[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011129348A1 - Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition - Google Patents

Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition Download PDF

Info

Publication number
WO2011129348A1
WO2011129348A1 PCT/JP2011/059132 JP2011059132W WO2011129348A1 WO 2011129348 A1 WO2011129348 A1 WO 2011129348A1 JP 2011059132 W JP2011059132 W JP 2011059132W WO 2011129348 A1 WO2011129348 A1 WO 2011129348A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
derived
cells
blood
tissue
Prior art date
Application number
PCT/JP2011/059132
Other languages
French (fr)
Japanese (ja)
Inventor
正宏 井上
Original Assignee
株式会社Reiメディカル
地方独立行政法人大阪府立病院機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Reiメディカル, 地方独立行政法人大阪府立病院機構 filed Critical 株式会社Reiメディカル
Priority to KR1020127028613A priority Critical patent/KR20130055591A/en
Publication of WO2011129348A1 publication Critical patent/WO2011129348A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K40/00
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
    • A61K2239/50Colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/4611
    • A61K39/4644
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5152Tumor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Definitions

  • the present invention relates to a composition for cancer treatment obtained from a cancer tissue-derived cell mass or a cancer cell aggregate, a method for producing an immunotherapeutic agent using the same, and a method for evaluating an immunotherapeutic effect. More specifically, the present invention relates to a composition for treating cancer obtained by treating cancerous tissue-derived cell masses or cancer cell aggregates capable of reconstructing cancer in vitro and retaining proliferation ability, and immunity using the same. The present invention relates to a method for producing a therapeutic agent and a method for evaluating an immunotherapeutic effect.
  • active immunotherapy which directly administers a vaccine to the living body to enhance the immune activity of the living body, and immune-related cells such as cytotoxic T lymphocytes and dendritic cells, are once activated outside the body, and then the body is restarted. There is a passive immunotherapy with the technique of returning to.
  • immunogen a tumor antigen peptide that has been found to be universally expressed in various types of cancer (for example, WT1 peptide (Patent Document 1), HLA-A2 restriction An antigen peptide (patent document 2) etc. can be used.
  • cancer tissue containing an unidentified antigen instead of the thus-defined antigenic peptide.
  • antigenic peptides or conjugates or fusions of treated products of cancer tissue with dendritic cells are also known.
  • Patent Document 3 a vaccine in which cancer tissues and cells are immobilized on microparticles and mixed with cytokines.
  • An object of the present invention is to provide a composition for treating cancer obtained from a cancer tissue-derived cell mass or a cancer cell aggregate.
  • Another object of the present invention is to provide a method for producing an immunotherapeutic agent from a cancer tissue-derived cell mass or a cancer cell aggregate.
  • the present inventors have intensively studied to provide a cancer vaccine or immunotherapy having a very high therapeutic effect by using an antigen with high specificity and little extraneous contamination for individual cancer patients.
  • the present inventors have found a novel composition for treating cancer and a method for preparing an immunotherapeutic agent using a novel cancer tissue-derived cell mass or cancer cell aggregate, and have completed the present invention.
  • the present invention relates to a composition for treating cancer obtained by treating a cancer tissue-derived cell mass or a cancer cell aggregate.
  • the process may be a chemical process.
  • the chemical treatment may be enzyme treatment or formalin treatment.
  • the process may be a photodynamic process.
  • the treatment may be radiation treatment.
  • composition for treating cancer may be a cancer vaccine for oral or parenteral administration to patients derived therefrom.
  • composition for treating cancer may be for contacting blood-derived cells obtained from blood from a patient in vitro.
  • the blood may be peripheral blood.
  • the blood-derived cells can be dendritic cells derived from monocytes.
  • the present invention also provides a process of contacting blood-derived cells recovered from blood derived from a patient with the composition for treating cancer described in any of the above, and recovering the blood-derived cells activated by contact.
  • a method of producing an immunotherapeutic agent for inoculating said patient comprising the steps of
  • the blood may be peripheral blood.
  • the blood-derived cells may be monocytes, and may further include the step of inducing monocytes to dendritic cells.
  • the present invention is also a method of evaluating the effects of immunotherapy, comprising contacting blood-derived cells derived from a patient who has been subjected to immunotherapy with a cancer tissue-derived cell mass or a cancer cell aggregate. About.
  • the method of evaluating the effect of the above immunotherapy may further include the step of measuring the cytotoxicity of the blood-derived cells.
  • the blood-derived cells can be isolated cytotoxic T cells.
  • the blood-derived cells are isolated natural killer cells, and the step of contacting may further cause an antibody to coexist.
  • the patient who has been subjected to the immunotherapy is a patient who has been subjected to an immunotherapy using a cancer tissue-derived cell mass or a cancer cell aggregate, and blood-derived cells derived from the patient
  • it may be provided as a plurality of samples collected while changing the elapsed time since administration of immunotherapy.
  • the composition for treating cancer of the present invention is obtained from an individual patient and does not contain unnecessary impurities other than cells. Therefore, it is possible to elicit an immune response which is highly specific to the cancerous tissue of the individual patient and which reliably attacks the cancer.
  • Such a composition for treating cancer can also be used as a directly administered cancer vaccine, and can be conveniently used to specifically activate blood cells in vitro.
  • the effect of immunotherapy can also be simply examined using such a composition for cancer treatment, a cancer tissue-derived cell mass or a cancer cell aggregate itself.
  • FIG. 1 shows the cancer tissue origin cell mass used for this invention. It is a figure showing the change in shape and proliferation ability of the cancer tissue origin cell mass used for the present invention in the culture process in vitro.
  • Tumor tissue two on the right side of the figure obtained by implanting a cancer tissue-derived cell mass used in the present invention into a mouse and tumor tissue excised from the inside of the body which is derived from the cancer tissue-derived cell mass (left side 2 of the figure) 1) and FIG.
  • FIG. It is a figure which shows the cancer tissue origin cell mass used for this invention obtained from various cancer tissue. It is the figure which compared the state before freezing (left) and 24 hours after thawing
  • FIG. 1 It is a figure which shows a cancer cell aggregate used by this invention. It is a figure which shows the cancer cell aggregate obtained from the sample used by this invention. It is a figure which shows the change by the time progress after freezing and thawing the cancer cell aggregate used by this invention. It is a figure which shows the flow cytometry analysis result of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed. It is a graph which shows the flow cytometry analysis result of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed. It is the figure which carried out the western blot analysis of the protein relevant to the apoptosis induction of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed.
  • the cancer tissue-derived cell mass of the present invention is an isolated product separated from or treated as a mass containing three or more cancer cells from a cancer tissue obtained from an individual, or a culture thereof, and retains proliferation ability in vitro. It can be something that
  • the separated material separated and treated as a mass containing three or more cancer cells from cancer tissue obtained from an individual is obtained by treating cancer tissue obtained from cancer generated in vivo. It refers to an isolate containing three or more, preferably eight or more cancer cells. Such isolates do not include those that have been separated into single cells, and do not include constructs that have been separated into single cells and then reassembled. However, this separated material includes not only those immediately after being separated from the living body, but also those which have been kept in physiological saline for a certain period of time and those which have been frozen or refrigerated.
  • Cancer tissue obtained from an individual refers to cancer tissue obtained by excision by surgery etc., as well as cancer tissue obtained so that it can be handled in vitro for histological examination with an injection needle or an endoscope. Point to.
  • “Culture of the isolate obtained as a mass separated from a cancer tissue obtained from an individual as a mass containing three or more cancer cells” is obtained by treating a cancer tissue obtained from a cancer generated in vivo It refers to what is obtained by culturing in vitro the isolate separated as a mass containing three or more cancer cells.
  • the culture time is not particularly limited as long as it is present in the medium even for a short time. Such a culture often exhibits a substantially spherical or elliptical spherical shape by culturing for a certain period of time, preferably 3 hours or more.
  • the culture here includes a substantially spherical or spheroidal culture after such a given period of time, and an atypical culture up to that.
  • an irregular shape obtained by further dividing such a substantially spherical or spheroidal culture, and a substantially spherical or spheroid obtained by further culture are also referred to as the culture herein.
  • the cells contained in the cancer tissue-derived cell mass are a population of pure cancer cells only.
  • the cancer tissue-derived cell mass of the present invention can maintain its growth ability in vitro at a temperature of 37 ° C. under cell culture conditions of a 5% CO 2 incubator for at least 10 days or more, preferably 13 It means that the growth ability can be maintained for a period of a day or more, more preferably 30 days or more.
  • Such a cancer tissue-derived cell mass can retain its proliferative ability for a period of 10 days or more, preferably 13 days or more, more preferably 30 days or more, by continuing the culture as it is. By performing mechanical division, the proliferative capacity can be maintained virtually indefinitely.
  • the mechanical division can be performed using a scalpel, a knife, scissors, an ophthalmologic sharp blade or the like. Alternatively, it can be performed by attaching an injection needle to a syringe and repeating aspiration and discharge of the cancer tissue-derived cell mass together with the culture solution.
  • a 1 ml syringe and a 27G injection needle are preferably used in the present invention, but the invention is not limited thereto.
  • the medium for culturing the cancer tissue-derived cell mass of the present invention is not particularly limited, but preferably, a medium for animal cell culture is used. Particularly preferably, a serum-free medium for stem cell culture is used. Such serum-free medium is not particularly limited as long as it can be used to culture stem cells.
  • a serum-free medium refers to a medium free of unprepared or unpurified serum, and can be used by adding a purified blood-derived component or animal tissue-derived component (eg, growth factor).
  • the serum-free medium of the present invention can be prepared using a medium used for culturing animal cells as a basal medium.
  • a basal medium for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, DMEM medium, RPMI 1640 medium, Fischer's medium And combinations thereof.
  • a serum substitute can be added to such serum-free medium to culture the cancer tissue-derived cell mass of the present invention.
  • the serum substitute suitably contains, for example, albumin, amino acid (eg, non-essential amino acid), transferrin, fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol or 3 'thiol glycerol, or equivalents thereof, etc. It can be
  • serum substitutes can also be used in the culture method of the present invention.
  • Such commercially available serum substitutes include, for example, knockout serum replacement (KSR), Chemically-defined Lipid concentrated fatty acid concentrate (Gibco), and Glutamax (Gibco).
  • the medium for culturing the cancer tissue-derived cell mass of the present invention may also contain vitamins, growth factors, cytokines, antioxidants, pyruvate, buffers, inorganic salts and the like.
  • any serum-free medium such as serum-free medium containing EGF and bFGF, serum-free medium containing bFGF and serum substitute such as knockout serum replacement (KSR, manufactured by Invitrogen) can be preferably used.
  • the content of serum substitute or EGF or the like is preferably 10 to 30% w / v of the whole medium.
  • Such a medium is not limited, but commercially available products include STEMPRO human ES cell serum-free medium (Gibco).
  • the incubator used to culture the cancer tissue-derived cell mass is not particularly limited as long as it can generally culture animal cells, and for example, flasks, tissue culture flasks, dishes, petri dishes, for tissue culture Dishes, multi dishes, microplates, micro well plates, multi plates, multi well plates, chamber slides, petri dishes, tubes, trays, culture bags, roller bottles, etc. may be mentioned.
  • the culture vessel is non-cell-adherent, and is preferably three-dimensionally cultured in the presence of a cell supporting substrate such as extracellular matrix (ECM) in the medium.
  • the cell support matrix may be for adhesion of cancer tissue-derived cell mass.
  • Examples of such a cell support substrate include matrigel using an extracellular matrix, for example, collagen gel, gelatin, poly-L-lysine, poly-D-lysine, laminin and fibronectin. Such conditions are suitably used particularly when the cancer tissue-derived cell mass of the present invention is desired to be expanded.
  • the culture temperature is preferably, but not limited to, about 30 to 40 ° C. Most preferably, it is 37 ° C.
  • the CO 2 concentration is, for example, about 1 to 10%, preferably about 2 to 5%.
  • the cancer tissue-derived cell mass of the present invention can be cultured in such a medium and culture conditions. Furthermore, the culture of the cancer tissue-derived cell mass may, depending on its individual nature, require co-culture with other cells, or may require the presence of additional specialized supplements such as hormones.
  • co-culture may be performed with feeder cells.
  • feeder cells stroma cells such as fetal fibroblasts can be used.
  • NIH3T3 and the like are preferable.
  • estrogens for breast cancer, progesterone for uterine cancer, testosterone for prostate cancer and the like are not limited thereto, and various hormones can be added to advantageously adjust culture conditions.
  • the presence of such hormones indicates the hormonal dependence of the cancer of the originating patient by examining the behavior after culture of the cell mass derived from cancer tissue, for example, the state of life or death or the state of proliferation. There is a possibility that the efficacy of antihormonal drug treatment can be predicted.
  • the cancer tissue-derived cell mass of the present invention can also be cultured in suspension culture.
  • suspension culture a cancer tissue-derived cell mass is cultured in a non-adhesive condition to a culture vessel in a medium.
  • suspension culture for example, embryoid body culture method (Keller et al., Curr. Opin. Cell Biol. 7, 862-869 (1995)), SFEB method (eg, Watanabe et al., Nature Neuroscience 8, 288- 296 (2005); see WO 2005/123902).
  • SFEB method eg, Watanabe et al., Nature Neuroscience 8, 288- 296 (2005); see WO 2005/123902.
  • the cancer tissue-derived cell mass of the present invention also includes those immediately after separation from the cancer tissue-derived cell mass of an individual, those after refrigeration and cryopreservation, and also their cultures.
  • the culture may be performed for a period of preferably 3 hours or more, more preferably at least 10 hours and up to 36 hours, more preferably at least 24 hours to 36 hours.
  • the number of cancer cells constituting the cancer tissue-derived cell mass is at least 3 or more, preferably 8 or more, more preferably 10 or more, still more preferably 20 or more, and most preferably 50 or more.
  • the cancer tissue-derived cell mass of the present invention is an isolate, it is preferably 1000 or less, more preferably about 500 or less. It is possible to increase the number of cultures after culturing the isolates by culturing. However, even if it is a culture, it is preferably 10,000 or less, more preferably 5,000 or less.
  • cancer cell is used in a commonly used meaning, and refers to a cell in which the order seen in normal cells, that is, unlimited division / proliferation and departure from apoptosis, is disrupted in vivo. More specifically, it refers to a cell that has lost or extremely attenuated cell growth control function, and typically acquires infinite proliferation ability at a high frequency of 80% or more, many of which also have invasive transfer ability. This means that the cells are often provided, and as a result, humans and other mammals, in particular, mammals, are cells that are regarded as malignant neoplasms leading to death.
  • the type of cancer tissue from which the present invention is derived is not particularly limited, and lymphoma, blastoma, sarcoma, liposarcoma, neuroendocrine tumor, mesothelioma, schwannoma and meningioma occur in mammals and other animals. It may be adenoma, melanoma, leukemia, lymphoid malignancies, etc., but in particular, it is preferable that it is a carcinoma arising in epithelial cells of a mammal.
  • carcinomas arising in such epithelial cells include non-small cell lung cancer, hepatocellular carcinoma, biliary tract cancer, esophageal cancer, gastric cancer, colorectal cancer, pancreatic cancer, cervical cancer, ovarian cancer, endometrial cancer, bladder cancer, Pharyngeal cancer, breast cancer, salivary adenocarcinoma, renal cancer, prostate cancer, labia cancer, anal cancer, penile cancer, testicular cancer, thyroid cancer, head and neck cancer and the like.
  • mammals and other animals but animals belonging to primates including monkeys and humans, animals belonging to rodents such as mice, squirrels and rats, animals belonging to rabbits, cats such as dogs and cats Animals belonging to the eye are exemplified.
  • colon cancer tissue especially derived from colon cancer tissue, from ovarian cancer tissue, from breast cancer tissue, from lung cancer tissue, from prostate cancer tissue, from renal cancer tissue, from bladder cancer tissue, from pharyngeal cancer tissue, or from pancreatic cancer It is particularly preferable to derive from, but not limited to.
  • cancer cells are not particularly limited, but may express CD133.
  • Separation treatment of cancerous tissue obtained from cancer generated in vivo includes, but is not limited to, enzymatic treatment of cancerous tissue obtained from an individual.
  • the enzyme treatment may be treatment with one of collagenase, trypsin, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof.
  • the enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • a physiologically acceptable pH for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • a sufficient time to degrade connective tissue eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
  • conditions for this enzyme treatment include treatment with mixed enzymes including collagenase.
  • mixed enzymes including collagenase.
  • a mixture comprising one or more proteases selected from the group consisting of C. histolyticum neutral protease, thermolysin, and dispase; and one or more collagenases selected from the group consisting of collagenase I, collagenase II, and collagenase IV Treatment with enzymes is included.
  • Such mixed enzymes include, but are not limited to, Liberase Blendzyme 1 (registered trademark) and the like.
  • the cancer tissue-derived cell mass of the present invention may contain three or more cancer cell aggregates and exhibit a substantially spherical shape or an elliptical spherical shape.
  • it may include basement membrane-like substances present on the outer peripheral surface of the cancer cell aggregate.
  • the cancer cells forming the aggregate may have one or more surface antigens selected from the group consisting of CD133, CD44, CD166, CD117, CD24, and ESA on the cell surface.
  • CD133, CD44, CD166, CD117, CD24, and ESA are surface antigens generally expressed on leukocytes such as lymphocytes, fibroblasts, epithelial cells, cells such as tumor cells. These surface antigens not only function as cell-cell and cell-matrix adhesion but also are involved in various signal transductions, but are also surface markers of various stem cells.
  • a surface antigen such as CD133, 80% or more, preferably 90% or more, more preferably substantially all of the surface antigen is present in the cell group. Points to the state shown.
  • the “basement membrane-like substance” preferably includes, but is not limited to, collagen, laminin, nidogen, proteoglycans such as heparan sulfate proteoglycan, and / or glycoproteins such as fibronectin. It refers to a substance. In the present invention, a laminin-containing basement membrane-like substance is preferred.
  • Laminin is a macromolecular glycoprotein that constitutes the basement membrane.
  • the functions of laminin are diverse and are involved in cellular functions such as, for example, cell adhesion, intercellular signaling, proliferation of normal cells and cancer cells.
  • Laminin has a structure in which each of three different subunits is linked by a disulfide bond, and eleven types are found according to different types of each subunit.
  • laminin 5 is usually produced only from epithelial cells and is known as a component having an activity to promote adhesion of epithelial cells to basement membrane and motor function.
  • This laminin 5 has a structure in which one each of ⁇ 3 chain, ⁇ 3 chain, and ⁇ 2 chain form a complex, and in particular, ⁇ 2 chain is considered to be unique to LN5, and is contained in other LN molecular species. Absent.
  • the cancer tissue-derived cell mass of the present invention may have a configuration in which the outer periphery of a collection of cancer cells is totally enclosed in a membrane formed by such a basement membrane-like substance. Such forms can be analyzed by electron microscopic observation of cancer tissue-derived cell masses or immunostaining of basement membrane components, or a combination of both.
  • the aggregate of cancer cells is preferably an aggregate that does not purely contain cells other than cancer cells.
  • laminin can be detected, for example, by contacting an antibody that recognizes laminin, for example, a mouse laminin-derived rabbit antibody from Sigma-Aldrich, with a cancer tissue-derived cell mass and measuring an antibody-antigen reaction.
  • an antibody that recognizes laminin for example, a mouse laminin-derived rabbit antibody from Sigma-Aldrich
  • laminin 5 it is also possible to use a specific antibody that identifies up to the type of laminin.
  • the presence of laminin 5 can be detected, for example, by contacting an antibody having reactivity with the above-mentioned unique ⁇ 2 chain or a fragment thereof with a cancer tissue-derived cell mass and measuring the reaction of the antibody. it can.
  • the thin membranous basement-like substance is formed to about several ⁇ m, preferably about 40 to 120 nm, depending on the size of the mass, but is not limited thereto.
  • the size of the cancer tissue-derived cell mass of the present invention is not limited, and includes irregularly shaped particles having a particle diameter or volume average particle diameter of about 8 ⁇ m to 10 ⁇ m. Things are also included.
  • the diameter is 40 ⁇ m to 1000 ⁇ m, more preferably 40 ⁇ m to 250 ⁇ m, and still more preferably 80 ⁇ m to 200 ⁇ m.
  • the cancer tissue-derived cell mass of the present invention often has one or more sequences particularly selected from the group consisting of a shelf array, a sheet array, an overlay array and a syncytial array, but is not particularly limited.
  • the cancer tissue-derived cell mass of the present invention typically, a step of subjecting a fragment of cancer tissue excised from a living body to an enzyme treatment; and among the enzyme-treated products, a mass containing three or more cancer cells is selected and recovered. And a method comprising the steps of
  • the cancer tissue-derived cell mass of the present invention can be prepared by a method comprising the step of culturing the component thus recovered for 3 hours or more.
  • a cancer tissue removed from a living body can be minced as it is, or can be first maintained in animal cell culture medium before mincing.
  • animal cell culture media include, but are not limited to, Dulbecco's MEM (such as DMEM F12), Eagle's MEM, RPMI, Ham's F12, alpha MEM, Iscove's modified Dulbecco, and the like. At this time, it is preferable to perform suspension culture in a cell non-adhesive culture vessel.
  • the cancerous tissue be washed prior to mincing.
  • washings include, but are not limited to, acetate buffer (acetate + sodium acetate), phosphate buffer (phosphate + sodium phosphate), citrate buffer (citric acid + sodium citrate), boric acid
  • a buffer solution such as a buffer solution, a tartaric acid buffer solution, a Tris buffer solution, or a phosphate buffered saline can be used.
  • tissue washing can be performed in HBSS. The number of times of washing is appropriate once to three times.
  • the fragmentation can be performed by dividing the tissue after washing with a knife, scissors, a cutter (manually, automatically) or the like.
  • the size and shape after fragmentation are not particularly limited, and may be random, but preferably have a uniform size of 1 mm to 5 mm square, more preferably 1 mm to 2 mm square.
  • Such enzyme treatment may be treatment with one of collagenase, trypsin, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof.
  • the enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • a physiologically acceptable pH for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • PBS or Hanks balanced salt solution
  • a sufficient time to degrade connective tissue eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
  • the conditions for this enzyme treatment may be, for example, treatment with a mixed enzyme comprising collagenase. More preferably, one or more proteases selected from the group consisting of C. histolyticum neutral protease, thermolysin, and dispase; and one or more collagenases selected from the group consisting of collagenase I, collagenase II, and collagenase IV Treatment with mixed enzymes is included.
  • a mixed enzyme comprising collagenase. More preferably, one or more proteases selected from the group consisting of C. histolyticum neutral protease, thermolysin, and dispase; and one or more collagenases selected from the group consisting of collagenase I, collagenase II, and collagenase IV Treatment with mixed enzymes is included.
  • Such mixed enzymes include, but are not limited to, Liberase Blendzyme 1 (registered trademark) and the like.
  • the method of sorting and recovering is not particularly limited, and any method known to those skilled in the art of sorting sizes can be used.
  • a simple method is by visual observation, separation by phase contrast microscope, or sieve, but it is not particularly limited as long as it is a separation method by particle diameter available to those skilled in the art.
  • a mass containing three or more cancer cells to be sorted is a cancer tissue-derived cell mass of the present invention, and has a range of sizes.
  • the size within a certain range includes small particles having a volume average particle diameter of about 8 ⁇ m to 10 ⁇ m, but in the case of a spherical shape, the diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m, and more preferably 40 ⁇ m to 250 ⁇ m.
  • the major diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m, more preferably 40 ⁇ m to 250 ⁇ m, and in the case of indeterminate shape, the volume average particle diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m. And more preferably 40 ⁇ m or more and 250 ⁇ m or less.
  • the volume average particle diameter can be measured by evaluating the particle size distribution and the particle shape using a phase contrast microscope (IX70; manufactured by Olympus Corporation) with a CCD camera attached.
  • the separated processed product as a sorted and recovered component thus obtained or the culture thereof is the cancer tissue-derived cell mass of the present invention.
  • the culture may be one in which the separation and recovery component is present in the culture medium for a short time, for example, at least 3 hours or more, preferably 10 hours to 36 hours, more preferably 24 hours. By culturing for a period of ⁇ 36 hours, it may be in the shape of a substantially spherical shape or a substantially elliptical shape.
  • the culture time may be more than 36 hours, several days, 10 days or more, 13 days or more, or 30 days or more.
  • the culture can be carried out as it is in the medium for a long period of time, but preferably, by carrying out mechanical division periodically during the culture, the proliferative capacity can be maintained virtually infinitely.
  • the cancer tissue-derived cell mass of the present invention for example, has a high degree of establishment in transplantation into xenogeneic animals even with 10 or less cancer tissue-derived cell masses having a diameter of 100 micrometers (corresponding to 1000 cells or less). Therefore, the cancer tissue-derived cell mass of the present invention is useful for simple preparation of mouse and other cancer model animals, and more rigorous examination of cancer tissue, evaluation of drug sensitivity, or treatment such as radiation therapy. Evaluation of aspects is possible.
  • the cancer tissue-derived cell mass of the present invention can be cryopreserved and can retain its proliferative ability under normal storage conditions.
  • the cancer cell aggregate of the present invention is a cancer tissue-derived cell mass or a cancer tissue obtained from an individual, which is single-cellified and then individual cells in the single cell complex or completely up to individual cells.
  • a single cell of a cancer tissue-derived cell mass or a cancer tissue obtained from an individual means that at least a portion of the cancer tissue-derived cell mass or the obtained cancer tissue is separated into single cells in vitro.
  • some cells may co-exist without being separated individually, even in the presence of cells separated into individual single cells. Even in the case, it corresponds to "to unicellularize” as referred to herein.
  • aggregation to 3 or more cells means individual cancer tissues obtained from cancers generated in vivo or individual cancer clusters obtained from the cancer tissue-derived cell masses found by the present inventors. It refers to a state in which several cell aggregates or combinations thereof that were not separated from one another or individually are included so as to include at least three or more cells.
  • cancer tissue-derived cell mass or a cancer tissue obtained from a cancer generated in vivo When subjecting a cancer tissue-derived cell mass or a cancer tissue obtained from a cancer generated in vivo to a single cellification treatment, there is no limitation, but it is included to enzymatically treat the cancer tissue obtained from an individual .
  • the enzyme treatment is typically treated with trypsin, dispase, and optionally, collagenase, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof. possible.
  • the enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • a physiologically acceptable pH for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution
  • PBS or Hanks balanced salt solution
  • a sufficient time to degrade connective tissue eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
  • this enzyme treatment may typically be trypsin or dispase treatment alone.
  • Such cells may be allowed to aggregate as such, but preferably, for example, the ROCK inhibitor is allowed to aggregate immediately after single cell treatment.
  • ROCK refers to Rho-associated coiled-coil kinase (ROCK: GenBank accession number: NM_005406), which is one of the main effector molecules of Rho GTPase, and is known to control diverse physiological phenomena. (Also called Rho-linked kinase).
  • a ROCK inhibitor Y27632 etc. are illustrated, for example.
  • Fasudil HA1077), H-1152, Wf-536 (all available from Wako Pure Chemical Industries, Ltd.), and derivatives thereof, antisense nucleic acid against ROCK, RNA interference-inducing nucleic acid, and the like And vectors that contain it.
  • Treatments separated to single cells or aggregates of 10 or less cells by trypsinization are subjected to 96-well culture plate prior to aggregation.
  • a low density eg 500 cells / 0.32 cm 2 , medium volume about 0.15 ml.
  • the ROCK inhibitor can be added to the maintenance culture solution immediately or after culturing for several days, at a concentration of about 1 to 100 ⁇ M, preferably about 10 ⁇ M.
  • Such aggregates can be cultured in vitro.
  • the culture time is not particularly limited as long as it is present in the medium even for a short time.
  • Such a culture often exhibits a substantially spherical or elliptical spherical shape by culturing for a certain period of time, preferably 3 hours or more.
  • the culture here includes a substantially spherical or spheroidal culture after such a given period of time, and an atypical culture up to that.
  • an irregular shape obtained by further dividing such a substantially spherical or spheroidal culture, and a substantially spherical or spheroid obtained by further culture are also referred to as the culture herein.
  • the cancer cell aggregate of the present invention can maintain its growth ability in vitro, at least 10 days or more, preferably 13 days, under cell culture conditions at a temperature of 37 ° C. in a 5% CO 2 incubator. This means that the growth ability can be maintained for a period of 30 days or more, more preferably.
  • Such cancer cell aggregates can retain their growth ability for a period of 10 days or more, preferably 13 days or more, more preferably 30 days or more, by continuing the culture as they are, but furthermore, they can By carrying out selective division, or by further performing unicellularization treatment and aggregation, the proliferative ability can be maintained virtually indefinitely.
  • the medium for culturing the cancer cell aggregate of the present invention is the same as the medium for culturing a cancer tissue-derived cell mass.
  • the cancer cell aggregates of the present invention can be cultured in such media and culture conditions. Furthermore, the culture of cancer cell aggregates may, depending on its individual nature, be preferred if co-culture with other cells is preferred or the presence of additional specialized supplements such as hormones.
  • co-culture may be performed with feeder cells.
  • feeder cells stroma cells such as fetal fibroblasts can be used.
  • NIH3T3 and the like are preferable.
  • a hormone as in the case of the cancer tissue-derived cell mass.
  • estrogens for breast cancer, progesterone for uterine cancer, testosterone for prostate cancer and the like are not limited thereto, and various hormones can be added to advantageously adjust culture conditions.
  • the presence of such hormones reveals the hormonal dependence of the originating patient's cancer by examining the behavior of cancer cell aggregates after culture, such as how life or death or growth changes. It may be possible to predict the efficacy of antihormonal drug treatment.
  • the cancer cell aggregate of the present invention can also be cultured in suspension culture, like the cancer tissue-derived cell mass.
  • the number of cancer cells constituting the cancer cell aggregate is at least 3 or more, preferably 8 or more, more preferably 10 or more, still more preferably 20 or more, and the number is not particularly limited.
  • the cancer cell aggregate of the present invention is an isolated substance, it is preferably 1000 or less, more preferably about 500 or less. It is possible to increase the number of cultures after culturing the isolates by culturing. However, even if it is a culture, it is preferably 10,000 or less, more preferably 5,000 or less.
  • the size of the cancer cell aggregate of the present invention is not limited, and includes irregularly shaped particles having a particle size or volume average particle size of about 8 ⁇ m to 10 ⁇ m, and those grown 1 mm or larger in particle size after culture Also included.
  • the diameter is 40 ⁇ m to 1000 ⁇ m, more preferably 40 ⁇ m to 250 ⁇ m, and still more preferably 80 ⁇ m to 200 ⁇ m.
  • the cancer cell aggregate of the present invention often has one or more sequences particularly selected from the group consisting of a shelf array, a sheet array, an interlayer array and a syncytial array, but is not particularly limited.
  • the cancer cell aggregate of the present invention typically comprises the steps of: converting the cancerous tissue removed from the living body into single cells; and aggregating the cells in the single cellification into three or more cells. It can be prepared by the method.
  • the cancer cell aggregate of the present invention can be prepared by a method comprising the step of culturing the aggregated component for 3 hours or more.
  • the cancer cell aggregate of the present invention is obtained from a cancer tissue-derived cell mass, it is directly subjected to the enzyme treatment, but the cancer tissue removed from the living body is converted into a single cell by being directly subjected to the enzyme treatment. While it is also possible, it is preferable to minify prior to enzyme treatment. Prior to fragmentation, it can be maintained in animal cell culture medium.
  • animal cell culture media include, but are not limited to, Dulbecco's MEM (such as DMEM F12), Eagle's MEM, RPMI, Ham's F12, alpha MEM, Iscove's modified Dulbecco, and the like. At this time, it is preferable to perform suspension culture in a cell non-adhesive culture vessel.
  • the cancerous tissue be washed prior to mincing.
  • washings include, but are not limited to, acetate buffer (acetate + sodium acetate), phosphate buffer (phosphate + sodium phosphate), citrate buffer (citric acid + sodium citrate), boric acid
  • a buffer solution such as a buffer solution, a tartaric acid buffer solution, a Tris buffer solution, or a phosphate buffered saline can be used.
  • tissue washing can be performed in HBSS. The number of times of washing is appropriate once to three times.
  • the fragmentation can be performed by dividing the tissue after washing with a knife, scissors, a cutter (manually, automatically) or the like.
  • the size and shape after fragmentation are not particularly limited, and may be random, but preferably have a uniform size of 1 mm to 5 mm square, more preferably 1 mm to 2 mm square.
  • the debris obtained in this way is then subjected to an enzyme treatment.
  • enzyme treatment may be mainly trypsin treatment as described above.
  • Enzyme treatment conditions may be from 20 ° C. to 45 ° C., minutes to hours.
  • the cells in the single-cell material thus obtained are allowed to aggregate to three or more cells.
  • the ROCK inhibitor Prior to aggregation, preferably, can be added rapidly to a single cell.
  • an aggregate containing three or more cancer cells obtained by aggregation is a cancer cell aggregate of the present invention, and has a range of sizes.
  • the size within a certain range includes small particles having a volume average particle diameter of about 8 ⁇ m to 10 ⁇ m, but in the case of a spherical shape, the diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m, and more preferably 40 ⁇ m to 250 ⁇ m.
  • the major diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m, more preferably 40 ⁇ m to 250 ⁇ m, and in the case of indeterminate shape, the volume average particle diameter is 20 ⁇ m to 500 ⁇ m, preferably 30 ⁇ m to 400 ⁇ m. And more preferably 40 ⁇ m or more and 250 ⁇ m or less.
  • the volume average particle diameter can be measured by evaluating the particle size distribution and the particle shape using a phase contrast microscope (IX70; manufactured by Olympus Corporation) with a CCD camera attached.
  • the aggregate thus obtained or the culture thereof is the cancer cell aggregate of the present invention.
  • the culture may be one in which the separation / collection component isolate is present in the culture medium for a short time, for example, at least 3 hours or more, preferably 10 hours to 36 hours, more preferably 24 hours. By culturing for a period of time to 36 hours, it may be in the shape of a substantially spherical or substantially elliptical sphere.
  • the culture time may be more than 36 hours, several days, 10 days or more, 13 days or more, or 30 days or more.
  • the culture can be carried out as it is in the medium for a long period of time, but preferably, by carrying out mechanical division periodically during the culture, the proliferative capacity can be maintained virtually infinitely.
  • the cancer cell aggregate of the present invention has a high degree of establishment in transplantation into xenogeneic animals even if, for example, 10 or less cancer cell aggregates having a diameter of 100 micrometers (corresponding to 1000 cells or less). Therefore, the cancer cell aggregate of the present invention is useful for the simple preparation of mouse and other cancer model animals, and more rigorous examination of cancer tissues, evaluation of drug sensitivity, and treatment modes including radiation therapy. Can be evaluated.
  • the cancer cell aggregate of the present invention can be cryopreserved and can retain its proliferative ability under normal storage conditions.
  • the cancer tissue-derived cell mass or cancer cell aggregate of the present invention thus obtained exhibits the same behavior as cancer tissue in vivo in vitro, can be stably cultured, and retains the proliferation ability. Do.
  • the cancer tissue-derived cell mass or cancer cell aggregate of the present invention thus obtained exhibits the same behavior as cancer tissue in vivo in vitro, can be stably cultured, and retains the proliferation ability. Do. In addition, the proportion of unnecessary contaminants other than cancer cells, such as cells other than cancer cells derived from living bodies and connective tissues, is very small or almost nonexistent. Therefore, it is very conveniently used for immunotherapy.
  • the cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be cryopreserved, and can retain its proliferative ability under normal storage conditions. Therefore, it can also be conveniently used to measure the effect of immunotherapy over time.
  • a cancer tissue-derived cell mass or a cancer cell aggregate for immunotherapy may be chemically treated to prepare a composition for cancer treatment.
  • the chemical treatment includes formalin treatment, enzyme treatment and the like.
  • a composition for cancer treatment can be prepared by photodynamic treatment.
  • photodynamic processing includes radiation irradiation processing and ultraviolet irradiation processing.
  • cancer tissue-derived cell masses or cancer cell aggregates are trypsinized (eg, 37 ° C., 60 minutes) to completely separate into single cells, Leave as it is.
  • trypsinized eg, 37 ° C., 60 minutes
  • cells separated into single cells undergo apoptosis and die, but peptides contained in these cells can be targets for antigen-presenting cells.
  • radiation is irradiated to such an amount that can promote apoptosis of the cancer tissue-derived cell mass or cancer cell aggregate of the present invention to promote cell apoptosis.
  • composition for cancer treatment is directly administered to a patient.
  • the method of administration may be oral but preferably is parenteral administration such as injection.
  • Administration with an immune adjuvant is also preferred to enhance immunity.
  • Included is any form of administration in which the composition is absorbed into the subject without absorption through the intestine.
  • Exemplary parenteral administrations include, but are not limited to, intramuscular, intravenous, intraperitoneal, intratumoral, intraocular, or intraarticular administration.
  • cancer tissue-derived cell masses or cancer cell aggregates or a degradation product thereof may be dispersed (eg, polysorbate 80, polyoxyethylene hydrogenated castor oil 60, polyethylene glycol, carboxymethyl cellulose, sodium alginate etc.)
  • Aqueous solution eg, for injection
  • preservatives eg, methyl paraben, propyl paraben, benzyl alcohol, chlorobutanol, phenol etc.
  • tonicity agents It is produced by dissolving, suspending or emulsifying it in distilled water, physiological saline, Ringer's solution etc.
  • oily solvent eg olive oil, sesame oil, cottonseed oil, vegetable oil such as corn oil etc., propylene glycol etc.
  • additives such as a solubilizing agent (eg, sodium salicylate, sodium acetate etc.), a stabilizer (eg, human serum albumin etc.), a soothing agent (eg, benzyl alcohol etc.) and the like may be used if desired. Furthermore, antioxidants, coloring agents, etc. and other additives may be added as required.
  • solubilizing agent eg, sodium salicylate, sodium acetate etc.
  • a stabilizer eg, human serum albumin etc.
  • a soothing agent eg, benzyl alcohol etc.
  • antioxidants, coloring agents, etc. and other additives may be added as required.
  • a "pharmaceutically acceptable carrier” can be used.
  • Such substances include solvents, solubilizers, suspending agents, tonicity agents, buffers, soothing agents and the like in liquid formulations.
  • formulation additives such as preservatives, antioxidants, adsorbents, gelling agents and the like can be used according to a conventional method.
  • antioxidant examples include sulfites, ascorbic acid and the like.
  • isotonizing agent examples include glucose, sodium chloride, glycerin, D-mannitol and the like.
  • Preferred examples of the "solubilizing agent” include polyethylene glycol, propylene glycol, D-mannitol, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate and the like.
  • solvent for example, water for injection, alcohol, propylene glycol, macrogol and the like are used.
  • Preferred examples of the "suspending agent” include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
  • surfactant examples include sodium lauryl sulfate, lauryl aminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate and the like.
  • the soothing agent benzyl alcohol etc. are mentioned, for example.
  • Preferred examples of the "preservative" include p-hydroxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
  • the composition for treating cancer thus obtained can be incubated with blood-derived cells contained in blood collected from the patient, and the activated blood-derived cells can be returned to the patient's body again as a result.
  • human T cells are cultured in vitro with said dendritic cells and subsequently in vitro activated T cells are administered to a cancer patient in need thereof.
  • blood-derived cells contained in the blood are T lymphocytes, and at least major histocompatibility antigen (MHC) class I and a costimulatory molecule are used as a method for inducing cytotoxic T lymphocytes.
  • MHC major histocompatibility antigen
  • Cells can be contacted with the cancer tissue-derived cell mass or cancer cell aggregate of the present invention, and then cocultured with lymphocytes.
  • co-culture with lymphocytes can be performed while contacting dendritic cells with the cancer tissue-derived cell mass or cancer cell aggregate of the present invention or a composition obtained by treating them.
  • parenteral administration such as injection. Included is any form of administration in which the composition is absorbed into the subject without absorption through the intestine.
  • parenteral administrations include, but are not limited to, intramuscular, intravenous, intraperitoneal, intratumoral, intraocular, or intraarticular administration.
  • cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be used in an immunotherapeutic effect evaluation method for a patient who has been subjected to immunotherapy.
  • blood-derived cells derived from an immunotherapy-treated patient are brought into contact with cancer tissue-derived cell masses or cancer cell aggregates.
  • evaluation can be made by measuring the cytotoxicity of the blood-derived cells.
  • the blood-derived cells are isolated cytotoxic T cells.
  • the immunotherapy is antibody-based therapy, it is a natural killer cell. In the case of evaluating a therapy using an antibody, it is preferable to further allow the antibody used for treatment to coexist in this contacting step.
  • the patient who has been subjected to immunotherapy is a patient who has been subjected to immunotherapy using a cancer tissue-derived cell mass or a cancer cell aggregate, and the process since blood-derived cells derived from the patient have been administered immunotherapy It is also preferred that it be provided as a plurality of samples, collected at different times.
  • the cancer tissue-derived cell mass or cancer cell aggregate of the present invention has the effect of immunotherapy as necessary when necessary, in order to maintain its growth ability and survival well even after being refrigerated or frozen. Can be measured.
  • Example 1 Preparation of cancerous tissue-derived cell mass from mouse colon cancer transplanted tumor
  • Mouse colon cancer transplanted tumors were produced by xenograft as follows.
  • a surgically excised sample of human tumor (colorectal cancer) is cut into about 2 mm cubes under aseptic operation.
  • a small incision of about 5 mm is made on the back of severe immunodeficient mice (nude mice, preferably NOD / SCID mice) to detach the subcutaneous tissue.
  • the prepared tumor piece is inserted subcutaneously and closed with a skin suture clip.
  • the obtained colon cancer mice are bred under specific pathogen free (SPF) breeding conditions, and when the tumors become 1 cm in size, the tumors are excised and 20 ml of DMEM (Gibco; 11965-092) + 1% Pen Strep ( Gibco; 15140-022) (both at a final concentration of 100 units / ml penicillin, 100 ⁇ g / ml) were collected in a 50 ml centrifuge tube (IWAKI; 2345-050).
  • SPF pathogen free
  • HBSS tissue culture dish
  • IWAKI tissue culture dish
  • Debris-free tumor pieces were transferred to a fresh 10 cm dish containing 30 ml of HBSS. Next, the tumor pieces were cut into pieces of about 2 mm using a surgical knife.
  • Blendzyme 1 (Roche; 11988417001) was added and mixed. This was transferred to a 100 ml Erlenmeyer flask, and treated with Liberase Blendzyme 1 (manufactured by Roche Diagnostics) for 2 hours while rotating the stirrer at low speed in a 37 ° C. thermostat.
  • the enzyme-treated product was collected in a 50 ml centrifuge tube, centrifuged, the supernatant was discarded, and 20 ml HBSS was added and mixed.
  • the material was passed through a stainless steel mesh (500 ⁇ m), the components passed through the filter were collected in a 50 ml centrifuge tube, and centrifugation was performed. Discard the supernatant, mix with 1 mg / ml DNase I solution (Roche; 1284932) (10 mg / ml stock 100 ⁇ l + PBS 900 ⁇ l), mix and leave at 4 ° C for 5 minutes, add 20 ml HBSS and mix. Centrifugation was performed and the supernatant was discarded.
  • the same centrifugation operation as described above is performed several times, and the component obtained is 4 ml StemPro hESC SFM (Gibco; A10007-01) + 8 ng / ml bFGF (Invitrogen; 13256-029) + 0.1 mM 2-mercapto Ethanol (Wako; 137-06862) + 1% PenStrep + 25 ⁇ g / ml Amphotericin B (Wako; 541-01961) was added and mixed, and transferred to a 6 cm non-treated dish (EIKEN CHEMICAL; AG 2000).
  • Example 2 Preparation of cancerous tissue-derived cell mass from human colorectal cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 1 except that a colorectal cancer surgical specimen was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 3 Preparation of cancer tissue-derived cell mass from human ovarian cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that an ovarian cancer surgical specimen was used.
  • FIG. 4 a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 4 Preparation of cancerous tissue-derived cell mass from human pancreatic cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a pancreatic cancer surgical specimen was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 5 Preparation of cancer tissue-derived cell mass from human small cell carcinoma surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a small cell cancer surgical specimen which is a type of lung cancer was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 6 Preparation of cancer tissue-derived cell mass from human renal cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a renal cancer surgical specimen was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 7 Preparation of cancerous tissue-derived cell mass from human bladder cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a bladder cancer surgery sample was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 8 Preparation of cancer tissue-derived cell mass from human breast cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a breast cancer surgical specimen was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 9 Preparation of cancer tissue-derived cell mass from human prostate cancer surgical specimens
  • DHT dihydrotestosterone
  • Example 10 Preparation of cancer tissue-derived cell mass from human pharyngeal cancer surgical specimens
  • a cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a pharyngeal cancer surgical specimen was used.
  • a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
  • Example 11 The cancer tissue-derived cell mass obtained in Example 2 and shown in FIG. 4 was taken out together with the medium at 24 hours after culture, and 5 ml was taken out with the medium, centrifuged at 1000 rpm at 4 ° C.
  • the collected cancer tissue-derived cell mass is suspended in a selbunker (BLC-1, manufactured by Mitsubishi Chemical Medicine Co., Ltd.), 10 ⁇ M of Y27632 (manufactured by Wako Pure Chemical Industries, Ltd.) is added, and cryopreservation tube (Cryogenic vials 2.0)
  • the solution was transferred to ml, Nalge Nunc) and stored in -80.degree. C. deep freezer.
  • the survival of the obtained cancer tissue-derived cell mass was confirmed by transplantation into NOD-SCID mice as a mass containing about 1000 cells.
  • Example 12 Preparation of cancer cell aggregate from cancer tissue-derived cell mass
  • the following treatment was performed using the cancer tissue-derived cell mass obtained by the same method as in Example 2.
  • the collagen gel was solidified by standing for 30 minutes at 37 ° C.
  • Cancer tissue-derived cell masses in suspension culture 100 cells per well) are collected in 1.5 mL tubes. This was centrifuged for about 5 seconds, and the supernatant was removed.
  • the cancer tissue-derived cell mass was suspended in collagenase gel (30 ⁇ L per well), and 30 ⁇ L was loaded on the previously solidified gel. The mixture was allowed to stand at 37 ° C. for 30 minutes to solidify, and 600 ⁇ L / well of StemPro (EGF 50 ng / mL) was added. The cells were cultured for 10 days while changing the medium once every 2 to 3 days. Next, the medium was replaced with 1 mL / well of DMEM (Gibco; 11965-092, containing collagenase IV 200 mg / mL) and cultured at 37 ° C. for about 5 hours.
  • DMEM Gibco; 11965-092, containing collagenase IV 200 mg / mL
  • the cells were suspended in 2 mL of StemPro (EGF 50 ng / mL, Y-27632 10 ⁇ M), and transferred to a ⁇ 35 mm non-treated dish (Iwaki: 1000-035). This was cultured at 37 ° C. overnight. After 12 hours, formation of a cancer tissue-derived cell mass having a diameter of about 40 ⁇ m was confirmed. The medium was changed to StemPro (EGF 50 ng / mL).
  • Example 13 (Preparation of cancer cell clumps from human colorectal cancer surgical specimens) Cancer cell aggregates were obtained in the same manner as in Example 12 except that a colorectal cancer surgical specimen was used. As a result, as shown in FIG. 7, substantially spherical cancer cell aggregates similar to FIG. 1 were obtained after at least 12 hours.
  • Example 14 Cell preservation of the cancer tissue origin cell mass obtained by the same method as Example 2 was performed.
  • the cancer tissue-derived cell mass was treated with trypsin in the same manner as in Example 14 to perform unicellularization.
  • a cryopreservation solution a solution obtained by adding Y-27632 to Selvanker 1 (Junji field) was used.
  • Example 15 Immunotherapy using the cancer tissue-derived cell mass of the present invention is examined.
  • the cancer tissue-derived cell mass and cancer cell aggregate obtained in the same manner as in Examples 2 and 12 are each treated with trypsin (37 ° C. for 5 minutes).
  • the resulting product contains many single cells, and when left for 24 hours, the cells die.
  • trypsinization 5 minutes at 37 ° C.
  • Untreated cancer tissue-derived cell masses were cultured for 24 hours and digested with trypsin immediately before analysis (intact CTOS).
  • the cancer tissue-derived cell mass was first separated into single cells, cultured, and then analyzed (distributed CTOS). The results are shown in FIG. Furthermore, the ratio of the result of this staining was graphed (FIG. 10).
  • the double-stained Annexin-V and PI are shown in black, the single-stained Annexin-V in gray, and the unstained sample in white.
  • apoptosis was progressing smoothly in the treated cancer tissue-derived cell mass.
  • the induction of apoptosis was confirmed by western blotting of caspase-3, cleaved caspase-3 (cl-casp-3) and PARP (FIG. 11).
  • the tumor tissue-derived cell mass or cancer cell aggregate trypsin treated product is suspended in 2 ml of distilled water and sterilized by passing through a filter having a pore diameter of 0.22 microns, 1-ethyl at a concentration of 20 mg / ml -3- (3-dimethylaminopropyl) carbodiimide (hereinafter abbreviated as "EDC") solution is added to a concentration of 0.8 mg / ml. This is stored at 25 ° C. for 15 minutes, and then sterile 2 ml of 0.1 M glycine solution is added. After storage at 25 ° C. for 30 minutes, physiological saline is added to prepare a raw material solution for vaccine.
  • EDC 1-ethyl at a concentration of 20 mg / ml -3- (3-dimethylaminopropyl) carbodiimide
  • the vaccine stock solution thus obtained and TiterMax Gold (CytRX, Atlanta, Norcross, GA) marketed as an adjuvant are mixed to form a tumor vaccine.
  • the vaccine obtained is injected 1 ml into cancer patients from which it originates, as a preventive measure or as a treatment after recurrence. Seven days later, another injection is given. Regularly monitor to see if the cancer has not recurred, or check the size of the tumor after relapse to see the effect of the treatment.
  • Example 16 Regularly monitor immunotherapy for colorectal cancer patients and evaluate the effects of immunotherapy. Specifically, the blood of a patient who has been given general immunotherapy (for example, WT1 peptide therapy) is collected, and the cytotoxic T cells are collected targeting CD8 positive. It is examined whether patient-derived CD8 positive T cells can damage the cancer tissue-derived cell mass or cancer cell aggregate of the present invention.
  • the cell mass derived from cancer tissue derived from colon cancer of the patient obtained in the same manner as in Example 2 is collected in a 50 ml centrifuge tube, 100 ⁇ Ci of chromium 51 is added and the mixture is incubated at 37 ° C. for 2 hours.
  • the plate is washed three times with AIM-V medium containing 10% human AB serum, and 100 ⁇ l is added to each well of a 96-well V-bottom plate.
  • AIM-V medium containing 10% human AB serum
  • 10 5 CD8 positive T cells (taken for multiple times during the immunotherapy period) suspended in AIM-V medium containing 10% human AB serum, respectively, at 37 ° C. Incubate for 4 hours under 5% CO 2 conditions. Calculating the cytotoxic activity of CD8 positive T cell cells of a patient receiving immunotherapy by measuring the amount of chromium 51 in the culture supernatant released from damaged tumor cells after culture it can.
  • the cancer tissue-derived cell mass obtained in Example 1 was cultured for 3 days in 1 cc of STEMPRO human ES cell serum-free medium (Gibco) under culture conditions of a temperature of 37 ° C. and a 5% CO 2 incubator. This was formalin-fixed, paraffin-embedded, sliced, and subjected to anti-laminin antibody staining (Sigma-Aldrich, mouse laminin-derived rabbit antibody) according to the manufacturer's instructions. The antigenicity of laminin was observed in the cytoplasm of cells close to the periphery. This revealed that the cancer tissue-derived cell mass of the present invention was surrounded by laminin at the periphery of the cancer cell aggregate. On the other hand, the expression of laminin could not be confirmed 24 hours after the treatment of the surgical specimen.
  • Example of detection of hypoxia using pimonidazole The nitroimidazole compound pimonidazole has the property of forming Adduct with proteins and nucleic acids in the absence of oxygen.
  • the hypoxic region of pimonidazole-treated tissues under hypoxia can be recognized using an antibody that specifically recognizes pimonidazole.
  • a hypoxic region appears about 100 micrometers away from blood vessels.
  • the inside is a hypoxic region at a boundary of about 100 micrometers from the outer edge. Cell death was observed.
  • the state of cells was periodically observed, and the size was measured with a phase contrast microscope (40 ⁇ magnification) equipped with a CCD camera. As a result, it was possible to maintain the proliferation ability for at least 13 days without mechanical division. Furthermore, when mechanical division was performed on the 13th day, it was confirmed that the proliferation ability was maintained for at least 13 days (FIG. 2).
  • the mechanical division was performed by dividing a cancer tissue-derived cell mass having a diameter of 500 micrometers into four parts with an eye knife.
  • the cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be cryopreserved in a culturable state in vitro, and can be used to provide an antigenic peptide, particularly for use in immunotherapy. Furthermore, it can also be used as an evaluation tool for measuring the effect of immunotherapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

Disclosed are an immunotherapy and a method for evaluating the efficacy of an immunotherapy, both of which utilize a novel cancer-tissue-derived cell mass (a cell mass derived from a cancer tissue) or a novel cancer cell aggregate which can reflect the in vivo behavior of a cancer cell accurately. A composition for treating cancer is prepared by chemically or photodynamically treating a cancer-tissue-derived cell mass or a cancer cell aggregate. The composition for treating cancer can be used as a cancer vaccine which is intended to be directly administered to a patient from which the cell mass or the cell aggregate is derived, or as a medicinal agent which is intended to be contacted in vitro with cells derived from blood collected from the patient. Further, the efficacy of an immunotherapy can be evaluated by measuring the activity of a killer T-cell in blood over time using a cancer-tissue-derived cell mass or a cancer cell aggregate.

Description

癌組織由来細胞塊または癌細胞凝集塊から得られる癌治療用組成物およびそれを用いた免疫療法剤の製造方法ならびに免疫療法効果評価方法Composition for cancer treatment obtained from cancer tissue-derived cell mass or cancer cell aggregate, method for producing immunotherapeutic agent using the same, and method for evaluating immunotherapeutic effect
 本発明は、癌組織由来細胞塊または癌細胞凝集塊から得られる癌治療用組成物およびそれを用いた免疫療法剤の製造方法ならびに免疫療法効果評価方法に関する。より詳細には、本発明は、インビトロで癌を再構築でき、かつ増殖能を保持する癌組織由来細胞塊または癌細胞凝集塊を処理して得られる癌治療用組成物およびそれを用いた免疫療法剤の製造方法ならびに免疫療法効果評価方法に関する。 The present invention relates to a composition for cancer treatment obtained from a cancer tissue-derived cell mass or a cancer cell aggregate, a method for producing an immunotherapeutic agent using the same, and a method for evaluating an immunotherapeutic effect. More specifically, the present invention relates to a composition for treating cancer obtained by treating cancerous tissue-derived cell masses or cancer cell aggregates capable of reconstructing cancer in vitro and retaining proliferation ability, and immunity using the same The present invention relates to a method for producing a therapeutic agent and a method for evaluating an immunotherapeutic effect.
 近年、がんを克服するため様々な研究が積み重ねられてきた結果、早期がんの治療成績は飛躍的に向上している。しかし、進行がんの治療は依然として困難で、がんは日本人の死因のトップを占め続けている。厚生労働省による平成19年人口動態統計では、年間34万人以上ががんにより死亡している。 In recent years, various researches have been accumulated to overcome cancer, and as a result, treatment results for early cancer are dramatically improved. However, treatment of advanced cancer is still difficult, and cancer continues to be the leading cause of Japanese death. According to the Ministry of Health, Labor and Welfare's 2007 demographic data, more than 340,000 people die annually from cancer.
 現在、がん治療では、化学療法、手術、放射線治療がその主流となっているが、その他の選択肢として、免疫療法も行われている。 At present, chemotherapy, surgery and radiation therapy are the mainstream in cancer treatment, but immunotherapy is also used as another option.
 免疫療法には、ワクチンを生体に直接投与して生体の免疫活性を高める能動免疫療法と、細胞傷害性Tリンパ球や樹状細胞などの免疫関連細胞を一旦体外で活性化させてから再度体内に戻す手法を用いる受動免疫療法とがある。これらのいずれの方法においてもいわゆる免疫原として、すでに普遍的に様々な種類の癌に発現していることが判明している腫瘍抗原ペプチド(例えばWT1ペプチド(特許文献1)、HLA-A2拘束性抗原ペプチド(特許文献2))などを用いることができる。一方、このように明らかになっている抗原ペプチドではなく、未同定の抗原を含む癌組織を用いることもできる。このような抗原ペプチドまたは癌組織の処理物と樹状細胞との結合物または融合物なども知られている。 For immunotherapy, active immunotherapy, which directly administers a vaccine to the living body to enhance the immune activity of the living body, and immune-related cells such as cytotoxic T lymphocytes and dendritic cells, are once activated outside the body, and then the body is restarted. There is a passive immunotherapy with the technique of returning to. In any of these methods, as a so-called immunogen, a tumor antigen peptide that has been found to be universally expressed in various types of cancer (for example, WT1 peptide (Patent Document 1), HLA-A2 restriction An antigen peptide (patent document 2) etc. can be used. On the other hand, it is also possible to use a cancer tissue containing an unidentified antigen instead of the thus-defined antigenic peptide. Such antigenic peptides or conjugates or fusions of treated products of cancer tissue with dendritic cells are also known.
 さらに、癌組織や細胞を微粒子に固定化した上で、サイトカインと混合したワクチンなども開示されている(特許文献3)。 Furthermore, there is also disclosed a vaccine in which cancer tissues and cells are immobilized on microparticles and mixed with cytokines (Patent Document 3).
WO2007/097358号公報WO 2007/097358 特開2009-65835号公報JP, 2009-65835, A 特開2001-10961号公報JP, 2001-10961, A
 本発明の目的は、癌組織由来細胞塊または癌細胞凝集塊から得られる癌治療用組成物を提供することにある。 An object of the present invention is to provide a composition for treating cancer obtained from a cancer tissue-derived cell mass or a cancer cell aggregate.
 本発明の目的はまた、癌組織由来細胞塊または癌細胞凝集塊から、免疫療法剤を製造する方法を提供することにある。 Another object of the present invention is to provide a method for producing an immunotherapeutic agent from a cancer tissue-derived cell mass or a cancer cell aggregate.
 本発明者らは、個々の癌患者に特異性が高く、かつ余計な夾雑物の少ない抗原を用いることで、非常に治療効果の高い癌ワクチンあるいは免疫療法を提供すべく鋭意検討を重ねた結果、新規な癌組織由来細胞塊または癌細胞凝集塊を用いた癌治療用組成物および免疫療法剤の調製方法を見出し、本発明を完成するに至った。 The present inventors have intensively studied to provide a cancer vaccine or immunotherapy having a very high therapeutic effect by using an antigen with high specificity and little extraneous contamination for individual cancer patients. The present inventors have found a novel composition for treating cancer and a method for preparing an immunotherapeutic agent using a novel cancer tissue-derived cell mass or cancer cell aggregate, and have completed the present invention.
 本発明は、癌組織由来細胞塊または癌細胞凝集塊を処理することによって得られる、癌治療用組成物、に関する。 The present invention relates to a composition for treating cancer obtained by treating a cancer tissue-derived cell mass or a cancer cell aggregate.
 上記処理は、化学処理であり得る。 The process may be a chemical process.
 上記化学処理は、酵素処理またはホルマリン処理であり得る。 The chemical treatment may be enzyme treatment or formalin treatment.
 上記処理は、光線力学処理であり得る。 The process may be a photodynamic process.
 上記処理は、放射線処理であり得る。 The treatment may be radiation treatment.
 上記癌治療用組成物は、由来する患者に経口投与または非経口投与するための癌ワクチンであり得る。 The composition for treating cancer may be a cancer vaccine for oral or parenteral administration to patients derived therefrom.
 上記癌治療用組成物は、患者由来の血液から得られた血液由来細胞にインビトロにおいて接触させるためのものであり得る。 The composition for treating cancer may be for contacting blood-derived cells obtained from blood from a patient in vitro.
 上記血液は、末梢血であり得る。 The blood may be peripheral blood.
 上記血液由来細胞は、単球から誘導される樹状細胞であり得る。 The blood-derived cells can be dendritic cells derived from monocytes.
 本発明はまた、患者由来の血液から回収された血液由来細胞と該患者由来の上記いずれかに記載の癌治療用組成物とを接触させる工程;および接触により活性化された血液由来細胞を回収する工程を含む、該患者に接種されるための免疫療法剤の製造方法、に関する。 The present invention also provides a process of contacting blood-derived cells recovered from blood derived from a patient with the composition for treating cancer described in any of the above, and recovering the blood-derived cells activated by contact. A method of producing an immunotherapeutic agent for inoculating said patient, comprising the steps of
 上記血液は、末梢血であり得る。 The blood may be peripheral blood.
 上記免疫療法剤の製造方法において、上記血液由来細胞は、単球であり、さらに単球を樹状細胞に誘導する工程を含み得る。 In the above method for producing an immunotherapeutic agent, the blood-derived cells may be monocytes, and may further include the step of inducing monocytes to dendritic cells.
 本発明はまた、免疫療法の効果を評価する方法であって、免疫療法を施された患者由来の血液由来細胞を、癌組織由来細胞塊または癌細胞凝集塊と接触させる工程、を含む方法、に関する。 The present invention is also a method of evaluating the effects of immunotherapy, comprising contacting blood-derived cells derived from a patient who has been subjected to immunotherapy with a cancer tissue-derived cell mass or a cancer cell aggregate. About.
 上記免疫療法の効果を評価する方法において、さらに、前記血液由来細胞の細胞障害性を測定する工程を含み得る。 The method of evaluating the effect of the above immunotherapy may further include the step of measuring the cytotoxicity of the blood-derived cells.
 上記血液由来細胞は、単離された細胞傷害性T細胞であり得る。 The blood-derived cells can be isolated cytotoxic T cells.
 上記免疫療法の効果を評価する方法において、上記血液由来細胞は、単離されたナチュラルキラー細胞であり、前記接触させる工程が、さらに抗体を共存させることができる。 In the method of evaluating the effect of the immunotherapy, the blood-derived cells are isolated natural killer cells, and the step of contacting may further cause an antibody to coexist.
 上記免疫療法の効果を評価する方法において、免疫療法を施された患者が、癌組織由来細胞塊または癌細胞凝集塊を用いた免疫療法を施された患者であり、該患者由来の血液由来細胞が、免疫療法を施されてからの経過時間を変えて回収された、複数の試料として提供されるものであり得る。 In the method of evaluating the effect of the above immunotherapy, the patient who has been subjected to the immunotherapy is a patient who has been subjected to an immunotherapy using a cancer tissue-derived cell mass or a cancer cell aggregate, and blood-derived cells derived from the patient However, it may be provided as a plurality of samples collected while changing the elapsed time since administration of immunotherapy.
 本発明の癌治療用組成物は、患者個人から得られ、かつ細胞以外の余計な夾雑物を含まない。従って、その患者個人の癌組織に対する特異性が高く、かつ確実に癌を攻撃する免疫応答を誘起することができる。また、インビトロで、保存が可能で、かつ適宜必要に応じて増殖させることもできるため、患者の状態に応じていつでも調製することができる。このような癌治療用組成物は、直接投与する癌ワクチンとしても用いることができるし、また、生体外において、血液細胞を特異的に活性化するのに好都合にも用いられ得る。さらに、本発明においては、このような癌治療用組成物や、癌組織由来細胞塊あるいは癌細胞凝集塊自体を用いて、免疫療法の効果を簡易に調べることもできる。 The composition for treating cancer of the present invention is obtained from an individual patient and does not contain unnecessary impurities other than cells. Therefore, it is possible to elicit an immune response which is highly specific to the cancerous tissue of the individual patient and which reliably attacks the cancer. In addition, since they can be stored in vitro, and can be grown as needed, they can be prepared at any time according to the condition of the patient. Such a composition for treating cancer can also be used as a directly administered cancer vaccine, and can be conveniently used to specifically activate blood cells in vitro. Furthermore, in the present invention, the effect of immunotherapy can also be simply examined using such a composition for cancer treatment, a cancer tissue-derived cell mass or a cancer cell aggregate itself.
本発明に用いられる癌組織由来細胞塊を示す図である。It is a figure which shows the cancer tissue origin cell mass used for this invention. インビトロの培養過程における本発明に用いられる癌組織由来細胞塊の形状の変化と増殖能を表す図である。It is a figure showing the change in shape and proliferation ability of the cancer tissue origin cell mass used for the present invention in the culture process in vitro. 本発明に用いられる癌組織由来細胞塊をマウスに移植して得られた腫瘍組織(図の右側2つ)と癌組織由来細胞塊の由来である生体内から摘出した腫瘍組織(図の左側2つ)とを比較した図である。Tumor tissue (two on the right side of the figure) obtained by implanting a cancer tissue-derived cell mass used in the present invention into a mouse and tumor tissue excised from the inside of the body which is derived from the cancer tissue-derived cell mass (left side 2 of the figure) 1) and FIG. 様々な癌組織から得られた本発明に用いられる癌組織由来細胞塊を示す図である。It is a figure which shows the cancer tissue origin cell mass used for this invention obtained from various cancer tissue. 本発明で用いられる癌組織由来細胞塊を冷凍保存する前(左)および融解24時間後(右)の状態を比較した図である。It is the figure which compared the state before freezing (left) and 24 hours after thawing | decompression (right) of the cancer tissue origin cell mass used by this invention. 本発明で用いられる、癌細胞凝集塊を示す図である。It is a figure which shows a cancer cell aggregate used by this invention. 本発明で用いられる検体から得られた癌細胞凝集塊を示す図である。It is a figure which shows the cancer cell aggregate obtained from the sample used by this invention. 本発明で用いられる癌細胞凝集塊を凍結して融解した後の時間経過による変化を示す図である。It is a figure which shows the change by the time progress after freezing and thawing the cancer cell aggregate used by this invention. 本発明で用いられる未処理癌組織由来細胞塊と処理した癌組織由来細胞塊のフローサイトメトリー解析結果を示す図である。It is a figure which shows the flow cytometry analysis result of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed. 本発明で用いられる未処理癌組織由来細胞塊と処理した癌組織由来細胞塊のフローサイトメトリー解析結果を示すグラフである。It is a graph which shows the flow cytometry analysis result of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed. 本発明で用いられる未処理癌組織由来細胞塊と処理した癌組織由来細胞塊のアポトーシス誘導に関連するタンパク質をウェスタンブロット解析した図である。It is the figure which carried out the western blot analysis of the protein relevant to the apoptosis induction of the untreated cancer tissue origin cell mass used by this invention, and the cancer tissue origin cell mass processed.
 本発明の癌組織由来細胞塊は、個体から得られた癌組織から3個以上の癌細胞を含む塊として分離処理された分離物またはその培養物であり、インビトロにおいて、増殖能を保持することができるようなものであり得る。 The cancer tissue-derived cell mass of the present invention is an isolated product separated from or treated as a mass containing three or more cancer cells from a cancer tissue obtained from an individual, or a culture thereof, and retains proliferation ability in vitro. It can be something that
 ここで、「個体から得られた癌組織から3個以上の癌細胞を含む塊として分離処理された分離物」とは、生体内で発生した癌から得られた癌組織を処理して得られた3個以上、好ましくは8個以上の癌細胞を含む分離物を指す。このような分離物には、単一細胞にまで分離されているものは含まれず、また単一細胞に分離されてから再構築した構成物は含まれない。但し、この分離物は、生体から分離した直後の物だけではなく、例えば生理食塩水中で一定時間保持したものや冷凍または冷蔵した物も含む。 Here, “the separated material separated and treated as a mass containing three or more cancer cells from cancer tissue obtained from an individual” is obtained by treating cancer tissue obtained from cancer generated in vivo. It refers to an isolate containing three or more, preferably eight or more cancer cells. Such isolates do not include those that have been separated into single cells, and do not include constructs that have been separated into single cells and then reassembled. However, this separated material includes not only those immediately after being separated from the living body, but also those which have been kept in physiological saline for a certain period of time and those which have been frozen or refrigerated.
 個体から「得られた癌組織」とは、手術等により摘出することで得られる癌組織の他、注射針や内視鏡で組織検査用としてインビトロで取り扱い可能なように取得された癌組織を指す。 “Cancer tissue obtained from an individual” refers to cancer tissue obtained by excision by surgery etc., as well as cancer tissue obtained so that it can be handled in vitro for histological examination with an injection needle or an endoscope. Point to.
 「個体から得られた癌組織から3個以上の癌細胞を含む塊として分離処理された分離物の培養物」とは、生体内で発生した癌から得られた癌組織を処理して得られた3個以上の癌細胞を含む塊として分離処理された分離物をインビトロにおいて培養することによって得られるものを指す。培養する時間は特に限定されず、わずかな時間でも培地中に存在させたものであればよい。このような培養物は、一定期間、好ましくは3時間以上培養することによって、略球形あるいは楕円球形を呈する場合が多い。ここでの培養物には、このような一定期間経過後の略球形あるいは楕円球形の培養物も、そこに至るまでの不定形の培養物も含まれる。さらに、このような略球形あるいは楕円球形の培養物をさらに分割して得られる不定形、さらなる培養による略球形物あるいは楕円球形物もここでいう培養物である。癌組織由来細胞塊に含まれる細胞は、純粋な癌細胞のみの集団であることが好ましい。 “Culture of the isolate obtained as a mass separated from a cancer tissue obtained from an individual as a mass containing three or more cancer cells” is obtained by treating a cancer tissue obtained from a cancer generated in vivo It refers to what is obtained by culturing in vitro the isolate separated as a mass containing three or more cancer cells. The culture time is not particularly limited as long as it is present in the medium even for a short time. Such a culture often exhibits a substantially spherical or elliptical spherical shape by culturing for a certain period of time, preferably 3 hours or more. The culture here includes a substantially spherical or spheroidal culture after such a given period of time, and an atypical culture up to that. Furthermore, an irregular shape obtained by further dividing such a substantially spherical or spheroidal culture, and a substantially spherical or spheroid obtained by further culture are also referred to as the culture herein. Preferably, the cells contained in the cancer tissue-derived cell mass are a population of pure cancer cells only.
 本発明の癌組織由来細胞塊が、インビトロにおいて、「増殖能を保持することができる」とは、温度37℃、5%CO2インキュベーターの細胞培養条件下で、少なくとも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間増殖能を保持することができることをいう。 The cancer tissue-derived cell mass of the present invention can maintain its growth ability in vitro at a temperature of 37 ° C. under cell culture conditions of a 5% CO 2 incubator for at least 10 days or more, preferably 13 It means that the growth ability can be maintained for a period of a day or more, more preferably 30 days or more.
 このような癌組織由来細胞塊は、そのまま培養を続けることでも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間において増殖能を保持し得るが、さらに培養中に定期的に機械的分割を行うことで、実質的に無期限に増殖能を保持し得る。 Such a cancer tissue-derived cell mass can retain its proliferative ability for a period of 10 days or more, preferably 13 days or more, more preferably 30 days or more, by continuing the culture as it is. By performing mechanical division, the proliferative capacity can be maintained virtually indefinitely.
 機械分割は手術用メス、ナイフ、ハサミの他、眼科尖刀などを用いて行うことができる。あるいは注射器に注射針を装着して培養液と共に癌組織由来細胞塊を吸引排出することを繰り返すことによっても行うことができる。本発明に好ましく用いられるのは、例えば1ml注射器と27Gの注射針であるが、限定はされない。 The mechanical division can be performed using a scalpel, a knife, scissors, an ophthalmologic sharp blade or the like. Alternatively, it can be performed by attaching an injection needle to a syringe and repeating aspiration and discharge of the cancer tissue-derived cell mass together with the culture solution. For example, a 1 ml syringe and a 27G injection needle are preferably used in the present invention, but the invention is not limited thereto.
 ここで、本発明の癌組織由来細胞塊の培養の為の培地は、特に限定はされないが、好ましくは、動物細胞培養用培地が用いられる。特に好ましくは、幹細胞培養用の無血清培地が用いられる。このような無血清培地は、幹細胞の培養に用いられるものであればなんら限定はされない。無血清培地とは、無調製または未精製の血清を含まない培地を指し、精製された血液由来成分や動物組織由来成分(例えば、増殖因子)を添加して使用することができる。 Here, the medium for culturing the cancer tissue-derived cell mass of the present invention is not particularly limited, but preferably, a medium for animal cell culture is used. Particularly preferably, a serum-free medium for stem cell culture is used. Such serum-free medium is not particularly limited as long as it can be used to culture stem cells. A serum-free medium refers to a medium free of unprepared or unpurified serum, and can be used by adding a purified blood-derived component or animal tissue-derived component (eg, growth factor).
 本発明の無血清培地は、動物細胞の培養に用いられる培地を基礎培地として調製し得る。基礎培地としては、例えば、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、RPMI 1640培地、Fischer’s培地、およびこれらの組合せが挙げられる。 The serum-free medium of the present invention can be prepared using a medium used for culturing animal cells as a basal medium. As a basal medium, for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, αMEM medium, DMEM medium, DMEM medium, RPMI 1640 medium, Fischer's medium And combinations thereof.
 このような無血清培地に、血清代替物を添加して、本発明の癌組織由来細胞塊を培養することができる。血清代替物は、例えば、アルブミン、アミノ酸(例えば、非必須アミノ酸)、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノールまたは3’チオールグリセロール、あるいはこれらの均等物などを適宜含有するものであり得る。 A serum substitute can be added to such serum-free medium to culture the cancer tissue-derived cell mass of the present invention. The serum substitute suitably contains, for example, albumin, amino acid (eg, non-essential amino acid), transferrin, fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol or 3 'thiol glycerol, or equivalents thereof, etc. It can be
 本発明の培養方法においては、市販の血清代替物を使用することもできる。このような市販の血清代替物としては、例えば、ノックアウト血清リプレースメント(KSR)、Chemically-defined Lipid concentrated脂肪酸濃縮液(Gibco社製)、グルタマックス(Gibco社製)が挙げられる。 Commercially available serum substitutes can also be used in the culture method of the present invention. Such commercially available serum substitutes include, for example, knockout serum replacement (KSR), Chemically-defined Lipid concentrated fatty acid concentrate (Gibco), and Glutamax (Gibco).
 本発明の癌組織由来細胞塊を培養するための培地はまた、ビタミン、増殖因子、サイトカイン、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等を含有し得る。 The medium for culturing the cancer tissue-derived cell mass of the present invention may also contain vitamins, growth factors, cytokines, antioxidants, pyruvate, buffers, inorganic salts and the like.
 特に、EGFとbFGFを含む無血清培地、例えばノックアウト血清リプレースメント(KSR、インビトロジェン社製)のような血清代替物とbFGFとを含む無血清培地等の任意の無血清培地を好ましく使用することができる。血清代替物あるいはEGF等の含有量は、培地全体の10~30%w/vであることが好ましい。 In particular, any serum-free medium such as serum-free medium containing EGF and bFGF, serum-free medium containing bFGF and serum substitute such as knockout serum replacement (KSR, manufactured by Invitrogen) can be preferably used. . The content of serum substitute or EGF or the like is preferably 10 to 30% w / v of the whole medium.
 このような培地としては限定はされないが、市販品としては、STEMPROヒトES細胞用無血清培地(Gibco)が挙げられる。 Such a medium is not limited, but commercially available products include STEMPRO human ES cell serum-free medium (Gibco).
 癌組織由来細胞塊の培養に用いられる培養器は、一般的に動物細胞の培養が可能なものであれば特に限定されないが、例えば、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、ローラーボトルが挙げられる。 The incubator used to culture the cancer tissue-derived cell mass is not particularly limited as long as it can generally culture animal cells, and for example, flasks, tissue culture flasks, dishes, petri dishes, for tissue culture Dishes, multi dishes, microplates, micro well plates, multi plates, multi well plates, chamber slides, petri dishes, tubes, trays, culture bags, roller bottles, etc. may be mentioned.
 培養器は、細胞非接着性で、細胞外マトリックス(ECM)等による細胞支持用基質を培地に共存させて三次元培養することが好ましい。細胞支持用基質は、癌組織由来細胞塊の接着を目的とするものであり得る。このような細胞支持用基質としては、細胞外マトリックスを用いたマトリゲル、例えば、コラーゲンゲルや、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンが挙げられる。このような条件は、特に本発明の癌組織由来細胞塊を増殖させたい場合に好適に用いられる。 The culture vessel is non-cell-adherent, and is preferably three-dimensionally cultured in the presence of a cell supporting substrate such as extracellular matrix (ECM) in the medium. The cell support matrix may be for adhesion of cancer tissue-derived cell mass. Examples of such a cell support substrate include matrigel using an extracellular matrix, for example, collagen gel, gelatin, poly-L-lysine, poly-D-lysine, laminin and fibronectin. Such conditions are suitably used particularly when the cancer tissue-derived cell mass of the present invention is desired to be expanded.
 その他の培養条件は、適宜設定でき、例えば、培養温度は、限定されるものではないが好ましくは、約30~40℃である。最も好ましくは37℃である。CO濃度は、例えば約1~10%、好ましくは約2~5%である。 Other culture conditions can be set appropriately, for example, the culture temperature is preferably, but not limited to, about 30 to 40 ° C. Most preferably, it is 37 ° C. The CO 2 concentration is, for example, about 1 to 10%, preferably about 2 to 5%.
 本発明の癌組織由来細胞塊は、このような培地および培養条件で培養し得る。さらに癌組織由来細胞塊の培養には、その個別の性質によって、他の細胞との共培養が好ましい場合、あるいはホルモンのような追加の特殊な補充物の存在が必要な場合もあり得る。 The cancer tissue-derived cell mass of the present invention can be cultured in such a medium and culture conditions. Furthermore, the culture of the cancer tissue-derived cell mass may, depending on its individual nature, require co-culture with other cells, or may require the presence of additional specialized supplements such as hormones.
 具体的には、共培養を、フィーダー細胞と共に行ってもよい。フィーダー細胞としては、胎児線維芽細胞等のストローマ細胞等を用いることができる。具体的には、限定はされないが、NIH3T3などが好ましい。 Specifically, co-culture may be performed with feeder cells. As feeder cells, stroma cells such as fetal fibroblasts can be used. Specifically, although not limited thereto, NIH3T3 and the like are preferable.
 あるいは、特定種類の乳癌、子宮癌、前立腺癌に対しては、ホルモンを存在させて培養することが好ましい。具体的には、乳癌に対するエストロゲン、子宮癌に対するプロジェステロン、前立腺癌に対するテストステロンなどであるが、これらに限定されず、各種ホルモンを添加し、培養条件を好都合に調整することができる。さらに、このようなホルモンの存在によって、癌組織由来細胞塊の培養後の挙動、例えば生死状態または増殖状態がどのように変化するかを調べることで、由来する患者の癌のホルモン依存性がわかり、抗ホルモン薬治療の有効性が予測できる可能性がある。 Alternatively, for certain types of breast cancer, uterine cancer and prostate cancer, it is preferable to culture in the presence of a hormone. Specifically, estrogens for breast cancer, progesterone for uterine cancer, testosterone for prostate cancer and the like are not limited thereto, and various hormones can be added to advantageously adjust culture conditions. Furthermore, the presence of such hormones indicates the hormonal dependence of the cancer of the originating patient by examining the behavior after culture of the cell mass derived from cancer tissue, for example, the state of life or death or the state of proliferation. There is a possibility that the efficacy of antihormonal drug treatment can be predicted.
 本発明の癌組織由来細胞塊は、浮遊培養で培養することも可能である。浮遊培養では、培地中において、培養器に対して非接着性の条件下で癌組織由来細胞塊を培養する。このような浮遊培養としては、例えば、胚様体培養法(Kellerら, Curr. Opin. Cell Biol. 7, 862-869 (1995))、SFEB法(例、Watanabeら, Nature Neuroscience 8, 288-296 (2005);国際公開第2005/123902号参照)が挙げられる 。特に限定はされないが、例えばほぼ球形を有する、時によっては基底膜様物を有する安定した癌組織由来細胞塊の形成時や維持の場合に用いられ得る。 The cancer tissue-derived cell mass of the present invention can also be cultured in suspension culture. In suspension culture, a cancer tissue-derived cell mass is cultured in a non-adhesive condition to a culture vessel in a medium. As such suspension culture, for example, embryoid body culture method (Keller et al., Curr. Opin. Cell Biol. 7, 862-869 (1995)), SFEB method (eg, Watanabe et al., Nature Neuroscience 8, 288- 296 (2005); see WO 2005/123902). There is no particular limitation, but it may be used, for example, when forming or maintaining a stable cancer tissue-derived cell mass having a substantially spherical shape, and sometimes having a basement membrane-like substance.
 本発明の癌組織由来細胞塊には、個体の癌組織由来細胞塊から分離処理した直後の物も含まれ、冷蔵、冷凍保存後の物も含まれ、さらにはそれらの培養物も含まれる。培養は、好ましくは3時間以上、より好ましくは、少なくとも10時間以上36時間まで、さらに好ましくは、少なくとも24時間~36時間の期間行われ得る。 The cancer tissue-derived cell mass of the present invention also includes those immediately after separation from the cancer tissue-derived cell mass of an individual, those after refrigeration and cryopreservation, and also their cultures. The culture may be performed for a period of preferably 3 hours or more, more preferably at least 10 hours and up to 36 hours, more preferably at least 24 hours to 36 hours.
 癌組織由来細胞塊を構成する癌細胞は、少なくとも3個以上、好ましくは8個以上、より好ましくは10個以上、さらに好ましくは20個以上、もっとも好ましくは50個以上である。本発明の癌組織由来細胞塊が、分離物である場合には、好ましくは1000個以下、より好ましくは、500個以下程度である。分離物を培養した後の培養物であれば、培養によってその数を増加させることが可能である。但し、培養物であっても好ましくは1万個以下、より好ましくは5000個以下である。 The number of cancer cells constituting the cancer tissue-derived cell mass is at least 3 or more, preferably 8 or more, more preferably 10 or more, still more preferably 20 or more, and most preferably 50 or more. When the cancer tissue-derived cell mass of the present invention is an isolate, it is preferably 1000 or less, more preferably about 500 or less. It is possible to increase the number of cultures after culturing the isolates by culturing. However, even if it is a culture, it is preferably 10,000 or less, more preferably 5,000 or less.
 本発明で「癌細胞」というときは、通常用いられる意味で使用され、生体内において、制限のない分裂・増殖とアポトーシスからの逸脱という、正常細胞で見られる秩序が乱れた細胞をいう。より詳細には、細胞増殖制御機能を失っているか極めて減弱している細胞を指し、典型的には、80%以上の高い頻度で無限増殖能力を獲得しており、その多くは浸潤転移能力も備えている事が多く、その結果ヒトをはじめとする、特には哺乳動物を、死に至らしめる悪性新生物と位置付けられる細胞であることを意味する。 In the present invention, the term "cancer cell" is used in a commonly used meaning, and refers to a cell in which the order seen in normal cells, that is, unlimited division / proliferation and departure from apoptosis, is disrupted in vivo. More specifically, it refers to a cell that has lost or extremely attenuated cell growth control function, and typically acquires infinite proliferation ability at a high frequency of 80% or more, many of which also have invasive transfer ability. This means that the cells are often provided, and as a result, humans and other mammals, in particular, mammals, are cells that are regarded as malignant neoplasms leading to death.
 本発明では、由来する癌組織の種類は特に限定されず、哺乳類を始めとする動物に生じる、リンパ腫、芽腫、肉腫、脂肪肉腫、神経内分泌腫瘍、中皮腫、神経鞘腫、髄膜腫、腺腫、黒色腫、白血病、リンパ性悪性腫などであり得るが、特には哺乳類の上皮細胞に生じる癌腫であることが好ましい。このような上皮細胞に生じる癌腫には、非小細胞肺癌、肝細胞癌、胆道癌、食道癌、胃癌、結腸直腸癌、膵臓癌、子宮頚癌、卵巣癌、子宮内膜癌、膀胱癌、咽頭癌、乳癌、唾液腺癌、腎癌、前立腺癌、陰唇癌、肛門癌、陰茎癌、精巣癌、甲状腺癌、頭頸部癌などが含まれる。哺乳類をはじめとする動物に特に限定はないが、サルやヒトを含む霊長目に属する動物、マウス、リス、ラットなどのげっ歯目に属する動物、ウサギ目に属する動物、イヌ、ネコなどのネコ目に属する動物が例示される。 In the present invention, the type of cancer tissue from which the present invention is derived is not particularly limited, and lymphoma, blastoma, sarcoma, liposarcoma, neuroendocrine tumor, mesothelioma, schwannoma and meningioma occur in mammals and other animals. It may be adenoma, melanoma, leukemia, lymphoid malignancies, etc., but in particular, it is preferable that it is a carcinoma arising in epithelial cells of a mammal. Examples of carcinomas arising in such epithelial cells include non-small cell lung cancer, hepatocellular carcinoma, biliary tract cancer, esophageal cancer, gastric cancer, colorectal cancer, pancreatic cancer, cervical cancer, ovarian cancer, endometrial cancer, bladder cancer, Pharyngeal cancer, breast cancer, salivary adenocarcinoma, renal cancer, prostate cancer, labia cancer, anal cancer, penile cancer, testicular cancer, thyroid cancer, head and neck cancer and the like. There is no particular limitation on mammals and other animals, but animals belonging to primates including monkeys and humans, animals belonging to rodents such as mice, squirrels and rats, animals belonging to rabbits, cats such as dogs and cats Animals belonging to the eye are exemplified.
 そのうち、本発明では、特に大腸癌組織由来、卵巣癌組織由来、乳癌組織由来、肺癌組織由来、前立線癌組織由来、腎癌組織由来、膀胱癌組織由来、咽頭癌組織由来、または膵臓癌由来であることが特に好ましいが、限定はされない。 Among them, in the present invention, especially derived from colon cancer tissue, from ovarian cancer tissue, from breast cancer tissue, from lung cancer tissue, from prostate cancer tissue, from renal cancer tissue, from bladder cancer tissue, from pharyngeal cancer tissue, or from pancreatic cancer It is particularly preferable to derive from, but not limited to.
 大腸癌組織由来の癌組織由来細胞塊である場合には、含まれる癌細胞は、特に限定はされないが、CD133を発現することもある。 In the case of a cancer tissue-derived cell mass derived from colon cancer tissue, the included cancer cells are not particularly limited, but may express CD133.
 生体内で発生した癌から得られた癌組織の分離処理には、限定はされないが、個体から得られた癌組織を、酵素処理することが含まれる。 Separation treatment of cancerous tissue obtained from cancer generated in vivo includes, but is not limited to, enzymatic treatment of cancerous tissue obtained from an individual.
 酵素処理は、コラゲナーゼ、トリプシン、パパイン、ヒアルロニダーゼ、C. histolyticum neutral protease、thermolysin、およびdispaseのうちの1種、またはこれらの2種以上の組合せによる処理であり得る。酵素処理条件は、生理学的に許容されるpH、例えば約6~8、好ましくは約7.2~7.6に緩衝された等張の塩溶液、例えばPBSやハンクスのバランス塩溶液中で、例えば約20~40℃、好ましくは約25~39℃で、結合組織を分解するために十分な時間、例えば約1~180分間、好ましくは30~150分間で、そのために十分な濃度、例えば約0.0001~5%w/v、好ましくは約0.001%~0.5% w/vであり得る。 The enzyme treatment may be treatment with one of collagenase, trypsin, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof. The enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution For example, at about 20 to 40 ° C., preferably about 25 to 39 ° C., for a sufficient time to degrade connective tissue, eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
 限定はされないが、この酵素処理の条件は、コラゲナーゼを含む混合酵素で処理することが含まれる。例えば、C. histolyticum neutral protease、thermolysin、およびdispaseからなる群より選択される1種以上のプロテアーゼ;およびコラゲナーゼI、コラゲナーゼII、およびコラゲナーゼIVからなる群より選択される1種以上のコラゲナーゼを含む混合酵素で処理することが含まれる。 Without limitation, conditions for this enzyme treatment include treatment with mixed enzymes including collagenase. For example, a mixture comprising one or more proteases selected from the group consisting of C. histolyticum neutral protease, thermolysin, and dispase; and one or more collagenases selected from the group consisting of collagenase I, collagenase II, and collagenase IV Treatment with enzymes is included.
 このような混合酵素には、限定はされないが、リベラーゼブレンザイム1(登録商標)などが含まれる。 Such mixed enzymes include, but are not limited to, Liberase Blendzyme 1 (registered trademark) and the like.
 本発明の癌組織由来細胞塊は、あるいは、3個以上の癌細胞集合体を含み、略球形あるいは楕円球形を呈するものであり得る。 Alternatively, the cancer tissue-derived cell mass of the present invention may contain three or more cancer cell aggregates and exhibit a substantially spherical shape or an elliptical spherical shape.
 限定はされないが、該癌細胞集合体の外周面に存在する基底膜様物を含む場合もある。 Although not limited thereto, it may include basement membrane-like substances present on the outer peripheral surface of the cancer cell aggregate.
 ここで、特に限定はされないが、集合体を形成する癌細胞は、CD133、CD44、CD166、CD117、CD24、およびESAからなる群より選択される1種以上の表面抗原を細胞表面に有する場合が多い。CD133、CD44、CD166、CD117、CD24、およびESAは、一般的には、リンパ球等の白血球、線維芽細胞、上皮細胞、腫瘍細胞などの細胞に発現している表面抗原である。これらの表面抗原は、細胞-細胞間、細胞-マトリックス間接着としての機能の他、様々なシグナル伝達に関わるが、各種幹細胞の表面マーカーでもある。 Here, although not particularly limited, the cancer cells forming the aggregate may have one or more surface antigens selected from the group consisting of CD133, CD44, CD166, CD117, CD24, and ESA on the cell surface. There are many. CD133, CD44, CD166, CD117, CD24, and ESA are surface antigens generally expressed on leukocytes such as lymphocytes, fibroblasts, epithelial cells, cells such as tumor cells. These surface antigens not only function as cell-cell and cell-matrix adhesion but also are involved in various signal transductions, but are also surface markers of various stem cells.
 本発明において、細胞群が、CD133のような表面抗原を「発現する」というときには、細胞群中に存在する細胞の80%以上、好ましくは90%以上、より好ましくは実質的にすべてが表面抗原を示している状態を指す。 In the present invention, when the cell group "expresses" a surface antigen such as CD133, 80% or more, preferably 90% or more, more preferably substantially all of the surface antigen is present in the cell group. Points to the state shown.
 本明細書において、「基底膜様物」とは、限定はされないが、好ましくは、コラーゲン、ラミニン、ニドゲン、ヘパラン硫酸プロテオグリカンなどのプロテオグリカン、フィブロネクチンなどの糖タンパク質のうち少なくともいずれか1種を含有する物質を指す。本発明では、ラミニンを含有する基底膜様物であることが好ましい。 In the present specification, the “basement membrane-like substance” preferably includes, but is not limited to, collagen, laminin, nidogen, proteoglycans such as heparan sulfate proteoglycan, and / or glycoproteins such as fibronectin. It refers to a substance. In the present invention, a laminin-containing basement membrane-like substance is preferred.
 ラミニンは基底膜を構成する高分子糖タンパク質である。ラミニンの機能は、多岐に渡り、例えば、細胞接着、細胞間信号伝達、正常細胞および癌細胞の増殖などの細胞機能に関与している。ラミニンは、3つの異なるサブユニットのそれぞれがジスルフィド結合で結ばれた構造を有しており、それぞれのサブユニットの異なる種類によって、11種類が見出されている。 Laminin is a macromolecular glycoprotein that constitutes the basement membrane. The functions of laminin are diverse and are involved in cellular functions such as, for example, cell adhesion, intercellular signaling, proliferation of normal cells and cancer cells. Laminin has a structure in which each of three different subunits is linked by a disulfide bond, and eleven types are found according to different types of each subunit.
 これらのうち、ラミニン5は、通常、上皮細胞のみから産生され、上皮細胞の基底膜への接着や運動機能を促進する活性を有する成分として知られている。このラミニン5はα3鎖、β3鎖、γ2鎖のそれぞれ1本ずつが複合体を形成した構造を有し、特にγ2鎖はLN5固有と考えられており、他のLN分子種には含まれていない。 Among these, laminin 5 is usually produced only from epithelial cells and is known as a component having an activity to promote adhesion of epithelial cells to basement membrane and motor function. This laminin 5 has a structure in which one each of α3 chain, β3 chain, and γ2 chain form a complex, and in particular, γ2 chain is considered to be unique to LN5, and is contained in other LN molecular species. Absent.
 本発明の癌組織由来細胞塊は、癌細胞の集合体の外周がこのような基底膜様物が形成する膜に全体として包まれた構成を有し得る。このような形態は、癌組織由来細胞塊の電子顕微鏡による観察あるいは基底膜構成要素の免疫染色、またはその両方を組み合わせる   ことによって解析することができる。ここで、癌細胞の集合体は、純粋に癌細胞以外の細胞を含まない集合体であることが好ましい。 The cancer tissue-derived cell mass of the present invention may have a configuration in which the outer periphery of a collection of cancer cells is totally enclosed in a membrane formed by such a basement membrane-like substance. Such forms can be analyzed by electron microscopic observation of cancer tissue-derived cell masses or immunostaining of basement membrane components, or a combination of both. Here, the aggregate of cancer cells is preferably an aggregate that does not purely contain cells other than cancer cells.
 ラミニンの存在は、例えば、ラミニンを認識する抗体、例えば、シグマ-アルドリッチ社のマウスラミニン由来ラビット抗体と癌組織由来細胞塊とを接触させ、抗体抗原反応を測定することによって検出することができる。 The presence of laminin can be detected, for example, by contacting an antibody that recognizes laminin, for example, a mouse laminin-derived rabbit antibody from Sigma-Aldrich, with a cancer tissue-derived cell mass and measuring an antibody-antigen reaction.
 また、ラミニンの種類までを特定する特異的な抗体を用いることも可能である。例えば、ラミニン5の存在は、例えば、特に上記の固有のγ2鎖あるいはその断片に反応性を有する抗体と癌組織由来細胞塊とを接触させ、抗体の反応を測定することによって、検出することができる。 In addition, it is also possible to use a specific antibody that identifies up to the type of laminin. For example, the presence of laminin 5 can be detected, for example, by contacting an antibody having reactivity with the above-mentioned unique γ2 chain or a fragment thereof with a cancer tissue-derived cell mass and measuring the reaction of the antibody. it can.
 本発明の癌組織由来細胞塊においては、薄い膜状の基底膜様物が塊の大きさによって、数μm程度、好ましくは、40から120nm程形成されていることが好ましいが限定はされない。 In the cancer tissue-derived cell mass of the present invention, it is preferable that the thin membranous basement-like substance is formed to about several μm, preferably about 40 to 120 nm, depending on the size of the mass, but is not limited thereto.
 本発明の癌組織由来細胞塊のサイズは、限定はされず、粒径または体積平均粒径8μm~10μm程度の不定形のものも含まれ、また、培養した後に大きく成長した1mm粒径以上のものも含まれる。好ましくは、直径が40μm~1000μmであり、より好ましくは40μm~250μm、さらに好ましくは、80μm~200μmである。 The size of the cancer tissue-derived cell mass of the present invention is not limited, and includes irregularly shaped particles having a particle diameter or volume average particle diameter of about 8 μm to 10 μm. Things are also included. Preferably, the diameter is 40 μm to 1000 μm, more preferably 40 μm to 250 μm, and still more preferably 80 μm to 200 μm.
 本発明の癌組織由来細胞塊では、特に棚状配列、シート状配列、重層配列および合胞状配列からなる群より選択される1以上の配列を有する場合が多いが、特に限定はされない。 The cancer tissue-derived cell mass of the present invention often has one or more sequences particularly selected from the group consisting of a shelf array, a sheet array, an overlay array and a syncytial array, but is not particularly limited.
 本発明の癌組織由来細胞塊は、典型的には、生体から摘出した癌組織の細片化物を酵素処理する工程;および酵素処理物のうち、3個以上の癌細胞を含む塊を選別回収する工程を含む方法によって調製され得る。 In the cancer tissue-derived cell mass of the present invention, typically, a step of subjecting a fragment of cancer tissue excised from a living body to an enzyme treatment; and among the enzyme-treated products, a mass containing three or more cancer cells is selected and recovered. And a method comprising the steps of
 さらに、限定はされないが、本発明の癌組織由来細胞塊は、このようにして回収した成分を3時間以上培養する工程を含む方法によって調製され得る。 Furthermore, without limitation, the cancer tissue-derived cell mass of the present invention can be prepared by a method comprising the step of culturing the component thus recovered for 3 hours or more.
 まず、生体から摘出した癌組織は、そのまま細片化することもでき、また、まず、細片化前に、動物細胞培養用培地で維持することができる。このような動物細胞培養用培地には、特に限定はされないが、ダルベッコMEM(DMEM F12など)、イーグルMEM 、RPMI、Ham‘s F12、アルファMEM、イスコフ改変ダルベッコなどが含まれる。この際に、細胞非接着性の培養器にて、浮遊培養することが好ましい。 First, a cancer tissue removed from a living body can be minced as it is, or can be first maintained in animal cell culture medium before mincing. Such animal cell culture media include, but are not limited to, Dulbecco's MEM (such as DMEM F12), Eagle's MEM, RPMI, Ham's F12, alpha MEM, Iscove's modified Dulbecco, and the like. At this time, it is preferable to perform suspension culture in a cell non-adhesive culture vessel.
 癌組織はまた、細片化に先立って洗浄することも好ましい。このような洗浄には、限定はされないが、酢酸緩衝液(酢酸 + 酢酸ナトリウム)、リン酸緩衝液(リン酸 + リン酸ナトリウム)、クエン酸緩衝液(クエン酸 + クエン酸ナトリウム) 、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、リン酸緩衝生理食塩水などの緩衝液等を用いることができる。本発明においては、特に好ましくは、HBSS中で組織の洗浄を行うことができる。洗浄の回数は、1回から3回が適度である。 It is also preferred that the cancerous tissue be washed prior to mincing. Such washings include, but are not limited to, acetate buffer (acetate + sodium acetate), phosphate buffer (phosphate + sodium phosphate), citrate buffer (citric acid + sodium citrate), boric acid A buffer solution such as a buffer solution, a tartaric acid buffer solution, a Tris buffer solution, or a phosphate buffered saline can be used. In the present invention, particularly preferably, tissue washing can be performed in HBSS. The number of times of washing is appropriate once to three times.
 細片化は、洗浄後の組織を、ナイフ、はさみ、カッター(手動、自動)などで分割することによって行うことができる。細片化後のサイズや形は特に限定されず、ランダムに行い得るが、好ましくは、1mm~5mm角、より好ましくは1mm~2mm角の均一なサイズとする。 The fragmentation can be performed by dividing the tissue after washing with a knife, scissors, a cutter (manually, automatically) or the like. The size and shape after fragmentation are not particularly limited, and may be random, but preferably have a uniform size of 1 mm to 5 mm square, more preferably 1 mm to 2 mm square.
 次にこのようにして得られる細片化物は酵素処理に供される。このような酵素処理は、コラゲナーゼ、トリプシン、パパイン、ヒアルロニダーゼ、C. histolyticum neutral protease、thermolysin、およびdispaseのうちの1種、またはこれらの2種以上の組合せによる処理であり得る。酵素処理条件は、生理学的に許容されるpH、例えば約6~8、好ましくは約7.2~7.6に緩衝された等張の塩溶液、例えばPBSやハンクスのバランス塩溶液中で、例えば約20~40℃、好ましくは約25~39℃で、結合組織を分解するために十分な時間、例えば約1~180分間、好ましくは30~150分間で、そのために十分な濃度、例えば約0.0001~5%w/v、好ましくは約0.001%~0.5% w/vであり得る。 The debris obtained in this way is then subjected to an enzyme treatment. Such enzyme treatment may be treatment with one of collagenase, trypsin, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof. The enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution For example, at about 20 to 40 ° C., preferably about 25 to 39 ° C., for a sufficient time to degrade connective tissue, eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
 限定はされないが、この酵素処理の条件は、例えば、コラゲナーゼを含む混合酵素で処理することであり得る。より好ましくは、C. histolyticum neutral protease、thermolysin、およびdispaseからなる群より選択される1種以上のプロテアーゼ;およびコラゲナーゼI、コラゲナーゼII、およびコラゲナーゼIVからなる群より選択される1種以上のコラゲナーゼを含む混合酵素で処理することが含まれる。 Without limitation, the conditions for this enzyme treatment may be, for example, treatment with a mixed enzyme comprising collagenase. More preferably, one or more proteases selected from the group consisting of C. histolyticum neutral protease, thermolysin, and dispase; and one or more collagenases selected from the group consisting of collagenase I, collagenase II, and collagenase IV Treatment with mixed enzymes is included.
 このような混合酵素には、限定はされないが、リベラーゼブレンザイム1(登録商標)などが含まれる。 Such mixed enzymes include, but are not limited to, Liberase Blendzyme 1 (registered trademark) and the like.
 次にこのようにして得られた酵素処理物のうち、3個以上の癌細胞を含む塊を選別回収することが好ましい。選別回収の方法は特に限定されず、サイズを振分ける当業者に公知のいずれの方法も使用することができる。 Next, among the enzyme-treated products thus obtained, it is preferable to sort and recover a mass containing three or more cancer cells. The method of sorting and recovering is not particularly limited, and any method known to those skilled in the art of sorting sizes can be used.
 サイズの振分け方法としては、簡便な方法としては、目視、位相差顕微鏡による分別、あるいは篩によるが、当業者に利用可能な粒子径による分別法であれば特に限定されない。篩を使う場合は、篩メッシュサイズ20μmを通過し、かつ500μmを通過しない成分を回収することが好ましい。より好ましくは篩メッシュサイズ40μmを通過し、かつ250μmを通過しない成分を回収する。 As a method of distributing the size, a simple method is by visual observation, separation by phase contrast microscope, or sieve, but it is not particularly limited as long as it is a separation method by particle diameter available to those skilled in the art. In the case of using a sieve, it is preferable to recover a component which passes a sieve mesh size of 20 μm and does not pass 500 μm. More preferably, components that pass a sieve mesh size of 40 μm and not pass 250 μm are recovered.
 ここで、選別の対象となる3個以上の癌細胞を含む塊は、本発明の癌組織由来細胞塊であり、一定範囲のサイズを有する。一定範囲のサイズとは、体積平均粒子径8μm~10μm程度の小さなものも含まれるが、球形に近い場合は、直径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、楕円形状の場合には、長径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、不定形の場合には、体積平均粒子径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、である。体積平均粒子径の測定には、位相差顕微鏡(IX70;オリンパス社製)にCCDカメラを取り付けたものを用い、粒度分布及び粒子形状を評価することによって行うことができる。 Here, a mass containing three or more cancer cells to be sorted is a cancer tissue-derived cell mass of the present invention, and has a range of sizes. The size within a certain range includes small particles having a volume average particle diameter of about 8 μm to 10 μm, but in the case of a spherical shape, the diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm, and more preferably 40 μm to 250 μm. In the case of an elliptical shape, the major diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm, more preferably 40 μm to 250 μm, and in the case of indeterminate shape, the volume average particle diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm. And more preferably 40 μm or more and 250 μm or less. The volume average particle diameter can be measured by evaluating the particle size distribution and the particle shape using a phase contrast microscope (IX70; manufactured by Olympus Corporation) with a CCD camera attached.
 このようにして得られた選別回収成分である分離処理物あるいはその培養物のいずれもが、本発明の癌組織由来細胞塊である。培養物は、選別回収成分たる分離物を、わずかな時間に培地中に存在したものであってもよいし、例えば、少なくとも3時間以上、好ましくは10時間以上36時間まで、より好ましくは24時間~36時間の期間培養することで、略球形あるいは略楕円球形の形状になったものでもよい。培養時間は、36時間を超えて、数日、あるいは10日以上、13日以上、または30日以上経過したものであってもよい。 The separated processed product as a sorted and recovered component thus obtained or the culture thereof is the cancer tissue-derived cell mass of the present invention. The culture may be one in which the separation and recovery component is present in the culture medium for a short time, for example, at least 3 hours or more, preferably 10 hours to 36 hours, more preferably 24 hours. By culturing for a period of ̃36 hours, it may be in the shape of a substantially spherical shape or a substantially elliptical shape. The culture time may be more than 36 hours, several days, 10 days or more, 13 days or more, or 30 days or more.
 培養は、培地中で長期間そのまま行うことも可能であるが、好ましくは、培養途中で定期的に機械的分割を行うことで、実質的に無限に増殖能を保持させることもできる。 The culture can be carried out as it is in the medium for a long period of time, but preferably, by carrying out mechanical division periodically during the culture, the proliferative capacity can be maintained virtually infinitely.
 本発明の癌組織由来細胞塊は、例えば、直径100マイクロメーターの癌組織由来細胞塊10個以下(細胞1000個以下に相当)でも、異種動物への移植における定着度が高い。従って、本発明の癌組織由来細胞塊は、マウスを始めとする癌モデル動物の簡便な作成に有用であり、より厳密な癌組織の検証、薬剤感受性の評価、あるいは放射線治療を始めとする治療態様の評価が可能となる。 The cancer tissue-derived cell mass of the present invention, for example, has a high degree of establishment in transplantation into xenogeneic animals even with 10 or less cancer tissue-derived cell masses having a diameter of 100 micrometers (corresponding to 1000 cells or less). Therefore, the cancer tissue-derived cell mass of the present invention is useful for simple preparation of mouse and other cancer model animals, and more rigorous examination of cancer tissue, evaluation of drug sensitivity, or treatment such as radiation therapy. Evaluation of aspects is possible.
 本発明の癌組織由来細胞塊は、冷凍保存することが可能であり、通常の保存状態においてその増殖能を保持することができる。 The cancer tissue-derived cell mass of the present invention can be cryopreserved and can retain its proliferative ability under normal storage conditions.
 本発明の癌細胞凝集塊は、癌組織由来細胞塊または個体から得られる癌組織を、単一細胞化した後に該単一細胞化物中の個々の細胞同士または完全には個々の細胞にまでは分離されなかったいくつかの細胞の集合同士、または個々の細胞と完全には個々の細胞にまでは分離されなかったいくつかの細胞とが、全体として細胞数3個以上に凝集することによって形成される凝集物またはその培養物であって、インビトロにおいて、増殖能を保持することができるようなものである。 The cancer cell aggregate of the present invention is a cancer tissue-derived cell mass or a cancer tissue obtained from an individual, which is single-cellified and then individual cells in the single cell complex or completely up to individual cells. A group of several cells that were not separated or formed by aggregation of the individual cells and some cells that were not completely separated into individual cells into a total of three or more cells Aggregates or cultures thereof, which are capable of retaining their ability to grow in vitro.
 ここで、「癌組織由来細胞塊または個体から得られる癌組織を単一細胞化する」とは、癌組織由来細胞塊または得られた癌組織の少なくとも一部をインビトロにおいて単一細胞にまで分離させる処理を施すことをいう。従って、典型的には、このような処理後に、個々の単一細胞にまで分離した細胞が存在する中に、いくらかの細胞が個々にまでは分離されない状態で混在する場合もあり、このような場合であっても、本明細書でいう「単一細胞化する」に該当する。この時に混在する個々にまでは分離されない状態のものには、細胞数10個までの集合体、好ましくは細胞数2~3個の集合体が含まれる。 Here, "a single cell of a cancer tissue-derived cell mass or a cancer tissue obtained from an individual" means that at least a portion of the cancer tissue-derived cell mass or the obtained cancer tissue is separated into single cells in vitro. To perform the process of Thus, typically, after such treatment, some cells may co-exist without being separated individually, even in the presence of cells separated into individual single cells. Even in the case, it corresponds to "to unicellularize" as referred to herein. At this time, in a state where it is not separated up to the individual, there are aggregates of up to 10 cells, preferably those of 2 to 3 cells.
 「細胞数3個以上に凝集」とは、生体内で発生した癌から得られた癌組織または本発明者らが見出した癌組織由来細胞塊を単一細胞化処理して得られた個々の細胞同士または個々にまでは分離されなかったいくつかの細胞の集合体同士、またはそれらの組合せ同士が、少なくとも3個あるいはそれ以上の複数の細胞を含むように集まった状態を指す。 The term “aggregation to 3 or more cells” means individual cancer tissues obtained from cancers generated in vivo or individual cancer clusters obtained from the cancer tissue-derived cell masses found by the present inventors. It refers to a state in which several cell aggregates or combinations thereof that were not separated from one another or individually are included so as to include at least three or more cells.
 癌組織由来細胞塊または生体内で発生した癌から得られた癌組織を単一細胞化処理に供する場合は、限定はされないが、個体から得られた癌組織を、酵素処理することが含まれる。 When subjecting a cancer tissue-derived cell mass or a cancer tissue obtained from a cancer generated in vivo to a single cellification treatment, there is no limitation, but it is included to enzymatically treat the cancer tissue obtained from an individual .
 酵素処理は、典型的には、トリプシン、ディスパーゼ、および場合により、コラゲナーゼ、パパイン、ヒアルロニダーゼ、C. histolyticum neutral protease、thermolysin、およびdispaseのうちの1種、またはこれらの2種以上の組合せによる処理であり得る。酵素処理条件は、生理学的に許容されるpH、例えば約6~8、好ましくは約7.2~7.6に緩衝された等張の塩溶液、例えばPBSやハンクスのバランス塩溶液中で、例えば約20~40℃、好ましくは約25~39℃で、結合組織を分解するために十分な時間、例えば約1~180分間、好ましくは30~150分間で、そのために十分な濃度、例えば約0.0001~5%w/v、好ましくは約0.001%~0.5% w/vであり得る。 The enzyme treatment is typically treated with trypsin, dispase, and optionally, collagenase, papain, hyaluronidase, C. histolyticum neutral protease, thermolysin, and dispase, or a combination of two or more thereof. possible. The enzyme treatment conditions may be in an isotonic salt solution buffered to a physiologically acceptable pH, for example about 6 to 8, preferably about 7.2 to 7.6, such as PBS or Hanks balanced salt solution For example, at about 20 to 40 ° C., preferably about 25 to 39 ° C., for a sufficient time to degrade connective tissue, eg, about 1 to 180 minutes, preferably 30 to 150 minutes, for which sufficient concentration It may be 0.0001-5% w / v, preferably about 0.001% -0.5% w / v.
 限定はされないが、この酵素処理は、典型的には、トリプシンまたはディスパーゼ処理単独でもよい。 Although not limited, this enzyme treatment may typically be trypsin or dispase treatment alone.
 単一細胞化処理の後には、通常個々に分離された細胞が得られる。但し、個々にまで完全に分離されない細胞も含まれる。 After the single-cellification treatment, cells that are usually separated individually are obtained. However, it also includes cells which are not completely separated individually.
 このような細胞は、このまま凝集させてもよいが、好ましくは、例えば、単一細胞化処理後ただちにROCK阻害剤を存在させ、凝集させる。 Such cells may be allowed to aggregate as such, but preferably, for example, the ROCK inhibitor is allowed to aggregate immediately after single cell treatment.
 ROCKとは、Rho-associated coiled-coilキナーゼ(ROCK:GenBankアクセッション番号:NM_005406)のことであり、Rho GTPaseの主たるエフェクター分子の1つで、多様な生理現象を制御していることが知られている(Rho結合キナーゼともいう)。ROCK阻害剤としては、例えば、Y27632、などが例示される。その他に、Fasudil(HA1077)、H-1152、Wf-536(これらはすべて和光純薬工業株式会社から入手できる)、及びそれらの誘導体、並びにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸やこれらを含むベクターが挙げられる。 ROCK refers to Rho-associated coiled-coil kinase (ROCK: GenBank accession number: NM_005406), which is one of the main effector molecules of Rho GTPase, and is known to control diverse physiological phenomena. (Also called Rho-linked kinase). As a ROCK inhibitor, Y27632 etc. are illustrated, for example. In addition, Fasudil (HA1077), H-1152, Wf-536 (all available from Wako Pure Chemical Industries, Ltd.), and derivatives thereof, antisense nucleic acid against ROCK, RNA interference-inducing nucleic acid, and the like And vectors that contain it.
 トリプシン処理(例えば限定はされないが、0.25%トリプシン-EDTA、37℃5分間処理)によって単一細胞または10個以下の細胞の集合にまで分離した処理物を、凝集に先立って、96ウェル培養プレートに低密度(例えば500個/0.32cm2、培地容量0.15 ml程度)で播種する。維持培養液中にただちに、あるいは数日培養後に、ROCK阻害剤を1~100μM程度、好ましくは10μM程度の濃度添加することができる。 Treatments separated to single cells or aggregates of 10 or less cells by trypsinization (for example, but not limited to, 0.25% trypsin-EDTA, treatment at 37 ° C. for 5 minutes) are subjected to 96-well culture plate prior to aggregation. At a low density (eg 500 cells / 0.32 cm 2 , medium volume about 0.15 ml). The ROCK inhibitor can be added to the maintenance culture solution immediately or after culturing for several days, at a concentration of about 1 to 100 μM, preferably about 10 μM.
 このような凝集物をインビトロにおいて培養することができる。培養する時間は特に限定されず、わずかな時間でも培地中に存在させたものであればよい。このような培養物は、一定期間、好ましくは3時間以上培養することによって、略球形あるいは楕円球形を呈する場合が多い。ここでの培養物には、このような一定期間経過後の略球形あるいは楕円球形の培養物も、そこに至るまでの不定形の培養物も含まれる。さらに、このような略球形あるいは楕円球形の培養物をさらに分割して得られる不定形、さらなる培養による略球形物あるいは楕円球形物もここでいう培養物である。 Such aggregates can be cultured in vitro. The culture time is not particularly limited as long as it is present in the medium even for a short time. Such a culture often exhibits a substantially spherical or elliptical spherical shape by culturing for a certain period of time, preferably 3 hours or more. The culture here includes a substantially spherical or spheroidal culture after such a given period of time, and an atypical culture up to that. Furthermore, an irregular shape obtained by further dividing such a substantially spherical or spheroidal culture, and a substantially spherical or spheroid obtained by further culture are also referred to as the culture herein.
 本発明の癌細胞凝集塊が、インビトロにおいて、「増殖能を保持することができる」とは、温度37℃、5%CO2インキュベーターの細胞培養条件下で、少なくとも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間増殖能を保持することができることをいう。 The cancer cell aggregate of the present invention can maintain its growth ability in vitro, at least 10 days or more, preferably 13 days, under cell culture conditions at a temperature of 37 ° C. in a 5% CO 2 incubator. This means that the growth ability can be maintained for a period of 30 days or more, more preferably.
 このような癌細胞凝集塊は、そのまま培養を続けることでも10日以上、好ましくは13日以上、さらに好ましくは30日以上の期間において増殖能を保持し得るが、さらに培養中に定期的に機械的分割を行うことで、またはさらに単細胞化処理と凝集を行うことで、実質的に無期限に増殖能を保持し得る。 Such cancer cell aggregates can retain their growth ability for a period of 10 days or more, preferably 13 days or more, more preferably 30 days or more, by continuing the culture as they are, but furthermore, they can By carrying out selective division, or by further performing unicellularization treatment and aggregation, the proliferative ability can be maintained virtually indefinitely.
 ここで、本発明の癌細胞凝集塊の培養の為の培地は、癌組織由来細胞塊の培養の為の培地と同様である。 Here, the medium for culturing the cancer cell aggregate of the present invention is the same as the medium for culturing a cancer tissue-derived cell mass.
 本発明の癌細胞凝集塊は、このような培地および培養条件で培養し得る。さらに癌細胞凝集塊の培養には、その個別の性質によって、他の細胞との共培養が好ましい場合、あるいはホルモンのような追加の特殊な補充物の存在が必要な場合もあり得る。 The cancer cell aggregates of the present invention can be cultured in such media and culture conditions. Furthermore, the culture of cancer cell aggregates may, depending on its individual nature, be preferred if co-culture with other cells is preferred or the presence of additional specialized supplements such as hormones.
 具体的には、共培養を、フィーダー細胞と共に行ってもよい。フィーダー細胞としては、胎児線維芽細胞等のストローマ細胞等を用いることができる。具体的には、限定はされないが、NIH3T3などが好ましい。 Specifically, co-culture may be performed with feeder cells. As feeder cells, stroma cells such as fetal fibroblasts can be used. Specifically, although not limited thereto, NIH3T3 and the like are preferable.
 あるいは、特定種類の乳癌、子宮癌、前立腺癌に対しては、癌組織由来細胞塊の場合と同様に、ホルモンを存在させて培養することが好ましい。具体的には、乳癌に対するエストロゲン、子宮癌に対するプロジェステロン、前立腺癌に対するテストステロンなどであるが、これらに限定されず、各種ホルモンを添加し、培養条件を好都合に調整することができる。さらに、このようなホルモンの存在によって、癌細胞凝集塊の培養後の挙動、例えば生死状態または増殖状態がどのように変化するかを調べることで、由来する患者の癌のホルモン依存性がわかり、抗ホルモン薬治療の有効性が予測できる可能性がある。 Alternatively, for certain types of breast cancer, uterine cancer and prostate cancer, it is preferable to culture in the presence of a hormone as in the case of the cancer tissue-derived cell mass. Specifically, estrogens for breast cancer, progesterone for uterine cancer, testosterone for prostate cancer and the like are not limited thereto, and various hormones can be added to advantageously adjust culture conditions. Furthermore, the presence of such hormones reveals the hormonal dependence of the originating patient's cancer by examining the behavior of cancer cell aggregates after culture, such as how life or death or growth changes. It may be possible to predict the efficacy of antihormonal drug treatment.
 本発明の癌細胞凝集塊はまた、癌組織由来細胞塊と同様に、浮遊培養で培養することも可能である。 The cancer cell aggregate of the present invention can also be cultured in suspension culture, like the cancer tissue-derived cell mass.
 癌細胞凝集塊を構成する癌細胞は、少なくとも3個以上、好ましくは8個以上、より好ましくは10個以上、さらに好ましくは20個以上であり、その数において上限は特にはない。本発明の癌細胞凝集塊が、分離物である場合には、好ましくは1000個以下、より好ましくは、500個以下程度である。分離物を培養した後の培養物であれば、培養によってその数を増加させることが可能である。但し、培養物であっても好ましくは1万個以下、より好ましくは5000個以下である。 The number of cancer cells constituting the cancer cell aggregate is at least 3 or more, preferably 8 or more, more preferably 10 or more, still more preferably 20 or more, and the number is not particularly limited. When the cancer cell aggregate of the present invention is an isolated substance, it is preferably 1000 or less, more preferably about 500 or less. It is possible to increase the number of cultures after culturing the isolates by culturing. However, even if it is a culture, it is preferably 10,000 or less, more preferably 5,000 or less.
 本発明の癌細胞凝集塊のサイズは、限定はされず、粒径または体積平均粒径8μm~10μm程度の不定形のものも含まれ、また、培養した後に大きく成長した1mm粒径以上のものも含まれる。好ましくは、直径が40μm~1000μmであり、より好ましくは40μm~250μm、さらに好ましくは、80μm~200μmである。 The size of the cancer cell aggregate of the present invention is not limited, and includes irregularly shaped particles having a particle size or volume average particle size of about 8 μm to 10 μm, and those grown 1 mm or larger in particle size after culture Also included. Preferably, the diameter is 40 μm to 1000 μm, more preferably 40 μm to 250 μm, and still more preferably 80 μm to 200 μm.
 本発明の癌細胞凝集塊では、特に棚状配列、シート状配列、重層配列および合胞状配列からなる群より選択される1以上の配列を有する場合が多いが、特に限定はされない。 The cancer cell aggregate of the present invention often has one or more sequences particularly selected from the group consisting of a shelf array, a sheet array, an interlayer array and a syncytial array, but is not particularly limited.
 本発明の癌細胞凝集塊は、典型的には、生体から摘出した癌組織を単一細胞化する工程;および該単一細胞化物中の細胞同士を細胞数3個以上に凝集させる工程を含む方法によって調製され得る。 The cancer cell aggregate of the present invention typically comprises the steps of: converting the cancerous tissue removed from the living body into single cells; and aggregating the cells in the single cellification into three or more cells. It can be prepared by the method.
 さらに、限定はされないが、本発明の癌細胞凝集塊は、凝集した成分を3時間以上培養する工程を含む方法によって調製され得る。 Furthermore, without limitation, the cancer cell aggregate of the present invention can be prepared by a method comprising the step of culturing the aggregated component for 3 hours or more.
 まず、本発明の癌細胞凝集塊が、癌組織由来細胞塊から得られる場合には、そのまま酵素処理に供するが、生体から摘出した癌組織は、そのまま酵素処理に供することで単一細胞化することもできる一方で、酵素処理に先立って、細片化することが好ましい。細片化前に、動物細胞培養用培地で維持することができる。このような動物細胞培養用培地には、特に限定はされないが、ダルベッコMEM(DMEM F12など)、イーグルMEM 、RPMI、Ham‘s F12、アルファMEM、イスコフ改変ダルベッコなどが含まれる。この際に、細胞非接着性の培養器にて、浮遊培養することが好ましい。 First, when the cancer cell aggregate of the present invention is obtained from a cancer tissue-derived cell mass, it is directly subjected to the enzyme treatment, but the cancer tissue removed from the living body is converted into a single cell by being directly subjected to the enzyme treatment. While it is also possible, it is preferable to minify prior to enzyme treatment. Prior to fragmentation, it can be maintained in animal cell culture medium. Such animal cell culture media include, but are not limited to, Dulbecco's MEM (such as DMEM F12), Eagle's MEM, RPMI, Ham's F12, alpha MEM, Iscove's modified Dulbecco, and the like. At this time, it is preferable to perform suspension culture in a cell non-adhesive culture vessel.
 癌組織はまた、細片化に先立って洗浄することも好ましい。このような洗浄には、限定はされないが、酢酸緩衝液(酢酸 + 酢酸ナトリウム)、リン酸緩衝液(リン酸 + リン酸ナトリウム)、クエン酸緩衝液(クエン酸 + クエン酸ナトリウム) 、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液、リン酸緩衝生理食塩水などの緩衝液等を用いることができる。本発明においては、特に好ましくは、HBSS中で組織の洗浄を行うことができる。洗浄の回数は、1回から3回が適度である。 It is also preferred that the cancerous tissue be washed prior to mincing. Such washings include, but are not limited to, acetate buffer (acetate + sodium acetate), phosphate buffer (phosphate + sodium phosphate), citrate buffer (citric acid + sodium citrate), boric acid A buffer solution such as a buffer solution, a tartaric acid buffer solution, a Tris buffer solution, or a phosphate buffered saline can be used. In the present invention, particularly preferably, tissue washing can be performed in HBSS. The number of times of washing is appropriate once to three times.
 細片化は、洗浄後の組織を、ナイフ、はさみ、カッター(手動、自動)などで分割することによって行うことができる。細片化後のサイズや形は特に限定されず、ランダムに行い得るが、好ましくは、1mm~5mm角、より好ましくは1mm~2mm角の均一なサイズとする。 The fragmentation can be performed by dividing the tissue after washing with a knife, scissors, a cutter (manually, automatically) or the like. The size and shape after fragmentation are not particularly limited, and may be random, but preferably have a uniform size of 1 mm to 5 mm square, more preferably 1 mm to 2 mm square.
 次にこのようにして得られる細片化物は酵素処理に供される。このような酵素処理は、前述の通り、主にトリプシン処理であり得る。酵素処理条件は、20℃~45℃、数分から数時間であり得る。 The debris obtained in this way is then subjected to an enzyme treatment. Such enzyme treatment may be mainly trypsin treatment as described above. Enzyme treatment conditions may be from 20 ° C. to 45 ° C., minutes to hours.
 次にこのようにして得られた単一細胞化物中の細胞同士が細胞数3個以上に凝集するようにする。凝集に先立って、好ましくは、単一細胞化物に速やかにROCK阻害剤を添加することができる。 Next, the cells in the single-cell material thus obtained are allowed to aggregate to three or more cells. Prior to aggregation, preferably, the ROCK inhibitor can be added rapidly to a single cell.
 ここで、凝集により得られる3個以上の癌細胞を含む凝集物は、本発明の癌細胞凝集塊であり、一定範囲のサイズを有する。一定範囲のサイズとは、体積平均粒子径8μm~10μm程度の小さなものも含まれるが、球形に近い場合は、直径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、楕円形状の場合には、長径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、不定形の場合には、体積平均粒子径20μm以上500μm以下、好ましくは30μm以上400μm以下、より好ましくは40μm以上250μm以下、である。体積平均粒子径の測定には、位相差顕微鏡(IX70;オリンパス社製)にCCDカメラを取り付けたものを用い、粒度分布及び粒子形状を評価することによって行うことができる。 Here, an aggregate containing three or more cancer cells obtained by aggregation is a cancer cell aggregate of the present invention, and has a range of sizes. The size within a certain range includes small particles having a volume average particle diameter of about 8 μm to 10 μm, but in the case of a spherical shape, the diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm, and more preferably 40 μm to 250 μm. In the case of an elliptical shape, the major diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm, more preferably 40 μm to 250 μm, and in the case of indeterminate shape, the volume average particle diameter is 20 μm to 500 μm, preferably 30 μm to 400 μm. And more preferably 40 μm or more and 250 μm or less. The volume average particle diameter can be measured by evaluating the particle size distribution and the particle shape using a phase contrast microscope (IX70; manufactured by Olympus Corporation) with a CCD camera attached.
 このようにして得られた凝集物またはその培養物のいずれもが、本発明の癌細胞凝集塊である。培養物は、選別回収成分たる分離物を、わずかな時間に培地中に存在させたものであってもよいし、例えば、少なくとも3時間以上、好ましくは10時間以上36時間まで、より好ましくは24時間~36時間の期間培養することで、略球形あるいは略楕円球形の形状になったものでもよい。培養時間は、36時間を超えて、数日、あるいは10日以上、13日以上、または30日以上経過したものであってもよい。 The aggregate thus obtained or the culture thereof is the cancer cell aggregate of the present invention. The culture may be one in which the separation / collection component isolate is present in the culture medium for a short time, for example, at least 3 hours or more, preferably 10 hours to 36 hours, more preferably 24 hours. By culturing for a period of time to 36 hours, it may be in the shape of a substantially spherical or substantially elliptical sphere. The culture time may be more than 36 hours, several days, 10 days or more, 13 days or more, or 30 days or more.
 培養は、培地中で長期間そのまま行うことも可能であるが、好ましくは、培養途中で定期的に機械的分割を行うことで、実質的に無限に増殖能を保持させることもできる。 The culture can be carried out as it is in the medium for a long period of time, but preferably, by carrying out mechanical division periodically during the culture, the proliferative capacity can be maintained virtually infinitely.
 さらに、本発明の癌細胞凝集塊は、例えば、直径100マイクロメーターの癌細胞凝集塊10個以下(細胞1000個以下に相当)でも、異種動物への移植における定着度が高い。従って、本発明の癌細胞凝集塊は、マウスを始めとする癌モデル動物の簡便な作成に有用であり、より厳密な癌組織の検証、薬剤感受性の評価、あるいは放射線治療を始めとする治療態様の評価が可能となる。 Furthermore, the cancer cell aggregate of the present invention has a high degree of establishment in transplantation into xenogeneic animals even if, for example, 10 or less cancer cell aggregates having a diameter of 100 micrometers (corresponding to 1000 cells or less). Therefore, the cancer cell aggregate of the present invention is useful for the simple preparation of mouse and other cancer model animals, and more rigorous examination of cancer tissues, evaluation of drug sensitivity, and treatment modes including radiation therapy. Can be evaluated.
 本発明の癌細胞凝集塊は、冷凍保存することが可能であり、通常の保存状態においてその増殖能を保持することができる。 The cancer cell aggregate of the present invention can be cryopreserved and can retain its proliferative ability under normal storage conditions.
 このようにして得られる本発明の癌組織由来細胞塊または癌細胞凝集塊は、インビトロにおいて、生体内の癌組織と同様の挙動を示し、安定的に培養することができ、しかも増殖能を保持する。 The cancer tissue-derived cell mass or cancer cell aggregate of the present invention thus obtained exhibits the same behavior as cancer tissue in vivo in vitro, can be stably cultured, and retains the proliferation ability. Do.
 このようにして得られる本発明の癌組織由来細胞塊または癌細胞凝集塊は、インビトロにおいて、生体内の癌組織と同様の挙動を示し、安定的に培養することができ、しかも増殖能を保持する。さらに、生体由来の癌細胞以外の細胞や結合組織など、癌細胞以外の余計な夾雑物の割合が非常に少ないかほとんどない。従って、免疫療法に非常に好都合に用いられる。 The cancer tissue-derived cell mass or cancer cell aggregate of the present invention thus obtained exhibits the same behavior as cancer tissue in vivo in vitro, can be stably cultured, and retains the proliferation ability. Do. In addition, the proportion of unnecessary contaminants other than cancer cells, such as cells other than cancer cells derived from living bodies and connective tissues, is very small or almost nonexistent. Therefore, it is very conveniently used for immunotherapy.
 本発明の癌組織由来細胞塊または癌細胞凝集塊は、冷凍保存することが可能であり、通常の保存状態においてその増殖能を保持することができる。従って、免疫療法の効果を経時的に測るのにも好都合に用いることができる。 The cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be cryopreserved, and can retain its proliferative ability under normal storage conditions. Therefore, it can also be conveniently used to measure the effect of immunotherapy over time.
 癌組織由来細胞塊または癌細胞凝集塊を免疫療法に用いる具体的な態様としては、例えば、これらを化学処理して、癌治療用組成物を調製することがある。ここで、化学処理には、ホルマリン処理、酵素処理などが挙げられる。あるいは光線力学的な処理を施すことで、癌治療用組成物を調製することができる。このような光線力学的な処理には、放射線照射処理や紫外線照射処理が挙げられる。 As a specific embodiment of using a cancer tissue-derived cell mass or a cancer cell aggregate for immunotherapy, for example, they may be chemically treated to prepare a composition for cancer treatment. Here, the chemical treatment includes formalin treatment, enzyme treatment and the like. Alternatively, a composition for cancer treatment can be prepared by photodynamic treatment. Such photodynamic processing includes radiation irradiation processing and ultraviolet irradiation processing.
 例えば、酵素処理する場合においては、一旦形成された癌組織由来細胞塊または癌細胞凝集塊を、トリプシン処理(例えば37℃60分)して、完全に単一の細胞にまで分離し、しばらくこの状態で放置する。これにより単一細胞にまで分離された細胞はアポトーシスを起こして死滅するが、この細胞に含まれていたペプチド等は、抗原提示細胞の標的となることができる。 For example, in the case of enzyme treatment, once formed, cancer tissue-derived cell masses or cancer cell aggregates are trypsinized (eg, 37 ° C., 60 minutes) to completely separate into single cells, Leave as it is. Thus, cells separated into single cells undergo apoptosis and die, but peptides contained in these cells can be targets for antigen-presenting cells.
 例えば、放射線処理する場合には、本発明の癌組織由来細胞塊または癌細胞凝集塊のアポトーシスを促すことができる量までの放射線を照射し、細胞のアポトーシスを促す。 For example, in the case of radiation treatment, radiation is irradiated to such an amount that can promote apoptosis of the cancer tissue-derived cell mass or cancer cell aggregate of the present invention to promote cell apoptosis.
 このようにして得られた癌治療用組成物を、患者に直接投与する。投与の方法は、経口でもよいが、好ましくは注射などの非経口投与である。免疫性の増強の為に、免疫アジュバントと共に投与することも好ましい。腸を介した吸収を伴わずに組成物が対象に吸収される、あらゆる形式の投与が包含される。例示的な非経口投与には、筋肉内投与、静脈内投与、腹腔内投与、腫瘍内投与、眼内投与、または関節内投与などがあるが、これらに限定されない。 The composition for cancer treatment thus obtained is directly administered to a patient. The method of administration may be oral but preferably is parenteral administration such as injection. Administration with an immune adjuvant is also preferred to enhance immunity. Included is any form of administration in which the composition is absorbed into the subject without absorption through the intestine. Exemplary parenteral administrations include, but are not limited to, intramuscular, intravenous, intraperitoneal, intratumoral, intraocular, or intraarticular administration.
 投与する際の製剤は、一定量の癌組織由来細胞塊または癌細胞凝集塊またはその分解物を分散剤(例えば、ポリソルベート80,ポリオキシエチレン硬化ヒマシ油60,ポリエチレングリコール,カルボキシメチルセルロース,アルギン酸ナトリウム等)、保存剤(例えば、メチルパラベン,プロピルパラベン,ベンジルアルコール,クロロブタノール,フェノール等)、等張化剤(例えば、塩化ナトリウム,グリセリン,D-マンニトール、グルコース等)等と共に水性溶剤(例えば、注射用蒸留水,生理的食塩水,リンゲル液等)あるいは油性溶剤(例えば、オリーブ油,ゴマ油,綿実油,トウモロコシ油等の植物油、プロピレングリコール等)等に溶解、懸濁あるいは乳化することにより製造される。この際、所望により溶解補助剤(例えば、サリチル酸ナトリウム,酢酸ナトリウム等)、安定剤(例えば、ヒト血清アルブミン等)、無痛化剤(例えば、ベンジルアルコール等)等の添加物を用いてもよい。更に必要に応じて抗酸化剤、着色剤等や他の添加剤を含有せしめてもよい。 When administering the preparation, a certain amount of cancer tissue-derived cell masses or cancer cell aggregates or a degradation product thereof may be dispersed (eg, polysorbate 80, polyoxyethylene hydrogenated castor oil 60, polyethylene glycol, carboxymethyl cellulose, sodium alginate etc.) Aqueous solution (eg, for injection) together with preservatives (eg, methyl paraben, propyl paraben, benzyl alcohol, chlorobutanol, phenol etc.), tonicity agents ( It is produced by dissolving, suspending or emulsifying it in distilled water, physiological saline, Ringer's solution etc.) or oily solvent (eg olive oil, sesame oil, cottonseed oil, vegetable oil such as corn oil etc., propylene glycol etc.) etc. At this time, additives such as a solubilizing agent (eg, sodium salicylate, sodium acetate etc.), a stabilizer (eg, human serum albumin etc.), a soothing agent (eg, benzyl alcohol etc.) and the like may be used if desired. Furthermore, antioxidants, coloring agents, etc. and other additives may be added as required.
 また、「薬学的に許容される担体」を用いることもできる。このような物質としては、液状製剤における、溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等が挙げられる。また、必要に応じて、防腐剤、抗酸化剤、吸着剤、ゲル化剤等の製剤添加物を常法に従って用いることもできる。 Also, a "pharmaceutically acceptable carrier" can be used. Such substances include solvents, solubilizers, suspending agents, tonicity agents, buffers, soothing agents and the like in liquid formulations. In addition, if necessary, formulation additives such as preservatives, antioxidants, adsorbents, gelling agents and the like can be used according to a conventional method.
 「抗酸化剤」の好ましい例としては、例えば、亜硫酸塩、アスコルビン酸等が挙げられる。「等張化剤」の好ましい例としては、例えば、グルコース、塩化ナトリウム、グリセリン、D-マンニトール等が挙げられる。 Preferred examples of the "antioxidant" include sulfites, ascorbic acid and the like. Preferred examples of the "isotonizing agent" include glucose, sodium chloride, glycerin, D-mannitol and the like.
 「溶解補助剤」の好ましい例としては、例えば、ポリエチレングリコール、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。 Preferred examples of the "solubilizing agent" include polyethylene glycol, propylene glycol, D-mannitol, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium citrate and the like.
 「溶剤」の好ましい例としては、例えば、注射用水、アルコール、プロピレングリコール、マクロゴール等が用いられる。 As preferable examples of the "solvent", for example, water for injection, alcohol, propylene glycol, macrogol and the like are used.
 「懸濁化剤」の好ましい例としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子等が例示できる。 Preferred examples of the "suspending agent" include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, sodium carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and the like.
 「界面活性剤」として、例えば、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリン等が挙げられる。
 「無痛化剤」の好ましい例としては、例えば、ベンジルアルコール等が挙げられる。
Examples of the "surfactant" include sodium lauryl sulfate, lauryl aminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, glycerin monostearate and the like.
As a preferable example of "the soothing agent", benzyl alcohol etc. are mentioned, for example.
 「保存剤」の好ましい例としては、例えば、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が挙げられる。 Preferred examples of the "preservative" include p-hydroxybenzoic acid esters, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid and the like.
 あるいはこのようにして得られた癌治療用組成物を、患者から採取した血液に含まれる血液由来細胞と共にインキュベートして、その結果活性化された血液由来細胞を再度患者の体内に戻すこともできる。あるいは、ヒトT細胞は、インビトロで前述の樹状細胞と共に培養され、そして引き続きインビトロで活性化されたT細胞は、それが必要な癌患者に投与される。 Alternatively, the composition for treating cancer thus obtained can be incubated with blood-derived cells contained in blood collected from the patient, and the activated blood-derived cells can be returned to the patient's body again as a result. . Alternatively, human T cells are cultured in vitro with said dendritic cells and subsequently in vitro activated T cells are administered to a cancer patient in need thereof.
 この時、血液に含まれる血液由来細胞を単離するには、例えば採血した血液から、磁気ビーズ法などの公知の方法を用い得る。 At this time, in order to isolate blood-derived cells contained in blood, known methods such as magnetic bead method can be used, for example, from collected blood.
 より具体的には、例えば、血液に含まれる血液由来細胞は、Tリンパ球であり、細胞傷害性Tリンパ球を誘導する方法として、少なくとも主要組織適合抗原(MHC)クラスIと補助刺激分子とを発現する細胞(例えば樹状細胞)を、本発明の癌組織由来細胞塊または癌細胞凝集塊と接触させ、その後、リンパ球と共培養することが可能である。又は、リンパ球との共培養は、樹状細胞と本発明の癌組織由来細胞塊または癌細胞凝集塊あるいはそれらを処理した組成物とを接触させながら行うことが可能である。 More specifically, for example, blood-derived cells contained in the blood are T lymphocytes, and at least major histocompatibility antigen (MHC) class I and a costimulatory molecule are used as a method for inducing cytotoxic T lymphocytes. Cells (for example, dendritic cells) can be contacted with the cancer tissue-derived cell mass or cancer cell aggregate of the present invention, and then cocultured with lymphocytes. Alternatively, co-culture with lymphocytes can be performed while contacting dendritic cells with the cancer tissue-derived cell mass or cancer cell aggregate of the present invention or a composition obtained by treating them.
 体内に戻す場合の投与の方法は、好ましくは注射などの非経口投与である。腸を介した吸収を伴わずに組成物が対象に吸収される、あらゆる形式の投与が包含される。例示的な非経口投与には、筋肉内投与、静脈内投与、腹腔内投与、腫瘍内投与、眼内投与、または関節内投与などがあるが、これらに限定されない。 The method of administration when returning to the body is preferably parenteral administration such as injection. Included is any form of administration in which the composition is absorbed into the subject without absorption through the intestine. Exemplary parenteral administrations include, but are not limited to, intramuscular, intravenous, intraperitoneal, intratumoral, intraocular, or intraarticular administration.
 さらに、本発明の癌組織由来細胞塊または癌細胞凝集塊は、免疫療法を施された患者の免疫療法効果評価方法に用いることができる。 Furthermore, the cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be used in an immunotherapeutic effect evaluation method for a patient who has been subjected to immunotherapy.
 すなわち、この評価方法においては、免疫療法を施された患者由来の血液由来細胞を、癌組織由来細胞塊または癌細胞凝集塊と接触させる。ここで、典型的には、この血液由来細胞の細胞障害性を測定することで評価が可能である。好ましくは、血液由来細胞は、単離された細胞傷害性T細胞である。あるいは、もし、免疫療法が抗体を用いた療法の場合であれば、ナチュラルキラー細胞である。抗体を用いた療法の評価を行う場合には、さらにこの接触工程において治療に用いた抗体を共存させることが好ましい。 That is, in this evaluation method, blood-derived cells derived from an immunotherapy-treated patient are brought into contact with cancer tissue-derived cell masses or cancer cell aggregates. Here, typically, evaluation can be made by measuring the cytotoxicity of the blood-derived cells. Preferably, the blood-derived cells are isolated cytotoxic T cells. Alternatively, if the immunotherapy is antibody-based therapy, it is a natural killer cell. In the case of evaluating a therapy using an antibody, it is preferable to further allow the antibody used for treatment to coexist in this contacting step.
 より詳細には、例えば、51-クロミウムを載せた癌組織由来細胞塊または癌細胞凝集塊を標的として用いてインビトロ細胞障害活性について測定を行うことが可能である。 More specifically, it is possible to measure in vitro cytotoxicity using, for example, a 51-chromium-loaded cancer tissue-derived cell mass or a cancer cell aggregate as a target.
 免疫療法を施された患者が、癌組織由来細胞塊または癌細胞凝集塊を用いた免疫療法を施された患者であり、該患者由来の血液由来細胞が、免疫療法を施されてからの経過時間を様々に変えて回収された、複数の試料として提供されることも好ましい。 The patient who has been subjected to immunotherapy is a patient who has been subjected to immunotherapy using a cancer tissue-derived cell mass or a cancer cell aggregate, and the process since blood-derived cells derived from the patient have been administered immunotherapy It is also preferred that it be provided as a plurality of samples, collected at different times.
 特に本発明の癌組織由来細胞塊または癌細胞凝集塊は、冷蔵または冷凍保存した後においてもその増殖能と生存とが良好に維持される為に、必要な時に必要なだけ、免疫療法の効果を測定することができる。 In particular, the cancer tissue-derived cell mass or cancer cell aggregate of the present invention has the effect of immunotherapy as necessary when necessary, in order to maintain its growth ability and survival well even after being refrigerated or frozen. Can be measured.
 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各例中の部および%はいずれも重量基準である。以下に特に規定のない培養条件は全て37℃5%COインキュベーター条件下である。遠心分離の条件は特に言及しない限り、4℃、1000rpm、5分である。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. All parts and% in each example are based on weight. The culture conditions not particularly specified below are all 37 ° C. and 5% CO 2 incubator conditions. The conditions for centrifugation are 4 ° C., 1000 rpm, 5 minutes unless otherwise stated.
(実施例1)
(マウス大腸癌移植腫瘍からの癌組織由来細胞塊の調製)
 マウス大腸癌移植腫瘍を、以下のように異種移植法にて作製した。
Example 1
(Preparation of cancerous tissue-derived cell mass from mouse colon cancer transplanted tumor)
Mouse colon cancer transplanted tumors were produced by xenograft as follows.
 まず、無菌操作下でヒト腫瘍(大腸癌)の手術摘出標本を約2mm立方に細切する。次に重症免疫不全マウス(ヌードマウス、好ましくはNOD/SCIDマウス)の背部に約5mmの小切開を加えて皮下組織を剥離する。用意した腫瘍片を皮下に挿入した後、皮膚縫合クリップで閉創する。一部の移植腫瘍は約14日後から3ヶ月後に皮下腫瘍として観察される。 First, a surgically excised sample of human tumor (colorectal cancer) is cut into about 2 mm cubes under aseptic operation. Next, a small incision of about 5 mm is made on the back of severe immunodeficient mice (nude mice, preferably NOD / SCID mice) to detach the subcutaneous tissue. The prepared tumor piece is inserted subcutaneously and closed with a skin suture clip. Some transplanted tumors are observed as subcutaneous tumors after about 14 days to 3 months.
 得られた大腸癌マウスをSPF(specific pathogen free)飼育条件で飼育し、腫瘍が1cm大になった時点で、腫瘍の摘出を行い、20mlのDMEM(Gibco;11965-092)+1% Pen Strep(Gibco;15140-022)(ともに最終濃度として100units/ml ペニシリン, 100μg/ml)を入れた50ml遠心分離用チューブ(IWAKI;2345-050)に回収した。 The obtained colon cancer mice are bred under specific pathogen free (SPF) breeding conditions, and when the tumors become 1 cm in size, the tumors are excised and 20 ml of DMEM (Gibco; 11965-092) + 1% Pen Strep ( Gibco; 15140-022) (both at a final concentration of 100 units / ml penicillin, 100 μg / ml) were collected in a 50 ml centrifuge tube (IWAKI; 2345-050).
 次に20ml HBSS(Gibco;14025-092)を入れて、転倒混和により腫瘍を洗浄した。次に新しいHBSSを20ml入れ、この操作を2回繰返し、腫瘍組織を10cm組織培養用ディッシュ(組織培養 ディッシュ)(IWAKI;3020-100)に移した。この培養ディッシュ上で、手術用ナイフを用いて壊死組織を除去した。 Next, 20 ml HBSS (Gibco; 14025-092) was added and the tumor was washed by inversion mixing. Next, 20 ml of fresh HBSS was added, this operation was repeated twice, and the tumor tissue was transferred to a 10 cm tissue culture dish (tissue culture dish) (IWAKI; 3020-100). On this culture dish, necrotic tissue was removed using a surgical knife.
 壊死組織を除去した腫瘍片を、HBSS 30mlを入れた新しい10cm ディッシュへ移した。次に、手術用ナイフを用いて、腫瘍片を、約2mm角に細片化した。 Debris-free tumor pieces were transferred to a fresh 10 cm dish containing 30 ml of HBSS. Next, the tumor pieces were cut into pieces of about 2 mm using a surgical knife.
 HBSSごと腫瘍細片を新しい50ml 遠心分離用チューブへ移した後、遠心分離を行い、上清を捨て、20ml HBSSにて、転倒混和により洗浄した。 After transferring tumor fragments together with HBSS to a new 50 ml centrifuge tube, they were centrifuged, the supernatant was discarded, and washed with 20 ml HBSS by inversion mixing.
 遠心分離及び洗浄を繰り返した。その後、20mlのDMEM+1% Pen Strep+0.28U/ml (最終濃度) Blendzyme 1 (Roche; 11988417001) を入れて混和した。これを、100mlの三角フラスコへ移し、37°C恒温槽内で、スターラーを低速で回転しながら2時間、リベラーゼブレンザイム1(ロッシュダイアグノスティックス社製)で処理した。 Repeated centrifugation and washing. Thereafter, 20 ml of DMEM + 1% Pen Strep + 0.28 U / ml (final concentration) Blendzyme 1 (Roche; 11988417001) was added and mixed. This was transferred to a 100 ml Erlenmeyer flask, and treated with Liberase Blendzyme 1 (manufactured by Roche Diagnostics) for 2 hours while rotating the stirrer at low speed in a 37 ° C. thermostat.
 次に、酵素処理物を、50ml 遠心分離用チューブに回収し、遠心分離し、上清を捨て、20ml HBSS を入れて混和した。ステンレスメッシュ(500μm)に通し、フィルターを通過した成分を50ml 遠心分離用チューブに回収し、さらに、遠心分離操作を行った。上清を捨て、1mg/ml DNaseI 溶液 (Roche; 1284932) (10mg/mlストック100μl+PBS 900μl)を入れて混和し、4°Cにて 5分静置し、さらに20mlHBSSを加え入れて混和した後、遠心分離を行い、上清を捨てた。20ml HBSSと混和した後、500-250-100μmと段階的に篩にかけ、次に40μmセルストレーナー(BD; 352340)に通した。HBSS 30mlを入れた10cm 組織培養用ディッシュ(組織培養ディッシュ)にセルストレーナーを浸して軽くゆすり、単細胞、40μm 以下の小細胞塊、およびくずを除去した。HBSS 30mlを入れた別の10cm 組織培養用ディッシュ(組織培養ディッシュ)にセルストレーナーを移し、セルストレーナーに捕捉された細胞塊をピペッティングにより回収した。 Next, the enzyme-treated product was collected in a 50 ml centrifuge tube, centrifuged, the supernatant was discarded, and 20 ml HBSS was added and mixed. The material was passed through a stainless steel mesh (500 μm), the components passed through the filter were collected in a 50 ml centrifuge tube, and centrifugation was performed. Discard the supernatant, mix with 1 mg / ml DNase I solution (Roche; 1284932) (10 mg / ml stock 100 μl + PBS 900 μl), mix and leave at 4 ° C for 5 minutes, add 20 ml HBSS and mix. Centrifugation was performed and the supernatant was discarded. After mixing with 20 ml HBSS, it was sieved stepwise with 500-250-100 μm and then passed through a 40 μm cell strainer (BD; 352340). The cell strainer was dipped in a 10 cm tissue culture dish (tissue culture dish) containing 30 ml of HBSS and gently shaken to remove single cells, small cell clusters of 40 μm or less, and debris. The cell strainer was transferred to another 10 cm tissue culture dish (tissue culture dish) containing 30 ml of HBSS, and the cell mass captured by the cell strainer was collected by pipetting.
 さらに、上記と同様の遠心分離操作を数回行って、得られた成分に、4ml StemPro hESC SFM (Gibco;A10007-01)  + 8ng/ml bFGF (Invitrogen;13256-029) + 0.1mM 2-メルカプトエタノール(Wako;137-06862) + 1% PenStrep + 25μg/ml Amphotericin B (Wako;541-01961) を入れて混和し、6cm non-treated ディッシュ (EIKEN CHEMICAL;AG2000)に移した。 Furthermore, the same centrifugation operation as described above is performed several times, and the component obtained is 4 ml StemPro hESC SFM (Gibco; A10007-01) + 8 ng / ml bFGF (Invitrogen; 13256-029) + 0.1 mM 2-mercapto Ethanol (Wako; 137-06862) + 1% PenStrep + 25 μg / ml Amphotericin B (Wako; 541-01961) was added and mixed, and transferred to a 6 cm non-treated dish (EIKEN CHEMICAL; AG 2000).
 これを、37°Cにて、 5%COインキュベーター(サンヨー社製MCO-17AIC)で36時間培養した。 This was cultured at 37 ° C. in a 5% CO 2 incubator (MCO-17AIC manufactured by Sanyo Co., Ltd.) for 36 hours.
 この結果、図1に示すように、時間の経過と共に、不定形から整った球形へ変化し、少なくとも3~6時間後には略球形であり、24時間後には完全に整った球形状の癌組織由来細胞塊が得られた。 As a result, as shown in FIG. 1, with the passage of time, it changes from amorphous to well-shaped spheres, is approximately spherical shape after at least 3 to 6 hours, and is perfectly spherically shaped cancer tissue after 24 hours Derived cell mass was obtained.
(実施例2)
 (ヒト大腸癌手術検体からの癌組織由来細胞塊の調製)
 大腸癌手術検体を用いた以外は、実施例1と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 2)
(Preparation of cancerous tissue-derived cell mass from human colorectal cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 1 except that a colorectal cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例3)
 (ヒト卵巣癌手術検体からの癌組織由来細胞塊の調製)
 卵巣癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 3)
(Preparation of cancer tissue-derived cell mass from human ovarian cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that an ovarian cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例4)
 (ヒトすい臓癌手術検体からの癌組織由来細胞塊の調製)
 すい臓癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 4)
(Preparation of cancerous tissue-derived cell mass from human pancreatic cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a pancreatic cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例5)
 (ヒト小細胞癌手術検体からの癌組織由来細胞塊の調製)
肺癌の一種である小細胞癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 5)
(Preparation of cancer tissue-derived cell mass from human small cell carcinoma surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a small cell cancer surgical specimen which is a type of lung cancer was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例6)
 (ヒト腎癌手術検体からの癌組織由来細胞塊の調製)
 腎癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 6)
(Preparation of cancer tissue-derived cell mass from human renal cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a renal cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例7)
 (ヒト膀胱癌手術検体からの癌組織由来細胞塊の調製)
 膀胱癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 7)
(Preparation of cancerous tissue-derived cell mass from human bladder cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a bladder cancer surgery sample was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例8)
 (ヒト乳癌手術検体からの癌組織由来細胞塊の調製)
 乳癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 8)
(Preparation of cancer tissue-derived cell mass from human breast cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a breast cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例9)
(ヒト前立腺癌手術検体からの癌組織由来細胞塊の調製)
 前立腺癌手術検体を用いた以外は、実施例2と同様にして組織由来細胞塊を取得した。培養培地に、10-8モル/L濃度のジヒドロテストステロン(DHT)を添加し、実施例1と同様に培養した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 9)
(Preparation of cancer tissue-derived cell mass from human prostate cancer surgical specimens)
A tissue-derived cell mass was obtained in the same manner as in Example 2 except that a prostate cancer surgical specimen was used. To the culture medium, dihydrotestosterone (DHT) at a concentration of 10 -8 mol / L was added and cultured as in Example 1. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例10)
(ヒト咽頭癌手術検体からの癌組織由来細胞塊の調製)
 咽頭癌手術検体を用いた以外は、実施例2と同様にして癌組織由来細胞塊を取得した。この結果、図4に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌組織由来細胞塊が得られた。
(Example 10)
(Preparation of cancer tissue-derived cell mass from human pharyngeal cancer surgical specimens)
A cancer tissue-derived cell mass was obtained in the same manner as in Example 2 except that a pharyngeal cancer surgical specimen was used. As a result, as shown in FIG. 4, a substantially spherical cancer tissue-derived cell mass similar to FIG. 1 was obtained after at least 12 hours.
(実施例11)
 実施例2で得られ、図4に示す培養中の癌組織由来細胞塊を培養後24時間で、培地と共に5ml取り出し、1000rpm、4℃にて遠心分離し、上清を捨てた。回収した癌組織由来細胞塊をセルバンカー(BLC-1、三菱化学メディスン社製)に懸濁し、さらに、10μMのY27632(和光純薬工業社製)を加え、冷凍保存チューブ(Cryogenic vials 2.0 ml、Nalge Nunc社製)に移して、-80℃ディープフリーザーで保存した。
(Example 11)
The cancer tissue-derived cell mass obtained in Example 2 and shown in FIG. 4 was taken out together with the medium at 24 hours after culture, and 5 ml was taken out with the medium, centrifuged at 1000 rpm at 4 ° C. The collected cancer tissue-derived cell mass is suspended in a selbunker (BLC-1, manufactured by Mitsubishi Chemical Medicine Co., Ltd.), 10 μM of Y27632 (manufactured by Wako Pure Chemical Industries, Ltd.) is added, and cryopreservation tube (Cryogenic vials 2.0) The solution was transferred to ml, Nalge Nunc) and stored in -80.degree. C. deep freezer.
 保存後7日間経過後、37℃のウォーターバスで短時間復温した。これをPBSに懸濁し、さらに1000rpm、4℃にて遠心分離し、上清を捨てた。得られた沈殿物をStemPro(インビトロ社製)に懸濁して、培養した。図5に示すように、融解後24時間の細胞の状態は良好であった。 After 7 days after storage, it was briefly rewarmed in a 37 ° C. water bath. This was suspended in PBS, further centrifuged at 1000 rpm and 4 ° C., and the supernatant was discarded. The obtained precipitate was suspended in StemPro (manufactured by in vitro) and cultured. As shown in FIG. 5, the cell condition for 24 hours after thawing was good.
 さらに、得られた癌組織由来細胞塊の生存を、約1000個の細胞を含む塊としてNOD-SCIDマウスに移植することで確認した。 Furthermore, the survival of the obtained cancer tissue-derived cell mass was confirmed by transplantation into NOD-SCID mice as a mass containing about 1000 cells.
(実施例12)
(癌組織由来細胞塊からの癌細胞凝集塊の調製)
 実施例2と同様の方法で得られた癌組織由来細胞塊を用いて、以下の処理を行った。まず、24 ウェルプレート(未処理のディッシュ)中央にコラーゲンゲル(Cell Matrix type I-A : 5x DMEM : ゲル再構成用緩衝液 = 7 : 2 : 1) 50μL / wellを敷いた。37℃、30分静置してコラーゲンゲルを固化した。浮遊培養の癌組織由来細胞塊を(ウエルあたり100個)、1.5 mLチューブに回収する。これを5秒程度遠心分離し、上清を除去した。癌組織由来細胞塊を、コラゲナーゼゲル(ウエルあたり30μL)で懸濁し、予め固化したゲルの上に30μLずつ乗せた。37℃、30分静置して固化させ、 StemPro(EGF 50 ng/mL) 600μL /ウェルずつ入れた。2~3日に一度培地を交換しながら、10日間培養した。
 次に、培地を、1 mL / wellのDMEM(Gibco; 11965-092、コラゲナーゼIV 200 mg/mL含む)に交換し、37℃、5時間程度培養した。
 培養後、1.5 mLエッペンチューブに移し、遠心分離(約5秒)し、上清を除去して、1 mLのPBSを加えて懸濁し、遠心分離(チビタン、約5秒)後上清除去を2回繰り返した。Trypsin / EDTA (0.05%)を1 mL加えて懸濁し、37℃で8分静置した。数回懸濁して、癌組織由来細胞塊様の大きな塊がなくなったことを確認した。これを、15 mLチューブに移し、2 mLのDMEM(Gibco; 11965-092)を加えて懸濁した。
 次に、懸濁液を、遠心分離(1000 rpm、5分)し、上清を除去した。2 mL のStemPro(EGF 50 ng/mL、Y-27632 10μM)で懸濁し、φ35mm non-treated dish (Iwaki: 1000-035)に移した。これを、37℃で一晩培養した。
 12時間経過後、直径40μm程度の癌組織由来細胞塊形成を確認した。培地をStemPro(EGF 50 ng/mL)に交換した。
(Example 12)
(Preparation of cancer cell aggregate from cancer tissue-derived cell mass)
The following treatment was performed using the cancer tissue-derived cell mass obtained by the same method as in Example 2. First, 50 μL / well of collagen gel (Cell Matrix type IA: 5 × DMEM: buffer for gel reconstitution = 7: 2: 1) was placed in the center of a 24-well plate (untreated dish). The collagen gel was solidified by standing for 30 minutes at 37 ° C. Cancer tissue-derived cell masses in suspension culture (100 cells per well) are collected in 1.5 mL tubes. This was centrifuged for about 5 seconds, and the supernatant was removed. The cancer tissue-derived cell mass was suspended in collagenase gel (30 μL per well), and 30 μL was loaded on the previously solidified gel. The mixture was allowed to stand at 37 ° C. for 30 minutes to solidify, and 600 μL / well of StemPro (EGF 50 ng / mL) was added. The cells were cultured for 10 days while changing the medium once every 2 to 3 days.
Next, the medium was replaced with 1 mL / well of DMEM (Gibco; 11965-092, containing collagenase IV 200 mg / mL) and cultured at 37 ° C. for about 5 hours.
After incubation, transfer to a 1.5 mL eppen tube, centrifuge (approximately 5 seconds), remove the supernatant, suspend by adding 1 mL of PBS, and remove the supernatant after centrifugation (Chibitan, approximately 5 seconds) I repeated twice. One mL of Trypsin / EDTA (0.05%) was added and suspended, and the mixture was allowed to stand at 37 ° C. for 8 minutes. The suspension was repeated several times to confirm that the cancer tissue-derived cell mass was removed. This was transferred to a 15 mL tube and suspended by adding 2 mL of DMEM (Gibco; 11965-092).
The suspension was then centrifuged (1000 rpm, 5 minutes) and the supernatant removed. The cells were suspended in 2 mL of StemPro (EGF 50 ng / mL, Y-27632 10 μM), and transferred to a φ35 mm non-treated dish (Iwaki: 1000-035). This was cultured at 37 ° C. overnight.
After 12 hours, formation of a cancer tissue-derived cell mass having a diameter of about 40 μm was confirmed. The medium was changed to StemPro (EGF 50 ng / mL).
 この結果、図6に示すように、4日後には完全に整った球形状の癌細胞凝集塊が得られた。 As a result, as shown in FIG. 6, completely spherical-shaped cancer cell aggregates were obtained after 4 days.
(実施例13)
 (ヒト大腸癌手術検体からの癌細胞凝集塊の調製)
 大腸癌手術検体を用いた以外は、実施例12と同様にして癌細胞凝集塊を取得した。この結果、図7に示す通り、少なくとも12時間後には図1と同様のほぼ球形状の癌細胞凝集塊が得られた。
(Example 13)
(Preparation of cancer cell clumps from human colorectal cancer surgical specimens)
Cancer cell aggregates were obtained in the same manner as in Example 12 except that a colorectal cancer surgical specimen was used. As a result, as shown in FIG. 7, substantially spherical cancer cell aggregates similar to FIG. 1 were obtained after at least 12 hours.
 (実施例14)
 実施例2と同様の方法で得られた癌組織由来細胞塊の細胞保存を行った。癌組織由来細胞塊を実施例14と同様の方法で、トリプシン処理して単細胞化処理を行った。凍結保存液はセルバンカー1(十慈フィールド)にY-27632を添加したものを用いた。
(Example 14)
Cell preservation of the cancer tissue origin cell mass obtained by the same method as Example 2 was performed. The cancer tissue-derived cell mass was treated with trypsin in the same manner as in Example 14 to perform unicellularization. As a cryopreservation solution, a solution obtained by adding Y-27632 to Selvanker 1 (Junji field) was used.
 単細胞化して10日間凍結保存したものを、その後37℃のウォーターバスで短時間復温した。これをPBSに懸濁し、さらに1000rpm、4℃にて遠心分離し、上清を捨てた。得られた沈殿物をStemPro(インビトロ社製)に懸濁して、培養した。図8に示すように、融解後24時間の細胞の状態は、良好で、融解後に癌組織由来細胞塊を再形成した。 What was single-celled and stored frozen for 10 days was then briefly rewarmed in a 37 ° C. water bath. This was suspended in PBS, further centrifuged at 1000 rpm and 4 ° C., and the supernatant was discarded. The obtained precipitate was suspended in StemPro (manufactured by in vitro) and cultured. As shown in FIG. 8, the condition of the cells for 24 hours after thawing was good, and after thawing, the cancer tissue-derived cell mass was reformed.
(実施例15)
 本発明の癌組織由来細胞塊を用いた免疫療法を検討する。実施例2および12と同様にして得られた癌組織由来細胞塊と癌細胞凝集塊を、それぞれ、トリプシン処理する(37℃5分)。得られた処理物は、単一細胞を多く含み、これを24時間放置すると、細胞が死滅する。実施例2で得られた癌組織由来細胞塊をトリプシン処理(37℃5分)した後、Annexin-V とPIによる二重染色をフローサイトメーターで解析した。未処理の癌組織由来細胞塊については24時間培養し、解析直前にトリプシンにより分解した(intact CTOS)。分解した癌組織由来細胞塊については、癌組織由来細胞塊をまず単細胞にまで分離し、培養した後、解析した(dissociated CTOS)。この結果を図9に示す。さらにこの染色の結果の比率をグラフ化した(図10)。 Annexin-V とPIに二重染色されたものを黒、Annexin-V に単独で染色されたものを灰色、両者とも染色されなかったものを白で表している。 この結果、処理した癌組織由来細胞塊では、順調にアポトーシスが進行していることが確認できた。さらに、caspase-3、切断されたcaspase-3 (cl-casp-3)とPARPのウエスタンブロッティングにて、アポトーシスの誘導を確認した(図11)。培養は、図11に表示した時間行い、その後、解析した。
 次に、癌組織由来細胞塊または癌細胞凝集塊トリプシン処理物を蒸留水2 mlに懸濁して、これに0.22ミクロンの孔径を持つフィルターを通し除菌した20 mg/mlの濃度の1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(以後、「EDC」と略す。)溶液を0.8 mg/mlとなるように添加する。これを25℃で15分間保存、さらに無菌の2 mlの0.1M glycin溶液を添加する。25℃で30分間保存後、生理食塩水を加えてワクチン用原料液を調製する。
(Example 15)
Immunotherapy using the cancer tissue-derived cell mass of the present invention is examined. The cancer tissue-derived cell mass and cancer cell aggregate obtained in the same manner as in Examples 2 and 12 are each treated with trypsin (37 ° C. for 5 minutes). The resulting product contains many single cells, and when left for 24 hours, the cells die. After trypsinization (5 minutes at 37 ° C.) of the cancer tissue-derived cell mass obtained in Example 2, double staining with Annexin-V and PI was analyzed with a flow cytometer. Untreated cancer tissue-derived cell masses were cultured for 24 hours and digested with trypsin immediately before analysis (intact CTOS). With regard to the degraded cancer tissue-derived cell mass, the cancer tissue-derived cell mass was first separated into single cells, cultured, and then analyzed (distributed CTOS). The results are shown in FIG. Furthermore, the ratio of the result of this staining was graphed (FIG. 10). The double-stained Annexin-V and PI are shown in black, the single-stained Annexin-V in gray, and the unstained sample in white. As a result, it was confirmed that apoptosis was progressing smoothly in the treated cancer tissue-derived cell mass. Furthermore, the induction of apoptosis was confirmed by western blotting of caspase-3, cleaved caspase-3 (cl-casp-3) and PARP (FIG. 11). The culture was performed for the time indicated in FIG. 11 and then analyzed.
Next, the tumor tissue-derived cell mass or cancer cell aggregate trypsin treated product is suspended in 2 ml of distilled water and sterilized by passing through a filter having a pore diameter of 0.22 microns, 1-ethyl at a concentration of 20 mg / ml -3- (3-dimethylaminopropyl) carbodiimide (hereinafter abbreviated as "EDC") solution is added to a concentration of 0.8 mg / ml. This is stored at 25 ° C. for 15 minutes, and then sterile 2 ml of 0.1 M glycine solution is added. After storage at 25 ° C. for 30 minutes, physiological saline is added to prepare a raw material solution for vaccine.
 このようにして得られたワクチン用原料液とアジュバントとして市販されているTiterMax Gold(CytRX, Atlanta, Norcross, GA)を混合して腫瘍ワクチンとする。 The vaccine stock solution thus obtained and TiterMax Gold (CytRX, Atlanta, Norcross, GA) marketed as an adjuvant are mixed to form a tumor vaccine.
 得られたワクチンを、由来する癌患者に再発防止措置として、あるいは再発後の治療として、1ml注射する。7日後、さらに注射を行う。定期的にモニターをし、癌の再発のないこと、または再発後の腫瘍の大きさを確認することで、治療の効果を調べる。 The vaccine obtained is injected 1 ml into cancer patients from which it originates, as a preventive measure or as a treatment after recurrence. Seven days later, another injection is given. Regularly monitor to see if the cancer has not recurred, or check the size of the tumor after relapse to see the effect of the treatment.
(実施例16)
 免疫療法を施された大腸癌患者について、定期的にモニターし、免疫療法の効果を評価する。具体的には、一般的免疫療法(例えばWT1ペプチド療法)を施された患者の血液を採取し、その細胞障害性T細胞をCD8陽性を標的として、回収する。患者由来のCD8陽性T細胞が、本発明の癌組織由来細胞塊または癌細胞凝集塊を障害することができるかを検討する。実施例2と同様にして得られた当該患者の大腸癌由来の癌組織由来細胞塊を50ml容の遠心チューブに集め、100μCiのクロミウム51を加え37℃で2時間インキュベートする。その後10%ヒトAB血清を含むAIM-V培地で3回洗浄し、96穴V底プレート1穴あたり100μlずつ添加する。これに10%ヒトAB血清を含むAIM-V培地で懸濁された10個のCD8陽性T細胞(免疫療法の期間の複数回に渡って採取されたもの)をそれぞれ添加して、37℃、5%COの条件下で4時間培養する。培養後、障害を受けた腫瘍細胞から放出される培養上清中のクロミウム51の量を測定することによって、免疫療法を施された患者のCD8陽性T細胞細胞の細胞障害活性を算出することができる。
(Example 16)
Regularly monitor immunotherapy for colorectal cancer patients and evaluate the effects of immunotherapy. Specifically, the blood of a patient who has been given general immunotherapy (for example, WT1 peptide therapy) is collected, and the cytotoxic T cells are collected targeting CD8 positive. It is examined whether patient-derived CD8 positive T cells can damage the cancer tissue-derived cell mass or cancer cell aggregate of the present invention. The cell mass derived from cancer tissue derived from colon cancer of the patient obtained in the same manner as in Example 2 is collected in a 50 ml centrifuge tube, 100 μCi of chromium 51 is added and the mixture is incubated at 37 ° C. for 2 hours. Thereafter, the plate is washed three times with AIM-V medium containing 10% human AB serum, and 100 μl is added to each well of a 96-well V-bottom plate. To this were added 10 5 CD8 positive T cells (taken for multiple times during the immunotherapy period) suspended in AIM-V medium containing 10% human AB serum, respectively, at 37 ° C. Incubate for 4 hours under 5% CO 2 conditions. Calculating the cytotoxic activity of CD8 positive T cell cells of a patient receiving immunotherapy by measuring the amount of chromium 51 in the culture supernatant released from damaged tumor cells after culture it can.
 実施例等における評価項目は下記のようにして測定を行った。 The evaluation items in the examples and the like were measured as follows.
<基底膜様物の確認>
 実施例1で得られた癌組織由来細胞塊を温度37℃、5%COインキュベーターの培養条件下で、STEMPROヒトES細胞用無血清培地(Gibco)1ccで3日間培養を行った。これをホルマリン固定後パラフィン包埋し、薄切して抗ラミニン抗体染色(シグマ-アルドリッチ社製、マウスラミニン由来ラビット抗体)を、製造元の指示書に従って行ったところ、癌組織由来細胞塊の外周および、外周に近い細胞の細胞質内にラミニンの抗原性が観察された。これによって、本発明の癌組織由来細胞塊は、癌細胞の集合体の周辺をラミニンが取り囲んでいることが判明した。一方、手術検体処理後24時間ではラミニンの発現は確認できなかった。
<Confirmation of basement membrane-like material>
The cancer tissue-derived cell mass obtained in Example 1 was cultured for 3 days in 1 cc of STEMPRO human ES cell serum-free medium (Gibco) under culture conditions of a temperature of 37 ° C. and a 5% CO 2 incubator. This was formalin-fixed, paraffin-embedded, sliced, and subjected to anti-laminin antibody staining (Sigma-Aldrich, mouse laminin-derived rabbit antibody) according to the manufacturer's instructions. The antigenicity of laminin was observed in the cytoplasm of cells close to the periphery. This revealed that the cancer tissue-derived cell mass of the present invention was surrounded by laminin at the periphery of the cancer cell aggregate. On the other hand, the expression of laminin could not be confirmed 24 hours after the treatment of the surgical specimen.
<低酸素の検知>
 ピモニダゾールを用いた低酸素の検知の例
 ニトロイミダゾール系化合物ピモニダゾールは酸素非存在下では蛋白や核酸とAdductを形成する特性を持つ。低酸素下でピモニダゾール処理された組織の低酸素領域は、ピモニダゾールを特異的に認識する抗体を用いて認識することができる。癌組織では血管から約100マイクロメーター離れると低酸素領域が出現するが、実施例1で得られた癌組織由来細胞塊でも外縁より約100マイクロメーターを境にして内部は低酸素領域で、広範な細胞死が観察された。
<Detection of hypoxia>
Example of detection of hypoxia using pimonidazole The nitroimidazole compound pimonidazole has the property of forming Adduct with proteins and nucleic acids in the absence of oxygen. The hypoxic region of pimonidazole-treated tissues under hypoxia can be recognized using an antibody that specifically recognizes pimonidazole. In cancer tissues, a hypoxic region appears about 100 micrometers away from blood vessels. However, even in the cancer tissue-derived cell mass obtained in Example 1, the inside is a hypoxic region at a boundary of about 100 micrometers from the outer edge. Cell death was observed.
<インビトロでの増殖能の評価>
 インビトロにおける癌組織由来細胞塊の増殖能は、以下のようにして検証した。実施例1で得られた癌組織由来細胞塊をコラーゲンゲル(CellMatrix typeIA(Nitta Gelatin):5x DMEM (Gibco;12100-038):ゲル再構成用緩衝液(50mM NaOH, 260mM NaHCO3, 200mM HEPES)=7:2:1)に×10個ずつ包埋し、温度37℃、5%COインキュベーターの培養条件下で、STEMPROヒトES細胞用無血清培地(Gibco)1ccで培養を行った。定期的に細胞の状態を観察し、CCDカメラを装着した位相差顕微鏡(倍率40倍)で大きさを測定した。その結果、機械的分割なしに、少なくとも13日間増殖能を保持することができた。さらに、13日目に機械的分割を行ったところ、さらに少なくとも13日間増殖能を保持していることが確認された(図2)。なお、機械的分割は、直径500マイクロメーターの癌組織由来細胞塊を眼科尖刀で4分割することで行った。
<Evaluation of proliferation ability in vitro>
The proliferation ability of the cancer tissue-derived cell mass in vitro was verified as follows. Collagen tissue (CellMatrix type IA (Nitta Gelatin): 5x DMEM (Gibco; 12100-038): buffer solution for gel reconstitution (50 mM NaOH, 260 mM NaHCO3, 200 mM HEPES) = 10: embedded in 7: 2: 1), and culture was performed with 1 cc of serum-free medium (Gibco) for STEMPRO human ES cells under culture conditions of a temperature of 37 ° C. and a 5% CO 2 incubator. The state of cells was periodically observed, and the size was measured with a phase contrast microscope (40 × magnification) equipped with a CCD camera. As a result, it was possible to maintain the proliferation ability for at least 13 days without mechanical division. Furthermore, when mechanical division was performed on the 13th day, it was confirmed that the proliferation ability was maintained for at least 13 days (FIG. 2). The mechanical division was performed by dividing a cancer tissue-derived cell mass having a diameter of 500 micrometers into four parts with an eye knife.
<細胞数の確認>
 実施例1と同様の方法で、100から250μmの癌組織由来細胞塊をトリプシン0. 25%、EDTA2.6mMで3分間処理し、約30回ピペッティングで機械的に分解した。これを96ウェル培養プレート1ウェルに1個の割合で細胞が入るように希釈して分注した。単細胞化されていない細胞塊については構成する細胞数をカウントして記録した。その後培養(同上の条件)をおこない、各ウェルの細胞数の増加を記録し、30日間培養観察をおこなった。その結果、8個の細胞があれば、細胞塊が成長できることが確認された。
<Confirmation of cell number>
In the same manner as in Example 1, 100 to 250 μm cancer tissue-derived cell masses were treated with 0.25% trypsin and 2.6 mM EDTA for 3 minutes and mechanically degraded by pipetting about 30 times. This was diluted and dispensed so that the cells were contained in a proportion of 1 per 96-well culture plate. With respect to non-unicellularized cell masses, the number of constituent cells was counted and recorded. Thereafter, the cells were cultured (conditions as described above), the increase in the number of cells in each well was recorded, and culture was observed for 30 days. As a result, it was confirmed that a cell mass can grow if there are eight cells.
<異種動物への移植試験>
 実施例2で得られた本発明の3日間培養した直径約100マイクロメーターの癌組織由来細胞塊 ×10個をMatrigel(BD社)に懸濁して、NOD-SCIDマウスの背部皮下に投与移植した。腫瘍形成の評価は、経時的に腫瘍のサイズを計測することにより行なった。その結果、本発明の実施例2の癌組織由来細胞塊を移植したマウス個体には顕著な腫瘍形成が認められ、本発明の癌組織由来細胞塊が高い腫瘍形成能を有することが確認された。この組織を解析すると、マウスに移植して形成された腫瘍と、生体内に存在していた腫瘍とで類似した組織型が得られていることがわかった(図3)。
<Transplantation test to foreign animals>
Ten cells of the cancer tissue-derived cell mass of about 100 micrometers in diameter of the present invention obtained in Example 2 and cultured for 3 days were suspended in Matrigel (BD Co.) and administered subcutaneously in the back of NOD-SCID mice . Evaluation of tumor formation was performed by measuring the size of the tumor over time. As a result, significant tumorigenesis was observed in a mouse individual to which the cancer tissue-derived cell mass of Example 2 of the present invention was transplanted, and it was confirmed that the cancer tissue-derived cell mass of the present invention has high tumorigenicity. . When this tissue was analyzed, it was found that similar tumor types were obtained for the tumor formed by transplantation into mice and the tumor existing in the living body (FIG. 3).
 本発明の癌組織由来細胞塊または癌細胞凝集塊は、インビトロにおいて、培養可能な状態で凍結保存することが可能であり、特に免疫療法の用途に、抗原ペプチド提供の為に使用できる。さらに、免疫療法の効果を測定する為の評価のツールとしても用いることができる。
 
The cancer tissue-derived cell mass or cancer cell aggregate of the present invention can be cryopreserved in a culturable state in vitro, and can be used to provide an antigenic peptide, particularly for use in immunotherapy. Furthermore, it can also be used as an evaluation tool for measuring the effect of immunotherapy.

Claims (17)

  1. 癌組織由来細胞塊または癌細胞凝集塊を処理することによって得られる、癌治療用組成物。 A composition for treating cancer, which is obtained by processing a cancer tissue-derived cell mass or a cancer cell aggregate.
  2. 前記処理が、化学処理である、請求項1記載の癌治療用組成物。 The composition for treating cancer according to claim 1, wherein the treatment is a chemical treatment.
  3. 前記化学処理が、酵素処理またはホルマリン処理である請求項2記載の癌治療用組成物。 The composition for treating cancer according to claim 2, wherein the chemical treatment is enzyme treatment or formalin treatment.
  4. 前記処理が、光線力学処理である、請求項1記載の癌治療用組成物。 The composition for treating cancer according to claim 1, wherein the treatment is a photodynamic treatment.
  5. 前記処理が、放射線処理である請求項4記載の癌治療用組成物。 The composition for treating cancer according to claim 4, wherein the treatment is radiation treatment.
  6. 由来する患者に経口投与または非経口投与するための癌ワクチンである請求項1から5までのいずれかに記載の癌治療用組成物。 The composition for treating cancer according to any one of claims 1 to 5, which is a cancer vaccine for oral administration or parenteral administration to a patient derived therefrom.
  7. 患者由来の血液から得られた血液由来細胞にインビトロにおいて接触させるためのものである、請求項1から6までのいずれか1項に記載の癌治療用組成物。 The composition for treating cancer according to any one of claims 1 to 6, which is for contacting blood-derived cells obtained from blood from a patient in vitro.
  8. 前記血液が、末梢血である請求項7記載の癌治療用組成物。 The composition for treating cancer according to claim 7, wherein the blood is peripheral blood.
  9. 前記血液由来細胞が、単球から誘導される樹状細胞である請求項7または8記載の癌治療用組成物。 The composition for treating cancer according to claim 7 or 8, wherein the blood-derived cells are dendritic cells derived from monocytes.
  10. 患者由来の血液から回収された血液由来細胞と該患者由来の請求項1から6までのいずれか1項に記載の癌治療用組成物とを接触させる工程;および接触により活性化された血液由来細胞を回収する工程を含む、該患者に接種されるための免疫療法剤の製造方法。 Contacting the blood-derived cells collected from the blood from the patient with the composition for treating cancer according to any one of claims 1 to 6 from the patient; and the blood-derived blood activated by the contact A method of producing an immunotherapeutic agent for inoculating said patient, comprising the step of collecting cells.
  11. 前記血液が末梢血である請求項10記載の免疫療法剤の製造方法。 The method for producing an immunotherapeutic agent according to claim 10, wherein the blood is peripheral blood.
  12. 前記血液由来細胞が、単球であり、さらに単球を樹状細胞に誘導する工程を含む、請求項10または11記載の免疫療法剤の製造方法。 The method for producing an immunotherapeutic agent according to claim 10, wherein the blood-derived cells are monocytes, and the method further comprises the step of inducing monocytes to dendritic cells.
  13. 免疫療法の効果を評価する方法であって、免疫療法を施された患者由来の血液由来細胞を、癌組織由来細胞塊または癌細胞凝集塊と接触させる工程、
    を含む、免疫療法効果評価方法。
    A method of evaluating the effect of immunotherapy, which comprises contacting blood-derived cells derived from an immunotherapy-treated patient with a cancer tissue-derived cell mass or a cancer cell aggregate;
    Methods for evaluating immunotherapeutic effects, including
  14. さらに、前記血液由来細胞の細胞障害性を測定する工程を含む、請求項13記載の免疫療法効果評価方法。 The immunotherapeutic effect evaluation method according to claim 13, further comprising the step of measuring the cytotoxicity of the blood-derived cells.
  15. 前記血液由来細胞が、単離された細胞傷害性T細胞である、請求項13または14記載の免疫療法効果評価方法。 The immunotherapeutic effect evaluation method according to claim 13 or 14, wherein the blood-derived cells are isolated cytotoxic T cells.
  16. 前記血液由来細胞が、単離されたナチュラルキラー細胞であり、前記接触させる工程が、さらに抗体を共存させる、請求項13または14記載の免疫療法効果評価方法。 The immunotherapeutic effect evaluation method according to claim 13 or 14, wherein the blood-derived cells are isolated natural killer cells, and the contacting step further causes an antibody to coexist.
  17. 前記免疫療法を施された患者が、癌組織由来細胞塊または癌細胞凝集塊を用いた免疫療法を施された患者であり、該患者由来の血液由来細胞が、免疫療法を施されてからの経過時間を変えて回収された、複数の試料として提供されるものである、請求項13から16までのいずれか1項記載の免疫療法効果評価方法。 The patient who has been subjected to the immunotherapy is a patient who has been subjected to immunotherapy using a cancer tissue-derived cell mass or a cancer cell aggregate, and blood-derived cells derived from the patient have been administered immunotherapy. The immunotherapeutic effect evaluation method according to any one of claims 13 to 16, which is provided as a plurality of samples collected at different elapsed times.
PCT/JP2011/059132 2010-04-13 2011-04-13 Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition WO2011129348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127028613A KR20130055591A (en) 2010-04-13 2011-04-13 Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010092406 2010-04-13
JP2010-092406 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011129348A1 true WO2011129348A1 (en) 2011-10-20

Family

ID=44798719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059132 WO2011129348A1 (en) 2010-04-13 2011-04-13 Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition

Country Status (2)

Country Link
KR (1) KR20130055591A (en)
WO (1) WO2011129348A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093954A1 (en) * 2011-12-19 2013-06-27 ヤマハ発動機株式会社 Object selecting device and object selecting method
CN104011196A (en) * 2011-12-20 2014-08-27 雅马哈发动机株式会社 Object Selecting Device And Object Selecting Method
CN110475860A (en) * 2017-03-16 2019-11-19 美迪恩斯生命科技株式会社 Use the dimensional culture of the primary cancer cell of tumor tissues

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501827A (en) * 1996-10-07 2001-02-13 フォーダム ユニバーシティー Methods for generating cytotoxic T cells in vitro
JP2001509135A (en) * 1996-10-11 2001-07-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cancer immunotherapy using tumor cells combined with mixed lymphocytes
JP2002522502A (en) * 1998-08-10 2002-07-23 トーマス・ジェファーソン・ユニバーシティ Compositions and methods using tumor cells
JP2003500366A (en) * 1999-05-21 2003-01-07 オニバックス リミティド New vaccine preparation 2
WO2008091908A2 (en) * 2007-01-22 2008-07-31 Raven Biotechnologies Human cancer stem cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501827A (en) * 1996-10-07 2001-02-13 フォーダム ユニバーシティー Methods for generating cytotoxic T cells in vitro
JP2001509135A (en) * 1996-10-11 2001-07-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cancer immunotherapy using tumor cells combined with mixed lymphocytes
JP2002522502A (en) * 1998-08-10 2002-07-23 トーマス・ジェファーソン・ユニバーシティ Compositions and methods using tumor cells
JP2003500366A (en) * 1999-05-21 2003-01-07 オニバックス リミティド New vaccine preparation 2
WO2008091908A2 (en) * 2007-01-22 2008-07-31 Raven Biotechnologies Human cancer stem cells

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KOJIRO URAZUMI: "Hito Nyugan Saibo no Mukessei Baiyo Sono Hormone Izonsei ni Kansuru Kenkyu Oyobi Shodai Baiyo eno Oyo", JOURNAL OF JAPAN SURGICAL SOCIETY, vol. 91, no. 6, 1990, pages 718 - 728 *
PUIFFE M.L. ET AL.: "Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer", NEOPLASIA, vol. 9, no. 10, 2007, pages 820 - 829 *
SODEK K.L.: "Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype", INT.J.CANCER., vol. 124, no. 9, May 2009 (2009-05-01), pages 2060 - 2070 *
XIAO Y. ET AL.: "The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype.", AM.J. PATHOL., vol. 173, no. 2, 2008, pages 561 - 574 *
YASUAKI HONDA ET AL.: "Koganzai no Kanjusei Test ni Tsuite Idenshi Shindan o Fukumete Hinyokigan Collagen-Geru Doroppu Baiyoho o Mochiita Koganzai Kanjusei Shiken", CANCER THERAPY & HOST, vol. 10, no. 4, 1998, pages 409 - 415 *
ZHANG S. ET AL.: "Identification and characterization of ovarian cancer- initiating cells from primary human tumors.", CANCER RES., vol. 68, no. 11, 2008, pages 4311 - 4320, XP008147214, DOI: doi:10.1158/0008-5472.CAN-08-0364 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093954A1 (en) * 2011-12-19 2013-06-27 ヤマハ発動機株式会社 Object selecting device and object selecting method
CN104011197A (en) * 2011-12-19 2014-08-27 雅马哈发动机株式会社 Object selecting device and object selecting method
JPWO2013093954A1 (en) * 2011-12-19 2015-04-27 ヤマハ発動機株式会社 Object sorting apparatus and object sorting method
US9194865B2 (en) 2011-12-19 2015-11-24 Yamaha Hatsudoki Kabushiki Kaisha Object selecting device and object selecting method
CN104011197B (en) * 2011-12-19 2016-08-24 雅马哈发动机株式会社 Object sorting unit and object method for separating
CN106148190A (en) * 2011-12-19 2016-11-23 雅马哈发动机株式会社 Object sorting unit
CN106148190B (en) * 2011-12-19 2018-10-16 雅马哈发动机株式会社 Object sorting unit
CN104011196A (en) * 2011-12-20 2014-08-27 雅马哈发动机株式会社 Object Selecting Device And Object Selecting Method
JPWO2013093961A1 (en) * 2011-12-20 2015-04-27 ヤマハ発動機株式会社 Object sorting apparatus and object sorting method
CN104011196B (en) * 2011-12-20 2015-12-16 雅马哈发动机株式会社 Object sorting unit and object sorting method
CN110475860A (en) * 2017-03-16 2019-11-19 美迪恩斯生命科技株式会社 Use the dimensional culture of the primary cancer cell of tumor tissues
CN110475860B (en) * 2017-03-16 2024-05-14 美迪恩斯生命科技株式会社 Three-dimensional culture of primary cancer cells using tumor tissue

Also Published As

Publication number Publication date
KR20130055591A (en) 2013-05-28

Similar Documents

Publication Publication Date Title
JP5652809B2 (en) Cancer tissue-derived cell mass and preparation method thereof
KR102073730B1 (en) Methods of producing human rpe cells and pharmaceutical preparations of human rpe cells
Hunt et al. Engineered matrices enable the culture of human patient‐derived intestinal organoids
Florczyk et al. 3D porous chitosan–alginate scaffolds: a new matrix for studying prostate cancer cell–lymphocyte interactions in vitro
WO2011068183A1 (en) Aggregated cancer cell mass and process for preparation thereof
JP6238445B2 (en) Colorectal epithelial stem cell isolation and culture technology, and colorectal epithelial transplantation technology using this
WO2011149013A1 (en) Method for evaluation of sensitivity of cancer-tissue-derived cell mass or aggregated cancer cell mass to medicinal agent or radioactive ray
JP5774496B2 (en) Method for culturing, evaluating and preserving cancer tissue-derived cell mass or cancer cell aggregate
WO2016081554A1 (en) Immunogenic compositions prepared from tumor cells derived from peripheral blood and originating from a solid tumor and their use
WO2021241621A1 (en) Method for producing organoid from lung epithelial cells or lung cancer cells
KR20150139855A (en) Individualized high purity hepatocellular carcinoma stem cells, methods and use of the same
JP2016512423A (en) High purity ovarian cancer stem cells for active autoimmune therapy
JP5809782B2 (en) Method for evaluating drug or radiosensitivity of cancer tissue-derived cell mass or cancer cell aggregate
US8691206B2 (en) Formation of hydrogel in the presence of peroxidase and low concentration of hydrogen peroxide
WO2011129348A1 (en) Composition for treatment of cancer which is produced from cancer-tissue-derived cell mass or cancer cell aggregate, and process for production of immunotherapeutic agent and method for evaluation of efficacy of immunotherapy both using the composition
AU2014248713A1 (en) Individualized high-purity glioblastoma multiforme stem cells and methods for stimulating immune response
Hagenaars et al. Characteristics of tumor infiltration by adoptively transferred and endogenous natural‐killer cells in a syngeneic rat model: Implications for the mechanism behind anti‐tumor responses
CN108277275B (en) Use of calnexin in screening of drugs for diagnosis or treatment of tumor-related diseases
CN107460170B (en) Establishment and application of human pituitary adenoma cell line
WO2014164462A1 (en) Method of induction and purification of a cell population responsible for vasculary mimicry and use of the same
US20140128272A1 (en) Method for Inducing Dormancy of Cancer Tissue-Derived Cell Mass and Method for Evaluating Treating Means with the Use of Cancer-Tissue-Derived Cell Mass
JP6437184B2 (en) Method for isolating tongue epithelial stem cells
Hauer et al. Hydrogel-embedded precision-cut lung slices support ex vivo culture of in vivo-induced premalignant lung lesions
SCHWEIZER et al. CELL BASED DRUG DEVELOPMENT, SCREENING, AND TOXICOLOGY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028613

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11768869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP