[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011125231A1 - Vehicle brake device - Google Patents

Vehicle brake device Download PDF

Info

Publication number
WO2011125231A1
WO2011125231A1 PCT/JP2010/056633 JP2010056633W WO2011125231A1 WO 2011125231 A1 WO2011125231 A1 WO 2011125231A1 JP 2010056633 W JP2010056633 W JP 2010056633W WO 2011125231 A1 WO2011125231 A1 WO 2011125231A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
latent heat
heat storage
storage material
frictional
Prior art date
Application number
PCT/JP2010/056633
Other languages
French (fr)
Japanese (ja)
Inventor
泰昭 鶴見
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056633 priority Critical patent/WO2011125231A1/en
Publication of WO2011125231A1 publication Critical patent/WO2011125231A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking

Definitions

  • the present invention relates to a braking device for a vehicle such as an automobile, and more particularly to a braking device for a vehicle that collects thermal energy generated by the braking in addition to braking the wheels of the vehicle.
  • a friction member is coupled to one of two relatively rotatable shafts, and a friction mating member having a hollow structure is coupled to the other.
  • a wet friction apparatus in which a metal at 150 to 270 ° C. is sealed in a hollow portion is known.
  • this wet friction device when the wet friction material provided on the friction member is pressed against the friction counterpart member, the temperature rise of the friction counterpart member is suppressed by the latent heat of fusion of the metal enclosed in the hollow portion of the friction counterpart member. It has become.
  • thermoelectric element having a high-temperature side joint and a low-temperature side joint, and means for heating the high-temperature side joint of the thermoelectric element; Thermoelectric power generation using the Seebeck effect due to the temperature difference between the high temperature side junction and the low temperature side junction of the thermoelectric element
  • thermoelectric generator the thermoelectric element has a thermoelectromotive force characteristic that exhibits a peak change with respect to temperature, and the phase change heat storage material interposed between the heating means and the high-temperature side junction of the thermoelectric element is a thermoelectric element.
  • a phase change is selected at a temperature that limits the upper limit of a given temperature range centered on the peak of the thermoelectromotive force characteristic of the element.
  • thermoelectric conversion means when the recovered thermal energy is converted into, for example, electric energy using a thermoelectric element, that is, a thermoelectric conversion means, generally, a temperature difference between a heating surface and a cooling surface in the thermoelectric conversion means is large. It is said that the thermoelectric conversion efficiency is improved. For this reason, when converting the thermal energy collected by mounting the thermoelectric conversion means on the vehicle to electric energy, a device that generates heat and increases in temperature as the vehicle travels is used as a heat source, and the heating surface of the thermoelectric conversion means Is preferably heated. As a device that can serve as such a heat source, a vehicle braking device that generates a braking force by friction is extremely effective in that a high temperature can be obtained by the generation of frictional heat.
  • the vehicle braking device has a characteristic that the coefficient of friction decreases when the temperature of the friction sliding portion increases. For this reason, when the vehicle braking device is operated at a high temperature, there is a possibility that a phenomenon in which the braking force is reduced, that is, a so-called fade phenomenon occurs. In this way, from the viewpoint of properly operating the vehicle braking device, it is preferable to release the generated frictional heat, in other words, to cool appropriately and maintain the temperature of the vehicle braking device itself at a low temperature. .
  • thermoelectric conversion efficiency of the thermoelectric conversion means when recovering thermal energy using thermoelectric conversion means and converting it to electrical energy, from the viewpoint of the thermoelectric conversion efficiency of the thermoelectric conversion means, the frictional heat generated by the operation of the braking device for the vehicle is released. Without maintaining, the vehicle braking device itself is preferably maintained at a high temperature. Therefore, when the frictional heat generated by the operation of the vehicle braking device, that is, thermal energy is recovered using the thermoelectric conversion means and converted into, for example, electric energy, the braking force of the vehicle braking device is reduced. It is extremely important to satisfy both contradictory requirements of improving the thermoelectric conversion efficiency by the thermoelectric conversion means.
  • latent heat storage means using a heat storage material that can recover thermal energy as latent heat in accordance with phase change, that is, latent heat storage means is effective in that it can satisfy the contradicting requirements. It can be said that.
  • the vehicle braking device it is necessary to efficiently change the phase of the latent heat storage means and recover the heat energy.
  • the recovered heat energy is used to efficiently heat the heating surface of the thermoelectric conversion means and There is room for consideration in that it is necessary to create an appropriate temperature difference between the heating surface and the cooling surface of the conversion means.
  • a latent heat storage means when a latent heat storage means is provided on a rotating body that rotates integrally with a wheel, the balance of mass may be lost with a phase change, and as a result, for example, it may affect the running behavior of the vehicle. Is concerned.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vehicle braking device that appropriately brakes the vehicle and efficiently recovers the thermal energy of the vehicle.
  • a feature of the present invention is to provide a braking device for a vehicle that applies a braking force to the rotation of a wheel of the vehicle and collects thermal energy generated by the application of the braking force.
  • a rotating body that rotates integrally with a wheel of the vehicle and a friction engagement means that frictionally engages with a friction sliding portion of the rotating body to apply a braking force by friction to the rotation of the wheel
  • a braking force applying means that is housed in a friction sliding portion of the rotating body, and is generated from the solid phase to the liquid phase or from the liquid phase to the solid phase by the thermal energy generated by the friction engagement by the friction engagement means.
  • a heat recovery means having a latent heat storage means for storing the thermal energy as latent heat by changing phase, and a latent heat storage means of the heat recovery means and a fixed portion of the rotating body with respect to the vehicle, Stored in the latent heat storage means
  • the braking force applying means may be, for example, a disk brake unit in which the rotating body is a disk rotor and the friction engagement means is a brake caliper, or the rotating body is a brake drum, and the friction engagement means is The drum brake unit may be a brake shoe.
  • the heat recovery means may further include a volume change absorbing means for absorbing a volume change accompanying a phase change of the latent heat storage means inside the friction sliding portion of the rotating body.
  • the volume change absorbing means may be provided at equal intervals in the circumferential direction of the rotating body, for example.
  • the volume change absorbing means is elastically deformed with respect to the volume change accompanying the phase change of the latent heat storage means inside the friction sliding portion of the rotating body, for example, and the volume change Should be absorbed.
  • the heat recovery means may further include a fin that transfers heat energy generated in accordance with the friction engagement by the friction engagement means to the latent heat storage means.
  • the fins may be arranged alternately with the latent heat storage means in the circumferential direction of the rotating body, for example. Further, in these cases, the fins may be thermally connected to the inner wall surface forming the friction sliding portion inside the friction sliding portion of the rotating body.
  • the power recovery means is configured such that one side is heated by the latent heat storage means of the heat recovery means and the other side is maintained at a lower temperature than the one side,
  • the thermoelectric conversion means may convert the thermal energy into the electric energy according to a temperature difference from the other side.
  • the thermoelectric conversion means may be provided at a predetermined interval in the circumferential direction of the rotating body.
  • thermoelectric conversion means is fixed to the rotating body by, for example, floating coupling. Good.
  • the power recovery means may further include power storage means for storing the electric energy converted by the thermoelectric conversion means as electric power.
  • the heat recovery means is further accommodated inside the fixed portion of the rotating body and on the high temperature side accommodated inside the friction sliding portion.
  • a low-temperature latent heat storage means that changes phase from a solid phase to a liquid phase or from a liquid phase to a solid phase at a temperature lower than that of the latent heat storage means.
  • the heat recovery means may further include a volume change absorbing means for absorbing a volume change accompanying a phase change of the low temperature side latent heat storage means inside the fixed portion of the rotating body.
  • the volume change absorbing means may be provided at equal intervals in the circumferential direction of the rotating body. In these cases, the volume change absorbing means is elastically deformed with respect to the volume change accompanying the phase change of the low-temperature side latent heat storage means inside the fixed portion of the rotating body, for example, and the volume It is better to absorb changes.
  • the latent heat storage means of the heat recovery means is provided in the friction sliding portion of the rotating body (for example, the disk rotor or the brake drum), and the friction sliding portion (specifically, the friction sliding portion of the rotating body).
  • An electric power recovery means (specifically, a thermoelectric conversion means) can be provided between the latent heat storage means housed inside the rotary body and a fixed part (for example, a hub part) of the rotating body.
  • thermoelectric conversion means can be disposed adjacent to the heat recovery means (specifically, the latent heat storage means), the thermal energy stored in the latent heat storage means One side (specifically, the heating surface) of the thermoelectric conversion means can be heated to appropriately maintain the temperature difference from the other side (specifically, the cooling surface). Thereby, the thermoelectric conversion means can convert and collect
  • the volume change absorbing means can be provided in the heat recovery means, the volume change accompanying the phase change of the latent heat storage means inside the friction sliding portion can be reliably absorbed. As a result, it is possible to prevent the occurrence of voids in the frictional sliding part, which is likely to occur when the latent heat storage means changes phase from the liquid phase to the solid phase, and the mass balance of the rotating body is lost. Can be prevented. Therefore, for example, it is possible to prevent an adverse effect on the running behavior and riding comfort of the vehicle due to the loss of the balance of the mass of the rotating body.
  • the heat recovery means can be provided with fins alternately with the latent heat storage means in the circumferential direction of the rotating body.
  • the heat energy generated in the frictional sliding portion can be efficiently transferred to the latent heat storage means, and in a state where the solid phase and the liquid phase coexist, it is effectively accompanied with the rotation of the rotating body. Can be stirred. Therefore, the temperature of the latent heat storage means can be made uniform, and for example, one side (heating surface) of the thermoelectric conversion means can be appropriately heated. In this case, heat energy can be more efficiently transferred by thermally connecting the fin to the inner wall surface forming the friction sliding portion inside the friction sliding portion. Therefore, for example, one side (heating surface) of the thermoelectric conversion means can be heated more stably, and more efficiently converted into electric energy and recovered. Further, the thermoelectric conversion means can be fixed to the rotating body by floating coupling.
  • the heat recovery means can be provided with a low-temperature side latent heat storage material means housed inside the fixed portion of the rotating body.
  • the high temperature side latent heat storage means can be accommodated in the friction sliding portion of the rotating body, and the low temperature side latent heat storage means can be accommodated in the fixed portion. Therefore, for example, one side (heating surface) of the thermoelectric conversion means can be heated by the high-temperature side latent heat storage means, and the other side (cooling surface) can be maintained at a relatively low temperature by the low-temperature side latent heat storage means.
  • thermoelectric conversion means The temperature difference between one side (heating surface) and the other side (cooling surface) of the thermoelectric conversion means can be continuously maintained at the temperature difference at which the thermoelectric conversion efficiency is good. Thereby, heat energy can be more efficiently converted into electric energy and recovered, and for example, the recovered electric energy can be used in other devices mounted on the vehicle.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a vehicle braking device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 1.
  • FIG. 3 is a cross-sectional view showing the configuration of the volume change absorption mechanism of FIG.
  • FIG. 4 is a cross-sectional view for explaining the operation of the volume change absorption mechanism.
  • FIG. 5 is a graph for explaining the thermoelectric conversion efficiency of the thermoelectric converter.
  • FIG. 6 is a graph for explaining the change of the disk rotor temperature with respect to the amount of heat generated by braking according to the first embodiment of the present invention.
  • FIG. 7 is a schematic partial cross-sectional view for explaining the fins of the heat recovery unit according to the first modification of the first embodiment of the present invention.
  • FIG. 8 is a schematic partial cross-sectional view for explaining a thermoelectric conversion unit according to a second modification of the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view for explaining the floating fastening mechanism of FIG.
  • FIG. 10 is a cross-sectional view for explaining the assembled state of the thermoelectric conversion unit of FIG.
  • FIG. 11 is a schematic partial cross-sectional view for explaining a modified example of the thermoelectric conversion unit in FIG. 8.
  • 12 is a cross-sectional view for explaining a modified example of the floating fastening mechanism of FIG. FIG.
  • FIG. 13 is a schematic cross-sectional view for explaining the configuration of a vehicle braking device according to a third modification of the first embodiment of the present invention.
  • FIG. 14 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 13.
  • FIG. 15 is a graph for explaining a change in the disk rotor temperature with respect to the heat generation amount due to braking according to the third modification of the first embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view for explaining the configuration of the vehicle braking device according to the second embodiment of the present invention.
  • FIG. 17 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 16.
  • FIG. 18 is a cross-sectional view showing the configuration of the volume change absorption mechanism of FIG.
  • FIG. 19 is a cross-sectional view for explaining a modification of the volume change absorption mechanism of FIG. 20 is a cross-sectional view for explaining a modified example of the volume change absorbing mechanism of FIG.
  • FIG. 21 is a schematic partial cross-sectional view for explaining a modification of the heat recovery unit in FIG. 16.
  • FIG. 1 schematically shows a system configuration of a vehicle braking device S according to the first embodiment.
  • the vehicle braking device S collects kinetic energy generated as a result of braking as thermal energy, and further converts the collected thermal energy into electrical energy for storage. is there.
  • the vehicle braking device S includes a braking unit 10 as a braking force applying unit that applies a braking force to the wheels W, and heat generated by braking by the braking unit 10.
  • a heat recovery unit 20 as a heat recovery unit that absorbs and recovers energy
  • a power recovery unit 30 as a power recovery unit that converts the thermal energy recovered by the heat recovery unit 20 into electrical energy and stores the energy.
  • the vehicle braking device S is provided on the left and right front wheels of the vehicle (represented by the right front wheel of the vehicle in FIG. 1)
  • the braking unit 10 in the first embodiment is a disc brake unit that includes a disc rotor 11 that is a rotating body and a brake caliper 12 that is a friction engagement means.
  • the disk rotor 11 is assembled with a nut on one side of a hub H that is rotatably supported by a knuckle N constituting a suspension device (not shown) via a hub bearing (not shown). It will rotate.
  • the disc rotor 11 includes a friction sliding portion 11a that frictionally slides with a brake pad that is assembled to a brake caliper 12, which will be described later, at the outer periphery thereof.
  • the friction sliding portion 11 a is formed with an accommodation space 11 b that is filled with and accommodated with a latent heat storage material 21 as latent heat storage means that constitutes a heat recovery portion 20 described later. Yes. Further, as shown in FIG.
  • the disk rotor 11 includes a hub portion 11 c as a fixing portion that is fixed in contact with the hub H.
  • the brake caliper 12 accommodates a pair of brake pads, and generates a frictional force by pressing against the friction sliding portion 11a of the disk rotor 11 that rotates the brake pad.
  • the detailed structure and operation of the disc brake unit are the same as those of the well-known disc brake unit, and are not directly related to the present invention, so the description thereof is omitted.
  • the brake pedal not shown
  • the brake hydraulic pressure is supplied to the brake caliper 12.
  • the brake caliper 12 presses the brake pad against the friction sliding portion 11 a of the disc rotor 11 as the supplied brake fluid pressure increases.
  • a frictional force is generated by friction-engaging the brake pad against the frictional sliding portion 11a of the disk rotor 11 that rotates integrally with the wheel W, and this frictional force brakes the rotation of the wheel W. Is applied as a braking force. Therefore, the braking unit 10 brakes the rotating wheel W by converting the kinetic energy into heat energy (friction heat) by friction accompanying braking of the vehicle.
  • the heat energy (friction heat) generated by braking is recovered by the heat recovery unit 20 provided in the friction sliding portion 11a of the disk rotor 11. As shown in FIG.
  • the heat recovery unit 20 includes a latent heat storage material 21 accommodated in an accommodation space 11b formed in the friction sliding portion 11a.
  • the latent heat storage material 21 has a physical property that absorbs or dissipates heat without causing its own temperature change in accordance with a change in the state of the substance, that is, a phase change from the solid phase to the liquid phase or a phase change from the liquid phase to the solid phase. It is what you have.
  • an organic solid such as pentaerythritol having a melting point of about 200 ° C. or a molten eutectic salt such as LiOH—NaOH can be employed.
  • the latent heat storage material 21 having such physical properties, when the temperature in the accommodation space 11b rises, the thermal energy is absorbed and the phase changes from the solid phase to the liquid phase, and the temperature in the accommodation space 11b falls. The heat energy absorbed in the is released to change from a liquid phase to a solid phase.
  • the latent heat storage material 21 undergoes a phase change and the solid phase and the liquid phase coexist, the thermal energy is absorbed (endothermic) or released (radiated) without accompanying its own temperature change. To do.
  • a volume change of about 1 to 10% occurs.
  • the volume increases when the latent heat storage material 21 changes phase from a solid phase to a liquid phase, and the volume decreases when the latent heat storage material 21 changes phase from a liquid phase to a solid phase. Since the volume of the latent heat storage material 21 accommodated in the accommodation space 11b is changed in this way, especially when the latent heat storage material 21 is changed to a solid phase, a gap is generated in the accommodation space 11b and rotated. There is a possibility that the balance of mass in the disk rotor 11 as a body is lost. Therefore, the heat recovery unit 20 absorbs the volume change of the latent heat storage material 21 accommodated in the accommodation space 11b and suppresses the generation of voids in the accommodation space 11b, as shown in FIG.
  • a volume change absorbing mechanism 22 is provided as a plurality of volume change absorbing means provided at equal intervals (symmetrically left and right) in the circumferential direction of the friction sliding portion 11a of the disk rotor 11.
  • the volume change absorption mechanism 22 is assembled to a sleeve 22a, a metal bellows 22b housed in one end of the sleeve 22a, and the other end of the metal bellows 22b. And a disk-shaped bottom plate 22c.
  • the sleeve 22a is formed with a plurality of notches 22a1 in the circumferential direction that allow the latent heat storage material 21 to flow. As shown in FIG.
  • the volume change absorbing mechanism 22 configured in this manner is press-fitted toward the accommodation space 11 b so as to be flush with the friction sliding portion 11 a on the side surface of the disk rotor 11. .
  • the volume change absorption mechanism 22 press-fitted into the accommodation space 11b when the latent heat storage material 21 is in a solid phase, that is, when the volume of the latent heat storage material 21 in the accommodation space 11b is the smallest, the metal bellows 22b is the bottom plate 22c. The latent heat storage material 21 is pushed down elastically through the.
  • the volume of the latent heat storage material 21 expands.
  • the volume change absorption mechanism 22 the volume-expanded liquid phase latent heat storage material 21 flows into the sleeve 22a from the notch 22a1 formed in the sleeve 22a, and the bottom plate 22c is pressed.
  • the metal bellows 22b assembled to the bottom plate 22c contracts in the axial direction of the sleeve 22a against the elastic force, so that the volume change absorption mechanism 22 absorbs the volume change (expansion change) of the latent heat storage material 21. can do.
  • the volume change absorption mechanism 22 absorbs the volume change (expansion change) of the latent heat storage material 21. can do.
  • the temperature in the accommodation space 11b falls and the latent heat storage material 21 changes from a liquid phase to a solid phase
  • the volume of the latent heat storage material 21 contracts.
  • the latent heat storage material 21 in the liquid phase that has flowed into the sleeve 22a from the notch 22a1 formed in the sleeve 22a is contained in the accommodation space 11b.
  • the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the latent heat storage material 21, and maintains the state in which the latent heat storage material 21 that contracts in the accommodation space 11b is filled without generating a void. Can do.
  • the heat recovery unit 20 includes fins 23 formed inside the accommodation space 11 b.
  • the fins 23 are arranged so as to alternate with the volume change absorbing mechanism 22 in the circumferential direction of the disk rotor 11, more specifically, the friction sliding portion 11 a.
  • the fin 23 prevents the deformation of the frictional sliding portion 11a of the disk rotor 11 when the brake caliper 12 presses the brake pad, that is, during braking, while the latent heat storage material changed in phase from the solid phase to the liquid phase.
  • the latent heat storage material 21 whose phase has changed from a liquid phase to a solid phase is fixed while encouraging convection of 21.
  • the thermal energy (frictional heat) recovered (stored) by the heat recovery unit 20 is converted into electrical energy by the power recovery unit 30 and stored.
  • the power recovery unit 30 is provided between the friction sliding part 11a (more specifically, the latent heat storage material 21 accommodated in the accommodation space 11b) and the hub part 11c.
  • thermoelectric conversion unit 31 is provided which is arranged in an annular shape and is assembled to the disk rotor 11.
  • the thermoelectric conversion unit 31 converts thermal energy into electrical energy using a well-known Seebeck effect possessed by a substance (for example, a Bi—Te based semiconductor).
  • a substance for example, a Bi—Te based semiconductor.
  • the thermoelectric conversion unit 31 is heated by the thermal energy (friction heat) stored on one side, that is, the heating surface 31 a by the latent heat storage material 21 stored in the storage space 11 b, and the other side. That is, the cooling surface 31b is maintained (cooled) at a relatively low temperature by the hub portion 11c in contact with the outside air.
  • the thermal energy for example, a Bi—Te based semiconductor
  • the thermoelectric conversion unit 31 changes the thermoelectric conversion efficiency for converting heat energy into electric energy depending on the temperature difference between the heating surface 31 a and the cooling surface 31 b. That is, in the thermoelectric conversion unit 31, when the temperature difference between the heating surface 31a and the cooling surface 31b increases to a predetermined temperature difference T1 determined in terms of physical properties, the thermoelectric conversion efficiency changes until the maximum is reached. When the temperature difference between 31a and the cooling surface 31b becomes larger than the predetermined temperature difference T1, the thermoelectric conversion efficiency is reduced. And in the thermoelectric conversion part 31, since the heating surface 31a is heated by the thermal energy (friction heat) stored by the latent heat storage material 21, and the cooling surface 31b is relatively cooled by the hub part 11c, it is well known.
  • thermoelectric conversion unit 31 can convert the thermal energy (friction heat) generated by the braking by the braking unit 10 and recovered by the heat recovery unit 20 into electric energy.
  • the electric energy (regenerative power) converted from the heat energy (friction heat) by the thermoelectric converter 31 is supplied to the battery 33 as the power storage means via the transformer circuit 32 as shown in FIG. .
  • the transformer circuit 32 is an electric circuit having, for example, a DC-DC converter or a capacitor as a main component, and transforms the regenerative power output from the thermoelectric converter 31 and outputs it to the battery 33.
  • the battery 33 stores the transformed output regenerative power.
  • the connection between the thermoelectric converter 31 and the transformer circuit 32 is not directly related to the present invention, and any method may be adopted. For example, when the transformer circuit 32 electromagnetically collects regenerative power from the thermoelectric converter 31 by non-contact, or the transformer circuit 32 collects regenerative power from the thermoelectric converter 31 by contact via a slip ring or the like. Good. Next, the operation of the vehicle braking device S according to the first embodiment configured as described above will be described.
  • the braking unit 10 applies a braking force to the rotation of the wheel W. That is, in the braking unit 10, as described above, the brake hydraulic pressure corresponding to the operation of the brake pedal is supplied to the brake caliper 12. Then, the brake caliper 12 causes the brake pad to be pressed against and frictionally engaged with the friction sliding portion 11a of the disk rotor 11 that rotates integrally with the wheel W by the supplied brake hydraulic pressure. Thereby, a frictional force is generated between the frictional sliding portion 11a of the disk rotor 11 and the brake pad, and this frictional force is applied to the rotating wheel W as a braking force.
  • frictional heat (heat energy) generated in the frictional sliding portion 11a of the disk rotor 11 due to braking by the frictional force is recovered by a heat recovery unit 20 provided in the frictional sliding portion 11a.
  • recovery of frictional heat (thermal energy) by the heat recovery unit 20 will be described in detail.
  • the temperature of the disk rotor 11 changes depending on the amount of heat generated by frictional heat (thermal energy) generated during braking.
  • the temperature of the conventional friction sliding portion 11a without the heat recovery portion 20 (hereinafter referred to as the conventional friction sliding portion temperature) is the amount of heat generated by braking. As it increases, it rises quickly.
  • the temperature of the hub portion 11c indicated by a solid line in FIG. 6 (hereinafter referred to as the hub portion temperature) rises with an increase in the amount of heat generated by braking, but is gentler than the conventional friction sliding portion temperature. To rise. Therefore, the temperature difference between the conventional friction sliding portion temperature and the hub portion temperature tends to increase as the amount of heat generated by braking increases.
  • the accommodation space 11b is formed in the friction sliding portion 11a to accommodate the latent heat storage material 21 of the heat recovery portion 20.
  • the heat recovery unit 20 recovers frictional heat (thermal energy) by absorbing heat (thermal energy) of the frictional heat (thermal energy) transferred by the latent heat storage material 21 accommodated in the accommodation space 11b.
  • the friction sliding part temperature the temperature difference between the temperature of the friction sliding part 11a provided with the heat recovery part 20 (hereinafter referred to as the friction sliding part temperature) and the hub part temperature.
  • the friction sliding part temperature the temperature of the friction sliding part 11a provided with the heat recovery part 20
  • the hub part temperature the temperature of the friction sliding part 11a provided with the heat recovery part 20
  • the braking unit 10 applies a braking force.
  • the latent heat storage material 21 is heated by frictional heat (heat energy) transferred to the accommodation space 11b.
  • the temperature of the heated latent heat storage material 21 is below melting
  • the frictional sliding part temperature gradually rises as compared with the conventional frictional sliding part temperature, as indicated by a broken line in FIG.
  • the heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature.
  • the temperature of the latent heat storage material 21 exceeds the melting point due to heating, more specifically, as shown in FIG.
  • the latent heat storage material 21 A part starts a phase change from the solid phase to the liquid phase, and the latent heat storage material 21 absorbs friction heat (heat energy) in a state where the solid phase and the liquid phase coexist.
  • the melting point + ⁇ T2 at which the solid phase and the liquid phase coexist is referred to as the coexistence temperature.
  • the latent heat storage material 21 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat, and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase.
  • the frictional sliding part temperature is kept constant at the coexistence temperature, as shown by the broken line in FIG. Therefore, an increase in the temperature difference between the friction sliding part temperature and the hub part temperature can be suppressed.
  • the heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature (coexistence temperature).
  • the latent heat storage material 21 since the latent heat storage material 21 generally has a low thermal conductivity, the whole hardly changes from a solid phase to a liquid phase only by heating with frictional heat (thermal energy).
  • the overall temperature of the latent heat storage material 21 may become uneven due to the presence of a relatively low temperature solid phase and a relatively high temperature liquid phase.
  • a centrifugal force can be applied to the latent heat storage material 21 accommodated in the accommodation space 11b.
  • the densities of the solid phase and the liquid phase are different from each other, in the state where the solid phase and the liquid phase coexist, the solid phase having a large density moves relatively to the outer peripheral side of the accommodation space 11b.
  • the liquid phase having a small density moves relatively to the inner peripheral side of the accommodation space 11b.
  • the fins 23 formed in the accommodation space 11b can transfer frictional heat (thermal energy) to the latent heat storage material 21, and the solid phase of the latent heat storage material 21 and the rotation of the accommodation space 11b.
  • the liquid phase can be stirred. Thereby, the phase change from a solid phase to a liquid phase is promoted, and the temperature of the entire latent heat storage material 21 is made uniform.
  • the latent heat storage material 21 changes to a liquid phase as a whole, and absorbs frictional heat (thermal energy) in the liquid phase state (heat storage). ) For this reason, when the latent heat storage material 21 is in a liquid phase state, as shown by a broken line in FIG.
  • the heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature.
  • the braking unit 10 stops applying the braking force frictional heat (thermal energy) is not generated, and the frictional sliding unit 11a, that is, the disc rotor 11, is cooled by, for example, traveling wind.
  • the latent heat storage material 21 in the state in which the entire latent heat storage material 21 accommodated in the accommodation space 11b is phase-changed to the liquid phase, the latent heat storage material 21 is cooled along with the cooling of the friction sliding portion 11a. 21 changes from a liquid phase to a solid phase through a state in which the solid phase and the liquid phase coexist. At this time, the latent heat storage material 21 releases (dissipates) the heat energy absorbed (stored) as described above in accordance with the phase change. In this case, particularly in a state where the solid phase and the liquid phase coexist, the latent heat storage material 21 is kept constant at the coexistence temperature until the phase changes to the solid phase.
  • the heat recovery is possible even when the braking unit 10 stops applying the braking force.
  • the unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer the frictional heat (thermal energy) to the frictional sliding unit temperature.
  • the latent heat storage material 21 undergoes a phase change due to heat transfer of frictional heat (thermal energy) and undergoes volume expansion or contraction, as described above, the latent heat storage material 21 in the accommodation space 11b is accommodated by the volume change absorption mechanism 22. 21 volume changes are absorbed.
  • the metal bellows 22b of the volume change absorption mechanism 22 is liquid phase latent heat storage material 21 together with the bottom plate 22c by its elastic force. Is pushed down in the axial direction of the sleeve 22a.
  • the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the latent heat storage material 21, and maintains the state in which the latent heat storage material 21 that contracts in the accommodation space 11b is filled without generating a void. Can do.
  • recovery part 30 converts a thermal energy into an electrical energy using the friction heat (thermal energy) collect
  • the cooling surface 31b of the thermoelectric conversion part 31 is maintained at the hub part temperature by the hub part 11c. That is, in the disk rotor 11, the frictional sliding part temperature is on the high temperature side, and the hub part temperature is on the low temperature side.
  • the friction sliding part temperature is maintained at a constant coexistence temperature by storing (recovering) frictional heat (thermal energy) by the heat recovery part 20 as described above. For this reason, especially when the braking unit 10 is applying a braking force, an increase in the temperature difference between the frictional sliding unit temperature on the high temperature side and the hub temperature on the low temperature side is effectively prevented. Is done.
  • the temperature difference between the heating surface 31a and the cooling surface 31b in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature is maintained at a predetermined temperature difference T1.
  • the thermoelectric conversion efficiency is the best.
  • the temperature difference between the frictional sliding part temperature and the gradually rising hub part temperature is substantially equal to the temperature difference T1.
  • the frictional sliding part temperature at the coexistence temperature even if the frictional sliding part temperature rises from the coexistence temperature, the temperature difference between the frictional sliding part temperature and the hub part temperature increases.
  • thermoelectric conversion part 31 can convert friction heat (thermal energy) into regenerative electric power (electric energy) and collect it with favorable thermoelectric conversion efficiency. Further, when the braking unit 10 stops applying the braking force, the heat recovery unit 20 continuously dissipates (releases) the frictional heat (thermal energy) stored (collected), thereby continuously maintaining the frictional sliding unit temperature. The heating surface 31a of the thermoelectric converter 31 can be heated. Thereby, even in a situation where frictional heat (heat energy) is not newly generated, a temperature difference can be generated between the frictional sliding part temperature on the high temperature side and the hub part temperature on the low temperature side.
  • thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. .
  • the regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33.
  • the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
  • the latent heat storage material 21 of the heat recovery unit 20 is provided in the housing space 11b formed in the friction sliding portion 11a of the disc rotor 11, and the disc
  • the thermoelectric conversion part 31 can be provided between the friction sliding part 11a (that is, the latent heat storage material 21) of the rotor 11 and the hub part 11c.
  • the frictional heat (thermal energy) generated by braking can efficiently transfer the frictional heat (thermal energy) to the latent heat storage material 21, and the latent heat storage by the centrifugal force accompanying the rotation of the disk rotor 11.
  • the phase of the material 21 can be changed efficiently.
  • thermoelectric conversion part 31 can be arrange
  • the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 11b can be absorbed reliably.
  • the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 11b can be absorbed reliably.
  • the fins 23 can be provided alternately with the latent heat storage material 21 in the circumferential direction of the disk rotor 11 in the heat recovery unit 20.
  • the frictional heat (heat energy) generated in the frictional sliding portion 11a can be efficiently transferred to the latent heat storage material 21, and the disk rotor 11 is in a state where the solid phase and the liquid phase coexist. Stirring can be effectively performed with rotation. Therefore, the temperature of the latent heat storage material 21 can be made uniform, and the heating surface 31a of the thermoelectric conversion unit 31 can be appropriately heated.
  • the volume change absorption mechanism 22 and the fins 23 of the heat recovery unit 20 are provided without being brought into contact with the wall surface forming the accommodation space 11b.
  • the shape of the fins 23 is changed, and further fins are provided. It is also possible to implement.
  • symbol is attached
  • the heat recovery unit 20 includes fins 23 ′ instead of the fins 23 in the first embodiment.
  • the fins 23 ′ are thermally connected to an inner wall surface forming the accommodation space 11b, more specifically, an inner wall surface located on the outer peripheral side of the friction sliding portion 11a and an inner wall surface located on the inner peripheral side. Is formed. Moreover, in this 1st modification, fin 23'a and 23'b which thermally connects the inner wall face which forms the accommodation space 11b, and the outer peripheral surface of the sleeve 22a of the volume change absorption mechanism 22 as needed. Is formed. The fin 23'a thermally connects the inner wall surface located on the outer peripheral side of the friction sliding portion 11a and the outer peripheral surface of the sleeve 22a of the volume change absorbing mechanism 22 among the inner wall surfaces forming the accommodation space 11b.
  • the fin 23'b thermally connects the inner wall surface located on the inner circumferential side of the friction sliding portion 11a and the outer circumferential surface of the sleeve 22a of the volume change absorbing mechanism 22 among the inner wall surfaces forming the accommodation space 11b. . Whether or not the fins 23′a and 23′b are to be provided is confirmed by experimentally confirming the amount of heat necessary to change the phase of the latent heat storage material 21, and based on this confirmation, the fins 23′a and fins It may be determined that at least one of 23′b is provided or that fins 23′a and 23′b are not provided.
  • the frictional heat (heat energy) transferred through the fins 23 ′ a and 23 ′ b is more effectively transferred to the latent heat storage material 21. Therefore, for example, it is desirable to form the sleeve 22a of the volume change absorption mechanism 22 from a material having better thermal conductivity than iron such as aluminum. By selecting the material for forming the sleeve 22a in this way, frictional heat (thermal energy) can be efficiently transferred to the inside of the latent heat storage material 21.
  • the frictional heat (heat energy) generated in the frictional sliding part 11 a of the disk rotor 11 is applied to the fins 23 ′.
  • the heat is transferred to the inside of the latent heat storage material 21 accommodated in the accommodation space 11b.
  • thermoelectric converter 31 of the power recovery unit 30 is the frictional sliding part 11a of the disk rotor 11 (more specifically, the latent heat storage material accommodated in the accommodating space 11b).
  • thermoelectric conversion unit 31 since the disk rotor 11 is disposed under the so-called spring of the vehicle, vibrations and the like are easily input as the vehicle travels. Further, there is a possibility that a shearing force or stress accompanying heating and cooling acts on the thermoelectric conversion unit 31. For this reason, when the thermoelectric conversion part 31 is assembled
  • thermoelectric conversion unit 31 constituting the power recovery unit 30 is divided into a plurality.
  • each thermoelectric conversion unit 31 is coupled to the disk rotor 11 by the floating fastening mechanism 34.
  • the floating fastening mechanism 34 is connected to the disk rotor 11 by a fastening collar 34a for fixing the connected thermoelectric conversion part 31 to the disk rotor 11, a connecting member 34b for connecting the thermoelectric conversion parts 31 adjacent to each other in a circumferential shape, and the fastening collar 34a.
  • thermoelectric conversion portion 31 A heat-resistant heat insulating material 34c that is fixed and covers the thermoelectric conversion portion 31.
  • the fastening collar 34a is formed in a hollow cylindrical shape from stainless steel having a low thermal conductivity, for example, and is connected by a connecting member 34b by forming stepped portions at both ends as shown in FIG.
  • the thermoelectric conversion portion 31 and the heat-resistant heat insulating material 34 c thus fixed are fixed to the disk rotor 11.
  • the fastening collar 34a is between the molded step part and the heat-resistant heat insulating material 34c. Fix it so that some clearance is generated.
  • the connecting member 34b is formed from a flexible material.
  • connection member 34b connects each thermoelectric conversion part 31 spaced apart from the fastening collar 34a, in order to prevent that unnecessary stress acts on the thermoelectric conversion part 31.
  • the floating fastening mechanism 34 includes a displacement regulating member 34 d having a substantially U-shaped cross section, and a thermoelectric conversion unit in order to allow a radial displacement of the thermoelectric conversion unit 31 in the disk rotor 11. 31 and a displacement absorbing member 34e disposed between the displacement regulating member 34d.
  • the displacement regulating member 34d is formed of, for example, a copper plate having a high thermal conductivity.
  • the displacement absorbing material 34e is also made of, for example, a copper mesh, a copper mesh wire, a copper mesh or the like having a high thermal conductivity.
  • the thermoelectric conversion section 31 divided into a plurality is so-called floating coupled to the disk rotor 11 by the floating fastening mechanism 34. For this reason, in a situation where a shearing force or the like can act on the thermoelectric conversion part 31 in the circumferential direction with heating and cooling, for example, the connecting member 34b is deformed, thereby causing a shearing force or the like on the thermoelectric conversion part 31. Can be prevented from acting.
  • thermoelectric conversion part 31 is displaced in the radial direction of the disk rotor 11, for example, the displacement of the thermoelectric conversion part 31 is allowed by deformation of the displacement absorbing material 34 e, and stress acts on the thermoelectric conversion part 31. This can be prevented.
  • the fastening collar 34a is formed of a material having a small thermal conductivity
  • the displacement regulating member 34d and the displacement absorbing member 34e are formed of a material having a large thermal conductivity, so that the friction sliding portion 11a of the disk rotor 11 can be used.
  • the generated frictional heat (thermal energy) can be preferentially transferred to the heating surface 31a of the thermoelectric converter 31.
  • the heat-resistant heat insulating material 34 c covers the thermoelectric conversion part 31, so that the frictional heat (heat energy) generated in the frictional sliding part 11 a of the disk rotor 11 is preferentially applied to the heating surface 31 a of the thermoelectric conversion part 31. Heat can be transferred. That is, as in the second modification, friction is transferred from the friction sliding portion 11a to the hub portion 11c by appropriately selecting the material of the members constituting the floating fastening mechanism 34 based on the thermal conductivity. The amount of heat (heat energy) heat transfer can be controlled appropriately. Therefore, since the heating surface 31a of the thermoelectric conversion unit 31 can be efficiently heated, the power generation efficiency of regenerative power by the thermoelectric conversion unit 31 can be improved.
  • thermoelectric conversion part 31 was shape
  • the connecting member 34b connects the thermoelectric conversion portion 31 formed in a linear shape.
  • the thermoelectric conversion part 31 can be molded very easily, the width in the radial direction of the frictional sliding part 11a of the disk rotor 11 may be reduced.
  • thermoelectric conversion unit 31 when the linear thermoelectric conversion unit 31 is employed, it is preferable that the thermoelectric conversion unit 31 is assembled to the large-diameter disk rotor 11. Further, in the second modification, as shown in FIG. 9, the step portions formed at both ends of the fastening collar 34a are fixed to the disk rotor 11 via the heat-resistant heat insulating material 34c. In this case, when the mechanical strength of the heat-resistant heat insulating material 34c is small, as shown in FIG. 12, two step portions are formed at both ends of the fastening collar 34a, and each step portion has a heat-resistant heat insulating material 34c. It is also possible to carry out so as to contact the disk rotor 11.
  • the heat resistant heat insulating material 34c was provided and implemented. However, it goes without saying that the heat-resistant heat insulating material 34c can be omitted if necessary.
  • the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 is relatively cooled by the hub portion 11c. More specifically, the hub portion temperature is maintained. Carried out. In these cases, for example, as shown in FIG. 6, the hub portion temperature also gradually increases as the amount of heat generated by braking increases, so the temperature difference T1 that maximizes the thermoelectric conversion efficiency of the thermoelectric conversion portion 31 is continued. And may be difficult to maintain.
  • the accommodation space 11b in the first embodiment is referred to as a high temperature side accommodation space 11b
  • the latent heat storage material 21 is referred to as a high temperature latent heat storage material 21
  • the coexistence temperature is The high temperature side coexistence temperature.
  • a low-temperature side accommodation space 11 d is formed in the hub portion 11 c of the disk rotor 11.
  • the heat recovery part 20 in this 3rd modification is equipped with the low temperature latent heat storage material 24 accommodated in the low temperature side accommodation space 11d.
  • the low-temperature latent heat storage material 24 changes its own temperature according to a change in the state of the substance, that is, a phase change from the solid phase to the liquid phase or a phase change from the liquid phase to the solid phase. It has physical properties to absorb heat or dissipate without generating any.
  • the low-temperature latent heat storage material 24 for example, Na having a melting point of about 50 to 100 ° C.
  • the low-temperature latent heat storage material 24 when the temperature in the low-temperature side accommodation space 11d rises, it absorbs thermal energy and changes in phase from a solid phase to a liquid phase at a temperature lower than that of the high-temperature latent heat storage material 21. When the temperature in the side accommodating space 11d is lowered, the absorbed thermal energy is released and the phase changes from the liquid phase to the solid phase. When the low-temperature latent heat storage material 24 also undergoes a phase change and the solid phase and the liquid phase coexist, the thermal energy is absorbed (endothermic) or released (radiated) without accompanying its own temperature change. To do.
  • the low-temperature latent heat storage material 24 also undergoes a volume change when the phase changes from the solid phase to the liquid phase or from the liquid phase to the solid phase.
  • the heat recovery unit 20 in the second embodiment absorbs the volume change of the low-temperature latent heat storage material 24 accommodated in the low-temperature side accommodation space 11d, and suppresses the generation of voids in the low-temperature side accommodation space 11d.
  • the hub portion 11c of the disk rotor 11 is provided with a plurality of volume change absorbing mechanisms 22 at equal intervals in the circumferential direction.
  • the braking unit 10 applies a braking force to the rotation of the wheel W, as in the first embodiment. That is, also in the braking unit 10, when brake fluid pressure corresponding to the operation of a brake pedal (not shown) by the driver is supplied to the brake caliper 12, the brake caliper 12 is integrated with the wheel W by the supplied brake fluid pressure. A brake pad is pressed against the frictional sliding portion 11a of the rotating disc rotor 11 and frictionally engaged.
  • frictional force (braking force) is generated between the frictional sliding portion 11a of the disk rotor 11 and the brake pad, and frictional heat (thermal energy) is generated.
  • the frictional heat (heat energy) generated in the frictional sliding portion 11a of the disk rotor 11 due to braking by the frictional force is recovered by the heat recovery unit 20.
  • the recovered frictional heat (thermal energy) is converted into regenerative power (electric energy) by the power recovery unit 30 and stored.
  • the heat recovery unit 20 includes a high-temperature latent heat storage material 21 housed in a high-temperature side housing space 11b formed in the friction sliding part 11a, and a low-temperature side housing formed in the hub part 11c. And a low-temperature latent heat storage material 24 housed in the space 11d.
  • the high-temperature latent heat storage material 21 is heated by the frictional heat (heat energy) generated in the friction sliding portion 11a, and the solid phase and the liquid phase coexist in the same manner as in the first embodiment. After that, the phase changes from the solid phase to the liquid phase. Therefore, as shown in FIG.
  • the high-temperature latent heat storage material 21 of the heat recovery unit 20 changes with a high-temperature side coexistence temperature with respect to the heat generation amount change due to braking, and the heating surface 31a of the thermoelectric conversion unit 31 is changed.
  • Heat On the other hand, the low-temperature latent heat storage material 24 stored in the low-temperature-side storage space 11d absorbs (stores) the frictional heat (heat energy) transferred to the hub portion 11c.
  • the heat recovery unit 20 in the third modification can further suppress an increase in the temperature difference between the frictional sliding part temperature and the hub part temperature as compared with the first embodiment. This will be described in detail below. First, the case where the braking unit 10 applies a braking force will be described.
  • the low-temperature latent heat storage material 24 When the braking unit 10 starts applying the braking force, the low-temperature latent heat storage material 24 is heated by frictional heat (heat energy) transferred to the low-temperature side accommodation space 11d. When the temperature of the heated low-temperature latent heat storage material 24 is equal to or lower than the melting point, the low-temperature latent heat storage material 24 absorbs frictional heat (heat energy) in a solid state (stores heat). In this case, as the temperature of the low-temperature latent heat storage material 24 increases, the hub temperature gradually increases as shown by the solid line in FIG.
  • the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (heat energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 to the hub part temperature. maintain.
  • the temperature of the low-temperature latent heat storage material 24 exceeds the melting point due to heating, more specifically, as shown in FIG.
  • the low-temperature latent heat storage material 24 absorbs friction heat (thermal energy) in a state where the solid phase and the liquid phase coexist.
  • the melting point + ⁇ T3 at which the solid phase and the liquid phase coexist in the low-temperature latent heat storage material 24 is referred to as a low-temperature side coexistence temperature.
  • the low-temperature latent heat storage material 24 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat, and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase. It becomes.
  • frictional heat thermal energy
  • latent heat absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase. It becomes.
  • the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (thermal energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfers the hub temperature ( Maintain the coexistence temperature.
  • the low-temperature latent heat storage material 24 also generally has a low thermal conductivity, the whole is unlikely to change from a solid phase to a liquid phase only by heating with frictional heat (thermal energy).
  • the overall temperature of the low-temperature latent heat storage material 24 may become nonuniform due to the presence of a relatively low-temperature solid phase and a relatively high-temperature liquid phase.
  • the low temperature side accommodation space 11d also rotates integrally with the disk rotor 11, a centrifugal force can be applied to the low temperature latent heat storage material 24 accommodated in the low temperature side accommodation space 11d.
  • a solid phase with a high density moves relatively to the outer peripheral side of the low temperature side accommodation space 11d
  • a liquid phase with a low density moves relatively to the inner circumference side of the low temperature side accommodation space 11b.
  • the phase change from a solid phase to a liquid phase is promoted, and the temperature of the entire low-temperature latent heat storage material 24 is made uniform.
  • the low-temperature latent heat storage material 24 changes to the liquid phase as a whole and absorbs frictional heat (thermal energy) in the liquid phase ( Heat storage). For this reason, when the low-temperature latent heat storage material 24 is in a liquid phase state, the hub portion temperature rises from the coexistence temperature as shown by a solid line in FIG. Then, the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (heat energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 to the hub part temperature. maintain. Next, a case where the braking unit 10 stops applying the braking force will be described.
  • the braking unit 10 stops applying the braking force, frictional heat (thermal energy) is not generated, and the frictional sliding unit 11a and the hub unit 11c, that is, the disc rotor 11 are cooled by, for example, traveling wind.
  • the low-temperature latent heat is accompanied by the cooling of the hub portion 11c.
  • the heat storage material 24 changes from a liquid phase to a solid phase through a state in which the solid phase and the liquid phase coexist.
  • the high-temperature latent heat storage material 21 and the low-temperature latent heat storage material 24 release (release) the heat energy absorbed (stored) as described above in accordance with the phase change.
  • the high temperature latent heat storage material 21 and the low temperature latent heat storage material 24 are all kept constant at the coexistence temperature until the phase changes to the solid phase.
  • the high-temperature latent heat storage material 21 of the unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer frictional heat (heat energy) to the frictional sliding unit temperature,
  • the heat recovery unit 20 low-temperature latent heat storage material 24 can transfer heat to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and maintain it at the hub temperature.
  • the volume change absorption mechanism 22 The volume change of the low-temperature latent heat storage material 24 in the low-temperature side accommodation space 11d is absorbed.
  • the metal bellows 22b of the volume change absorption mechanism 22 moves together with the bottom plate 22c with the liquid phase low-temperature latent heat storage.
  • the material 24 is pushed down in the axial direction of the sleeve 22a.
  • the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the low-temperature latent heat storage material 24, and the low-temperature latent heat storage material 24 that shrinks in volume in the low-temperature side accommodation space 11d is filled without generating a gap. Can be maintained.
  • the power recovery unit 30 converts the thermal energy into electrical energy using the frictional heat (thermal energy) recovered by the heat recovery unit 20 as described above.
  • the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the frictional sliding unit temperature by frictional heat (thermal energy) stored (collected) by the high-temperature latent heat storage material 21.
  • the cooling surface 31 b of the thermoelectric converter 31 is maintained at the hub temperature by the low-temperature latent heat storage material 24.
  • the friction sliding part temperature is maintained at a constant high temperature side coexistence temperature by the high-temperature latent heat storage material 21 of the heat recovery part 20 as described above.
  • the hub portion temperature is maintained at a constant low-temperature side coexistence temperature by the low-temperature latent heat storage material 24 of the heat recovery unit 20. Accordingly, in the third modification, as shown in FIG.
  • the temperature difference between the heating surface 31a and the cooling surface 31b in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature is set to a predetermined temperature. Since it can maintain continuously with difference T1, thermoelectric conversion efficiency can be maintained more favorably. For this reason, the thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. it can. The regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33, as in the first embodiment. Thus, since the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
  • the high temperature side accommodation space 11b is formed in the friction sliding portion 11a of the disk rotor 11 as the rotating body to accommodate the high temperature latent heat storage material 21, and the low temperature side accommodation space is accommodated in the hub portion 11c. 11d can be formed and the low-temperature latent heat storage material 24 can be accommodated. And the temperature difference between the heating surface 31a and the cooling surface 31b of the thermoelectric conversion part 31 by the high temperature latent heat storage material 21 and the low temperature latent heat storage material 24 becoming constant at the high temperature side coexistence temperature and the low temperature side coexistence temperature, respectively. Can be continuously maintained at a temperature difference at which the thermoelectric conversion efficiency is good.
  • the brake unit 10 is implemented as a disc brake unit including the disc rotor 11 as a rotating body and the brake caliper 12 as friction engagement means.
  • the brake unit 10 employs a drum brake unit including a brake drum 13 as a rotating body and a brake shoe 14 as a friction engagement means.
  • the brake drum 13 in the second embodiment is assembled with a nut with respect to a hub H that is rotatably supported by a knuckle N that constitutes a suspension device (not shown), and rotates integrally with a wheel W. . Further, the brake drum 13 includes a friction sliding portion 13a that frictionally slides with a lining assembled to a brake shoe 12 to be described later at an outer peripheral portion thereof. As shown in FIG.
  • the friction sliding portion 13 a is formed with an accommodation space 13 b that is filled with and accommodated with a latent heat storage material 21 as latent heat storage means constituting the heat recovery portion 20.
  • the brake drum 13 includes a hub portion 13 c as a fixing portion that is fixed in contact with the hub H.
  • the brake shoe 14 is housed in the brake drum 13 and assembled to a backing plate 15 that is fixed to the vehicle body so as not to rotate. The brake shoe 14 is frictionally engaged with the friction sliding portion 13 a of the brake drum 13 by the operation of the wheel cylinder WS fixed to the backing plate 15.
  • the drum brake unit 10 configured as described above, when a brake pedal (not shown) is operated by the driver, the brake fluid pressure is supplied to the wheel cylinder WS. Thereby, the brake shoe 14 presses the lining against the friction sliding portion 13a of the brake drum 13 and frictionally engages with the increase of the supplied brake hydraulic pressure. A frictional force is generated by frictionally engaging the lining with the brake drum 13 that rotates integrally with the wheel W, and this frictional force is applied as a braking force for braking the rotation of the wheel W.
  • the braking unit 10 in the second embodiment also brakes the rotating wheel W by converting the kinetic energy into heat energy (friction heat) by friction as the vehicle is braked.
  • the heat energy (friction heat) generated by braking is recovered by the heat recovery unit 20 provided in the friction sliding portion 13a of the brake disk 13.
  • the heat recovery part 20 is the latent heat storage material 21 accommodated in the accommodation space 13b formed in the friction sliding part 13a, and latent heat.
  • a plurality of volume change absorbing mechanisms 22 that suppress the generation of voids in the accommodation space 13b by absorbing the volume change of the heat storage material 21 and fins 23 (not shown) formed in the accommodation space 13b are provided.
  • the volume change absorption mechanism 22 differs a little compared with the said 1st Embodiment. That is, as shown in FIGS. 17 and 18, the volume change absorbing mechanism 22 in the second embodiment is directed in the direction along the rotation axis of the brake drum 13, that is, from the side surface of the brake drum 13 toward the housing space 13b. And press-fitted. That is, the second embodiment is different in that the volume change direction of the latent heat storage material 21 and the expansion / contraction direction of the bellows 22b can be matched, so that the formation of the notch 22a1 in the sleeve 22a becomes unnecessary.
  • the volume change absorption mechanism 22 is prevented from falling off even when the brake drum 13 rotates and a centrifugal force acts on the volume change absorption mechanism 22. can do.
  • the volume change absorbing mechanism 22 may be press-fitted from the outer peripheral surface side of the brake drum 13 toward the accommodation space 13 b. In this case, it is necessary to press-fit the volume change absorption mechanism 22 deeply into the accommodation space 13b in order to prevent the drop due to the centrifugal force.
  • a plurality of notches 22a1 that allow the circulation of the latent heat storage material 21 in the accommodation space 13b may be formed in the sleeve 22a in the circumferential direction, as in the first embodiment.
  • the possibility of dropping due to the centrifugal force is low depending on the vehicle, it is possible to reduce the amount of press-fitting into the accommodation space 13b of the volume change absorption mechanism 22 as shown in FIG.
  • the circulation of the latent heat storage material 21 is allowed without forming the notch 22a1 in the sleeve 22a, the volume change of the latent heat storage material 21 can be absorbed.
  • the fins 23 are alternately formed with the latent heat storage material 21 in the circumferential direction of the brake drum 13 in the accommodation space 13b.
  • the heat energy (friction heat) recovered (stored) by the heat recovery unit 20 is converted into electric energy by the power recovery unit 30 and stored.
  • recovery part 30 is provided with the thermoelectric conversion part 31, the transformation circuit 32, and the battery 33, as shown in FIG.
  • the thermoelectric converter 31 in the second embodiment has one side, that is, the heat energy stored by the latent heat storage material 21 in which the heating surface 31 a is accommodated in the accommodation space 13 b.
  • the braking unit 10 applies a braking force to the rotation of the wheel W, as in the first embodiment. That is, in the brake unit 10 as well, when brake fluid pressure corresponding to the operation of a brake pedal (not shown) by the driver is supplied to the wheel cylinder WS, the brake shoe 14 is integrated with the wheel W by the supplied brake fluid pressure. The lining is pressed against the friction sliding portion 13a of the brake drum 13 that rotates in a frictional manner, and is frictionally engaged.
  • a frictional force (braking force) is generated between the frictional sliding portion 13a of the brake drum 13 and the lining, and frictional heat (thermal energy) is generated.
  • the frictional heat (heat energy) generated in the frictional sliding portion 13a of the brake drum 13 due to the braking by the frictional force is recovered by the heat recovery unit 20 as in the first embodiment.
  • the recovered frictional heat (thermal energy) is converted into regenerative power (electric energy) by the power recovery unit 30 and stored.
  • recovery of frictional heat (thermal energy) by the heat recovery unit 20 of the second embodiment will be described in detail.
  • the latent heat storage material 21 is housed in the housing space 13b formed in the friction sliding portion 13a of the brake drum 13.
  • the latent heat storage material 21 is heated by the frictional heat (thermal energy) generated in the friction sliding portion 13a, and the solid phase and the liquid phase coexist as in the first embodiment. Phase change from solid phase to liquid phase. Accordingly, the latent heat storage material 21 of the heat recovery unit 20 changes with a coexisting temperature with respect to the heat generation amount change due to braking, for example, as shown in FIG. 6, and the heating surface of the thermoelectric conversion unit 31. 31a is heated to the friction sliding part temperature.
  • the braking unit 10 stops applying the braking force, frictional heat (thermal energy) is not generated, and the frictional sliding unit 13a, that is, the brake drum 13 is cooled by, for example, traveling wind.
  • the latent heat storage material 21 dissipates (releases) the heat energy absorbed (stored) as described above in accordance with the phase change.
  • all of the latent heat storage material 21 is kept constant at the coexistence temperature until the phase changes to the solid phase.
  • the unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer the frictional heat (thermal energy) to the frictional sliding unit temperature.
  • recovery part 30 converts a thermal energy into an electrical energy using the friction heat (thermal energy) collect
  • the friction sliding part temperature is maintained at a constant coexistence temperature by storing (recovering) frictional heat (thermal energy) by the heat recovery part 20 as described above. For this reason, especially when the braking unit 10 is applying a braking force, an increase in the temperature difference between the frictional sliding unit temperature on the high temperature side and the hub temperature on the low temperature side is effectively prevented. Is done.
  • the thermoelectric converter 31 in the second embodiment also has a predetermined temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature. Since the temperature difference T1 can be maintained, the thermoelectric conversion efficiency is the best. In this regard, also in the second embodiment, as shown in FIG.
  • the frictional sliding part temperature and the hub that rises gradually The temperature difference from the part temperature can be maintained at the temperature difference T1. Furthermore, by maintaining the frictional sliding part temperature at the coexistence temperature, even if the frictional sliding part temperature rises from the coexistence temperature, the temperature difference between the frictional sliding part temperature and the hub part temperature increases. It is possible to prevent the temperature from becoming too high and to approach the temperature difference T1.
  • the heat recovery unit 20 continuously releases the accumulated heat (recovered) frictional heat (thermal energy), thereby continuously converting the temperature to the frictional sliding unit temperature.
  • the heating surface 31a of the part 31 can be heated.
  • thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. .
  • the regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33.
  • the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
  • the latent heat storage material 21 of the heat recovery unit 20 is provided in the housing space 13b formed in the friction sliding portion 13a of the brake drum 13, and the brake A thermoelectric conversion portion 31 can be provided between the friction sliding portion 13a (that is, the latent heat storage material 21) of the drum 13 and the hub portion 13c.
  • the frictional heat (thermal energy) generated by braking can efficiently transfer the frictional heat (thermal energy) to the latent heat storage material 21 and the latent heat storage by the centrifugal force accompanying the rotation of the brake drum 13.
  • the phase of the material 21 can be changed efficiently.
  • thermoelectric converter 31 can be disposed adjacent to the latent heat storage material 21, the heating surface 31 a is heated by the frictional heat (thermal energy) stored in the latent heat storage material 21.
  • the temperature difference from the cooling surface 31b can be appropriately maintained.
  • the thermoelectric conversion part 31 can convert the collect
  • the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 13b can be absorbed reliably.
  • the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 13b can be absorbed reliably.
  • the fins 23 can be provided alternately with the latent heat storage material 21 in the circumferential direction of the brake drum 13 in the heat recovery unit 20.
  • the frictional heat (heat energy) generated in the frictional sliding portion 13a can be efficiently transferred to the latent heat storage material 21, and the brake drum 13 is in a state where the solid phase and the liquid phase coexist. Stirring can be effectively performed with rotation. Therefore, the temperature of the latent heat storage material 21 can be made uniform, and the heating surface 31a of the thermoelectric conversion unit 31 can be appropriately heated.
  • this 2nd Embodiment it can change and implement similarly to the 1st modification of the said 1st Embodiment, a 2nd modification, and a 3rd modification.
  • the frictional heat (heat energy) generated in the frictional sliding portion 13a is efficiently obtained as in the first modification of the first embodiment.
  • the inner wall surface forming the accommodation space 13b is deformed so as to be thermally connected, or the inner wall surface forming the accommodation space 13b and the outer peripheral surface of the sleeve 22a of the volume change absorption mechanism 22 are thermally connected. It can be deformed to connect.
  • thermoelectric conversion unit 31 of the power recovery unit 30 in the second embodiment is divided into a plurality of brake drums for better protection from the external force described above. 13 can be modified to be floating-coupled.
  • the heat recovery unit 20 according to the second embodiment includes a low-temperature latent heat storage material 24 in order to suppress an increase in the hub temperature of the hub 13c. It is possible to deform.
  • a low-temperature side accommodation space 13 d is formed in the hub portion 13 c of the brake drum 13. And in this low temperature side accommodation space 13d, the low temperature latent heat storage material 24 similar to the 3rd modification of the said 1st Embodiment is accommodated.
  • the temperature of the low-temperature latent heat storage material 24 reaches the melting point + ⁇ T3 by providing the low-temperature latent heat storage material 24 in the heat recovery unit 20 in the second embodiment, a part of the low-temperature latent heat storage material 24 is released from the solid phase.
  • the low-temperature latent heat storage material 24 can absorb (store) the frictional heat (thermal energy) in a state where the solid phase and the liquid phase coexist.
  • the low-temperature latent heat storage material 24 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase, so that the low temperature side coexistence temperature is maintained.
  • the hub temperature is kept constant at the low temperature side coexistence temperature. Therefore, an increase in the temperature difference between the friction sliding part temperature and the hub part temperature can be further suppressed.
  • the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (thermal energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfers the hub temperature ( The coexistence temperature can be maintained.
  • recovery part 30 can convert a thermal energy into an electrical energy like the said 2nd Embodiment using the friction heat (thermal energy) collect
  • the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the frictional sliding unit temperature by frictional heat (thermal energy) stored (collected) by the high-temperature latent heat storage material 21.
  • the cooling surface 31 b of the thermoelectric converter 31 is maintained at the hub temperature by the low-temperature latent heat storage material 24.
  • the friction sliding part temperature is maintained at a constant high temperature side coexistence temperature by the high-temperature latent heat storage material 21 of the heat recovery part 20 as described above.
  • the hub portion temperature is maintained at a constant low-temperature side coexistence temperature by the low-temperature latent heat storage material 24 of the heat recovery unit 20. Therefore, when the heat recovery unit 20 includes the low-temperature latent heat storage material 24, the temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding part temperature and the hub part temperature is a predetermined value.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the object of the present invention.
  • the heat recovery unit 20 recovers frictional heat (heat energy) generated with braking due to friction.
  • the thermal energy recovered by the heat recovery unit 20 is not limited to frictional heat, and may be implemented so as to recover thermal energy from other heat sources.
  • the volume change absorption mechanism 22 might be equipped with the metal bellows 22b which can be elastically deformed.
  • any material may be employed instead of the metal bellows 22b as long as it can be elastically deformed with respect to the volume change of the (high temperature) latent heat storage material 21 or the low temperature latent heat storage material 24.
  • a shell in which a concave or convex stretchable deformable portion is formed on a substantially spherical base shell portion made of an elastic material may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Braking Arrangements (AREA)

Abstract

A vehicle brake device (S) is provided with a disc rotor (11) which is a rotation body, and a brake caliper (12) which is a frictional engagement means. Furthermore, the device (S) is provided with a piece of latent heat storage material (21) housed in a housing space (11b) which is formed in a frictional slide section (11a) of the disc rotor (11). The latent heat storage material (21) undergoes a phase change from a solid phase to a liquid phase due to the frictional heat (thermal energy) generated in the frictional slide section (11a), thereby storing the frictional heat as latent heat. At this time, the volume change accompanying the phase change in the latent heat storage material (21) is absorbed by a volume change absorbing mechanism (22). Moreover, the device (S) is provided with a thermoelectric conversion section (31) which is disposed between a hub section (11c) of the disc rotor (11) and the frictional slide section (11a), namely, the latent heat storage material (21), of the disc rotor (11). Furthermore, a heated surface (31a) is heated by the frictional heat stored in the latent heat storage material (21), and a cooled surface (31b) is maintained at the temperature of the hub section (11c), with the result that the thermoelectric conversion section (31) converts the frictional heat to regenerated electrical power (electrical energy).

Description

車両用制動装置Braking device for vehicle
 本発明は、自動車等の車両用制動装置に関し、特に、車両の車輪を制動することに加えてこの制動に伴って発生する熱エネルギーを回収する車両用制動装置に関する。 The present invention relates to a braking device for a vehicle such as an automobile, and more particularly to a braking device for a vehicle that collects thermal energy generated by the braking in addition to braking the wheels of the vehicle.
 従来から、例えば、特開平5−26270号公報に開示されているように、相対回転可能な2軸の一方に摩擦部材を結合するとともに他方に中空構造の摩擦相手部材を結合し、摩擦相手部材の中空部に150~270℃の金属を封入した湿式摩擦装置は知られている。この湿式摩擦装置においては、摩擦部材に設けた湿式摩擦材を摩擦相手部材に圧接させたときに、摩擦相手部材の中空部に封入した金属の融解潜熱によって摩擦相手部材の温度上昇を抑制するようになっている。
 また、従来から、例えば、特開平5−167104号公報に開示されているように、高温側接合部と低温側接合部とを有する熱電素子と、熱電素子の高温側接合部を加熱する手段と、熱電素子の低温側接合部を高温側よりも低温に維持する手段とを備えて、熱電素子の高温側接合部と低温側接合部との間の温度差によりゼーベック効果を利用して熱電発電する熱電発電装置も知られている。この熱電発電装置においては、熱電素子が温度に関してピーク的変化を呈する熱起電力特性を有しており、加熱手段と熱電素子の高温側接合部との間に介在させた相変化蓄熱材が熱電素子の熱起電力特性のピークを中心とする所与の温度範囲のほぼ上限を限定する温度において相変化するように選ばれるようになっている。
Conventionally, for example, as disclosed in Japanese Patent Laid-Open No. 5-26270, a friction member is coupled to one of two relatively rotatable shafts, and a friction mating member having a hollow structure is coupled to the other. A wet friction apparatus in which a metal at 150 to 270 ° C. is sealed in a hollow portion is known. In this wet friction device, when the wet friction material provided on the friction member is pressed against the friction counterpart member, the temperature rise of the friction counterpart member is suppressed by the latent heat of fusion of the metal enclosed in the hollow portion of the friction counterpart member. It has become.
Conventionally, for example, as disclosed in JP-A-5-167104, a thermoelectric element having a high-temperature side joint and a low-temperature side joint, and means for heating the high-temperature side joint of the thermoelectric element; Thermoelectric power generation using the Seebeck effect due to the temperature difference between the high temperature side junction and the low temperature side junction of the thermoelectric element A thermoelectric generator is also known. In this thermoelectric generator, the thermoelectric element has a thermoelectromotive force characteristic that exhibits a peak change with respect to temperature, and the phase change heat storage material interposed between the heating means and the high-temperature side junction of the thermoelectric element is a thermoelectric element. A phase change is selected at a temperature that limits the upper limit of a given temperature range centered on the peak of the thermoelectromotive force characteristic of the element.
 ところで、熱電素子すなわち熱電変換手段を用いて、回収した熱エネルギーを、例えば、電気エネルギーに変換する場合には、一般的に、熱電変換手段における加熱面と冷却面との間の温度差が大きいほど熱電変換効率が向上すると言われている。このため、熱電変換手段を車両に搭載して回収した熱エネルギーを電気エネルギーに変換する際には、車両の走行に伴って発熱して温度が上昇する装置を熱源とし、熱電変換手段の加熱面を加熱することが好適である。
 このような熱源となり得る装置として、摩擦によって制動力を発生する車両用制動装置は、摩擦熱の発生により高温が得られる点で極めて有効である。しかしながら、車両用制動装置は、常に、適切な制動力を発生させるために、作動させる温度に限界が存在する。すなわち、車両用制動装置においては、摩擦摺動部の温度が上昇すると、摩擦係数が低下する特性を有している。このため、車両用制動装置は、高温で作動させると、制動力が低下する現象、所謂、フェード現象が発生する可能性がある。
 このように、車両用制動装置を適切に作動させる観点からすれば、発生する摩擦熱を逃がして、言い換えれば、適切に冷却して、車両用制動装置自体の温度を低温に維持することが好ましい。一方で、熱電変換手段を用いて熱エネルギーを回収して電気エネルギーに変換する場合、熱電変換手段の熱電変換効率の観点からすれば、車両用制動装置の作動に伴って発生する摩擦熱を逃がすことなく、車両用制動装置自体を高温に維持することが好ましい。
 したがって、熱電変換手段を用いて、車両用制動装置の作動に伴って発生する摩擦熱すなわち熱エネルギーを回収し、例えば、電気エネルギーなどに変換する場合、車両用制動装置の制動力を低下させることなく熱電変換手段による熱電変換効率を向上させるという背反する要求を両立させることが極めて重要である。
 このことに関し、例えば、上記各公報に示されているように、相変化に伴って熱エネルギーを潜熱として回収できる蓄熱材すなわち潜熱蓄熱手段を用いることは、上記背反する要求を満たし得る点で有効であると言える。
 ところが、車両用制動装置においては、潜熱蓄熱手段を効率よく相変化させて熱エネルギーを回収する必要があり、また、回収した熱エネルギーを用いて効率よく熱電変換手段の加熱面を加熱するとともに熱電変換手段の加熱面と冷却面との間に適切な温度差を生じさせる必要がある点で検討の余地がある。特に、車輪と一体的に回転する回転体に潜熱蓄熱手段を設けた場合、相変化に伴って質量のバランスが崩れる可能性があり、その結果、例えば、車両の走行挙動などに影響を及ぼすことが懸念される。
 本発明は、上記課題を解決するためになされたものであり、その目的は、車両を適切に制動するとともに、車両の熱エネルギーを効率よく回収する車両用制動装置を提供することにある。
 上記目的を達成するために、本発明の特徴は、車両の車輪の回転に対して制動力を付与するとともに、この制動力の付与に伴って発生する熱エネルギーを回収する車両用制動装置において、車両の車輪と一体的に回転する回転体と、この回転体の摩擦摺動部に対して摩擦係合する摩擦係合手段とを有して前記車輪の回転に対して摩擦による制動力を付与する制動力付与手段と、前記回転体の摩擦摺動部の内部に収容されて、前記摩擦係合手段による摩擦係合に伴って発生する熱エネルギーにより固相から液相または液相から固相に相変化して前記熱エネルギーを潜熱として蓄熱する潜熱蓄熱手段を有する熱回収手段と、前記熱回収手段の潜熱蓄熱手段と前記回転体の前記車両に対する固定部との間に配置されて、前記潜熱蓄熱手段に蓄熱された熱エネルギーを電気エネルギーに変換して回収する電力回収手段とを備えたことにある。この場合、前記制動力付与手段は、例えば、前記回転体をディスクロータとし、前記摩擦係合手段をブレーキキャリパとしたディスクブレーキユニット、または、前記回転体をブレーキドラムとし、前記摩擦係合手段をブレーキシューとしたドラムブレーキユニットであるとよい。
 また、この場合、前記熱回収手段は、さらに、前記回転体の摩擦摺動部の内部における前記潜熱蓄熱手段の相変化に伴う体積変化を吸収する体積変化吸収手段を備えているとよい。そして、この場合には、前記体積変化吸収手段を、例えば、前記回転体の周方向にて等間隔に設けるとよい。また、これらの場合には、前記体積変化吸収手段は、例えば、前記回転体の摩擦摺動部の内部における前記潜熱蓄熱手段の相変化に伴う体積変化に対して弾性変形して、前記体積変化を吸収するようにするとよい。
 また、これらの場合、前記熱回収手段は、さらに、前記摩擦係合手段による摩擦係合に伴って発生する熱エネルギーを前記潜熱蓄熱手段に伝熱するフィンを備えるとよい。そして、この場合には、前記フィンは、例えば、前記回転体の周方向にて前記潜熱蓄熱手段と交互に配置されるとよい。また、これらの場合には、前記フィンを、前記回転体の摩擦摺動部の内部にて、この摩擦摺動部を形成する内壁面に熱的に接続するようにするとよい。
 また、これらの場合、前記電力回収手段は、例えば、一側が前記熱回収手段の前記潜熱蓄熱手段によって加熱されるとともに他側が前記一側に比して低温に維持されて、前記一側と前記他側との温度差に応じて前記熱エネルギーを前記電気エネルギーに変換する熱電変換手段であるとよい。この場合、前記熱電変換手段を前記回転体の周方向にて所定の間隔により設けるとよく、この場合には、前記熱電変換手段を前記回転体に対して、例えば、フローティング結合により固定するようにするとよい。そして、これらの場合には、前記電力回収手段は、さらに、前記熱電変換手段によって変換された電気エネルギーを電力として蓄電する蓄電手段を備えるとよい。
 また、本発明の他の特徴は、上述した場合において、前記熱回収手段が、さらに、前記回転体の固定部の内部に収容されて、前記摩擦摺動部の内部に収容される高温側の潜熱蓄熱手段よりも低い温度により固相から液相または液相から固相に相変化する低温側の潜熱蓄熱手段を備えたことにもある。
 この場合、前記熱回収手段は、さらに、前記回転体の固定部の内部における前記低温側の潜熱蓄熱手段の相変化に伴う体積変化を吸収する体積変化吸収手段を備えるとよい。そして、この場合には、前記体積変化吸収手段を前記回転体の周方向にて等間隔に設けるとよい。また、これらの場合には、前記体積変化吸収手段は、例えば、前記回転体の固定部の内部における前記低温側の潜熱蓄熱手段の相変化に伴う体積変化に対して弾性変形して、前記体積変化を吸収するようにするとよい。
 これらによれば、回転体(例えば、ディスクロータやブレーキドラム)の摩擦摺動部に熱回収手段の潜熱蓄熱手段を設けるとともに、回転体の摩擦摺動部(具体的には、摩擦摺動部の内部に収容された潜熱蓄熱手段)と回転体の固定部(例えば、ハブ部)との間に電力回収手段(具体的には、熱電変換手段)を設けることができる。これにより、制動に伴って発生した熱エネルギー(例えば、摩擦熱)により、潜熱蓄熱手段に効率よく熱エネルギーを伝熱することができるとともに回転体の回転に伴う遠心力によって潜熱蓄熱手段を効率よく相変化させることができる。したがって、回転体の摩擦摺動部にて発生した熱エネルギーを潜熱として効率よく回収することができ、その結果、回転体の摩擦摺動部の温度上昇を効果的に抑制することができる。
 また、電力回収手段(具体的には、熱電変換手段)を熱回収手段(具体的には、潜熱蓄熱手段)に隣接して配置することができるため、潜熱蓄熱手段に蓄熱された熱エネルギーによって熱電変換手段の一側(具体的には、加熱面)を加熱して、他側(具体的には、冷却面)との間の温度差を適切に維持することができる。これにより、熱電変換手段は、良好な熱電変換効率により、回収された熱エネルギーを電気エネルギーに変換して回収することができる。
 また、熱回収手段に体積変化吸収手段を設けることができるため、摩擦摺動部の内部における潜熱蓄熱手段の相変化に伴う体積変化を確実に吸収することができる。これにより、特に、潜熱蓄熱手段が液相から固相に相変化する際に発生する可能性が高い摩擦摺動部内の空隙の発生を防止することができ、回転体の質量のバランスが崩れることを防止することができる。したがって、回転体の質量のバランスが崩れることに起因して、例えば、車両の走行挙動や乗り心地に対する悪影響の発生を防止することができる。
 さらに、熱回収手段にフィンを回転体の周方向にて潜熱蓄熱手段と交互に設けることができる。これにより、摩擦摺動部にて発生した熱エネルギーを潜熱蓄熱手段に対して効率よく伝熱することができるとともに固相と液相とが共存する状態では回転体の回転に伴って効果的に攪拌することができる。したがって、潜熱蓄熱手段の温度を均一化することができ、例えば、熱電変換手段の一側(加熱面)を適切に加熱することができる。
 この場合、フィンを摩擦摺動部の内部にて摩擦摺動部を形成する内壁面に熱的に接続することによって、より効率よく熱エネルギーを伝熱することができる。したがって、例えば、熱電変換手段の一側(加熱面)をより安定して加熱することができて、より効率よく電気エネルギーに変換して回収することができる。
 また、熱電変換手段をフローティング結合によって回転体に固定することができる。これにより、例えば、加熱および冷却に伴って、あるいは、回転体の回転に伴う変位などを吸収することができるため、熱電変換手段に対して応力が作用することを防止することができる。
 さらに、熱回収手段に、回転体の固定部の内部に収容される低温側の潜熱蓄熱材手段を設けることができる。これにより、回転体の摩擦摺動部の内部に高温側の潜熱蓄熱手段を収容し、固定部の内部に低温側の潜熱蓄熱手段を収容することができる。したがって、例えば、熱電変換手段の一側(加熱面)を高温側の潜熱蓄熱手段により加熱し、他側(冷却面)を低温側の潜熱蓄熱手段により相対的に低温に維持することができるため、熱電変換手段の一側(加熱面)と他側(冷却面)との間の温度差を熱電変換効率が良好となる温度差に継続して維持することができる。これにより、より効率よく、熱エネルギーを電気エネルギーに変換して回収することができて、例えば、回収された電気エネルギーを車両に搭載された他の機器で利用することができる。
By the way, when the recovered thermal energy is converted into, for example, electric energy using a thermoelectric element, that is, a thermoelectric conversion means, generally, a temperature difference between a heating surface and a cooling surface in the thermoelectric conversion means is large. It is said that the thermoelectric conversion efficiency is improved. For this reason, when converting the thermal energy collected by mounting the thermoelectric conversion means on the vehicle to electric energy, a device that generates heat and increases in temperature as the vehicle travels is used as a heat source, and the heating surface of the thermoelectric conversion means Is preferably heated.
As a device that can serve as such a heat source, a vehicle braking device that generates a braking force by friction is extremely effective in that a high temperature can be obtained by the generation of frictional heat. However, in order to always generate an appropriate braking force, there is a limit to the temperature at which the vehicle braking device is operated. That is, the vehicle braking device has a characteristic that the coefficient of friction decreases when the temperature of the friction sliding portion increases. For this reason, when the vehicle braking device is operated at a high temperature, there is a possibility that a phenomenon in which the braking force is reduced, that is, a so-called fade phenomenon occurs.
In this way, from the viewpoint of properly operating the vehicle braking device, it is preferable to release the generated frictional heat, in other words, to cool appropriately and maintain the temperature of the vehicle braking device itself at a low temperature. . On the other hand, when recovering thermal energy using thermoelectric conversion means and converting it to electrical energy, from the viewpoint of the thermoelectric conversion efficiency of the thermoelectric conversion means, the frictional heat generated by the operation of the braking device for the vehicle is released. Without maintaining, the vehicle braking device itself is preferably maintained at a high temperature.
Therefore, when the frictional heat generated by the operation of the vehicle braking device, that is, thermal energy is recovered using the thermoelectric conversion means and converted into, for example, electric energy, the braking force of the vehicle braking device is reduced. It is extremely important to satisfy both contradictory requirements of improving the thermoelectric conversion efficiency by the thermoelectric conversion means.
In this regard, for example, as shown in each of the above publications, using a heat storage material that can recover thermal energy as latent heat in accordance with phase change, that is, latent heat storage means is effective in that it can satisfy the contradicting requirements. It can be said that.
However, in the vehicle braking device, it is necessary to efficiently change the phase of the latent heat storage means and recover the heat energy. Also, the recovered heat energy is used to efficiently heat the heating surface of the thermoelectric conversion means and There is room for consideration in that it is necessary to create an appropriate temperature difference between the heating surface and the cooling surface of the conversion means. In particular, when a latent heat storage means is provided on a rotating body that rotates integrally with a wheel, the balance of mass may be lost with a phase change, and as a result, for example, it may affect the running behavior of the vehicle. Is concerned.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vehicle braking device that appropriately brakes the vehicle and efficiently recovers the thermal energy of the vehicle.
In order to achieve the above object, a feature of the present invention is to provide a braking device for a vehicle that applies a braking force to the rotation of a wheel of the vehicle and collects thermal energy generated by the application of the braking force. A rotating body that rotates integrally with a wheel of the vehicle and a friction engagement means that frictionally engages with a friction sliding portion of the rotating body to apply a braking force by friction to the rotation of the wheel And a braking force applying means that is housed in a friction sliding portion of the rotating body, and is generated from the solid phase to the liquid phase or from the liquid phase to the solid phase by the thermal energy generated by the friction engagement by the friction engagement means. A heat recovery means having a latent heat storage means for storing the thermal energy as latent heat by changing phase, and a latent heat storage means of the heat recovery means and a fixed portion of the rotating body with respect to the vehicle, Stored in the latent heat storage means In further comprising a power recovery means for recovering and converting the thermal energy into electrical energy. In this case, the braking force applying means may be, for example, a disk brake unit in which the rotating body is a disk rotor and the friction engagement means is a brake caliper, or the rotating body is a brake drum, and the friction engagement means is The drum brake unit may be a brake shoe.
In this case, the heat recovery means may further include a volume change absorbing means for absorbing a volume change accompanying a phase change of the latent heat storage means inside the friction sliding portion of the rotating body. In this case, the volume change absorbing means may be provided at equal intervals in the circumferential direction of the rotating body, for example. Also, in these cases, the volume change absorbing means is elastically deformed with respect to the volume change accompanying the phase change of the latent heat storage means inside the friction sliding portion of the rotating body, for example, and the volume change Should be absorbed.
In these cases, the heat recovery means may further include a fin that transfers heat energy generated in accordance with the friction engagement by the friction engagement means to the latent heat storage means. In this case, the fins may be arranged alternately with the latent heat storage means in the circumferential direction of the rotating body, for example. Further, in these cases, the fins may be thermally connected to the inner wall surface forming the friction sliding portion inside the friction sliding portion of the rotating body.
In these cases, for example, the power recovery means is configured such that one side is heated by the latent heat storage means of the heat recovery means and the other side is maintained at a lower temperature than the one side, The thermoelectric conversion means may convert the thermal energy into the electric energy according to a temperature difference from the other side. In this case, the thermoelectric conversion means may be provided at a predetermined interval in the circumferential direction of the rotating body. In this case, the thermoelectric conversion means is fixed to the rotating body by, for example, floating coupling. Good. In these cases, the power recovery means may further include power storage means for storing the electric energy converted by the thermoelectric conversion means as electric power.
Another feature of the present invention is that, in the case described above, the heat recovery means is further accommodated inside the fixed portion of the rotating body and on the high temperature side accommodated inside the friction sliding portion. There is also provided a low-temperature latent heat storage means that changes phase from a solid phase to a liquid phase or from a liquid phase to a solid phase at a temperature lower than that of the latent heat storage means.
In this case, the heat recovery means may further include a volume change absorbing means for absorbing a volume change accompanying a phase change of the low temperature side latent heat storage means inside the fixed portion of the rotating body. In this case, the volume change absorbing means may be provided at equal intervals in the circumferential direction of the rotating body. In these cases, the volume change absorbing means is elastically deformed with respect to the volume change accompanying the phase change of the low-temperature side latent heat storage means inside the fixed portion of the rotating body, for example, and the volume It is better to absorb changes.
According to these, the latent heat storage means of the heat recovery means is provided in the friction sliding portion of the rotating body (for example, the disk rotor or the brake drum), and the friction sliding portion (specifically, the friction sliding portion of the rotating body). An electric power recovery means (specifically, a thermoelectric conversion means) can be provided between the latent heat storage means housed inside the rotary body and a fixed part (for example, a hub part) of the rotating body. Thereby, the heat energy (for example, frictional heat) generated by braking can be efficiently transferred to the latent heat storage means, and the latent heat storage means can be efficiently used by the centrifugal force accompanying the rotation of the rotating body. The phase can be changed. Therefore, the heat energy generated in the friction sliding portion of the rotating body can be efficiently recovered as latent heat, and as a result, the temperature rise of the friction sliding portion of the rotating body can be effectively suppressed.
In addition, since the power recovery means (specifically, the thermoelectric conversion means) can be disposed adjacent to the heat recovery means (specifically, the latent heat storage means), the thermal energy stored in the latent heat storage means One side (specifically, the heating surface) of the thermoelectric conversion means can be heated to appropriately maintain the temperature difference from the other side (specifically, the cooling surface). Thereby, the thermoelectric conversion means can convert and collect | recover the collect | recovered thermal energy to an electrical energy by favorable thermoelectric conversion efficiency.
Further, since the volume change absorbing means can be provided in the heat recovery means, the volume change accompanying the phase change of the latent heat storage means inside the friction sliding portion can be reliably absorbed. As a result, it is possible to prevent the occurrence of voids in the frictional sliding part, which is likely to occur when the latent heat storage means changes phase from the liquid phase to the solid phase, and the mass balance of the rotating body is lost. Can be prevented. Therefore, for example, it is possible to prevent an adverse effect on the running behavior and riding comfort of the vehicle due to the loss of the balance of the mass of the rotating body.
Further, the heat recovery means can be provided with fins alternately with the latent heat storage means in the circumferential direction of the rotating body. As a result, the heat energy generated in the frictional sliding portion can be efficiently transferred to the latent heat storage means, and in a state where the solid phase and the liquid phase coexist, it is effectively accompanied with the rotation of the rotating body. Can be stirred. Therefore, the temperature of the latent heat storage means can be made uniform, and for example, one side (heating surface) of the thermoelectric conversion means can be appropriately heated.
In this case, heat energy can be more efficiently transferred by thermally connecting the fin to the inner wall surface forming the friction sliding portion inside the friction sliding portion. Therefore, for example, one side (heating surface) of the thermoelectric conversion means can be heated more stably, and more efficiently converted into electric energy and recovered.
Further, the thermoelectric conversion means can be fixed to the rotating body by floating coupling. Thereby, for example, displacement due to heating and cooling or rotation of the rotating body can be absorbed, so that stress can be prevented from acting on the thermoelectric conversion means.
Furthermore, the heat recovery means can be provided with a low-temperature side latent heat storage material means housed inside the fixed portion of the rotating body. Thereby, the high temperature side latent heat storage means can be accommodated in the friction sliding portion of the rotating body, and the low temperature side latent heat storage means can be accommodated in the fixed portion. Therefore, for example, one side (heating surface) of the thermoelectric conversion means can be heated by the high-temperature side latent heat storage means, and the other side (cooling surface) can be maintained at a relatively low temperature by the low-temperature side latent heat storage means. The temperature difference between one side (heating surface) and the other side (cooling surface) of the thermoelectric conversion means can be continuously maintained at the temperature difference at which the thermoelectric conversion efficiency is good. Thereby, heat energy can be more efficiently converted into electric energy and recovered, and for example, the recovered electric energy can be used in other devices mounted on the vehicle.
 図1は、本発明の第1実施形態に係る車両用制動装置の構成を示す概略的な断面図である。
 図2は、図1の熱回収部および熱電変換部の配置を説明するための概略的な一部断面図である。
 図3は、図2の体積変化吸収機構の構成を示す断面図である。
 図4は、体積変化吸収機構の作動を説明するための断面図である。
 図5は、熱電変換部の熱電変換効率を説明するためのグラフである。
 図6は、本発明の第1実施形態に係り、制動による発熱量に対するディスクロータ温度の変化を説明するためのグラフである。
 図7は、本発明の第1実施形態の第1変形例に係る熱回収部のフィンを説明するための概略的な一部断面図である。
 図8は、本発明の第1実施形態の第2変形例に係る熱電変換部を説明するための概略的な一部断面図である。
 図9は、図8のフローティング締結機構を説明するための断面図である。
 図10は、図8の熱電変換部の組み付け状態を説明するための断面図である。
 図11は、図8の熱電変換部の変更例を説明するための概略的な一部断面図である。
 図12は、図9のフローティング締結機構の変更例を説明するための断面図である。
 図13は、本発明の第1実施形態の第3変形例に係る車両用制動装置の構成を説明するための概略的な断面図である。
 図14は、図13の熱回収部および熱電変換部の配置を説明するための概略的な一部断面図である。
 図15は、本発明の第1実施形態の第3変形例に係り、制動による発熱量に対するディスクロータ温度の変化を説明するためのグラフである。
 図16は、本発明の第2実施形態に係る車両用制動装置の構成を説明するための概略的な断面図である。
 図17は、図16の熱回収部および熱電変換部の配置を説明するための概略的な一部断面図である。
 図18は、図17の体積変化吸収機構の構成を示す断面図である。
 図19は、図18の体積変化吸収機構の変更例を説明するための断面図である。
 図20は、図19の体積変化吸収機構の変更例を説明するための断面図である。
 図21は、図16の熱回収部の変形例を説明するための概略的な一部断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration of a vehicle braking device according to a first embodiment of the present invention.
FIG. 2 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 1.
FIG. 3 is a cross-sectional view showing the configuration of the volume change absorption mechanism of FIG.
FIG. 4 is a cross-sectional view for explaining the operation of the volume change absorption mechanism.
FIG. 5 is a graph for explaining the thermoelectric conversion efficiency of the thermoelectric converter.
FIG. 6 is a graph for explaining the change of the disk rotor temperature with respect to the amount of heat generated by braking according to the first embodiment of the present invention.
FIG. 7 is a schematic partial cross-sectional view for explaining the fins of the heat recovery unit according to the first modification of the first embodiment of the present invention.
FIG. 8 is a schematic partial cross-sectional view for explaining a thermoelectric conversion unit according to a second modification of the first embodiment of the present invention.
FIG. 9 is a cross-sectional view for explaining the floating fastening mechanism of FIG.
FIG. 10 is a cross-sectional view for explaining the assembled state of the thermoelectric conversion unit of FIG.
FIG. 11 is a schematic partial cross-sectional view for explaining a modified example of the thermoelectric conversion unit in FIG. 8.
12 is a cross-sectional view for explaining a modified example of the floating fastening mechanism of FIG.
FIG. 13 is a schematic cross-sectional view for explaining the configuration of a vehicle braking device according to a third modification of the first embodiment of the present invention.
FIG. 14 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 13.
FIG. 15 is a graph for explaining a change in the disk rotor temperature with respect to the heat generation amount due to braking according to the third modification of the first embodiment of the present invention.
FIG. 16 is a schematic cross-sectional view for explaining the configuration of the vehicle braking device according to the second embodiment of the present invention.
FIG. 17 is a schematic partial cross-sectional view for explaining the arrangement of the heat recovery unit and the thermoelectric conversion unit in FIG. 16.
18 is a cross-sectional view showing the configuration of the volume change absorption mechanism of FIG.
FIG. 19 is a cross-sectional view for explaining a modification of the volume change absorption mechanism of FIG.
20 is a cross-sectional view for explaining a modified example of the volume change absorbing mechanism of FIG.
FIG. 21 is a schematic partial cross-sectional view for explaining a modification of the heat recovery unit in FIG. 16.
a.第1実施形態
 以下、本発明の実施形態に係る車両用制動装置について、図面を用いて詳細に説明する。図1は、第1実施形態に係る車両用制動装置Sのシステム構成を概略的に示している。この車両用制動装置Sは、車両を制動することに加えて、制動に伴って発生する運動エネルギーを熱エネルギーとして回収し、さらに、この回収した熱エネルギーを電気エネルギーに変換して蓄電するものである。
 このため、車両用制動装置Sは、図1に示すように、車輪Wに対して制動力を付与する制動力付与手段としての制動部10と、この制動部10による制動に伴って発生する熱エネルギーを吸熱して回収する熱回収手段としての熱回収部20と、熱回収部20によって回収された熱エネルギーを電気エネルギーに変換して蓄電する電力回収手段としての電力回収部30とを備えている。なお、以下の説明においては、車両の左右前輪側(図1には車両の右前輪を代表して図示)に車両用制動装置Sを設けた場合を説明するが、車両の全輪に車両用制動装置Sを設けたり、車両の後輪側のみに車両用制動装置Sを設けたりして実施することも可能である。
 この第1実施形態における制動部10は、回転体であるディスクロータ11と摩擦係合手段としてのブレーキキャリパ12とを備えたディスクブレーキユニットである。ディスクロータ11は、図示しないサスペンション装置を構成するナックルNに図示省略のハブベアリングを介して回転可能に支持されたハブHの一面側に対してナットにより組み付けられていて、車輪Wと一体的に回転するものである。また、ディスクロータ11は、その外周部にて、後述するブレーキキャリパ12に組み付けられるブレーキパッドと摩擦摺動する摩擦摺動部11aを備えている。そして、この摩擦摺動部11aには、図1に示すように、後述する熱回収部20を構成する潜熱蓄熱手段としての潜熱蓄熱材21が充填されて収容される収容空間11bが形成されている。また、ディスクロータ11は、図1に示すように、ハブHに対して接触して固定される固定部としてのハブ部11cを備えている。
 ブレーキキャリパ12は、2枚一対のブレーキパッドを収容しており、ブレーキパッドを回転するディスクロータ11の摩擦摺動部11aに対して押し付けて(圧着させて)摩擦力を発生するものである。なお、ディスクブレーキユニットの詳細な構造および作動については、周知のディスクブレーキユニットと同様であり、また、本発明に直接関係しないため、その説明を省略する。
 このように構成された制動部10においては、運転者によって図示しないブレーキペダルが操作されると、ブレーキキャリパ12にブレーキ液圧が供給される。これにより、ブレーキキャリパ12は、供給されるブレーキ液圧の増加に伴ってブレーキパッドをディスクロータ11の摩擦摺動部11aに対して圧着させる。そして、車輪Wと一体的に回転するディスクロータ11の摩擦摺動部11aに対してブレーキパッドを圧着させて摩擦係合させることによって摩擦力が発生し、この摩擦力が車輪Wの回転を制動する制動力として付与される。したがって、制動部10は、車両の制動に伴って運動エネルギーを摩擦によって熱エネルギー(摩擦熱)に変換することにより、回転する車輪Wを制動する。
 このように、制動によって発生する熱エネルギー(摩擦熱)は、ディスクロータ11の摩擦摺動部11aに設けられた熱回収部20によって回収される。熱回収部20は、図2に示すように、摩擦摺動部11aに形成された収容空間11b内に収容される潜熱蓄熱材21を備えている。潜熱蓄熱材21は、物質の状態変化、すなわち、固相から液相への相変化または液相から固相への相変化に伴って、自身の温度変化を生じることなく吸熱または放熱する物性を有するものである。なお、潜熱蓄熱材21としては、例えば、200℃前後の融点を有するペンタエリトリトール(Pentaerythritol)などの有機系固体やLiOH−NaOHなどの溶融共晶塩を採用することができる。
 このような物性を有する潜熱蓄熱材21においては、収容空間11b内の温度が上昇するときに熱エネルギーを吸収して固相から液相に相変化し、収容空間11b内の温度が下降するときに吸収した熱エネルギーを放出して液相から固相に相変化する。ここで、潜熱蓄熱材21は、相変化するときであって、固相と液相とが共存しているときには、自身の温度変化を伴わずに熱エネルギーを吸収(吸熱)または放出(放熱)する。
 ところで、潜熱蓄熱材21が固相から液相または液相から固相に相変化するときには、例えば、1~10%程度の体積変化が生じる。具体的には、潜熱蓄熱材21が固相から液相に相変化するときには体積が増加し、潜熱蓄熱材21が液相から固相に相変化するときには体積が減少する。そして、このように収容空間11b内に収容された潜熱蓄熱材21は体積変化が生じるため、特に、潜熱蓄熱材21が固相に相変化した場合には収容空間11b内に空隙が生じて回転体であるディスクロータ11における質量のバランスが崩れる可能性がある。
 このため、熱回収部20は、収容空間11b内に収容された潜熱蓄熱材21の体積変化を吸収し、収容空間11b内に空隙が生じことを抑制するために、図2に示すように、ディスクロータ11の摩擦摺動部11aにの周方向にて等間隔に(左右対称に)設けられた複数の体積変化吸収手段としての体積変化吸収機構22を備えている。体積変化吸収機構22は、図3に詳細に示すように、スリーブ22aと、このスリーブ22a内にて一端側が固定されて収容された金属ベローズ22bと、金属ベローズ22bの他端側に組み付けられた円盤状の底板22cとを備えている。ここで、スリーブ22aには、後述するように、潜熱蓄熱材21の流通を許容する切り欠き部22a1が周方向にて複数形成されている。
 このように構成される体積変化吸収機構22は、図4に示すように、ディスクロータ11の側面にて摩擦摺動部11aに対して面一となるように収容空間11bに向けて圧入される。これにより、ディスクロータ11が回転して体積変化吸収機構22に遠心力が作用しても、体積変化吸収機構22が脱落することを防止することができる。
 そして、収容空間11b内まで圧入された体積変化吸収機構22においては、潜熱蓄熱材21が固相のときすなわち収容空間11b内における潜熱蓄熱材21の体積が最も小さいときには、金属ベローズ22bが底板22cを介して弾撥的に潜熱蓄熱材21を押し下げている。
 この状態から収容空間11b内の温度が潜熱蓄熱材21の融点以上に上昇して潜熱蓄熱材21が固相から液相に相変化するときには、潜熱蓄熱材21の体積が膨張する。このとき、体積変化吸収機構22においては、体積膨張した液相の潜熱蓄熱材21がスリーブ22aに形成された切り欠き部22a1からスリーブ22a内に流入し、底板22cが押圧される。これにより、底板22cに組み付けられた金属ベローズ22bがその弾性力に抗してスリーブ22aの軸方向に縮小することによって、体積変化吸収機構22は潜熱蓄熱材21の体積変化(膨張変化)を吸収することができる。
 一方、収容空間11b内の温度が降下して潜熱蓄熱材21が液相から固相に相変化するときには、潜熱蓄熱材21の体積が収縮する。このとき、体積変化吸収機構22においては、体積収縮した潜熱蓄熱材21がスリーブ22aに形成された切り欠き部22a1からスリーブ22a内に流入していた液相の潜熱蓄熱材21が収容空間11b内に向けて流出する。このため、潜熱蓄熱材21による底板22cの押圧が解除され、金属ベローズ22bがその弾性力によって底板22cとともに液相の潜熱蓄熱材21をスリーブ22aの軸方向に押し下げる。これにより、体積変化吸収機構22は、潜熱蓄熱材21の体積変化(収縮変化)を吸収し、収容空間11b内において体積収縮する潜熱蓄熱材21が空隙を生じることなく充満した状態を維持することができる。したがって、収容空間11b内の温度が潜熱蓄熱材21の融点未満までさらに降下し、さらに体積が収縮して潜熱蓄熱材21が固相として存在する場合であっても、収容空間11b内に空隙が生じことを抑制することができる。
 さらに、熱回収部20は、図2に示すように、収容空間11bの内部に形成されたフィン23を備えている。フィン23は、ディスクロータ11、より詳しくは、摩擦摺動部11aの周方向にて、体積変化吸収機構22と交互となるように配置されている。そして、フィン23は、ブレーキキャリパ12がブレーキパッドを圧着させるときすなわち制動時において、ディスクロータ11の摩擦摺動部11aの変形を防止する一方で、固相から液相に相変化した潜熱蓄熱材21の対流を促すとともに液相から固相に相変化した潜熱蓄熱材21を固定するものである。
 このように、熱回収部20によって回収された(蓄熱された)熱エネルギー(摩擦熱)は、電力回収部30により電気エネルギーに変換されて蓄電される。このため、電力回収部30は、図1および図2に示すように、摩擦摺動部11a(より詳しくは、収容空間11bに収容された潜熱蓄熱材21)とハブ部11cとの間にて環状に配置されて、ディスクロータ11に組み付けられた熱電変換部31を備えている。熱電変換部31は、物質(例えば、Bi−Te系半導体など)が有する周知のゼーベック効果を利用して熱エネルギーを電気エネルギーに変換するものである。そして、熱電変換部31は、図2に示すように、一側すなわち加熱面31aが収容空間11b内に収容された潜熱蓄熱材21によって蓄熱された熱エネルギー(摩擦熱)によって加熱され、他側すなわち冷却面31bが外気と接触するハブ部11cによって相対的に低温に維持(冷却)されるようになっている。
 ここで、熱電変換部31は、図5に概略的に示すように、加熱面31aと冷却面31bとの温度差に依存して、熱エネルギーを電気エネルギーに変換する熱電変換効率が変化する。すなわち、熱電変換部31においては、加熱面31aと冷却面31bとの温度差が物性上決定される所定の温度差T1となるまで増大するときには熱電変換効率が最大となるまで変化し、加熱面31aと冷却面31bとの温度差が所定の温度差T1よりも大きくなると熱電変換効率が減少する特性を有している。
 そして、熱電変換部31においては、加熱面31aが潜熱蓄熱材21によって蓄熱された熱エネルギー(摩擦熱)によって加熱されるとともに冷却面31bがハブ部11cによって相対的に冷却されるため、周知のゼーベック効果によって加熱面31aと冷却面31bとの温度差に応じた起電力(以下、この起電力を回生電力という)を発生する。すなわち、熱電変換部31は、制動部10による制動に伴って発生し、熱回収部20によって回収された熱エネルギー(摩擦熱)を電気エネルギーに変換することができる。
 このように、熱電変換部31によって熱エネルギー(摩擦熱)から変換された電気エネルギー(回生電力)は、図1に示すように、変圧回路32を介して蓄電手段としてのバッテリ33に供給される。変圧回路32は、例えば、DC−DCコンバータやコンデンサを主要構成部品とする電気回路であり、熱電変換部31から出力された回生電力を変圧してバッテリ33に出力するものである。バッテリ33は、変圧された出力された回生電力を蓄電するものである。なお、熱電変換部31と変圧回路32との接続に関しては、本発明に直接関係しないため、いかなる方法を採用してもよい。例えば、変圧回路32が非接触により電磁的に熱電変換部31から回生電力を集電したり、スリップリングなどを介して変圧回路32が接触により熱電変換部31から回生電力を集電したりするとよい。
 次に、上記のように構成した第1実施形態に係る車両用制動装置Sの作動について説明する。運転者によって図示しないブレーキペダルが操作されると、制動部10が車輪Wの回転に対して制動力を付与する。すなわち、制動部10においては、上述したように、ブレーキペダルの操作に応じたブレーキ液圧がブレーキキャリパ12に供給される。そして、ブレーキキャリパ12は、供給されたブレーキ液圧により、車輪Wと一体的に回転するディスクロータ11の摩擦摺動部11aに対してブレーキパッドを圧着させて摩擦係合させる。これにより、ディスクロータ11の摩擦摺動部11aとブレーキパッドとの間に摩擦力が発生し、この摩擦力が制動力として回転する車輪Wに付与される。
 一方、摩擦力による制動に伴ってディスクロータ11の摩擦摺動部11aに発生した摩擦熱(熱エネルギー)は、摩擦摺動部11aに設けられた熱回収部20によって回収される。以下、熱回収部20による摩擦熱(熱エネルギー)の回収について詳細に説明する。
 一般的に、ディスクブレーキユニットにおいては、摩擦による制動に伴い、ディスクロータ11の摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)の一部がハブ部11cに伝熱する。このため、ディスクロータ11の温度は、図6に示すように、制動に伴って発生する摩擦熱(熱エネルギー)の発熱量に依存して変化する。すなわち、図6にて比較のため一点鎖線により示すように、熱回収部20を設けない従来の摩擦摺動部11aの温度(以下、従来の摩擦摺動部温度という)は、制動による発熱量の増大に伴って速やかに上昇する。一方、図6にて実線により示すハブ部11cの温度(以下、ハブ部温度という)は、制動による発熱量の増大に伴って上昇するものの、従来の摩擦摺動部温度に比して緩やかに上昇する。したがって、従来の摩擦摺動部温度とハブ部温度との温度差は、制動による発熱量が増大することに伴って増大する傾向を有する。
 ところで、本発明に係るディスクロータ11においては、摩擦摺動部11aに収容空間11bを形成して熱回収部20の潜熱蓄熱材21を収容している。これにより、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)は、その大部分が摩擦摺動部11aの内部、言い換えれば、収容空間11b内に向けて伝熱する。このため、熱回収部20は、収容空間11b内に収容された潜熱蓄熱材21が伝熱した摩擦熱(熱エネルギー)を吸熱(蓄熱)することにより、摩擦熱(熱エネルギー)を回収する。その結果、熱回収部20を設けた摩擦摺動部11aの温度(以下、摩擦摺動部温度という)とハブ部温度との温度差の増大を抑制することができる。以下、このことを詳しく説明する。
 まず、制動部10が制動力を付与する場合から説明する。制動部10が制動力の付与を開始すると、潜熱蓄熱材21は、収容空間11b内に伝熱した摩擦熱(熱エネルギー)によって加熱される。そして、加熱された潜熱蓄熱材21の温度が融点以下であるときには、潜熱蓄熱材21は固相状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。この場合、潜熱蓄熱材21の温度が上昇することに伴って、摩擦摺動部温度は、図6にて破線により示すように、従来の摩擦摺動部温度に比して緩やかに上昇する。そして、熱回収部20(より具体的には、潜熱蓄熱材21)は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の加熱面31aに伝熱して摩擦摺動部温度まで加熱する。
 このような固相状態において、加熱によって潜熱蓄熱材21の温度が融点を超えると、より詳しくは、図6に示すように、潜熱蓄熱材21の温度が融点+ΔT2になると、潜熱蓄熱材21の一部が固相から液相に相変化を開始し、潜熱蓄熱材21は、固相と液相とが共存する状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。なお、以下の説明においては、固相と液相とが共存する状態となる融点+ΔT2を共存温度という。
 このとき、潜熱蓄熱材21は、摩擦熱(熱エネルギー)を融解熱すなわち潜熱として吸熱(蓄熱)して一部が固相から液相に相変化するため、共存温度を維持した状態となる。これにより、潜熱蓄熱材21が固相と液相とが共存する状態にあるときには、図6にて破線により示すように、摩擦摺動部温度は共存温度で一定に保たれる。したがって、摩擦摺動部温度とハブ部温度との温度差の増大を抑制することができる。そして、熱回収部20(より具体的には、潜熱蓄熱材21)は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の加熱面31aに伝熱して摩擦摺動部温度(共存温度)まで加熱する。
 ここで、潜熱蓄熱材21においては、一般的に、熱伝導率が低いため、摩擦熱(熱エネルギー)による加熱のみでは、全体が固相から液相に相変化しにくい。その結果、相対的に低温の固相と相対的に高温の液相が存在することによって潜熱蓄熱材21の全体の温度が不均一となる場合がある。
 ところで、収容空間11bはディスクロータ11と一体的に回転するため、収容空間11b内に収容された潜熱蓄熱材21に対して遠心力を作用させることができる。この場合、固相と液相とではそれぞれの密度が異なるため、固相と液相とが共存している状態では、密度の大きな固相が収容空間11bの外周側に相対的に移動するとともに、密度の小さな液相が収容空間11bの内周側に相対的に移動する。また、収容空間11b内に形成されたフィン23は、摩擦熱(熱エネルギー)を潜熱蓄熱材21に伝熱することができるとともに、収容空間11bの回転に伴って潜熱蓄熱材21の固相と液相とを撹拌することができる。これにより、固相から液相への相変化が促され、潜熱蓄熱材21全体の温度が均一化される。
 このような固相と液相とが共存する状態において、さらに加熱されると、潜熱蓄熱材21は、全体が液相に相変化し、液相状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。このため、潜熱蓄熱材21が液相状態にあるときには、図6にて破線により示すように、摩擦摺動部温度は共存温度から上昇する。そして、熱回収部20(より具体的には、潜熱蓄熱材21)は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の加熱面31aに伝熱して摩擦摺動部温度まで加熱する。
 次に、制動部10が制動力の付与を中止した場合を説明する。制動部10が制動力の付与を中止すると、摩擦熱(熱エネルギー)は発生しないため、摩擦摺動部11aすなわちディスクロータ11が、例えば、走行風などによって冷却される。この場合、例えば、上述したように、収容空間11b内に収容された潜熱蓄熱材21の全体が液相に相変化している状態においては、摩擦摺動部11aの冷却に伴い、潜熱蓄熱材21は液相から固相と液相が共存する状態を経て固相に相変化する。
 このとき、潜熱蓄熱材21は、相変化に伴って、上述したように吸熱(蓄熱)した熱エネルギーを放出(放熱)する。この場合、特に、固相と液相とが共存する状態においては、潜熱蓄熱材21の全部が固相に相変化するまで共存温度で一定に保たれる。このように、相変化に伴って蓄熱(回収)した摩擦熱(熱エネルギー)を放熱(放出)することができるため、制動部10が制動力の付与を中止した場合であっても、熱回収部20は、電力回収部30の熱電変換部31の加熱面31aに継続して摩擦熱(熱エネルギー)を伝熱して摩擦摺動部温度まで加熱することができる。
 なお、摩擦熱(熱エネルギー)の伝熱によって潜熱蓄熱材21が相変化し、体積膨張または体積収縮する場合には、上述したように、体積変化吸収機構22によって収容空間11b内における潜熱蓄熱材21の体積変化が吸収される。この場合、特に、潜熱蓄熱材21が液相から固相に相変化して体積が収縮するときには、体積変化吸収機構22の金属ベローズ22bがその弾性力によって底板22cとともに液相の潜熱蓄熱材21をスリーブ22aの軸方向に押し下げる。これにより、体積変化吸収機構22は、潜熱蓄熱材21の体積変化(収縮変化)を吸収し、収容空間11b内において体積収縮する潜熱蓄熱材21が空隙を生じることなく充満した状態を維持することができる。したがって、収容空間11b内の温度が潜熱蓄熱材21の融点未満までさらに降下し、さらに体積が収縮して潜熱蓄熱材21が固相として存在する場合であっても、収容空間11b内に空隙が生じことを抑制することができて、回転体であるディスクロータ11における質量のバランスが崩れることを防止することができる。
 このように熱回収部20によって回収された摩擦熱(熱エネルギー)を利用して、電力回収部30は、熱エネルギーを電気エネルギーに変換する。具体的に説明すると、電力回収部30においては、熱電変換部31の加熱面31aが熱回収部20によって蓄熱(回収)された摩擦熱(熱エネルギー)によって摩擦摺動部温度まで加熱される一方で、熱電変換部31の冷却面31bがハブ部11cによってハブ部温度に維持される。すなわち、ディスクロータ11においては、摩擦摺動部温度が高温側となり、ハブ部温度が低温側となる。
 ここで、摩擦摺動部温度は、上述したように、熱回収部20による摩擦熱(熱エネルギー)の蓄熱(回収)によって、一定の共存温度で維持される。このため、特に、制動部10が制動力を付与している場合には、高温側である摩擦摺動部温度と低温側であるハブ部温度との間の温度差の増加が効果的に防止される。ところで、熱電変換部31は、上述したように、加熱面31aと冷却面31bとの温度差、言い換えれば、摩擦摺動部温度とハブ部温度との温度差が所定の温度差T1で維持されるとき、熱電変換効率が最も良好となる。
 このことに関し、図6に示すように、摩擦摺動部温度が共存温度で一定に維持されているときには、摩擦摺動部温度と緩やかの上昇するハブ部温度との温度差をほぼ温度差T1で維持することができる。さらに、摩擦摺動部温度が共存温度で維持されることによって、摩擦摺動部温度が共存温度から上昇する場合であっても、摩擦摺動部温度とハブ部温度との温度差が増大しすぎることを防止することができて温度差T1に近づけることができる。したがって、熱電変換部31は、良好な熱電変換効率によって摩擦熱(熱エネルギー)を回生電力(電気エネルギー)に変換して回収することができる。
 また、制動部10が制動力の付与を中止した場合には、熱回収部20は蓄熱(回収)した摩擦熱(熱エネルギー)を放熱(放出)することによって、継続して摩擦摺動部温度に熱電変換部31の加熱面31aを加熱することができる。これにより、摩擦熱(熱エネルギー)が新たに発生しない状況であっても、高温側である摩擦摺動部温度と低温側であるハブ部温度との間に温度差を生じさせることができる。
 したがって、熱電変換部31は、加熱面31aと冷却面31bとの間の温度差に応じて、周知のゼーベック効果により、効率よく熱エネルギーを電気エネルギーに変換し、回生電力を発電することができる。そして、このように発電された回生電力は、変圧回路32によって変圧され、バッテリ33に蓄電される。このように、バッテリ33に蓄電された回生電力は、車両に搭載された他の機器で利用することができるため、例えば、エンジンの負荷を低減して燃費を向上させることができる。
 以上の説明からも理解できるように、この第1実施形態によれば、ディスクロータ11の摩擦摺動部11aに形成した収容空間11b内に熱回収部20の潜熱蓄熱材21を設けるとともに、ディスクロータ11の摩擦摺動部11a(すなわち、潜熱蓄熱材21)とハブ部11cとの間に熱電変換部31を設けることができる。これにより、制動に伴って発生した摩擦熱(熱エネルギー)により、潜熱蓄熱材21に効率よく摩擦熱(熱エネルギー)を伝熱することができるとともにディスクロータ11の回転に伴う遠心力によって潜熱蓄熱材21を効率よく相変化させることができる。したがって、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)を潜熱として効率よく回収することができ、その結果、摩擦摺動部11aの温度上昇を効果的に抑制することができる。
 また、熱電変換部31を潜熱蓄熱材21に隣接して配置することができるため、潜熱蓄熱材21に蓄熱された摩擦熱(熱エネルギー)によって加熱面31aを加熱して、冷却面31bとの間の温度差を適切に維持することができる。これにより、熱電変換部31は、良好な熱電変換効率により、回収された摩擦熱(熱エネルギー)を回生電力(電気エネルギー)に変換することができる。
 また、熱回収部20に体積変化吸収機構22を設けることができるため、収容空間11b内における潜熱蓄熱材21の相変化に伴う体積変化を確実に吸収することができる。これにより、特に、潜熱蓄熱材21が液相から固相に相変化する際に発生する可能性が高い収容空間11b内の空隙の発生を防止することができ、ディスクロータ11の質量のバランスが崩れることを防止することができる。したがって、ディスクロータ11の質量のバランスが崩れることに起因して、例えば、車両の走行挙動や乗り心地に対する悪影響の発生を防止することができる。
 さらに、熱回収部20にフィン23をディスクロータ11の周方向にて潜熱蓄熱材21と交互に設けることができる。これにより、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)を潜熱蓄熱材21に対して効率よく伝熱することができるとともに固相と液相とが共存する状態ではディスクロータ11の回転に伴って効果的に攪拌することができる。したがって、潜熱蓄熱材21の温度を均一化することができ、熱電変換部31の加熱面31aを適切に加熱することができる。
b.第1実施形態の第1変形例
 上記第1実施形態においては、熱回収部20の体積変化吸収機構22およびフィン23を収容空間11bを形成する壁面に接触させることなく設けて実施した。この場合、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)を効率よく熱回収部20の潜熱蓄熱材21に伝熱させるために、フィン23の形状を変更し、さらに別途フィンを設けて実施することも可能である。以下、この第1変形例を詳細に説明するが、上記第1実施形態と同一部分に同一の符号を付し、その説明を省略する。
 この第1変形例においては、図7に示すように、熱回収部20が上記第1実施形態におけるフィン23に代えてフィン23’を備えている。フィン23’は、収容空間11bを形成する内壁面、より具体的には、摩擦摺動部11aの外周側に位置する内壁面と内周側に位置する内壁面とに熱的に接続するように形成されている。
 また、この第1変形例においては、収容空間11bを形成する内壁面と体積変化吸収機構22のスリーブ22aの外周面とを熱的に接続するフィン23’a,23’bを必要に応じて形成されている。フィン23’aは、収容空間11bを形成する内壁面のうち、摩擦摺動部11aの外周側に位置する内壁面と体積変化吸収機構22のスリーブ22aの外周面とを熱的に接続する。フィン23’bは、収容空間11bを形成する内壁面のうち、摩擦摺動部11aの内周側に位置する内壁面と体積変化吸収機構22のスリーブ22aの外周面とを熱的に接続する。なお、フィン23’a,23’bを設けるか否かについては、潜熱蓄熱材21を相変化させるために必要な熱量を実験的に確認し、この確認に基づいて、フィン23’aおよびフィン23’bの少なくとも一つを設けるまたはフィン23’a,23’bを設けないことを決定するようにするとよい。
 また、フィン23’a,23’bを設ける場合には、これらフィン23’a,23’bを介して伝熱される摩擦熱(熱エネルギー)をより効果的に潜熱蓄熱材21に伝熱するために、例えば、体積変化吸収機構22のスリーブ22aをアルミ等の鉄に比して良好な熱伝導率を有する材料から形成することが望ましい。このようにスリーブ22aの形成材料を選択することにより、潜熱蓄熱材21の内部に対して摩擦熱(熱エネルギー)を効率よく伝熱することができる。
 このように構成される第1変形例においては、制動部10によって制動力が付与されると、ディスクロータ11の摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)は、フィン23’を介して、収容空間11b内に収容された潜熱蓄熱材21の内部に伝熱される。さらに、フィン23’a,23’bを設けた場合には、これらフィン23’a,23’bおよび体積変化吸収機構22のスリーブ22aを介して、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)が潜熱蓄熱材21の内部に伝熱される。
 これにより、例えば、固相と液相とが共存する状態においては、上述した遠心力による固相と液相との相対的な移動によって撹拌されることに加えて、内部に摩擦熱(熱エネルギー)が伝熱されることによって、固相から液相への相変化がより促され、潜熱蓄熱材21全体の温度が均一化される。すなわち、この第1変形例においては、上記第1実施形態に比して、より効率よく摩擦熱(熱エネルギー)を伝熱することができる。したがって、熱電変換部31の加熱面31aをより安定して加熱することができて、回生電力を発電することができる。
 さらに、この第1変形例においては、隣接するフィン23’によって潜熱蓄熱材21が仕切られる構造となる。したがって、潜熱蓄熱材21が相変化する場合には、体積変化吸収機構22によって体積変化が吸収されるとともに収容空間11b内での周方向への移動が抑制されるため、回転体であるディスクロータ11における質量のバランスが崩れることをより効果的に防止できるという効果も期待できる。
 その他の効果については、上記第1実施形態と同様である。
c.第1実施形態の第2変形例
 上記第1実施形態および第1変形例においては、電力回収部30の熱電変換部31がディスクロータ11の摩擦摺動部11a(より具体的には、収容空間11b内に収容された潜熱蓄熱材21)とハブ部11cとの間に周状に配置されて、加熱面31aが摩擦摺動部温度に加熱され、冷却面31bがハブ部温度に維持されるように実施した。ところで、ディスクロータ11は、所謂、車両のバネ下に配置されるものであるため、車両の走行に伴って振動等が入力しやすい。また、熱電変換部31には、加熱と冷却に伴うせん断力や応力が作用する可能性もある。このため、ディスクロータ11に熱電変換部31を組み付ける場合には、熱電変換部31を上記した外力から良好に保護することが望ましい。以下、この第2変形例を詳細に説明するが、上記第1実施形態と同一部分に同一の符号を付し、その説明を省略する。
 この第2変形例においては、図8に示すように、電力回収部30を構成する熱電変換部31が複数に分割されている。そして、この第2変形例においては、各熱電変換部31は、フローティング締結機構34によって連結されるとともに、ディスクロータ11に対して固定されている。フローティング締結機構34は、連結された熱電変換部31をディスクロータ11に固定する締結カラー34aと、周状に隣接する熱電変換部31を連結する連結部材34bと、締結カラー34aによってディスクロータ11に固定されて熱電変換部31を覆う耐熱性断熱材34cとを備えている。
 ここで、締結カラー34aは、例えば、熱伝導率の小さいステンレスなどから中空円筒状に形成されており、図9に示すように、両端に段部が成形されることにより、連結部材34bによって連結された熱電変換部31および耐熱性断熱材34cをディスクロータ11に固定する。なお、連結部材34bによって連結された熱電変換部31をディスクロータ11に固定する場合には、図9に示すように、締結カラー34aは成形された段部と耐熱性断熱材34cとの間に若干のクリアランスが生じるように固定する。
 また、連結部材34bは、可撓性を有する材料から形成されている。そして、連結部材34bは、熱電変換部31に無用な応力が作用することを防止するために、各熱電変換部31を締結カラー34aから離間させて連結するようになっている。
 さらに、フローティング締結機構34は、図10に示すように、熱電変換部31のディスクロータ11における径方向への変位を許容するために、断面略U字状の変位規制部材34dと、熱電変換部31と変位規制部材34dとの間に配置される変位吸収材34eとを備えている。ここで、変位規制部材34dは、例えば、熱伝導率の大きな、例えば、銅板などから形成されている。また、変位吸収材34eも、熱伝導率の大きな、例えば、銅網や銅網線、銅メッシュなどから形成されている。
 このように構成された第2変形例においては、複数に分割された熱電変換部31がフローティング締結機構34により、ディスクロータ11に対して、所謂、フローティング結合されている。このため、加熱および冷却に伴って、熱電変換部31に対して周方向にせん断力などが作用し得る状況においては、例えば、連結部材34bが変形することにより、熱電変換部31にせん断力などが作用することを防止することができる。また、熱電変換部31がディスクロータ11の径方向に変位する状況においては、例えば、変位吸収材34eが変形することによって熱電変換部31の変位を許容し、熱電変換部31に応力が作用することを防止することができる。
 また、締結カラー34aを熱伝導率の小さな材料から形成するとともに、変位規制部材34dおよび変位吸収部材34eを熱伝導率の大きな材料から形成することにより、ディスクロータ11の摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)を優先的に熱電変換部31の加熱面31aに伝熱させることができる。また、耐熱性断熱材34cが熱電変換部31を覆うことによっても、ディスクロータ11の摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)を優先的に熱電変換部31の加熱面31aに伝熱させることができる。
 すなわち、この第2変形例のように、フローティング締結機構34を構成する部材の材料を熱伝導率に基づいて適宜選択することによって、摩擦摺動部11aからハブ部11cに向けて伝熱する摩擦熱(熱エネルギー)の熱移動量を適切にコントロールすることができる。したがって、効率よく熱電変換部31の加熱面31aを加熱することができるため、熱電変換部31による回生電力の発電効率を向上させることができる。
 その他の効果については、上記第1実施形態および第1変形例と同様である。
 なお、上記第2変形例においては、種々の変更が可能である。例えば、上記第2変形例においては、円弧状に熱電変換部31を成形しておき、連結部材34bによって連結されるように実施した。この場合、例えば、図11に示すように、直線状に成形した熱電変換部31を連結部材34bが連結するように実施することも可能である。この場合には、熱電変換部31を極めて容易に成形できるものの、ディスクロータ11の摩擦摺動部11aの半径方向における幅が小さくなる場合がある。したがって、このような直線状の熱電変換部31を採用して実施する場合には、大径のディスクロータ11に熱電変換部31を組み付けて実施することが好ましい。
 また、上記第2変形例においては、図9に示したように、締結カラー34aの両端に形成した段部が耐熱性断熱材34cを介して、ディスクロータ11に固定されるように実施した。この場合、耐熱性断熱材34cの機械的強度が小さい場合には、図12に示すように、締結カラー34aの両端に2段の段部を形成し、各段部がそれぞれ耐熱性断熱材34cとディスクロータ11とに接触するように実施することも可能である。
 さらに、上記第2変形例においては、耐熱性断熱材34cを設けて実施した。しかしながら、必要に応じて、耐熱性断熱材34cを省略して実施可能であることはいうまでもない。
d.第1実施形態の第3変形例
 上記第1実施形態および各変形例においては、電力回収部30の熱電変換部31における冷却面31bがハブ部11cによって相対的に冷却される、より詳しくは、ハブ部温度の維持されるように実施した。これらの場合、例えば、図6に示したように、ハブ部温度も制動による発熱量の増大に伴って緩やかに上昇するため、熱電変換部31の熱電変換効率が最大となる温度差T1を継続して維持することが難しい場合がある。この場合、ディスクロータ11のハブ部11cに伝熱した摩擦熱(熱エネルギー)を吸熱してハブ部温度の上昇を抑制するように実施することも可能である。以下、この第1実施形態の第3変形例を詳細に説明するが、上記第1実施形態と同一部分に同一の符号を付し、その説明を省略する。なお、以下の説明においては、理解を容易とするために、上記第1実施形態における収容空間11bを高温側収容空間11bといい、潜熱蓄熱材21を高温潜熱蓄熱材21といい、共存温度を高温側共存温度いう。
 この第3変形例においては、図13および図14に示すように、ディスクロータ11のハブ部11cに低温側収容空間11dが形成されている。そして、この第3変形例における熱回収部20は、低温側収容空間11dに収容される低温潜熱蓄熱材24を備えている。低温潜熱蓄熱材24は、高温潜熱蓄熱材21と同様に、物質の状態変化、すなわち、固相から液相への相変化または液相から固相への相変化に伴って、自身の温度変化を生じることなく吸熱または放熱する物性を有するものである。なお、低温潜熱蓄熱材24としては、例えば、50~100℃前後の融点を有するNaSO・10HOなどの水和塩を採用することができる。
 したがって、低温潜熱蓄熱材24においては、低温側収容空間11d内の温度が上昇するときに熱エネルギーを吸収して高温潜熱蓄熱材21よりも低い温度で固相から液相に相変化し、低温側収容空間11d内の温度が下降するときに吸収した熱エネルギーを放出して液相から固相に相変化する。そして、低温潜熱蓄熱材24も、相変化するときであって、固相と液相とが共存しているときには、自身の温度変化を伴わずに熱エネルギーを吸収(吸熱)または放出(放熱)する。
 また、低温潜熱蓄熱材24も、高温潜熱蓄熱材21と同様に、固相から液相または液相から固相に相変化するときには体積変化を生じる。このため、この第2実施形態における熱回収部20は、低温側収容空間11d内に収容された低温潜熱蓄熱材24の体積変化を吸収し、低温側収容空間11d内に空隙が生じことを抑制するために、図14に示すように、ディスクロータ11のハブ部11cに周方向にて等間隔に複数の体積変化吸収機構22を備えている。
 次に、上記のように構成した第3変形例に係る車両用制動装置Sの作動について説明する。この第3変形例においても、上記第1実施形態と同様に、制動部10が車輪Wの回転に対して制動力を付与する。すなわち、制動部10においても、運転者による図示しないブレーキペダルの操作に応じたブレーキ液圧がブレーキキャリパ12に供給されると、この供給されたブレーキ液圧により、ブレーキキャリパ12は車輪Wと一体的に回転するディスクロータ11の摩擦摺動部11aに対してブレーキパッドを圧着させて摩擦係合させる。これにより、上記第1実施形態と同様に、ディスクロータ11の摩擦摺動部11aとブレーキパッドとの間に摩擦力(制動力)が発生するとともに、摩擦熱(熱エネルギー)が発生する。
 このように、摩擦力による制動に伴ってディスクロータ11の摩擦摺動部11aに発生した摩擦熱(熱エネルギー)は、熱回収部20によって回収される。そして、この回収された摩擦熱(熱エネルギー)は、電力回収部30によって回生電力(電気エネルギー)に変換されて蓄電される。まず、この第3変形例の熱回収部20による摩擦熱(熱エネルギー)の回収について詳細に説明する。
 この第3変形例においては、熱回収部20が、摩擦摺動部11aに形成された高温側収容空間11b内に収容された高温潜熱蓄熱材21と、ハブ部11cに形成された低温側収容空間11d内に収容された低温潜熱蓄熱材24とを備えている。これにより、高温潜熱蓄熱材21は、摩擦摺動部11aにて発生した摩擦熱(熱エネルギー)によって加熱されて、上記第1実施形態と同様に、固相と液相とが共存する状態を経て固相から液相に相変化する。したがって、熱回収部20の高温潜熱蓄熱材21は、図15に示すように、制動による発熱量変化に対して、高温側共存温度を有して変化し、熱電変換部31の加熱面31aを加熱する。
 一方、低温側収容空間11d内に収容された低温潜熱蓄熱材24は、ハブ部11cに伝熱した摩擦熱(熱エネルギー)を吸熱(蓄熱)する。これにより、第3変形例における熱回収部20は、摩擦摺動部温度とハブ部温度との温度差の増大を、上記第1実施形態に比して、より抑制することができる。以下、このことを詳しく説明する。
 まず、制動部10が制動力を付与する場合から説明する。制動部10が制動力の付与を開始すると、低温潜熱蓄熱材24は、低温側収容空間11d内に伝熱した摩擦熱(熱エネルギー)によって加熱される。そして、加熱された低温潜熱蓄熱材24の温度が融点以下であるときには、低温潜熱蓄熱材24は固相状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。この場合、低温潜熱蓄熱材24の温度が上昇することに伴って、ハブ部温度は、図15にて実線により示すように、緩やかに上昇する。そして、熱回収部20の低温潜熱蓄熱材24は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の冷却面31bに伝熱してハブ部温度に維持する。
 このような固相状態において、加熱によって低温潜熱蓄熱材24の温度が融点を超えると、より詳しくは、図15に示すように、低温潜熱蓄熱材24の温度が融点+ΔT3になると、低温潜熱蓄熱材24の一部が固相から液相に相変化を開始し、低温潜熱蓄熱材24は、固相と液相とが共存する状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。なお、以下の説明では、低温潜熱蓄熱材24において、固相と液相とが共存する状態となる融点+ΔT3を低温側共存温度という。
 このとき、低温潜熱蓄熱材24は、摩擦熱(熱エネルギー)を融解熱すなわち潜熱として吸熱(蓄熱)して一部が固相から液相に相変化するため、低温側共存温度を維持した状態となる。これにより、低温潜熱蓄熱材24が固相と液相とが共存する状態にあるときには、図15にて実線により示すように、ハブ部温度は低温側共存温度で一定に保たれる。したがって、摩擦摺動部温度とハブ部温度との温度差の増大をより抑制することができる。そして、熱回収部20の低温潜熱蓄熱材24は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の冷却面31bに伝熱してハブ部温度(共存温度)に維持する。
 ここで、低温潜熱蓄熱材24においても、一般的に、熱伝導率が低いため、摩擦熱(熱エネルギー)による加熱のみでは、全体が固相から液相に相変化しにくい。その結果、高温潜熱蓄熱材21と同様に、相対的に低温の固相と相対的に高温の液相が存在することによって低温潜熱蓄熱材24の全体の温度が不均一となる場合がある。
 ところで、低温側収容空間11dもディスクロータ11と一体的に回転するため、低温側収容空間11d内に収容された低温潜熱蓄熱材24に対して遠心力を作用させることができる。これにより、密度の大きな固相が低温側収容空間11dの外周側に相対的に移動するとともに、密度の小さな液相が低温側収容空間11bの内周側に相対的に移動する。これにより、固相から液相への相変化が促され、低温潜熱蓄熱材24全体の温度が均一化される。
 このような固相と液相とが共存する状態において、さらに加熱されると、低温潜熱蓄熱材24は、全体が液相に相変化し、液相状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)する。このため、低温潜熱蓄熱材24が液相状態にあるときには、図15にて実線により示すように、ハブ部温度は共存温度から上昇する。そして、熱回収部20の低温潜熱蓄熱材24は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の冷却面31bに伝熱してハブ部温度に維持する。
 次に、制動部10が制動力の付与を中止した場合を説明する。制動部10が制動力の付与を中止すると、摩擦熱(熱エネルギー)は発生しないため、摩擦摺動部11aおよびハブ部11cすなわちディスクロータ11が、例えば、走行風などによって冷却される。この場合、例えば、上述したように、低温側収容空間11d内に収容された低温潜熱蓄熱材24の全体が液相に相変化している状態においては、ハブ部11cの冷却に伴い、低温潜熱蓄熱材24は、高温潜熱蓄熱材21と同様に、液相から固相と液相が共存する状態を経て固相に相変化する。
 このとき、高温潜熱蓄熱材21および低温潜熱蓄熱材24は、相変化に伴って、上述したように吸熱(蓄熱)した熱エネルギーを放熱(放出)する。この場合、特に、固相と液相とが共存する状態においては、高温潜熱蓄熱材21および低温潜熱蓄熱材24の全部が固相に相変化するまで共存温度で一定に保たれる。このように、相変化に伴って蓄熱(回収)した摩擦熱(熱エネルギー)を放熱(放出)することができるため、制動部10が制動力の付与を中止した場合であっても、熱回収部20の高温潜熱蓄熱材21は、電力回収部30の熱電変換部31の加熱面31aに継続して摩擦熱(熱エネルギー)を伝熱して摩擦摺動部温度まで加熱することができるとともに、熱回収部20低温潜熱蓄熱材24は、電力回収部30の熱電変換部31の冷却面31bに伝熱してハブ部温度に維持することができる。
 なお、この第3変形例において、摩擦熱(熱エネルギー)の伝熱によって低温潜熱蓄熱材24が相変化し、体積膨張または体積収縮する場合には、上述したように、体積変化吸収機構22によって低温側収容空間11d内における低温潜熱蓄熱材24の体積変化が吸収される。この場合、特に、低温潜熱蓄熱材24が液相から固相に相変化して体積が収縮するときには、体積変化吸収機構22の金属ベローズ22bがその弾性力によって底板22cとともに液相の低温潜熱蓄熱材24をスリーブ22aの軸方向に押し下げる。
 これにより、体積変化吸収機構22は、低温潜熱蓄熱材24の体積変化(収縮変化)を吸収し、低温側収容空間11d内において体積収縮する低温潜熱蓄熱材24が空隙を生じることなく充満した状態を維持することができる。したがって、低温側収容空間11d内の温度が低温潜熱蓄熱材24の融点未満までさらに降下し、さらに体積が収縮して低温潜熱蓄熱材24が固相として存在する場合であっても、低温側収容空間11d内に空隙が生じことを抑制することができて、回転体であるディスクロータ11における質量のバランスが崩れることを防止することができる。
 このように熱回収部20によって回収された摩擦熱(熱エネルギー)を利用して、電力回収部30は、上記第1実施形態と同様に、熱エネルギーを電気エネルギーに変換する。具体的には、電力回収部30においては、熱電変換部31の加熱面31aが高温潜熱蓄熱材21によって蓄熱(回収)された摩擦熱(熱エネルギー)によって摩擦摺動部温度まで加熱される一方で、熱電変換部31の冷却面31bが低温潜熱蓄熱材24によってハブ部温度に維持される。
 ここで、摩擦摺動部温度は、上述したように、熱回収部20の高温潜熱蓄熱材21によって、一定の高温側共存温度で維持される。また、ハブ部温度は、上述したように、熱回収部20の低温潜熱蓄熱材24によって、一定の低温側共存温度で維持される。これにより、この第3変形例においては、図15に示すように、加熱面31aと冷却面31bとの温度差、言い換えれば、摩擦摺動部温度とハブ部温度との温度差を所定の温度差T1で継続して維持することができるため、熱電変換効率をより良好に維持することができる。
 このため、熱電変換部31は、加熱面31aと冷却面31bとの間の温度差に応じて、周知のゼーベック効果により、効率よく熱エネルギーを電気エネルギーに変換し、回生電力を発電することができる。そして、このように発電された回生電力は、上記第1実施形態と同様に、変圧回路32によって変圧され、バッテリ33に蓄電される。このように、バッテリ33に蓄電された回生電力は、車両に搭載された他の機器で利用することができるため、例えば、エンジンの負荷を低減して燃費を向上させることができる。
 したがって、この第3変形例においては、回転体としてのディスクロータ11の摩擦摺動部11aに高温側収容空間11bを形成して高温潜熱蓄熱材21を収容し、ハブ部11cに低温側収容空間11dを形成して低温潜熱蓄熱材24を収容することができる。そして、高温潜熱蓄熱材21と低温潜熱蓄熱材24とがそれぞれ高温側共存温度および低温側共存温度で一定となることにより、熱電変換部31の加熱面31aと冷却面31bとの間の温度差を熱電変換効率が良好となる温度差に継続して維持することができる。これにより、より効率よく、摩擦熱(熱エネルギー)を回生電力(電気エネルギー)に発電(変換)することができて、発電された回生電力を車両に搭載された他の機器で利用することができる。
 その他の効果については、上記第1実施形態および各変形例と同様である。
e.第2実施形態
 次に、本発明の第2実施形態に係る車両用制動装置Sを説明する。上記第1実施形態および各変形例においては、制動部10が回転体としてのディスクロータ11と摩擦係合手段としてのブレーキキャリパ12とを備えたディスクブレーキユニットとして実施した。この第2実施形態においては、図16に示すように、制動部10が回転体としてのブレーキドラム13と摩擦係合手段としてのブレーキシュー14とを備えたドラムブレーキユニットを採用して実施する。なお、この第2実施形態の車両用制動装置Sにおいては、上記第1実施形態と同様の熱回収部20および電力回収部30を備えているため、これら熱回収部20および電力回収部30の詳細な説明を省略する。
 この第2実施形態におけるブレーキドラム13は、図示しないサスペンション装置を構成するナックルNに回転可能に支持されたハブHに対してナットにより組み付けられていて、車輪Wと一体的に回転するものである。また、ブレーキドラム13は、その外周部にて、後述するブレーキシュー12に組み付けられるライニングと摩擦摺動する摩擦摺動部13aを備えている。そして、この摩擦摺動部13aには、図16に示すように、熱回収部20を構成する潜熱蓄熱手段としての潜熱蓄熱材21が充填されて収容される収容空間13bが形成されている。また、ブレーキドラム13には、図16に示すように、ハブHに対して接触して固定される固定部としてのハブ部13cを備えている。
 ブレーキシュー14は、図16に示すように、ブレーキドラム13内に収容されており、車体側に回転不能に固定されたバッキングプレート15に対して組み付けられている。そして、ブレーキシュー14は、バッキングプレート15に固着されたホイールシリンダWSの作動により、ライニングをブレーキドラム13の摩擦摺動部13aに対して摩擦係合するようになっている。なお、ドラムブレーキユニットの詳細な構造および作動については、周知のドラムブレーキユニットと同様であり、また、本発明に直接関係しないため、その説明を省略する。
 このように構成された制動部10においては、運転者によって図示しないブレーキペダルが操作されると、ホイールシリンダWSにブレーキ液圧が供給される。これにより、ブレーキシュー14は、供給されるブレーキ液圧の増加に伴って、ライニングをブレーキドラム13の摩擦摺動部13aに対して圧着させて摩擦係合させる。そして、車輪Wと一体的に回転するブレーキドラム13に対してライニングを摩擦係合させることによって摩擦力が発生し、この摩擦力が車輪Wの回転を制動する制動力として付与される。したがって、この第2実施形態における制動部10も、車両の制動に伴って運動エネルギーを摩擦によって熱エネルギー(摩擦熱)に変換することにより、回転する車輪Wを制動する。
 このように、制動によって発生する熱エネルギー(摩擦熱)は、ブレーキディスク13の摩擦摺動部13aに設けられた熱回収部20によって回収される。そして、この第2実施形態においては、熱回収部20は、図16および図17に示すように、摩擦摺動部13aに形成された収容空間13b内に収容される潜熱蓄熱材21と、潜熱蓄熱材21の体積変化を吸収して収容空間13b内に空隙が生じことを抑制する複数の体積変化吸収機構22と、収容空間13b内に形成された図示省略のフィン23とを備えている。ここで、この第2実施形態においては、上記第1実施形態に比して、体積変化吸収機構22が若干異なる。
 すなわち、この第2実施形態における体積変化吸収機構22は、図17および図18に示すように、ブレーキドラム13の回転軸に沿った方向、言い換えれば、ブレーキドラム13の側面から収容空間13bに向けて圧入される。すなわち、この第2実施形態においては、潜熱蓄熱材21の体積変化方向とベローズ22bの伸縮方向とを一致させることができるため、スリーブ22aに切り欠き部22a1の形成が不要となる点で異なる。なお、体積変化吸収機構22をブレーキドラム13の側面に設けることにより、ブレーキドラム13が回転して体積変化吸収機構22に遠心力が作用しても、体積変化吸収機構22が脱落することを防止することができる。
 ここで、この体積変化吸収機構22に関しては、図19に示すように、ブレーキドラム13の外周面側から収容空間13bに向けて圧入して実施することも可能である。この場合には、遠心力の作用による脱落を防止するために、体積変化吸収機構22を収容空間13b内に深く圧入する必要がある。このため、この場合には、スリーブ22aに、上記第1実施形態と同様に、収容空間13b内における潜熱蓄熱材21の流通を許容する切り欠き部22a1を周方向にて複数形成するとよい。なお、車両によって遠心力の作用による脱落の可能性が低い場合には、図20に示すように、体積変化吸収機構22の収容空間13b内への圧入量を減少させることも可能である。この場合には、スリーブ22aに切り欠き部22a1を形成しなくても、潜熱蓄熱材21の流通が許容されるため、潜熱蓄熱材21の体積変化を吸収することができる。
 なお、この第2実施形態においても、図示を省略するが、収容空間13b内にフィン23がブレーキドラム13の周方向にて潜熱蓄熱材21と交互に形成される。
 また、この第2実施形態においても、熱回収部20によって回収された(蓄熱された)熱エネルギー(摩擦熱)は、電力回収部30により電気エネルギーに変換されて蓄電される。このため、この第2実施形態においても、電力回収部30は、図16に示すように、熱電変換部31、変圧回路32およびバッテリ33を備えている。ここで、この第2実施形態における熱電変換部31は、図16および図17に示すように、一側すなわち加熱面31aが収容空間13b内に収容された潜熱蓄熱材21によって蓄熱された熱エネルギー(摩擦熱)によって加熱され、他側すなわち冷却面31bが外気と接触するハブ部13cによって冷却されるようになっている。
 次に、上記のように構成した第2実施形態に係る車両用制動装置Sの作動について説明する。この第2実施形態においても、上記第1実施形態と同様に、制動部10が車輪Wの回転に対して制動力を付与する。すなわち、制動部10においても、運転者による図示しないブレーキペダルの操作に応じたブレーキ液圧がホイールシリンダWSに供給されると、この供給されたブレーキ液圧により、ブレーキシュー14は車輪Wと一体的に回転するブレーキドラム13の摩擦摺動部13aに対してライニングを圧着させて摩擦係合させる。これにより、ブレーキドラム13の摩擦摺動部13aとライニングとの間に摩擦力(制動力)が発生するとともに、摩擦熱(熱エネルギー)が発生する。
 このように、摩擦力による制動に伴ってブレーキドラム13の摩擦摺動部13aに発生した摩擦熱(熱エネルギー)は、上記第1実施形態と同様に、熱回収部20によって回収される。そして、この回収された摩擦熱(熱エネルギー)は、電力回収部30によって回生電力(電気エネルギー)に変換されて蓄電される。まず、この第2実施形態の熱回収部20による摩擦熱(熱エネルギー)の回収について詳細に説明する。
 この第2実施形態においては、ブレーキドラム13の摩擦摺動部13aに形成された収容空間13b内に潜熱蓄熱材21が収容されている。これにより、潜熱蓄熱材21は、摩擦摺動部13aにて発生した摩擦熱(熱エネルギー)によって加熱されて、上記第1実施形態と同様に、固相と液相とが共存する状態を経て固相から液相に相変化する。したがって、熱回収部20の潜熱蓄熱材21は、例えば、図6に示したのと同様に、制動による発熱量変化に対して、共存温度を有して変化し、熱電変換部31の加熱面31aを摩擦摺動部温度まで加熱する。
 また、制動部10が制動力の付与を中止すると、摩擦熱(熱エネルギー)は発生しないため、摩擦摺動部13aすなわちブレーキドラム13が、例えば、走行風などによって冷却される。この場合、潜熱蓄熱材21は、相変化に伴って、上述したように吸熱(蓄熱)した熱エネルギーを放熱(放出)する。特に、固相と液相とが共存する状態においては、潜熱蓄熱材21の全部が固相に相変化するまで共存温度で一定に保たれる。このように、相変化に伴って蓄熱(回収)した摩擦熱(熱エネルギー)を放熱(放出)することができるため、制動部10が制動力の付与を中止した場合であっても、熱回収部20は、電力回収部30の熱電変換部31の加熱面31aに継続して摩擦熱(熱エネルギー)を伝熱して摩擦摺動部温度まで加熱することができる。
 そして、この第2実施形態においても、熱回収部20によって回収された摩擦熱(熱エネルギー)を利用して、電力回収部30は、熱エネルギーを電気エネルギーに変換する。具体的に説明すると、電力回収部30においては、熱電変換部31の加熱面31aが熱回収部20によって蓄熱(回収)された摩擦熱(熱エネルギー)によって摩擦摺動部温度まで加熱される一方で、熱電変換部31の冷却面31bがハブ部13cによってハブ部温度に維持される。すなわち、ブレーキドラム13においても、摩擦摺動部温度が高温側となり、ハブ部温度が低温側となる。
 ここで、摩擦摺動部温度は、上述したように、熱回収部20による摩擦熱(熱エネルギー)の蓄熱(回収)によって、一定の共存温度で維持される。このため、特に、制動部10が制動力を付与している場合には、高温側である摩擦摺動部温度と低温側であるハブ部温度との間の温度差の増加が効果的に防止される。ところで、この第2実施形態における熱電変換部31も、上述したように、加熱面31aと冷却面31bとの温度差、言い換えれば、摩擦摺動部温度とハブ部温度との温度差を所定の温度差T1で維持することができるため、熱電変換効率が最も良好となる。
 このことに関し、この第2実施形態においても、図6に示したのと同様に、摩擦摺動部温度が共存温度で一定に維持されているときには、摩擦摺動部温度と緩やかの上昇するハブ部温度との温度差をほぼ温度差T1で維持することができる。さらに、摩擦摺動部温度が共存温度で維持されることによって、摩擦摺動部温度が共存温度から上昇する場合であっても、摩擦摺動部温度とハブ部温度との温度差が増大しすぎることを防止することができて温度差T1に近づけることができる。
 また、制動部10が制動力の付与を中止した場合には、熱回収部20は蓄熱(回収)した摩擦熱(熱エネルギー)を放出することによって、継続して摩擦摺動部温度に熱電変換部31の加熱面31aを加熱することができる。これにより、摩擦熱(熱エネルギー)が新たに発生しない状況であっても、高温側である摩擦摺動部温度と低温側であるハブ部温度との間に温度差を生じさせることができる。
 したがって、熱電変換部31は、加熱面31aと冷却面31bとの間の温度差に応じて、周知のゼーベック効果により、効率よく熱エネルギーを電気エネルギーに変換し、回生電力を発電することができる。そして、このように発電された回生電力は、変圧回路32によって変圧され、バッテリ33に蓄電される。このように、バッテリ33に蓄電された回生電力は、車両に搭載された他の機器で利用することができるため、例えば、エンジンの負荷を低減して燃費を向上させることができる。
 以上の説明からも理解できるように、この第2実施形態によれば、ブレーキドラム13の摩擦摺動部13aに形成した収容空間13b内に熱回収部20の潜熱蓄熱材21を設けるとともに、ブレーキドラム13の摩擦摺動部13a(すなわち、潜熱蓄熱材21)とハブ部13cとの間に熱電変換部31を設けることができる。これにより、制動に伴って発生した摩擦熱(熱エネルギー)により、潜熱蓄熱材21に効率よく摩擦熱(熱エネルギー)を伝熱することができるとともにブレーキドラム13の回転に伴う遠心力によって潜熱蓄熱材21を効率よく相変化させることができる。したがって、摩擦摺動部13aにて発生した摩擦熱(熱エネルギー)を潜熱として効率よく回収することができ、その結果、摩擦摺動部13aの温度上昇を効果的に抑制することができる。
 また、この第2実施形態においても、熱電変換部31を潜熱蓄熱材21に隣接して配置することができるため、潜熱蓄熱材21に蓄熱された摩擦熱(熱エネルギー)によって加熱面31aを加熱して、冷却面31bとの間の温度差を適切に維持することができる。これにより、熱電変換部31は、良好な熱電変換効率により、回収された摩擦熱(熱エネルギー)を回生電力(電気エネルギー)に変換することができる。
 また、熱回収部20に体積変化吸収機構22を設けることができるため、収容空間13b内における潜熱蓄熱材21の相変化に伴う体積変化を確実に吸収することができる。これにより、特に、潜熱蓄熱材21が液相から固相に相変化する際に発生する可能性が高い収容空間13b内の空隙の発生を防止することができ、ブレーキドラム13の質量のバランスが崩れることを防止することができる。したがって、ブレーキドラム13の質量のバランスが崩れることに起因して、例えば、車両の走行挙動や乗り心地に対する悪影響の発生を防止することができる。
 さらに、熱回収部20にフィン23をブレーキドラム13の周方向にて潜熱蓄熱材21と交互設けることができる。これにより、摩擦摺動部13aにて発生した摩擦熱(熱エネルギー)を潜熱蓄熱材21に対して効率よく伝熱することができるとともに固相と液相とが共存する状態ではブレーキドラム13の回転に伴って効果的に攪拌することができる。したがって、潜熱蓄熱材21の温度を均一化することができ、熱電変換部31の加熱面31aを適切に加熱することができる。
 ここで、この第2実施形態を実施する際には、上記第1実施形態の第1変形例、第2変形例および第3変形例と同様に変形して実施することができる。すなわち、この第2実施形態における熱回収部20のフィン23に関しては、上記第1実施形態の第1変形例と同様に、摩擦摺動部13aにて発生した摩擦熱(熱エネルギー)を効率よく熱回収部20の潜熱蓄熱材21に伝熱させるために、フィン23の形状を変更し、さらに別途フィンを設けて実施することも可能である。具体的には、収容空間13bを形成する内壁面に熱的に接続するように変形したり、収容空間13bを形成する内壁面と体積変化吸収機構22のスリーブ22aの外周面とを熱的に接続するように変形したりすることが可能である。
 これにより、この第2実施形態においても、上記第1実施形態の第1変形例と同様の効果が得られる。
 また、第2実施形態における電力回収部30の熱電変換部31に関しては、上記第1実施形態の第2変形例と同様に、上記した外力から良好に保護するために複数に分割してブレーキドラム13に対してフローティング結合するように変形することが可能である。
 これにより、この第2実施形態においても、上記第1実施形態の第2変形例と同様の効果が得られる。
 さらに、第2実施形態における熱回収部20に関しては、上記第1実施形態の第3変形例と同様に、ハブ部13cのハブ部温度の上昇を抑制するために、低温潜熱蓄熱材24を備えるように変形することが可能である。この場合においては、図21に示すように、ブレーキドラム13のハブ部13cに低温側収容空間13dが形成されている。そして、この低温側収容空間13dには、上記第1実施形態の第3変形例と同様の低温潜熱蓄熱材24が収容される。
 このように、上記第2実施形態における熱回収部20が低温潜熱蓄熱材24を備えることにより、低温潜熱蓄熱材24の温度が融点+ΔT3になると、低温潜熱蓄熱材24の一部が固相から液相に相変化を開始し、低温潜熱蓄熱材24は、固相と液相とが共存する状態で摩擦熱(熱エネルギー)を吸熱(蓄熱)することができる。
 これにより、低温潜熱蓄熱材24は、摩擦熱(熱エネルギー)を融解熱すなわち潜熱として吸熱(蓄熱)して一部が固相から液相に相変化するため、低温側共存温度を維持した状態となり、ハブ部温度は低温側共存温度で一定に保たれる。したがって、摩擦摺動部温度とハブ部温度との温度差の増大をより抑制することができる。そして、熱回収部20の低温潜熱蓄熱材24は、このように蓄熱(回収)した摩擦熱(熱エネルギー)を電力回収部30の熱電変換部31の冷却面31bに伝熱してハブ部温度(共存温度)に維持することができる。
 そして、電力回収部30は、このように熱回収部20によって回収された摩擦熱(熱エネルギー)を利用して、上記第2実施形態と同様に、熱エネルギーを電気エネルギーに変換することができる。具体的には、電力回収部30においては、熱電変換部31の加熱面31aが高温潜熱蓄熱材21によって蓄熱(回収)された摩擦熱(熱エネルギー)によって摩擦摺動部温度まで加熱される一方で、熱電変換部31の冷却面31bが低温潜熱蓄熱材24によってハブ部温度に維持される。
 ここで、摩擦摺動部温度は、上述したように、熱回収部20の高温潜熱蓄熱材21によって、一定の高温側共存温度で維持される。また、ハブ部温度は、上述したように、熱回収部20の低温潜熱蓄熱材24によって、一定の低温側共存温度で維持される。したがって、熱回収部20が低温潜熱蓄熱材24を備えた場合には、加熱面31aと冷却面31bとの温度差、言い換えれば、摩擦摺動部温度とハブ部温度との温度差が所定の温度差T1で継続して維持することができるため、熱電変換効率をより良好に維持することができる。
 本発明の実施にあたっては、上記各実施形態および各変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて、種々の変更が可能である。
 例えば、上記各実施形態および各変形例においては、摩擦による制動に伴って発生する摩擦熱(熱エネルギー)を熱回収部20が回収するように実施した。しかし、熱回収部20が回収する熱エネルギーに関しては、摩擦熱に限定されるものではなく、他の熱源からの熱エネルギーを回収するように実施することも可能である。
 また、上記各実施形態および各変形例においては、体積変化吸収機構22が弾性変形可能な金属ベローズ22bを備えるように実施した。この場合、(高温)潜熱蓄熱材21または低温潜熱蓄熱材24の体積変化に対して弾性変形できるものであれば、金属ベローズ22bに代えていかなるものを採用してもよい。この場合、例えば、弾性材料から形成された略球状の基体殻部に凹または凸の伸縮可能な変形部を形成したシェルを用いてもよい。
a. First embodiment
Hereinafter, a vehicle braking device according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a system configuration of a vehicle braking device S according to the first embodiment. In addition to braking the vehicle, the vehicle braking device S collects kinetic energy generated as a result of braking as thermal energy, and further converts the collected thermal energy into electrical energy for storage. is there.
For this reason, as shown in FIG. 1, the vehicle braking device S includes a braking unit 10 as a braking force applying unit that applies a braking force to the wheels W, and heat generated by braking by the braking unit 10. A heat recovery unit 20 as a heat recovery unit that absorbs and recovers energy, and a power recovery unit 30 as a power recovery unit that converts the thermal energy recovered by the heat recovery unit 20 into electrical energy and stores the energy. Yes. In the following description, the case where the vehicle braking device S is provided on the left and right front wheels of the vehicle (represented by the right front wheel of the vehicle in FIG. 1) will be described. It is also possible to implement by providing the braking device S or providing the vehicle braking device S only on the rear wheel side of the vehicle.
The braking unit 10 in the first embodiment is a disc brake unit that includes a disc rotor 11 that is a rotating body and a brake caliper 12 that is a friction engagement means. The disk rotor 11 is assembled with a nut on one side of a hub H that is rotatably supported by a knuckle N constituting a suspension device (not shown) via a hub bearing (not shown). It will rotate. In addition, the disc rotor 11 includes a friction sliding portion 11a that frictionally slides with a brake pad that is assembled to a brake caliper 12, which will be described later, at the outer periphery thereof. As shown in FIG. 1, the friction sliding portion 11 a is formed with an accommodation space 11 b that is filled with and accommodated with a latent heat storage material 21 as latent heat storage means that constitutes a heat recovery portion 20 described later. Yes. Further, as shown in FIG. 1, the disk rotor 11 includes a hub portion 11 c as a fixing portion that is fixed in contact with the hub H.
The brake caliper 12 accommodates a pair of brake pads, and generates a frictional force by pressing against the friction sliding portion 11a of the disk rotor 11 that rotates the brake pad. The detailed structure and operation of the disc brake unit are the same as those of the well-known disc brake unit, and are not directly related to the present invention, so the description thereof is omitted.
In the braking unit 10 configured as described above, when the brake pedal (not shown) is operated by the driver, the brake hydraulic pressure is supplied to the brake caliper 12. As a result, the brake caliper 12 presses the brake pad against the friction sliding portion 11 a of the disc rotor 11 as the supplied brake fluid pressure increases. A frictional force is generated by friction-engaging the brake pad against the frictional sliding portion 11a of the disk rotor 11 that rotates integrally with the wheel W, and this frictional force brakes the rotation of the wheel W. Is applied as a braking force. Therefore, the braking unit 10 brakes the rotating wheel W by converting the kinetic energy into heat energy (friction heat) by friction accompanying braking of the vehicle.
Thus, the heat energy (friction heat) generated by braking is recovered by the heat recovery unit 20 provided in the friction sliding portion 11a of the disk rotor 11. As shown in FIG. 2, the heat recovery unit 20 includes a latent heat storage material 21 accommodated in an accommodation space 11b formed in the friction sliding portion 11a. The latent heat storage material 21 has a physical property that absorbs or dissipates heat without causing its own temperature change in accordance with a change in the state of the substance, that is, a phase change from the solid phase to the liquid phase or a phase change from the liquid phase to the solid phase. It is what you have. As the latent heat storage material 21, for example, an organic solid such as pentaerythritol having a melting point of about 200 ° C. or a molten eutectic salt such as LiOH—NaOH can be employed.
In the latent heat storage material 21 having such physical properties, when the temperature in the accommodation space 11b rises, the thermal energy is absorbed and the phase changes from the solid phase to the liquid phase, and the temperature in the accommodation space 11b falls. The heat energy absorbed in the is released to change from a liquid phase to a solid phase. Here, when the latent heat storage material 21 undergoes a phase change and the solid phase and the liquid phase coexist, the thermal energy is absorbed (endothermic) or released (radiated) without accompanying its own temperature change. To do.
By the way, when the latent heat storage material 21 undergoes a phase change from the solid phase to the liquid phase or from the liquid phase to the solid phase, for example, a volume change of about 1 to 10% occurs. Specifically, the volume increases when the latent heat storage material 21 changes phase from a solid phase to a liquid phase, and the volume decreases when the latent heat storage material 21 changes phase from a liquid phase to a solid phase. Since the volume of the latent heat storage material 21 accommodated in the accommodation space 11b is changed in this way, especially when the latent heat storage material 21 is changed to a solid phase, a gap is generated in the accommodation space 11b and rotated. There is a possibility that the balance of mass in the disk rotor 11 as a body is lost.
Therefore, the heat recovery unit 20 absorbs the volume change of the latent heat storage material 21 accommodated in the accommodation space 11b and suppresses the generation of voids in the accommodation space 11b, as shown in FIG. A volume change absorbing mechanism 22 is provided as a plurality of volume change absorbing means provided at equal intervals (symmetrically left and right) in the circumferential direction of the friction sliding portion 11a of the disk rotor 11. As shown in detail in FIG. 3, the volume change absorption mechanism 22 is assembled to a sleeve 22a, a metal bellows 22b housed in one end of the sleeve 22a, and the other end of the metal bellows 22b. And a disk-shaped bottom plate 22c. Here, as will be described later, the sleeve 22a is formed with a plurality of notches 22a1 in the circumferential direction that allow the latent heat storage material 21 to flow.
As shown in FIG. 4, the volume change absorbing mechanism 22 configured in this manner is press-fitted toward the accommodation space 11 b so as to be flush with the friction sliding portion 11 a on the side surface of the disk rotor 11. . Thereby, even if the disk rotor 11 rotates and a centrifugal force acts on the volume change absorption mechanism 22, it is possible to prevent the volume change absorption mechanism 22 from falling off.
In the volume change absorption mechanism 22 press-fitted into the accommodation space 11b, when the latent heat storage material 21 is in a solid phase, that is, when the volume of the latent heat storage material 21 in the accommodation space 11b is the smallest, the metal bellows 22b is the bottom plate 22c. The latent heat storage material 21 is pushed down elastically through the.
When the temperature in the accommodation space 11b rises above the melting point of the latent heat storage material 21 from this state and the latent heat storage material 21 undergoes a phase change from the solid phase to the liquid phase, the volume of the latent heat storage material 21 expands. At this time, in the volume change absorption mechanism 22, the volume-expanded liquid phase latent heat storage material 21 flows into the sleeve 22a from the notch 22a1 formed in the sleeve 22a, and the bottom plate 22c is pressed. As a result, the metal bellows 22b assembled to the bottom plate 22c contracts in the axial direction of the sleeve 22a against the elastic force, so that the volume change absorption mechanism 22 absorbs the volume change (expansion change) of the latent heat storage material 21. can do.
On the other hand, when the temperature in the accommodation space 11b falls and the latent heat storage material 21 changes from a liquid phase to a solid phase, the volume of the latent heat storage material 21 contracts. At this time, in the volume change absorption mechanism 22, the latent heat storage material 21 in the liquid phase that has flowed into the sleeve 22a from the notch 22a1 formed in the sleeve 22a is contained in the accommodation space 11b. Spills towards For this reason, the pressing of the bottom plate 22c by the latent heat storage material 21 is released, and the metal bellows 22b pushes the liquid phase latent heat storage material 21 together with the bottom plate 22c in the axial direction of the sleeve 22a by its elastic force. Thereby, the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the latent heat storage material 21, and maintains the state in which the latent heat storage material 21 that contracts in the accommodation space 11b is filled without generating a void. Can do. Therefore, even when the temperature in the accommodation space 11b further falls to below the melting point of the latent heat storage material 21, and the volume further shrinks and the latent heat storage material 21 exists as a solid phase, there are voids in the accommodation space 11b. Occurrence can be suppressed.
Further, as shown in FIG. 2, the heat recovery unit 20 includes fins 23 formed inside the accommodation space 11 b. The fins 23 are arranged so as to alternate with the volume change absorbing mechanism 22 in the circumferential direction of the disk rotor 11, more specifically, the friction sliding portion 11 a. The fin 23 prevents the deformation of the frictional sliding portion 11a of the disk rotor 11 when the brake caliper 12 presses the brake pad, that is, during braking, while the latent heat storage material changed in phase from the solid phase to the liquid phase. The latent heat storage material 21 whose phase has changed from a liquid phase to a solid phase is fixed while encouraging convection of 21.
Thus, the thermal energy (frictional heat) recovered (stored) by the heat recovery unit 20 is converted into electrical energy by the power recovery unit 30 and stored. For this reason, as shown in FIGS. 1 and 2, the power recovery unit 30 is provided between the friction sliding part 11a (more specifically, the latent heat storage material 21 accommodated in the accommodation space 11b) and the hub part 11c. A thermoelectric conversion unit 31 is provided which is arranged in an annular shape and is assembled to the disk rotor 11. The thermoelectric conversion unit 31 converts thermal energy into electrical energy using a well-known Seebeck effect possessed by a substance (for example, a Bi—Te based semiconductor). As shown in FIG. 2, the thermoelectric conversion unit 31 is heated by the thermal energy (friction heat) stored on one side, that is, the heating surface 31 a by the latent heat storage material 21 stored in the storage space 11 b, and the other side. That is, the cooling surface 31b is maintained (cooled) at a relatively low temperature by the hub portion 11c in contact with the outside air.
Here, as schematically shown in FIG. 5, the thermoelectric conversion unit 31 changes the thermoelectric conversion efficiency for converting heat energy into electric energy depending on the temperature difference between the heating surface 31 a and the cooling surface 31 b. That is, in the thermoelectric conversion unit 31, when the temperature difference between the heating surface 31a and the cooling surface 31b increases to a predetermined temperature difference T1 determined in terms of physical properties, the thermoelectric conversion efficiency changes until the maximum is reached. When the temperature difference between 31a and the cooling surface 31b becomes larger than the predetermined temperature difference T1, the thermoelectric conversion efficiency is reduced.
And in the thermoelectric conversion part 31, since the heating surface 31a is heated by the thermal energy (friction heat) stored by the latent heat storage material 21, and the cooling surface 31b is relatively cooled by the hub part 11c, it is well known. An electromotive force (hereinafter, this electromotive force is referred to as regenerative power) corresponding to the temperature difference between the heating surface 31a and the cooling surface 31b is generated by the Seebeck effect. That is, the thermoelectric conversion unit 31 can convert the thermal energy (friction heat) generated by the braking by the braking unit 10 and recovered by the heat recovery unit 20 into electric energy.
As described above, the electric energy (regenerative power) converted from the heat energy (friction heat) by the thermoelectric converter 31 is supplied to the battery 33 as the power storage means via the transformer circuit 32 as shown in FIG. . The transformer circuit 32 is an electric circuit having, for example, a DC-DC converter or a capacitor as a main component, and transforms the regenerative power output from the thermoelectric converter 31 and outputs it to the battery 33. The battery 33 stores the transformed output regenerative power. The connection between the thermoelectric converter 31 and the transformer circuit 32 is not directly related to the present invention, and any method may be adopted. For example, when the transformer circuit 32 electromagnetically collects regenerative power from the thermoelectric converter 31 by non-contact, or the transformer circuit 32 collects regenerative power from the thermoelectric converter 31 by contact via a slip ring or the like. Good.
Next, the operation of the vehicle braking device S according to the first embodiment configured as described above will be described. When a brake pedal (not shown) is operated by the driver, the braking unit 10 applies a braking force to the rotation of the wheel W. That is, in the braking unit 10, as described above, the brake hydraulic pressure corresponding to the operation of the brake pedal is supplied to the brake caliper 12. Then, the brake caliper 12 causes the brake pad to be pressed against and frictionally engaged with the friction sliding portion 11a of the disk rotor 11 that rotates integrally with the wheel W by the supplied brake hydraulic pressure. Thereby, a frictional force is generated between the frictional sliding portion 11a of the disk rotor 11 and the brake pad, and this frictional force is applied to the rotating wheel W as a braking force.
On the other hand, frictional heat (heat energy) generated in the frictional sliding portion 11a of the disk rotor 11 due to braking by the frictional force is recovered by a heat recovery unit 20 provided in the frictional sliding portion 11a. Hereinafter, recovery of frictional heat (thermal energy) by the heat recovery unit 20 will be described in detail.
In general, in the disc brake unit, a part of frictional heat (heat energy) generated in the friction sliding portion 11a of the disc rotor 11 is transferred to the hub portion 11c along with braking by friction. For this reason, as shown in FIG. 6, the temperature of the disk rotor 11 changes depending on the amount of heat generated by frictional heat (thermal energy) generated during braking. That is, as shown by a one-dot chain line for comparison in FIG. 6, the temperature of the conventional friction sliding portion 11a without the heat recovery portion 20 (hereinafter referred to as the conventional friction sliding portion temperature) is the amount of heat generated by braking. As it increases, it rises quickly. On the other hand, the temperature of the hub portion 11c indicated by a solid line in FIG. 6 (hereinafter referred to as the hub portion temperature) rises with an increase in the amount of heat generated by braking, but is gentler than the conventional friction sliding portion temperature. To rise. Therefore, the temperature difference between the conventional friction sliding portion temperature and the hub portion temperature tends to increase as the amount of heat generated by braking increases.
By the way, in the disk rotor 11 according to the present invention, the accommodation space 11b is formed in the friction sliding portion 11a to accommodate the latent heat storage material 21 of the heat recovery portion 20. As a result, most of the frictional heat (heat energy) generated in the frictional sliding part 11a is transferred to the inside of the frictional sliding part 11a, in other words, into the accommodating space 11b. For this reason, the heat recovery unit 20 recovers frictional heat (thermal energy) by absorbing heat (thermal energy) of the frictional heat (thermal energy) transferred by the latent heat storage material 21 accommodated in the accommodation space 11b. As a result, it is possible to suppress an increase in the temperature difference between the temperature of the friction sliding part 11a provided with the heat recovery part 20 (hereinafter referred to as the friction sliding part temperature) and the hub part temperature. This will be described in detail below.
First, the case where the braking unit 10 applies a braking force will be described. When the braking unit 10 starts to apply the braking force, the latent heat storage material 21 is heated by frictional heat (heat energy) transferred to the accommodation space 11b. And when the temperature of the heated latent heat storage material 21 is below melting | fusing point, the latent heat storage material 21 absorbs friction heat (thermal energy) in a solid-phase state (heat storage). In this case, as the temperature of the latent heat storage material 21 rises, the frictional sliding part temperature gradually rises as compared with the conventional frictional sliding part temperature, as indicated by a broken line in FIG. The heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature.
In such a solid phase, when the temperature of the latent heat storage material 21 exceeds the melting point due to heating, more specifically, as shown in FIG. 6, when the temperature of the latent heat storage material 21 becomes the melting point + ΔT2, the latent heat storage material 21 A part starts a phase change from the solid phase to the liquid phase, and the latent heat storage material 21 absorbs friction heat (heat energy) in a state where the solid phase and the liquid phase coexist. In the following description, the melting point + ΔT2 at which the solid phase and the liquid phase coexist is referred to as the coexistence temperature.
At this time, the latent heat storage material 21 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat, and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase. As a result, when the latent heat storage material 21 is in a state in which the solid phase and the liquid phase coexist, the frictional sliding part temperature is kept constant at the coexistence temperature, as shown by the broken line in FIG. Therefore, an increase in the temperature difference between the friction sliding part temperature and the hub part temperature can be suppressed. The heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature (coexistence temperature).
Here, since the latent heat storage material 21 generally has a low thermal conductivity, the whole hardly changes from a solid phase to a liquid phase only by heating with frictional heat (thermal energy). As a result, the overall temperature of the latent heat storage material 21 may become uneven due to the presence of a relatively low temperature solid phase and a relatively high temperature liquid phase.
By the way, since the accommodation space 11b rotates integrally with the disk rotor 11, a centrifugal force can be applied to the latent heat storage material 21 accommodated in the accommodation space 11b. In this case, since the densities of the solid phase and the liquid phase are different from each other, in the state where the solid phase and the liquid phase coexist, the solid phase having a large density moves relatively to the outer peripheral side of the accommodation space 11b. The liquid phase having a small density moves relatively to the inner peripheral side of the accommodation space 11b. Further, the fins 23 formed in the accommodation space 11b can transfer frictional heat (thermal energy) to the latent heat storage material 21, and the solid phase of the latent heat storage material 21 and the rotation of the accommodation space 11b. The liquid phase can be stirred. Thereby, the phase change from a solid phase to a liquid phase is promoted, and the temperature of the entire latent heat storage material 21 is made uniform.
In the state where such a solid phase and a liquid phase coexist, when further heated, the latent heat storage material 21 changes to a liquid phase as a whole, and absorbs frictional heat (thermal energy) in the liquid phase state (heat storage). ) For this reason, when the latent heat storage material 21 is in a liquid phase state, as shown by a broken line in FIG. The heat recovery unit 20 (more specifically, the latent heat storage material 21) transmits the frictional heat (heat energy) stored (recovered) in this way to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30. Heat to friction sliding part temperature.
Next, a case where the braking unit 10 stops applying the braking force will be described. When the braking unit 10 stops applying the braking force, frictional heat (thermal energy) is not generated, and the frictional sliding unit 11a, that is, the disc rotor 11, is cooled by, for example, traveling wind. In this case, for example, as described above, in the state in which the entire latent heat storage material 21 accommodated in the accommodation space 11b is phase-changed to the liquid phase, the latent heat storage material 21 is cooled along with the cooling of the friction sliding portion 11a. 21 changes from a liquid phase to a solid phase through a state in which the solid phase and the liquid phase coexist.
At this time, the latent heat storage material 21 releases (dissipates) the heat energy absorbed (stored) as described above in accordance with the phase change. In this case, particularly in a state where the solid phase and the liquid phase coexist, the latent heat storage material 21 is kept constant at the coexistence temperature until the phase changes to the solid phase. Thus, since the frictional heat (heat energy) stored (recovered) with the phase change can be released (released), the heat recovery is possible even when the braking unit 10 stops applying the braking force. The unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer the frictional heat (thermal energy) to the frictional sliding unit temperature.
When the latent heat storage material 21 undergoes a phase change due to heat transfer of frictional heat (thermal energy) and undergoes volume expansion or contraction, as described above, the latent heat storage material 21 in the accommodation space 11b is accommodated by the volume change absorption mechanism 22. 21 volume changes are absorbed. In this case, in particular, when the latent heat storage material 21 undergoes a phase change from the liquid phase to the solid phase and the volume contracts, the metal bellows 22b of the volume change absorption mechanism 22 is liquid phase latent heat storage material 21 together with the bottom plate 22c by its elastic force. Is pushed down in the axial direction of the sleeve 22a. Thereby, the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the latent heat storage material 21, and maintains the state in which the latent heat storage material 21 that contracts in the accommodation space 11b is filled without generating a void. Can do. Therefore, even when the temperature in the accommodation space 11b further falls to below the melting point of the latent heat storage material 21, and the volume further shrinks and the latent heat storage material 21 exists as a solid phase, there are voids in the accommodation space 11b. It is possible to suppress the occurrence, and it is possible to prevent the balance of mass in the disk rotor 11 that is a rotating body from being lost.
Thus, the electric power collection | recovery part 30 converts a thermal energy into an electrical energy using the friction heat (thermal energy) collect | recovered by the heat recovery part 20. FIG. More specifically, in the power recovery unit 30, the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the friction sliding unit temperature by frictional heat (heat energy) stored (collected) by the heat recovery unit 20. Thus, the cooling surface 31b of the thermoelectric conversion part 31 is maintained at the hub part temperature by the hub part 11c. That is, in the disk rotor 11, the frictional sliding part temperature is on the high temperature side, and the hub part temperature is on the low temperature side.
Here, the friction sliding part temperature is maintained at a constant coexistence temperature by storing (recovering) frictional heat (thermal energy) by the heat recovery part 20 as described above. For this reason, especially when the braking unit 10 is applying a braking force, an increase in the temperature difference between the frictional sliding unit temperature on the high temperature side and the hub temperature on the low temperature side is effectively prevented. Is done. Incidentally, as described above, in the thermoelectric conversion unit 31, the temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature is maintained at a predetermined temperature difference T1. The thermoelectric conversion efficiency is the best.
In this regard, as shown in FIG. 6, when the frictional sliding part temperature is maintained constant at the coexistence temperature, the temperature difference between the frictional sliding part temperature and the gradually rising hub part temperature is substantially equal to the temperature difference T1. Can be maintained. Furthermore, by maintaining the frictional sliding part temperature at the coexistence temperature, even if the frictional sliding part temperature rises from the coexistence temperature, the temperature difference between the frictional sliding part temperature and the hub part temperature increases. It is possible to prevent the temperature from becoming too high and to approach the temperature difference T1. Therefore, the thermoelectric conversion part 31 can convert friction heat (thermal energy) into regenerative electric power (electric energy) and collect it with favorable thermoelectric conversion efficiency.
Further, when the braking unit 10 stops applying the braking force, the heat recovery unit 20 continuously dissipates (releases) the frictional heat (thermal energy) stored (collected), thereby continuously maintaining the frictional sliding unit temperature. The heating surface 31a of the thermoelectric converter 31 can be heated. Thereby, even in a situation where frictional heat (heat energy) is not newly generated, a temperature difference can be generated between the frictional sliding part temperature on the high temperature side and the hub part temperature on the low temperature side.
Therefore, the thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. . The regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33. Thus, since the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
As can be understood from the above description, according to the first embodiment, the latent heat storage material 21 of the heat recovery unit 20 is provided in the housing space 11b formed in the friction sliding portion 11a of the disc rotor 11, and the disc The thermoelectric conversion part 31 can be provided between the friction sliding part 11a (that is, the latent heat storage material 21) of the rotor 11 and the hub part 11c. Thereby, the frictional heat (thermal energy) generated by braking can efficiently transfer the frictional heat (thermal energy) to the latent heat storage material 21, and the latent heat storage by the centrifugal force accompanying the rotation of the disk rotor 11. The phase of the material 21 can be changed efficiently. Therefore, the frictional heat (heat energy) generated in the frictional sliding part 11a can be efficiently recovered as latent heat, and as a result, the temperature rise of the frictional sliding part 11a can be effectively suppressed.
Moreover, since the thermoelectric conversion part 31 can be arrange | positioned adjacent to the latent heat storage material 21, the heating surface 31a is heated with the frictional heat (thermal energy) stored in the latent heat storage material 21, and the thermoelectric conversion part 31 is contacted with the cooling surface 31b. The temperature difference between them can be maintained appropriately. Thereby, the thermoelectric conversion part 31 can convert the collect | recovered frictional heat (thermal energy) into regenerative electric power (electrical energy) by favorable thermoelectric conversion efficiency.
Moreover, since the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 11b can be absorbed reliably. Thereby, in particular, it is possible to prevent the generation of voids in the accommodation space 11b, which is highly likely to occur when the latent heat storage material 21 undergoes a phase change from the liquid phase to the solid phase, and the mass balance of the disk rotor 11 can be prevented. It can be prevented from collapsing. Therefore, due to the mass balance of the disc rotor 11 being lost, for example, it is possible to prevent an adverse effect on the running behavior and riding comfort of the vehicle.
Furthermore, the fins 23 can be provided alternately with the latent heat storage material 21 in the circumferential direction of the disk rotor 11 in the heat recovery unit 20. As a result, the frictional heat (heat energy) generated in the frictional sliding portion 11a can be efficiently transferred to the latent heat storage material 21, and the disk rotor 11 is in a state where the solid phase and the liquid phase coexist. Stirring can be effectively performed with rotation. Therefore, the temperature of the latent heat storage material 21 can be made uniform, and the heating surface 31a of the thermoelectric conversion unit 31 can be appropriately heated.
b. First modification of the first embodiment
In the first embodiment, the volume change absorption mechanism 22 and the fins 23 of the heat recovery unit 20 are provided without being brought into contact with the wall surface forming the accommodation space 11b. In this case, in order to efficiently transfer the frictional heat (heat energy) generated in the friction sliding part 11a to the latent heat storage material 21 of the heat recovery part 20, the shape of the fins 23 is changed, and further fins are provided. It is also possible to implement. Hereinafter, although this 1st modification is demonstrated in detail, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the description is abbreviate | omitted.
In the first modification, as shown in FIG. 7, the heat recovery unit 20 includes fins 23 ′ instead of the fins 23 in the first embodiment. The fins 23 ′ are thermally connected to an inner wall surface forming the accommodation space 11b, more specifically, an inner wall surface located on the outer peripheral side of the friction sliding portion 11a and an inner wall surface located on the inner peripheral side. Is formed.
Moreover, in this 1st modification, fin 23'a and 23'b which thermally connects the inner wall face which forms the accommodation space 11b, and the outer peripheral surface of the sleeve 22a of the volume change absorption mechanism 22 as needed. Is formed. The fin 23'a thermally connects the inner wall surface located on the outer peripheral side of the friction sliding portion 11a and the outer peripheral surface of the sleeve 22a of the volume change absorbing mechanism 22 among the inner wall surfaces forming the accommodation space 11b. The fin 23'b thermally connects the inner wall surface located on the inner circumferential side of the friction sliding portion 11a and the outer circumferential surface of the sleeve 22a of the volume change absorbing mechanism 22 among the inner wall surfaces forming the accommodation space 11b. . Whether or not the fins 23′a and 23′b are to be provided is confirmed by experimentally confirming the amount of heat necessary to change the phase of the latent heat storage material 21, and based on this confirmation, the fins 23′a and fins It may be determined that at least one of 23′b is provided or that fins 23′a and 23′b are not provided.
When the fins 23 ′ a and 23 ′ b are provided, the frictional heat (heat energy) transferred through the fins 23 ′ a and 23 ′ b is more effectively transferred to the latent heat storage material 21. Therefore, for example, it is desirable to form the sleeve 22a of the volume change absorption mechanism 22 from a material having better thermal conductivity than iron such as aluminum. By selecting the material for forming the sleeve 22a in this way, frictional heat (thermal energy) can be efficiently transferred to the inside of the latent heat storage material 21.
In the first modified example configured as described above, when a braking force is applied by the braking unit 10, the frictional heat (heat energy) generated in the frictional sliding part 11 a of the disk rotor 11 is applied to the fins 23 ′. The heat is transferred to the inside of the latent heat storage material 21 accommodated in the accommodation space 11b. Further, when the fins 23 ′ a and 23 ′ b are provided, the frictional heat generated in the friction sliding portion 11 a through the fins 23 ′ a and 23 ′ b and the sleeve 22 a of the volume change absorbing mechanism 22. (Heat energy) is transferred to the inside of the latent heat storage material 21.
Thereby, for example, in a state where the solid phase and the liquid phase coexist, in addition to stirring by the relative movement of the solid phase and the liquid phase by the centrifugal force described above, frictional heat (thermal energy) ) Is further transferred, the phase change from the solid phase to the liquid phase is further promoted, and the temperature of the entire latent heat storage material 21 is made uniform. That is, in the first modification, frictional heat (heat energy) can be transferred more efficiently than in the first embodiment. Therefore, the heating surface 31a of the thermoelectric conversion unit 31 can be heated more stably, and regenerative power can be generated.
Furthermore, in this 1st modification, it becomes the structure where the latent heat storage material 21 is partitioned off by adjacent fin 23 '. Therefore, when the latent heat storage material 21 undergoes a phase change, the volume change is absorbed by the volume change absorption mechanism 22 and the movement in the circumferential direction in the accommodation space 11b is suppressed, so that the disk rotor which is a rotating body The effect that the balance of the mass in 11 can be prevented more effectively can be expected.
Other effects are the same as in the first embodiment.
c. Second modification of the first embodiment
In the first embodiment and the first modified example, the thermoelectric converter 31 of the power recovery unit 30 is the frictional sliding part 11a of the disk rotor 11 (more specifically, the latent heat storage material accommodated in the accommodating space 11b). 21) and the hub portion 11c, the heating surface 31a was heated to the friction sliding portion temperature, and the cooling surface 31b was maintained at the hub portion temperature. By the way, since the disk rotor 11 is disposed under the so-called spring of the vehicle, vibrations and the like are easily input as the vehicle travels. Further, there is a possibility that a shearing force or stress accompanying heating and cooling acts on the thermoelectric conversion unit 31. For this reason, when the thermoelectric conversion part 31 is assembled | attached to the disk rotor 11, it is desirable to protect the thermoelectric conversion part 31 favorably from the above-mentioned external force. Hereinafter, although this 2nd modification is demonstrated in detail, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the description is abbreviate | omitted.
In the second modified example, as shown in FIG. 8, the thermoelectric conversion unit 31 constituting the power recovery unit 30 is divided into a plurality. In the second modification, each thermoelectric conversion unit 31 is coupled to the disk rotor 11 by the floating fastening mechanism 34. The floating fastening mechanism 34 is connected to the disk rotor 11 by a fastening collar 34a for fixing the connected thermoelectric conversion part 31 to the disk rotor 11, a connecting member 34b for connecting the thermoelectric conversion parts 31 adjacent to each other in a circumferential shape, and the fastening collar 34a. A heat-resistant heat insulating material 34c that is fixed and covers the thermoelectric conversion portion 31.
Here, the fastening collar 34a is formed in a hollow cylindrical shape from stainless steel having a low thermal conductivity, for example, and is connected by a connecting member 34b by forming stepped portions at both ends as shown in FIG. The thermoelectric conversion portion 31 and the heat-resistant heat insulating material 34 c thus fixed are fixed to the disk rotor 11. In addition, when fixing the thermoelectric conversion part 31 connected by the connection member 34b to the disk rotor 11, as shown in FIG. 9, the fastening collar 34a is between the molded step part and the heat-resistant heat insulating material 34c. Fix it so that some clearance is generated.
Further, the connecting member 34b is formed from a flexible material. And the connection member 34b connects each thermoelectric conversion part 31 spaced apart from the fastening collar 34a, in order to prevent that unnecessary stress acts on the thermoelectric conversion part 31. As shown in FIG.
Further, as shown in FIG. 10, the floating fastening mechanism 34 includes a displacement regulating member 34 d having a substantially U-shaped cross section, and a thermoelectric conversion unit in order to allow a radial displacement of the thermoelectric conversion unit 31 in the disk rotor 11. 31 and a displacement absorbing member 34e disposed between the displacement regulating member 34d. Here, the displacement regulating member 34d is formed of, for example, a copper plate having a high thermal conductivity. Further, the displacement absorbing material 34e is also made of, for example, a copper mesh, a copper mesh wire, a copper mesh or the like having a high thermal conductivity.
In the second modification configured as described above, the thermoelectric conversion section 31 divided into a plurality is so-called floating coupled to the disk rotor 11 by the floating fastening mechanism 34. For this reason, in a situation where a shearing force or the like can act on the thermoelectric conversion part 31 in the circumferential direction with heating and cooling, for example, the connecting member 34b is deformed, thereby causing a shearing force or the like on the thermoelectric conversion part 31. Can be prevented from acting. Moreover, in the situation where the thermoelectric conversion part 31 is displaced in the radial direction of the disk rotor 11, for example, the displacement of the thermoelectric conversion part 31 is allowed by deformation of the displacement absorbing material 34 e, and stress acts on the thermoelectric conversion part 31. This can be prevented.
In addition, the fastening collar 34a is formed of a material having a small thermal conductivity, and the displacement regulating member 34d and the displacement absorbing member 34e are formed of a material having a large thermal conductivity, so that the friction sliding portion 11a of the disk rotor 11 can be used. The generated frictional heat (thermal energy) can be preferentially transferred to the heating surface 31a of the thermoelectric converter 31. Further, the heat-resistant heat insulating material 34 c covers the thermoelectric conversion part 31, so that the frictional heat (heat energy) generated in the frictional sliding part 11 a of the disk rotor 11 is preferentially applied to the heating surface 31 a of the thermoelectric conversion part 31. Heat can be transferred.
That is, as in the second modification, friction is transferred from the friction sliding portion 11a to the hub portion 11c by appropriately selecting the material of the members constituting the floating fastening mechanism 34 based on the thermal conductivity. The amount of heat (heat energy) heat transfer can be controlled appropriately. Therefore, since the heating surface 31a of the thermoelectric conversion unit 31 can be efficiently heated, the power generation efficiency of regenerative power by the thermoelectric conversion unit 31 can be improved.
Other effects are the same as those of the first embodiment and the first modification.
Various modifications can be made in the second modified example. For example, in the said 2nd modification, the thermoelectric conversion part 31 was shape | molded in circular arc shape, and it implemented so that it might be connected by the connection member 34b. In this case, for example, as shown in FIG. 11, it is also possible to implement such that the connecting member 34b connects the thermoelectric conversion portion 31 formed in a linear shape. In this case, although the thermoelectric conversion part 31 can be molded very easily, the width in the radial direction of the frictional sliding part 11a of the disk rotor 11 may be reduced. Accordingly, when the linear thermoelectric conversion unit 31 is employed, it is preferable that the thermoelectric conversion unit 31 is assembled to the large-diameter disk rotor 11.
Further, in the second modification, as shown in FIG. 9, the step portions formed at both ends of the fastening collar 34a are fixed to the disk rotor 11 via the heat-resistant heat insulating material 34c. In this case, when the mechanical strength of the heat-resistant heat insulating material 34c is small, as shown in FIG. 12, two step portions are formed at both ends of the fastening collar 34a, and each step portion has a heat-resistant heat insulating material 34c. It is also possible to carry out so as to contact the disk rotor 11.
Furthermore, in the said 2nd modification, the heat resistant heat insulating material 34c was provided and implemented. However, it goes without saying that the heat-resistant heat insulating material 34c can be omitted if necessary.
d. Third modification of the first embodiment
In the first embodiment and each modification, the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 is relatively cooled by the hub portion 11c. More specifically, the hub portion temperature is maintained. Carried out. In these cases, for example, as shown in FIG. 6, the hub portion temperature also gradually increases as the amount of heat generated by braking increases, so the temperature difference T1 that maximizes the thermoelectric conversion efficiency of the thermoelectric conversion portion 31 is continued. And may be difficult to maintain. In this case, it is possible to absorb the frictional heat (heat energy) transferred to the hub portion 11c of the disk rotor 11 and suppress the increase in the hub portion temperature. Hereinafter, although the 3rd modification of this 1st Embodiment is demonstrated in detail, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and the description is abbreviate | omitted. In the following description, for easy understanding, the accommodation space 11b in the first embodiment is referred to as a high temperature side accommodation space 11b, the latent heat storage material 21 is referred to as a high temperature latent heat storage material 21, and the coexistence temperature is The high temperature side coexistence temperature.
In the third modified example, as shown in FIGS. 13 and 14, a low-temperature side accommodation space 11 d is formed in the hub portion 11 c of the disk rotor 11. And the heat recovery part 20 in this 3rd modification is equipped with the low temperature latent heat storage material 24 accommodated in the low temperature side accommodation space 11d. Similarly to the high-temperature latent heat storage material 21, the low-temperature latent heat storage material 24 changes its own temperature according to a change in the state of the substance, that is, a phase change from the solid phase to the liquid phase or a phase change from the liquid phase to the solid phase. It has physical properties to absorb heat or dissipate without generating any. As the low-temperature latent heat storage material 24, for example, Na having a melting point of about 50 to 100 ° C. 2 SO 4 ・ 10H 2 Hydrated salts such as O can be employed.
Therefore, in the low-temperature latent heat storage material 24, when the temperature in the low-temperature side accommodation space 11d rises, it absorbs thermal energy and changes in phase from a solid phase to a liquid phase at a temperature lower than that of the high-temperature latent heat storage material 21. When the temperature in the side accommodating space 11d is lowered, the absorbed thermal energy is released and the phase changes from the liquid phase to the solid phase. When the low-temperature latent heat storage material 24 also undergoes a phase change and the solid phase and the liquid phase coexist, the thermal energy is absorbed (endothermic) or released (radiated) without accompanying its own temperature change. To do.
Similarly to the high-temperature latent heat storage material 21, the low-temperature latent heat storage material 24 also undergoes a volume change when the phase changes from the solid phase to the liquid phase or from the liquid phase to the solid phase. For this reason, the heat recovery unit 20 in the second embodiment absorbs the volume change of the low-temperature latent heat storage material 24 accommodated in the low-temperature side accommodation space 11d, and suppresses the generation of voids in the low-temperature side accommodation space 11d. For this purpose, as shown in FIG. 14, the hub portion 11c of the disk rotor 11 is provided with a plurality of volume change absorbing mechanisms 22 at equal intervals in the circumferential direction.
Next, the operation of the vehicle braking device S according to the third modified example configured as described above will be described. Also in the third modified example, the braking unit 10 applies a braking force to the rotation of the wheel W, as in the first embodiment. That is, also in the braking unit 10, when brake fluid pressure corresponding to the operation of a brake pedal (not shown) by the driver is supplied to the brake caliper 12, the brake caliper 12 is integrated with the wheel W by the supplied brake fluid pressure. A brake pad is pressed against the frictional sliding portion 11a of the rotating disc rotor 11 and frictionally engaged. As a result, as in the first embodiment, frictional force (braking force) is generated between the frictional sliding portion 11a of the disk rotor 11 and the brake pad, and frictional heat (thermal energy) is generated.
Thus, the frictional heat (heat energy) generated in the frictional sliding portion 11a of the disk rotor 11 due to braking by the frictional force is recovered by the heat recovery unit 20. The recovered frictional heat (thermal energy) is converted into regenerative power (electric energy) by the power recovery unit 30 and stored. First, recovery of frictional heat (thermal energy) by the heat recovery unit 20 of the third modification will be described in detail.
In the third modification, the heat recovery unit 20 includes a high-temperature latent heat storage material 21 housed in a high-temperature side housing space 11b formed in the friction sliding part 11a, and a low-temperature side housing formed in the hub part 11c. And a low-temperature latent heat storage material 24 housed in the space 11d. Thereby, the high-temperature latent heat storage material 21 is heated by the frictional heat (heat energy) generated in the friction sliding portion 11a, and the solid phase and the liquid phase coexist in the same manner as in the first embodiment. After that, the phase changes from the solid phase to the liquid phase. Therefore, as shown in FIG. 15, the high-temperature latent heat storage material 21 of the heat recovery unit 20 changes with a high-temperature side coexistence temperature with respect to the heat generation amount change due to braking, and the heating surface 31a of the thermoelectric conversion unit 31 is changed. Heat.
On the other hand, the low-temperature latent heat storage material 24 stored in the low-temperature-side storage space 11d absorbs (stores) the frictional heat (heat energy) transferred to the hub portion 11c. Thereby, the heat recovery unit 20 in the third modification can further suppress an increase in the temperature difference between the frictional sliding part temperature and the hub part temperature as compared with the first embodiment. This will be described in detail below.
First, the case where the braking unit 10 applies a braking force will be described. When the braking unit 10 starts applying the braking force, the low-temperature latent heat storage material 24 is heated by frictional heat (heat energy) transferred to the low-temperature side accommodation space 11d. When the temperature of the heated low-temperature latent heat storage material 24 is equal to or lower than the melting point, the low-temperature latent heat storage material 24 absorbs frictional heat (heat energy) in a solid state (stores heat). In this case, as the temperature of the low-temperature latent heat storage material 24 increases, the hub temperature gradually increases as shown by the solid line in FIG. Then, the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (heat energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 to the hub part temperature. maintain.
In such a solid phase, when the temperature of the low-temperature latent heat storage material 24 exceeds the melting point due to heating, more specifically, as shown in FIG. 15, when the temperature of the low-temperature latent heat storage material 24 reaches the melting point + ΔT3, the low-temperature latent heat storage material 24 A part of the material 24 starts a phase change from the solid phase to the liquid phase, and the low-temperature latent heat storage material 24 absorbs friction heat (thermal energy) in a state where the solid phase and the liquid phase coexist. In the following description, the melting point + ΔT3 at which the solid phase and the liquid phase coexist in the low-temperature latent heat storage material 24 is referred to as a low-temperature side coexistence temperature.
At this time, the low-temperature latent heat storage material 24 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat, and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase. It becomes. Thereby, when the low-temperature latent heat storage material 24 is in a state where the solid phase and the liquid phase coexist, the hub portion temperature is kept constant at the low-temperature side coexistence temperature as shown by the solid line in FIG. Therefore, an increase in the temperature difference between the friction sliding part temperature and the hub part temperature can be further suppressed. Then, the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (thermal energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfers the hub temperature ( Maintain the coexistence temperature.
Here, since the low-temperature latent heat storage material 24 also generally has a low thermal conductivity, the whole is unlikely to change from a solid phase to a liquid phase only by heating with frictional heat (thermal energy). As a result, similar to the high-temperature latent heat storage material 21, the overall temperature of the low-temperature latent heat storage material 24 may become nonuniform due to the presence of a relatively low-temperature solid phase and a relatively high-temperature liquid phase.
By the way, since the low temperature side accommodation space 11d also rotates integrally with the disk rotor 11, a centrifugal force can be applied to the low temperature latent heat storage material 24 accommodated in the low temperature side accommodation space 11d. Thereby, a solid phase with a high density moves relatively to the outer peripheral side of the low temperature side accommodation space 11d, and a liquid phase with a low density moves relatively to the inner circumference side of the low temperature side accommodation space 11b. Thereby, the phase change from a solid phase to a liquid phase is promoted, and the temperature of the entire low-temperature latent heat storage material 24 is made uniform.
When the solid phase and the liquid phase coexist in this state and further heated, the low-temperature latent heat storage material 24 changes to the liquid phase as a whole and absorbs frictional heat (thermal energy) in the liquid phase ( Heat storage). For this reason, when the low-temperature latent heat storage material 24 is in a liquid phase state, the hub portion temperature rises from the coexistence temperature as shown by a solid line in FIG. Then, the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (heat energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 to the hub part temperature. maintain.
Next, a case where the braking unit 10 stops applying the braking force will be described. When the braking unit 10 stops applying the braking force, frictional heat (thermal energy) is not generated, and the frictional sliding unit 11a and the hub unit 11c, that is, the disc rotor 11 are cooled by, for example, traveling wind. In this case, for example, as described above, in the state where the whole of the low-temperature latent heat storage material 24 accommodated in the low-temperature side accommodation space 11d is in the liquid phase, the low-temperature latent heat is accompanied by the cooling of the hub portion 11c. Similar to the high-temperature latent heat storage material 21, the heat storage material 24 changes from a liquid phase to a solid phase through a state in which the solid phase and the liquid phase coexist.
At this time, the high-temperature latent heat storage material 21 and the low-temperature latent heat storage material 24 release (release) the heat energy absorbed (stored) as described above in accordance with the phase change. In this case, in particular, in a state where the solid phase and the liquid phase coexist, the high temperature latent heat storage material 21 and the low temperature latent heat storage material 24 are all kept constant at the coexistence temperature until the phase changes to the solid phase. Thus, since the frictional heat (heat energy) stored (recovered) with the phase change can be released (released), the heat recovery is possible even when the braking unit 10 stops applying the braking force. The high-temperature latent heat storage material 21 of the unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer frictional heat (heat energy) to the frictional sliding unit temperature, The heat recovery unit 20 low-temperature latent heat storage material 24 can transfer heat to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and maintain it at the hub temperature.
In the third modified example, when the low-temperature latent heat storage material 24 undergoes phase change due to heat transfer of frictional heat (thermal energy) and undergoes volume expansion or contraction, as described above, the volume change absorption mechanism 22 The volume change of the low-temperature latent heat storage material 24 in the low-temperature side accommodation space 11d is absorbed. In this case, in particular, when the low-temperature latent heat storage material 24 undergoes a phase change from the liquid phase to the solid phase and the volume shrinks, the metal bellows 22b of the volume change absorption mechanism 22 moves together with the bottom plate 22c with the liquid phase low-temperature latent heat storage. The material 24 is pushed down in the axial direction of the sleeve 22a.
Thereby, the volume change absorption mechanism 22 absorbs the volume change (shrinkage change) of the low-temperature latent heat storage material 24, and the low-temperature latent heat storage material 24 that shrinks in volume in the low-temperature side accommodation space 11d is filled without generating a gap. Can be maintained. Therefore, even when the temperature in the low-temperature side storage space 11d is further lowered to below the melting point of the low-temperature latent heat storage material 24, the volume is further contracted, and the low-temperature latent heat storage material 24 exists as a solid phase, It can suppress that a space | gap arises in the space 11d, and it can prevent that the balance of the mass in the disc rotor 11 which is a rotary body collapse | crumbles.
As described above, the power recovery unit 30 converts the thermal energy into electrical energy using the frictional heat (thermal energy) recovered by the heat recovery unit 20 as described above. Specifically, in the power recovery unit 30, the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the frictional sliding unit temperature by frictional heat (thermal energy) stored (collected) by the high-temperature latent heat storage material 21. Thus, the cooling surface 31 b of the thermoelectric converter 31 is maintained at the hub temperature by the low-temperature latent heat storage material 24.
Here, the friction sliding part temperature is maintained at a constant high temperature side coexistence temperature by the high-temperature latent heat storage material 21 of the heat recovery part 20 as described above. Further, as described above, the hub portion temperature is maintained at a constant low-temperature side coexistence temperature by the low-temperature latent heat storage material 24 of the heat recovery unit 20. Accordingly, in the third modification, as shown in FIG. 15, the temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature is set to a predetermined temperature. Since it can maintain continuously with difference T1, thermoelectric conversion efficiency can be maintained more favorably.
For this reason, the thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. it can. The regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33, as in the first embodiment. Thus, since the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
Therefore, in the third modification, the high temperature side accommodation space 11b is formed in the friction sliding portion 11a of the disk rotor 11 as the rotating body to accommodate the high temperature latent heat storage material 21, and the low temperature side accommodation space is accommodated in the hub portion 11c. 11d can be formed and the low-temperature latent heat storage material 24 can be accommodated. And the temperature difference between the heating surface 31a and the cooling surface 31b of the thermoelectric conversion part 31 by the high temperature latent heat storage material 21 and the low temperature latent heat storage material 24 becoming constant at the high temperature side coexistence temperature and the low temperature side coexistence temperature, respectively. Can be continuously maintained at a temperature difference at which the thermoelectric conversion efficiency is good. As a result, the frictional heat (thermal energy) can be generated (converted) into regenerative power (electric energy) more efficiently, and the generated regenerative power can be used in other devices mounted on the vehicle. it can.
Other effects are the same as those of the first embodiment and the respective modifications.
e. Second embodiment
Next, a vehicle braking device S according to a second embodiment of the present invention will be described. In the first embodiment and each modification, the brake unit 10 is implemented as a disc brake unit including the disc rotor 11 as a rotating body and the brake caliper 12 as friction engagement means. In the second embodiment, as shown in FIG. 16, the brake unit 10 employs a drum brake unit including a brake drum 13 as a rotating body and a brake shoe 14 as a friction engagement means. Since the vehicle braking device S of the second embodiment includes the heat recovery unit 20 and the power recovery unit 30 similar to those of the first embodiment, the heat recovery unit 20 and the power recovery unit 30 Detailed description is omitted.
The brake drum 13 in the second embodiment is assembled with a nut with respect to a hub H that is rotatably supported by a knuckle N that constitutes a suspension device (not shown), and rotates integrally with a wheel W. . Further, the brake drum 13 includes a friction sliding portion 13a that frictionally slides with a lining assembled to a brake shoe 12 to be described later at an outer peripheral portion thereof. As shown in FIG. 16, the friction sliding portion 13 a is formed with an accommodation space 13 b that is filled with and accommodated with a latent heat storage material 21 as latent heat storage means constituting the heat recovery portion 20. Further, as shown in FIG. 16, the brake drum 13 includes a hub portion 13 c as a fixing portion that is fixed in contact with the hub H.
As shown in FIG. 16, the brake shoe 14 is housed in the brake drum 13 and assembled to a backing plate 15 that is fixed to the vehicle body so as not to rotate. The brake shoe 14 is frictionally engaged with the friction sliding portion 13 a of the brake drum 13 by the operation of the wheel cylinder WS fixed to the backing plate 15. The detailed structure and operation of the drum brake unit are the same as those of the well-known drum brake unit, and are not directly related to the present invention, so the description thereof is omitted.
In the braking unit 10 configured as described above, when a brake pedal (not shown) is operated by the driver, the brake fluid pressure is supplied to the wheel cylinder WS. Thereby, the brake shoe 14 presses the lining against the friction sliding portion 13a of the brake drum 13 and frictionally engages with the increase of the supplied brake hydraulic pressure. A frictional force is generated by frictionally engaging the lining with the brake drum 13 that rotates integrally with the wheel W, and this frictional force is applied as a braking force for braking the rotation of the wheel W. Therefore, the braking unit 10 in the second embodiment also brakes the rotating wheel W by converting the kinetic energy into heat energy (friction heat) by friction as the vehicle is braked.
Thus, the heat energy (friction heat) generated by braking is recovered by the heat recovery unit 20 provided in the friction sliding portion 13a of the brake disk 13. And in this 2nd Embodiment, as shown in FIG.16 and FIG.17, the heat recovery part 20 is the latent heat storage material 21 accommodated in the accommodation space 13b formed in the friction sliding part 13a, and latent heat. A plurality of volume change absorbing mechanisms 22 that suppress the generation of voids in the accommodation space 13b by absorbing the volume change of the heat storage material 21 and fins 23 (not shown) formed in the accommodation space 13b are provided. Here, in this 2nd Embodiment, the volume change absorption mechanism 22 differs a little compared with the said 1st Embodiment.
That is, as shown in FIGS. 17 and 18, the volume change absorbing mechanism 22 in the second embodiment is directed in the direction along the rotation axis of the brake drum 13, that is, from the side surface of the brake drum 13 toward the housing space 13b. And press-fitted. That is, the second embodiment is different in that the volume change direction of the latent heat storage material 21 and the expansion / contraction direction of the bellows 22b can be matched, so that the formation of the notch 22a1 in the sleeve 22a becomes unnecessary. In addition, by providing the volume change absorption mechanism 22 on the side surface of the brake drum 13, the volume change absorption mechanism 22 is prevented from falling off even when the brake drum 13 rotates and a centrifugal force acts on the volume change absorption mechanism 22. can do.
Here, as shown in FIG. 19, the volume change absorbing mechanism 22 may be press-fitted from the outer peripheral surface side of the brake drum 13 toward the accommodation space 13 b. In this case, it is necessary to press-fit the volume change absorption mechanism 22 deeply into the accommodation space 13b in order to prevent the drop due to the centrifugal force. For this reason, in this case, a plurality of notches 22a1 that allow the circulation of the latent heat storage material 21 in the accommodation space 13b may be formed in the sleeve 22a in the circumferential direction, as in the first embodiment. When the possibility of dropping due to the centrifugal force is low depending on the vehicle, it is possible to reduce the amount of press-fitting into the accommodation space 13b of the volume change absorption mechanism 22 as shown in FIG. In this case, since the circulation of the latent heat storage material 21 is allowed without forming the notch 22a1 in the sleeve 22a, the volume change of the latent heat storage material 21 can be absorbed.
In the second embodiment as well, although not shown, the fins 23 are alternately formed with the latent heat storage material 21 in the circumferential direction of the brake drum 13 in the accommodation space 13b.
Also in the second embodiment, the heat energy (friction heat) recovered (stored) by the heat recovery unit 20 is converted into electric energy by the power recovery unit 30 and stored. For this reason, also in this 2nd Embodiment, the electric power collection | recovery part 30 is provided with the thermoelectric conversion part 31, the transformation circuit 32, and the battery 33, as shown in FIG. Here, as shown in FIGS. 16 and 17, the thermoelectric converter 31 in the second embodiment has one side, that is, the heat energy stored by the latent heat storage material 21 in which the heating surface 31 a is accommodated in the accommodation space 13 b. Heated by (frictional heat), the other side, that is, the cooling surface 31b is cooled by the hub portion 13c in contact with the outside air.
Next, the operation of the vehicle braking device S according to the second embodiment configured as described above will be described. Also in the second embodiment, the braking unit 10 applies a braking force to the rotation of the wheel W, as in the first embodiment. That is, in the brake unit 10 as well, when brake fluid pressure corresponding to the operation of a brake pedal (not shown) by the driver is supplied to the wheel cylinder WS, the brake shoe 14 is integrated with the wheel W by the supplied brake fluid pressure. The lining is pressed against the friction sliding portion 13a of the brake drum 13 that rotates in a frictional manner, and is frictionally engaged. Thereby, a frictional force (braking force) is generated between the frictional sliding portion 13a of the brake drum 13 and the lining, and frictional heat (thermal energy) is generated.
As described above, the frictional heat (heat energy) generated in the frictional sliding portion 13a of the brake drum 13 due to the braking by the frictional force is recovered by the heat recovery unit 20 as in the first embodiment. The recovered frictional heat (thermal energy) is converted into regenerative power (electric energy) by the power recovery unit 30 and stored. First, recovery of frictional heat (thermal energy) by the heat recovery unit 20 of the second embodiment will be described in detail.
In the second embodiment, the latent heat storage material 21 is housed in the housing space 13b formed in the friction sliding portion 13a of the brake drum 13. Thereby, the latent heat storage material 21 is heated by the frictional heat (thermal energy) generated in the friction sliding portion 13a, and the solid phase and the liquid phase coexist as in the first embodiment. Phase change from solid phase to liquid phase. Accordingly, the latent heat storage material 21 of the heat recovery unit 20 changes with a coexisting temperature with respect to the heat generation amount change due to braking, for example, as shown in FIG. 6, and the heating surface of the thermoelectric conversion unit 31. 31a is heated to the friction sliding part temperature.
When the braking unit 10 stops applying the braking force, frictional heat (thermal energy) is not generated, and the frictional sliding unit 13a, that is, the brake drum 13 is cooled by, for example, traveling wind. In this case, the latent heat storage material 21 dissipates (releases) the heat energy absorbed (stored) as described above in accordance with the phase change. In particular, in a state where the solid phase and the liquid phase coexist, all of the latent heat storage material 21 is kept constant at the coexistence temperature until the phase changes to the solid phase. Thus, since the frictional heat (heat energy) stored (recovered) with the phase change can be released (released), the heat recovery is possible even when the braking unit 10 stops applying the braking force. The unit 20 can continue to the heating surface 31a of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfer the frictional heat (thermal energy) to the frictional sliding unit temperature.
And also in this 2nd Embodiment, the electric power collection | recovery part 30 converts a thermal energy into an electrical energy using the friction heat (thermal energy) collect | recovered by the heat recovery part 20. FIG. More specifically, in the power recovery unit 30, the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the friction sliding unit temperature by frictional heat (heat energy) stored (collected) by the heat recovery unit 20. Thus, the cooling surface 31b of the thermoelectric conversion part 31 is maintained at the hub part temperature by the hub part 13c. That is, also in the brake drum 13, the friction sliding part temperature becomes a high temperature side, and the hub part temperature becomes a low temperature side.
Here, the friction sliding part temperature is maintained at a constant coexistence temperature by storing (recovering) frictional heat (thermal energy) by the heat recovery part 20 as described above. For this reason, especially when the braking unit 10 is applying a braking force, an increase in the temperature difference between the frictional sliding unit temperature on the high temperature side and the hub temperature on the low temperature side is effectively prevented. Is done. By the way, as described above, the thermoelectric converter 31 in the second embodiment also has a predetermined temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding portion temperature and the hub portion temperature. Since the temperature difference T1 can be maintained, the thermoelectric conversion efficiency is the best.
In this regard, also in the second embodiment, as shown in FIG. 6, when the frictional sliding part temperature is kept constant at the coexistence temperature, the frictional sliding part temperature and the hub that rises gradually The temperature difference from the part temperature can be maintained at the temperature difference T1. Furthermore, by maintaining the frictional sliding part temperature at the coexistence temperature, even if the frictional sliding part temperature rises from the coexistence temperature, the temperature difference between the frictional sliding part temperature and the hub part temperature increases. It is possible to prevent the temperature from becoming too high and to approach the temperature difference T1.
In addition, when the braking unit 10 stops applying the braking force, the heat recovery unit 20 continuously releases the accumulated heat (recovered) frictional heat (thermal energy), thereby continuously converting the temperature to the frictional sliding unit temperature. The heating surface 31a of the part 31 can be heated. Thereby, even in a situation where frictional heat (heat energy) is not newly generated, a temperature difference can be generated between the frictional sliding part temperature on the high temperature side and the hub part temperature on the low temperature side.
Therefore, the thermoelectric conversion unit 31 can efficiently convert heat energy into electric energy and generate regenerative power by the well-known Seebeck effect according to the temperature difference between the heating surface 31a and the cooling surface 31b. . The regenerative power generated in this way is transformed by the transformer circuit 32 and stored in the battery 33. Thus, since the regenerative electric power stored in the battery 33 can be used by other devices mounted on the vehicle, for example, it is possible to reduce engine load and improve fuel efficiency.
As can be understood from the above description, according to the second embodiment, the latent heat storage material 21 of the heat recovery unit 20 is provided in the housing space 13b formed in the friction sliding portion 13a of the brake drum 13, and the brake A thermoelectric conversion portion 31 can be provided between the friction sliding portion 13a (that is, the latent heat storage material 21) of the drum 13 and the hub portion 13c. Thereby, the frictional heat (thermal energy) generated by braking can efficiently transfer the frictional heat (thermal energy) to the latent heat storage material 21 and the latent heat storage by the centrifugal force accompanying the rotation of the brake drum 13. The phase of the material 21 can be changed efficiently. Therefore, the frictional heat (heat energy) generated in the frictional sliding part 13a can be efficiently recovered as latent heat, and as a result, the temperature rise of the frictional sliding part 13a can be effectively suppressed.
Also in the second embodiment, since the thermoelectric converter 31 can be disposed adjacent to the latent heat storage material 21, the heating surface 31 a is heated by the frictional heat (thermal energy) stored in the latent heat storage material 21. Thus, the temperature difference from the cooling surface 31b can be appropriately maintained. Thereby, the thermoelectric conversion part 31 can convert the collect | recovered frictional heat (thermal energy) into regenerative electric power (electrical energy) by favorable thermoelectric conversion efficiency.
Moreover, since the volume change absorption mechanism 22 can be provided in the heat recovery part 20, the volume change accompanying the phase change of the latent heat storage material 21 in the accommodation space 13b can be absorbed reliably. Thereby, in particular, it is possible to prevent the generation of voids in the accommodation space 13b, which is highly likely to occur when the latent heat storage material 21 undergoes a phase change from the liquid phase to the solid phase, and the balance of the mass of the brake drum 13 can be prevented. It can be prevented from collapsing. Therefore, it is possible to prevent an adverse effect on the running behavior and riding comfort of the vehicle due to the mass balance of the brake drum 13 being lost.
Furthermore, the fins 23 can be provided alternately with the latent heat storage material 21 in the circumferential direction of the brake drum 13 in the heat recovery unit 20. As a result, the frictional heat (heat energy) generated in the frictional sliding portion 13a can be efficiently transferred to the latent heat storage material 21, and the brake drum 13 is in a state where the solid phase and the liquid phase coexist. Stirring can be effectively performed with rotation. Therefore, the temperature of the latent heat storage material 21 can be made uniform, and the heating surface 31a of the thermoelectric conversion unit 31 can be appropriately heated.
Here, when implementing this 2nd Embodiment, it can change and implement similarly to the 1st modification of the said 1st Embodiment, a 2nd modification, and a 3rd modification. That is, with respect to the fins 23 of the heat recovery unit 20 in the second embodiment, the frictional heat (heat energy) generated in the frictional sliding portion 13a is efficiently obtained as in the first modification of the first embodiment. In order to transfer heat to the latent heat storage material 21 of the heat recovery unit 20, it is possible to change the shape of the fin 23 and further provide a separate fin. Specifically, the inner wall surface forming the accommodation space 13b is deformed so as to be thermally connected, or the inner wall surface forming the accommodation space 13b and the outer peripheral surface of the sleeve 22a of the volume change absorption mechanism 22 are thermally connected. It can be deformed to connect.
Thereby, also in this 2nd Embodiment, the effect similar to the 1st modification of the said 1st Embodiment is acquired.
In addition, as with the second modification of the first embodiment, the thermoelectric conversion unit 31 of the power recovery unit 30 in the second embodiment is divided into a plurality of brake drums for better protection from the external force described above. 13 can be modified to be floating-coupled.
Thereby, also in this 2nd Embodiment, the effect similar to the 2nd modification of the said 1st Embodiment is acquired.
Furthermore, as with the third modification of the first embodiment, the heat recovery unit 20 according to the second embodiment includes a low-temperature latent heat storage material 24 in order to suppress an increase in the hub temperature of the hub 13c. It is possible to deform. In this case, as shown in FIG. 21, a low-temperature side accommodation space 13 d is formed in the hub portion 13 c of the brake drum 13. And in this low temperature side accommodation space 13d, the low temperature latent heat storage material 24 similar to the 3rd modification of the said 1st Embodiment is accommodated.
Thus, when the temperature of the low-temperature latent heat storage material 24 reaches the melting point + ΔT3 by providing the low-temperature latent heat storage material 24 in the heat recovery unit 20 in the second embodiment, a part of the low-temperature latent heat storage material 24 is released from the solid phase. Phase change is started in the liquid phase, and the low-temperature latent heat storage material 24 can absorb (store) the frictional heat (thermal energy) in a state where the solid phase and the liquid phase coexist.
Thus, the low-temperature latent heat storage material 24 absorbs frictional heat (thermal energy) as melting heat, that is, latent heat and absorbs (stores heat) partly to change the phase from the solid phase to the liquid phase, so that the low temperature side coexistence temperature is maintained. Thus, the hub temperature is kept constant at the low temperature side coexistence temperature. Therefore, an increase in the temperature difference between the friction sliding part temperature and the hub part temperature can be further suppressed. Then, the low-temperature latent heat storage material 24 of the heat recovery unit 20 transfers the frictional heat (thermal energy) stored (recovered) in this way to the cooling surface 31b of the thermoelectric conversion unit 31 of the power recovery unit 30 and transfers the hub temperature ( The coexistence temperature can be maintained.
And the electric power collection | recovery part 30 can convert a thermal energy into an electrical energy like the said 2nd Embodiment using the friction heat (thermal energy) collect | recovered by the heat recovery part 20 in this way. . Specifically, in the power recovery unit 30, the heating surface 31 a of the thermoelectric conversion unit 31 is heated to the frictional sliding unit temperature by frictional heat (thermal energy) stored (collected) by the high-temperature latent heat storage material 21. Thus, the cooling surface 31 b of the thermoelectric converter 31 is maintained at the hub temperature by the low-temperature latent heat storage material 24.
Here, the friction sliding part temperature is maintained at a constant high temperature side coexistence temperature by the high-temperature latent heat storage material 21 of the heat recovery part 20 as described above. Further, as described above, the hub portion temperature is maintained at a constant low-temperature side coexistence temperature by the low-temperature latent heat storage material 24 of the heat recovery unit 20. Therefore, when the heat recovery unit 20 includes the low-temperature latent heat storage material 24, the temperature difference between the heating surface 31a and the cooling surface 31b, in other words, the temperature difference between the friction sliding part temperature and the hub part temperature is a predetermined value. Since the temperature difference T1 can be maintained continuously, the thermoelectric conversion efficiency can be maintained better.
In carrying out the present invention, the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the object of the present invention.
For example, in each of the above-described embodiments and modifications, the heat recovery unit 20 recovers frictional heat (heat energy) generated with braking due to friction. However, the thermal energy recovered by the heat recovery unit 20 is not limited to frictional heat, and may be implemented so as to recover thermal energy from other heat sources.
Moreover, in each said embodiment and each modification, it implemented so that the volume change absorption mechanism 22 might be equipped with the metal bellows 22b which can be elastically deformed. In this case, any material may be employed instead of the metal bellows 22b as long as it can be elastically deformed with respect to the volume change of the (high temperature) latent heat storage material 21 or the low temperature latent heat storage material 24. In this case, for example, a shell in which a concave or convex stretchable deformable portion is formed on a substantially spherical base shell portion made of an elastic material may be used.

Claims (17)

  1. 車両の車輪の回転に対して制動力を付与するとともに、この制動力の付与に伴って発生する熱エネルギーを回収する車両用制動装置において、
     車両の車輪と一体的に回転する回転体と、この回転体の摩擦摺動部に対して摩擦係合する摩擦係合手段とを有して前記車輪の回転に対して摩擦による制動力を付与する制動力付与手段と、
     前記回転体の摩擦摺動部の内部に収容されて、前記摩擦係合手段による摩擦係合に伴って発生する熱エネルギーにより固相から液相または液相から固相に相変化して前記熱エネルギーを潜熱として蓄熱する潜熱蓄熱手段を有する熱回収手段と、
     前記熱回収手段の潜熱蓄熱手段と前記回転体の前記車両に対する固定部との間に配置されて、前記潜熱蓄熱手段に蓄熱された熱エネルギーを電気エネルギーに変換して回収する電力回収手段とを備えたことを特徴とする車両用制動装置。
    In a vehicle braking device that applies a braking force to the rotation of a vehicle wheel and collects thermal energy generated with the application of the braking force,
    A rotating body that rotates integrally with a wheel of the vehicle and a friction engagement means that frictionally engages with a friction sliding portion of the rotating body to apply a braking force due to friction to the rotation of the wheel Braking force applying means for
    The heat is contained in the friction sliding portion of the rotating body, and the phase change from the solid phase to the liquid phase or from the liquid phase to the solid phase due to the thermal energy generated by the friction engagement by the friction engagement means. Heat recovery means having latent heat storage means for storing energy as latent heat;
    An electric power recovery means disposed between a latent heat storage means of the heat recovery means and a fixed portion of the rotating body with respect to the vehicle, and converts the heat energy stored in the latent heat storage means into electric energy and recovers it. A vehicular braking apparatus comprising:
  2. 請求項1に記載した車両用制動装置において、
     前記熱回収手段は、さらに、
     前記回転体の摩擦摺動部の内部における前記潜熱蓄熱手段の相変化に伴う体積変化を吸収する体積変化吸収手段を備えたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 1,
    The heat recovery means further includes
    A vehicular braking apparatus comprising volume change absorbing means for absorbing a volume change accompanying a phase change of the latent heat storage means inside the friction sliding portion of the rotating body.
  3. 請求項2に記載した車両用制動装置において、
     前記体積変化吸収手段を前記回転体の周方向にて等間隔に設けたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 2,
    The vehicular braking apparatus, wherein the volume change absorbing means is provided at equal intervals in the circumferential direction of the rotating body.
  4. 請求項2または請求項3に記載した車両用制動装置において、
     前記体積変化吸収手段は、前記回転体の摩擦摺動部の内部における前記潜熱蓄熱手段の相変化に伴う体積変化に対して弾性変形して、前記体積変化を吸収することを特徴とする車両用制動装置。
    In the vehicle braking device according to claim 2 or 3,
    The volume change absorbing means absorbs the volume change by elastically deforming with respect to the volume change accompanying the phase change of the latent heat storage means inside the friction sliding portion of the rotating body. Braking device.
  5. 請求項1ないし請求項4のうちのいずれか一つに記載した車両用制動装置において、
     前記熱回収手段は、さらに、
     前記摩擦係合手段による摩擦係合に伴って発生する熱エネルギーを前記潜熱蓄熱手段に伝熱するフィンを備えたことを特徴とする車両用制動装置。
    The vehicle braking device according to any one of claims 1 to 4, wherein:
    The heat recovery means further includes
    A vehicular braking apparatus comprising a fin for transferring heat energy generated in accordance with friction engagement by the friction engagement means to the latent heat storage means.
  6. 請求項5に記載した車両用制動装置において、
     前記フィンは、前記回転体の周方向にて前記潜熱蓄熱手段と交互に配置されたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 5,
    The vehicular braking apparatus according to claim 1, wherein the fins are alternately arranged with the latent heat storage means in a circumferential direction of the rotating body.
  7. 請求項5または請求項6に記載した車両用制動装置において、
     前記フィンを、前記回転体の摩擦摺動部の内部にて、この摩擦摺動部を形成する内壁面に熱的に接続したことを特徴とする車両用制動装置。
    In the vehicle braking device according to claim 5 or 6,
    A braking device for a vehicle, wherein the fin is thermally connected to an inner wall surface forming the friction sliding portion inside the friction sliding portion of the rotating body.
  8. 請求項1ないし請求項7のうちのいずれか一つに記載した車両用制動装置において、
     前記電力回収手段は、
     一側が前記熱回収手段の前記潜熱蓄熱手段によって加熱されるとともに他側が前記一側に比して低温に維持されて、前記一側と前記他側との温度差に応じて前記熱エネルギーを前記電気エネルギーに変換する熱電変換手段であることを特徴とする車両用制動装置。
    The vehicular braking apparatus according to any one of claims 1 to 7,
    The power recovery means is
    One side is heated by the latent heat storage means of the heat recovery means and the other side is maintained at a lower temperature than the one side, and the thermal energy is changed according to a temperature difference between the one side and the other side. A braking device for a vehicle, which is thermoelectric conversion means for converting into electric energy.
  9. 請求項8に記載した車両用制動装置において、
     前記熱電変換手段を前記回転体の周方向にて所定の間隔により設けたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 8, wherein
    The vehicular braking apparatus, wherein the thermoelectric conversion means is provided at a predetermined interval in the circumferential direction of the rotating body.
  10. 請求項9に記載した車両用制動装置において、
     前記熱電変換手段を前記回転体に対してフローティング結合により固定したことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 9, wherein
    A braking device for a vehicle, wherein the thermoelectric conversion means is fixed to the rotating body by floating coupling.
  11. 請求項8ないし請求項10のうちのいずれか一つに記載した車両用制動装置において、
     前記電力回収手段は、さらに、
     前記熱電変換手段によって変換された電気エネルギーを電力として蓄電する蓄電手段を備えたことを特徴とする車両用制動装置。
    The vehicle braking device according to any one of claims 8 to 10, wherein
    The power recovery means further includes:
    A braking device for a vehicle, comprising: a power storage unit configured to store the electric energy converted by the thermoelectric conversion unit as electric power.
  12. 請求項1ないし請求項11のうちのいずれか一つに記載した車両用制動装置において、
     前記熱回収手段は、さらに、
     前記回転体の固定部の内部に収容されて、前記摩擦摺動部の内部に収容される高温側の潜熱蓄熱手段よりも低い温度により固相から液相または液相から固相に相変化する低温側の潜熱蓄熱手段を備えたことを特徴とする車両用制動装置。
    The vehicle braking device according to any one of claims 1 to 11,
    The heat recovery means further includes
    The phase change from the solid phase to the liquid phase or from the liquid phase to the solid phase is performed at a temperature lower than that of the high-temperature side latent heat storage unit accommodated in the fixed portion of the rotating body and accommodated in the friction sliding portion. A vehicular braking apparatus comprising a low-temperature latent heat storage means.
  13. 請求項12に記載した車両用制動装置において、
     前記熱回収手段は、さらに、
     前記回転体の固定部の内部における前記低温側の潜熱蓄熱手段の相変化に伴う体積変化を吸収する体積変化吸収手段を備えたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 12, wherein
    The heat recovery means further includes
    A vehicular braking apparatus comprising volume change absorbing means for absorbing a volume change accompanying a phase change of the low temperature side latent heat storage means inside the fixed portion of the rotating body.
  14. 請求項13に記載した車両用制動装置において、
     前記体積変化吸収手段を前記回転体の周方向にて等間隔に設けたことを特徴とする車両用制動装置。
    The vehicle braking device according to claim 13,
    The vehicular braking apparatus, wherein the volume change absorbing means is provided at equal intervals in the circumferential direction of the rotating body.
  15. 請求項13または請求項14に記載した車両用制動装置において、
     前記体積変化吸収手段は、前記回転体の固定部の内部における前記低温側の潜熱蓄熱手段の相変化に伴う体積変化に対して弾性変形して、前記体積変化を吸収することを特徴とする車両用制動装置。
    The vehicle braking device according to claim 13 or 14,
    The volume change absorbing means is elastically deformed with respect to a volume change accompanying a phase change of the low-temperature side latent heat storage means inside the fixed portion of the rotating body, and absorbs the volume change. Braking device.
  16. 請求項1ないし請求項15のうちのいずれか一つに記載した車両用制動装置において、
     前記制動力付与手段は、
     前記回転体をディスクロータとし、前記摩擦係合手段をブレーキキャリパとしたディスクブレーキユニットであることを特徴とする車両用制動装置。
    The vehicular braking apparatus according to any one of claims 1 to 15,
    The braking force applying means is
    A braking device for a vehicle, wherein the rotating body is a disc rotor, and the friction engagement means is a brake caliper.
  17. 請求項1ないし請求項15のうちのいずれか一つに記載した車両用制動装置において、
     前記制動力付与手段は、
     前記回転体をブレーキドラムとし、前記摩擦係合手段をブレーキシューとしたドラムブレーキユニットであることを特徴とする車両用制動装置。
    The vehicular braking apparatus according to any one of claims 1 to 15,
    The braking force applying means is
    A vehicular braking device, wherein the rotating body is a drum drum unit, and the friction engagement means is a brake shoe.
PCT/JP2010/056633 2010-04-07 2010-04-07 Vehicle brake device WO2011125231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056633 WO2011125231A1 (en) 2010-04-07 2010-04-07 Vehicle brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056633 WO2011125231A1 (en) 2010-04-07 2010-04-07 Vehicle brake device

Publications (1)

Publication Number Publication Date
WO2011125231A1 true WO2011125231A1 (en) 2011-10-13

Family

ID=44762210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056633 WO2011125231A1 (en) 2010-04-07 2010-04-07 Vehicle brake device

Country Status (1)

Country Link
WO (1) WO2011125231A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2854191A1 (en) * 2013-09-30 2015-04-01 Airbus Defence and Space GmbH Thermoelectric Generator with Expandable Container
WO2023090382A1 (en) * 2021-11-17 2023-05-25 株式会社アドヴィックス Sliding member of braking device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059982A (en) * 1984-07-10 1985-04-06 Matsushita Electric Ind Co Ltd Themoelectric converter for vehicle
JPS6422657A (en) * 1987-07-20 1989-01-25 Hitachi Ltd Brake device
JPH05111101A (en) * 1991-10-17 1993-04-30 Hino Motors Ltd Brake and auxiliary driver for vehicle
JPH05167104A (en) * 1991-12-18 1993-07-02 Toto Ltd Thermoelectric generator with heat accumulating material
JP2001028805A (en) * 1999-07-12 2001-01-30 Toyota Motor Corp Driver for movable body
JP2009184461A (en) * 2008-02-05 2009-08-20 Sumitomo Electric Ind Ltd Air filling mechanism for tire, wheel with air filling mechanism, and tire wheel assembly
JP2009269469A (en) * 2008-05-07 2009-11-19 Sumitomo Electric Ind Ltd Power generation mechanism and air pressure adjustment system for tire
JP2010019152A (en) * 2008-07-10 2010-01-28 Chuo Spring Co Ltd Latent heat storage system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059982A (en) * 1984-07-10 1985-04-06 Matsushita Electric Ind Co Ltd Themoelectric converter for vehicle
JPS6422657A (en) * 1987-07-20 1989-01-25 Hitachi Ltd Brake device
JPH05111101A (en) * 1991-10-17 1993-04-30 Hino Motors Ltd Brake and auxiliary driver for vehicle
JPH05167104A (en) * 1991-12-18 1993-07-02 Toto Ltd Thermoelectric generator with heat accumulating material
JP2001028805A (en) * 1999-07-12 2001-01-30 Toyota Motor Corp Driver for movable body
JP2009184461A (en) * 2008-02-05 2009-08-20 Sumitomo Electric Ind Ltd Air filling mechanism for tire, wheel with air filling mechanism, and tire wheel assembly
JP2009269469A (en) * 2008-05-07 2009-11-19 Sumitomo Electric Ind Ltd Power generation mechanism and air pressure adjustment system for tire
JP2010019152A (en) * 2008-07-10 2010-01-28 Chuo Spring Co Ltd Latent heat storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2854191A1 (en) * 2013-09-30 2015-04-01 Airbus Defence and Space GmbH Thermoelectric Generator with Expandable Container
WO2023090382A1 (en) * 2021-11-17 2023-05-25 株式会社アドヴィックス Sliding member of braking device

Similar Documents

Publication Publication Date Title
US3592298A (en) Brake heat pipe cooling
CN102232153B (en) Braking system
JP5293898B2 (en) Anti-corrosion device for vehicle brake unit
JP2002122168A (en) Brake for road vehicle
US8312977B2 (en) Apparatus for producing a frictional and/or form-fitting connection between two components which are arranged such that they can be moved linearly or rotated relative to one another
JP2011189826A (en) Braking device for vehicle
JP2011102105A (en) Braking device for vehicle
JP2004521286A (en) Clutch device
CN114072593B (en) Brake unit for a vehicle, wheel module comprising such a brake unit and vehicle comprising such a brake unit and/or such a wheel module
WO2011125231A1 (en) Vehicle brake device
US20130015023A1 (en) Heat Pipe Cooled Brake System
CN102027256B (en) Conductive cooling for clutches
CN102483115A (en) Brake plate
JP2011131797A (en) Braking device for vehicle
JP2011133068A (en) Braking device for vehicle
JPH11220804A (en) Regenerative brake
JP6234435B2 (en) The corresponding surface
US3179209A (en) Disc brake for vehicle wheel
JP2011226530A (en) Vehicular braking device
EP1908981A1 (en) Braking device provided with peltier cell bases cooling means
US6202820B1 (en) Pressure plate for a friction clutch
JP5440331B2 (en) Braking device for vehicle
JP2011109798A (en) Braking device for vehicle
JP2011211766A (en) Brake equipment for vehicle
JP2012246978A (en) Disk brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP