[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011125479A1 - Polarizing light guide plate, illuminating device, and projection display device - Google Patents

Polarizing light guide plate, illuminating device, and projection display device Download PDF

Info

Publication number
WO2011125479A1
WO2011125479A1 PCT/JP2011/056761 JP2011056761W WO2011125479A1 WO 2011125479 A1 WO2011125479 A1 WO 2011125479A1 JP 2011056761 W JP2011056761 W JP 2011056761W WO 2011125479 A1 WO2011125479 A1 WO 2011125479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
polarized light
angle
guide plate
Prior art date
Application number
PCT/JP2011/056761
Other languages
French (fr)
Japanese (ja)
Inventor
悟郎 齋藤
雅雄 今井
昌尚 棗田
慎 冨永
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012509396A priority Critical patent/JPWO2011125479A1/en
Publication of WO2011125479A1 publication Critical patent/WO2011125479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to a polarization light guide plate from which light having polarization properties is emitted, and more particularly, to a polarization light guide plate of a projection display device typified by a liquid crystal projector.
  • Patent Document 1 discloses a light guide plate that emits light having polarization.
  • the light guide plate includes a first layer having an incident end face on which light from a light source is incident and an emission surface from which the light is emitted, a second layer formed on the emission surface side of the first layer, and a second layer.
  • a third layer made of an anisotropic material is formed, and a plurality of light distribution adjusting units are formed in an interface between the second layer and the first layer.
  • a polarization conversion plate and a reflection plate are formed on the surface of the first layer opposite to the exit surface.
  • the surface of the second layer opposite to the first layer is a prism surface.
  • the prism surface is formed by repeatedly arranging prism structures having a triangular wave cross section.
  • the width of the light distribution adjusting unit becomes smaller as the distance from the light source increases.
  • the interval between the light distribution adjusting units increases as the distance from the light source increases.
  • the third layer is configured such that the first refractive index for P-polarized light and the second refractive index for S-polarized light are different.
  • the first refractive index of the third layer is substantially the same as the refractive index of the first layer and the second layer.
  • the second refractive index of the third layer is larger than the refractive indexes of the first layer and the second layer.
  • the P-polarized light passes through the boundaries of the first layer, the second layer, and the third layer as they are.
  • the P-polarized light incident on the third layer from the second layer is reflected in the direction of the first layer by the surface of the third layer opposite to the second layer.
  • the P-polarized reflected light incident on the second layer from the third layer is reflected in the direction of the third layer by the light distribution adjusting unit, or is transmitted through the first layer and the polarization conversion plate and is reflected by the reflecting plate. Reflected in the direction of one layer. As described above, the P-polarized light is guided between the third layer and the reflection plate, and is converted into S-polarized light by passing through the polarization conversion plate in the light guide process.
  • the S-polarized light traveling from the first layer to the second layer passes through the boundary between the first layer and the second layer as it is.
  • the S-polarized light traveling from the second layer to the third layer is refracted at the boundary between the second layer and the third layer, and enters the third layer.
  • light that is incident on the prism surface of the second layer at a predetermined incident angle is reflected by the prism surface. Then, the light is emitted from the third layer to the outside.
  • a projection display device that irradiates a display element with light from a light source and projects an image formed by the display element by a projection optical system
  • an etendue determined by the light emission cross-sectional area of the light source and the divergence angle of the emitted light Design that takes into account the constraints imposed by That is, in order to use all of the light emitted from the light source as projection light, the product value of the light emission cross-sectional area of the light source and the divergence angle of the emitted light is expressed by the display area of the display element and the F number of the projection optical system. It is necessary to make the value less than the product of the determined capture angle (solid angle). If this condition is not satisfied, part of the light from the light source is not used as projection light.
  • the polarizing light guide plate of the present invention comprises: A light guide including opposing surfaces, and one of these surfaces being an exit surface; A reflective layer provided on the other surface of the opposing surface of the light guide; Phase difference means provided on the exit surface of the light guide; A plurality of anisotropic refracting portions periodically formed in a certain direction along the other surface in the light guide; Each of the plurality of anisotropic refracting portions has a refractive index with respect to the first polarized light that is smaller than a refractive index of the light guide and has a polarization state different from that of the first polarized light.
  • the refractive index is configured to be larger than the refractive index of the light guide
  • the phase difference unit changes the phase of at least one of the first and second polarized lights emitted from the emission surface, and emits circularly polarized light having the same rotation direction or linearly polarized light having the same polarization direction.
  • the lighting device of the present invention is The polarizing light guide plate, And at least one light source for supplying light to an end of the polarizing light guide plate.
  • the projection display device of the present invention is The above lighting device; A display element irradiated with light emitted from the illumination device; A projection optical system for projecting an image formed by the display element.
  • Another projection display device of the present invention is A lighting device of each color of red, green, and blue composed of the lighting device described above, A first display element irradiated with red light emitted from the red illumination device; A second display element irradiated with green light emitted from the green illumination device; A third display element irradiated with blue light emitted from the blue illumination device; A projection optical system for projecting each color image displayed on the first to third display elements.
  • FIG. 2 is a perspective view schematically showing a part of the polarization light guide plate shown in FIG. 1. It is a schematic diagram for demonstrating the emission conditions of the polarizing light-guide plate shown in FIG. It is a schematic diagram for demonstrating the light guide conditions of the polarizing light-guide plate shown in FIG. It is a schematic diagram for demonstrating another light guide condition of the polarizing light guide plate shown in FIG. It is a schematic diagram for demonstrating the conditions (thickness and width) of the magnitude
  • FIG. 1 is a cross-sectional view showing a configuration of a polarizing light guide plate according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of the polarizing light guide plate shown in FIG.
  • the polarization light guide plate is used in a projection display device typified by a liquid crystal projector, and is provided on the light guide 10 and one surface of the light guide 10.
  • a plurality of anisotropies provided on the boundary surface between the half-wave plate 11 formed, the reflective layer 12 provided on the other surface of the light guide 10, and the reflective layer 12 in the light guide 10 And a refracting portion 13.
  • the light guide 10 is plate-shaped and made of a material having an isotropic refractive index.
  • Refractive index isotropic means that the refractive indexes for the first and second polarized lights (P-polarized light and S-polarized light) having different polarization states are the same.
  • the refractive index of the light guide 10 is n0.
  • the light guide 10 has a plurality of end faces (usually four end faces), and light from the light source is incident on at least one of the end faces.
  • the light source is, for example, a semiconductor light source such as a light emitting diode (LED) or a semiconductor laser (LD), or a light source called a solid light source.
  • the refractive index of the half-wave plate 11 is almost equal to the refractive index n0 of the light guide 10.
  • the half-wave plate 11 has a rectangular shape and is periodically formed in a direction intersecting the longitudinal direction.
  • the longitudinal direction is a direction along the long side of the half-wave plate.
  • the direction intersecting the longitudinal direction is, for example, a direction perpendicular to the end surface where the light source of the light guide 10 is provided.
  • the anisotropic refracting portion 13 is made of a material having an anisotropic refractive index.
  • the refractive index anisotropy indicates that the refractive indexes for the first and second polarized lights are different.
  • the refractive index for the first polarized light is n1
  • the refractive index for the second polarized light is n2.
  • the anisotropic refracting portion 13 is configured to satisfy the condition of n1 ⁇ n0 ⁇ n2.
  • the anisotropic refracting portion 13 has a rectangular parallelepiped shape and is periodically arranged in a direction intersecting with the longitudinal direction (the same as the longitudinal direction of the half-wave plate 11).
  • the width and interval of the half-wave plate 11 and the size (height, length, and width) of the anisotropic refracting portion 13 are appropriately set in consideration of light guide conditions and emission conditions.
  • the height is a thickness in a direction perpendicular to the emission surface 10a on the side where the half-wave plate 11 of the light guide 10 is provided.
  • the length and width are the lengths of two intersecting sides when the anisotropic refracting portion 13 is viewed from a direction perpendicular to the emission surface 10a.
  • a part of light (non-polarized light) incident on the first end surface of the light guide 10 from the light source is reflected between the emission surface 10a and the reflective layer 12 and guided.
  • the light propagates in the light body 10 toward the second end face facing the first end face. In this propagation process, a part of the light enters the anisotropic refracting portion 13.
  • the anisotropic refracting unit 13 includes first and second emission conditions between the emission surface 10a and the reflective layer 12 and emission conditions for emitting the first and second polarized lights from different regions of the emission surface 10a.
  • the light guide condition for guiding the polarized light is satisfied.
  • FIG. 3 is a diagram for explaining the emission conditions of the anisotropic refracting unit 13 with respect to the first and second polarized lights.
  • a part of the polarization light guide plate shown in FIG. It is the schematic diagram of the cross section cut
  • an arrow indicated by a solid line indicates P-polarized light
  • an arrow indicated by a broken line indicates S-polarized light.
  • the refractive index for P-polarized light is n1
  • the refractive index for S-polarized light is n2.
  • the S-polarized light incident at an angle ⁇ 0 formed with the surface 13a with respect to the surface 13a located on the light exit surface 10a side of the light guide 10 is refracted at an angle ⁇ 1 and is surface 13a. It reaches the surface 13b opposite to.
  • the incident angle of the S-polarized light with respect to the surface 13a is given by “90 ° ⁇ 0”, which is larger than the angle ⁇ 1.
  • the surface 13b is an interface between the anisotropic refracting portion 13 and the reflective layer 12.
  • the S-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b.
  • the S-polarized light reflected by the surface 13b reaches the side surface 13c.
  • the refractive index of the half-wave plate 11 is substantially equal to the refractive index of the light guide 10, the S-polarized light from the side surface 13 c passes through the surface 10 a without being refracted and passes through the half-wave plate 11. Incident in. In the half-wave plate 11, the incident light reaches the surface 11 a opposite to the light guide 10. When the incident angle (90 ° ⁇ 1) of the incident light with respect to the surface 11a is smaller than the critical angle, the incident light is emitted from the surface 11a at the emission angle ⁇ . The light emitted from the surface 11a is P-polarized light.
  • S-polarized light that satisfies the condition of being incident from the surface 13 a and emitted from the side surface 13 c is P-polarized light by the half-wave plate 11. After being converted to, the light is emitted at an emission angle ⁇ .
  • the S-polarized light incident from the surface 13 a and emitted from the side surface 13 c is reflected by the reflective layer 12 and then passes through the half-wave plate 11.
  • the condition of emission is also established as the emission condition.
  • the P-polarized light incident at the incident angle ⁇ 0 with respect to the side surface 13d located on the first end surface side of the light guide 10 is refracted at the angle ⁇ 1 (> ⁇ 0). , Reach the surface 13b.
  • the P-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b.
  • the P-polarized light reflected by the surface 13b reaches the surface 13a.
  • the incident angle (90 ° ⁇ 1) of the P-polarized light from the surface 13a with respect to the emission surface 10a is smaller than the critical angle, the P-polarized light is emitted from the emission surface 10a at the emission angle ⁇ .
  • the P-polarized light that satisfies the condition (exit condition) that is incident from the side surface 13d and emitted from the surface 13a is emitted from the output surface 10a at the output angle ⁇ .
  • the condition that the P-polarized light incident from the side surface 13d is directly emitted from the surface 13a without passing through the reflective layer 12 is also satisfied as the emission condition.
  • the region where the S-polarized light is emitted from the exit surface 10a is the P-polarized light of the exit surface 10a. It is different from the region where light is emitted.
  • the half-wave plate 11 is formed on a region of the emission surface 10a where S-polarized light is emitted.
  • the half-wave plate 11 may be formed not on the area of the emission surface 10a where S-polarized light is emitted but on the area where P-polarized light is emitted. In this case, light emitted from the polarization light guide plate is S-polarized light.
  • FIG. 4 is a diagram for explaining the light guide conditions of the anisotropic refracting portion 13, and a part of the polarization light guide plate shown in FIG. 1 is replaced with the first end face of the light guide 10 and the exit face 10 a. It is a schematic diagram of the cross section cut
  • the S-polarized light incident on the surface 13a at an angle ⁇ 0 ′ formed with the surface 13a is refracted at an angle ⁇ 1 ′ and reaches the surface 13b.
  • the S-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b.
  • the S-polarized light reflected by the surface 13b reaches the side surface 13c.
  • the angle between the S-polarized light emitted from the side surface 13c and the side surface 13c is ⁇ 1 '.
  • the incident angle (90 ° ⁇ 1 ′) of the S-polarized light from the side surface 13c with respect to the emission surface 10a is larger than the critical angle. Therefore, the S-polarized light is reflected by the emission surface 10a.
  • the S-polarized light that satisfies the light guide condition of entering from the surface 13a, reflected by the surface 13b, and emitted from the side surface 13c is reflected by the exit surface 10a. And propagates in the light guide 10.
  • the P-polarized light incident at the incident angle ⁇ 0 ′ on the side surface 13d is refracted at the angle ⁇ 1 ′ and reaches the surface 13b.
  • the P-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b.
  • the P-polarized light reflected by the surface 13b reaches the surface 13a.
  • the incident angle ⁇ 2 ′ of the P-polarized light reflected by the surface 13b with respect to the surface 13a is smaller than the critical angle. For this reason, the P-polarized light incident on the surface 13 a from the surface 13 b is refracted and reaches the output surface 10 a of the light guide 10.
  • the angle between the P-polarized light emitted from the surface 13a and the surface 13a is ⁇ 1 ′.
  • the incident angle (90 ° ⁇ 1 ′) of the P-polarized light from the surface 13a with respect to the emission surface 10a is larger than the critical angle. Therefore, the P-polarized light is reflected by the exit surface 10 a and propagates through the light guide 10.
  • the P-polarized light that satisfies the light guide condition of entering from the side surface 13d, reflected by the surface 13b, and emitted from the surface 13a is reflected by the emission surface 10a. And propagates in the light guide 10.
  • FIG. 5 is a diagram for explaining another light guide condition of the anisotropic refracting portion 13, and a part of the polarization light guide plate shown in FIG. It is a schematic diagram of the cross section cut
  • the S-polarized light incident at the incident angle ⁇ 0 ′ on the side surface 13d is refracted at the angle ⁇ 1 ′ and reaches the surface 13b.
  • S-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b.
  • the S-polarized light reflected by the surface 13b reaches the surface 13a.
  • the angle between the S-polarized light emitted from the surface 13a and the surface 13a is ⁇ 1 '.
  • the incident angle (90 ° ⁇ 1 ′) of the S-polarized light from the surface 13a with respect to the emission surface 10a is larger than the critical angle. Therefore, the S-polarized light is reflected by the emission surface 10 a and propagates through the light guide 10.
  • the S-polarized light that satisfies the light guide condition of entering from the side surface 13d, reflected by the surface 13b, and emitted from the surface 13a is reflected by the emission surface 10a. And propagates in the light guide 10.
  • the P-polarized light incident on the surface 13a at an angle ⁇ 0 ′ formed with the surface 13a is refracted at an angle ⁇ 1 ′ and reaches the surface 13b.
  • the P-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b.
  • the P-polarized light reflected by the surface 13b is incident on the side surface 13c at an incident angle ⁇ 2 ′.
  • the incident angle ⁇ 2 ′ is smaller than the critical angle. Therefore, the P-polarized light incident on the side surface 13c from the surface 13b is refracted at an angle ⁇ 1 'and reaches the output surface 10a.
  • the incident angle (90 ° - ⁇ 1 ') of the P-polarized light incident on the exit surface 10a is larger than the critical angle. Therefore, the P-polarized light is reflected by the emission surface 10 a and propagates through the light guide 10.
  • the P-polarized light that satisfies the light guide condition of entering from the surface 13a, reflected by the surface 13b, and emitted from the side surface 13c is reflected by the emission surface 11a. And propagates in the light guide 10.
  • the first and second polarized lights (S-polarized light and P-polarized light) satisfying the emission condition of the anisotropic refracting unit 13 are emitted from the emission surface 10a. Emitted.
  • One of the first and second polarized light emitted from the emission surface 10 a is polarized and converted by the half-wave plate 11.
  • the spread of the emission angle is controlled within a range that the angle ⁇ can take.
  • the emission angle ⁇ is taken in the in-plane direction of the first plane intersecting (or orthogonal to) each of the first end face (end face on the side where the light source is disposed) of the light guide 10 and the emission face 11a. The output angle to obtain.
  • the emission angle ⁇ is 67.3 °. is there.
  • the emission angle ⁇ is 80.5 °.
  • the emission angle ⁇ is 89.8 °.
  • the emission angle width is 22.5 °.
  • the emission angle width is an angle width given by the maximum angle and the minimum angle of the emission angle ⁇ , and is an angular spread of the emission angle of the outgoing light of the polarizing light guide plate of the present embodiment.
  • the magnitude relationship between the refractive indexes of S-polarized light and P-polarized light and the region where the half-wave plate 11 is formed can be changed as appropriate.
  • the first polarized light on the emission surface 10a of the light guide 10 is used.
  • the first region from which the light is emitted and the second region from which the second polarized light is emitted need to be completely separated.
  • the size and interval of the anisotropic refracting portion 13 capable of separating the region where the first and second polarized lights are emitted from the emission surface 10a will be described.
  • FIG. 6 is a diagram for explaining the size conditions (thickness and width) of the anisotropic refracting portion 13 and is cut along a plane perpendicular to the first end face of the light guide 10 and the exit face 10a.
  • the arrow indicated by a broken line is S-polarized light
  • the arrow indicated by a solid line is P-polarized light.
  • the width of the anisotropic refracting portion 13 (the length of the surfaces 13a and 13b) is B
  • the thickness of the anisotropic refracting portion 13 is H
  • the thickness of the light guide 10 is as follows. Is D.
  • the maximum angle of the P-polarized light incident from the surface 13a and emitted from the side surface 13c with the perpendicular of the side surface 13c is ⁇ 1max, and the maximum angle ⁇ 1max is given to the P-polarized light incident on the surface 13a.
  • An angle formed with the surface 13a is set to ⁇ 0max.
  • the minimum angle of the S-polarized light incident from the side surface 13d and emitted from the surface 13a with the surface 13a is ⁇ 1min
  • the side surface 13d of the S-polarized light incident on the side surface 13d is given the minimum angle ⁇ 1min.
  • the angle formed by the perpendicular to is ⁇ 0 min.
  • X be the shortest distance from the exit point of the S-polarized light emitted at the minimum angle ⁇ 1 min on the surface 13a to the end of the surface 13a on the side surface 13c side.
  • a region where the first and second polarized lights are emitted from the exit surface 10a (the exit region of S-polarized light and P-polarized light emission area) can be separated.
  • FIG. 7 is a diagram for explaining the interval between the anisotropic refracting portions, and is a schematic diagram of a cross section cut along a plane perpendicular to the first end face of the light guide 10 and the emission face 10a.
  • the arrow indicated by a broken line is S-polarized light
  • the arrow indicated by a solid line is P-polarized light.
  • the interval between two adjacent anisotropic refracting portions 13A and 13B is P.
  • the anisotropic refracting portion 13 ⁇ / b> A is disposed on the first end surface (end surface on the side where the light source is provided) side of the light guide 10.
  • a region where the first and second polarized lights are emitted from the emission surface 10a (emission of S-polarized light) Region and the exit region of P-polarized light) can be separated.
  • the distance between the anisotropic refracting portions 13 is narrowed so that the light is reflected by the reflective layer 12 and enters from the side surface 13d of the anisotropic refracting portion 13 and exits from the surface 13a.
  • the first polarized light and the second polarized light that is incident from the surface 13a of the anisotropic refracting portion 13 and is emitted from the side surface 13c are not emitted from the emission surface 10a, but are guided through the light guide 10. It can also be configured to shine.
  • FIG. 8 is a diagram for explaining the interval between the anisotropic refracting portions, and is a schematic diagram of a cross section cut along a plane perpendicular to the first end face of the light guide 10 and the emission face 10a.
  • the arrow indicated by a broken line is S-polarized light
  • the arrow indicated by a solid line is P-polarized light.
  • the interval between two adjacent anisotropic refracting portions 13A and 13B is P.
  • the anisotropic refracting portion 13 ⁇ / b> A is disposed on the first end surface (end surface on the side where the light source is provided) side of the light guide 10.
  • the width (length of the surfaces 13a and 13b) of each of the anisotropic refracting portions 13A and 13B is B, and the thickness (the length of the side surfaces 13c and 13d) is H.
  • D be the thickness of the light guide 10.
  • the maximum angle of the S-polarized light incident on the reflective layer 12 without passing through the anisotropic refracting portion 13A and the reflective layer 12 is ⁇ 0max.
  • the maximum angle of the S-polarized light incident from the side surface 13d and emitted from the surface 13a with the surface 13a is ⁇ 1max.
  • the light is reflected by the reflective layer 12 and is incident from the side surface 13d of the anisotropic refracting portion 13B.
  • the S-polarized light emitted from the surface 13a and the P-polarized light incident from the surface 13a of the anisotropic refracting portion 13A, reflected by the surface 13b, and emitted from the side surface 13c can be guided.
  • FIG. 9 is a schematic diagram for explaining the configuration of the polarizing light guide plate according to the first embodiment of the present invention.
  • the arrow indicated by a broken line is S-polarized light
  • the arrow indicated by a solid line is P-polarized light.
  • the width of the anisotropic refracting portion 13 is B, and the thickness is H.
  • D be the thickness of the light guide 10.
  • the width of the half-wave plate 11 is b.
  • P-polarized light from the anisotropic refracting portion 13 that enters the half-wave plate 11 directly or through the reflective layer 12 enters the P-polarized light that enters from the surface on the exit surface 10a side and exits from the side surface.
  • L be the shortest distance between the plane including the emitted side surface and the end of the half-wave plate 11.
  • P be the distance between the anisotropic refracting portions 13.
  • the interval P between the anisotropic refracting portions 13 satisfies the conditions of the above-described formulas (1) to (6).
  • the refractive index n0 of the light guide 10 is 1.50, and the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively.
  • the thickness D of the light guide 10 is 1 mm.
  • the anisotropic refractive portion 13 has a width B of 300 ⁇ m and a thickness H of 100 ⁇ m.
  • the spacing P between the anisotropic refracting portions 13 is 300 ⁇ m.
  • the width b of the half-wave plate 11 is 285 ⁇ m.
  • the shortest distance L is 701 ⁇ m.
  • the emission angle ⁇ is 67.3 °.
  • the emission angle ⁇ is 80.5 °.
  • the emission angle ⁇ is 89.8 °.
  • the maximum angle of the light incident on the light guide 10 from the light source with respect to the plane parallel to the output surface 10a is 48.1 ° or less, the angular spread of the output angle of the output light of the polarizing light guide plate is 22.7 °. Can be about.
  • FIG. 10 is a schematic diagram for explaining a configuration of a polarizing light guide plate according to the second embodiment of the present invention.
  • an arrow indicated by a broken line is S-polarized light
  • an arrow indicated by a solid line is P-polarized light.
  • the width of the anisotropic refracting portion 13 is B, and the thickness is H.
  • D be the thickness of the light guide 10.
  • the width of the half-wave plate 11 is b.
  • P-polarized light from the anisotropic refracting portion 13 that enters the half-wave plate 11 directly or through the reflective layer 12 enters the P-polarized light that enters from the surface on the exit surface 10a side and exits from the side surface.
  • L be the shortest distance between the plane including the emitted side surface and the end of the half-wave plate 11.
  • P be the distance between the anisotropic refracting portions 13.
  • the interval P between the anisotropic refracting portions 13 satisfies the conditions of the expressions (7) to (8) described above.
  • the refractive index n0 of the light guide 10 is 1.50, and the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively.
  • the thickness D of the light guide 10 is 1 mm.
  • the anisotropic refractive portion 13 has a width B of 300 ⁇ m and a thickness H of 100 ⁇ m.
  • the spacing P between the anisotropic refracting portions 13 is 80 ⁇ m.
  • the width b of the half-wave plate 11 is 196 ⁇ m.
  • the shortest distance L is 701 ⁇ m.
  • the emission angle ⁇ is 67.3 °.
  • the emission angle ⁇ is 80.5 °.
  • the emission angle ⁇ is 89.8 °.
  • the maximum angle of the light incident on the light guide 10 from the light source with respect to the plane parallel to the output surface 10a is 48.1 ° or less, the angular spread of the output angle of the output light of the polarizing light guide plate is 22.7 °. Can be about.
  • Example 3 The polarizing light guide plate of the third embodiment of the present invention is also configured as shown in FIG.
  • the refractive index n0 of the light guide 10 is 1.50
  • the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively.
  • the light guide 10 has a thickness D of 500 ⁇ m.
  • the anisotropic refracting portion 13 has a width B of 260 ⁇ m and a thickness H of 100 ⁇ m.
  • the spacing P between the anisotropic refracting portions 13 is 80 ⁇ m.
  • the width b of the half-wave plate 11 is 50 ⁇ m.
  • the shortest distance L is 310 ⁇ m.
  • the emission angle ⁇ is 67.3 °.
  • the emission angle ⁇ is 80.5 °.
  • the emission angle ⁇ is 89.8 °.
  • the angular spread of the outgoing angle of the outgoing light from the polarizing light guide plate can be set to about 22.7 °.
  • the polarization light guide plate of the present embodiment described above it is possible to keep the spread of the emission angle of light emitted from the polarization light guide plate within a light usable range based on etendue restrictions.
  • the light propagating in the light guide 10 can be used by circulating light between the quarter-wave plate 11 and the reflection layer 12, the light use efficiency can be improved.
  • angle conversion means is provided in order to effectively use incident light having a certain degree of emission angle distribution from a light source.
  • the angle conversion means include a method of making the light guide plate a wedge shape, a method of providing a prism portion in the light guide plate, and the like.
  • the light guide plate used in the projector illumination device is small, for example, if the wedge angle of the wedge-shaped structure (angle formed by the reflecting surface and the exit surface) is small, the incident light reaches the surface facing the entrance surface. By this time, a sufficient change in the light guide angle cannot be obtained, and the effect of increasing the amount of light by the wedge-shaped structure is halved. For this reason, the wedge-shaped structure has a wedge angle that is somewhat large.
  • the angle conversion means is realized by, for example, a configuration in which the thickness of the first layer is gradually reduced as the distance from the incident surface increases.
  • the P-polarized light that satisfies the angle condition and is reflected by the prism surface of the second layer passes through the first layer and the polarization conversion plate and is reflected in the direction of the first layer by the reflecting plate. At this time, the P-polarized light is converted into S-polarized light by the polarization conversion plate, and the light guide angle is changed by the wedge-shaped structure. In this case, if the wedge angle is small to some extent, the S-polarized light reflected by the reflecting plate is emitted from the exit surface of the light guide plate in order to satisfy the angle condition.
  • the polarizing light guide plate of the present embodiment the light satisfying the angle condition (emission condition) is emitted from the emission surface 10a of the light guide 10 regardless of the polarization state. Further, since the light guide angle of the incident light is changed by passing through the anisotropic refracting portion 13, it is not necessary to use an angle conversion means such as a wedge structure. Therefore, according to the polarizing light guide plate of the present embodiment, it is possible to realize a projector having a large amount of emitted light and a high brightness as compared with the light guide plate described in Patent Document 1.
  • a light guide having a concave portion in a region to be the anisotropic refracting portion 13 is created.
  • the light guide can be created for mold forming, cutting and the like.
  • an alignment film is applied to the surface of the light guide where the concave portion is formed and one surface of the reflective layer (reflecting plate), and an alignment treatment is performed.
  • a UV curable liquid crystal monomer is embedded in the recess by screen printing. Thereafter, the surface of the light guide body on which the concave portion is formed and one surface of the reflective layer are bonded together.
  • the bonded light guide and reflective layer are heated and then cooled to align the UV curable liquid crystal monomer. Finally, UV light is irradiated to cure the aligned UV curable liquid crystal monomer, and then a half-wave plate is attached to a predetermined region on the surface of the light guide opposite to the reflective layer. Thereby, the polarization light guide plate of the first embodiment is obtained.
  • the outgoing light has an inclination with respect to the normal of the outgoing surface 10a.
  • a mode capable of emitting light in a direction perpendicular to the emission surface 10a will be described.
  • FIG. 11 is a cross-sectional view showing a configuration of a polarizing light guide plate according to the second embodiment of the present invention.
  • the polarizing light guide plate of this embodiment is obtained by adding a prism sheet 15 to the polarizing light guide plate of the first embodiment.
  • the configuration other than the prism sheet 15 is the same as that of the polarizing light guide plate of the first embodiment.
  • the plurality of apex angles of the prism sheet 15 are provided so as to face the light exit surface 10 a of the light guide 10.
  • FIG. 12 shows an enlarged view in which a part of the prism sheet 15 is enlarged.
  • the prism sheet 15 is formed by two-dimensionally arranging prism surfaces 15a having a triangular cross-sectional shape.
  • the apex angle of the prism surface 15a is determined based on the angle of light emitted from the emission surface 10a and the half-wave plate 11 (for example, the emission angle ⁇ shown in FIG. 3). For example, when the emission angle ⁇ is larger than 67 ° and smaller than 90 °, assuming that the refractive index of the prism sheet 15 is 1.50, the apex angle of the prism surface 15a is about 70 °.
  • the prism sheet 15 having the prism surface 15a having an apex angle of 70 ° has an angle ⁇ formed by a surface parallel to a surface forming one side of the triangular shape of the prism surface 15a and the emission surface 10a, so that 55 °. It arrange
  • the half-wave plate 11 is a first quarter-wave plate, and a second quarter-wave plate is interposed between the first quarter-wave plates. May be provided.
  • the first and second quarter-wave plates are alternately and periodically arranged in a fixed direction (the direction in which the anisotropic refracting portions 13 are arranged).
  • the optical axis of the first quarter-wave plate is orthogonal to the optical axis of the second quarter-wave plate.
  • the S-polarized light passes through the first quarter-wave plate, and the P-polarized light.
  • Light passes through the second quarter-wave plate.
  • circularly polarized light in the same rotational direction (clockwise or counterclockwise circularly polarized light) is emitted from each of the first and second quarter wavelength plates.
  • the polarizing light guide plate of the other embodiment also satisfies the conditions for the emission condition, the light guide condition, the size of the anisotropic refracting portion 13 (thickness and width), and the interval described in the first embodiment. .
  • FIG. 13 shows an example of a cross-sectional structure of an illuminating device provided with the polarizing light guide plate of the present invention.
  • the illumination device shown in FIG. 13 includes the polarization light guide plate shown in FIG. This illuminating device can be used as an illuminating device for a liquid crystal display device such as a mobile phone or a projection display device represented by a liquid crystal projector.
  • the light source 20 is, for example, a semiconductor light source such as a light emitting diode (LED) or a semiconductor laser (LD), or a light source called a solid light source, and is provided so as to face the end face 10 b of the light guide 10.
  • the light source 20 may be arranged in any manner with respect to the end face 10b.
  • the light emitting unit of the light source 20 may be disposed close to the end surface 10b, and an optical member (prism or lens) for causing light from the light emitting unit to enter the end surface 10b between the light emitting unit and the end surface 10b. ) May be arranged.
  • the light (unpolarized light) emitted from the light source 20 enters the light guide 10 from the end face 10b.
  • Light (non-polarized light) incident on the end surface 10b of the light guide body 10 from the light source 20 is reflected by the exit surface 10a and the reflective layer 12, and in the light guide body 10 toward the end surface 10c facing the end surface 10b. Propagate toward. In this propagation process, a part of the light enters the anisotropic refracting portion 13.
  • the first and second polarized light satisfying the emission condition are emitted from the emission surface 10a.
  • the region where the first polarized light is emitted is different from the region where the second polarized light is emitted.
  • the half-wave plate 11 is provided in a region where the first polarized light is emitted, and the first polarized light emitted from the emission surface 10 a is converted into the second polarized light by the half-wave plate 11. Converted.
  • the half-wave plate 11 is provided in a region where S-polarized light is emitted, and the S-polarized light emitted from the emission surface 10 a is converted into P-polarized light by the half-wave plate 11. Is converted to
  • the angular spread (outgoing angle) of the outgoing light by the anisotropic refracting unit 13 can be kept within the usable range of light based on etendue restrictions.
  • the polarization light guide plate of 1st Embodiment may replace with this and the polarization light guide plate of 2nd Embodiment or the polarization light guide plate of other embodiment may be used. .
  • the some light source 20 may be provided with respect to the end surface 10b.
  • At least one light source 20 may be provided on both of the end faces 10b and 10c.
  • the illumination device including the polarization light guide plate of the present invention described above can be applied to a projection display device typified by a liquid crystal projector.
  • FIG. 14 is a schematic diagram showing a configuration of a projection display device using an illumination device including the polarization light guide plate of the present invention.
  • the projection display device includes illumination devices 300 to 302, liquid crystal elements 303 to 305 as display elements, a cross dichroic mirror 306, and a projection optical system 307.
  • All of the lighting devices 300 to 302 are constituted by the lighting devices described above.
  • a blue LED is used as the light source of the illumination device 300.
  • a green LED is used as the light source of the illumination device 301.
  • a red LED is used as the light source of the illumination device 302.
  • the blue light emitted from the illumination device 300 is applied to the liquid crystal element 303.
  • the liquid crystal element 303 is driven by a liquid crystal driving circuit (not shown) and forms a blue image based on a video signal supplied from the outside.
  • the green light emitted from the illumination device 301 is applied to the liquid crystal element 304.
  • the liquid crystal element 304 is driven by a liquid crystal driving circuit (not shown) and forms a green image based on a video signal supplied from the outside.
  • the red light emitted from the illumination device 302 is applied to the liquid crystal element 305.
  • the liquid crystal element 305 is driven by a liquid crystal drive circuit (not shown), and forms a red image based on a video signal supplied from the outside.
  • the image light of each color formed by the liquid crystal elements 303 to 305 enters the projection optical system 307 via the cross dichroic mirror 306.
  • the projection optical system 307 projects each color image formed by the liquid crystal elements 303 to 305 onto a screen (or a member replacing the screen) (not shown).
  • Another projection type display device uses an illuminating device including light sources of red, green and blue colors on the end face of the polarizing light guide plate of the present invention.
  • light corresponding to white light
  • predetermined polarized light P-polarized light or S-polarized light
  • the display element displays red, green, and blue images based on an external video signal in a time division manner.
  • the light emission timing of the light source is controlled in synchronization with the time division display.
  • Each color image formed on the display element is projected by the projection optical system.
  • the polarizing light guide plate of the present invention and the illumination device including the same can be used as a backlight of a liquid crystal display in addition to the projection display device described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

Disclosed is a polarizing light guide plate which comprises: a light guide body (10) which has opposing surfaces, wherein one of the surfaces serves as an emitting surface (10a); a reflective layer (12) provided on the other surface of the opposing surfaces of the light guide body (10); a plurality of half-wavelength plates (11) formed on the emitting surface (10a) of the light guide body (10) at regular intervals in a certain direction; and a plurality of anisotropic refraction portions (13) formed along the other surface at regular intervals in the certain direction within the light guide body (10). The anisotropic refraction portion (13) is provided such that a refractive index with respect to a first polarized light is smaller than that of the light guide body (10) and a refractive index with respect to a second polarized light is larger than that of the light guide body (10).

Description

偏光導光板、照明装置および投射型表示装置Polarized light guide plate, illumination device, and projection display device
 本発明は、偏光性を有する光が出射される偏光導光板に関し、特に、液晶プロジェクタに代表される投射型表示装置の偏光導光板に関する。 The present invention relates to a polarization light guide plate from which light having polarization properties is emitted, and more particularly, to a polarization light guide plate of a projection display device typified by a liquid crystal projector.
 特許文献1は、偏光性を有する光を出射する導光板を開示している。この導光板は、光源からの光が入射する入射端面および光が出射される出射面を有する第1層と、第1層の出射面側に形成された第2層と、第2層上に形成された、異方性物質よりなる第3層と、第2層内の、第1層との界面に形成された複数の光分布調節部とを有する。第1層の出射面とは反対側の面には、偏光変換板および反射板が形成されている。 Patent Document 1 discloses a light guide plate that emits light having polarization. The light guide plate includes a first layer having an incident end face on which light from a light source is incident and an emission surface from which the light is emitted, a second layer formed on the emission surface side of the first layer, and a second layer. A third layer made of an anisotropic material is formed, and a plurality of light distribution adjusting units are formed in an interface between the second layer and the first layer. A polarization conversion plate and a reflection plate are formed on the surface of the first layer opposite to the exit surface.
 第2層の第1層とは反対側の面は、プリズム面である。プリズム面は、断面が三角波の形状であるプリズム構造が反復して配列されたものである。 The surface of the second layer opposite to the first layer is a prism surface. The prism surface is formed by repeatedly arranging prism structures having a triangular wave cross section.
 光分布調節部の幅は、光源から離れるにしたがって小さくなっている。光分布調節部の間隔は、光源から離れるにしたがって大きくなっている。これら光分布調節部は、光源から離れるにしたがって、反射される光量が徐々に減少するように構成されている。 The width of the light distribution adjusting unit becomes smaller as the distance from the light source increases. The interval between the light distribution adjusting units increases as the distance from the light source increases. These light distribution adjusting units are configured such that the amount of reflected light gradually decreases as the distance from the light source increases.
 第3層は、P偏光に対する第1の屈折率とS偏光に対する第2の屈折率が異なるように構成されている。第3層の第1の屈折率は、第1層および第2層の屈折率とほぼ同じである。第3層の第2の屈折率は、第1層および第2層の屈折率より大きい。 The third layer is configured such that the first refractive index for P-polarized light and the second refractive index for S-polarized light are different. The first refractive index of the third layer is substantially the same as the refractive index of the first layer and the second layer. The second refractive index of the third layer is larger than the refractive indexes of the first layer and the second layer.
 上記の導光板では、入射端面から入射した光のうち、P偏光の光は、第1層、第2層、第3層の各境界をそのまま透過する。第2層から第3層に入射したP偏光の光は、第3層の、第2層とは反対側の面によって第1層の方向へ反射される。 In the above light guide plate, among the light incident from the incident end face, the P-polarized light passes through the boundaries of the first layer, the second layer, and the third layer as they are. The P-polarized light incident on the third layer from the second layer is reflected in the direction of the first layer by the surface of the third layer opposite to the second layer.
 第3層から第2層に入射したP偏光の反射光は、光分布調節部で第3層の方向へ反射される、または、第1層および偏光変換板を透過して反射板にて第1層の方向へ反射される。このように、P偏光の光は、第3層と反射板の間で導光し、その導光過程において、偏光変換板を通過することで、S偏光の光に変換される。 The P-polarized reflected light incident on the second layer from the third layer is reflected in the direction of the third layer by the light distribution adjusting unit, or is transmitted through the first layer and the polarization conversion plate and is reflected by the reflecting plate. Reflected in the direction of one layer. As described above, the P-polarized light is guided between the third layer and the reflection plate, and is converted into S-polarized light by passing through the polarization conversion plate in the light guide process.
 一方、第1層から第2層へ向かうS偏光の光は、第1層と第2層の境界をそのまま透過する。第2層から第3層へ向かうS偏光の光は、第2層と第3層の境界で屈折して第3層内に入射する。第2層から第3層内に入射したS偏光の光のうち、第2層のプリズム面に対して所定の入射角度(全反射条件を満たす角度)で入射した光は、そのプリズム面で反射されて、第3層から外部へ出射される。 On the other hand, the S-polarized light traveling from the first layer to the second layer passes through the boundary between the first layer and the second layer as it is. The S-polarized light traveling from the second layer to the third layer is refracted at the boundary between the second layer and the third layer, and enters the third layer. Of the S-polarized light that has entered the third layer from the second layer, light that is incident on the prism surface of the second layer at a predetermined incident angle (an angle that satisfies the total reflection condition) is reflected by the prism surface. Then, the light is emitted from the third layer to the outside.
特表2008-117766号公報JP 2008-117766 Gazette
 特許文献1に記載の導光板において、第2層のプリズム面に対して所定の入射角度で入射したS偏光の光が導光板から出射される。一方、P偏光の光は、導光板からは出射されずに、第3層と反射板の間を導光し、その導光過程において、偏光変換板を通過することで、S偏光の光に偏光変換される。すなわち、P偏光の光は、偏光変換板によってS偏光の光に変換されない限り、導光板内を導光しつづけ、導光板から出射されることはない。 In the light guide plate described in Patent Document 1, S-polarized light incident at a predetermined incident angle with respect to the prism surface of the second layer is emitted from the light guide plate. On the other hand, the P-polarized light is not emitted from the light guide plate, but is guided between the third layer and the reflecting plate, and passes through the polarization conversion plate in the light guide process, thereby being converted into S-polarized light. Is done. That is, unless the P-polarized light is converted into S-polarized light by the polarization conversion plate, the P-polarized light continues to be guided through the light guide plate and is not emitted from the light guide plate.
 通常、光を導光させる場合は、その導光過程において、光の一部が部材によって吸収され、その分、光損失となる。特許文献1に記載の導光板では、P偏光の光は、導光板から出射されることなく、必ず、導光板内を導光するため、その導光過程で、光損失が生じる。 Usually, when light is guided, a part of the light is absorbed by the member during the light guiding process, resulting in light loss. In the light guide plate described in Patent Document 1, P-polarized light is always guided through the light guide plate without being emitted from the light guide plate, so that light loss occurs in the light guide process.
 また、特許文献1の図18に示されるように、導光板の出射角度分布は±90°程度あるため、以下のような問題が生じる。 Further, as shown in FIG. 18 of Patent Document 1, since the emission angle distribution of the light guide plate is about ± 90 °, the following problems occur.
 一般に、光源からの光を表示素子に照射し、表示素子で形成された画像を投射光学系によって投射する投射型表示装置においては、光源の光出射断面積と出射光の発散角とで決まるエテンデューによる制約を考慮した設計が要求される。すなわち、光源から出射した光の全てを投射光として利用するために、光源の光出射断面積と出射光の発散角との積の値を、表示素子の表示面積と投射光学系のFナンバーで決まる取り込み角(立体角)との積の値以下にする必要がある。この条件を満たさない場合、光源からの光の一部は、投射光として利用されない。 In general, in a projection display device that irradiates a display element with light from a light source and projects an image formed by the display element by a projection optical system, an etendue determined by the light emission cross-sectional area of the light source and the divergence angle of the emitted light. Design that takes into account the constraints imposed by That is, in order to use all of the light emitted from the light source as projection light, the product value of the light emission cross-sectional area of the light source and the divergence angle of the emitted light is expressed by the display area of the display element and the F number of the projection optical system. It is necessary to make the value less than the product of the determined capture angle (solid angle). If this condition is not satisfied, part of the light from the light source is not used as projection light.
 特許文献1に記載の導光板を投射型表示装置に適用した場合は、導光板から出射された光の一部(発散光)は投射光として利用されないため、その分、導光板から出射された光の利用効率が低くなる。 When the light guide plate described in Patent Document 1 is applied to a projection display device, a part of the light emitted from the light guide plate (diverging light) is not used as projection light, and thus is emitted from the light guide plate accordingly. Light utilization efficiency is reduced.
 本発明の目的は、上記の導光過程における光損失の低減を図ることができ、上記のエテンデューの制約による問題を解決して出射角の広がりを抑制することができる偏光導光板、それを用いた照明装置および投射型表示装置を提供することにある。 An object of the present invention is to provide a polarizing light guide plate that can reduce light loss in the light guide process and solves the problems due to the etendue restrictions and suppresses the spread of the emission angle. Another object of the present invention is to provide a lighting device and a projection display device.
 上記目的を達成するため、本発明の偏光導光板は、
 対向する面を備え、これら面の一方の面が出射面とされる導光体と、
 前記導光体の前記対向する面の他方の面に設けられた反射層と、
 前記導光体の前記出射面に設けられた位相差手段と、
 前記導光体内に、前記他方の面に沿って一定の方向に周期的に形成された複数の異方性屈折部と、を有し、
 前記複数の異方性屈折部のそれぞれは、第1の偏光光に対する屈折率が前記導光体の屈折率より小さく、かつ、偏光状態が前記第1の偏光光と異なる第2の偏光光に対する屈折率が前記導光体の屈折率より大きくなるように構成されており、
 前記位相差手段は、前記出射面から出射される前記第1および第2の偏光光の少なくとも一方の位相を変化させて、回転方向が同じ円偏光または偏光方向が同じ直線偏光の光を出射する。
In order to achieve the above object, the polarizing light guide plate of the present invention comprises:
A light guide including opposing surfaces, and one of these surfaces being an exit surface;
A reflective layer provided on the other surface of the opposing surface of the light guide;
Phase difference means provided on the exit surface of the light guide;
A plurality of anisotropic refracting portions periodically formed in a certain direction along the other surface in the light guide;
Each of the plurality of anisotropic refracting portions has a refractive index with respect to the first polarized light that is smaller than a refractive index of the light guide and has a polarization state different from that of the first polarized light. The refractive index is configured to be larger than the refractive index of the light guide,
The phase difference unit changes the phase of at least one of the first and second polarized lights emitted from the emission surface, and emits circularly polarized light having the same rotation direction or linearly polarized light having the same polarization direction. .
 本発明の照明装置は、
 上記の偏光導光板と、
 前記偏光導光板の端部に光を供給する少なくとも1つの光源と、を有する。
The lighting device of the present invention is
The polarizing light guide plate,
And at least one light source for supplying light to an end of the polarizing light guide plate.
 本発明の投射型表示装置は、
 上記の照明装置と、
 前記照明装置から出射された光が照射される表示素子と、
 前記表示素子によって形成された画像を投射する投射光学系と、を有する。
The projection display device of the present invention is
The above lighting device;
A display element irradiated with light emitted from the illumination device;
A projection optical system for projecting an image formed by the display element.
 本発明の別の投射型表示装置は、
 上記の照明装置より構成される、赤色、緑色、青色の各色の照明装置と、
 前記赤色の照明装置から出射された赤色の光が照射される第1の表示素子と、
 前記緑色の照明装置から出射された緑色の光が照射される第2の表示素子と、
 前記青色の照明装置から出射された青色の光が照射される第3の表示素子と、
 前記第1乃至第3の表示素子で表示される各色の画像を投射する投射光学系と、を有する。
Another projection display device of the present invention is
A lighting device of each color of red, green, and blue composed of the lighting device described above,
A first display element irradiated with red light emitted from the red illumination device;
A second display element irradiated with green light emitted from the green illumination device;
A third display element irradiated with blue light emitted from the blue illumination device;
A projection optical system for projecting each color image displayed on the first to third display elements.
本発明の第1の実施形態である偏光導光板の構成を示す模式図である。It is a schematic diagram which shows the structure of the polarizing light-guide plate which is the 1st Embodiment of this invention. 図1に示す偏光導光板の一部を模式的に示す透視図である。FIG. 2 is a perspective view schematically showing a part of the polarization light guide plate shown in FIG. 1. 図1に示す偏光導光板の出射条件を説明するための模式図である。It is a schematic diagram for demonstrating the emission conditions of the polarizing light-guide plate shown in FIG. 図1に示す偏光導光板の導光条件を説明するための模式図である。It is a schematic diagram for demonstrating the light guide conditions of the polarizing light-guide plate shown in FIG. 図1に示す偏光導光板の別の導光条件を説明するための模式図である。It is a schematic diagram for demonstrating another light guide condition of the polarizing light guide plate shown in FIG. 図1に示す偏光導光板の異方性屈折部の大きさの条件(厚さおよび幅)を説明するための模式図である。It is a schematic diagram for demonstrating the conditions (thickness and width) of the magnitude | size of the anisotropic refractive part of the polarizing light-guide plate shown in FIG. 図1に示す偏光導光板の異方性屈折部の大きさを説明するための模式図である。It is a schematic diagram for demonstrating the magnitude | size of the anisotropic refractive part of the polarizing light-guide plate shown in FIG. 図1に示す偏光導光板の異方性屈折部の間隔を説明するための模式図である。It is a schematic diagram for demonstrating the space | interval of the anisotropic refractive part of the polarizing light-guide plate shown in FIG. 図1に示す偏光導光板の第1の実施例を示す模式図である。It is a schematic diagram which shows the 1st Example of the polarization light-guide plate shown in FIG. 図1に示す偏光導光板の第2の実施例を示す模式図である。It is a schematic diagram which shows the 2nd Example of the polarizing light-guide plate shown in FIG. 本発明の第2の実施形態である偏光導光板の構成を示す模式図である。It is a schematic diagram which shows the structure of the polarizing light-guide plate which is the 2nd Embodiment of this invention. 図11に示す偏光導光板のプリズムシートの一部を示す模式図である。It is a schematic diagram which shows a part of prism sheet of the polarization light guide plate shown in FIG. 本発明の偏光導光板を備える照明装置の一例を示す模式図である。It is a schematic diagram which shows an example of an illuminating device provided with the polarizing light-guide plate of this invention. 本発明の偏光導光板を備える照明装置を用いた投射型表示装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the projection type display apparatus using an illuminating device provided with the polarizing light-guide plate of this invention.
10 導光体
11 1/2波長板
12 反射層
13 異方性屈折部
DESCRIPTION OF SYMBOLS 10 Light guide 11 1/2 wavelength plate 12 Reflective layer 13 Anisotropic refractive part
 以下、本発明における一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態である偏光導光板の構成を示す断面図である。図2は、図1に示す偏光導光板の斜視図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a polarizing light guide plate according to the first embodiment of the present invention. FIG. 2 is a perspective view of the polarizing light guide plate shown in FIG.
 図1および図2に示すように、偏光導光板は、液晶プロジェクタに代表される投射型表示装置に用いられるものであって、導光体10と、導光体10の一方の面上に設けられた1/2波長板11と、導光体10の他方の面上に設けられた反射層12と、導光体10内の反射層12との境界面に設けられた複数の異方性屈折部13とを有する。 As shown in FIGS. 1 and 2, the polarization light guide plate is used in a projection display device typified by a liquid crystal projector, and is provided on the light guide 10 and one surface of the light guide 10. A plurality of anisotropies provided on the boundary surface between the half-wave plate 11 formed, the reflective layer 12 provided on the other surface of the light guide 10, and the reflective layer 12 in the light guide 10 And a refracting portion 13.
 導光体10は、板状のものであって、屈折率が等方性である材料よりなる。屈折率等方性とは、偏光状態が異なる第1および第2の偏光光(P偏光の光およびS偏光の光)のそれぞれに対する屈折率が同じであることを示す。ここでは、導光体10の屈折率をn0とする。 The light guide 10 is plate-shaped and made of a material having an isotropic refractive index. Refractive index isotropic means that the refractive indexes for the first and second polarized lights (P-polarized light and S-polarized light) having different polarization states are the same. Here, the refractive index of the light guide 10 is n0.
 また、導光体10は、複数の端面(通常、4つの端面)を有し、これら端面の少なくとも1つに、光源からの光が入射する。光源は、例えば発光ダイオード(LED)や半導体レーザー(LD)のような半導体光源、あるいは固体光源と呼ばれる光源である。 The light guide 10 has a plurality of end faces (usually four end faces), and light from the light source is incident on at least one of the end faces. The light source is, for example, a semiconductor light source such as a light emitting diode (LED) or a semiconductor laser (LD), or a light source called a solid light source.
 1/2波長板11の屈折率は、導光体10の屈折率n0とほぼ等しい。1/2波長板11は、長方形の形状であって、その長手方向と交差する方向に周期的に形成されている。ここで、長手方向は、1/2波長板の長辺に沿った方向である。また、長手方向と交差する方向は、例えば、導光体10の光源が設けられる端面に垂直な方向である。 The refractive index of the half-wave plate 11 is almost equal to the refractive index n0 of the light guide 10. The half-wave plate 11 has a rectangular shape and is periodically formed in a direction intersecting the longitudinal direction. Here, the longitudinal direction is a direction along the long side of the half-wave plate. The direction intersecting the longitudinal direction is, for example, a direction perpendicular to the end surface where the light source of the light guide 10 is provided.
 異方性屈折部13は、屈折率が異方性である材料よりなる。屈折率異方性とは、第1および第2の偏光光のそれぞれに対する屈折率が異なることを示す。ここでは、第1の偏光光に対する屈折率をn1とし、第2の偏光光に対する屈折率をn2とする。異方性屈折部13は、n1<n0<n2の条件を満たすように構成されている。 The anisotropic refracting portion 13 is made of a material having an anisotropic refractive index. The refractive index anisotropy indicates that the refractive indexes for the first and second polarized lights are different. Here, the refractive index for the first polarized light is n1, and the refractive index for the second polarized light is n2. The anisotropic refracting portion 13 is configured to satisfy the condition of n1 <n0 <n2.
 異方性屈折部13は、直方体形状であって、その長手方向(1/2波長板11の長手方向と同じ)と交差する方向に周期的に配置されている。 The anisotropic refracting portion 13 has a rectangular parallelepiped shape and is periodically arranged in a direction intersecting with the longitudinal direction (the same as the longitudinal direction of the half-wave plate 11).
 1/2波長板11の幅や間隔および異方性屈折部13の大きさ(高さ、長さおよび幅)は、導光条件や出射条件を考慮して適宜に設定する。ここで、高さは、導光体10の1/2波長板11が設けられた側の出射面10aに垂直な方向における厚さである。長さおよび幅は、出射面10aに垂直な方向から異方性屈折部13を見た場合の交差する2辺の長さである。 The width and interval of the half-wave plate 11 and the size (height, length, and width) of the anisotropic refracting portion 13 are appropriately set in consideration of light guide conditions and emission conditions. Here, the height is a thickness in a direction perpendicular to the emission surface 10a on the side where the half-wave plate 11 of the light guide 10 is provided. The length and width are the lengths of two intersecting sides when the anisotropic refracting portion 13 is viewed from a direction perpendicular to the emission surface 10a.
 次に、本実施形態の偏光導光板の動作について説明する。 Next, the operation of the polarizing light guide plate of this embodiment will be described.
 本実施形態の偏光導光板では、光源から導光体10の第1の端面に入射した光(非偏光光)の一部は、出射面10aおよび反射層12の間で反射されるとともに、導光体10内を第1の端面と対向する第2の端面の方へ向かって伝播する。この伝播過程において、光の一部が異方性屈折部13に入射する。 In the polarization light guide plate of the present embodiment, a part of light (non-polarized light) incident on the first end surface of the light guide 10 from the light source is reflected between the emission surface 10a and the reflective layer 12 and guided. The light propagates in the light body 10 toward the second end face facing the first end face. In this propagation process, a part of the light enters the anisotropic refracting portion 13.
 異方性屈折部13は、第1および第2の偏光光をそれぞれ出射面10aの異なる領域から出射させるための出射条件と、出射面10aと反射層12との間で第1および第2の偏光光を導光させるための導光条件を満たすように構成されている。 The anisotropic refracting unit 13 includes first and second emission conditions between the emission surface 10a and the reflective layer 12 and emission conditions for emitting the first and second polarized lights from different regions of the emission surface 10a. The light guide condition for guiding the polarized light is satisfied.
 まず、異方性屈折部13の出射条件について説明する。 First, the emission conditions of the anisotropic refracting unit 13 will be described.
 図3は、第1および第2偏光光に対する異方性屈折部13の出射条件を説明するための図であって、図1に示した偏光導光板の一部を、導光体10の第1の端面(光源が設けられた端面)および出射面10aに垂直な平面で切断した断面の模式図である。図3において、実線で示す矢印はP偏光の光を示し、破線で示す矢印はS偏光の光を示す。この例では、P偏光の光に対する屈折率がn1とされ、S偏光の光に対する屈折率がn2とされている。 FIG. 3 is a diagram for explaining the emission conditions of the anisotropic refracting unit 13 with respect to the first and second polarized lights. A part of the polarization light guide plate shown in FIG. It is the schematic diagram of the cross section cut | disconnected by the plane perpendicular | vertical to 1 end surface (end surface provided with the light source) and the output surface 10a. In FIG. 3, an arrow indicated by a solid line indicates P-polarized light, and an arrow indicated by a broken line indicates S-polarized light. In this example, the refractive index for P-polarized light is n1, and the refractive index for S-polarized light is n2.
 異方性屈折部13において、導光体10の出射面10a側に位置する面13aに対して、面13aとのなす角度φ0で入射したS偏光の光は、角度θ1で屈折し、面13aと対向する面13bに到達する。ここで、S偏光の光の面13aに対する入射角度は「90°-φ0」で与えられ、角度θ1より大きい。 In the anisotropic refracting unit 13, the S-polarized light incident at an angle φ0 formed with the surface 13a with respect to the surface 13a located on the light exit surface 10a side of the light guide 10 is refracted at an angle θ1 and is surface 13a. It reaches the surface 13b opposite to. Here, the incident angle of the S-polarized light with respect to the surface 13a is given by “90 ° −φ0”, which is larger than the angle θ1.
 面13bは、異方性屈折部13の反射層12との界面である。面13aから入射して面13bに到達したS偏光の光は、面13bにて反射される。面13bで反射されたS偏光の光は、側面13cに到達する。 The surface 13b is an interface between the anisotropic refracting portion 13 and the reflective layer 12. The S-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b. The S-polarized light reflected by the surface 13b reaches the side surface 13c.
 面13bで反射されたS偏光の光の、側面13cに対する入射角度θ2(=90°-θ1)は、臨界角(全反射が起こる最も小さな入射角)より小さい。このため、面13bから側面13cに入射したS偏光の光は、角度φ1(>θ2)で屈折して、導光体10の出射面10aに到達する。 The incident angle θ2 (= 90 ° −θ1) of the S-polarized light reflected by the surface 13b with respect to the side surface 13c is smaller than the critical angle (the smallest incident angle at which total reflection occurs). For this reason, the S-polarized light incident on the side surface 13c from the surface 13b is refracted at an angle φ1 (> θ2) and reaches the output surface 10a of the light guide 10.
 1/2波長板11の屈折率は、導光体10の屈折率とほぼ等しいため、側面13cからのS偏光の光は、屈折することなく、面10aを通過して1/2波長板11内に入射する。1/2波長板11において、入射した光は、導光体10とは反対側の面11aに到達する。入射した光の面11aに対する入射角度(90°-θ1)が臨界角より小さい場合、入射した光は、面11aから出射角βで出射される。この面11aから出射される光は、P偏光の光である。 Since the refractive index of the half-wave plate 11 is substantially equal to the refractive index of the light guide 10, the S-polarized light from the side surface 13 c passes through the surface 10 a without being refracted and passes through the half-wave plate 11. Incident in. In the half-wave plate 11, the incident light reaches the surface 11 a opposite to the light guide 10. When the incident angle (90 ° −θ1) of the incident light with respect to the surface 11a is smaller than the critical angle, the incident light is emitted from the surface 11a at the emission angle β. The light emitted from the surface 11a is P-polarized light.
 このように、異方性屈折部13において、面13aから入射して側面13cから出射されるという条件(出射条件)を満たすS偏光の光は、1/2波長板11にてP偏光の光に変換された後、出射角βで出射される。 As described above, in the anisotropic refraction unit 13, S-polarized light that satisfies the condition of being incident from the surface 13 a and emitted from the side surface 13 c (emission condition) is P-polarized light by the half-wave plate 11. After being converted to, the light is emitted at an emission angle β.
 なお、図3には示されていないが、面13aから入射し、側面13cから出射されるS偏光の光が、反射層12にて反射された後、1/2波長板11を通過して出射されるという条件も、出射条件として成立する。 Although not shown in FIG. 3, the S-polarized light incident from the surface 13 a and emitted from the side surface 13 c is reflected by the reflective layer 12 and then passes through the half-wave plate 11. The condition of emission is also established as the emission condition.
 また、異方性屈折部13において、導光体10の第1の端面側に位置する側面13dに対して、入射角度φ0で入射したP偏光の光は、角度θ1(>φ0)で屈折し、面13bに到達する。 Further, in the anisotropic refracting unit 13, the P-polarized light incident at the incident angle φ0 with respect to the side surface 13d located on the first end surface side of the light guide 10 is refracted at the angle θ1 (> φ0). , Reach the surface 13b.
 側面13dから入射して面13bに到達したP偏光の光は、面13bにて反射される。面13bで反射されたP偏光の光は、面13aに到達する。 The P-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b. The P-polarized light reflected by the surface 13b reaches the surface 13a.
 面13bで反射されたP偏光の光の面13aに対する入射角度θ2(=90-θ1)は、臨界角より小さい。このため、P偏光の光は、面13aに対して角度φ1で屈折して、出射面10aに到達する。 The incident angle θ2 (= 90−θ1) of the P-polarized light reflected by the surface 13b with respect to the surface 13a is smaller than the critical angle. For this reason, the P-polarized light is refracted at an angle φ1 with respect to the surface 13a and reaches the output surface 10a.
 面13aからのP偏光の光の出射面10aに対する入射角度(90°-φ1)が臨界角より小さい場合、P偏光の光は、出射面10aから出射角βで出射される。 When the incident angle (90 ° −φ1) of the P-polarized light from the surface 13a with respect to the emission surface 10a is smaller than the critical angle, the P-polarized light is emitted from the emission surface 10a at the emission angle β.
 このように、異方性屈折部13において、側面13dから入射して面13aから出射されるという条件(出射条件)を満たすP偏光の光は、出射面10aから出射角βで出射される。 As described above, in the anisotropic refracting portion 13, the P-polarized light that satisfies the condition (exit condition) that is incident from the side surface 13d and emitted from the surface 13a is emitted from the output surface 10a at the output angle β.
 なお、図3には示されていないが、側面13dから入射したP偏光の光が、反射層12を介さずにそのまま面13aから出射されるという条件も、出射条件として成立する。 Although not shown in FIG. 3, the condition that the P-polarized light incident from the side surface 13d is directly emitted from the surface 13a without passing through the reflective layer 12 is also satisfied as the emission condition.
 1/2波長板11が無い状態で、導光体10の出射面10aに垂直な方向から見た場合、出射面10aのS偏光の光が出射される領域は、出射面10aのP偏光の光が出射される領域と異なる。1/2波長板11は、出射面10aのS偏光の光が出射される領域上に形成されている。 When viewed from a direction perpendicular to the exit surface 10a of the light guide 10 without the half-wave plate 11, the region where the S-polarized light is emitted from the exit surface 10a is the P-polarized light of the exit surface 10a. It is different from the region where light is emitted. The half-wave plate 11 is formed on a region of the emission surface 10a where S-polarized light is emitted.
 なお、1/2波長板11は、出射面10aのS偏光の光が出射される領域ではなく、P偏光の光が出射される領域上に形成してもよい。この場合の偏光導光板からの出射光は、S偏光の光である。 The half-wave plate 11 may be formed not on the area of the emission surface 10a where S-polarized light is emitted but on the area where P-polarized light is emitted. In this case, light emitted from the polarization light guide plate is S-polarized light.
 次に、異方性屈折部13の導光条件について説明する。 Next, the light guide conditions of the anisotropic refraction part 13 will be described.
 図4は、異方性屈折部13の導光条件を説明するための図であって、図1に示した偏光導光板の一部を、導光体10の第1の端面および出射面10aに垂直な平面で切断した断面の模式図である。 FIG. 4 is a diagram for explaining the light guide conditions of the anisotropic refracting portion 13, and a part of the polarization light guide plate shown in FIG. 1 is replaced with the first end face of the light guide 10 and the exit face 10 a. It is a schematic diagram of the cross section cut | disconnected by the plane perpendicular | vertical to.
 異方性屈折部13において、面13aに対して、面13aとのなす角度φ0’で入射したS偏光の光は、角度θ1’で屈折して、面13bに到達する。面13aから入射して面13bに到達したS偏光の光は、面13bにて反射される。面13bで反射されたS偏光の光は、側面13cに到達する。 In the anisotropic refracting portion 13, the S-polarized light incident on the surface 13a at an angle φ0 ′ formed with the surface 13a is refracted at an angle θ1 ′ and reaches the surface 13b. The S-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b. The S-polarized light reflected by the surface 13b reaches the side surface 13c.
 面13bで反射されたS偏光の光の、側面13cに対する入射角度θ2’(=90°-θ1’)は、臨界角より小さい。このため、面13bから側面13cに入射したS偏光の光は、屈折して、導光体10の出射面10aに到達する。ここで、側面13cから出射したS偏光の光の、側面13cとのなす角度はφ1’である。 The incident angle θ2 ′ (= 90 ° −θ1 ′) of the S-polarized light reflected by the surface 13b with respect to the side surface 13c is smaller than the critical angle. For this reason, the S-polarized light incident on the side surface 13 c from the surface 13 b is refracted and reaches the output surface 10 a of the light guide 10. Here, the angle between the S-polarized light emitted from the side surface 13c and the side surface 13c is φ1 '.
 側面13cからのS偏光の光の、出射面10aに対する入射角度(90°-φ1’)は、臨界角より大きい。よって、S偏光の光は、出射面10aにて反射される。 The incident angle (90 ° −φ1 ′) of the S-polarized light from the side surface 13c with respect to the emission surface 10a is larger than the critical angle. Therefore, the S-polarized light is reflected by the emission surface 10a.
 このように、異方性屈折部13において、面13aから入射し、面13bにて反射され、側面13cから出射されるという導光条件を満たすS偏光の光は、出射面10aにて反射されて導光体10内を伝播する。 In this way, in the anisotropic refracting portion 13, the S-polarized light that satisfies the light guide condition of entering from the surface 13a, reflected by the surface 13b, and emitted from the side surface 13c is reflected by the exit surface 10a. And propagates in the light guide 10.
 また、異方性屈折部13において、側面13dに対して、入射角度φ0’で入射したP偏光の光は、角度θ1’で屈折して、面13bに到達する。 Further, in the anisotropic refracting unit 13, the P-polarized light incident at the incident angle φ0 ′ on the side surface 13d is refracted at the angle θ1 ′ and reaches the surface 13b.
 側面13dから入射して面13bに到達したP偏光の光は、面13bにて反射される。面13bで反射されたP偏光の光は、面13aに到達する。 The P-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b. The P-polarized light reflected by the surface 13b reaches the surface 13a.
 面13bで反射されたP偏光の光の、面13aに対する入射角度θ2’は、臨界角より小さい。このため、面13bから面13aに入射したP偏光の光は、屈折して、導光体10の出射面10aに到達する。ここで、面13aから出射したP偏光の光の、面13aとのなす角度はφ1’である。 The incident angle θ2 ′ of the P-polarized light reflected by the surface 13b with respect to the surface 13a is smaller than the critical angle. For this reason, the P-polarized light incident on the surface 13 a from the surface 13 b is refracted and reaches the output surface 10 a of the light guide 10. Here, the angle between the P-polarized light emitted from the surface 13a and the surface 13a is φ1 ′.
 面13aからのP偏光の光の、出射面10aに対する入射角度(90°-φ1’)は、臨界角より大きい。よって、P偏光の光は、出射面10aにて反射されて導光体10内を伝播する。 The incident angle (90 ° −φ1 ′) of the P-polarized light from the surface 13a with respect to the emission surface 10a is larger than the critical angle. Therefore, the P-polarized light is reflected by the exit surface 10 a and propagates through the light guide 10.
 このように、異方性屈折部13において、側面13dから入射し、面13bにて反射され、面13aから出射されるという導光条件を満たすP偏光の光は、出射面10aにて反射されて導光体10内を伝播する。 As described above, in the anisotropic refraction unit 13, the P-polarized light that satisfies the light guide condition of entering from the side surface 13d, reflected by the surface 13b, and emitted from the surface 13a is reflected by the emission surface 10a. And propagates in the light guide 10.
 図5は、異方性屈折部13の別の導光条件を説明するための図であって、図1に示した偏光導光板の一部を、導光体10の第1の端面および出射面10aに垂直な平面で切断した断面の模式図である。 FIG. 5 is a diagram for explaining another light guide condition of the anisotropic refracting portion 13, and a part of the polarization light guide plate shown in FIG. It is a schematic diagram of the cross section cut | disconnected by the plane perpendicular | vertical to the surface 10a.
 異方性屈折部13において、側面13dに対して、入射角度φ0’で入射したS偏光の光は、角度θ1’で屈折して、面13bに到達する。 In the anisotropic refracting unit 13, the S-polarized light incident at the incident angle φ0 ′ on the side surface 13d is refracted at the angle θ1 ′ and reaches the surface 13b.
 側面13dから入射して面13bに到達したS偏光の光は、面13bにて反射される。面13bで反射されたS偏光の光は、面13aに到達する。 S-polarized light incident from the side surface 13d and reaching the surface 13b is reflected by the surface 13b. The S-polarized light reflected by the surface 13b reaches the surface 13a.
 面13bで反射されたS偏光の光の、面13aに対する入射角度θ2’(=90°-θ1’)は、臨界角より小さい。このため、面13bから面13aに入射したS偏光の光は、屈折して、導光体10の面10aに到達する。ここで、面13aから出射したS偏光の光の、面13aとのなす角度はφ1’である。 The incident angle θ2 ′ (= 90 ° −θ1 ′) of the S-polarized light reflected by the surface 13b with respect to the surface 13a is smaller than the critical angle. For this reason, the S-polarized light incident on the surface 13 a from the surface 13 b is refracted and reaches the surface 10 a of the light guide 10. Here, the angle between the S-polarized light emitted from the surface 13a and the surface 13a is φ1 '.
 面13aからのS偏光の光の、出射面10aに対する入射角度(90°-φ1’)は、臨界角より大きい。よって、S偏光の光は、出射面10aにて反射されて導光体10内を伝播する。 The incident angle (90 ° −φ1 ′) of the S-polarized light from the surface 13a with respect to the emission surface 10a is larger than the critical angle. Therefore, the S-polarized light is reflected by the emission surface 10 a and propagates through the light guide 10.
 このように、異方性屈折部13において、側面13dから入射し、面13bにて反射され、面13aから出射されるという導光条件を満たすS偏光の光は、出射面10aで反射されて、導光体10内を伝播する。 As described above, in the anisotropic refracting portion 13, the S-polarized light that satisfies the light guide condition of entering from the side surface 13d, reflected by the surface 13b, and emitted from the surface 13a is reflected by the emission surface 10a. And propagates in the light guide 10.
 また、異方性屈折部13において、面13aに対して、面13aとのなす角度φ0’で入射したP偏光の光は、角度θ1’で屈折して、面13bに到達する。 Further, in the anisotropic refracting portion 13, the P-polarized light incident on the surface 13a at an angle φ0 ′ formed with the surface 13a is refracted at an angle θ1 ′ and reaches the surface 13b.
 面13aから入射して面13bに到達したP偏光の光は、面13bにて反射される。面13bで反射されたP偏光の光は、入射角度θ2’で側面13cに入射する。入射角度θ2’は、臨界角より小さい。このため、面13bから側面13cに入射したP偏光の光は、角度φ1’で屈折して、出射面10aに到達する。 The P-polarized light incident from the surface 13a and reaching the surface 13b is reflected by the surface 13b. The P-polarized light reflected by the surface 13b is incident on the side surface 13c at an incident angle θ2 ′. The incident angle θ2 ′ is smaller than the critical angle. Therefore, the P-polarized light incident on the side surface 13c from the surface 13b is refracted at an angle φ1 'and reaches the output surface 10a.
 出射面10aに入射するP偏光の光の入射角度(90°-φ1’)は、臨界角より大きい。よって、P偏光の光は、出射面10aにて反射され、導光体10内を伝播する。 The incident angle (90 ° -φ1 ') of the P-polarized light incident on the exit surface 10a is larger than the critical angle. Therefore, the P-polarized light is reflected by the emission surface 10 a and propagates through the light guide 10.
 このように、異方性屈折部13において、面13aから入射し、面13bにて反射され、側面13cから出射されるという導光条件を満たすP偏光の光は、出射面11aで反射されて、導光体10内を伝播する。 As described above, in the anisotropic refraction unit 13, the P-polarized light that satisfies the light guide condition of entering from the surface 13a, reflected by the surface 13b, and emitted from the side surface 13c is reflected by the emission surface 11a. And propagates in the light guide 10.
 以上のように、本実施形態の偏光導光板によれば、異方性屈折部13の出射条件を満たす第1および第2の偏光光(S偏光およびP偏光の光)が、出射面10aから出射される。出射面10aから出射された第1および第2の偏光光のうちの一方は1/2波長板11によって偏光変換される。その結果、偏光導光板からは、第1および第2の偏光光のうちの一方の偏光光が出射されることとなり、その出射角の広がりは角度βが取り得る範囲内に制御される。ここで、出射角βは、導光体10の第1の端面(光源が配置される側の端面)および出射面11aのそれぞれと交差(または直交)する第1の平面の面内方向において取り得る出射角度である。 As described above, according to the polarization light guide plate of the present embodiment, the first and second polarized lights (S-polarized light and P-polarized light) satisfying the emission condition of the anisotropic refracting unit 13 are emitted from the emission surface 10a. Emitted. One of the first and second polarized light emitted from the emission surface 10 a is polarized and converted by the half-wave plate 11. As a result, one of the first and second polarized light is emitted from the polarization light guide plate, and the spread of the emission angle is controlled within a range that the angle β can take. Here, the emission angle β is taken in the in-plane direction of the first plane intersecting (or orthogonal to) each of the first end face (end face on the side where the light source is disposed) of the light guide 10 and the emission face 11a. The output angle to obtain.
 具体的に説明すると、図3に示したS偏光の光の出射条件において、角度φ0が48.1°であり、角度φ1が52.0°である場合、出射角βは67.3°である。角度φ0が45.0°であり、角度φ1が48.9°である場合、出射角βは80.5°である。角度φ0が44.3°であり、角度φ1が48.2°である場合、出射角βは89.8°である。光源から導光体10内に入射した光の、出射面10aと平行な面に対する最大角度が48.1°以下である場合、出射角度幅は22.5°である。ここで、出射角度幅は、出射角βの最大角度と最小角度で与えられる角度幅であって、本実施形態の偏光導光板の出射光の出射角の角度広がりである。 More specifically, when the angle φ0 is 48.1 ° and the angle φ1 is 52.0 ° in the S-polarized light emission condition shown in FIG. 3, the emission angle β is 67.3 °. is there. When the angle φ0 is 45.0 ° and the angle φ1 is 48.9 °, the emission angle β is 80.5 °. When the angle φ0 is 44.3 ° and the angle φ1 is 48.2 °, the emission angle β is 89.8 °. When the maximum angle of light incident on the light guide 10 from the light source with respect to the plane parallel to the emission surface 10a is 48.1 ° or less, the emission angle width is 22.5 °. Here, the emission angle width is an angle width given by the maximum angle and the minimum angle of the emission angle β, and is an angular spread of the emission angle of the outgoing light of the polarizing light guide plate of the present embodiment.
 なお、図3~図5に示した例において、S偏光とP偏光の屈折率の大小関係や、1/2波長板11が形成される領域は適宜に変更することができる。 In the examples shown in FIGS. 3 to 5, the magnitude relationship between the refractive indexes of S-polarized light and P-polarized light and the region where the half-wave plate 11 is formed can be changed as appropriate.
 また、本実施形態の偏光導光板において、第1および第2の偏光光のうちの一方のみが出射光として出射されるためには、導光体10の出射面10aにおける、第1の偏光光が出射される第1の領域と第2の偏光光が出射される第2の領域は完全に分離される必要がある。 In the polarization light guide plate of the present embodiment, in order for only one of the first and second polarized light to be emitted as the emitted light, the first polarized light on the emission surface 10a of the light guide 10 is used. The first region from which the light is emitted and the second region from which the second polarized light is emitted need to be completely separated.
 以下、出射面10aの第1および第2の偏光光が出射される領域を分離することができる異方性屈折部13の大きさおよび間隔について説明する。 Hereinafter, the size and interval of the anisotropic refracting portion 13 capable of separating the region where the first and second polarized lights are emitted from the emission surface 10a will be described.
 図6は、異方性屈折部13の大きさの条件(厚さおよび幅)を説明するための図であって、導光体10の第1の端面および出射面10aに垂直な平面で切断した断面の模式図である。図6において、破線で示す矢印はS偏光、実線で示す矢印はP偏光である。 FIG. 6 is a diagram for explaining the size conditions (thickness and width) of the anisotropic refracting portion 13 and is cut along a plane perpendicular to the first end face of the light guide 10 and the exit face 10a. FIG. In FIG. 6, the arrow indicated by a broken line is S-polarized light, and the arrow indicated by a solid line is P-polarized light.
 異方性屈折部13の幅(面13a、13bの長さ)をBとし、異方性屈折部13の厚さ(側面13c、13dの長さ)をHとし、導光体10の厚さをDとする。 The width of the anisotropic refracting portion 13 (the length of the surfaces 13a and 13b) is B, the thickness of the anisotropic refracting portion 13 (the length of the side surfaces 13c and 13d) is H, and the thickness of the light guide 10 is as follows. Is D.
 面13aから入射し、側面13cから出射したP偏光の光の、側面13cの垂線とのなす角度の最大角度をφ1maxとし、その最大角度φ1maxを与える、面13aに入射したP偏光の光の、面13aとのなす角度をφ0maxとする。 The maximum angle of the P-polarized light incident from the surface 13a and emitted from the side surface 13c with the perpendicular of the side surface 13c is φ1max, and the maximum angle φ1max is given to the P-polarized light incident on the surface 13a. An angle formed with the surface 13a is set to φ0max.
 側面13dから入射し、面13aから出射したS偏光の光の、面13aとのなす角度の最小角度をφ1minとし、その最小角度φ1minを与える、側面13dに入射したS偏光の光の、側面13dの垂線とのなす角度をφ0minとする。また、面13aにおける最小角度φ1minで出射したS偏光の光の出射点から、面13aの側面13c側の端部までの最短距離をXとする。 The minimum angle of the S-polarized light incident from the side surface 13d and emitted from the surface 13a with the surface 13a is φ1min, and the side surface 13d of the S-polarized light incident on the side surface 13d is given the minimum angle φ1min. The angle formed by the perpendicular to is φ0 min. Also, let X be the shortest distance from the exit point of the S-polarized light emitted at the minimum angle φ1 min on the surface 13a to the end of the surface 13a on the side surface 13c side.
 以下の式(1)~(4)を満たすように異方性屈折部13を形成することで、出射面10aの第1および第2の偏光光が出射される領域(S偏光の出射領域およびP偏光の出射領域)を分離することができる。 By forming the anisotropic refracting portion 13 so as to satisfy the following formulas (1) to (4), a region where the first and second polarized lights are emitted from the exit surface 10a (the exit region of S-polarized light and P-polarized light emission area) can be separated.
Figure JPOXMLDOC01-appb-M000002
 図7は、異方性屈折部の間隔を説明するための図であって、導光体10の第1の端面および出射面10aに垂直な平面で切断した断面の模式図である。図7において、破線で示す矢印はS偏光、実線で示す矢印はP偏光である。
Figure JPOXMLDOC01-appb-M000002
FIG. 7 is a diagram for explaining the interval between the anisotropic refracting portions, and is a schematic diagram of a cross section cut along a plane perpendicular to the first end face of the light guide 10 and the emission face 10a. In FIG. 7, the arrow indicated by a broken line is S-polarized light, and the arrow indicated by a solid line is P-polarized light.
 隣接する2つの異方性屈折部13A、13Bの間隔をPとする。異方性屈折部13Aは、導光体10の第1の端面(光源が設けれる側の端面)側に配置されている。 The interval between two adjacent anisotropic refracting portions 13A and 13B is P. The anisotropic refracting portion 13 </ b> A is disposed on the first end surface (end surface on the side where the light source is provided) side of the light guide 10.
 反射層12で反射され、異方性屈折部13Bの側面13dから入射し、異方性屈折部13Bの面13aから出射したS偏光の光の、面13aとのなす角度の最大角度をφ1maxとする。 The maximum angle formed by the surface 13a of the S-polarized light that is reflected by the reflective layer 12, is incident from the side surface 13d of the anisotropic refracting portion 13B, and is emitted from the surface 13a of the anisotropic refracting portion 13B is φ1max. To do.
 異方性屈折部13Aの面13aから入射し、異方性屈折部13Aの側面13cから出射し、反射層12で反射されたP偏光の光の、反射層12とのなす角度の最小角度をφ1minとする。 The minimum angle formed by the reflection layer 12 of the P-polarized light that is incident from the surface 13a of the anisotropic refraction unit 13A, is emitted from the side surface 13c of the anisotropic refraction unit 13A, and is reflected by the reflection layer 12 is determined. φ1 min.
 異方性屈折部13Bの面13aを含む平面上の、最小角度φ1minを与える反射層12からのP偏光の光が通過する点から、面13aの端部(側面13d側)までの最短距離をYとする。 The shortest distance from the point through which the P-polarized light from the reflective layer 12 giving the minimum angle φ1 min passes on the plane including the surface 13a of the anisotropic refracting portion 13B to the end of the surface 13a (side surface 13d side). Y.
 以下の式(5)~(6)を満たすように異方性屈折部13A、13Bを形成することで、出射面10aの第1および第2の偏光光が出射される領域(S偏光の出射領域およびP偏光の出射領域)を分離することができる。 By forming the anisotropic refracting portions 13A and 13B so as to satisfy the following expressions (5) to (6), a region where the first and second polarized lights are emitted from the emission surface 10a (emission of S-polarized light) Region and the exit region of P-polarized light) can be separated.
Figure JPOXMLDOC01-appb-M000003
 また、本実施形態の偏光導光板において、異方性屈折部13の間隔を狭めることで、反射層12で反射され、異方性屈折部13の側面13dから入射して面13aから出射する第1の偏光光と、異方性屈折部13の面13aから入射して側面13cから出射する第2の偏光光とがそれぞれ、出射面10aからは出射されずに、導光体10内を導光するように構成することもできる。
Figure JPOXMLDOC01-appb-M000003
Further, in the polarization light guide plate of the present embodiment, the distance between the anisotropic refracting portions 13 is narrowed so that the light is reflected by the reflective layer 12 and enters from the side surface 13d of the anisotropic refracting portion 13 and exits from the surface 13a. The first polarized light and the second polarized light that is incident from the surface 13a of the anisotropic refracting portion 13 and is emitted from the side surface 13c are not emitted from the emission surface 10a, but are guided through the light guide 10. It can also be configured to shine.
 以下、上記のような導光を実現する異方性屈折部13の間隔について説明する。 Hereinafter, the interval between the anisotropic refracting portions 13 for realizing the above-described light guide will be described.
 図8は、異方性屈折部の間隔を説明するための図であって、導光体10の第1の端面および出射面10aに垂直な平面で切断した断面の模式図である。図8において、破線で示す矢印はS偏光、実線で示す矢印はP偏光である。 FIG. 8 is a diagram for explaining the interval between the anisotropic refracting portions, and is a schematic diagram of a cross section cut along a plane perpendicular to the first end face of the light guide 10 and the emission face 10a. In FIG. 8, the arrow indicated by a broken line is S-polarized light, and the arrow indicated by a solid line is P-polarized light.
 隣接する2つの異方性屈折部13A、13Bの間隔をPとする。異方性屈折部13Aは、導光体10の第1の端面(光源が設けれる側の端面)側に配置されている。異方性屈折部13A、13Bのそれぞれの幅(面13a、13bの長さ)をBとし、厚さ(側面13c、13dの長さ)をHとする。導光体10の厚さをDとする。 The interval between two adjacent anisotropic refracting portions 13A and 13B is P. The anisotropic refracting portion 13 </ b> A is disposed on the first end surface (end surface on the side where the light source is provided) side of the light guide 10. The width (length of the surfaces 13a and 13b) of each of the anisotropic refracting portions 13A and 13B is B, and the thickness (the length of the side surfaces 13c and 13d) is H. Let D be the thickness of the light guide 10.
 異方性屈折部13Aを通過することなく、反射層12に入射したS偏光の光の、反射層12とのなす角度の最大角度をφ0maxとする。異方性屈折部13Bにおいて、側面13dから入射し、面13aから出射したS偏光の光の、面13aとのなす角度の最大角度をφ1maxとする。異方性屈折部13Aにおいて、面13aから入射し、面13b(反射層12との界面)で反射され、側面13cから出射したP偏光の光の、側面13cの垂線とのなす角度の最小角度をφ1minとする。 The maximum angle of the S-polarized light incident on the reflective layer 12 without passing through the anisotropic refracting portion 13A and the reflective layer 12 is φ0max. In the anisotropic refracting portion 13B, the maximum angle of the S-polarized light incident from the side surface 13d and emitted from the surface 13a with the surface 13a is φ1max. In the anisotropic refracting portion 13A, the minimum angle of the angle formed by the perpendicular of the side surface 13c of the P-polarized light incident from the surface 13a, reflected by the surface 13b (interface with the reflective layer 12), and emitted from the side surface 13c. Is φ1 min.
 以下の式(7)~(8)を満たすように異方性屈折部13A、13Bの間隔Pを設定することで、反射層12で反射され、異方性屈折部13Bの側面13dから入射して面13aから出射するS偏光の光と、異方性屈折部13Aの面13aから入射し、面13bで反射され、側面13cから出射するP偏光の光とを導光させることができる。 By setting the interval P between the anisotropic refracting portions 13A and 13B so as to satisfy the following expressions (7) to (8), the light is reflected by the reflective layer 12 and is incident from the side surface 13d of the anisotropic refracting portion 13B. The S-polarized light emitted from the surface 13a and the P-polarized light incident from the surface 13a of the anisotropic refracting portion 13A, reflected by the surface 13b, and emitted from the side surface 13c can be guided.
Figure JPOXMLDOC01-appb-M000004
 (実施例1)
 図9は、本発明の第1実施例である偏光導光板の構成を説明するための模式図である。
Figure JPOXMLDOC01-appb-M000004
Example 1
FIG. 9 is a schematic diagram for explaining the configuration of the polarizing light guide plate according to the first embodiment of the present invention.
 図9において、破線で示す矢印はS偏光、実線で示す矢印はP偏光である。異方性屈折部13の幅をBとし、厚さをHとする。導光体10の厚さをDとする。1/2波長板11の幅をbとする。出射面10a側の面から入射し、側面から出射したP偏光の光が、直接または反射層12を介して1/2波長板11に入射する異方性屈折部13の、P偏光の光が出射された側面を含む平面と、1/2波長板11の端部との最短距離をLとする。異方性屈折部13の間隔をPとする。 In FIG. 9, the arrow indicated by a broken line is S-polarized light, and the arrow indicated by a solid line is P-polarized light. The width of the anisotropic refracting portion 13 is B, and the thickness is H. Let D be the thickness of the light guide 10. The width of the half-wave plate 11 is b. P-polarized light from the anisotropic refracting portion 13 that enters the half-wave plate 11 directly or through the reflective layer 12 enters the P-polarized light that enters from the surface on the exit surface 10a side and exits from the side surface. Let L be the shortest distance between the plane including the emitted side surface and the end of the half-wave plate 11. Let P be the distance between the anisotropic refracting portions 13.
 異方性屈折部13の間隔Pは、前述した式(1)~(6)の条件を満たす。導光体10の屈折率n0が1.50であり、異方性屈折部13の屈折率n1、n2がそれぞれ1.45、1.55である。導光体10の厚さDが1mmである。異方性屈折部13の幅Bが300μmであり、厚さHが100μmである。異方性屈折部13の間隔Pが300μmである。1/2波長板11の幅bが285μmである。最短距離Lが701μmである。 The interval P between the anisotropic refracting portions 13 satisfies the conditions of the above-described formulas (1) to (6). The refractive index n0 of the light guide 10 is 1.50, and the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively. The thickness D of the light guide 10 is 1 mm. The anisotropic refractive portion 13 has a width B of 300 μm and a thickness H of 100 μm. The spacing P between the anisotropic refracting portions 13 is 300 μm. The width b of the half-wave plate 11 is 285 μm. The shortest distance L is 701 μm.
 上記の条件において、角度φ0が48.1°であり、角度φ1が52.0°である場合、出射角βは67.3°である。角度φ0が45.0°であり、角度φ1が48.9°である場合、出射角βは80.5°である。角度φ0が44.3°であり、角度φ1が48.2°である場合、出射角βは89.8°である。光源から導光体10内に入射した光の、出射面10aと平行な面に対する最大角度が48.1°以下である場合、偏光導光板の出射光の出射角の角度広がりを22.7°程度にすることができる。 In the above conditions, when the angle φ0 is 48.1 ° and the angle φ1 is 52.0 °, the emission angle β is 67.3 °. When the angle φ0 is 45.0 ° and the angle φ1 is 48.9 °, the emission angle β is 80.5 °. When the angle φ0 is 44.3 ° and the angle φ1 is 48.2 °, the emission angle β is 89.8 °. When the maximum angle of the light incident on the light guide 10 from the light source with respect to the plane parallel to the output surface 10a is 48.1 ° or less, the angular spread of the output angle of the output light of the polarizing light guide plate is 22.7 °. Can be about.
 (実施例2)
 図10は、本発明の第2実施例である偏光導光板の構成を説明するための模式図である。
(Example 2)
FIG. 10 is a schematic diagram for explaining a configuration of a polarizing light guide plate according to the second embodiment of the present invention.
 図10において、破線で示す矢印はS偏光、実線で示す矢印はP偏光である。異方性屈折部13の幅をBとし、厚さをHとする。導光体10の厚さをDとする。1/2波長板11の幅をbとする。出射面10a側の面から入射し、側面から出射したP偏光の光が、直接または反射層12を介して1/2波長板11に入射する異方性屈折部13の、P偏光の光が出射された側面を含む平面と、1/2波長板11の端部との最短距離をLとする。異方性屈折部13の間隔をPとする。異方性屈折部13の間隔Pは、前述した式(7)~(8)の条件を満たす。 In FIG. 10, an arrow indicated by a broken line is S-polarized light, and an arrow indicated by a solid line is P-polarized light. The width of the anisotropic refracting portion 13 is B, and the thickness is H. Let D be the thickness of the light guide 10. The width of the half-wave plate 11 is b. P-polarized light from the anisotropic refracting portion 13 that enters the half-wave plate 11 directly or through the reflective layer 12 enters the P-polarized light that enters from the surface on the exit surface 10a side and exits from the side surface. Let L be the shortest distance between the plane including the emitted side surface and the end of the half-wave plate 11. Let P be the distance between the anisotropic refracting portions 13. The interval P between the anisotropic refracting portions 13 satisfies the conditions of the expressions (7) to (8) described above.
 導光体10の屈折率n0が1.50であり、異方性屈折部13の屈折率n1、n2がそれぞれ1.45、1.55である。導光体10の厚さDが1mmである。異方性屈折部13の幅Bが300μmであり、厚さHが100μmである。異方性屈折部13の間隔Pが80μmである。1/2波長板11の幅bが196μmである。最短距離Lが701μmである。 The refractive index n0 of the light guide 10 is 1.50, and the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively. The thickness D of the light guide 10 is 1 mm. The anisotropic refractive portion 13 has a width B of 300 μm and a thickness H of 100 μm. The spacing P between the anisotropic refracting portions 13 is 80 μm. The width b of the half-wave plate 11 is 196 μm. The shortest distance L is 701 μm.
 上記の条件において、角度φ0が48.1°であり、角度φ1が52.0°である場合、出射角βは67.3°である。角度φ0が45.0°であり、角度φ1が48.9°である場合、出射角βは80.5°である。角度φ0が44.3°であり、角度φ1が48.2°である場合、出射角βは89.8°である。光源から導光体10内に入射した光の、出射面10aと平行な面に対する最大角度が48.1°以下である場合、偏光導光板の出射光の出射角の角度広がりを22.7°程度にすることができる。 In the above conditions, when the angle φ0 is 48.1 ° and the angle φ1 is 52.0 °, the emission angle β is 67.3 °. When the angle φ0 is 45.0 ° and the angle φ1 is 48.9 °, the emission angle β is 80.5 °. When the angle φ0 is 44.3 ° and the angle φ1 is 48.2 °, the emission angle β is 89.8 °. When the maximum angle of the light incident on the light guide 10 from the light source with respect to the plane parallel to the output surface 10a is 48.1 ° or less, the angular spread of the output angle of the output light of the polarizing light guide plate is 22.7 °. Can be about.
 (実施例3)
 本発明の第3実施例の偏光導光板も、図10に示すような構成とされる。
(Example 3)
The polarizing light guide plate of the third embodiment of the present invention is also configured as shown in FIG.
 本実施例の偏光導光板においては、導光体10の屈折率n0が1.50であり、異方性屈折部13の屈折率n1、n2がそれぞれ1.45、1.55である。導光体10の厚さDが500μmである。異方性屈折部13の幅Bが260μmであり、厚さHが100μmである。異方性屈折部13の間隔Pが80μmである。1/2波長板11の幅bが50μmである。最短距離Lが310μmである。 In the polarizing light guide plate of this example, the refractive index n0 of the light guide 10 is 1.50, and the refractive indexes n1 and n2 of the anisotropic refracting portion 13 are 1.45 and 1.55, respectively. The light guide 10 has a thickness D of 500 μm. The anisotropic refracting portion 13 has a width B of 260 μm and a thickness H of 100 μm. The spacing P between the anisotropic refracting portions 13 is 80 μm. The width b of the half-wave plate 11 is 50 μm. The shortest distance L is 310 μm.
 上記の条件においても、角度φ0が48.1°であり、角度φ1が52.0°である場合、出射角βは67.3°である。角度φ0が45.0°であり、角度φ1が48.9°である場合、出射角βは80.5°である。角度φ0が44.3°であり、角度φ1が48.2°である場合、出射角βは89.8°である。この場合も、偏光導光板の出射光の出射角の角度広がりを22.7°程度にすることができる。 Also in the above conditions, when the angle φ0 is 48.1 ° and the angle φ1 is 52.0 °, the emission angle β is 67.3 °. When the angle φ0 is 45.0 ° and the angle φ1 is 48.9 °, the emission angle β is 80.5 °. When the angle φ0 is 44.3 ° and the angle φ1 is 48.2 °, the emission angle β is 89.8 °. Also in this case, the angular spread of the outgoing angle of the outgoing light from the polarizing light guide plate can be set to about 22.7 °.
 以上説明した本実施形態の偏光導光板によれば、偏光導光板から出射される光の出射角の広がりを、エテンデューの制約に基づく光利用可能な範囲内に収めることができる。 According to the polarization light guide plate of the present embodiment described above, it is possible to keep the spread of the emission angle of light emitted from the polarization light guide plate within a light usable range based on etendue restrictions.
 また、導光体10内を伝播する光を、1/4波長板11と反射層12の間で光を循環させて利用することができるので、光利用効率を向上させることができる。 Further, since the light propagating in the light guide 10 can be used by circulating light between the quarter-wave plate 11 and the reflection layer 12, the light use efficiency can be improved.
 さらに、本実施形態の偏光導光板によれば、以下のような作用効果を奏する。 Furthermore, according to the polarizing light guide plate of the present embodiment, the following operational effects can be obtained.
 一般に、照明装置に用いられる導光板においては、光源からのある程度の出射角度分布を有する入射光を有効に利用するために、角度変換手段が設けられる。角度変換手段としては、例えば、導光板をくさび形状にする手法や、導光板内にプリズム部を設ける手法などがある。このような角度変換手段を設けることで、導光板内に入射した光の導光角度(より具体的には、入射した光の出射側の面とのなす角度)が、その導光過程において徐々に変化し、これにより出射条件を満たす光を増大することができる。 Generally, in a light guide plate used in an illuminating device, angle conversion means is provided in order to effectively use incident light having a certain degree of emission angle distribution from a light source. Examples of the angle conversion means include a method of making the light guide plate a wedge shape, a method of providing a prism portion in the light guide plate, and the like. By providing such an angle conversion means, the light guide angle of the light incident on the light guide plate (more specifically, the angle formed with the surface on the exit side of the incident light) gradually increases in the light guide process. Thus, the light satisfying the emission condition can be increased.
 プロジェクタの照明装置に用いられる導光板は小型であるため、例えば、くさび形状構造のくさび角度(反射面と出射面とのなす角度)が小さいと、入射した光が入射面と対向する面に到達するまでに、十分な導光角度の変化を得ることができず、くさび形状構造による光量増大の効果が半減する。このため、くさび形状構造は、ある程度大きなくさび角度を有するものとされる。 Since the light guide plate used in the projector illumination device is small, for example, if the wedge angle of the wedge-shaped structure (angle formed by the reflecting surface and the exit surface) is small, the incident light reaches the surface facing the entrance surface. By this time, a sufficient change in the light guide angle cannot be obtained, and the effect of increasing the amount of light by the wedge-shaped structure is halved. For this reason, the wedge-shaped structure has a wedge angle that is somewhat large.
 前述した特許文献1に記載の導光板においても、入射光を有効に利用するために、上記の角度変換手段を適用することが望ましい。この場合、角度変換手段は、例えば、第1層の厚さを入射面から離れるに従って徐々に薄くするように構成することで実現される。 In the light guide plate described in Patent Document 1 described above, it is desirable to apply the angle conversion means in order to effectively use incident light. In this case, the angle conversion means is realized by, for example, a configuration in which the thickness of the first layer is gradually reduced as the distance from the incident surface increases.
 特許文献1に記載の導光板では、第2層のプリズム面に対して所定の入射角度で入射するという角度条件を満たすS偏光の光のみが導光板から出射され、P偏光の光は、そのような角度条件を満たす場合であっても、導光板からは出射されずに、第3層と反射板の間を導光する。 In the light guide plate described in Patent Document 1, only the S-polarized light that satisfies the angle condition of entering the prism surface of the second layer at a predetermined incident angle is emitted from the light guide plate, and the P-polarized light is Even when such an angle condition is satisfied, light is guided between the third layer and the reflection plate without being emitted from the light guide plate.
 第2層のプリズム面で反射された、角度条件を満たすP偏光の光は、第1層および偏光変換板を透過して反射板にて第1層の方向へ反射される。このとき、P偏光の光は、偏光変換板によりS偏光の光に変換されるとともに、くさび形状構造により導光角度が変化する。この場合、くさび角度がある程度小さければ、反射板で反射されたS偏光の光は、角度条件を満たすため、導光板の出射面から出射される。 The P-polarized light that satisfies the angle condition and is reflected by the prism surface of the second layer passes through the first layer and the polarization conversion plate and is reflected in the direction of the first layer by the reflecting plate. At this time, the P-polarized light is converted into S-polarized light by the polarization conversion plate, and the light guide angle is changed by the wedge-shaped structure. In this case, if the wedge angle is small to some extent, the S-polarized light reflected by the reflecting plate is emitted from the exit surface of the light guide plate in order to satisfy the angle condition.
 しかし、プロジェクタへ適用するためには、くさび角度をある程度大きくする必要がある。この場合、上記のようにして反射板で反射されたS偏光の光は、角度条件を満たさなくなるため、導光板からは出射されずに、第3層と反射板の間を導光する。このため、くさび形状構造による光量増大の効果は半減する。 However, in order to apply to a projector, it is necessary to increase the wedge angle to some extent. In this case, since the S-polarized light reflected by the reflecting plate as described above does not satisfy the angle condition, the light is guided between the third layer and the reflecting plate without being emitted from the light guiding plate. For this reason, the effect of increasing the amount of light by the wedge-shaped structure is halved.
 このように、特許文献1に記載の導光板においては、プロジェクタへ適用する場合に、角度変換手段による光量増大の効果を十分に得ることができないため、高輝度のプロジェクタを実現することは困難である。 Thus, in the light guide plate described in Patent Document 1, when applied to a projector, it is difficult to realize a projector with high brightness because the effect of increasing the amount of light by the angle conversion means cannot be obtained sufficiently. is there.
 これに対して、本実施形態の偏光導光板によれば、角度条件(出射条件)を満たす光は、偏光状態に関係なく、導光体10の出射面10aから出射される。また、異方性屈折部13を透過することで、入射光の導光角度も変化するため、くさび構造等の角度変換手段を用いる必要がない。したがって、本実施形態の偏光導光板によれば、特許文献1に記載の導光板と比較して、出射光量が多く、高輝度のプロジェクタを実現することができる。 On the other hand, according to the polarizing light guide plate of the present embodiment, the light satisfying the angle condition (emission condition) is emitted from the emission surface 10a of the light guide 10 regardless of the polarization state. Further, since the light guide angle of the incident light is changed by passing through the anisotropic refracting portion 13, it is not necessary to use an angle conversion means such as a wedge structure. Therefore, according to the polarizing light guide plate of the present embodiment, it is possible to realize a projector having a large amount of emitted light and a high brightness as compared with the light guide plate described in Patent Document 1.
 次に、本実施形態の偏光導光板の作製方法について説明する。 Next, a method for producing the polarizing light guide plate of this embodiment will be described.
 まず、異方性屈折部13となる領域に凹部を有する導光体を作成する。導光体は、金型成形、切削加工等に作成することができる。 First, a light guide having a concave portion in a region to be the anisotropic refracting portion 13 is created. The light guide can be created for mold forming, cutting and the like.
 次に、導光体の凹部が形成された面と反射層(反射板)の一方の面に配向膜を塗布し、配向処理を行う。次に、UV硬化型液晶モノマーを、スクリーン印刷により凹部に埋め込む。その後、導光体の凹部が形成された面と反射層の一方の面を貼り合わせる。 Next, an alignment film is applied to the surface of the light guide where the concave portion is formed and one surface of the reflective layer (reflecting plate), and an alignment treatment is performed. Next, a UV curable liquid crystal monomer is embedded in the recess by screen printing. Thereafter, the surface of the light guide body on which the concave portion is formed and one surface of the reflective layer are bonded together.
 貼り合わせた導光体および反射層を加熱した後、冷却し、UV硬化型液晶モノマーを配向させる。最後に、UV光を照射して、配向したUV硬化型液晶モノマーを硬化させた後、1/2波長板を、導光体の反射層とは反対側の面の所定の領域に貼り付ける。これにより、第1の実施形態の偏光導光板を得る。 The bonded light guide and reflective layer are heated and then cooled to align the UV curable liquid crystal monomer. Finally, UV light is irradiated to cure the aligned UV curable liquid crystal monomer, and then a half-wave plate is attached to a predetermined region on the surface of the light guide opposite to the reflective layer. Thereby, the polarization light guide plate of the first embodiment is obtained.
 (第2の実施形態)
 上述した第1の実施形態の偏光導光板では、出射光は、出射面10aの垂線に対して傾きを有する。ここでは、出射面10aに垂直な方向に光を出射することが可能な形態について説明する。
(Second Embodiment)
In the polarization light guide plate of the first embodiment described above, the outgoing light has an inclination with respect to the normal of the outgoing surface 10a. Here, a mode capable of emitting light in a direction perpendicular to the emission surface 10a will be described.
 図11は、本発明の第2の実施形態である偏光導光板の構成を示す断面図である。 FIG. 11 is a cross-sectional view showing a configuration of a polarizing light guide plate according to the second embodiment of the present invention.
 図11に示すように、本実施形態の偏光導光板は、第1の実施形態の偏光導光板にプリズムシート15を加えたものである。プリズムシート15以外の構成は、第1の実施形態の偏光導光板と同じである。 As shown in FIG. 11, the polarizing light guide plate of this embodiment is obtained by adding a prism sheet 15 to the polarizing light guide plate of the first embodiment. The configuration other than the prism sheet 15 is the same as that of the polarizing light guide plate of the first embodiment.
 プリズムシート15が持つ複数の頂角が、導光体10の出射面10aと対向するように設けられている。図12に、プリズムシート15の一部を拡大した拡大図を示す。 The plurality of apex angles of the prism sheet 15 are provided so as to face the light exit surface 10 a of the light guide 10. FIG. 12 shows an enlarged view in which a part of the prism sheet 15 is enlarged.
 図12に示すように、プリズムシート15は、断面形状が三角形のプリズム面15aが2次元に配置されたものである。プリズム面15aの頂角は、出射面10aおよび1/2波長板11から出射される光の角度(例えば、図3に示した出射角β)に基づいて決定される。例えば、出射角βが67°より大きく、90°より小さい場合、プリズムシート15の屈折率を1.50とすると、プリズム面15aの頂角は70°程度の角度とされる。 As shown in FIG. 12, the prism sheet 15 is formed by two-dimensionally arranging prism surfaces 15a having a triangular cross-sectional shape. The apex angle of the prism surface 15a is determined based on the angle of light emitted from the emission surface 10a and the half-wave plate 11 (for example, the emission angle β shown in FIG. 3). For example, when the emission angle β is larger than 67 ° and smaller than 90 °, assuming that the refractive index of the prism sheet 15 is 1.50, the apex angle of the prism surface 15a is about 70 °.
 頂角70°のプリズム面15aを有するプリズムシート15は、プリズム面15aの三角形状の一辺を形成する面に平行な面と、出射面10aとのなす角度δが、55°となるように、出射面10a上に配置される。この配置によれば、出射面10aに垂直な方向を基準として、出射角の角度広がり±12°の出射光を得ることができる。 The prism sheet 15 having the prism surface 15a having an apex angle of 70 ° has an angle δ formed by a surface parallel to a surface forming one side of the triangular shape of the prism surface 15a and the emission surface 10a, so that 55 °. It arrange | positions on the output surface 10a. According to this arrangement, it is possible to obtain outgoing light with an angular spread of ± 12 ° with respect to a direction perpendicular to the outgoing surface 10a.
 (他の実施形態)
 上述した第1および第2の実施形態のいずれかにおいて、1/2波長板11を第1の1/4波長板とし、この第1の1/4波長板の間に第2の1/4波長板を設けても良い。第1および第2の1/4波長板は、一定の方向(異方性屈折部13の並び方向)に交互に周期的に配置される。第1の1/4波長板の光学軸は、第2の1/4波長板の光学軸と直交する。
(Other embodiments)
In any one of the first and second embodiments described above, the half-wave plate 11 is a first quarter-wave plate, and a second quarter-wave plate is interposed between the first quarter-wave plates. May be provided. The first and second quarter-wave plates are alternately and periodically arranged in a fixed direction (the direction in which the anisotropic refracting portions 13 are arranged). The optical axis of the first quarter-wave plate is orthogonal to the optical axis of the second quarter-wave plate.
 本他の実施形態の偏光導光板によれば、例えば、出射面10aから出射したS偏光およびP偏光の光のうち、S偏光の光が第1の1/4波長板を通過し、P偏光の光が第2の1/4波長板を通過する。そして、第1および第2の1/4波長板のそれぞれから、同じ回転方向の円偏光(右回りまたは左回りの円偏光)が出射される。 According to the polarization light guide plate of the other embodiment, for example, among the S-polarized light and the P-polarized light emitted from the emission surface 10a, the S-polarized light passes through the first quarter-wave plate, and the P-polarized light. Light passes through the second quarter-wave plate. Then, circularly polarized light in the same rotational direction (clockwise or counterclockwise circularly polarized light) is emitted from each of the first and second quarter wavelength plates.
 本他の実施形態の偏光導光板から出射された円偏光の光路中に、第3の1/4波長板を設けることで、P偏光およびS偏光のうちの一方の偏光の光を得ることができる。 By providing a third quarter-wave plate in the optical path of circularly polarized light emitted from the polarizing light guide plate of this other embodiment, it is possible to obtain light of one of P-polarized light and S-polarized light. it can.
 本他の実施形態の偏光導光板も、第1の実施形態で説明した、出射条件や導光条件、異方性屈折部13の大きさの条件(厚さおよび幅)や間隔の条件を満たす。 The polarizing light guide plate of the other embodiment also satisfies the conditions for the emission condition, the light guide condition, the size of the anisotropic refracting portion 13 (thickness and width), and the interval described in the first embodiment. .
 (照明装置)
 次に、本発明の偏光導光板を備える照明装置について説明する。
(Lighting device)
Next, an illuminating device provided with the polarizing light-guide plate of this invention is demonstrated.
 図13に、本発明の偏光導光板を備える照明装置の断面構造の一例を示す。 FIG. 13 shows an example of a cross-sectional structure of an illuminating device provided with the polarizing light guide plate of the present invention.
 図13に示す照明装置は、図1に示した偏光導光板と、光源20とからなる。この照明装置は、携帯電話機等の液晶表示装置や液晶プロジェクタに代表される投射型表示装置の照明装置として用いることができる。 The illumination device shown in FIG. 13 includes the polarization light guide plate shown in FIG. This illuminating device can be used as an illuminating device for a liquid crystal display device such as a mobile phone or a projection display device represented by a liquid crystal projector.
 光源20は、例えば発光ダイオード(LED)や半導体レーザー(LD)のような半導体光源、あるいは固体光源と呼ばれる光源であって、導光体10の端面10bと対向するように設けられている。光源20からの光を導光体10内に効率良く入射させることができるのであれば、光源20は、端面10bに対してどのように配置されてもよい。例えば、光源20の発光部が端面10bと近接して配置されてもよく、また、発光部と端面10bの間に、発光部からの光を端面10bに入射させるための光学部材(プリズムやレンズ)を配置してもよい。 The light source 20 is, for example, a semiconductor light source such as a light emitting diode (LED) or a semiconductor laser (LD), or a light source called a solid light source, and is provided so as to face the end face 10 b of the light guide 10. As long as the light from the light source 20 can be efficiently incident on the light guide 10, the light source 20 may be arranged in any manner with respect to the end face 10b. For example, the light emitting unit of the light source 20 may be disposed close to the end surface 10b, and an optical member (prism or lens) for causing light from the light emitting unit to enter the end surface 10b between the light emitting unit and the end surface 10b. ) May be arranged.
 光源20から出射した光(非偏光光)は、端面10bから導光体10内に入射する。光源20から導光体10の端面10bに入射した光(非偏光光)は、出射面10aおよび反射層12で反射されるとともに、導光体10内を端面10bと対向する端面10cの方へ向かって伝播する。この伝播過程において、光の一部が異方性屈折部13に入射する。 The light (unpolarized light) emitted from the light source 20 enters the light guide 10 from the end face 10b. Light (non-polarized light) incident on the end surface 10b of the light guide body 10 from the light source 20 is reflected by the exit surface 10a and the reflective layer 12, and in the light guide body 10 toward the end surface 10c facing the end surface 10b. Propagate toward. In this propagation process, a part of the light enters the anisotropic refracting portion 13.
 異方性屈折部13において、出射条件を満たす第1および第2の偏光光が出射面10aから出射される。出射面10において、第1の偏光光が出射される領域は、第2の偏光光が出射される領域と異なる。1/2波長板11が第1の偏光光が出射される領域に設けられており、出射面10aから出射された第1の偏光光は、1/2波長板11によって第2の偏光光に変換される。図13では、1/2波長板11がS偏光の光が出射される領域に設けられており、出射面10aから出射されたS偏光の光は、1/2波長板11によってP偏光の光に変換される。 In the anisotropic refracting unit 13, the first and second polarized light satisfying the emission condition are emitted from the emission surface 10a. In the emission surface 10, the region where the first polarized light is emitted is different from the region where the second polarized light is emitted. The half-wave plate 11 is provided in a region where the first polarized light is emitted, and the first polarized light emitted from the emission surface 10 a is converted into the second polarized light by the half-wave plate 11. Converted. In FIG. 13, the half-wave plate 11 is provided in a region where S-polarized light is emitted, and the S-polarized light emitted from the emission surface 10 a is converted into P-polarized light by the half-wave plate 11. Is converted to
 本照明装置によれば、異方性屈折部13によって出射光の角度広がり(出射角)を、エテンデューの制約に基づく光利用可能な範囲内に収めることができる。 According to the present illuminating device, the angular spread (outgoing angle) of the outgoing light by the anisotropic refracting unit 13 can be kept within the usable range of light based on etendue restrictions.
 なお、本照明装置では、第1の実施形態の偏光導光板を用いているが、これに代えて、第2の実施形態の偏光導光板または他の実施形態の偏光導光板を用いてもよい。 In addition, in this illuminating device, although the polarization light guide plate of 1st Embodiment is used, it may replace with this and the polarization light guide plate of 2nd Embodiment or the polarization light guide plate of other embodiment may be used. .
 また、複数の光源20が、端面10bに対して設けられてもよい。 Moreover, the some light source 20 may be provided with respect to the end surface 10b.
 さらに、端面10b、10cの両方に、少なくとも1個の光源20が設けられても良い。 Furthermore, at least one light source 20 may be provided on both of the end faces 10b and 10c.
 (投射型表示装置)
 以上説明した本発明の偏光導光板を備える照明装置は、液晶プロジェクタに代表される投射型表示装置に適用することができる。
(Projection type display device)
The illumination device including the polarization light guide plate of the present invention described above can be applied to a projection display device typified by a liquid crystal projector.
 図14は、本発明の偏光導光板を備える照明装置を用いた投射型表示装置の構成を示す模式図である。図14を参照すると、投射型表示装置は、照明装置300~302、表示素子である液晶素子303~305、クロスダイクロイックミラー306および投射光学系307を有する。 FIG. 14 is a schematic diagram showing a configuration of a projection display device using an illumination device including the polarization light guide plate of the present invention. Referring to FIG. 14, the projection display device includes illumination devices 300 to 302, liquid crystal elements 303 to 305 as display elements, a cross dichroic mirror 306, and a projection optical system 307.
 照明装置300~302はいずれも、上述した照明装置によって構成される。照明装置300の光源として、青色LEDが用いられる。照明装置301の光源として、緑色LEDが用いられる。照明装置302の光源として、赤色LEDが用いられる。 All of the lighting devices 300 to 302 are constituted by the lighting devices described above. A blue LED is used as the light source of the illumination device 300. A green LED is used as the light source of the illumination device 301. A red LED is used as the light source of the illumination device 302.
 照明装置300から出射された青色の光は、液晶素子303に照射される。液晶素子303は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく青色用の画像を形成する。 The blue light emitted from the illumination device 300 is applied to the liquid crystal element 303. The liquid crystal element 303 is driven by a liquid crystal driving circuit (not shown) and forms a blue image based on a video signal supplied from the outside.
 照明装置301から出射された緑色の光は、液晶素子304に照射される。液晶素子304は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく緑色用の画像を形成する。 The green light emitted from the illumination device 301 is applied to the liquid crystal element 304. The liquid crystal element 304 is driven by a liquid crystal driving circuit (not shown) and forms a green image based on a video signal supplied from the outside.
 照明装置302から出射された赤色の光は、液晶素子305に照射される。液晶素子305は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく赤色用の画像を形成する。 The red light emitted from the illumination device 302 is applied to the liquid crystal element 305. The liquid crystal element 305 is driven by a liquid crystal drive circuit (not shown), and forms a red image based on a video signal supplied from the outside.
 液晶素子303~305によって形成された各色の画像光は、クロスダイクロイックミラー306を介して投射光学系307に入射する。投射光学系307は、液晶素子303~305によって形成された各色の画像を不図示のスクリーン(またはスクリーンに代わる部材)上に投射する。 The image light of each color formed by the liquid crystal elements 303 to 305 enters the projection optical system 307 via the cross dichroic mirror 306. The projection optical system 307 projects each color image formed by the liquid crystal elements 303 to 305 onto a screen (or a member replacing the screen) (not shown).
 別の投射型表示装置は、本発明の偏光導光板の端面に、赤色、緑色および青色の各色の光源を備える照明装置を用いる。この場合、赤色、緑色および青色の所定の偏光(P偏光またはS偏光)の光(白色光に対応する)が照明装置から出射される。この照明装置からの出射光が表示素子(例えば液晶素子)に照射される。表示素子は、外部からの映像信号に基づく赤色、緑色および青色の画像を時分割で表示する。この時分割表示に同期して光源の発光タイミングを制御する。表示素子に形成された各色の画像が投射光学系によって投射される。 Another projection type display device uses an illuminating device including light sources of red, green and blue colors on the end face of the polarizing light guide plate of the present invention. In this case, light (corresponding to white light) of predetermined polarized light (P-polarized light or S-polarized light) of red, green, and blue is emitted from the illumination device. Light emitted from the illumination device is irradiated onto a display element (for example, a liquid crystal element). The display element displays red, green, and blue images based on an external video signal in a time division manner. The light emission timing of the light source is controlled in synchronization with the time division display. Each color image formed on the display element is projected by the projection optical system.
 本発明の偏光導光板およびそれを備える照明装置は、上述した投射型表示装置の他、液晶ディスプレイのバックライトとして用いることができる。 The polarizing light guide plate of the present invention and the illumination device including the same can be used as a backlight of a liquid crystal display in addition to the projection display device described above.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and operation of the present invention without departing from the spirit of the present invention.
 この出願は、2010年3月31日に出願された日本出願特願2010-080792を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-080792 filed on Mar. 31, 2010, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  対向する面を備え、これら面の一方の面が出射面とされる導光体と、
     前記導光体の前記対向する面の他方の面に設けられた反射層と、
     前記導光体の前記出射面に設けられた位相差手段と、
     前記導光体内に、前記他方の面に沿って一定の方向に周期的に形成された複数の異方性屈折部と、を有し、
     前記複数の異方性屈折部のそれぞれは、第1の偏光光に対する屈折率が前記導光体の屈折率より小さく、かつ、偏光状態が前記第1の偏光光と異なる第2の偏光光に対する屈折率が前記導光体の屈折率より大きくなるように構成されており、
     前記位相差手段は、前記出射面から出射される前記第1および第2の偏光光の少なくとも一方の位相を変化させて、回転方向が同じ円偏光または偏光方向が同じ直線偏光の光を出射する、偏光導光板。
    A light guide including opposing surfaces, and one of these surfaces being an exit surface;
    A reflective layer provided on the other surface of the opposing surface of the light guide;
    Phase difference means provided on the exit surface of the light guide;
    A plurality of anisotropic refracting portions periodically formed in a certain direction along the other surface in the light guide;
    Each of the plurality of anisotropic refracting portions has a refractive index with respect to the first polarized light that is smaller than a refractive index of the light guide and has a polarization state different from that of the first polarized light. The refractive index is configured to be larger than the refractive index of the light guide,
    The phase difference unit changes the phase of at least one of the first and second polarized lights emitted from the emission surface, and emits circularly polarized light having the same rotation direction or linearly polarized light having the same polarization direction. , Polarized light guide plate.
  2.  前記位相差手段は、前記一定の方向に、周期的に形成された複数の1/2波長板を有する、請求項1に記載の偏光導光板。 2. The polarizing light guide plate according to claim 1, wherein the phase difference means has a plurality of half-wave plates periodically formed in the fixed direction.
  3.  前記複数の異方性屈折部のそれぞれは、直方体形状であって、前記導光体の前記出射面側に位置する第1の面から入射して、該第1の面に隣接する第2の面から出射した前記第1の偏光光が、前記複数の1/2波長板のいずれかを通過するように形成されている、請求項2に記載の偏光導光板。 Each of the plurality of anisotropic refracting portions has a rectangular parallelepiped shape, and is incident from a first surface located on the emission surface side of the light guide and is adjacent to the first surface. The polarizing light guide plate according to claim 2, wherein the first polarized light emitted from the surface is formed to pass through any of the plurality of half-wave plates.
  4.  前記複数の異方性屈折部のそれぞれは、前記第2の面と対向する第3の面から入射し、前記第1の面から出射した前記第2の偏光光が、前記出射面の前記複数の1/2波長板が形成されていない領域を通過するように形成されている、請求項3に記載の偏光導光板。 Each of the plurality of anisotropic refracting portions is incident from a third surface facing the second surface, and the second polarized light emitted from the first surface is the plurality of the plurality of anisotropic surfaces. The polarizing light guide plate according to claim 3, wherein the polarizing light guide plate is formed so as to pass through a region where the half-wave plate is not formed.
  5.  前記位相差手段は、前記一定の方向に交互に形成された、複数の第1の1/4波長板および複数の第2の1/4波長板を有し、該第1の1/4波長板の光学軸が、該第2の1/4波長板の光学軸と直交する、請求項1に記載の偏光導光板。 The phase difference means has a plurality of first quarter-wave plates and a plurality of second quarter-wave plates formed alternately in the fixed direction, and the first quarter-wave plates. The polarizing light guide plate according to claim 1, wherein an optical axis of the plate is orthogonal to an optical axis of the second quarter-wave plate.
  6.  前記複数の異方性屈折部のそれぞれは、直方体形状であって、前記導光体の前記出射面側に位置する第1の面から入射して、該第1の面に隣接する第2の面から出射した前記第1の偏光光が、前記複数の第1の1/4波長板のいずれかを通過するように形成されている、請求項5に記載の偏光導光板。 Each of the plurality of anisotropic refracting portions has a rectangular parallelepiped shape, and is incident from a first surface located on the emission surface side of the light guide and is adjacent to the first surface. The polarizing light guide plate according to claim 5, wherein the first polarized light emitted from the surface is formed so as to pass through any of the plurality of first quarter-wave plates.
  7.  前記複数の異方性屈折部のそれぞれは、前記第2の面と対向する第3の面から入射し、前記第1の面から出射した前記第2の偏光光が、前記複数の第2の1/4波長板のいずれかを通過するように形成されている、請求項6に記載の偏光導光板。 Each of the plurality of anisotropic refracting portions is incident from a third surface facing the second surface, and the second polarized light emitted from the first surface is converted into the plurality of second The polarizing light guide plate according to claim 6, wherein the polarizing light guide plate is formed so as to pass through any one of the quarter-wave plates.
  8.  前記複数の異方性屈折部のそれぞれの、前記一定の方向における長さをBとし、前記出射面と垂直な方向における高さをHとし、前記導光体の前記対向する面の間隔をDとし、
     前記導光体の屈折率をn0とし、前記複数の異方性屈折部の、前記第1および第2の偏光光に対する屈折率をそれぞれn1、n2とし、
     前記第1の面から入射して前記第2の面から出射した第1の偏光光の、前記第2の面の垂線とのなす角度の最大角度をφ1maxとし、該最大角度を与える、前記第1の面に入射した第1の偏光光の、前記第1の面とのなす角度をφ0maxとし、
     前記第3の面から入射して前記第1の面から出射した前記第2の偏光光の、前記第1の面とのなす角度の最小角度をφ1minとし、該最小角度を与える、前記第3の面に入射した前記第2の偏光光の、前記第3の面の垂線とのなす角度をφ0minとし、
     前記第1の面における前記最小角度で出射した前記第2の偏光光の出射点から、前記第1の面の前記第2の面側の端部までの最短距離をXとする場合、
    Figure JPOXMLDOC01-appb-M000001
    の条件を満たす、請求項4または7に記載の偏光導光板。
    The length of each of the plurality of anisotropic refracting portions in the predetermined direction is B, the height in the direction perpendicular to the emission surface is H, and the distance between the opposing surfaces of the light guide is D. age,
    The refractive index of the light guide is n0, and the refractive indexes of the plurality of anisotropic refracting portions with respect to the first and second polarized lights are n1 and n2, respectively.
    The maximum angle of the first polarized light incident from the first surface and emitted from the second surface with the perpendicular of the second surface is φ1max, and the maximum angle is given. The angle between the first polarized light incident on the first surface and the first surface is φ0max,
    The minimum angle of the second polarized light incident from the third surface and emitted from the first surface with the first surface is φ1 min, and the third angle is given. The angle between the second polarized light incident on the surface and the perpendicular of the third surface is φ0 min,
    When the shortest distance from the exit point of the second polarized light emitted at the minimum angle on the first surface to the end on the second surface side of the first surface is X,
    Figure JPOXMLDOC01-appb-M000001
    The polarizing light guide plate according to claim 4 or 7, which satisfies the following condition.
  9.  断面形状が三角形状の複数のプリズム部が平面上に形成されたプリズムシートを、さらに有し、
     前記プリズムシートは、前記導光体の前記出射面と対向するように配置されている、請求項1から8のいずれか1項に記載の偏光導光板。
    A prism sheet in which a plurality of prism portions having a triangular cross-sectional shape are formed on a plane;
    The polarizing light guide plate according to any one of claims 1 to 8, wherein the prism sheet is disposed so as to face the emission surface of the light guide.
  10.  請求項1から9のいずれか1項に記載の偏光導光板と、
     前記偏光導光板の端部に光を供給する少なくとも1つの光源と、を有する照明装置。
    The polarizing light guide plate according to any one of claims 1 to 9,
    And at least one light source for supplying light to an end of the polarizing light guide plate.
  11.  請求項10に記載の照明装置と、
     前記照明装置から出射された光が照射される表示素子と、
     前記表示素子によって形成された画像を投射する投射光学系と、を有する、投射型表示装置。
    A lighting device according to claim 10;
    A display element irradiated with light emitted from the illumination device;
    A projection optical system that projects an image formed by the display element.
  12.  請求項10に記載の照明装置より構成される、赤色、緑色、青色の各色の照明装置と、
     前記赤色の照明装置から出射された赤色の光が照射される第1の表示素子と、
     前記緑色の照明装置から出射された緑色の光が照射される第2の表示素子と、
     前記青色の照明装置から出射された青色の光が照射される第3の表示素子と、
     前記第1乃至第3の表示素子で表示される各色の画像を投射する投射光学系と、を有する、投射型表示装置。
    A lighting device of each color of red, green, and blue, comprising the lighting device according to claim 10;
    A first display element irradiated with red light emitted from the red illumination device;
    A second display element irradiated with green light emitted from the green illumination device;
    A third display element irradiated with blue light emitted from the blue illumination device;
    A projection optical system that projects an image of each color displayed on the first to third display elements.
PCT/JP2011/056761 2010-03-31 2011-03-22 Polarizing light guide plate, illuminating device, and projection display device WO2011125479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509396A JPWO2011125479A1 (en) 2010-03-31 2011-03-22 Polarized light guide plate, illumination device, and projection display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-080792 2010-03-31
JP2010080792 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125479A1 true WO2011125479A1 (en) 2011-10-13

Family

ID=44762434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056761 WO2011125479A1 (en) 2010-03-31 2011-03-22 Polarizing light guide plate, illuminating device, and projection display device

Country Status (2)

Country Link
JP (1) JPWO2011125479A1 (en)
WO (1) WO2011125479A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078511A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Polarized light separator, polarized light conversion element and liquid crystal display device formed by using the same
JPH10125121A (en) * 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Back light
JP2008235245A (en) * 2007-02-19 2008-10-02 Mitsubishi Electric Corp Backlight device and transmission display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078511A (en) * 1996-09-04 1998-03-24 Hitachi Ltd Polarized light separator, polarized light conversion element and liquid crystal display device formed by using the same
JPH10125121A (en) * 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Back light
JP2008235245A (en) * 2007-02-19 2008-10-02 Mitsubishi Electric Corp Backlight device and transmission display device

Also Published As

Publication number Publication date
JPWO2011125479A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
KR101706246B1 (en) Display module and light guide device
EP3021162B1 (en) Projection display apparatus
JP5424365B2 (en) Illumination device and projection display device using the same
US20220317467A1 (en) Optical Devices Having Dichroic Beam Combiners, Optical Devices for Use with Dichroic Beam Combiners, and Methods of Manufacture Therefor
KR101747286B1 (en) Display module
KR101976991B1 (en) Wearable display apparatus
JP6081508B2 (en) Linear eyepiece display device
JP5153535B2 (en) Image projection device
TW201833653A (en) Projection System
JP2016213175A5 (en)
JP2010101989A (en) Display device
WO2011021304A1 (en) Illuminating device and projection display device using same
JP5741445B2 (en) Illumination device and projection display device using the same
WO2011125479A1 (en) Polarizing light guide plate, illuminating device, and projection display device
JP2009229729A (en) Polarization element and projector
US8807769B2 (en) Wavelength plate, light emitting element, and image display device using the light emitting element
WO2011118563A1 (en) Deflection light-guiding plate, lighting apparatus, and projection type display apparatus
JP2008112623A (en) Light source device and projector
TWI556025B (en) Display module and light guide device
US11454875B2 (en) Prism architecture
JP4910354B2 (en) Uniform optical element, illumination device and projector
JP2010067552A (en) Backlight device and liquid crystal display device
JP2009122218A (en) Illumination device and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509396

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765380

Country of ref document: EP

Kind code of ref document: A1