[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011118766A1 - 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム - Google Patents

電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム Download PDF

Info

Publication number
WO2011118766A1
WO2011118766A1 PCT/JP2011/057344 JP2011057344W WO2011118766A1 WO 2011118766 A1 WO2011118766 A1 WO 2011118766A1 JP 2011057344 W JP2011057344 W JP 2011057344W WO 2011118766 A1 WO2011118766 A1 WO 2011118766A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
output
discharge
centralized management
Prior art date
Application number
PCT/JP2011/057344
Other languages
English (en)
French (fr)
Inventor
総一 酒井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012507081A priority Critical patent/JPWO2011118766A1/ja
Publication of WO2011118766A1 publication Critical patent/WO2011118766A1/ja
Priority to US13/425,139 priority patent/US20120228941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a power supply system, a centralized management device, a system stabilization system, a centralized management device control method, and a centralized management device control program.
  • each consumer for example, a house or a factory that receives supply of AC power from a substation is provided with a power generation device (a distributed power source such as a solar cell) that uses natural energy such as wind power or sunlight. Cases are increasing.
  • a power generation device a distributed power source such as a solar cell
  • Such a power generator is connected to an electric power system provided under the substation.
  • the electric power generated by the power generation device is output to the power consumption device side in the consumer.
  • surplus power that is not consumed by the power consuming device in the consumer is output to the power system.
  • the flow of power from the consumer to the power system is called “reverse power flow”, and the power output from the customer to the power system is called “reverse power flow”.
  • EDC economic load distribution control
  • the power company adjusts the amount of power supplied to the power system according to the load that changes from moment to moment, and performs a plurality of controls to stabilize the frequency.
  • These controls excluding EDC are particularly called frequency control, and by this frequency control, adjustment of the load fluctuation that cannot be adjusted by EDC is performed.
  • LFC Load Frequency Control
  • the LFC power plant adjusts the power generation output by a control signal from the central power supply command station of the power supplier, thereby performing frequency control.
  • the output of the power generation device using natural energy may change rapidly depending on the weather.
  • Such an abrupt change in the output of the power generation apparatus has a significant adverse effect on the frequency stability of the interconnected power system.
  • This adverse effect becomes more prominent as more consumers have power generation devices that use natural energy. For this reason, when the number of customers who have power generation devices that use natural energy increases further in the future, it will be necessary to maintain the stability of the power system by suppressing sudden changes in the output of the power generation devices. Come.
  • a grid-connected power generation system capable of smoothing the output to the power system of the distributed power source by charging / discharging the power storage device. ing.
  • Such a grid-connected power generation system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-5543.
  • JP-A-2001-5543 includes a solar cell, an inverter connected to the solar cell and connected to the power system, and a power storage device connected to a bus connecting the inverter and the solar cell.
  • a power generation system is disclosed. This power generation system suppresses fluctuations in output power from the inverter by charging and discharging the power storage device in accordance with fluctuations in the generated power (output) of the solar cell. Thereby, since it is possible to suppress the fluctuation
  • the present invention has been made in order to solve the above-described problems, and one object of the present invention is to store power while suppressing the influence on the power system caused by fluctuations in power generated by the distributed power source.
  • a system stabilization system, a grid-connected power generation system, and a control device for the grid-connected power generation system capable of extending the life of the apparatus.
  • a power supply system is a power supply system managed by a centralized management system via a communication unit capable of communicating with the outside, and generates power using renewable energy.
  • a power storage device that includes at least one storage battery, an output unit that outputs power from at least one of the power generation device and the storage battery, and obtains generated power data from the power generation device via a communication unit to the centralized management system.
  • a charging / discharging control unit that calculates the target output power output from the output unit based on the generated power data and controls charging / discharging of the storage battery so that the target output power is output from the output unit,
  • the discharge controller receives a charge / discharge instruction signal from the centralized management device, and starts or stops charging / discharging of the storage battery based on the charge / discharge instruction signal.
  • the centralized management system of the present invention is a centralized management system that manages a plurality of power supply systems via a communication unit that can communicate with the outside, and acquires generated power data from each of the plurality of power supply systems at predetermined time intervals.
  • a generated power data acquisition unit, a plurality of generated power data are summed to calculate the total power, a change amount calculation unit that calculates a change amount of the total power in a predetermined time, and a change amount of the total power a predetermined threshold value
  • a charge / discharge instruction unit that determines whether or not the power supply system is exceeded and transmits a charge / discharge instruction signal corresponding to the determination result to the power supply system via the communication unit.
  • the system stabilization system of the present invention includes the power supply system and the centralized management system.
  • a centralized management apparatus control method is a centralized management apparatus control method for managing a plurality of power supply systems via a communication unit capable of communicating with the outside, and generating power data from a plurality of power supply systems, respectively.
  • a generation unit for acquiring generated power data, a power calculation step for calculating a total power by summing a plurality of generated power data, and determining whether the total power exceeds a predetermined threshold,
  • a control program for a centralized management apparatus is a control program for causing a computer to function as a centralized management apparatus that manages a plurality of power supply systems via a communication unit capable of communicating with the outside.
  • the generated power data is obtained from each of the power supply systems, and a plurality of generated power data is summed up to calculate the total power, and it is determined whether the total power exceeds a predetermined threshold value.
  • the charging / discharging instruction signal according to the determination result is transmitted via.
  • the power supply system of the present invention is a power supply system managed by a centralized management device via a communication unit capable of communicating with the outside, and includes a power generation device that generates power using renewable energy, and at least one storage battery.
  • a detection unit that acquires detected power data that is a power value flowing through a power line that connects between the power storage device that is included, the power generation device and the power system, and the detection power data is acquired via the communication unit to the centralized management device And calculating the target output power output to the power system based on the detected power data, and charging / discharging the storage battery so that the target output power is output from at least one of the power generation device and the power storage device to the power system.
  • a charge / discharge control unit for controlling, and the charge / discharge control unit receives a charge / discharge instruction signal from the central control device and starts charging / discharging the storage battery based on the charge / discharge instruction signal. It is stopped.
  • the present invention it is possible to extend the life of the power storage device while suppressing the influence on the power system caused by the fluctuation of the generated power by the distributed power source.
  • the system stabilization system includes a plurality of photovoltaic power generation systems 1a and 1b installed in a predetermined area, and an output centralized management apparatus 100 that communicates with the plurality of photovoltaic power generation systems 1a and 1b. It has.
  • the predetermined area is, for example, a jurisdiction area of an electric power company.
  • the solar power generation system 1 a includes the power generation device 2 and is connected to the power system 50, and reversely flows the power generated by the power generation device 2 to the power system 50. Moreover, the solar power generation system 1a is provided with the electrical storage apparatus 3, and smoothes the fluctuation
  • the solar power generation system 1b has a configuration in which the power storage device 3 is removed from the solar power generation system 1a and does not have a smoothing control function.
  • the output centralized management apparatus 100 includes a power data acquisition unit 100a, a power calculation unit 100b, and a charge / discharge instruction unit 100c.
  • the power data acquisition unit 100a acquires generated power data from a plurality of solar power generation systems 1a and 1b in a predetermined area.
  • the power calculation unit 100b calculates the total power by summing the plurality of generated power data acquired by the power data acquisition unit 100a.
  • the charge / discharge instruction unit 100c determines whether or not the total power calculated by the power calculation unit 100b exceeds a predetermined threshold value, and gives a determination result to the power supply system 1a via the communication unit 5b (see FIG. 2). A corresponding charge / discharge instruction signal is transmitted.
  • the output central management apparatus 100 detects the amount of change in the total power generation amount of the solar power generation systems 1a and 1b in a predetermined area, and smoothes the solar power generation system 1a in the area according to the amount of change. Start or stop control.
  • the power generated by the solar power generation systems 1a and 1b is reversely flowed to the power system 50, the power system 50 may become unstable if the generated power varies greatly due to sunshine fluctuations. Therefore, in this embodiment, the reverse power flow from the photovoltaic power generation systems 1a and 1b to the power system 50 is managed by the output concentration management device 100 for each predetermined area.
  • the solar power generation systems 1a and 1b acquire the power generation data generated by the power generation device 2 every predetermined detection time interval (for example, 30 seconds or less).
  • the power data acquisition unit 100a sequentially acquires the generated power data from the respective solar power generation systems 1a and 1b in the region at every detection time interval.
  • the power calculation unit 100b calculates the total power obtained by totaling the generated power for each detection time interval, and calculates the difference between the two total power data that are consecutive for the total power calculated for each detection time interval. The amount of change is calculated.
  • control start change amount a predetermined change amount (hereinafter referred to as “control start change amount”).
  • control start change amount may be, for example, 5% of the total rated output value (hereinafter referred to as total rated output) of the power generation device 2 of the photovoltaic power generation system that transmits the generated power data to the output central management device 100. it can.
  • total rated output the total rated output value
  • control stop determination period a predetermined period
  • indication part 100c makes the solar power generation system 1a continue smoothing control, when the state in which total electric power is smaller than a predetermined value does not continue during a control stop determination period.
  • the predetermined value is 5% of the total rated output, for example.
  • the control stop determination period is a period corresponding to a fluctuation cycle that can be handled by load frequency control (LFC). In the first embodiment, it is 20 minutes. That is, after instructing the photovoltaic power generation system 1a to start the smoothing control, the charge / discharge instruction unit 100c stops the smoothing control when the total power is less than 5% of the total rated output for 20 minutes. To instruct.
  • the solar power generation system 1a includes a power generation device 2 composed of a solar cell, a power storage device 3 capable of storing power generated by the power generation device 2, power generated by the power generation device 2, and power stored by the power storage device 3.
  • the power output unit 4 includes an inverter that outputs the power to the power system 50 and the charge / discharge control unit 5 that controls the charge / discharge of the power storage device 3. Further, a load 60 is connected to the AC side bus connecting the power output unit 4 and the power system 50.
  • the power generation device 2 may be a power generation device that uses renewable energy, and for example, a wind power generation device or the like may be used.
  • a DC-DC converter 7 is connected in series to the DC side bus 6 that connects the power generator 2 and the power output unit 4.
  • the DC-DC converter 7 converts the direct current voltage of the power generated by the power generation device 2 into a constant direct current voltage (about 260 V in the first embodiment) and outputs it to the power output unit 4 side.
  • the DC-DC converter 7 has a so-called MPPT (Maximum Power Point Tracking) control function.
  • the MPPT function is a function that automatically adjusts the operating voltage of the power generation device 2 so that the power generated by the power generation device 2 is maximized.
  • a diode (not shown) for preventing a current from flowing backward toward the power generation device 2 is provided.
  • the power storage device 3 includes a storage battery 31 connected in parallel to the power generation device 2 with respect to the DC bus 6 and a charge / discharge unit 32 that charges and discharges the storage battery 31.
  • a secondary battery for example, a Li-ion storage battery, a Ni-MH storage battery, etc.
  • the voltage of the storage battery 31 is about 48V.
  • the charging / discharging unit 32 includes a DC-DC converter 33, and the DC bus 6 and the storage battery 31 are connected via the DC-DC converter 33.
  • the DC-DC converter 33 steps down the voltage of the power supplied to the storage battery 31 from the voltage of the DC side bus 6 to a voltage suitable for charging the storage battery 31, so that the storage battery is connected from the DC side bus 6 side. Power is supplied to the 31 side.
  • the DC-DC converter 33 boosts the voltage of the electric power discharged to the DC side bus 6 side from the voltage of the storage battery 31 to the vicinity of the voltage of the DC side bus 6 at the time of discharging, so Electric power is discharged to the 6th side.
  • the charge / discharge control unit 5 controls the DC-DC converter 33 to perform charge / discharge control of the storage battery 31 and smooth the output fluctuation of the power system 50.
  • the charge / discharge control unit 5 sets a target output power to be output to the power system 50 in order to smooth the power value output to the power system 50 regardless of the generated power of the power generation device 2.
  • the charge / discharge control unit 5 controls the charge / discharge power of the storage battery 31 such that the power value output to the power system 50 becomes the target output power according to the generated power of the power generator 2.
  • the charging / discharging control unit 5 controls the DC-DC converter 33 so as to charge the storage battery 31 with excess power when the generated power of the power generation device 2 is larger than the target output power, and the power generation device When the generated power of 2 is smaller than the target output power, the DC-DC converter 33 is controlled so that the insufficient power is discharged from the storage battery 31.
  • the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 from the generated power detection unit 8 provided on the output side of the DC-DC converter 7.
  • the power generation amount detection unit 8 detects the generated power of the power generation device 2 and transmits the generated power data to the charge / discharge control unit 5.
  • the charge / discharge control unit 5 acquires the generated power data from the generated power detection unit 8 at predetermined detection time intervals. In the first embodiment, the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 every 30 seconds.
  • the charge / discharge control unit 5 includes a memory 5a and a communication unit 5b for communicating with the output central management apparatus 100.
  • the charge / discharge control unit 5 transmits the generated power data to the output centralized management device 100 every time the acquired power data is acquired (every detection time interval). It should be noted that the change in the generated power cannot be accurately detected if the detection time interval of the generated power is too long or too short. It is necessary to set in. In the first embodiment, the detection time interval is set to be shorter than the lower limit cycle of the fluctuation cycle that can be handled by the load frequency control (LFC).
  • LFC load frequency control
  • the charge / discharge control unit 5 acquires the output power of the power output unit 4 to recognize a difference between the power actually output from the power output unit 4 to the power system 50 and the target output power. Thereby, charging / discharging of the charging / discharging part 32 is controlled so that the output electric power from the electric power output part 4 turns into target output electric power.
  • the charge / discharge control unit 5 controls the charge / discharge of the storage battery 3 such that the sum of the generated power of the power generation device 2 and the charge / discharge amount of the storage battery 3 becomes the target output power.
  • This target output power is calculated using the moving average method.
  • the moving average method is a calculation method in which the target output power at a certain point in time is an average value of the generated power of the power generation device 2 in the past period from that point.
  • Past generated power data is sequentially stored in the memory 5a.
  • a period for acquiring generated power data used for calculation of target output power is referred to as a sampling period.
  • the specific value of the sampling period is, for example, a period of about 10 minutes or more and about 30 minutes or less in the power system having the “load fluctuation magnitude-fluctuation period” characteristic as shown in FIG.
  • the sampling period is about 20 minutes. Since the charge / discharge control unit 5 acquires the generated power data of the power generation device 2 about every 30 seconds, the average value of the 40 generated power data included in the period of the past 20 minutes is calculated as the target output power. .
  • the charging / discharging control part 5 does not always perform smoothing control, but performs charging / discharging control only when the instruction
  • the charge / discharge control unit 5 is configured to stop the smoothing control when receiving an instruction to stop the smoothing control from the output central management device 100 during the smoothing control. .
  • the control method that can be handled differs depending on the fluctuation cycle, and the load fluctuation cycle that can be handled by the load frequency control (LFC) is shown in a region D (region indicated by hatching).
  • the load fluctuation period that can be handled by EDC is shown in region A.
  • Region B is a region that naturally absorbs the influence of load fluctuations due to the self-controllability of power system 50 itself.
  • Region C is a region that can be handled by governor-free operation of the generators at each power plant.
  • the boundary line between the region D and the region A becomes the upper limit cycle T1 of the load fluctuation period that can be handled by the load frequency control (LFC), and the boundary line between the region C and the region D can be handled by the load frequency control. It becomes the lower limit cycle T2 of the load fluctuation cycle.
  • the upper limit period T1 and the lower limit period T2 are not specific periods but are numerical values that change depending on the magnitude of the load fluctuation.
  • the time of the fluctuation period illustrated by the constructed power network also changes. For example, the values of the lower limit cycle T2 and the upper limit cycle T1 change due to the influence of the so-called leveling effect on the power system side.
  • load fluctuation having a fluctuation period (fluctuation frequency) included in the range of region D (region that can be handled by LFC) that cannot be handled by EDC, self-controllability of power system 50 itself and governor-free operation, etc. It aims at suppressing it.
  • the charge / discharge control unit 5 sequentially transmits the generated power data acquired from the generated power detection unit 8 every detection time interval (30 seconds) to the output centralized management device 100. .
  • the other solar power generation systems 1 a and 1 b in the area also transmit the generated power data to the output central management apparatus 100.
  • the output central management apparatus 100 determines whether or not smoothing control is necessary based on the generated power data received from each of the photovoltaic power generation systems 1a and 1b in the area.
  • step S ⁇ b> 1 the charge / discharge control unit 5 determines whether or not there is an instruction to start smoothing control from the output central management device 100. When there is no start instruction, the charge / discharge control unit 5 repeats this determination. If there is a start instruction, the charge / discharge control unit 5 starts the smoothing control in step S2. That is, the charge / discharge control unit 5 calculates the target output power by the moving average method based on the past generated power data of the own power generation device 2 and outputs the target output power from the power output unit 4. The storage battery 31 is charged / discharged by the difference between the target output power and the actual generated power.
  • step S3 the charge / discharge control unit 5 determines whether or not the smoothing control stop instruction is issued from the output central management device 100. When there is no stop instruction, the charge / discharge control unit 5 repeats this determination. If there is a stop instruction, the charge / discharge control unit 5 stops the smoothing control in step S4.
  • step S11 the output centralized management device 100 acquires the generated power data of each power generating device 2 at a certain time from the solar power generation systems 1a and 1b in the area, and adds the generated power data. Thus, the total power P is calculated.
  • step S12 the output central management apparatus 100 sets the acquired total power P as the pre-change total power P0.
  • step S13 the output central management apparatus 100 acquires the generated power of each power generation apparatus 2 after 30 seconds (detection time interval) has elapsed since the acquisition of the total power P0, and sets the total power as P1.
  • step S14 the output centralized management apparatus 100 determines whether or not the total power change amount (
  • step S16 the output central management device 100 determines that it is necessary to start the smoothing control, and each photovoltaic power generation system 1a. Is instructed to start smoothing control.
  • indication of smoothing is performed to all the photovoltaic power generation systems 1a in an area.
  • the time point for instructing the start of charge / discharge control is time t.
  • step S17 the output central management device 100 starts counting the duration k when the total power is less than 5% of the total rated output. To do.
  • step S19 the output central management apparatus 100 determines whether or not the total power P (t + i) at time t + i is less than 5% of the total rated output PVcap (P (t + i) ⁇ PVcap ⁇ 0.05). Or not).
  • the system stabilization system of the first embodiment can obtain the following effects by the above configuration.
  • the system stabilization system includes an output centralized management apparatus 100 that can communicate with a plurality of photovoltaic power generation systems 1a and 1b installed in a predetermined area.
  • the output central management apparatus 100 determines whether or not to smooth the output power of the plurality of photovoltaic power generation systems 1a in the region, based on the generated power data of the plurality of photovoltaic power generation systems 1a and 1b in the region. To do.
  • the solar power generation system 1 a in the area smoothes the output to the power system 50 based on the determination result of the output central management device 100.
  • the output concentration management apparatus 100 determines that smoothing of output power is unnecessary for the entire region based on the generated power data of the plurality of photovoltaic power generation systems 1a and 1b in the region, Even if smoothing is required when viewed for each photovoltaic power generation system 1a, the photovoltaic power generation system 1a in the area does not perform smoothing control. In other words, when the output variation for the power system 50 is suppressed by the so-called leveling effect when viewed as the entire region, even when smoothing is required for each individual photovoltaic power generation system 1a, In fact, smoothing is actually unnecessary.
  • the leveling effect is that, for example, when a photovoltaic power generation device is used as a distributed power supply, the cloudy timing (the timing of fluctuations in generated power) differs between the distributed power supplies that are separated from each other. Thus, the fluctuations in the generated power of the individual distributed power sources cancel each other, and the fluctuation in the generated power becomes moderate in terms of area.
  • the output central management apparatus 100 determines whether or not to smooth the output power of the solar power generation system 1a in the area based on the change amount of the total power. Thereby, it is possible to determine whether or not to smooth the output power of the photovoltaic power generation system 1a in the area based on the amount of change of the generated power of the power generation device 2 as a whole area. Since the amount of change in the entire region is different from the amount of change in the generated power of the individual photovoltaic power generation system 1a, the amount of change is suppressed due to the leveling effect. Therefore, the amount of change is smoothed based on the amount of change in the entire region. By determining whether or not it is necessary to perform smoothing, it is possible to suppress smoothing control that is not necessary originally. Thereby, since the charge / discharge frequency
  • the output central management apparatus 100 determines that the output power of the photovoltaic power generation system in the area is smoothed when the total power change amount is equal to or greater than the control start change amount. Thereby, it is possible to suppress smoothing control when the amount of change in the total power is small and the influence on the power system 50 is small. Thereby, since the charge / discharge frequency
  • the detection time interval is a period less than the lower limit cycle of the fluctuation cycle that can be handled by load frequency control.
  • the sampling period is a period longer than the lower limit cycle of the fluctuation cycle that can be handled by the load frequency control.
  • FIG. 6 shows the FFT analysis result when the sampling period, which is the generation period of the generated power data, is 10 minutes, and the FFT analysis result when the sampling period is 20 minutes.
  • the sampling period is longer than the fluctuation cycle corresponding to the load frequency control, particularly in the vicinity of the second half of T1 to T2 ( It can be seen that it is preferable to set the period in the range from the vicinity of the long cycle to T1 or more. For example, in the example of FIG. 3, it can be seen that by setting the sampling period to 20 minutes or more, most of the fluctuation cycle corresponding to the load frequency control can be suppressed. However, if the sampling period is lengthened, the required storage battery capacity tends to increase, and it is preferable to select a sampling period that is not much longer than T1.
  • FIG. 7 shows the positional relationship between cities in the southern part of Hyogo Prefecture.
  • 8 and 9 show changes in sunshine hours in a certain time zone in each city.
  • shaft of FIG. 8 and FIG. 9 is the sunlight time (time when the sun is shining) in the period for every 10 minutes.
  • the definition of sunshine refers to the case where 120 watts or more of direct light is applied per square meter.
  • the data shown in FIGS. 8 and 9 are based on JMA data.
  • the clouds move in the east-west direction, but rarely move in the north-south direction. For this reason, when considering the leveling effect, it can be seen that the leveling effect increases when solar power generation systems that transmit generated power to the output central management apparatus 100 are distributed along the east-west direction.
  • a regional model was set as shown in FIG. In other words, a certain area is 5km in the east-west direction and 20km in the north-south direction, and is divided into five areas A, B, C, D, and E arranged in the east-west direction, and smoothing control is performed in each area It is assumed that a house having a possible solar power generation system (solar power generation system 1a) is installed. The rated output of one photovoltaic power generation system was 4 kW.
  • Areas A to E have 7500 houses (area total output 30 MW), 2500 houses (area total output 10 MW), 5000 houses (area total output 20 MW), 2500 houses (area total output 10 MW), and 7500 houses (area total) It is assumed that a house with an output of 30 MW) is installed.
  • the measured weather was the amount of solar radiation during the daytime in the spring when the solar radiation fluctuation was strong, and it was assumed that the weather moved to the adjacent area with a delay of 5 minutes.
  • FIG. 11 shows the calculation result.
  • FIG. 12 shows transition of the total electric power which added the generated electric power of each area. As shown in FIG. 11 and FIG. 12, fluctuations in the transition of the total power in the entire region are suppressed as compared with the generated power transition in each area.
  • this region / weather model as an example, a simulation is performed to determine whether smoothing is necessary based on the total power of the entire region shown in FIG. It was.
  • a simulation is performed for determining whether smoothing is required for each area (that is, determining whether each solar power generation system needs smoothing) and performing smoothing control of each solar power generation system. went.
  • count of charging / discharging and the amount of charging / discharging of the photovoltaic power generation system in an area were computed. Table 1 below shows the calculation results.
  • the number of times of charging / discharging in the entire region in the comparative example (397 times) is an average value of the number of times of charging / discharging (402 times, 404 times, 394 times, 379 times, and 406 times) in each of the areas A to E in the comparative example.
  • the charge / discharge amount (36195 kWh) of the entire area in the example is the sum of the charge / discharge amounts (11380 kWh, 3682 kWh, 7126 kWh, 3476 kWh, and 10531 kWh) in each of the areas A to E in the example.
  • the charge / discharge amount (41308 kWh) of the entire region in the comparative example is the sum of the charge / discharge amounts (12930 kWh, 4255 kWh, 8194 kWh, 3918 kWh, and 12011 kWh) in each of the areas A to E in the comparative example.
  • the number of times of charging / discharging and the amount of charging / discharging are reduced by 10% or more compared to the comparative example.
  • the example and the comparative example are compared for each of the areas A to E, in the example, the number of charge / discharge and the amount of charge / discharge are reduced by 10% or more compared to the comparative example. This is because the charge / discharge frequency of the power storage device is reduced by the amount that is not smoothed with respect to the fluctuation suppressed by the leveling effect in the embodiment.
  • the system stabilization system of the present embodiment includes solar power generation systems 300a and 300b installed in a predetermined area, and an output centralized management device 100 that communicates with the solar power generation systems 300a and 300b.
  • the solar power generation system 300 a includes a power generation device 2, a power storage device 3, a power output unit 4, a charge / discharge control unit 301, a DC-DC converter 7, and a generated power detection unit 8. And has a smoothing control function.
  • the solar power generation system 300b has a configuration in which the power storage device 3 is removed from the solar power generation system 300a and does not have a smoothing control function.
  • Three loads 210, 220, and 230 are connected to the AC side bus 9 between the power output unit 4 and the power system 50 via the distribution board 202.
  • a power meter 310 that measures the power sold from the photovoltaic power generation systems 300 a and 300 b to the power system 50, and power purchased from the power system 50
  • a power meter 320 for weighing is provided.
  • Each of the electric power meter 310 and the electric power meter 320 is provided with an electric power sensor 302 and an electric power sensor 303, and the electric power data (the purchased electric power data or the selling power) are input and output from the electric power system 50 and the photovoltaic power generation systems 300a and 300b. (Electric power data) is detected.
  • the charge / discharge control unit 301 acquires purchased power data or sold power data from the power sensors 302 and 303 at predetermined detection time intervals (for example, 30 seconds or less). The charge / discharge control unit 301 calculates the value of the power sale power / the power purchase power as detected power data, and calculates the target output power based on the past detected power data. Then, the charge / discharge control unit 301 performs charge / discharge of the storage battery 31 so as to compensate for the difference between the actual detected power and the target output power. That is, when the actual detected power is larger than the target output power, the charge / discharge control unit 301 controls the DC-DC converter 33 so as to charge the storage battery 31 with excess power, and the actual detected power. Is smaller than the target output power, the DC-DC converter 33 is controlled so that the insufficient power is discharged from the storage battery 31.
  • the charge / discharge control unit 301 transmits the detected power data to the output central management device 100 every time it detects the detected power data.
  • the output central management apparatus 100 determines whether smoothing control is necessary based on the detected power data of the entire region.
  • the charge / discharge control unit 301 instructs the photovoltaic power generation system 300a to start and stop the smoothing control based on the determination result of the output central management device 100.
  • the load amount varies greatly as a whole. Therefore, rather than calculating the target output power based on the generated power data detected from the generated power detection unit 8 as in the first embodiment, the target output power is calculated based on the detection data detected from the power sensor 302 and the power sensor 303. A value that reflects the load is obtained by calculation. By performing smoothing based on a value reflecting this load, smoothing can be performed more effectively.
  • the present invention is not limited to this, A measuring instrument that detects the amount of solar radiation may be provided at a plurality of locations, and the necessity of the smoothing control may be determined based on the total value of the measured values (irradiance data).
  • the output central management apparatus 100 may instruct the start of the smoothing control only to a part of the photovoltaic power generation systems 1a.
  • the output central management apparatus 100 may instruct the start of the smoothing control only to an area where the number of solar power generation systems 1a in the area is large. Thereby, the charging / discharging frequency of the electrical storage apparatus of the photovoltaic power generation system 1a of another area can further be reduced.
  • the output centralized management apparatus 100 may determine whether smoothing is necessary by summing the generated power of some of the photovoltaic power generation systems 1a, 1b in the area. For example, the area is divided into a plurality of areas, representative solar power generation systems in these areas are determined in advance, and the output central management apparatus 100 determines whether smoothing control is required from the generated power of the representative solar power generation system. May be judged.
  • the representative photovoltaic power generation system is positioned in a plurality of regions at a predetermined distance along the predetermined direction. It is preferable to choose so as to. Since the fluctuation of the total power generated by the solar power generation system selected in this manner is suppressed by the leveling effect, all the power generation power of the local solar power generation systems 1a and 1b must be summed to smooth the power. It is considered that an effect close to that in the case of judging whether or not can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 この電力供給システムは、再生可能エネルギーを利用して発電する発電装置と、少なくとも1つの蓄電池を含んだ蓄電装置と、発電装置および蓄電池の少なくとも一方からの電力を出力する出力部と、発電装置から発電電力データを取得して集中管理装置に通信部を介して送信するとともに、発電電力データに基づき出力部から出力する目標出力電力を算出して、出力部から目標出力電力が出力されるように蓄電池の充放電を制御する充放電制御部とを備え、充放電制御部は、集中管理装置から充放電指示信号を受信し、充放電指示信号に基づいて蓄電池の充放電を開始または停止する。

Description

電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム
 本発明は、電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラムに関する。
 近年、変電所からの交流電力の供給を受ける各需要家(たとえば、住宅や工場など)に、風力や太陽光などの自然エネルギーを利用した発電装置(太陽電池などの分散型電源)が設けられるケースが増加している。このような発電装置は、変電所の配下に設けられる電力系統に接続されている。ここで、発電装置により発電された電力は、需要家内の電力消費装置側に出力される。また、需要家内の電力消費装置により消費されずに余った電力は、電力系統に出力される。この需要家から電力系統に向かう電力の流れは、「逆潮流」と呼ばれ、需要家から電力系統に出力される電力は「逆潮流電力」と呼ばれる。
 ここで、電力会社等の電力供給者には、電力の安定供給の義務が課されており、逆潮流電力分も含めた電力系統全体における周波数や電圧を一定に保つ必要がある。たとえば、電力供給者は、変動周期の大きさに応じた複数の制御手法によって、電力系統全体の周波数を一定に保っている。具体的には、一般に十数分以上の変動周期をもつような負荷成分については、最も経済的な発電電力の出力分担が可能なように経済負荷配分制御(EDC:Economic Dispatching Control)が行われている。このEDCは、1日の負荷変動予想に基づいた制御であり、時々刻々と変動する負荷の増減(十数分より小さい変動周期の成分)に対する対応は困難である。そこで、電力会社は、時々刻々と変動する負荷に応じて電力系統への電力の供給量を調整し、周波数の安定化を行うための複数の制御を行っている。EDCを除いたこれらの制御は特に周波数制御と呼ばれており、この周波数制御によって、EDCで調整できない負荷変動分の調整を行っている。
 より詳細には、約10秒以下の変動周期の成分については、電力系統自体の自己制御性により自然に吸収することができる。また、約10秒~数分程度の変動周期の成分に対しては、各発電所の発電機のガバナフリー運転により対応が可能である。また、数分から十数分までの変動周期の成分については、負荷周波数制御(LFC:Load Frequency Control)により対応している。この負荷周波数制御では、電力供給者の中央給電指令所からの制御信号によってLFC用発電所が発電出力を調整することにより、周波数制御を行っている。
 しかし、自然エネルギーを利用した発電装置の出力は、天候などに応じて急激に変化することがある。このような発電装置の出力の急激な変化は、連系している電力系統の周波数の安定度に大きな悪影響を与えてしまう。この悪影響は、自然エネルギーを利用した発電装置を有する需要家が増えるほど顕著になってくる。このため、今後、自然エネルギーを利用した発電装置を有する需要家がさらに増えてきた場合には、発電装置の出力の急激な変化を抑制することにより、電力系統の安定度を維持する必要が生じてくる。
 そこで、従来、このような発電装置の出力の急激な変化を抑制するために、分散型電源の電力系統への出力を蓄電装置の充放電により平滑化可能な系統連系型発電システムが提案されている。このような系統連系型発電システムは、たとえば、特開2001-5543号公報に開示されている。
 上記特開2001-5543号公報には、太陽電池と、太陽電池に接続されるとともに電力系統に接続されるインバータと、インバータと太陽電池とを接続する母線に接続された蓄電装置とを備えた発電システムが開示されている。この発電システムは、太陽電池の発電電力(出力)の変動に伴って蓄電装置の充放電を行うことにより、インバータからの出力電力の変動を抑制している。これにより、電力系統への出力電力の変動を抑制することが可能であるので、電力系統の周波数などへの悪影響を抑制することが可能である。
特開2001-5543号公報
 しかしながら、上記特開2001-5543号公報では、発電装置(分散型電源)の発電電力の変化に伴って蓄電装置の充放電がその都度行われるので、充放電の回数が多くなり、その結果、蓄電装置の寿命が短くなるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、分散型電源による発電電力の変動に起因する電力系統への影響を抑制しながら、蓄電装置の長寿命化を図ることが可能な系統安定化システム、系統連系型発電システムおよび系統連系型発電システムのための制御装置を提供することである。
 上記目的を達成するために、本発明の電力供給システムは、外部と通信可能な通信部を介し、集中管理システムにより管理される電力供給システムであって、再生可能エネルギーを利用して発電する発電装置と、少なくとも1つの蓄電池を含んだ蓄電装置と、発電装置および蓄電池の少なくとも一方からの電力を出力する出力部と、発電装置から発電電力データを取得して集中管理システムに通信部を介して送信するとともに、発電電力データに基づき出力部から出力する目標出力電力を算出して、出力部から目標出力電力が出力されるように蓄電池の充放電を制御する充放電制御部とを備え、充放電制御部は、集中管理装置から充放電指示信号を受信し、充放電指示信号に基づいて蓄電池の充放電を開始または停止する。
 本発明の集中管理システムは、外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理システムであって、所定時間毎に複数の電力供給システムからそれぞれ発電電力データを取得する発電電力データ取得部と、複数の発電電力データを合計して合計電力を算出するとともに、所定時間における合計電力の変化量を算出する変化量算出部と、合計電力の変化量が所定の閾値を超えるかどうかを判断し、電力供給システムに対し、通信部を介して判断結果に応じた充放電指示信号を送信する充放電指示部とを備える。
 本発明の系統安定化システムは、上記電力供給システムと、上記集中管理システムとを含むことを特徴としている。
 本発明の集中管理装置の制御方法は、外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理装置の制御方法であって、複数の電力供給システムからそれぞれ発電電力データを取得する発電電力データ取得工程と、複数の発電電力データを合計して合計電力を算出する電力算出工程と、合計電力が所定の閾値を超えるかどうかを判断し、電力供給システムに対し、通信部を介して判断結果に応じた充放電指示信号を送信する充放電指示工程とを含む。
 本発明の集中管理装置の制御プログラムは、コンピュータを、外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理装置として機能させるための制御プログラムであって、コンピュータに、複数の電力供給システムからそれぞれ発電電力データを取得させ、複数の発電電力データを合計して合計電力を算出させ、合計電力が所定の閾値を超えるかどうかを判断させ、電力供給システムに対し、通信部を介して判断結果に応じた充放電指示信号を送信させる。
 本発明の電力供給システムは、外部と通信可能な通信部を介し、集中管理装置により管理される電力供給システムであって、再生可能エネルギーを利用して発電する発電装置と、少なくとも1つの蓄電池を含んだ蓄電装置と、発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを取得する検出部と、検出電力データを取得して、集中管理装置に通信部を介して送信するとともに、検出電力データに基づき電力系統に出力される目標出力電力を算出して、発電装置および蓄電装置の少なくとも一方から電力系統に目標出力電力が出力されるように蓄電池の充放電を制御する充放電制御部とを備え、充放電制御部は、集中管理装置から充放電指示信号を受信し、充放電指示信号に基づいて蓄電池の充放電を開始または停止する。
 本発明によれば、分散型電源による発電電力の変動に起因する電力系統への影響を抑制しながら、蓄電装置の長寿命化を図ることが可能である。
本発明の第1実施形態による系統安定化システムの構成を示す模式図である。 本発明の第1実施形態による系統安定化システムに用いられる発電システムの構成を示すブロック図である。 電力系統に出力される負荷変動の大きさと変動周期との関係を説明するための図である。 第1実施形態による系統安定化システムの発電システムの平滑化制御の開始および停止の制御フローを説明するためのフローチャートである。 第1実施形態による系統安定化システムの出力集中管理装置の平滑化制御の開始および停止の判断の制御フローを説明するためのフローチャートである。 充放電制御におけるサンプリング期間について説明するための図である。 兵庫県南部の主要都市の一部の位置関係を示す図である。 図7に示した地域において、東西方向に並んだ都市における日照時間の変化を示す図である。 図7に示した地域において、南北方向に並んだ都市における日照時間の変化を示す図である。 本発明の効果を検証するシミュレーションにおいて、設定した地域モデルを説明するための図である。 図10に示した各区域毎の発電電力の推移を示すグラフである。 図10に示した各区域毎の発電電力の合計電力の推移を示すグラフである。 本発明の第2実施形態による系統安定化システムに用いられる発電システムの構成を示すブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 まず、図1~図3を参照して、本発明の第1実施形態による系統安定化システムの構成を説明する。
 図1に示すように、系統安定化システムは、所定の地域内に設置された複数の太陽光発電システム1a、1bと、複数の太陽光発電システム1a、1bと通信する出力集中管理装置100とを備えている。なお、所定の地域とは、たとえば、電力会社の管轄地域である。
 太陽光発電システム1aは、図2に示すように、発電装置2を備えるとともに、電力系統50に連系されており、発電装置2の発電電力を電力系統50に逆潮流する。また、太陽光発電システム1aは、蓄電装置3を備えており、蓄電装置3の充放電により電力系統50への逆潮流電力の変動を平滑化する(平滑化制御機能)。太陽光発電システム1bは、図示しないが、太陽光発電システム1aから蓄電装置3を除いた構成であり、平滑化制御機能を有しない。
 出力集中管理装置100は、電力データ取得部100aと、電力算出部100bと、充放電指示部100cとを備える。電力データ取得部100aは、所定の地域内における複数の太陽光発電システム1a、1bからそれぞれ発電電力データを取得する。電力算出部100bは、電力データ取得部100aにより取得された複数の発電電力データを合計して合計電力を算出する。充放電指示部100cは、電力算出部100bにより算出された合計電力が所定の閾値を超えるかどうかを判断し、電力供給システム1aに対し、通信部5b(図2参照)を介して判断結果に応じた充放電指示信号を送信する。
 上記構成により、出力集中管理装置100は、所定の地域内における太陽光発電システム1a、1bの合計発電量の変化量を検出し、その変化量に応じて地域内の太陽光発電システム1aの平滑化制御を開始または停止させる。太陽光発電システム1a、1bの発電電力を電力系統50に逆潮流する場合、日照の変動に伴う発電電力の変動が大きくなると、電力系統50が不安定になる可能性がある。そのため、本実施形態では、所定の地域毎に出力集中管理装置100により太陽光発電システム1a、1bから電力系統50への逆潮流を管理している。
 以下、出力集中管理装置100の制御について具体的に説明する。
 太陽光発電システム1a、1bは、それぞれ所定の検出時間間隔(たとえば、30秒以下)毎に、発電装置2による発電電力データを取得している。電力データ取得部100aは、地域内の各太陽光発電システム1a、1bから発電電力データを検出時間間隔毎に逐次取得する。電力算出部100bは、発電電力を合計した合計電力を検出時間間隔毎に算出し、検出時間間隔毎に算出される合計電力の連続する2つの合計電力データの差分を算出することにより合計電力の変化量を算出する。
 次に、充放電指示部100cは、合計電力の変化量が所定の変化量(以下、「制御開始変化量」と呼ぶ)以上かどうかを判断する。充放電指示部100cは、合計電力の変化量が制御開始変化量以上であると判断した場合には、各太陽光発電システム1aに平滑化制御を行わせる。制御開始変化量は、たとえば、出力集中管理装置100に発電電力データを送信する太陽光発電システムの発電装置2の定格出力の合計値(以下、合計定格出力と呼ぶ)の5%とすることができる。なお、上記の具体的な数値(定格出力の合計値の5%)については、検出時間間隔を変えた場合には、その検出時間間隔に応じて制御開始変化量を設定する必要がある。
 また、充放電指示部100cは、太陽光発電システム1aに平滑化制御を開始させた後、合計電力の大きさが所定の値よりも小さい状態が所定の期間(以下、「制御停止判断期間」と呼ぶ)継続した場合には、平滑化制御を停止させる。また、充放電指示部100cは、合計電力が所定の値よりも小さい状態が制御停止判断期間継続しない場合には、太陽光発電システム1aに平滑化制御を継続させる。所定の値は、たとえば、合計定格出力の5%である。また、制御停止判断期間は、負荷周波数制御(LFC)により対応可能な変動周期に相当する期間である。第1実施形態では20分としている。すなわち、充放電指示部100cは、太陽光発電システム1aに平滑化制御の開始を指示した後に、合計電力が合計定格出力の5%未満の状態が20分継続した場合に、平滑化制御を停止するように指示する。
 次に、太陽光発電システム1aの構成を説明する。
 太陽光発電システム1aは、太陽電池からなる発電装置2と、発電装置2により発電された電力を蓄電可能な蓄電装置3と、発電装置2により発電された電力および蓄電装置3により蓄電された電力を電力系統50に出力するインバータを含む電力出力部4と、蓄電装置3の充放電を制御する充放電制御部5とを備えている。また、電力出力部4と電力系統50とを接続する交流側母線には、負荷60が接続されている。なお、発電装置2は、再生可能エネルギーを利用した発電装置であればよく、例えば風力発電装置等を用いてもよい。
 発電装置2と電力出力部4とを接続する直流側母線6には、DC-DCコンバータ7が直列的に接続されている。DC-DCコンバータ7は、発電装置2により発電された電力の直流電圧を一定の直流電圧(第1実施形態では、約260V)に変換して電力出力部4側に出力する。また、DC-DCコンバータ7は、いわゆるMPPT(Maximum Power Point Tracking)制御機能を有している。MPPT機能とは、発電装置2により発電された電力が最大となるように発電装置2の動作電圧を自動的に調整する機能である。発電装置2とDC-DCコンバータ7との間には、発電装置2に向かって電流が逆流するのを防止するためのダイオード(図示せず)が設けられている。
 蓄電装置3は、直流側母線6に対して発電装置2と並列的に接続された蓄電池31と、蓄電池31の充放電を行う充放電部32とを含んでいる。蓄電池31としては、自然放電が少なく、充放電効率の高い2次電池(たとえば、Li-ion蓄電池、Ni-MH蓄電池など)が用いられている。また、蓄電池31の電圧は約48Vである。
 充放電部32は、DC-DCコンバータ33を有しており、直流側母線6と蓄電池31とはDC-DCコンバータ33を介して接続されている。DC-DCコンバータ33は、充電時には、蓄電池31に供給する電力の電圧を、直流側母線6の電圧から蓄電池31を充電するのに適した電圧まで降圧させることにより、直流側母線6側から蓄電池31側に電力を供給する。また、DC-DCコンバータ33は、放電時には、直流側母線6側に放電させる電力の電圧を、蓄電池31の電圧から直流側母線6の電圧付近まで昇圧させることにより、蓄電池31側から直流側母線6側に電力を放電させる。
 充放電制御部5は、DC-DCコンバータ33を制御することにより、蓄電池31の充放電制御を行い、電力系統50の出力変動を平滑化する。充放電制御部5は、発電装置2の発電電力に関わらず電力系統50へ出力する電力値を平滑化するために、電力系統50へ出力する目標出力電力を設定する。充放電制御部5は、発電装置2の発電電力に応じて、電力系統50へ出力する電力値が目標出力電力となるように、蓄電池31の充放電電力を制御する。すなわち、充放電制御部5は、発電装置2の発電電力が目標出力電力よりも大きい場合には、過剰分の電力を蓄電池31に充電するようにDC-DCコンバータ33を制御するとともに、発電装置2の発電電力が目標出力電力よりも小さい場合には、不足分の電力を蓄電池31から放電するようにDC-DCコンバータ33を制御する。
 また、充放電制御部5は、DC-DCコンバータ7の出力側に設けられた発電電力検出部8から発電装置2の発電電力データを取得する。発電量検出部8は、発電装置2の発電電力を検出して、発電電力データを充放電制御部5に送信する。充放電制御部5は、発電電力データを発電電力検出部8から所定の検出時間間隔毎に取得する。第1実施形態では、充放電制御部5は、30秒毎に発電装置2の発電電力データを取得している。
 また、充放電制御部5は、メモリ5aと、出力集中管理装置100と通信するための通信部5bとを備えている。充放電制御部5は、発電電力データを取得する毎(検出時間間隔毎)に出力集中管理装置100に送信する。なお、この発電電力の検出時間間隔は、長すぎても短すぎても発電電力の変化を正確に検出することができないので、発電装置2の発電電力の変動周期などを勘案して適正な値に定める必要がある。第1実施形態では、負荷周波数制御(LFC)により対応可能な変動周期の下限周期よりも短くなるように検出時間間隔を設定している。
 また、充放電制御部5は、電力出力部4の出力電力を取得することにより、実際に電力出力部4から電力系統50に出力された電力と目標出力電力との差を認識する。これにより、電力出力部4からの出力電力が目標出力電力となるように、充放電部32の充放電を制御する。
 次に、充放電制御部5による蓄電池3の充放電制御方法について説明する。上述したように、充放電制御部5は、発電装置2の発電電力と蓄電池3の充放電量との合計が目標出力電力となるように蓄電池3の充放電を制御する。この目標出力電力は移動平均法を用いて算出される。なお、移動平均法とは、ある時点の目標出力電力を、その時点より過去の期間の発電装置2の発電電力の平均値とする算出方法である。過去の発電電力データはメモリ5aに逐次記憶されている。以下、目標出力電力の算出に用いる発電電力データを取得するための期間をサンプリング期間と呼ぶ。サンプリング期間の具体的な値としては、たとえば、図3に示すような「負荷変動の大きさ-変動周期」特性を有する電力系統においては約10分以上約30分以下の期間であり、第1実施形態では、サンプリング期間を約20分としている。充放電制御部5は、約30秒置きに発電装置2の発電電力データを取得するので、過去20分の期間に含まれる40個の発電電力データの平均値を目標出力電力として算出している。
 ここで、第1実施形態では、充放電制御部5は、平滑化制御を常に行うわけではなく、出力集中管理装置100から平滑化制御の開始の指示を受けた場合にのみ充放電制御を行うように構成されている。また、充放電制御部5は、平滑化制御を行っている際に、出力集中管理装置100から平滑化制御の停止の指示を受けた場合に、平滑化制御を停止するように構成されている。
 次に、充放電制御部5による充放電制御により変動抑制を主に行う変動周期範囲について説明する。図3に示すように、変動周期によって対応可能な制御方法が異なっており、負荷周波数制御(LFC)により対応可能な負荷の変動周期が領域D(ハッチングで示す領域)に示されている。また、EDCにより対応可能な負荷の変動周期は領域Aに示されている。なお、領域Bは、負荷変動による影響を電力系統50自体の自己制御性により自然に吸収する領域である。また、領域Cは、各発電所の発電機のガバナフリー運転により対応が可能な領域である。ここで、領域Dと領域Aとの境界線が負荷周波数制御(LFC)により対応可能な負荷の変動周期の上限周期T1となり、領域Cと領域Dとの境界線が負荷周波数制御により対応可能な負荷の変動周期の下限周期T2となる。この上限周期T1および下限周期T2は、固有の周期ではなく、負荷変動の大きさによって変化する数値である。さらに、構築された電力網によって図示されている変動周期の時間も変化する。たとえば、電力系統側におけるいわゆるならし効果などの影響により下限周期T2および上限周期T1の値は変化する。また、ならし効果の大きさも、太陽光発電システムの普及度および地域分散性などに応じて変化する。第1実施形態では、EDC、電力系統50自体の自己制御性およびガバナフリー運転などによって対応できない領域D(LFCにより対応可能な領域)の範囲内に含まれる変動周期(変動周波数)を有する負荷変動に着目し、抑制することを目的としている。
 次に、図4を参照して、第1実施形態による系統安定化システムの太陽光発電システム1aの制御フローについて説明する。
 充放電制御部5は、平滑化制御を行っているか否かに拘わらず、発電電力検出部8から検出時間間隔(30秒)毎に取得した発電電力データを逐次出力集中管理装置100に送信する。また、地域内の他の太陽光発電システム1a、1bも、同様に発電電力データを出力集中管理装置100に送信する。出力集中管理装置100は、地域内の各太陽光発電システム1a、1bから受信した発電電力データに基づいて、平滑化制御の要否を判断する。
 ここで、ステップS1において、充放電制御部5は、出力集中管理装置100から平滑化制御の開始指示があったか否かを判断する。開始指示がない場合には、充放電制御部5は、この判断を繰り返す。開始指示があった場合には、充放電制御部5は、ステップS2において、平滑化制御を開始する。すなわち、充放電制御部5は、自己の発電装置2の過去の発電電力データに基づいて移動平均法により目標出力電力を算出するとともに、電力出力部4から目標出力電力が出力されるように、目標出力電力と実際の発電電力との差分だけ蓄電池31の充放電を行う。
 また、平滑化制御を行っている際に、ステップS3において、充放電制御部5は、出力集中管理装置100から平滑化制御の停止指示があったか否かを判断する。停止指示がない場合には、充放電制御部5は、この判断を繰り返す。停止指示があった場合には、充放電制御部5は、ステップS4において、平滑化制御を停止する。
 次に、図5を参照して、第1実施形態による系統安定化システムの出力集中管理装置100の制御フローについて説明する。
 まず、ステップS11において、出力集中管理装置100は、地域内の太陽光発電システム1a、1bから、ある時刻における各発電装置2の発電電力データを取得するとともに、それらの発電電力データを加算することにより、合計電力Pを算出する。そして、ステップS12において、出力集中管理装置100は、取得した合計電力Pを変動前合計電力P0とする。次に、ステップS13において、出力集中管理装置100は、合計電力P0の取得から30秒(検出時間間隔)経過後に各発電装置2の発電電力を取得するとともに、それらの合計電力をP1とする。
 この後、ステップS14において、出力集中管理装置100は、合計電力の変化量(|P1-P0|)が制御開始変化量(合計定格出力の5%)以上であるか否かを判断する。合計電力の変化量が制御開始変化量以上でない場合には、出力集中管理装置100は、ステップS15においてP1をP0とするとともにステップS13においてP1を取得して、合計電力の変化を監視する。
 また、合計電力の変化量が制御開始変化量以上である場合には、ステップS16において、出力集中管理装置100は、平滑化制御を開始する必要があると判断するとともに、各太陽光発電システム1aに平滑化制御の開始の指示を行う。第1実施形態では、地域内の全ての太陽光発電システム1aに平滑化の指示を行う。以下の説明において、充放電制御の開始の指示時点を時刻tとする。
 また、平滑化制御の開始を指示するのと同時(時刻t)に、ステップS17において、出力集中管理装置100は、合計電力が合計定格出力の5%未満の状態の継続時間kのカウントを開始する。そして、ステップS18において、時刻がt+i(i=検出時間間隔(30秒))になると、出力集中管理装置100は、時刻t+iにおける合計電力P(t+i)を取得する。また、ステップS19において、出力集中管理装置100は、時刻t+iにおける合計電力P(t+i)が合計定格出力PVcapの5%未満であるか否か(P(t+i)<PVcap×0.05を満たすか否か)を判断する。
 P(t+i)<PVcap×0.05を満たさない場合には、出力集中管理装置100は、ステップS20において継続時間kを0とするとともに、時刻t=t+iとした後、ステップS18に戻る。また、P(t+i)<PVcap×0.05を満たす場合には、出力集中管理装置100は、ステップS21において、継続時間kをk+iとする。その後、ステップS22において、出力集中管理装置100は、継続時間kが1200秒(制御停止判断期間の20分)以上であるか否かを判断する。継続時間kが1200秒未満である場合には、出力集中管理装置100は、ステップS23において、時刻t=t+iとした後、ステップS18に戻り、ステップS18~ステップS23の処理を継続時間kが1200秒以上になるまで繰り返す。継続時間kが1200秒以上である場合には、ステップS24において、出力集中管理装置100は、平滑化制御を停止する必要があると判断するとともに、各太陽光発電システム1aに平滑化制御の停止の指示を行う。
 第1実施形態の系統安定化システムは、上記構成により以下の効果を得ることができる。
 系統安定化システムは、所定の地域内に設置された複数の太陽光発電システム1a、1bと通信可能な出力集中管理装置100を備える。出力集中管理装置100は、地域内の複数の太陽光発電システム1a、1bの発電電力データに基づいて、地域内の複数の太陽光発電システム1aの出力電力の平滑化を行うか否かを判断する。地域内の太陽光発電システム1aは、出力集中管理装置100の判断結果に基づいて、電力系統50への出力の平滑化を行う。これにより、地域内の複数の太陽光発電システム1a、1bの発電電力データに基づいて、地域全体として出力電力の平滑化が不要であると出力集中管理装置100が判断した場合には、個々の太陽光発電システム1a毎にみた場合に平滑化が必要とされる場合であっても地域内の太陽光発電システム1aは平滑化制御を行わない。すなわち、地域全体としてみた場合に、いわゆるならし効果によって電力系統50に対する出力変動が抑制される場合には、個々の太陽光発電システム1a毎にみると平滑化が必要な場合でも、地域全体でみると実際には平滑化が不要である。その結果、個々の太陽光発電システム1aの充放電回数を少なくすることができ、蓄電装置3の長寿命化を図ることができる。なお、ならし効果とは、たとえば分散型電源として太陽光発電装置を用いた場合に、互いに離れた場所にある分散型電源では雲のかかるタイミング(発電電力の変動のタイミング)が異なることを利用して、個々の分散型電源の発電電力の変動が互いに打ち消しあうことにより、地域的に見て発電電力の変動が緩やかになる効果をいう。
 また、出力集中管理装置100は、合計電力の変化量に基づいて、地域内の太陽光発電システム1aの出力電力の平滑化を行うか否かを判断する。これにより、発電装置2の発電電力の地域全体としての変化量に基づいて地域内の太陽光発電システム1aの出力電力の平滑化を行うか否かを判断することができる。この地域全体としての変化量は、個々の太陽光発電システム1aの発電電力の変化量と異なり、ならし効果により変動が抑制された変化量であるので、この地域全体の変化量に基づいて平滑化の要否を判断することにより、本来必要のない平滑化制御を行ってしまうのを抑制することができる。これにより、蓄電装置3の充放電回数および充放電量を少なくすることができるので、蓄電装置3の長寿命化を図ることができる。
 また、出力集中管理装置100は、合計電力の変化量が制御開始変化量以上である場合に、地域内の太陽光発電システムの出力電力の平滑化を行うと判断する。これにより、合計電力の変化量が小さく、電力系統50への影響が小さい場合に平滑化制御を行ってしまうのを抑制することができる。これにより、蓄電装置3の充放電回数および充放電量を少なくすることができるので、蓄電装置3の長寿命化を図ることができる。
 また、検出時間間隔は、負荷周波数制御により対応可能な変動周期の下限周期未満の期間である。これにより、このような検出時間間隔で発電電力を取得することにより、負荷周波数制御により対応可能な変動周期を有する発電電力の変化を容易に検出することができる。これにより、負荷周波数制御により対応可能な変動周期の変動成分を減少させるように、充放電制御を行うことができる。
 また、サンプリング期間は、負荷周波数制御により対応可能な変動周期の下限周期以上の期間である。このようなサンプリング期間の範囲において算出した目標出力電力となるように充放電を制御することにより、特に、負荷周波数制御により対応可能な変動周期の成分を減少させることができる。これにより、負荷周波数制御により対応可能な変動周期の範囲における電力系統50への影響を有効に抑制することができる。
 次に、移動平均法のサンプリング期間について検討した。図6は、発電電力データの取得期間であるサンプリング期間を10分とした場合のFFT解析結果と、サンプリング期間を20分とした場合のFFT解析結果を示す。
 図6に示すように、サンプリング期間が10分の場合には、変動周期が10分未満の範囲における変動が抑制されている一方、変動周期が10分以上の範囲における変動があまり抑制されていないことがわかる。また、サンプリング期間が20分の場合には、変動周期が20分未満の範囲における変動が抑制されている一方、変動周期が20分以上の範囲における変動はあまり抑制されていない。したがって、サンプリング期間の大きさと、充放電制御により抑制できる変動周期との間には良好な相関関係があることがわかる。このため、サンプリング期間の設定により効果的に変動周期を抑制できる範囲が変わることがいえる。そこで、本システムで主に注目している負荷周波数制御により対応可能な変動周期の部分を抑制するためには、サンプリング期間を負荷周波数制御で対応する変動周期以上、特にT1~T2の後半付近(長周期付近)からT1以上の範囲の期間とすることが好ましいことがわかる。たとえば、図3の例では20分以上のサンプリング期間とすることにより、負荷周波数制御で対応する変動周期の殆どを抑制することができることがわかる。ただし、サンプリング期間を長くすると、必要な蓄電池容量が大きくなる傾向があり、T1よりもあまり長くないサンプリング期間を選択することが好ましい。
 次に、本発明の効果を検証したシミュレーション結果について説明する。
 まず、ならし効果について評価した。図7は、兵庫県南部の各都市の位置関係を示す。図8および図9は、各都市におけるある時間帯の日照時間の推移を示す。図8および図9の縦軸は、10分間毎の期間における日照時間(太陽が照っている時間)である。なお、日照の定義は、1平方メートル当たり120ワット以上の直射光が当たっている場合を指す。図8および図9のデータは気象庁データに基づいている。
 図7に示すように、神戸、明石および姫路は東西方向に沿って位置しており、三木は明石の北に位置している。図8に示すように、東西方向に位置している都市(神戸、明石および姫路)を比較した場合、姫路、明石、神戸の順に日照時間が落ち込む時間帯が早くなっている。これは、雲が西から東へ移動したことに起因すると考えられる。日本では、偏西風の影響により、雲は西から東へ移動する傾向がある。その一方、図9に示すように、南北方向に位置している都市(明石および三木)を比較した場合、日照時間が落ち込む時間帯はほとんど変わらない。したがって、雲は東西方向に移動するが、南北方向に移動することは少ないことがわかる。このため、ならし効果を考える際、発電電力を出力集中管理装置100に送信する太陽光発電システムが東西方向に沿って分布している場合に、ならし効果が大きくなることがわかる。
 以上の結果を踏まえて、図10に示すように地域モデルを設定した。すなわち、ある地域を東西方向が5km、南北方向が20kmの広さを有し、東西方向に並んだA、B、C、DおよびEの5つの区域に分けて、それぞれの区域に平滑化制御可能な太陽光発電システム(太陽光発電システム1a)を有する住宅が設置されているとした。1つの太陽光発電システムの定格出力は4kWとした。区域A~Eには、それぞれ、7500軒(区域合計出力30MW)、2500軒(区域合計出力10MW)、5000軒(区域合計出力20MW)、2500軒(区域合計出力10MW)および7500軒(区域合計出力30MW)の住宅が設置されているとした。また、天候は実測した日射変動の激しい春の昼間の日の日射量を用い、この天候が隣の区域に5分遅れで移動したと仮定した。
 この地域・天候モデルにおいて、各区域における発電電力の推移を算出した。図11は、この計算結果を示す。また、図12は、各区域の発電電力を加えた合計電力の推移を示す。図11および図12に示すように、各区域毎の発電電力推移に比べて、地域全体の合計電力の推移は変動が抑制されている。
 次に、この地域・天候モデルにおいて、実施例として、図12に示した地域全体の合計電力に基づいて平滑化の要否を判断し、各太陽光発電システムの平滑化制御を行うシミュレーションを行った。また、比較例として、各区域毎に平滑化の要否を判断(すなわち、個々の太陽光発電システムが平滑化の要否を判断)し、各太陽光発電システムの平滑化制御を行うシミュレーションを行った。そして、実施例および比較例について、地域内の太陽光発電システムの充放電回数および充放電量を算出した。以下の表1は、この算出結果を示す。なお、比較例における地域全体の充放電回数(397回)は、比較例における各区域A~Eの充放電回数(402回、404回、394回、379回および406回)の平均値である。また、実施例の地域全体の充放電量(36195kWh)は、実施例における各区域A~Eの充放電量(11380kWh、3682kWh、7126kWh、3476kWhおよび10531kWh)の合計である。比較例の地域全体の充放電量(41308kWh)は、比較例における各区域A~Eの充放電量(12930kWh、4255kWh、8194kWh、3918kWhおよび12011kWh)の合計である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、地域全体を比較すると、実施例では、比較例に比べて充放電回数および充放電量が10%以上減少している。また、各区域A~E毎に実施例と比較例とを比較しても、実施例では、比較例に比べて充放電回数および充放電量が10%以上減少している。これらは、実施例ではならし効果により抑制される変動に対して平滑化を行わない分、蓄電装置の充放電頻度が減ったからである。
(第2実施形態)
 次に、図13を参照して、本発明の第2実施形態による系統安定化システムについて説明する。第1実施形態では、出力集中管理装置100が地域全体の発電電力に基づいて平滑化制御の要否を判断する例を示した。一方、第2実施形態では、地域全体の太陽光発電システム300a、300bと電力系統50とを出入りする電力(買電力または売電力)に基づいて平滑化制御の要否を判断する例について説明する。なお、第1実施形態と同一の機能を有する構成要素については、同一の符号を付して説明する。
 本実施形態の系統安定化システムは、所定の地域内に設置された太陽光発電システム300a、300bと、太陽光発電システム300a、300bと通信する出力集中管理装置100とを備えている。太陽光発電システム300aは、図13に示すように、発電装置2と、蓄電装置3と、電力出力部4と、充放電制御部301と、DC-DCコンバータ7と、発電電力検出部8とを備え、平滑化制御機能を有する。また、太陽光発電システム300bは、太陽光発電システム300aから蓄電装置3を除いた構成であり、平滑化制御機能を有しない。電力出力部4と電力系統50との間の交流側母線9には分電盤202を介して3つの負荷210、220および230が接続されている。
 また、交流側母線9の分電盤202よりも電力系統50側には太陽光発電システム300a、300bから電力系統50に売却する電力を計量する電力メータ310と、電力系統50から購入する電力を計量する電力メータ320とが設けられている。電力メータ310および電力メータ320のそれぞれには、電力センサ302および電力センサ303が設けられており、電力系統50と太陽光発電システム300a、300bとを出入りする電力のデータ(買電電力データまたは売電電力データ)を検出する。
 充放電制御部301は、電力センサ302および303から買電電力データまたは売電電力データを所定の検出時間間隔毎(たとえば、30秒以下)に取得する。充放電制御部301は、売電電力-買電電力の値を検出電力データとして算出し、過去の検出電力データに基づいて目標出力電力を算出する。そして、充放電制御部301は、実際の検出電力と目標出力電力との差を補償するように蓄電池31の充放電を行う。すなわち、充放電制御部301は、実際の検出電力が目標出力電力よりも大きい場合には、過剰分の電力を蓄電池31に充電するようにDC-DCコンバータ33を制御するとともに、実際の検出電力が目標出力電力よりも小さい場合には、不足分の電力を蓄電池31から放電するようにDC-DCコンバータ33を制御する。
 また、充放電制御部301は、検出電力データを検出する毎に出力集中管理装置100に送信する。出力集中管理装置100は、地域全体の検出電力データに基づいて平滑化制御の要否を判断する。充放電制御部301は、出力集中管理装置100の判断結果に基づいて、太陽光発電システム300aに対し平滑化制御の開始および停止を指示する。
 第2実施形態の上記以外の構成は、第1実施形態と同様である。
 第2実施形態では、複数の負荷(負荷210、220および230)を備えているため、負荷全体として、負荷量の変動が大きい。そのため、第1実施形態のように、発電電力検出部8から検出した発電電力データに基づき目標出力電力を算出するよりも、電力センサ302および電力センサ303から検出した検出データに基づき目標出力電力を算出する方が、負荷を反映した値が得られる。この負荷を反映した値に基づいて平滑化を行うことによって、より効果的に平滑化を行うことが可能である。
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 第1および第2実施形態では、蓄電池としてLi-ion電池やNi-MH電池を用いる例を示したが、本発明はこれに限らず、他の二次電池を用いてもよい。
 また、第1実施形態では、需要家内で用いる負荷における消費電力量を想定しない場合について説明したが、本発明はこれに限らず、目標出力電力の算出において、需要家内で用いられる少なくとも一部の負荷で消費する電力量を検出し、その負荷消費電力量あるいは負荷消費電力変動量を加味して目標出力の算出を行ってもよい。
 また、第1および第2実施形態では、発電電力または検出電力を加算した合計電力に基づいて平滑化制御の要否を判断した例について説明したが、本発明はこれに限らず、地域内の複数箇所に日射量を検出する計測器を設けておき、それらの計測値(日射量データ)の合計値に基づいて平滑化制御の要否を判断するようにしてもよい。
 また、第1および第2実施形態では、出力集中管理装置100が平滑化制御を行う必要があると判断した場合に、地域内の全ての太陽光発電システム1aに平滑化制御の開始の指示を行った例について説明したが、本発明はこれに限られない。本発明では、出力集中管理装置100が一部の太陽光発電システム1aにのみ平滑化制御の開始の指示を行うようにしてもよい。たとえば、出力集中管理装置100は、地域内の太陽光発電システム1aの配置数が多い区域内に対してのみ平滑化制御の開始の指示を行ってもよい。これにより、他の区域の太陽光発電システム1aの蓄電装置の充放電頻度をさらに減らすことができる。
 また、第1および第2実施形態では、出力集中管理装置100と通信可能な地域内の太陽光発電システム1aおよび1bの全ての発電電力を合計して平滑化の要否を判断する例を説明したが、本発明はこれに限られない。本発明では、出力集中管理装置100は、地域内の一部の太陽光発電システム1a、1bの発電電力を合計して平滑化の要否を判断してもよい。たとえば、地域を複数の区域に分けるとともに、それらの区域の代表の太陽光発電システムを予め決めておき、出力集中管理装置100がその代表の太陽光発電システムの発電電力から平滑化制御の要否を判断してもよい。また、地域が、雲の流れる方向が所定の方向に流れる傾向のある地域である場合には、代表の太陽光発電システムは、所定の方向に沿って所定の距離を隔てて複数の領域に位置するように選ぶことが好ましい。このように選んだ太陽光発電システムの発電電力の合計電力は、ならし効果により変動が抑制されるので、地域の太陽光発電システム1aおよび1bの全ての発電電力を合計して平滑化の要否を判断する場合に近い効果を得ることができると考えられる。

Claims (12)

  1.  外部と通信可能な通信部を介し、集中管理装置により管理される電力供給システムであって、
     再生可能エネルギーを利用して発電する発電装置と、
     少なくとも1つの蓄電池を含んだ蓄電装置と、
     前記発電装置および前記蓄電池の少なくとも一方からの電力を出力する出力部と、
     前記発電装置から発電電力データを取得して前記集中管理装置に前記通信部を介して送信するとともに、前記発電電力データに基づき前記出力部から出力する目標出力電力を算出して、前記出力部から前記目標出力電力が出力されるように前記蓄電池の充放電を制御する充放電制御部とを備え、
     前記充放電制御部は、前記集中管理装置から充放電指示信号を受信し、前記充放電指示信号に基づいて前記蓄電池の充放電を開始または停止する、電力供給システム。
  2.  前記充放電制御部は、前記発電装置から前記発電電力データを所定の検出時間毎に取得するとともに、前記発電電力データを取得する毎に前記集中管理装置に送信する、請求項1に記載の電力供給システム。
  3.  外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理装置であって、
     前記複数の電力供給システムからそれぞれ発電電力データを取得する発電電力データ取得部と、
     前記複数の発電電力データを合計して合計電力を算出する電力算出部と、
     前記合計電力が所定の閾値を超えるかどうかを判断し、前記電力供給システムに対し、前記通信部を介して判断結果に応じた充放電指示信号を送信する充放電指示部とを備える、集中管理装置。
  4.  前記充放電指示部は、前記電力供給システムが充放電を行っている場合において、前記合計電力の大きさが前記閾値よりも小さいと判断したとき、前記電力供給システムの充放電を停止させるか否かを判断する、請求項3に記載の集中管理装置。
  5.  前記発電電力データ取得部は、所定時間毎に前記発電電力データを取得し、
     前記電力算出部は、前記所定時間における前記合計電力の変化量を算出し、
     前記充放電指示部は、前記合計電力の変化量が所定の閾値を超えるかどうかを判断し、前記変化量が前記閾値を超えた場合に、前記電力供給システムに対し充放電を開始させるための前記充放電指示信号を送信する、請求項3に記載の集中管理装置。
  6.  前記複数の電力供給システムには、蓄電池を備える電力供給システムと蓄電池を備えていない電力供給システムとが含まれており、
     前記充放電指示部は、前記蓄電池を備える電力供給システムに対して前記充放電指示信号を送信する、請求項3~5のいずれか1項に記載の集中管理装置。
  7.  請求項1または2に記載の電力供給システムと、請求項3~6のいずれか1項に記載の集中管理装置とを含む、系統安定化システム。
  8.  外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理装置の制御方法であって、
     前記複数の電力供給システムからそれぞれ発電電力データを取得する電力データ取得工程と、
     前記複数の発電電力データを合計して合計電力を算出する電力算出工程と、
     前記合計電力が所定の閾値を超えるかどうかを判断し、前記電力供給システムに対し、前記通信部を介して判断結果に応じた充放電指示信号を送信する充放電指示工程とを含む、集中管理装置の制御方法。
  9.  前記電力データ取得工程では、所定時間毎に前記発電電力データを取得し、
     前記電力算出工程では、前記所定時間における前記合計電力の変化量を算出し、
     前記充放電指示工程では、前記合計電力の変化量が所定の閾値を超えるかどうかを判断し、前記変化量が前記閾値を超えた場合に、前記電力供給システムに対し蓄電池の充放電を開始させるための前記充放電指示信号を送信する、請求項8に記載の集中管理装置の制御方法。
  10.  コンピュータを、外部と通信可能な通信部を介し、複数の電力供給システムを管理する集中管理装置として機能させるための制御プログラムであって、
     前記コンピュータに、前記複数の電力供給システムからそれぞれ発電電力データを取得させ、前記複数の発電電力データを合計して合計電力を算出させ、前記合計電力が所定の閾値を超えるかどうかを判断させ、前記電力供給システムに対し、前記通信部を介して判断結果に応じた充放電指示信号を送信させる、集中管理装置の制御プログラム。
  11.  前記コンピュータに、所定時間毎に前記発電電力データを取得させ、前記所定時間における前記合計電力の変化量を算出させ、前記合計電力の変化量が所定の閾値を超えるかどうかを判断させ、前記変化量が前記閾値を超えた場合に、前記電力供給システムに対し蓄電池の充放電を開始させるための前記充放電指示信号を送信させる、請求項10に記載の集中管理装置の制御プログラム。
  12.  外部と通信可能な通信部を介し、集中管理装置により管理される電力供給システムであって、
     再生可能エネルギーを利用して発電する発電装置と、
     少なくとも1つの蓄電池を含んだ蓄電装置と、
     前記発電装置と電力系統との間を接続する電力線を流れる電力値である検出電力データを取得する検出部と、
     前記検出電力データを取得して、前記集中管理装置に前記通信部を介して送信するとともに、前記検出電力データに基づき電力系統に出力される目標出力電力を算出して、前記発電装置および前記蓄電装置の少なくとも一方から電力系統に前記目標出力電力が出力されるように前記蓄電池の充放電を制御する充放電制御部とを備え、
     前記充放電制御部は、前記集中管理装置から充放電指示信号を受信し、前記充放電指示信号に基づいて前記蓄電池の充放電を開始または停止する、電力供給システム。
PCT/JP2011/057344 2010-03-25 2011-03-25 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム WO2011118766A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012507081A JPWO2011118766A1 (ja) 2010-03-25 2011-03-25 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム
US13/425,139 US20120228941A1 (en) 2010-03-25 2012-03-20 Electric power supply system, master control device, system stabilization system, control method for the master control device and control program for the master control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070673 2010-03-25
JP2010-070673 2010-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/425,139 Continuation US20120228941A1 (en) 2010-03-25 2012-03-20 Electric power supply system, master control device, system stabilization system, control method for the master control device and control program for the master control device

Publications (1)

Publication Number Publication Date
WO2011118766A1 true WO2011118766A1 (ja) 2011-09-29

Family

ID=44673306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057344 WO2011118766A1 (ja) 2010-03-25 2011-03-25 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム

Country Status (3)

Country Link
US (1) US20120228941A1 (ja)
JP (1) JPWO2011118766A1 (ja)
WO (1) WO2011118766A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011122681A1 (ja) * 2010-03-30 2013-07-08 三洋電機株式会社 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
JP2013135561A (ja) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd 発電出力変動補完システム、その制御装置、プログラム
JP2013143901A (ja) * 2012-01-12 2013-07-22 Chugoku Electric Power Co Inc:The 分散電源制御装置、分散電源制御システム及び分散電源制御方法
JP2013146140A (ja) * 2012-01-13 2013-07-25 Chugoku Electric Power Co Inc:The 負荷管理システムおよび負荷管理方法
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2018164399A (ja) * 2013-02-08 2018-10-18 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法及び電池制御支援方法
JP2021136852A (ja) * 2020-02-28 2021-09-13 パナソニックIpマネジメント株式会社 電力管理システム、電力管理方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967516B2 (ja) * 2011-11-22 2016-08-10 パナソニックIpマネジメント株式会社 電力管理装置、電力管理プログラム、及び、電力分配システム
JP6060976B2 (ja) * 2012-08-16 2017-01-18 日産自動車株式会社 電力供給システム及び電力供給システムの制御方法
KR20140023125A (ko) * 2012-08-17 2014-02-26 엘지전자 주식회사 에너지 저장장치, 전력 관리 장치, 이동 단말기 및 그 동작방법
JP6299743B2 (ja) * 2013-02-19 2018-03-28 日本電気株式会社 電力潮流制御システム、および、電力潮流制御方法
JP6348862B2 (ja) * 2015-03-30 2018-06-27 株式会社日立製作所 系統安定化制御装置および電力系統制御システム
JP6397999B2 (ja) * 2015-04-24 2018-09-26 株式会社日立製作所 電力系統安定化システム及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005543A (ja) * 1999-06-17 2001-01-12 Kansai Electric Power Co Inc:The 直流電力出力装置および太陽光発電システム
JP2004072900A (ja) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 電力ネットワーク管理システムおよび電力ネットワーク管理方法
JP2007151371A (ja) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> 系統協調型変動抑制システムおよび出力変動抑制方法
JP2009065787A (ja) * 2007-09-06 2009-03-26 Univ Of Ryukyus 風力発電機に用いる蓄電池設備

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796974B2 (ja) * 2007-01-26 2011-10-19 株式会社日立産機システム 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8554519B2 (en) * 2010-02-25 2013-10-08 International Business Machines Corporation Method for designing the layout of turbines in a windfarm
US8165811B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for determining point-to-point correlation of sky clearness for photovoltaic power generation fleet output estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005543A (ja) * 1999-06-17 2001-01-12 Kansai Electric Power Co Inc:The 直流電力出力装置および太陽光発電システム
JP2004072900A (ja) * 2002-08-06 2004-03-04 Mitsubishi Heavy Ind Ltd 電力ネットワーク管理システムおよび電力ネットワーク管理方法
JP2007151371A (ja) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> 系統協調型変動抑制システムおよび出力変動抑制方法
JP2009065787A (ja) * 2007-09-06 2009-03-26 Univ Of Ryukyus 風力発電機に用いる蓄電池設備

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011122681A1 (ja) * 2010-03-30 2013-07-08 三洋電機株式会社 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
JP2013135561A (ja) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd 発電出力変動補完システム、その制御装置、プログラム
JP2013143901A (ja) * 2012-01-12 2013-07-22 Chugoku Electric Power Co Inc:The 分散電源制御装置、分散電源制御システム及び分散電源制御方法
JP2013146140A (ja) * 2012-01-13 2013-07-25 Chugoku Electric Power Co Inc:The 負荷管理システムおよび負荷管理方法
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2018164399A (ja) * 2013-02-08 2018-10-18 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法及び電池制御支援方法
US10365675B2 (en) 2013-02-08 2019-07-30 Nec Corporation Battery control device, battery control support device, battery control system, battery control method, battery control support method, and recording medium
JP2021136852A (ja) * 2020-02-28 2021-09-13 パナソニックIpマネジメント株式会社 電力管理システム、電力管理方法、及びプログラム
JP7411909B2 (ja) 2020-02-28 2024-01-12 パナソニックIpマネジメント株式会社 電力管理システム、電力管理方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2011118766A1 (ja) 2013-07-04
US20120228941A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2011118766A1 (ja) 電力供給システム、集中管理装置、系統安定化システム、集中管理装置の制御方法および集中管理装置の制御プログラム
JP5520365B2 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
JP5479182B2 (ja) 発電システムおよび充放電制御装置
Mohammed et al. A review of process and operational system control of hybrid photovoltaic/diesel generator systems
US9343926B2 (en) Power controller
US10355487B2 (en) Photovoltaic system
KR20190018155A (ko) 하이브리드 전력 시스템에서 전력 흐름을 제어하기 위한 방법 및 장치
US9148020B2 (en) Method of controlling a battery, computer readable recording medium, electric power generation system and device controlling a battery
JP5383902B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
JP5507669B2 (ja) 電力供給システム、電力供給方法および電力供給システムの制御プログラム
JP2008182017A (ja) 太陽光発電システムの制御方法と太陽光発電システムの発電量予測装置
WO2011078151A1 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
WO2011040470A1 (ja) 充放電制御装置および発電システム
US10693304B2 (en) Energy storage system with improved operating time and operation method thereof
JP2023138478A (ja) 高い動的負荷を有する電力システムのバッテリエネルギー貯蔵システムを制御する方法
JP5475019B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
WO2011090108A1 (ja) 充放電システムおよび充放電制御装置
Jima Simulation and Optimization of Wind Turbine, Solar PV, Storage Battery and Diesel Generator Hybrid Power System for a Cluster of Micro and Small Enterprises Working on Wood and Metal Products at Welenchity Site
JP7180993B2 (ja) 発電システム
JP5912055B2 (ja) 制御装置及び制御方法
Belfkira et al. Design study and optimization of a grid independent wind/PV/Diesel system
JP5355721B2 (ja) 充放電システムおよび充放電制御装置
Mrad On the Reliability of Small-scale Solar system: Design of a stand-alonesystem in rural countries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507081

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759570

Country of ref document: EP

Kind code of ref document: A1