WO2011125209A1 - ロータ及びその製造方法 - Google Patents
ロータ及びその製造方法 Download PDFInfo
- Publication number
- WO2011125209A1 WO2011125209A1 PCT/JP2010/056396 JP2010056396W WO2011125209A1 WO 2011125209 A1 WO2011125209 A1 WO 2011125209A1 JP 2010056396 W JP2010056396 W JP 2010056396W WO 2011125209 A1 WO2011125209 A1 WO 2011125209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- slot
- permanent magnet
- outer layer
- rotor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
Definitions
- the present invention relates to a rotor that is one of the components of a motor, and relates to a rotor including a rotor core and field permanent magnets assembled to each of a plurality of slots formed in the rotor core, and a method of manufacturing the same.
- a rotor having a permanent magnet for a field in which a permanent magnet is accommodated in a plurality of slots formed in a rotor core and fixed with an adhesive.
- the permanent magnet fixing operation requires steps such as degreasing, cleaning, applying an adhesive, and curing the rotor core and permanent magnet, and the number of manufacturing steps is large.
- the fixed position in the surface direction of the permanent magnet in the slot may vary, and the motor characteristics may be deteriorated.
- the adhesive force of the adhesive is weakened, and there is a problem in quality that the position of the permanent magnet is shifted.
- Patent Document 1 describes that a permanent magnet made of a bonded magnet is press-fitted into a slot of a rotor core and fixed while cutting the outermost periphery.
- Patent Document 2 describes a rotor in which a permanent magnet whose outer periphery is wrapped with resin is fitted in a slot of a rotor core.
- Patent Document 3 discloses a method in which a permanent magnet is coated with a coating material made of resin to form a coating layer, and a projection is formed on the outer surface of the coating layer. It is described that the permanent magnet is press-fitted into the slot while engaging the portion while cutting the portion.
- the permanent magnet is composed of a bond magnet having a weak magnetic force. Therefore, it can be considered that the permanent magnet is composed of a rare earth sintered magnet having a strong magnetic force.
- the permanent magnet may be cracked due to stress during press-fitting, and the magnet performance may be reduced.
- the magnet performance may be further deteriorated. Accordingly, it is conceivable to reduce the press-fitting allowance of the permanent magnet so that it is difficult to break.
- the accuracy of the slot shape and the outer dimensions of the permanent magnet must be increased, which increases the manufacturing effort.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rotor capable of securely fixing a permanent magnet to a slot of a rotor core while ensuring magnet performance, and a method for manufacturing the same. There is to do.
- a rotor including a rotor core, a plurality of slots formed in the rotor core, and a permanent magnet assembled to each of the plurality of slots.
- the permanent magnet includes an outer layer magnet and an inner layer magnet provided inside the outer layer magnet, and the strength of the outer layer magnet is set to be smaller than the strength of the inner layer magnet. It is intended to be fixed in the slot by contacting the inner wall of the slot.
- the outer layer magnet having low strength is brought into contact with the inner wall of the slot and the permanent magnet is press-fitted into the slot while shaving a part. At this time, the outer layer magnet having a low strength is scraped, so that the press-fit load of the permanent magnet becomes relatively small. Further, the strong inner layer magnet is accommodated in the slot without being cut. The permanent magnet is fixed in the slot by contacting the inner wall of the slot with the outer layer magnet cut away.
- the width of the inner layer magnet is smaller than the width of the slot, and the entire width of the permanent magnet including the outer layer magnet is larger than the width of the slot. desirable.
- the inner layer magnet is accommodated in the slot without contacting the inner wall of the slot because the width of the inner layer magnet is smaller than the width of the slot. Since the width of the permanent magnet including the outer layer magnet is larger than the width of the slot, the outer layer magnet is scraped by the larger width.
- the inner wall of the slot contacting the outer layer magnet may be formed in a cross-sectional sawtooth shape with irregularities extending in the axial direction of the slot. desirable.
- the inner wall of the slot that contacts the outer layer magnet is formed in a sawtooth cross section, so that when the permanent magnet is press-fitted into the slot The outer layer magnet that comes into contact with the inner wall of the slot is easily scraped, and the press-fitting load of the permanent magnet is further reduced. Further, the contact area between the inner wall of the slot and the outer layer magnet increases in the state where the permanent magnet is assembled in the slot.
- another aspect of the present invention provides a method for manufacturing a rotor including a rotor core, a plurality of slots formed in the rotor core, and a permanent magnet assembled to each of the plurality of slots.
- a permanent magnet manufacturing step of manufacturing a permanent magnet comprising an outer layer magnet and an inner layer magnet provided inside the outer layer magnet, the strength of the outer layer magnet being smaller than the strength of the inner layer magnet, and the permanent magnet in each slot.
- a permanent magnet assembling step in which a part of the outer layer magnet is pressed into contact with the inner wall of the slot while being cut.
- a permanent magnet in the permanent magnet manufacturing step, a permanent magnet is manufactured that includes an outer layer magnet and an inner layer magnet provided inside the outer layer magnet, and the strength of the outer layer magnet is smaller than that of the inner layer magnet.
- the permanent magnet assembling step the permanent magnet is press-fitted into each slot while scraping a part of the outer layer magnet in contact with the inner wall of the slot. Accordingly, when the permanent magnet is press-fitted into the slot, the outer layer magnet having a low strength is scraped, so that the press-fitting load becomes relatively small. At this time, the strong inner layer magnet is accommodated in the slot without being cut.
- the outer layer magnet In the state where the permanent magnet is assembled in the slot, the outer layer magnet is interposed between the inner layer magnet and the inner wall of the slot, and there is no gap between the permanent magnet and the inner wall of the slot.
- the width of the inner layer magnet is smaller than the width of the slot, and the entire width of the permanent magnet including the outer layer magnet is larger than the width of the slot. desirable.
- the inner layer magnet is accommodated in the slot without contacting the inner wall of the slot because the width of the inner layer magnet is smaller than the width of the slot. Since the width of the permanent magnet including the outer layer magnet is larger than the width of the slot, the outer layer magnet is scraped by the larger width.
- the permanent magnet can be securely fixed to the rotor core slot while ensuring the magnet performance.
- FIG. 2 is a sectional view taken along line 2-2 of FIG. 1 showing the rotor according to the same embodiment.
- the top view which expands and shows the part of the permanent magnet enclosed with the chain-line ellipse of FIG. 1 about the rotor concerning the embodiment.
- the top view which expands and shows the part of the slot enclosed with the chain-line ellipse of FIG. 4 about the rotor core concerning the embodiment.
- FIG. 6 is a sectional view taken along line 6-6 of FIG. 5 showing a portion of one slot of the rotor core according to the same embodiment.
- FIG. 4 is a schematic diagram showing one process of a “permanent magnet manufacturing process” according to the embodiment.
- FIG. 4 is a schematic diagram showing one process of a “permanent magnet manufacturing process” according to the embodiment.
- FIG. 4 is a schematic diagram showing one process of a “permanent magnet manufacturing process” according to the embodiment.
- FIG. 4 is a schematic diagram showing one process of a “permanent magnet manufacturing process” according to the embodiment.
- FIG. 4 is a schematic diagram illustrating a process of a “permanent magnet assembly process” according to the embodiment.
- FIG. 4 is a schematic diagram illustrating a process of a “permanent magnet assembly process” according to the embodiment.
- FIG. 4 is a schematic diagram illustrating a process of a “permanent magnet assembly process” according to the embodiment.
- the top view according to FIG. 3 which concerns on 2nd Embodiment and expands and shows the part of a permanent magnet about a rotor.
- FIG. 6 is a plan view similar to FIG. 5 showing an enlarged slot portion of the rotor core according to the same embodiment; The top view which concerns on another embodiment and shows a permanent magnet.
- FIG. 1 is a plan view showing the rotor 11 of this embodiment.
- FIG. 2 shows the rotor 11 by a cross-sectional view taken along line 2-2 of FIG.
- this rotor 11 includes a rotor core 12 having a cylindrical shape, a single shaft fastening hole 13 formed at the center of the rotor core 12, and a rotor shaft assembled to the shaft fastening hole 13. 14.
- the rotor core 12 is configured by laminating a plurality of electromagnetic steel plates 22.
- a plurality of slots 15 that are arranged at equiangular intervals and penetrate in the axial direction of the rotor core 12 are formed on the outer periphery of the rotor core 12.
- the plurality of slots 15 are arranged along the outer peripheral edge of the rotor core 12, and are arranged so that two adjacent slots 15 form a “C” shape or “reverse C shape”.
- a permanent magnet 16 for field is assembled and fixed.
- a plurality (“8” in this embodiment) of lightening holes 17 are formed around the shaft tightening hole 13 between the shaft tightening hole 13 and the plurality of slots 15. .
- These thinning holes 17 have a substantially trapezoidal shape in plan view and penetrate the rotor core 12 in the axial direction.
- These thinning holes 17 are arranged one by one between two pairs of slots 15 having an “inverted C shape”.
- the rotor shaft 14 has a cylindrical shape, and a flange 14a that engages with the rotor core 12 is formed on the outer periphery thereof.
- the rotor shaft 14 is formed by forging a metal material.
- the rotor shaft 14 is assembled to the shaft tightening hole 13 of the rotor core 12 by intermediate fitting or press fitting.
- FIG. 3 is an enlarged plan view of the portion of the permanent magnet 16 surrounded by the chain ellipse S1 of FIG.
- a first bridge portion 18 is formed between two adjacent slots 15 having an “inverted C shape” as a meat portion that divides both slots 15.
- a second bridge portion 19 as a flesh portion is formed between each slot 15 and the outer peripheral edge of the rotor core 12.
- the second permanent magnet 16 in each slot 15 is moved closer to the stator located around the rotor 11. It is necessary to make the width of the bridge portion 19 as small as possible.
- a permanent magnet 16 having a rectangular shape in plan view is assembled to the slot 15.
- the permanent magnet 16 all of the two long sides and a part of the two short sides are in contact with the inner walls 15 a and 15 b of the slot 15.
- FIG. 4 is a plan view showing the rotor core 12 before the permanent magnet 16 is assembled.
- FIG. 5 is an enlarged plan view of the portion of the slot 15 surrounded by the chain ellipse S2 in FIG.
- FIG. 6 shows a portion of one slot 5 by a sectional view taken along line 6-6 in FIG.
- FIG. 7 is a plan view showing the permanent magnet 16.
- FIG. 8 shows the permanent magnet 16 by a cross-sectional view taken along line 8-8 in FIG.
- the permanent magnet 16 includes a pair of outer layer magnets 16a and 16b and an inner layer magnet 16c provided inside the outer layer magnets 16a and 16b.
- the strength of the outer layer magnets 16a and 16b is set smaller than the strength of the inner layer magnet 16c.
- the permanent magnet 16 has an inner layer magnet 16c sandwiched between two outer layer magnets 16a and 16b.
- the inner layer magnet 16c has the same strength and magnetic force as a general permanent magnet conventionally used for a rotor.
- the basic materials constituting the inner layer magnet 16c and the outer layer magnets 16a and 16b are the same.
- the particle size of the material of the outer layer magnets 16a and 16b can be increased, or the material can be made into a blending component that hardly melts and solidifies at the grain boundaries.
- the permanent magnet 16 is fixed in the slot 15 by contacting the inner walls 15a and 15b of the slot 15 with the outer layer magnets 16a and 16b shaved off.
- the width W1 of the inner layer magnet 16c shown in FIGS. 7 and 8 is set smaller than the width W2 of the slot 15 shown in FIG.
- the entire width W3 of the permanent magnet 16 including the outer layer magnets 16a and 16b shown in FIGS. 7 and 8 is set larger than the width W2 of the slot 15 shown in FIG.
- FIG. 9 is a flowchart showing this manufacturing method.
- 10 to 12 schematically show a series of processes constituting the “permanent magnet manufacturing process”.
- 13 to 15 are sectional views showing a series of processes constituting the “permanent magnet assembling step”.
- a plurality of electromagnetic steel sheets 22 are formed into the same shape.
- the electromagnetic steel plate 22 is formed by pressing a thin plate material of about “0.3 mm”.
- the rotor core 12 is manufactured by laminating the plurality of electromagnetic steel sheets 22 formed in the above process.
- the electromagnetic steel plates 22 stacked one above the other are joined together by “caulking”.
- a plurality of permanent magnets 16 are manufactured.
- a permanent magnet is produced by forming a magnet material into a predetermined shape by a well-known method and then firing it. This step can be performed in parallel with each step described above.
- a material 26a constituting one outer layer magnet 16a is filled in a lower die 31 for molding, and the upper die 32 is clamped and compressed, whereby the material 26a is flattened.
- the material 26a in the lower mold 31 is filled with the material 26c constituting the inner layer magnet 16c, and the upper mold 32 is clamped and compressed, whereby the material 26c is compressed.
- the material 26a is integrally formed with a flat plate shape.
- the material 26b in the lower mold 31 is further filled with the material 26b constituting the other outer layer magnet 16b, and the upper mold 32 is clamped and compressed.
- the material 26b is integrally formed with the materials 26a and 26c into a flat plate having a three-layer structure. Thereafter, the work formed into the three-layer structure is fired to complete the production of the permanent magnet 16.
- the permanent magnet 16 manufactured as described above is assembled in each slot 15 of the rotor core 12 manufactured as described above. Fix it. That is, as shown in FIG. 13, the permanent magnets 16 are aligned and press-fitted into the slots 15 of the rotor core 12. At this time, as shown in FIG. 14, the permanent magnet 16 is press-fitted while the outer layer magnets 16 a and 16 b located on both sides of the inner layer magnet 16 c are partly brought into contact with the inner walls 15 a and 15 b of the slot 15 and shaved. When the press-fitting is completed as shown in FIG.
- the permanent magnet 16 is fixed in the slot 15 by contacting the inner walls 15a, 15b of the slot 15 with the outer layer magnets 16a, 16b being partially cut away. Is done. In other words, the permanent magnet 16 is fixed in the slot 15 with the outer layer magnets 16 a and 16 b interposed between the inner layer magnet 16 c and the inner walls 15 a and 15 b of the slot 15.
- the rotor shaft manufacturing step shown in FIG. 9 (5), the rotor shaft 14 is manufactured by a well-known forging method. This step can be performed in parallel with each step described above.
- the rotor shaft 14 is assembled by intermediate fitting or press fitting into the shaft fastening hole 13 shown in FIG. In this way, the manufacture of the rotor 11 shown in FIGS. 1 and 2 can be completed.
- the outer layer magnets 16 a and 16 b having low strength are brought into contact with the inner walls 15 a and 15 b of the slot 15 to be permanently cut away.
- the magnet 16 is press-fitted into the slot 15.
- the width W3 of the permanent magnet 16 including the outer layer magnets 16a and 16b is larger than the width W2 of the slot 15, the outer layer magnets 16a and 16b are scraped by the larger width W3.
- the outer layer magnets 16a and 16b having low strength are scraped, so that the press-fit load of the permanent magnet 16 becomes relatively small. For this reason, the equipment for press-fitting the permanent magnet 16 into the slot 15 can be made small and inexpensive.
- the inner layer magnet 16c is accommodated in the slot 15 without contacting the inner walls 15a, 15b of the slot 15. That is, the strong inner layer magnet 16c is accommodated in the slot 15 without being cut. For this reason, breakage such as a crack does not occur in the inner layer magnet 16c having the same magnet performance as a general permanent magnet. In this sense, the magnet performance of the permanent magnet 16 in the slot 15 can be ensured.
- the outer layer magnets 16 a and 16 b are interposed between the inner layer magnet 16 c and the inner walls 15 a and 15 b of the slot 15. There is no gap (air gap) between the inner wall 15a, 15b of the slot 15. For this reason, the permanent magnet 16 can be reliably fixed to the slot 15. Further, the magnetic performance of the permanent magnet 16 can be improved as compared with the case where there is an air gap between the inner wall of the slot and the permanent magnet.
- the permanent magnet 16 can be reliably fixed while securing the magnet performance in the slot 15 of the rotor core 12.
- the cutting allowance can be set appropriately. In this sense, the formation accuracy of the slots 15 and the permanent magnets 16 can be relaxed, and their processing costs can be reduced.
- the outer layer magnets 16 a and 16 b and the inner layer magnet 16 c provided inside the outer layer magnets 16 a and 16 b are provided, and the strength of the outer layer magnets 16 a and 16 b is increased.
- the permanent magnet 16 is made smaller than the strength of the inner layer magnet 16c.
- the permanent magnet 16 is press-fitted into each slot 15 while a part of the outer layer magnets 16 a and 16 b is in contact with the inner walls 15 a and 15 b of the slot 15.
- the outer layer magnets 16a and 16b having a low strength are scraped, so that the press-fitting load of the permanent magnet 16 becomes relatively small.
- the equipment for press-fitting the permanent magnet 16 into the slot 15 can be made small and inexpensive.
- the strong inner layer magnet 16c is accommodated in the slot 15 without being cut. For this reason, breakage such as a crack does not occur in the inner layer magnet 16c having magnet performance equivalent to that of a general permanent magnet. In this sense, the magnet performance of the permanent magnet 16 in the slot 15 can be ensured.
- the outer layer magnets 16 a and 16 b are interposed between the inner layer magnet 16 c and the inner walls 15 a and 15 b of the slot 15. No air gap between 15b. For this reason, the permanent magnet 16 can be reliably fixed to the slot 15. Further, the magnetic performance of the permanent magnet 16 can be improved as compared with the case where there is an air gap between the inner wall of the slot and the permanent magnet.
- the permanent magnet 16 can be reliably fixed while securing the magnet performance in the slot 15 of the rotor core 12.
- FIG. 16 is an enlarged plan view of the permanent magnet 16 of the rotor 11 according to FIG.
- FIG. 17 is an enlarged plan view of the slot 15 of the rotor core 12 according to FIG.
- the inner walls 15 a and 15 b of the slot 15 that come into contact with the outer layer magnets 16 a and 16 b of the permanent magnet 16 are formed in a sawtooth cross-section extending in the axial direction of the slot 15.
- the inner walls 15a and 15b of the slot 15 that come into contact with the outer layer magnets 16a and 16b are formed in a sawtooth cross section, so that when the permanent magnet 16 is press-fitted into the slot 15, the outer layer A part of the magnets 16a and 16b is easily scraped, and the press-fit load is further reduced. For this reason, the working efficiency of the “permanent magnet assembling step” can be improved. In addition, the effect of preventing damage such as cracking of the permanent magnet 16 can be enhanced.
- the outer magnets 16a and 16b are provided on the two opposing surfaces of the inner magnet 16c for the permanent magnet 16.
- the above two magnets are arranged in accordance with the magnetic performance of the permanent magnet and the processing convenience.
- An outer layer magnet may be provided on a surface other than the surface.
- the permanent magnet 16 can be configured by providing outer layer magnets 16d on the four outer peripheral surfaces of the inner layer magnet 16e.
- the rotor core 12 is configured by laminating a plurality of electromagnetic steel plates 22, but the configuration of the rotor core is not limited to this, for example, the rotor core is formed by forging. You can also
- the present invention can be used for manufacturing a motor used in an electric vehicle or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
ロータは、ロータコアと、ロータコアに形成される複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備える。永久磁石は、外層磁石と、外層磁石の内側に設けられる内層磁石とを備え、外層磁石の強度が内層磁石の強度より小さく設定される。ここで、内層磁石の幅は、スロットの幅より小さく、外層磁石を含む永久磁石の全体の幅は、スロットの幅より大きい。永久磁石は、外層磁石がその一部を削った状態でスロットの内壁に接触することによりスロットの中に固定される。
Description
この発明は、モータの構成部品の一つであるロータに係り、ロータコアと、ロータコアに形成された複数のスロットのそれぞれに組み付けられる界磁用の永久磁石とを備えたロータ及びその製造方法に関する。
一般に、界磁用の永久磁石を有するロータとして、ロータコアに形成された複数のスロットに永久磁石を収容し、接着剤により固定したものが知られている。この種のロータでは、永久磁石の固定作業において、ロータコア及び永久磁石の脱脂、洗浄や接着剤の塗布、硬化などの工程が必要となり、製造工程数が多くなっていた。また、スロット内において永久磁石の面方向における固定位置がばらつき、モータ特性が悪化するおそれがあった。さらに、モータ使用時にロータが高温になると、接着剤の接着力が弱まり、永久磁石の位置がずれるという品質上の問題もあった。また、永久磁石の固定に接着剤を用いると、ロータを廃棄する際に、ロータコアと永久磁石との分離や解体が困難となり、リサイクル性の面でも問題があった。ここで、ロータを炉に入れて接着剤の接着力を弱め、ロータコアと永久磁石とを分離して解体する方法が知られている。しかし、そのような解体作業には多くの工程が必要となり、ロータコアに接着剤が残ってしまうおそれもあった。
そこで、従来は、ロータの製造工程を削減し、永久磁石をロータコアのスロットに強固に固定すると共に、リサイクル性も考慮した技術が幾つか提案されている。その一例として、下記の特許文献1には、ボンド磁石からなる永久磁石を、その最外周部を切除しながらロータコアのスロットに圧入して固定することが記載されている。
一方、下記の特許文献2には、外周を樹脂で包んだ永久磁石をロータコアのスロットに嵌め入れたロータが記載されている。また、特許文献3には、永久磁石を樹脂からなる被覆材で被覆して被覆層を形成すると共に、その被覆層の外側に凸部を形成したものを、ロータコアのスロットの内壁面にて凸部を切削させつつ係合させながら永久磁石をスロット内に圧入することが記載されている。
ところが、特許文献1に記載のロータでは、永久磁石が、磁力の弱いボンド磁石により構成されていた。そこで、永久磁石を、磁力の強い希土類焼結磁石により構成することが考えられる。しかし、希土類焼結磁石よりなる永久磁石をスロットに圧入しようとすると、圧入時の応力により永久磁石に割れが生じ、磁石性能を低下させるおそれがあった。また、割れにより永久磁石の一部が脱落すると、更に磁石性能を低下させるおそれがあった。そこで、割れ難いように永久磁石の圧入代を小さくすることも考えられる。しかし、この場合は、スロット形状や永久磁石の外形寸法の精度を上げなければならず、製造上の手間が増えてしまう。
一方、特許文献2及び3に記載のロータでは、スロットの内壁と永久磁石との間に樹脂の被覆層が介在するので、その分だけ永久磁石の磁力が弱くなってしまう。そこで、磁力を確保するために永久磁石を大きくすると、スロットも大きくなり、ロータコアの外径が大きくなってしまう。このことは、ロータ、延いてはモータの小型化要請に反してしまう。
この発明は上記事情に鑑みてなされたものであって、その目的は、ロータコアのスロットに対して磁石性能を確保しながら永久磁石を確実に固定することを可能としたロータ及びその製造方法を提供することにある。
(1)上記目的を達成するために、本発明の第1の態様は、ロータコアと、ロータコアに形成される複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備えたロータにおいて、永久磁石は、外層磁石と、外層磁石の内側に設けられる内層磁石とを備え、外層磁石の強度が内層磁石の強度より小さく設定され、永久磁石は、外層磁石がその一部を削った状態でスロットの内壁に接触することによりスロットの中に固定されることを趣旨とする。
上記発明の構成によれば、永久磁石をスロットに組み付けるには、強度の小さい外層磁石をスロットの内壁に接触させて一部を削りながら永久磁石をスロットに圧入する。このとき、強度の小さい外層磁石が削れることで、永久磁石の圧入荷重が比較的小さくなる。また、強度のある内層磁石は、削れることなくスロットの中に収容される。永久磁石は、外層磁石がその一部を削った状態でスロットの内壁に接触することによりスロットの中に固定される。
(2)上記目的を達成するために、上記(1)の構成において、内層磁石の幅は、スロットの幅より小さく、外層磁石を含む永久磁石の全体の幅は、スロットの幅より大きいことが望ましい。
上記発明の構成によれば、上記(1)の構成の作用に加え、内層磁石の幅がスロットの幅より小さいことから、内層磁石がスロットの内壁に接することなくスロットに収容される。外層磁石を含む永久磁石の幅がスロットの幅より大きいことから、その幅の大きい分だけ外層磁石が削れることとなる。
(3)上記目的を達成するために、上記(1)又は(2)の構成において、外層磁石と接触するスロットの内壁は、スロットの軸方向に凹凸が延びる断面鋸歯状に形成されることが望ましい。
上記発明の構成によれば、上記(1)又は(2)の構成の作用に加え、外層磁石と接触するスロットの内壁が断面鋸歯状に形成されるので、永久磁石をスロットに圧入するときに、スロットの内壁に接触する外層磁石が削れ易くなり、永久磁石の圧入荷重が更に小さくなる。また、スロットに永久磁石を組み付けた状態で、スロットの内壁と外層磁石との接触面積が増える。
(4)上記目的を達成するために、本発明の別の態様は、ロータコアと、ロータコアに形成される複数のスロットと、複数のスロットのそれぞれに組み付けられる永久磁石とを備えたロータの製造方法であって、外層磁石と、外層磁石の内側に設けられる内層磁石とを備え、外層磁石の強度を内層磁石の強度より小さくした永久磁石を作製する永久磁石作製工程と、永久磁石を、各スロットの中に、外層磁石の一部をスロットの内壁に接触させて削りながら圧入する永久磁石組付工程とを備えたことを趣旨とする。
上記発明の構成によれば、永久磁石作製工程では、外層磁石と、外層磁石の内側に設けられる内層磁石とを備え、外層磁石の強度を内層磁石の強度より小さくした永久磁石が作製される。また、永久磁石組付工程では、永久磁石が、各スロットの中に、外層磁石の一部をスロットの内壁に接触させて削りながら圧入される。従って、永久磁石をスロットに圧入するときに強度の小さい外層磁石が削れるので、圧入荷重が比較的小さくなる。このとき、強度のある内層磁石は、削れることなくスロットの中に収容される。スロットに永久磁石が組み付けられた状態では、内層磁石とスロットの内壁との間に外層磁石が介在することとなり、永久磁石とスロットの内壁との間に隙間ができない。
(5)上記目的を達成するために、上記(4)の構成において、内層磁石の幅は、スロットの幅より小さく、外層磁石を含む永久磁石の全体の幅は、スロットの幅より大きいことが望ましい。
上記発明の構成によれば、上記(4)の構成の作用に加え、内層磁石の幅がスロットの幅より小さいことから、内層磁石がスロットの内壁に接することなくスロットに収容される。外層磁石を含む永久磁石の幅がスロットの幅より大きいことから、その幅の大きい分だけ外層磁石が削れることとなる。
この発明によれば、ロータコアのスロットに対して磁石性能を確保しながら永久磁石を確実に固定することができる。
<第1実施形態>
以下、本発明のロータ及びその製造方法を具体化した第1実施形態につき図面を参照して詳細に説明する。
以下、本発明のロータ及びその製造方法を具体化した第1実施形態につき図面を参照して詳細に説明する。
図1に、この実施形態のロータ11を平面図により示す。図2に、ロータ11を図1の2-2線断面図により示す。図1,2に示すように、このロータ11は、円柱形状をなすロータコア12と、ロータコア12の中心に形成された一つのシャフト締付孔13と、シャフト締付孔13に組み付けられたロータシャフト14とを備える。
この実施形態で、図2に示すように、ロータコア12は、複数の電磁鋼板22を積層することにより構成される。図1,2に示すように、ロータコア12の外周部には、等角度間隔に配置され、ロータコア12の軸方向に貫通する複数のスロット15が形成される。複数のスロット15は、ロータコア12の外周縁に沿って配列され、隣り合う2つのスロット15が「ハの字状」又は「逆ハの字状」をなすように配置される。各スロット15には、それぞれ界磁用の永久磁石16が組み付けられて固定される。ロータコア12には、シャフト締付孔13と複数のスロット15との間にて、シャフト締付孔13の周囲に、複数(この実施形態では「8個」)の肉抜き孔17が形成される。これらの肉抜き孔17は、平面視で略台形状をなし、ロータコア12を軸方向に貫通する。これらの肉抜き孔17は、「逆ハの字状」をなす二つ一組のスロット15の間に対応して一つずつ配置される。
図1,2に示すように、ロータシャフト14は、筒形をなし、その外周には、ロータコア12に係合するフランジ14aが形成される。この実施形態で、ロータシャフト14は、金属材料を鍛造することにより成形される。ロータシャフト14は、ロータコア12のシャフト締付孔13に中間ばめ又は圧入により組み付けられる。
図3に、ロータ11につき、図1の鎖線楕円S1で囲んだ永久磁石16の部分を拡大して平面図により示す。「逆ハの字状」をなす隣り合う二つのスロット15の間には、両スロット15を区画する肉部分としての第1のブリッジ部18が形成される。また、各スロット15からロータコア12の外周縁までの間には、肉部分としての第2のブリッジ部19が形成される。モータを構成するために、このロータ11がステータ(図示略)に組み付けられた状態で、各スロット15の中の永久磁石16を、ロータ11の周囲に位置するステータに近付けるためには、第2のブリッジ部19の幅を極力小さくする必要がある。
図3に示すように、この実施形態では、平面視で長方形状をなす永久磁石16がスロット15に組み付けられる。永久磁石16は、二つの長辺の全部と二つの短辺の一部がスロット15の内壁15a,15bに接触する。
図4に、永久磁石16を組み付ける前のロータコア12を平面図により示す。図5に、ロータコア12につき、図4の鎖線楕円S2で囲んだスロット15の部分を拡大して平面図により示す。図6に、一つのスロット5の部分を図5の6-6線断面図により示す。
図7に、永久磁石16を平面図により示す。図8に、永久磁石16を、図7の8-8線断面図により示す。永久磁石16は、一対の外層磁石16a,16bと、それら外層磁石16a,16bの内側に設けられる内層磁石16cとを備える。外層磁石16a,16bの強度は、内層磁石16cの強度より小さく設定される。この実施形態で、永久磁石16は、内層磁石16cが二つの外層磁石16a,16bの間に挟まれる。内層磁石16cは、従来からロータに使用されてきた一般的な永久磁石と同等の強度と磁力を有する。内層磁石16cと外層磁石16a,16bを構成する基本材料は同じである。ここで、外層磁石16a,16bの強度を小さくするために、外層磁石16a,16bの材料の粒径を大きくしたり、材料を粒界での溶融凝固が起こり難い配合成分にしたりすることができる。永久磁石16は、外層磁石16a,16bがその一部を削った状態でスロット15の内壁15a,15bに接触することによりスロット15の中に固定される。ここで、図7,8に示す内層磁石16cの幅W1は、図6に示すスロット15の幅W2より小さく設定される。また、図7,8に示す外層磁石16a,16bを含む永久磁石16の全体の幅W3は、図6に示すスロット15の幅W2よりも大きく設定される。
次に、この実施形態のロータ11の製造方法について図9~図15を参照して説明する。図9に、この製造方法をフローチャートにより示す。図10~図12に、「永久磁石作製工程」を構成する一連の過程を概略図により示す。図13~図15に、「永久磁石組付工程」を構成する一連の過程を断面図により示す。
先ず、図9の(1)に示す「電磁鋼板成形工程」では、複数の電磁鋼板22を互いに同一形状に成形する。この電磁鋼板22は、「0.3mm」程度の薄板材をプレスすることにより成形される。
次に、図9の(2)に示す「ロータコア作製工程」では、上記工程で成形された複数の電磁鋼板22を積層することによりロータコア12を作製する。上下に積層される電磁鋼板22は、「かしめ」により互いに接合される。
また、図9の(3)に示す「永久磁石作製工程」では、複数の永久磁石16を作製する。この工程では、周知の方法により磁石材料を所定形状に成形し、その後、焼成することで永久磁石を作製する。この工程は、上記した各工程と並行して行うことができる。
ここで、「永久磁石作製工程」を詳しく説明する。先ず、図10に示すように、成形用の下型31の中に一方の外層磁石16aを構成する材料26aを充填し、上型32を型締めして圧縮することにより、材料26aを平板状に成形する。次に、図11に示すように、下型31の中の材料26aの上に、内層磁石16cを構成する材料26cを充填し、上型32を型締めして圧縮することにより、材料26cを材料26aと一体に平板状に成形する。次に、図12に示すように、下型31の中の材料26cの上に、他方の外層磁石16bを構成する材料26bを更に充填し、上型32を型締めして圧縮することにより、材料26bを材料26a,26cと一体として三層構造の平板状に成形する。その後、上記の三層構造に成形されたワークを焼成することにより、永久磁石16の作製を完了する。
次に、図9の(4)に示す「永久磁石組付工程」では、上記のように作製されたロータコア12の各スロット15の中に、上記のように作製された永久磁石16を組み付けて固定する。すなわち、図13に示すように、ロータコア12の各スロット15に各永久磁石16を整合させて圧入する。このとき、図14に示すように、内層磁石16cの両側に位置する外層磁石16a,16bの一部をスロット15の内壁15a,15bに接触させて削りながら永久磁石16を圧入する。そして、図15に示すように圧入が完了すると、永久磁石16は、外層磁石16a,16bがその一部を削った状態でスロット15の内壁15a,15bに接触することによりスロット15の中に固定される。換言すると、永久磁石16は、内層磁石16cとスロット15の内壁15a,15bとの間に外層磁石16a,16bが介在した状態でスロット15の中に固定される。
また、図9の(5)に示す「ロータシャフト作製工程」では、周知の鍛造方法によりロータシャフト14を作製する。この工程は、上記した各工程と並行して行うことができる。
そして、図9の(6)に示す「ロータシャフト組付工程」では、図4に示すシャフト締付孔13に、ロータシャフト14を中間ばめ又は圧入して組み付ける。このようにして、図1,2に示すロータ11の製造を完了することができる。
以上説明したこの実施形態のロータ11によれば、永久磁石16をスロット15に組み付けるには、強度の小さい外層磁石16a,16bをスロット15の内壁15a,15bに接触させて一部を削りながら永久磁石16をスロット15に圧入する。この実施形態では、外層磁石16a,16bを含む永久磁石16の幅W3がスロット15の幅W2より大きいことから、その幅W3の大きい分だけ外層磁石16a,16bが削れることとなる。このとき、強度の小さい外層磁石16a,16bが削れることで、永久磁石16の圧入荷重が比較的小さくなる。このため、永久磁石16をスロット15に圧入するための設備を小規模で安価なものにすることができる。
また、この実施形態では、内層磁石16cの幅W1がスロット15の幅W2より小さいことから、内層磁石16cがスロット15の内壁15a,15bに接することなくスロット15に収容される。つまり、強度のある内層磁石16cは、削れることなくスロット15の中に収容される。このため、一般的な永久磁石と同等の磁石性能を有する内層磁石16cに割れ等の破損が生じることがない。この意味で、スロット15における永久磁石16の磁石性能を確保することができる。
更に、この実施形態では、スロット15に永久磁石16を組み付けた状態では、内層磁石16cとスロット15の内壁15a,15bとの間に外層磁石16a,16bが介在することとなるので、永久磁石16とスロット15の内壁15a,15bとの間に隙間(エアギャップ)ができない。このため、永久磁石16をスロット15に確実に固定することができる。また、スロットの内壁と永久磁石との間にエアギャップがある場合と比べ、永久磁石16の磁気的な性能を向上させることができる。
このように、この実施形態のロータ11では、ロータコア12のスロット15にて磁石性能を確保しながら永久磁石16を確実に固定することができる。
また、この実施形態では、永久磁石16の外層磁石16a,16bをスロット15の内壁15a,15bに接触させて削るようにしたので、削り代を適当に設定することができる。この意味で、スロット15や永久磁石16の形成精度を緩和することができ、それらの加工コストを低減させることができる。
上記したロータの製造方法によれば、「永久磁石作製工程」では、外層磁石16a,16bと、外層磁石16a,16bの内側に設けられる内層磁石16cとを備え、外層磁石16a,16bの強度を内層磁石16cの強度より小さくした永久磁石16が作製される。また、「永久磁石組付工程」では、永久磁石16が、各スロット15の中に、外層磁石16a,16bの一部をスロット15の内壁15a,15bに接触させて削りながら圧入される。従って、永久磁石16をスロット15に圧入するときに強度の小さい外層磁石16a,16bが削れるので、永久磁石16の圧入荷重が比較的小さくなる。このため、永久磁石16をスロット15に圧入するための設備を小規模で安価なものにすることができる。このとき、強度のある内層磁石16cは、削れることなくスロット15の中に収容される。このため、一般的な永久磁石と同等の磁石性能を有する内層磁石16cに割れ等の破損が生じることがない。この意味で、スロット15における永久磁石16の磁石性能を確保することができる。また、スロット15に永久磁石16が組み付けられた状態では、内層磁石16cとスロット15の内壁15a,15bとの間に外層磁石16a,16bが介在するので、永久磁石16とスロット15の内壁15a,15bとの間にエアギャップができない。このため、永久磁石16をスロット15に確実に固定することができる。また、スロットの内壁と永久磁石との間にエアギャップがある場合と比べ、永久磁石16の磁気的な性能を向上させることができる。
このように、この実施形態のロータの製造方法では、ロータコア12のスロット15にて磁石性能を確保しながら永久磁石16を確実に固定することができる。
<第2実施形態>
次に、本発明のロータを具体化した第2実施形態につき図面を参照して詳細に説明する。この実施形態において、第1実施形態と同等の構成要素については同一の符号を付して説明を省略し、異なった点を中心に説明する。
次に、本発明のロータを具体化した第2実施形態につき図面を参照して詳細に説明する。この実施形態において、第1実施形態と同等の構成要素については同一の符号を付して説明を省略し、異なった点を中心に説明する。
この実施形態では、各スロット15の形状の点で第1実施形態と構成が異なる。図16に、ロータ11につき、永久磁石16の部分を拡大して図3に準ずる平面図により示す。図17に、ロータコア12につき、スロット15の部分を拡大して図5に準ずる平面図により示す。
この実施形態では、図16,17に示すように、永久磁石16の外層磁石16a,16bと接触するスロット15の内壁15a,15bが、スロット15の軸方向に凹凸が延びる断面鋸歯状に形成される。
従って、この実施形態のロータ11によれば、外層磁石16a,16bと接触するスロット15の内壁15a,15bが断面鋸歯状に形成されるので、永久磁石16をスロット15に圧入するときに、外層磁石16a,16bの一部が削れ易くなり、圧入荷重が更に小さくなる。このため、「永久磁石組付工程」の作業効率を向上させることができる。また、永久磁石16の割れ等の破損の防止効果を高めることができる。
また、この実施形態では、図16に示すように、スロット15に永久磁石16が組み付けられた状態では、スロット15の内壁15a,15bと外層磁石16a,16bとの接触面積が増える。このため、スロット15に対する永久磁石16の固定性能を向上させることができる。
なお、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
(1)前記各実施形態では、永久磁石16につき、内層磁石16cにおける相対向する二面に外層磁石16a,16bを設けたが、永久磁石の磁気性能や加工上の都合に合わせて、上記二面以外の面にも外層磁石を設けてもよい。例えば、図18に示すように、内層磁石16eの外周四面に外層磁石16dを設けて永久磁石16を構成することもできる。
(2)前記各実施形態に対し、スロット15及び永久磁石16の数を適宜増減することもできる。
(3)前記各実施形態では、ロータコア12を、複数の電磁鋼板22を積層することにより構成したが、ロータコアの構成はこれに限られるものではなく、例えば、ロータコアを、鍛造により成形して構成することもできる。
この発明は、電気自動車等に使用されるモータの製造に利用することができる。
11 ロータ
12 ロータコア
15 スロット
15a 内壁
15b 内壁
16 永久磁石
16a 外層磁石
16b 外層磁石
16c 内層磁石
16d 外層磁石
16e 内層磁石
W1 内層磁石の幅
W2 スロットの幅
W3 永久磁石の幅
12 ロータコア
15 スロット
15a 内壁
15b 内壁
16 永久磁石
16a 外層磁石
16b 外層磁石
16c 内層磁石
16d 外層磁石
16e 内層磁石
W1 内層磁石の幅
W2 スロットの幅
W3 永久磁石の幅
Claims (5)
- ロータコアと、
前記ロータコアに形成される複数のスロットと、
前記複数のスロットのそれぞれに組み付けられる永久磁石と
を備えたロータにおいて、
前記永久磁石は、外層磁石と、前記外層磁石の内側に設けられる内層磁石とを備え、前記外層磁石の強度が前記内層磁石の強度より小さく設定され、
前記永久磁石は、前記外層磁石がその一部を削った状態で前記スロットの内壁に接触することにより前記スロットの中に固定される
ことを特徴とするロータ。 - 前記内層磁石の幅は、前記スロットの幅より小さく、前記外層磁石を含む前記永久磁石の全体の幅は、前記スロットの幅より大きいことを特徴とする請求項1に記載のロータ。
- 前記外層磁石と接触する前記スロットの内壁は、前記スロットの軸方向に凹凸が延びる断面鋸歯状に形成されることを特徴とする請求項1又は2に記載のロータ。
- ロータコアと、
前記ロータコアに形成される複数のスロットと、
前記複数のスロットのそれぞれに組み付けられる永久磁石と
を備えたロータの製造方法であって、
外層磁石と、前記外層磁石の内側に設けられる内層磁石とを備え、前記外層磁石の強度を前記内層磁石の強度より小さくした永久磁石を作製する永久磁石作製工程と、
前記永久磁石を、前記各スロットの中に、前記外層磁石の一部を前記スロットの内壁に接触させて削りながら圧入する永久磁石組付工程と
を備えたことを特徴とするロータの製造方法。 - 前記内層磁石の幅は、前記スロットの幅より小さく、前記外層磁石を含む前記永久磁石の全体の幅は、前記スロットの幅より大きいことを特徴とする請求項4に記載のロータの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/056396 WO2011125209A1 (ja) | 2010-04-08 | 2010-04-08 | ロータ及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/056396 WO2011125209A1 (ja) | 2010-04-08 | 2010-04-08 | ロータ及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125209A1 true WO2011125209A1 (ja) | 2011-10-13 |
Family
ID=44762195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056396 WO2011125209A1 (ja) | 2010-04-08 | 2010-04-08 | ロータ及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011125209A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015510388A (ja) * | 2012-03-13 | 2015-04-02 | ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク | 電気機械 |
JP2015116025A (ja) * | 2013-12-11 | 2015-06-22 | 株式会社安川電機 | 回転電機 |
WO2023104738A1 (de) * | 2021-12-06 | 2023-06-15 | Lenze Se | Verfahren zur herstellung eines rotors |
FR3143904A1 (fr) * | 2022-12-16 | 2024-06-21 | Valeo Equipements Electriques Moteur | Rotor de machine électrique tournante et machine électrique tournante correspondante |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10304610A (ja) * | 1997-04-22 | 1998-11-13 | Toshiba Corp | 永久磁石回転子及び永久磁石回転子用抜き板の製造方法 |
JP2005057955A (ja) * | 2003-08-07 | 2005-03-03 | Toyoda Mach Works Ltd | モータ及びその回転子の製造方法 |
JP2006174537A (ja) * | 2004-12-13 | 2006-06-29 | Toyota Motor Corp | ロータの製造方法およびロータ |
-
2010
- 2010-04-08 WO PCT/JP2010/056396 patent/WO2011125209A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10304610A (ja) * | 1997-04-22 | 1998-11-13 | Toshiba Corp | 永久磁石回転子及び永久磁石回転子用抜き板の製造方法 |
JP2005057955A (ja) * | 2003-08-07 | 2005-03-03 | Toyoda Mach Works Ltd | モータ及びその回転子の製造方法 |
JP2006174537A (ja) * | 2004-12-13 | 2006-06-29 | Toyota Motor Corp | ロータの製造方法およびロータ |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015510388A (ja) * | 2012-03-13 | 2015-04-02 | ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク | 電気機械 |
US9831726B2 (en) | 2012-03-13 | 2017-11-28 | Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg | Electrical machine |
US9876397B2 (en) | 2012-03-13 | 2018-01-23 | Brose Fahrzeugteile Gmbh & Co. Kg, Wuerzburg | Electrical machine |
JP2015116025A (ja) * | 2013-12-11 | 2015-06-22 | 株式会社安川電機 | 回転電機 |
WO2023104738A1 (de) * | 2021-12-06 | 2023-06-15 | Lenze Se | Verfahren zur herstellung eines rotors |
FR3143904A1 (fr) * | 2022-12-16 | 2024-06-21 | Valeo Equipements Electriques Moteur | Rotor de machine électrique tournante et machine électrique tournante correspondante |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2026448B1 (en) | Split core and manufacturing method of the same, and stator core | |
JP5357187B2 (ja) | 積層コアの製造方法及びその製造治具 | |
CN113243073B (zh) | 层叠铁芯及旋转电机 | |
JP5278545B2 (ja) | 永久磁石、モータ用ロータ又はステータ、回転電機 | |
JP5896937B2 (ja) | 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機 | |
KR102141793B1 (ko) | 영구 자석식 동기기 및 영구 자석식 동기기의 고정자의 제조 방법 | |
JP5292271B2 (ja) | 永久磁石式回転電機 | |
WO2010150592A1 (ja) | 回転子鉄心 | |
JP5603437B2 (ja) | 回転電機の積層鉄心及びその製造方法 | |
KR102504423B1 (ko) | 로터 및 이를 포함하는 모터 | |
JP5623498B2 (ja) | 固定子鉄心及び固定子及び電動機及び圧縮機 | |
US9570948B2 (en) | Magnetic plate used for rotor core of motor and method for manufacturing magnetic plate | |
JP2016073109A (ja) | 積層鉄心及びその製造方法 | |
CN111418131B (zh) | 定子铁心 | |
WO2011125209A1 (ja) | ロータ及びその製造方法 | |
WO2011125183A1 (ja) | ロータ及びその製造方法 | |
JP5638475B2 (ja) | リニアモータの積層鉄心およびその製造方法 | |
CN109193978A (zh) | 一种适用于轴向磁通永磁电机的齿轭分离定子结构 | |
JP6232641B2 (ja) | 固定子鉄心の製造方法 | |
US20140317908A1 (en) | Method for manufacturing laminated iron core and shape of scrap produced thereby | |
JPH05219668A (ja) | 永久磁石式回転子 | |
JP6727458B2 (ja) | 固定子鉄心及びその固定子鉄心を備えた電動機 | |
JP6447206B2 (ja) | 回転電機のロータ及びその製造方法 | |
WO2011061806A1 (ja) | 電動機の回転子の製造方法 | |
JP2013143805A (ja) | 回転電機のロータ、およびこれを備えた回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10849452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10849452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |