WO2011122316A1 - Exhaust purification control system for internal combustion engine - Google Patents
Exhaust purification control system for internal combustion engine Download PDFInfo
- Publication number
- WO2011122316A1 WO2011122316A1 PCT/JP2011/055897 JP2011055897W WO2011122316A1 WO 2011122316 A1 WO2011122316 A1 WO 2011122316A1 JP 2011055897 W JP2011055897 W JP 2011055897W WO 2011122316 A1 WO2011122316 A1 WO 2011122316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- reactant
- combustion engine
- catalyst
- control system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust gas purification control system for an internal combustion engine.
- SCR Selective Catalytic Reduction
- urea water which is a liquid reducing agent (reactant)
- urea is hydrolyzed by the heat of exhaust gas to generate ammonia.
- NOx is reduced and purified.
- the above-described exhaust purification control system calculates the consumption amount of ammonia from the NOx purification rate, calculates the value obtained by subtracting the consumption amount from the supply amount of ammonia as the adsorption amount, and supplies the supply amount so that this adsorption amount becomes the target adsorption amount (The target adsorption amount control based on the integrated value is also referred to as integrated value control in this way).
- the target adsorption amount is determined from, for example, a saturated adsorption amount curve that is a function of temperature.
- the present invention has been made in consideration of the above-described circumstances, and can eliminate the deterioration of the purification rate caused by the deviation from the true value, which is a problem of the integrated value control, and can be reset.
- An object of the present invention is to provide an exhaust gas purification control system for an internal combustion engine that can eliminate the above problem.
- the present invention provides a catalyst for purifying exhaust gas provided in an exhaust passage of an internal combustion engine, and a reactant supply for supplying a reactant necessary for the reaction of the catalyst upstream of the catalyst.
- the control device calculates a basic reactant supply amount from the operating state of the internal combustion engine A step of calculating a correction amount for the basic reactant supply amount from a rate of change in temperature of the catalyst during the transition; and a step of calculating a target reactant supply amount from the basic reactant supply amount and the correction amount; It is comprised so that may be performed.
- the catalyst is an SCR catalyst that purifies NOx in exhaust gas, and the reactant is urea water.
- the operating status of the internal combustion engine is obtained from the engine speed and the accelerator opening.
- the reactant injection amount is corrected only in accordance with the adsorption amount and the desorption amount based on the catalyst temperature change rate at the time of transient.
- FIG. 1 is a diagram schematically showing an example of an exhaust gas purification control system for an internal combustion engine according to an embodiment of the present invention.
- FIG. It is a graph which shows the relationship between catalyst temperature and the adsorption amount of ammonia. It is a flowchart which shows the process of the control performed by a control apparatus.
- reference numeral 1 denotes an internal combustion engine for automobiles, for example, a diesel engine
- reference numeral 25 denotes an exhaust gas purification control system for the engine 1.
- the engine 1 has an engine body 2 including a plurality of cylinders, pistons, cylinder blocks, a crankshaft, and the like.
- the engine body 2 is provided with an intake manifold 3 and an exhaust manifold 4.
- the intake manifold 3 forms a downstream end portion of an intake passage (intake pipe) 5 through which intake air flows.
- the exhaust manifold 4 forms an upstream end portion of an exhaust passage (exhaust pipe) 6 through which exhaust gas flows.
- the engine body 2 is provided with an EGR device 7 for returning a part of the exhaust gas, that is, EGR gas to the intake side.
- the EGR device 7 includes an EGR passage 8 for returning a part of exhaust gas in the exhaust passage 6 (particularly in the exhaust manifold 4) to the intake passage 5 (particularly in the intake manifold 3), and the EGR passage 8
- An EGR cooler 9 that cools the flowing EGR gas, and an EGR valve 10 that is provided on the downstream side of the EGR passage 8 and adjusts the flow rate of the EGR gas are provided.
- an NOx reduction SCR device (also referred to as an SCR unit) 11, which is one of exhaust gas purification devices, is connected.
- a liquid reducing agent supply device (reactant supply device) 30 for supplying urea water 12 as a liquid reducing agent (reactant) to the SCR catalyst 13 of the SCR device 11 is provided upstream of the SCR device 11 (upstream of the exhaust gas).
- a jet nozzle 14 is provided.
- the reactant supply device 30 includes a urea water storage tank 16 that stores urea water, and an injection nozzle that injects urea water 12 supplied from the urea water storage tank 16 through the urea water supply pipe 15 into the exhaust passage 6. 14 mainly.
- the urea water storage tank 16 is configured to pump the urea water 12 to the injection nozzle 14 via the urea water supply pipe 15.
- the SCR device 11 includes an SCR catalyst 13, a cylindrical container 17 containing the SCR catalyst 13, a funnel-shaped exhaust gas inlet member 17a connected to the front end and the rear end of the container 17, and an exhaust gas outlet. It is mainly composed of the member 17b.
- the engine body 2 is provided with an engine speed sensor 18 for detecting the engine speed.
- the accelerator for controlling the engine speed is provided with an accelerator opening sensor 19 for detecting the accelerator opening.
- the intake passage 5 is provided with a flow rate sensor 20 for detecting the intake flow rate.
- NOx sensors 21 and 22 are provided on the upstream side and the downstream side of the SCR device 11.
- an exhaust temperature sensor 23 for detecting the exhaust temperature is provided on the downstream side of the SCR device 11. The temperature of the SCR catalyst can be estimated from the exhaust gas temperature downstream of the SCR device 11.
- the exhaust purification control system 25 includes a control device 24 that controls the supply amount of the urea water 12 based on the operating state of the engine 1, for example, controls the injection amount of the urea water 12 from the injection nozzle 14.
- the operating status of the engine 1 of the present embodiment can be obtained from, for example, the engine speed and the accelerator opening.
- the control device 24 reads the accelerator opening through the accelerator opening sensor 19 and the engine rotation speed through the engine rotation sensor 18 in order to detect the driving situation (first operation) (first step).
- Step) S1 a step of calculating a basic urea water injection amount Ub, which is a basic reactant supply amount, from the accelerator opening and the engine speed (second step) S2, and the temperature of the catalyst during the transition by the exhaust temperature sensor 23
- Fourth step) S4 and a step of calculating the target urea water injection amount from the basic urea water injection amount Ub and the correction amount Nc (fifth step) S5 are configured to be executed. It is. Thereby, the urea water of the target urea water injection amount is injected and supplied from the injection nozzle 14 (sixth step S6).
- the basic urea water injection amount Ub (mg) is determined by the control device 24 calculating the NOx emission amount from the accelerator opening and the engine speed and obtaining the required urea water injection amount.
- This basic urea water injection amount Ub is corrected by estimating the amount of ammonia adsorbed / desorbed from the catalyst according to the amount of change (change rate) per unit time of the accelerator opening and the engine speed.
- the adsorption / desorption amount of ammonia is estimated based on the catalyst temperature change rate ⁇ T, that is, the exhaust temperature change rate (change amount) ⁇ T per unit time (after t [ms]). To correct.
- Nc C0 + C1 ⁇ ⁇ T
- C0 is an initial value
- C1 is a negative (C1 ⁇ 0) correction coefficient.
- the relationship between the catalyst temperature change rate (change amount) ⁇ T and the ammonia adsorption amount (correction amount) Nc is as shown in FIG. 2, and as the catalyst temperature rises, the ammonia adsorption amount (correction amount) Nc decreases. To do. By using this arithmetic expression, the correction amount Nc can be easily calculated.
- the control device 24 reads the operation state of the engine 1, for example, the accelerator opening degree and the engine speed by the accelerator opening sensor 19 and the engine speed sensor 18, and the accelerator opening state.
- the exhaust purification control system 25 of the present embodiment it is possible to supply an accurate target urea water injection amount of urea water to the SCR catalyst 13, and purify even in a transient state (transient operating conditions such as running on a slope). The rate is improved. Further, according to the exhaust purification control system 25 of the present embodiment, it is possible to eliminate the deterioration of the purification rate due to the deviation from the true value, which is a problem of the conventional integrated value control, and to save the trouble of resetting. it can.
- the correction amount may be calculated by creating a three-dimensional map from an experiment instead of an arithmetic expression.
- An exhaust gas purification device other than the SCR catalyst 13 such as a DOC (diesel oxidation catalyst) may be provided in the exhaust passage 6.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Provided is an exhaust purification control system for internal combustion engine, with which it is possible to eliminate deterioration in the purifying efficiency caused by deviation from true values, which is the problem inherent to integrated value control, and to save time in performing resets. An exhaust purification control system (25) of an internal combustion engine comprises: a catalyst (13) that purifies exhaust gas and is disposed on the exhaust path (6) of the internal combustion engine (1); a reactant supply device (30), which supplies a reactant necessary for a catalytic reaction, and which is located on the upstream side of the catalyst (13); and a control device (24) that controls the quantity of reactant (12) supplied by the reactant supply device (30). The control device (24) is configured to carry out: a step in which the basic quantity of reactant supplied (Ub) is calculated from the operating state of the internal combustion engine (1); a step in which a correction amount (Nc) for the basic quantity of reactant supplied (Ub) is calculated from the rate of change in temperature of the catalyst (13) in a transitional period; and a step in which the target quantity of reactant supplied is calculated from the correction quantity (Nc) and the basic quantity of reactant supplied (Ub).
Description
本発明は、内燃機関の排気浄化制御システムに関する。
The present invention relates to an exhaust gas purification control system for an internal combustion engine.
車両に搭載される内燃機関、例えばディーゼルエンジンの排気ガス中のNOxを浄化する排気浄化制御システムの一つとして、SCR(選択式触媒還元)システムが開発されている。このSCRシステムは、液体還元剤(反応剤)である例えば尿素水をSCR触媒の上流に噴射して供給し、排気ガスの熱で尿素を加水分解してアンモニアを生成し、このアンモニアによってSCR触媒上でNOxを還元して浄化するものである。
SCR (Selective Catalytic Reduction) system has been developed as one of exhaust purification control systems for purifying NOx in exhaust gas of internal combustion engines mounted on vehicles, for example, diesel engines. In this SCR system, for example, urea water, which is a liquid reducing agent (reactant), is injected and supplied upstream of the SCR catalyst, and urea is hydrolyzed by the heat of exhaust gas to generate ammonia. In the above, NOx is reduced and purified.
その浄化の際に、SCR触媒には一部のアンモニアが吸着し、この吸着したアンモニアがSCR触媒上でNOxを高反応に還元することができる。そこで、浄化率を向上させるために、アンモニアの吸着量を制御するようにした排気浄化制御システム(触媒の作動方法およびその方法を実施する装置)が提案されている(例えば、特許文献1参照)。
During the purification, a part of ammonia is adsorbed on the SCR catalyst, and this adsorbed ammonia can reduce NOx to a high reaction on the SCR catalyst. In order to improve the purification rate, an exhaust gas purification control system (catalyst operation method and apparatus for carrying out the method) that controls the adsorption amount of ammonia has been proposed (see, for example, Patent Document 1). .
上述の排気浄化制御システムは、NOx浄化率からアンモニアの消費量を求め、アンモニアの供給量から消費量を差し引いた値を吸着量として算出し、この吸着量が目標吸着量になるように供給量を制御するものである(このように積算値による目標吸着量制御を積算値制御ともいう)。目標吸着量は、例えば温度の関数である飽和吸着量曲線から決定される。
The above-described exhaust purification control system calculates the consumption amount of ammonia from the NOx purification rate, calculates the value obtained by subtracting the consumption amount from the supply amount of ammonia as the adsorption amount, and supplies the supply amount so that this adsorption amount becomes the target adsorption amount (The target adsorption amount control based on the integrated value is also referred to as integrated value control in this way). The target adsorption amount is determined from, for example, a saturated adsorption amount curve that is a function of temperature.
しかしながら、上述の排気浄化制御システムにおいては、各パラメータを積算した値で制御しているため、誤差も積算され、真値とのずれが拡大しやすい。このような現象は、例えば上り坂走行時等の過渡的運転状況において発生しやすい。このため、上述の排気浄化制御システムでは、アンモニアの供給不足(不足配量)による浄化率の低下やアンモニアの供給過多(過剰配量)によるアンモニアスリップが起きやすく、浄化率が低下する可能性がある。このような現象を解消するには、尿素水の無噴射状態を一定時間設定するなどしてリセットを行う必要があり、手間がかかると共に、頻繁にリセットは行えないため、真値とのずれをなくすことは困難である。
However, in the above-described exhaust purification control system, since each parameter is controlled by the integrated value, errors are also integrated and the deviation from the true value is likely to increase. Such a phenomenon is likely to occur in a transitional driving situation such as when traveling uphill. For this reason, in the above-described exhaust purification control system, the purification rate is likely to decrease due to insufficient ammonia supply (insufficient metering) or ammonia slip due to excessive supply of ammonia (excess metering), and the purification rate may decrease. is there. In order to eliminate this phenomenon, it is necessary to reset by setting the non-injection state of urea water for a certain period of time, which is time consuming and cannot be reset frequently. It is difficult to lose.
本発明は、上述のような事情を考慮してなされたものであり、積算値制御の問題点である真値とのずれに起因する浄化率の悪化をなくすことができると共に、リセットを行う手間を省くことができる内燃機関の排気浄化制御システムを提供することを目的とする。
The present invention has been made in consideration of the above-described circumstances, and can eliminate the deterioration of the purification rate caused by the deviation from the true value, which is a problem of the integrated value control, and can be reset. An object of the present invention is to provide an exhaust gas purification control system for an internal combustion engine that can eliminate the above problem.
前記目的を達成するために、本発明は、内燃機関の排気通路に設けられ排気ガスを浄化する触媒と、該触媒よりも上流側に前記触媒の反応に必要な反応剤を供給する反応剤供給装置と、該反応剤供給装置による反応剤の供給量を制御する制御装置とを備えた内燃機関の排気浄化制御システムにおいて、前記制御装置が、内燃機関の運転状況から基本反応剤供給量を算出する工程と、過渡時の前記触媒の温度変化率から前記基本反応剤供給量に対する補正量を算出する工程と、前記基本反応剤供給量および前記補正量から目標反応剤供給量を算出する工程とを実行するように構成されていることを特徴とする。
In order to achieve the above object, the present invention provides a catalyst for purifying exhaust gas provided in an exhaust passage of an internal combustion engine, and a reactant supply for supplying a reactant necessary for the reaction of the catalyst upstream of the catalyst. In an exhaust gas purification control system for an internal combustion engine comprising a device and a control device for controlling the amount of reactant supplied by the reactant supply device, the control device calculates a basic reactant supply amount from the operating state of the internal combustion engine A step of calculating a correction amount for the basic reactant supply amount from a rate of change in temperature of the catalyst during the transition; and a step of calculating a target reactant supply amount from the basic reactant supply amount and the correction amount; It is comprised so that may be performed.
前記触媒が排気ガス中のNOxを浄化するSCR触媒であり、前記反応剤が尿素水であることが好ましい。
It is preferable that the catalyst is an SCR catalyst that purifies NOx in exhaust gas, and the reactant is urea water.
前記内燃機関の運転状況が、エンジン回転数およびアクセル開度から求められることが好ましい。
It is preferable that the operating status of the internal combustion engine is obtained from the engine speed and the accelerator opening.
本発明によれば、積算値による目標吸着量制御ではなく、過渡時の触媒温度変化率による吸着量および脱離量のみに応じた反応剤噴射量の補正を行うため、積算値制御の問題点である真値とのずれに起因する浄化率の悪化をなくすことができると共に、リセットを行う手間を省くことができる。
According to the present invention, since the target injection amount control based on the integrated value is not corrected, the reactant injection amount is corrected only in accordance with the adsorption amount and the desorption amount based on the catalyst temperature change rate at the time of transient. In addition, it is possible to eliminate the deterioration of the purification rate due to the deviation from the true value, and it is possible to save the trouble of resetting.
以下に、本発明を実施するための形態を添付図面に基いて詳述する。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
本実施形態に係る内燃機関の排気浄化制御システムの一例を示す図1において、1は自動車用の内燃機関例えばディーゼルエンジンであり、25はこのエンジン1の排気浄化制御システムである。このエンジン1は、複数のシリンダ、ピストン、シリンダブロックおよびクランクシャフト等を含むエンジン本体2を有し、このエンジン本体2には吸気マニホールド3および排気マニホールド4が設けられている。吸気マニホールド3は、吸気が流れる吸気通路(吸気管)5の下流端部を形成している。同様に排気マニホールド4は、排気ガスが流れる排気通路(排気管)6の上流端部を形成している。
In FIG. 1 showing an example of an exhaust gas purification control system for an internal combustion engine according to the present embodiment, reference numeral 1 denotes an internal combustion engine for automobiles, for example, a diesel engine, and reference numeral 25 denotes an exhaust gas purification control system for the engine 1. The engine 1 has an engine body 2 including a plurality of cylinders, pistons, cylinder blocks, a crankshaft, and the like. The engine body 2 is provided with an intake manifold 3 and an exhaust manifold 4. The intake manifold 3 forms a downstream end portion of an intake passage (intake pipe) 5 through which intake air flows. Similarly, the exhaust manifold 4 forms an upstream end portion of an exhaust passage (exhaust pipe) 6 through which exhaust gas flows.
エンジン本体2には、排気ガスの一部すなわちEGRガスを吸気側に還流するためのEGR装置7が設けられている。このEGR装置7は、排気通路6内(特に排気マニホールド4内)の排気ガスの一部を吸気通路5内(特に吸気マニホールド3内)に還流させるためのEGR通路8と、このEGR通路8を流れるEGRガスを冷却するEGRクーラ9と、EGR通路8の下流側に設けられ、EGRガスの流量を調節するEGR弁10とを備えている。
The engine body 2 is provided with an EGR device 7 for returning a part of the exhaust gas, that is, EGR gas to the intake side. The EGR device 7 includes an EGR passage 8 for returning a part of exhaust gas in the exhaust passage 6 (particularly in the exhaust manifold 4) to the intake passage 5 (particularly in the intake manifold 3), and the EGR passage 8 An EGR cooler 9 that cools the flowing EGR gas, and an EGR valve 10 that is provided on the downstream side of the EGR passage 8 and adjusts the flow rate of the EGR gas are provided.
排気通路6の途中には排気ガス浄化装置の一つであるNOx還元用のSCR装置(SCRユニットともいう。)11が接続されている。また、SCR装置11の上流(排気ガス上流)には液体還元剤(反応剤)である尿素水12をSCR装置11のSCR触媒13に供給する液体還元剤供給装置(反応剤供給装置)30を構成する噴射ノズル14が設けられている。
In the middle of the exhaust passage 6, an NOx reduction SCR device (also referred to as an SCR unit) 11, which is one of exhaust gas purification devices, is connected. A liquid reducing agent supply device (reactant supply device) 30 for supplying urea water 12 as a liquid reducing agent (reactant) to the SCR catalyst 13 of the SCR device 11 is provided upstream of the SCR device 11 (upstream of the exhaust gas). A jet nozzle 14 is provided.
反応剤供給装置30は、尿素水を貯蔵した尿素水貯蔵タンク16と、この尿素水貯蔵タンク16から尿素水供給パイプ15を介して供給される尿素水12を排気通路6内に噴射する噴射ノズル14とから主に構成されている。尿素水貯蔵タンク16は、尿素水12を尿素水供給パイプ15を介して噴射ノズル14に圧送するように構成されている。
The reactant supply device 30 includes a urea water storage tank 16 that stores urea water, and an injection nozzle that injects urea water 12 supplied from the urea water storage tank 16 through the urea water supply pipe 15 into the exhaust passage 6. 14 mainly. The urea water storage tank 16 is configured to pump the urea water 12 to the injection nozzle 14 via the urea water supply pipe 15.
SCR装置11は、SCR触媒13と、このSCR触媒13を収容した円筒状の容器17と、この容器17の前端部と後端部に接続された漏斗状の排気ガス入口部材17aおよび排気ガス出口部材17bとから主に構成されている。
The SCR device 11 includes an SCR catalyst 13, a cylindrical container 17 containing the SCR catalyst 13, a funnel-shaped exhaust gas inlet member 17a connected to the front end and the rear end of the container 17, and an exhaust gas outlet. It is mainly composed of the member 17b.
エンジン本体2にはエンジン回転数を検出するエンジン回転数センサ18が設けられている。エンジン回転数を制御するアクセルにはアクセル開度を検出するアクセル開度センサ19が設けられている。吸気通路5には吸気流量を検出する流量センサ20が設けられている。排気通路6にはSCR装置11の上流側と下流側にNOxセンサ21,22が設けられている。また、SCR装置11の下流側には排気温度を検出する排気温度センサ23が設けられている。このSCR装置11の下流側の排気温度からSCR触媒の温度を推定することができる。
The engine body 2 is provided with an engine speed sensor 18 for detecting the engine speed. The accelerator for controlling the engine speed is provided with an accelerator opening sensor 19 for detecting the accelerator opening. The intake passage 5 is provided with a flow rate sensor 20 for detecting the intake flow rate. In the exhaust passage 6, NOx sensors 21 and 22 are provided on the upstream side and the downstream side of the SCR device 11. Further, an exhaust temperature sensor 23 for detecting the exhaust temperature is provided on the downstream side of the SCR device 11. The temperature of the SCR catalyst can be estimated from the exhaust gas temperature downstream of the SCR device 11.
排気浄化制御システム25は、エンジン1の運転状況に基いて尿素水12の供給料を制御する、例えば噴射ノズル14からの尿素水12の噴射量を制御する制御装置24を備えている。本実施形態のエンジン1の運転状況は、例えばエンジン回転数およびアクセル開度から求めることができる。制御装置24は、図3に示すように、運転状況を検出するために例えばアクセル開度センサ19を介してアクセル開度を、エンジン回転数センサ18を介してエンジン回転数を読み込む工程(第1ステップ)S1と、これらアクセル開度およびエンジン回転数から基本反応剤供給量である基本尿素水噴射量Ubを算出する工程(第2ステップ)S2と、排気温度センサ23により過渡時の触媒の温度変化率(変化量)ΔTを読み込む工程(第3ステップ)S3と、その触媒温度変化率ΔTから基本尿素水噴射量Ubに対するアンモニアの吸着量ないし脱離量である補正量Ncを算出する工程(第4ステップ)S4と、基本尿素水噴射量Ubおよび補正量Ncから目標尿素水噴射量を算出する工程(第5ステップ)S5とを実行するように構成されている。これにより、目標尿素水噴射量の尿素水が噴射ノズル14から噴射供給される(第6ステップS6)。
The exhaust purification control system 25 includes a control device 24 that controls the supply amount of the urea water 12 based on the operating state of the engine 1, for example, controls the injection amount of the urea water 12 from the injection nozzle 14. The operating status of the engine 1 of the present embodiment can be obtained from, for example, the engine speed and the accelerator opening. As shown in FIG. 3, the control device 24 reads the accelerator opening through the accelerator opening sensor 19 and the engine rotation speed through the engine rotation sensor 18 in order to detect the driving situation (first operation) (first step). Step) S1, a step of calculating a basic urea water injection amount Ub, which is a basic reactant supply amount, from the accelerator opening and the engine speed (second step) S2, and the temperature of the catalyst during the transition by the exhaust temperature sensor 23 A step (third step) S3 of reading the change rate (change amount) ΔT, and a step of calculating a correction amount Nc, which is an adsorption amount or desorption amount of ammonia with respect to the basic urea water injection amount Ub, from the catalyst temperature change rate ΔT ( Fourth step) S4 and a step of calculating the target urea water injection amount from the basic urea water injection amount Ub and the correction amount Nc (fifth step) S5 are configured to be executed. It is. Thereby, the urea water of the target urea water injection amount is injected and supplied from the injection nozzle 14 (sixth step S6).
基本尿素水噴射量Ub(mg)は、制御装置24がアクセル開度とエンジン回転数からNOx排出量を算出し、必要尿素水噴射量を求めて決定する。この基本尿素水噴射量Ubは、アクセル開度およびエンジン回転数の単位時間当たりの変化量(変化率)に応じて触媒へのアンモニア吸着・脱離量を推定して補正する。
The basic urea water injection amount Ub (mg) is determined by the control device 24 calculating the NOx emission amount from the accelerator opening and the engine speed and obtaining the required urea water injection amount. This basic urea water injection amount Ub is corrected by estimating the amount of ammonia adsorbed / desorbed from the catalyst according to the amount of change (change rate) per unit time of the accelerator opening and the engine speed.
第3ステップS3および第4ステップS4においては、触媒温度変化率ΔTすなわち単位時間(t[ms]後)当たりの排気温度変化率(変化量)ΔTに基いてアンモニアの吸着・脱離量を推定して補正する。
In the third step S3 and the fourth step S4, the adsorption / desorption amount of ammonia is estimated based on the catalyst temperature change rate ΔT, that is, the exhaust temperature change rate (change amount) ΔT per unit time (after t [ms]). To correct.
単純に比例として考えて、Nc=C0+C1×ΔTとし、この演算式から基本尿素水噴射量Ubに対して増量もしくは減量する補正量Ncを算出する。ここで、C0は初期値、C1は負(C1<0)の補正係数である。触媒に吸着されるアンモニアの初期値C0は、初期は、製造時の吸着量が0であると考えて最初に尿素水を噴射する際の目標吸着量を決定する。そして、初期値C0は、走行距離の増加に伴い例えばマイナスに増加させて、C0=0mgにする。触媒温度変化率(変化量) ΔTとアンモニアの吸着量(補正量)Ncとの関係は、図2に示す通りであり、触媒温度の上昇に伴ってアンモニアの吸着量(補正量)Ncが低下する。この演算式を用いることにより、容易に補正量Ncを算出することができる。
Simply considering it as proportional, Nc = C0 + C1 × ΔT, and a correction amount Nc that increases or decreases with respect to the basic urea water injection amount Ub is calculated from this arithmetic expression. Here, C0 is an initial value, and C1 is a negative (C1 <0) correction coefficient. The initial value C0 of ammonia adsorbed on the catalyst is initially determined to be the target adsorption amount when the urea water is first injected, assuming that the adsorption amount at the time of manufacture is zero. Then, the initial value C0 is increased, for example, negatively with an increase in the travel distance to C0 = 0 mg. The relationship between the catalyst temperature change rate (change amount) ΔT and the ammonia adsorption amount (correction amount) Nc is as shown in FIG. 2, and as the catalyst temperature rises, the ammonia adsorption amount (correction amount) Nc decreases. To do. By using this arithmetic expression, the correction amount Nc can be easily calculated.
図2では、同じΔTにおいても触媒温度が低い場合と高い場合とでは、補正量が異なるグラフになっているが、これは上述の演算式におけるC1の係数が異なることにより補正量Ncが異なることを表している。補正量Ncの決定には、触媒温度の変化率(変化量)ΔTだけでなく、触媒温度自体も必要である。図2における触媒温度と補正量の関係を表す反比例曲線上のある触媒温度での傾きに対応してC1が決定され、触媒温度の変化によりC1は反比例曲線の傾きに対応して変化する。
In FIG. 2, even when the catalyst temperature is low and high at the same ΔT, the correction amount is different in the graph. This is because the correction amount Nc is different due to the difference in the coefficient of C1 in the above equation. Represents. In order to determine the correction amount Nc, not only the change rate (change amount) ΔT of the catalyst temperature but also the catalyst temperature itself is necessary. C1 is determined corresponding to the slope at a certain catalyst temperature on the inversely proportional curve representing the relationship between the catalyst temperature and the correction amount in FIG. 2, and C1 changes corresponding to the slope of the inversely proportional curve as the catalyst temperature changes.
本実施形態の排気浄化制御システム25は、制御装置24が、エンジン1の運転状態例えばアクセル開度およびエンジン回転数をアクセル開度センサ19とエンジン回転数センサ18により読み込む工程S1と、これらアクセル開度およびエンジン回転数から基本反応剤供給量例えば基本尿素水噴射量Ubを算出する工程(第2ステップ)S2と、過渡時のSCR触媒13の温度変化率(変化量)である排気温度の変化率(変化量)ΔTを読み込む工程(第3ステップ)S3と、その触媒の温度変化率ΔTから基本尿素水噴射量Ubに対するアンモニアの吸着量ないし脱離量である補正量Ncを算出する工程(第4ステップ)S4と、基本尿素水噴射量Ubおよび補正量Ncから目標尿素水噴射量を算出する工程(第5ステップ)S5とを実行するように構成されている。そのため、本実施形態の排気浄化制御システム25によれば、正確な目標尿素水噴射量の尿素水をSCR触媒13に供給することができ、過渡時(坂道走行などの過渡的運転状況)でも浄化率の向上が図られる。また、本実施形態の排気浄化制御システム25によれば、従来の積算値制御の問題点である真値とのずれによる浄化率の悪化をなくすことができると共に、リセットを行う手間を省くことができる。
In the exhaust purification control system 25 of the present embodiment, the control device 24 reads the operation state of the engine 1, for example, the accelerator opening degree and the engine speed by the accelerator opening sensor 19 and the engine speed sensor 18, and the accelerator opening state. The step (second step) S2 of calculating the basic reactant supply amount, for example, the basic urea water injection amount Ub from the engine speed and the engine speed, and the change in the exhaust temperature, which is the temperature change rate (change amount) of the SCR catalyst 13 during the transition A step (third step) S3 of reading the rate (change amount) ΔT and a step of calculating a correction amount Nc, which is an adsorption amount or desorption amount of ammonia with respect to the basic urea water injection amount Ub, from the temperature change rate ΔT of the catalyst ( Fourth step) S4 and the step of calculating the target urea water injection amount from the basic urea water injection amount Ub and the correction amount Nc (fifth step) S5 Configured to run. Therefore, according to the exhaust purification control system 25 of the present embodiment, it is possible to supply an accurate target urea water injection amount of urea water to the SCR catalyst 13, and purify even in a transient state (transient operating conditions such as running on a slope). The rate is improved. Further, according to the exhaust purification control system 25 of the present embodiment, it is possible to eliminate the deterioration of the purification rate due to the deviation from the true value, which is a problem of the conventional integrated value control, and to save the trouble of resetting. it can.
以上、本発明の実施の形態を図面により詳述してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、補正量は、演算式の代わりに、実験から三次元マップを作成して算出する方法であってもよい。排気通路6にはSCR触媒13以外の他の排ガス浄化装置例えばDOC(ディーゼル用酸化触媒)等も設けられていてもよい。
The embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the gist of the present invention. For example, the correction amount may be calculated by creating a three-dimensional map from an experiment instead of an arithmetic expression. An exhaust gas purification device other than the SCR catalyst 13 such as a DOC (diesel oxidation catalyst) may be provided in the exhaust passage 6.
1 エンジン(内燃機関)
6 排気通路
12 尿素水(反応剤)
13 SCR触媒(触媒)
24 制御装置
25 排気浄化制御システム
30 液体還元剤供給装置(反応剤供給装置) 1 engine (internal combustion engine)
6 Exhaust passage 12 Urea water (reactant)
13 SCR catalyst (catalyst)
24 control device 25 exhaust purification control system 30 liquid reducing agent supply device (reactant supply device)
6 排気通路
12 尿素水(反応剤)
13 SCR触媒(触媒)
24 制御装置
25 排気浄化制御システム
30 液体還元剤供給装置(反応剤供給装置) 1 engine (internal combustion engine)
6 Exhaust passage 12 Urea water (reactant)
13 SCR catalyst (catalyst)
24 control device 25 exhaust purification control system 30 liquid reducing agent supply device (reactant supply device)
Claims (3)
- 内燃機関の排気通路に設けられ排気ガスを浄化する触媒と、該触媒よりも上流側に前記触媒の反応に必要な反応剤を供給する反応剤供給装置と、該反応剤供給装置による反応剤の供給量を制御する制御装置とを備えた内燃機関の排気浄化制御システムにおいて、前記制御装置が、内燃機関の運転状況から基本反応剤供給量を算出する工程と、過渡時の前記触媒の温度変化率から前記基本反応剤供給量に対する補正量を算出する工程と、前記基本反応剤供給量および前記補正量から目標反応剤供給量を算出する工程とを実行するように構成されていることを特徴とする内燃機関の排気浄化制御システム。 A catalyst provided in an exhaust passage of the internal combustion engine for purifying exhaust gas, a reactant supply device for supplying a reactant necessary for the reaction of the catalyst upstream of the catalyst, and a reactant supplied by the reactant supply device An exhaust gas purification control system for an internal combustion engine comprising a control device for controlling a supply amount, wherein the control device calculates a basic reactant supply amount from an operating state of the internal combustion engine, and a temperature change of the catalyst during a transition A step of calculating a correction amount for the basic reactant supply amount from a rate, and a step of calculating a target reactant supply amount from the basic reactant supply amount and the correction amount. An exhaust gas purification control system for an internal combustion engine.
- 前記触媒が排気ガス中のNOxを浄化するSCR触媒であり、前記反応剤が尿素水であることを特徴とする請求項1記載の内燃機関の排気浄化制御システム。 The exhaust gas purification control system for an internal combustion engine according to claim 1, wherein the catalyst is an SCR catalyst that purifies NOx in exhaust gas, and the reactant is urea water.
- 前記内燃機関の運転状況が、エンジン回転数およびアクセル開度から求められることを特徴とする請求項1又は2記載の内燃機関の排気浄化制御システム。 3. The exhaust gas purification control system for an internal combustion engine according to claim 1 or 2, wherein the operation status of the internal combustion engine is obtained from an engine speed and an accelerator opening.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-083042 | 2010-03-31 | ||
JP2010083042A JP5655349B2 (en) | 2010-03-31 | 2010-03-31 | Exhaust gas purification control system for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011122316A1 true WO2011122316A1 (en) | 2011-10-06 |
Family
ID=44712037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055897 WO2011122316A1 (en) | 2010-03-31 | 2011-03-14 | Exhaust purification control system for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5655349B2 (en) |
WO (1) | WO2011122316A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103527293A (en) * | 2013-10-08 | 2014-01-22 | 潍柴动力股份有限公司 | Urea injection control method and unit |
CN114483265A (en) * | 2022-01-28 | 2022-05-13 | 广西优艾斯提传感技术有限公司 | SCR injection control method |
CN115126579A (en) * | 2022-06-29 | 2022-09-30 | 潍柴动力股份有限公司 | Urea injection amount control method and vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5699922B2 (en) * | 2011-12-12 | 2015-04-15 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003301737A (en) * | 2002-04-10 | 2003-10-24 | Mitsubishi Fuso Truck & Bus Corp | NOx PURIFIER OF INTERNAL COMBUSTION ENGINE |
JP2008128066A (en) * | 2006-11-20 | 2008-06-05 | Mitsubishi Fuso Truck & Bus Corp | Exhaust emission control device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4267536B2 (en) * | 2004-08-09 | 2009-05-27 | 日野自動車株式会社 | Exhaust purification device control method |
JP4798511B2 (en) * | 2007-11-21 | 2011-10-19 | トヨタ自動車株式会社 | NOx purification device diagnostic device |
JP5251596B2 (en) * | 2009-02-26 | 2013-07-31 | マツダ株式会社 | Exhaust gas purification device |
-
2010
- 2010-03-31 JP JP2010083042A patent/JP5655349B2/en not_active Expired - Fee Related
-
2011
- 2011-03-14 WO PCT/JP2011/055897 patent/WO2011122316A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003301737A (en) * | 2002-04-10 | 2003-10-24 | Mitsubishi Fuso Truck & Bus Corp | NOx PURIFIER OF INTERNAL COMBUSTION ENGINE |
JP2008128066A (en) * | 2006-11-20 | 2008-06-05 | Mitsubishi Fuso Truck & Bus Corp | Exhaust emission control device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103527293A (en) * | 2013-10-08 | 2014-01-22 | 潍柴动力股份有限公司 | Urea injection control method and unit |
CN103527293B (en) * | 2013-10-08 | 2016-07-13 | 潍柴动力股份有限公司 | A kind of method for urea injection control and control unit |
CN114483265A (en) * | 2022-01-28 | 2022-05-13 | 广西优艾斯提传感技术有限公司 | SCR injection control method |
CN115126579A (en) * | 2022-06-29 | 2022-09-30 | 潍柴动力股份有限公司 | Urea injection amount control method and vehicle |
CN115126579B (en) * | 2022-06-29 | 2024-01-02 | 潍柴动力股份有限公司 | Urea injection quantity control method and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP5655349B2 (en) | 2015-01-21 |
JP2011214495A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5627367B2 (en) | Exhaust purification device and control method of exhaust purification device | |
US20150314239A1 (en) | Exhaust gas control apparatus for internal combustion engine (as amended) | |
CN102482967B (en) | Exhaust gas purifying device and method for internal combustion engine | |
US20140260190A1 (en) | Exhaust Aftertreatment Control System And Method For Maximizing Fuel Efficiency While Reducing Emissions | |
JP2003314256A (en) | Exhaust emission control device | |
JP2008240716A (en) | Exhaust emission control device for internal combustion engine | |
WO2014097391A1 (en) | System for purifying exhaust of internal combustion engine | |
JP5655349B2 (en) | Exhaust gas purification control system for internal combustion engine | |
US10443473B2 (en) | Exhaust gas purification apparatus for an internal combustion engine | |
AU2014294733B2 (en) | SCR exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank | |
JP5560089B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5834906B2 (en) | Exhaust gas purification device for internal combustion engine | |
WO2014097393A1 (en) | Exhaust purification device for internal combustion engine | |
US10364727B2 (en) | Exhaust gas purification apparatus for an internal combustion engine | |
JP6287539B2 (en) | Exhaust purification system | |
JP5655348B2 (en) | Exhaust gas purification control system for internal combustion engine | |
US9845718B2 (en) | Exhaust emission control apparatus for on-board internal combustion engine, and method for exhaust emission control apparatus | |
JP2017110596A (en) | Exhaust emission control device for internal combustion engine | |
EP3049648B1 (en) | Exhaust gas control apparatus and exhaust gas control method for internal-combustion engine | |
JP6972878B2 (en) | Abnormality diagnosis device for exhaust gas purification device of internal combustion engine | |
US10190461B2 (en) | Exhaust gas control system for internal combustion engine and control method for internal combustion engine | |
WO2013190659A1 (en) | Exhaust purification device for internal combustion engine | |
JP2007064182A (en) | Exhaust emission control device | |
JP2016169655A (en) | Remaining additive amount detection device | |
EP2905440B1 (en) | Reducing agent supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11762556 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11762556 Country of ref document: EP Kind code of ref document: A1 |