 불순물을 상기 흡착제에 흡착시키는 정제공정과;
    상기 정제공정이 완료된 후 불순물을 흡착시킨 상기 펄프를 분리함과 아울러, 모액을 여과한 후 석출조로 보내는 제1여과공정과;
    상기 제1여과공정 후 상기 석출조의 모액에 수산화알루미늄 종자를 투여하여 수산화알루미늄을 석출하는 석출공정과;
    상기 석출공정 후, 입자크기가 작은 석출물과 입자크기가 큰 석출물을 분리하는 분극공정과;
    상기 분극공정에서 입자가 큰 석출물을 함유한 모액을 여과하여 여액은 상기 가성소다 용액으로 재순환시키는 제2여과공정과;
    상기 제2여과공정에서 남아있는 석출물은 세척 후 수산화알루미늄을 산에 용해시킨 후 알카리로 중화하여 재석출시키는 재결정공정과;
    상기 재결정공정에서 고형물을 회수하여 여과 및 세척하는 제3여과공정과;
    상기 제3여과공정에서 석출물에 소량의 알루미늄 플로라이드(
    Figure PCTKR2011002717-appb-I000025
    )를 혼입 후 1050℃ 이상에서 1시간 이상 소성시키는 소성공정을 포함하는 고순도 알루미나 제조방법.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 용해공정은,
    용해된 모액의 수산화나트륨에 대한 산화알루미늄(
    Figure PCTKR2011002717-appb-I000026
    )의 중량비가 0.68 이상인 고순도 알루미나 제조방법.
  5. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    상기 용해공정에서 상기 가성소다의 농도는 탄산나트륨(
    Figure PCTKR2011002717-appb-I000027
    )을 기준으로 230g/l 이상인 고순도 알루미나 제조방법.
  6. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    상기 숙성공정에서 모액의 숙성온도는 130℃ ∼ 90℃로 소정시간 이상 유지하는 고순도 알루미나 제조방법.
  7. 청구항 6에 있어서,
    상기 숙성공정에서 불순물을 숙성시키는 숙성시간은 1시간 이상인 고순도 알루미나 제조방법.
  8. 청구항 3에 있어서,
    상기 석출공정은 초기온도가 70℃ 이상에서 수행되는 고순도 알루미나 제조방법.
  9. 청구항 3에 있어서,
    상기 석출공정은, 수산화알루미늄을 석출하는 석출시간이 72시간 이상 수행되는 고순도 알루미나 제조방법.
  10. 청구항 3에 있어서,
    상기 석출공정은, 최종적으로 얻어지는 수산화나트륨에 대한 산화알루미늄의 중량비(
    Figure PCTKR2011002717-appb-I000028
    )가 0.40 이하까지 수행되는 고순도 알루미나 제조방법.
  11. 청구항 3에 있어서,
    상기 재결정공정은,
    상기 석출공정에서 석출된 석출물을 염산, 황산, 인산, 질산, 아세트산 중 어느 하나의 산성 화합물에 용해시킨 후 가성소다, 암모니아, 소듐 아세테이트 중 어느 하나의 알카리성 화합물로 중화시켜 재결정시키는 공정인 고순도 알루미나 제조방법.
  12. 청구항 11에 있어서,
    상기 재결정공정에 의하여 만들어진 케이크에 제품 중량대비 0.3% 이상의 알루미늄 플로라이드(
    Figure PCTKR2011002717-appb-I000029
    )를 혼입한 후 소성시키는 고순도 알루미나 제조방법.
PCT/KR2011/002717 2010-04-16 2011-04-15 고순도 알루미나 제조방법 WO2011129658A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/641,203 US8784754B2 (en) 2010-04-16 2011-04-15 Method for preparing high-purity alumina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100035065A KR101147047B1 (ko) 2010-04-16 2010-04-16 고순도 알루미나 제조방법
KR10-2010-0035065 2010-04-16

Publications (2)

Publication Number Publication Date
WO2011129658A2 true WO2011129658A2 (ko) 2011-10-20
WO2011129658A3 WO2011129658A3 (ko) 2012-03-22

Family

ID=44799208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002717 WO2011129658A2 (ko) 2010-04-16 2011-04-15 고순도 알루미나 제조방법

Country Status (3)

Country Link
US (1) US8784754B2 (ko)
KR (1) KR101147047B1 (ko)
WO (1) WO2011129658A2 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810454B1 (ko) 2014-12-23 2017-12-20 주식회사 삼화양행 고순도 알루미나의 제조방법
CN104591239A (zh) * 2014-12-23 2015-05-06 贵州师范大学 从铝土矿中提取高纯氧化铝的方法
KR101939265B1 (ko) * 2016-03-30 2019-01-18 한국알루미나 주식회사 베마이트의 제조방법
KR102092183B1 (ko) * 2018-05-17 2020-03-23 한국알루미나 주식회사 고순도 알루미나의 제조방법
KR102124124B1 (ko) * 2019-02-22 2020-06-17 김승우 각형비가 우수한 판상 알루미나 제조 방법
CN113382964A (zh) * 2019-04-16 2021-09-10 斐源有限公司 利用金属-空气电池的废电解液生产高纯氧化铝和联产物
KR102497275B1 (ko) * 2022-11-02 2023-02-08 주식회사 씨아이에스케미칼 나트륨 제거제를 이용한 알루미나의 고순도화 및 초미립 알루미나 입자의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167725A (ja) * 1996-11-29 1998-06-23 Sumitomo Chem Co Ltd アルミナの連続的製造方法
KR20050086252A (ko) * 2004-02-25 2005-08-30 (주)마이크로케미칼 고백색 수산화알루미늄 제조 방법
KR20050094555A (ko) * 2004-03-23 2005-09-28 (주)마이크로케미칼 초미립 수산화알루미늄 제조방법
KR20050100985A (ko) * 2004-04-16 2005-10-20 한국화학연구원 알루미늄 드로스로부터 고순도 감마-알루미나를 제조하는방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421918A (en) * 1944-09-20 1947-06-10 Monolith Portland Midwest Comp Process of producing aluminum oxide substantially free from silica
NL221775A (ko) * 1956-10-24

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167725A (ja) * 1996-11-29 1998-06-23 Sumitomo Chem Co Ltd アルミナの連続的製造方法
KR20050086252A (ko) * 2004-02-25 2005-08-30 (주)마이크로케미칼 고백색 수산화알루미늄 제조 방법
KR20050094555A (ko) * 2004-03-23 2005-09-28 (주)마이크로케미칼 초미립 수산화알루미늄 제조방법
KR20050100985A (ko) * 2004-04-16 2005-10-20 한국화학연구원 알루미늄 드로스로부터 고순도 감마-알루미나를 제조하는방법

Also Published As

Publication number Publication date
US8784754B2 (en) 2014-07-22
KR101147047B1 (ko) 2012-05-17
WO2011129658A3 (ko) 2012-03-22
KR20110115640A (ko) 2011-10-24
US20130052124A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2011129658A2 (ko) 고순도 알루미나 제조방법
US9139445B2 (en) Method for co-producing alumina and activated calcium silicate from high-alumina fly ash
GB2034681A (en) Preparing aluminium hydroxide
IE81147B1 (en) Improved process for producing alumina from bauxite
CN103693665A (zh) 一种粉煤灰制备高纯氧化铝的方法
US20180155206A1 (en) Method of producing high-purity nano alumina
CN101746795B (zh) 一种从铝土矿生产氧化铝的方法
WO2011129657A2 (ko) 고순도 수산화알루미늄 제조방법
CN103449467A (zh) 一种由高铝粉煤灰制备13x分子筛的方法和13x分子筛
CN102476820A (zh) 一种湿法从粉煤灰中提取氧化铝的方法
CN101306928B (zh) 一种粉煤灰或炉渣预脱硅的方法
CN101885498A (zh) 一种高纯硫酸镁的制备方法
CN108910924B (zh) 一种拟薄水铝石的降水节能制备方法
CN102923722B (zh) 白炭黑的制备方法
CN110028087B (zh) 一种用于氧化铝生产过程中降低系统碳碱浓度的方法
CN111825113B (zh) 一种从拜耳法赤泥中回收氧化铝和氧化钠的方法
AU700993B2 (en) Process for purifying sodium aluminate solutions containing sodium oxalate
CN102153479B (zh) 一种制备左氧氟沙星的酰化液中三乙胺的回收套用方法
CN1240617C (zh) 氧化铝的常压低温溶出生产方法
CN109553121B (zh) 一种高纯低钠氢氧化铝的制备方法
CN109850929B (zh) 一种种分槽稀释原矿矿浆制备氢氧化铝微粉方法
KR101147048B1 (ko) 고순도 겔알루미나 제조방법
KR101810454B1 (ko) 고순도 알루미나의 제조방법
CN112010331A (zh) 一种镁铝尖晶石粉体的工业制备方法及其制备装置
KR20050094555A (ko) 초미립 수산화알루미늄 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11769124

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641203

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11769124

Country of ref document: EP

Kind code of ref document: A2