WO2011118061A1 - Intercardiac defibrillation catheter system - Google Patents
Intercardiac defibrillation catheter system Download PDFInfo
- Publication number
- WO2011118061A1 WO2011118061A1 PCT/JP2010/066881 JP2010066881W WO2011118061A1 WO 2011118061 A1 WO2011118061 A1 WO 2011118061A1 JP 2010066881 W JP2010066881 W JP 2010066881W WO 2011118061 A1 WO2011118061 A1 WO 2011118061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- catheter
- defibrillation
- supply device
- electrode group
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3956—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/287—Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
- A61N1/0563—Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/378—Electrical supply
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3968—Constructional arrangements, e.g. casings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3975—Power supply
Definitions
- the present invention relates to an intracardiac defibrillation catheter system, and more specifically, includes a defibrillation catheter that is inserted into the heart chamber, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter.
- the present invention relates to a catheter system.
- An external defibrillator is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
- AED an external defibrillator
- electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage.
- the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
- Atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
- AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
- the present inventors have introduced a defibrillation catheter that is inserted into the heart chamber and performs defibrillation, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter.
- a catheter system including an electrocardiograph Japanese Patent Application No. 2009-70940.
- a defibrillation catheter is a disposable product, and its performance deteriorates when it is used for a certain period of time. Further, when the defibrillation catheter is used for a long time, safety problems such as fatigue of full wires, insulation breakdown of lead wires, and elution of constituent materials into blood arise. Therefore, from the viewpoint of performance and safety, it is desirable to limit the time during which the defibrillation catheter can be used so that it cannot be used beyond this time limit.
- the time when the power supply device is connected to the defibrillation catheter is stored in the power supply device, and after the time limit has elapsed from that time, the defibrillation is performed. It is conceivable to control the power supply device so that the operation by the catheter is not performed.
- a serial number that can be read by the power supply device is assigned to the defibrillation catheter, the serial number is stored in the power supply device connected to the defibrillation catheter, and the defibrillation catheter having the stored serial number is stored.
- the power supply device is reconnected, the time at which the defibrillation catheter is first connected is used as a starting point, and control is performed so that the defibrillation catheter cannot be operated after the time limit for use has elapsed from that time. It is also possible.
- the reconnected power supply device when there is not one power supply device connected to the defibrillation catheter, for example, when a spare power supply device is reconnected during the procedure, the reconnected power supply device includes: Since the history information that the defibrillation catheter was operated by the power supply device that was first connected (the time when the power supply device was first connected) is not stored, the time when the connection was reconnected is the starting point. It is possible to further operate for a limited use time from the time.
- the present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be supplied to a patient. Another object of the present invention is to provide an intracardiac defibrillation catheter system capable of performing defibrillation treatment without causing burns on the patient's body surface.
- An intracardiac defibrillation catheter system includes a defibrillation catheter that is inserted into the heart chamber to perform defibrillation, and a DC voltage applied to an electrode of the defibrillation catheter.
- a catheter system with a power supply for applying The defibrillation catheter includes an insulating tube member; A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member; A second electrode group (second DC electrode group) comprising a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal end side; A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group; A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group; A catheter serial storage unit storing serial information of the defibrillation catheter; An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and A memory having an event information storage unit that stores information related to an event including defi
- the arithmetic processing unit of the power supply device is (A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department, (B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, and between the first DC electrode group and the second DC electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter, (C) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write
- the measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device, (D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter, (E) For each event written in the event storage unit in the memory of the defibrillation catheter, the time when the event was performed from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter It is determined whether or not the elapsed time has exceeded the use limit time (use limit time stored in the arithmetic processing unit of the power supply device). Control is performed so that the next event by the catheter is not executed.
- the defibrillation catheter constituting the intracardiac defibrillation catheter system of the present invention is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium. Then, the power supply device applies voltages having different polarities to the first DC electrode group and the second DC electrode group via the first lead wire group and the second lead wire group (the first DC electrode group and the second DC electrode group). By applying a DC voltage to the group), electrical energy is directly applied to the heart undergoing fibrillation, whereby defibrillation treatment is performed.
- the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber by directly giving electrical energy to the heart that has caused fibrillation,
- the electrical stimulation (electric shock) necessary and sufficient for defibrillation treatment can be surely applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
- the arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention (first invention)
- the serial information of the connected power supply device is written in the initial connection information storage unit in the memory of the defibrillation catheter, and when the same or different power supply device is reconnected to the defibrillation catheter, the reconnection time and the reconnected
- the serial information of the power supply device is written to the event storage unit in the memory of the defibrillation catheter. Therefore, the time written in the first connection information storage unit is not rewritten by reconnection of the power supply device.
- the history of reconnection (replacement) of the power supply device is recorded in the event storage unit together with the serial information of the power supply device before and after the replacement.
- the arithmetic processing unit of the power supply device is configured to provide a resistance value (intracardiac resistance value) between the first DC electrode group and the second DC electrode group, the first DC electrode group, The information on the set value of the electrical energy to be applied between the second DC electrode group, the actually applied output voltage and the output time, together with the time when this defibrillation was performed and the serial information of the power supply device, is removed. It can be written in the event storage unit in the memory of the fibrillation catheter and stored as an event (operation) history of the defibrillation catheter.
- the arithmetic processing unit of the power supply device measures the measured resistance value. Is written in the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device, so that the data of the intracardiac resistance value when the defibrillation is not performed Can also be recorded.
- the arithmetic processing unit of this power supply device calculates the event from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter. It is determined whether or not the elapsed time until the time when the operation is performed (the use time of the defibrillation catheter) exceeds the use time limit stored in the arithmetic processing unit of the power supply device. In this case, control is performed so that the next event by the defibrillation catheter is not executed. Therefore, even if the same or different power supply device is reconnected to the defibrillation catheter, it is used from the time when the power supply device is first connected. If a certain event is performed by the defibrillation catheter after the time limit has elapsed, the next event by the defibrillation catheter is not executed.
- the arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention (first invention) periodically refers to the time indicated by the internal clock, and After the time limit for use (time limit for use stored in the processing unit of the power supply unit) has elapsed from the connection time written in the initial connection information storage unit of the memory, an event by the defibrillation catheter is executed. It can be controlled so that it does not.
- the arithmetic processing unit of the power supply device may have a timer function that prevents a new event from being executed when the use time limit elapses.
- the use limit time Controls so that the “next” event by the defibrillation catheter is not executed, so it seems that a long time has passed with the power supply connected after performing an event just before the usage limit time has elapsed.
- the “next” event can be executed at a time significantly exceeding the usage time limit. Therefore, by using a timer together in the first invention, even in such a case, it is possible to prevent the event from being executed after the use time limit has elapsed.
- An intracardiac defibrillation catheter system includes a defibrillation catheter that is inserted into the heart chamber to perform defibrillation, and a DC voltage applied to an electrode of the defibrillation catheter.
- a catheter system with a power supply for applying The defibrillation catheter includes an insulating tube member; A first DC electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member; A second DC electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side; A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group; A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group; A catheter serial storage unit storing serial information of the defibrillation catheter; An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and A memory having an event information storage unit that stores information related to an event including defibrillation by the defibri
- the arithmetic processing unit of the power supply device is (A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department, (B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, and between the first DC electrode group and the second DC electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter, (C) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write
- the measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device, (D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter, (E) The current time indicated by the internal clock from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter when a new event is to be executed by the defibrillation catheter. It is determined whether or not the elapsed time has exceeded the use time limit (use time limit stored in the arithmetic processing unit of the power supply device). It is characterized by controlling so that it does not occur.
- the intracardiac defibrillation catheter system of the present invention (second invention) even when the same or different power supply device is reconnected to the defibrillation catheter, the time (first time) written in the first connection information storage unit The defibrillation catheter is not used (no new event is executed) after the use time limit has elapsed since the time when the power supply device was connected to the device.
- an electrocardiograph is provided together with the defibrillation catheter and the power supply device,
- the power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
- a switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact; Comprising: When the cardiac potential is measured by the electrodes constituting the first electrode group and / or the second electrode group of the defibrillation catheter, the first contact is selected in the switching unit, and the cardiac potential information from the defibrillation catheter is selected.
- the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching It is preferable that voltages having different polarities are applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connection connector.
- the path from the catheter connector to the electrocardiograph connector is secured by selecting the first contact in the switching unit constituting the power supply device, the first DC electrode group and / or the second DC of the defibrillation catheter is secured.
- the electrocardiogram can be measured by the electrodes constituting the electrode group, and the obtained electrocardiogram information can be input to the electrocardiograph via the catheter connector, the switching unit, and the electrocardiograph connector. That is, when defibrillation treatment is not required during cardiac catheterization, the defibrillation catheter constituting the present invention can be used as an electrode catheter for measuring cardiac potential. As a result, when atrial fibrillation occurs during cardiac catheterization, it is possible to save the trouble of removing the electrode catheter and newly inserting a catheter for defibrillation.
- the defibrillation catheter is a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group.
- a potential measuring electrode group comprising: The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device. And In the power supply device, a path directly connecting the catheter connector and the electrocardiograph connector is formed, The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit.
- the potential measurement electrode group The electrocardiograph can acquire the electrocardiogram measured by the above-mentioned, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
- an electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph constituting the intracardiac defibrillation catheter system of (4) or (5).
- this cardiac potential measuring means is an electrode pad or an electrode catheter. According to such a configuration, even in the case of defibrillation treatment in which the electrocardiograph cannot obtain the electrocardiogram from the first DC electrode group and the second DC electrode group of the defibrillation catheter, the electrocardiogram measurement is performed.
- the electrocardiograph can acquire the electrocardiogram measured by the means, and the defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
- the power supply device constituting the intracardiac defibrillation catheter system of (4) to (7) includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and the arithmetic operation A cardiac potential information display unit connected to the processing unit, It is preferable that the electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit.
- cardiac potential information input to the electrocardiograph (cardiac potential acquired by the electrodes constituting the first DC electrode group and / or the second DC electrode group of the defibrillation catheter, the defibrillation catheter)
- a part of the cardiac potential acquired by the electrodes constituting the potential measuring electrode group or the cardiac potential acquired by the cardiac potential measuring means other than the defibrillation catheter) is input to the arithmetic processing unit.
- the DC power supply unit can be controlled based on this electrocardiographic information.
- defibrillation treatment (such as input of an external switch) can be performed while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit with the electrocardiogram information display unit.
- the intracardiac defibrillation catheter system of the present invention the following effects are exhibited.
- the electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive.
- a defibrillation catheter, which is a disposable product, can be used only when there is no problem from the viewpoint of performance and safety (event can be executed). Thereby, the performance and safety of the defibrillation catheter can be ensured.
- the defibrillation catheter By reconnecting the same or different power supply device to the defibrillation catheter, the defibrillation catheter can be used only when there is no problem from the viewpoint of performance and safety. (4) An event history of a defibrillation catheter can be recorded. (5) Even if an event by a defibrillation catheter is performed using a plurality of power supply devices by reconnecting different power supply devices, the event history by this defibrillation catheter is stored in one memory (event information storage unit) Event history information can be managed for each defibrillation catheter.
- FIG. 1 is a block diagram illustrating one embodiment of an intracardiac defibrillation catheter system of the present invention.
- FIG. It is a top view for description which shows the fibrillation catheter which comprises the catheter system shown in FIG.
- FIG. 2 is a plan view for explaining the fibrillation catheter constituting the catheter system shown in FIG. 1 (a diagram for explaining dimensions and hardness).
- FIG. 3 is a transverse sectional view showing a section AA in FIG. 2.
- FIG. 3 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG. 2;
- FIG. 3 is a perspective view showing an internal structure of a handle of the embodiment of the defibrillation catheter shown in FIG. 2.
- FIG. 2 is a plan view for explaining the fibrillation catheter constituting the catheter system shown in FIG. 1 (a diagram for explaining dimensions and hardness).
- FIG. 3 is a transverse sectional view showing a section AA in FIG. 2.
- FIG. 7 is a partially enlarged view of the inside (front end side) of the handle shown in FIG. 6.
- FIG. 7 is a partial enlarged view of the inside (base end side) of the handle shown in FIG. 6.
- FIG. 2 is a block diagram showing a flow of cardiac potential information when the cardiac potential is measured by a defibrillation catheter in the catheter system shown in FIG. 1.
- FIG. 3 is a part of a flowchart (Step 1 to Step 7) showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
- FIG. 6 is a remaining part (Step 8 to Step 16) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
- FIG. FIG. 7 is a remaining part (Step 17 to Step 22) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
- FIG. FIG. 2 is a block diagram showing a flow of information between the arithmetic processing unit of the power supply device and the memory of the defibrillation catheter when the power supply device is connected to the defibrillation catheter in the catheter system shown in FIG. 1.
- FIG. 2 is a block diagram showing a flow of electrocardiographic information in an electrocardiographic measurement mode in the catheter system shown in FIG. 1.
- FIG. 2 is a block diagram showing a flow of information relating to a resistance value between electrode groups and a cardiac potential information in the defibrillation mode of the catheter system shown in FIG. 1. It is a block diagram which shows the state at the time of DC voltage application in the defibrillation mode of the catheter system shown in FIG. It is an electric potential waveform diagram measured when predetermined
- FIG. 2 is a block diagram showing a state in which information related to defibrillation performed by a defibrillation catheter in the catheter system shown in FIG. 1 is written in the memory of the defibrillation catheter by the arithmetic processing unit of the power supply device. .
- FIG. 19 is a part (Step 1 to Step 7) of a flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- FIG. FIG. 19 is a remaining part (Step 8 to Step 16) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- FIG. FIG. 19 is a remaining part (Step 17 to Step 22) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- FIG. 19 is a part (Step 1 to Step 7) of a flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- FIG. 19 is a remaining part (Step 8 to Step 16) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- FIG. 19 is a remaining part (Step 17 to Step 22) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 18.
- the intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100 that is inserted into the heart chamber and performs defibrillation, and a power supply device 700 that applies a DC voltage to the electrodes of the defibrillation catheter 100.
- a catheter system comprising an electrocardiograph 800 and an electrocardiogram measuring means 900;
- the defibrillation catheter 100 includes a multi-lumen tube 10, A first DC electrode group 31G composed of eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10, A second DC electrode group 32G consisting of eight ring-shaped electrodes 32 mounted on the multi-lumen tube 10 and spaced from the first DC electrode group 31G toward the base end side; A proximal-side potential measurement electrode group 33G composed of four ring-shaped electrodes 33 mounted on the multi-lumen tube 10 and spaced apart from the second DC electrode group 32G toward the proximal end side; A first lead wire group 41G consisting of eight lead wires 41 having tips connected to the electrodes 31 constituting the first DC electrode group 31G; A second lead wire group 42G consisting of eight lead wires 42 having tips connected to the electrodes 32 constituting the second DC electrode group 32G; A third lead wire group 43G consisting of four lead wires 43 whose tips are connected to
- the power supply device 700 includes a DC power supply unit 71, A catheter connection connector 72 connected to the proximal end side of the first lead wire group 41G, the second lead wire group 42G and the third lead wire group 43G of the defibrillation catheter 100; An electrocardiograph connector 73 connected to an input terminal of the electrocardiograph 800; An external switch 74 including a mode changeover switch 741, an electric energy setting switch 742, a charging switch 743, and an electric energy application switch 744 for setting the power supply device 700 to a defibrillation mode;
- the DC power supply unit 71 is controlled based on the input of the external switch 74, and the DC voltage output circuit 751 from the DC power supply unit 71 is provided.
- a switching unit comprising a switching switch of one circuit and two contacts, a catheter connection connector 72 connected to a common contact, the electrocardiograph connection connector 73 connected to a first contact, and an arithmetic processing unit 75 connected to a second contact 76 with;
- the potential information is input to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73 of the power supply device 700,
- the operation processing unit 75 of the power supply device 700 switches the contact of the switching unit 76 to the second contact, and the calculation is performed from the DC power supply unit 71 of the power supply device 700.
- Voltages having different polarities are applied to the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 via the output circuit 751, the switching unit 76, and the catheter connection connector 72 of the processing unit 75;
- the arithmetic processing unit 75 of the power supply device 700 (A) When the power supply device 700 is first connected to the defibrillation catheter 100, the first connection information in the memory 110 of the defibrillation catheter 100 is obtained from the time when the power supply device 700 was first connected and the serial information of the power supply device 700 connected first.
- the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 is written, (C) When the defibrillation is not performed after the resistance value between the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the measured time and the serial information of the connected power supply device 700.
- the system controls the defibrillation or resistance measurement as the next event by the catheter 100 so as not to be executed.
- the intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100, a power supply device 700, an electrocardiograph 800, and an electrocardiogram measuring means 900.
- the defibrillation catheter 100 constituting the catheter system of the present embodiment includes a multi-lumen tube 10, a handle 20, a first DC electrode group 31G, a second DC electrode group 32G, A proximal-side potential measurement electrode group 33G, a first lead wire group 41G, a second lead wire group 42G, and a third lead wire group 43G are provided.
- the multi-lumen tube 10 (insulating tube member having a multi-lumen structure) constituting the defibrillation catheter 100 has four lumens (first lumen 11 and second lumen 12). , A third lumen 13 and a fourth lumen 14) are formed.
- 15 is a fluororesin layer that divides the lumen
- 16 is an inner (core) portion made of a low hardness nylon elastomer
- 17 is an outer (shell) portion made of a high hardness nylon elastomer.
- 4 and 18 in FIG. 4 is a stainless steel wire forming a braided blade.
- the fluororesin layer 15 partitioning the lumen is made of a highly insulating material such as perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE).
- PFA perfluoroalkyl vinyl ether copolymer
- PTFE polytetrafluoroethylene
- the nylon elastomer that forms the outer portion 17 of the multi-lumen tube 10 has a hardness that varies depending on the axial direction.
- the multi-lumen tube 10 is comprised so that hardness may become high in steps toward the base end side from the front end side.
- the hardness of the region indicated by L1 (length 52 mm) (hardness by a D-type hardness meter) is 40
- the hardness of the region indicated by L2 (length 108 mm) is 55, L3 (long).
- the hardness of the region shown by 25.7 mm) is 63
- the hardness of the region shown by L4 (length 10 mm) is 68
- the hardness of the region shown by L5 is 72.
- the braided blade composed of the stainless steel wire 18 is formed only in the region indicated by L5 in FIG. 3, and is provided between the inner portion 16 and the outer portion 17 as shown in FIG.
- the outer diameter of the multi-lumen tube 10 is, for example, 1.2 to 3.3 mm.
- the method for manufacturing the multi-lumen tube 10 is not particularly limited.
- the handle 20 constituting the defibrillation catheter 100 in the present embodiment includes a handle main body 21, a knob 22, and a strain relief 24. By rotating the knob 22, the tip of the multi-lumen tube 10 can be deflected (swinged).
- the first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G are attached to the outer periphery (the tip region where no braid is formed) inside the multi-lumen tube 10.
- the “electrode group” is a set of a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. Refers to the body.
- the first DC electrode group is formed by mounting a plurality of electrodes constituting the same pole (-pole or + pole) at a narrow interval in the tip region of the multi-lumen tube.
- the number of electrodes constituting the first DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
- the first DC electrode group 31 ⁇ / b> G includes eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10.
- the electrode 31 constituting the first DC electrode group 31G is connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 41 constituting the first lead wire group 41G) and a connector described later.
- the width (length in the axial direction) of the electrode 31 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 31 is too narrow, the amount of heat generated when a voltage is applied may be excessive, which may damage surrounding tissues. On the other hand, if the width of the electrode 31 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the first DC electrode group 31G is provided may be impaired.
- the mounting interval of the electrodes 31 is preferably 1 to 5 mm, and 2 mm is a preferable example.
- the first DC electrode group 31G is located, for example, in the coronary vein.
- the second DC electrode group is separated from the mounting position of the first DC electrode group of the multi-lumen tube toward the base end side and constitutes a plurality of poles (+ pole or ⁇ pole) opposite to the first DC electrode group. Electrodes are mounted at narrow intervals.
- the number of electrodes constituting the second DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
- the second DC electrode group 32G includes eight ring-shaped electrodes 32 that are mounted on the multi-lumen tube 10 while being spaced apart from the mounting position of the first DC electrode group 31G toward the proximal end side.
- the electrodes 32 constituting the second DC electrode group 32G are connected to a catheter connection connector of the power supply device 700 via a lead wire (lead wire 42 constituting the second lead wire group 42G) and a connector described later.
- the width (length in the axial direction) of the electrode 32 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 32 is too narrow, the amount of heat generated at the time of voltage application becomes excessive, which may damage the surrounding tissue. On the other hand, if the width of the electrode 32 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the second DC electrode group 32G is provided may be impaired.
- the mounting interval of the electrodes 32 is preferably 1 to 5 mm, and 2 mm is a preferable example.
- the second DC electrode group 32G is located, for example, in the right atrium.
- the proximal-side potential measurement electrode group 33G includes four ring-shaped electrodes 33 that are mounted on the multi-lumen tube 10 so as to be spaced apart from the mounting position of the second DC electrode group 32G toward the proximal end side. Yes.
- the electrodes 33 constituting the proximal-side potential measuring electrode group 33G are connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 43 constituting the third lead wire group 43G) and a connector described later. Yes.
- the width (length in the axial direction) of the electrode 33 is preferably 0.5 to 2.0 mm, and 1.2 mm is a preferable example. If the width of the electrode 33 is too wide, the measurement accuracy of the cardiac potential is lowered, or it is difficult to specify the site where the abnormal potential is generated.
- the mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
- the proximal-side potential measurement electrode group 33G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
- a distal tip 35 is attached to the distal end of the defibrillation catheter 100.
- a lead wire is not connected to the tip chip 35 and is not used as an electrode in this embodiment. However, it can also be used as an electrode by connecting a lead wire.
- the constituent material of the tip 35 is not particularly limited, such as metal materials such as platinum and stainless steel, various resin materials, and the like.
- the distance d2 between the first DC electrode group 31G (base end side electrode 31) and the second DC electrode group 32G (tip end side electrode 32) is preferably 40 to 100 mm, and 66 mm is a preferable example. is there.
- the distance d3 between the second DC electrode group 32G (base end side electrode 32) and the base end side potential measurement electrode group 33G (tip end side electrode 33) is preferably 5 to 50 mm, and a suitable example is shown. 30 mm.
- platinum or a platinum-based material is used in order to improve the contrast with respect to X-rays. It is preferable to consist of these alloys.
- the first lead wire group 41G shown in FIGS. 4 and 5 is an aggregate of eight lead wires 41 connected to each of the eight electrodes (31) constituting the first DC electrode group (31G). .
- Each of the eight electrodes 31 constituting the first DC electrode group 31G can be electrically connected to the power supply device 700 by the first lead wire group 41G (lead wire 41).
- the eight electrodes 31 constituting the first DC electrode group 31G are connected to different lead wires 41, respectively.
- Each of the lead wires 41 is welded to the inner peripheral surface of the electrode 31 at the tip portion, and enters the first lumen 11 from a side hole formed in the tube wall of the multi-lumen tube 10.
- the eight lead wires 41 that have entered the first lumen 11 extend to the first lumen 11 as a first lead wire group 41G.
- the second lead wire group 42G shown in FIGS. 4 and 5 is an assembly of eight lead wires 42 connected to each of the eight electrodes (32) constituting the second DC electrode group (32G). .
- Each of the eight electrodes 32 constituting the second DC electrode group 32G can be electrically connected to the power supply device 700 by the second lead wire group 42G (lead wire 42).
- the eight electrodes 32 constituting the second DC electrode group 32G are connected to different lead wires 42, respectively.
- Each of the lead wires 42 is welded to the inner peripheral surface of the electrode 32 at the tip portion thereof, and the second lumen 12 (the first lead wire group 41G extends from the side hole formed in the tube wall of the multi-lumen tube 10. A different lumen from the existing first lumen 11 is entered.
- the eight lead wires 42 that have entered the second lumen 12 extend to the second lumen 12 as a second lead wire group 42G.
- the first lead wire group 41G extends to the first lumen 11 and the second lead wire group 42G extends to the second lumen 12. Fully insulated and isolated. Therefore, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G (first DC electrode group 31G) and the second lead wire group 42G (second DC electrode group 32G). Can be reliably prevented.
- the third lead wire group 43G shown in FIG. 4 is an assembly of four lead wires 43 connected to each of the electrodes (33) constituting the proximal-side potential measurement electrode group (33G).
- Each of the electrodes 33 constituting the proximal-side potential measurement electrode group 33G can be electrically connected to the power supply device 700 by the third lead wire group 43G (lead wire 43).
- the four electrodes 33 constituting the base end side potential measurement electrode group 33G are connected to different lead wires 43, respectively.
- Each of the lead wires 43 is welded to the inner peripheral surface of the electrode 33 at the tip portion thereof, and enters the third lumen 13 from a side hole formed in the tube wall of the multi-lumen tube 10.
- the four lead wires 43 that have entered the third lumen 13 extend to the third lumen 13 as a third lead wire group 43G.
- the third lead wire group 43G extending to the third lumen 13 is completely insulated and isolated from both the first lead wire group 41G and the second lead wire group 42G. Therefore, when a voltage necessary for defibrillation is applied, the third lead wire group 43G (base end side potential measurement electrode group 33G) and the first lead wire group 41G (first DC electrode group 31G) or the first A short circuit between the two lead wire group 42G (second DC electrode group 32G) can be reliably prevented.
- the lead wire 41, the lead wire 42, and the lead wire 43 are all made of a resin-coated wire in which the outer peripheral surface of the metal conducting wire is covered with a resin such as polyimide.
- the coating resin has a thickness of about 2 to 30 ⁇ m.
- 65 is a pull wire.
- the pull wire 65 extends to the fourth lumen 14 and extends eccentrically with respect to the central axis of the multi-lumen tube 10.
- the tip portion of the pull wire 65 is fixed to the tip tip 35 with solder. Moreover, a large-diameter portion for retaining (a retaining portion) may be formed at the tip of the pull wire 65. Thereby, the tip tip 35 and the pull wire 65 are firmly coupled, and the tip tip 35 can be reliably prevented from falling off.
- the proximal end portion of the pull wire 65 is connected to the knob 22 of the handle 20, and the pull wire 65 is pulled by operating the knob 22, whereby the distal end portion of the multi-lumen tube 10 is deflected.
- the pull wire 65 is made of stainless steel or a Ni—Ti superelastic alloy, but is not necessarily made of metal.
- the pull wire 65 may be formed of, for example, a high-strength non-conductive wire. Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
- the first lead wire group 41G, the second lead wire group 42G, and the third lead wire group 43G are insulated and isolated also inside the handle 20.
- FIG. 6 is a perspective view showing the internal structure of the handle of the defibrillation catheter 100 in this embodiment
- FIG. 7 is a partially enlarged view of the inside of the handle (front end side)
- FIG. 8 is the inside of the handle (base end side). It is a partial enlarged view.
- the base end portion of the multi-lumen tube 10 is inserted into the distal end opening of the handle 20, whereby the multi-lumen tube 10 and the handle 20 are connected.
- a cylindrical connector 50 formed by arranging a plurality of pin terminals (51, 52, 53) protruding in the distal direction on the distal end surface 50 ⁇ / b> A is provided at the proximal end portion of the handle 20.
- each of the three lead wire groups (first lead wire group 41G, second lead wire group 42G, and third lead wire group 43G) is inserted into the handle 20.
- Three insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) are extended.
- the distal end portion (about 10 mm from the distal end) of the first insulating tube 26 is inserted into the first lumen 11 of the multi-lumen tube 10.
- the insulating tube 26 is connected to the first lumen 11 in which the first lead wire group 41G extends.
- the first insulating tube 26 connected to the first lumen 11 passes through the inner hole of the first protective tube 61 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the first lead wire group 41G to the vicinity of the connector 50.
- the first lead wire group 41G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the first insulating tube 26) without being kinked. Can do.
- the first lead wire group 41G extending from the base end opening of the first insulating tube 26 is divided into eight lead wires 41 constituting the first lead wire group 41G, and each of the lead wires 41 is a front end surface 50A of the connector 50.
- each of the lead wires 41 is a front end surface 50A of the connector 50.
- a region where the pin terminals (pin terminals 51) to which the lead wires 41 constituting the first lead wire group 41G are connected and fixed is arranged is referred to as a “first terminal group region”.
- the distal end portion (about 10 mm from the distal end) of the second insulating tube 27 is inserted into the second lumen 12 of the multi-lumen tube 10, whereby the second lead wire group 42G extends in the second insulating tube 27.
- the second insulating tube 27 connected to the second lumen 12 passes through the inner hole of the second protective tube 62 extending to the inside of the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the second lead wire group 42G to the vicinity of the connector 50.
- the second lead wire group 42G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the second insulating tube 27) without being kinked. Can do.
- the second lead wire group 42G extending from the proximal end opening of the second insulating tube 27 is divided into eight lead wires 42 constituting the second lead wire group 42G, and each of these lead wires 42 is a front end surface 50A of the connector 50.
- a region where the pin terminals (pin terminals 52) to which the lead wires 42 constituting the second lead wire group 42G are connected and fixed is disposed is referred to as a “second terminal group region”.
- the distal end portion (about 10 mm from the distal end) of the third insulating tube 28 is inserted into the third lumen 13 of the multi-lumen tube 10, whereby the third lead wire group 43G extends in the third insulating tube 28.
- the third insulating tube 28 connected to the third lumen 13 passes through the inner hole of the second protective tube 62 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path for guiding the proximal end portion of the third lead wire group 43G to the vicinity of the connector 50.
- the third lead wire group 43G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the third insulating tube 28) without kinking. Can do.
- the third lead wire group 43G extending from the proximal end opening of the third insulating tube 28 is divided into four lead wires 43 constituting the third lead wire group 43, and each of the lead wires 43 is connected to the distal end surface 50A of the connector 50.
- an area where the pin terminals (pin terminals 53) to which the lead wires 43 constituting the third lead wire group 43G are connected and fixed is arranged is referred to as a “third terminal group area”.
- examples of the constituent material of the insulating tubes include polyimide resin, polyamide resin, and polyamideimide resin. .
- a polyimide resin is particularly preferable because of its high hardness, easy insertion of the lead wire group, and capable of thin molding.
- the thickness of the insulating tube is preferably 20 to 40 ⁇ m, and is 30 ⁇ m as a suitable example.
- nylon elastomer such as “Pebax” (registered trademark of ARKEMA) is exemplified. be able to.
- the first lead wire group 41G extends in the first insulating tube 26, and the second lead in the second insulating tube 27. Since the wire group 42G extends and the third lead wire group 43G extends in the third insulating tube 28, the first lead wire group 41G and the second lead wire are also provided inside the handle 20.
- the group 42G and the third lead wire 43G can be completely insulated and isolated.
- the first insulating tube 26 is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
- the insulating tube is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
- the defibrillation catheter 100 partitions the distal end surface 50A of the connector 50 on which a plurality of pin terminals are arranged into a first terminal group region, a second terminal group region, and a third terminal group region, and leads A partition plate 55 that separates the wire 41 from the lead wire 42 and the lead wire 43 is provided.
- the partition plate 55 that partitions the first terminal group region, the second terminal group region, and the third terminal group region is formed by molding an insulating resin into a bowl shape having flat surfaces on both sides.
- the insulating resin constituting the partition plate 55 is not particularly limited, and a general-purpose resin such as polyethylene can be used.
- the thickness of the partition plate 55 is, for example, 0.1 to 0.5 mm, and 0.2 mm is a preferable example.
- the height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the front end surface 50A of the connector 50 and the insulating tubes (the first insulating tube 26 and the second insulating tube 27).
- the separation distance is 7 mm
- the height of the partition plate 55 is, for example, 8 mm.
- the distal end edge cannot be positioned on the distal end side with respect to the proximal end of the insulating tube.
- the lead wire 41 (the base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) constituting the first lead wire group 41G, and the second lead wire group
- the lead wire 42 (the base end portion of the lead wire 42 extending from the base end opening of the second insulating tube 27) constituting the 42G can be reliably and orderly isolated.
- the partition plate 55 is not provided, the lead wire 41 and the lead 42 cannot be separated (separated) in an orderly manner, and these may be mixed.
- the lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G, to which voltages having different polarities are applied, are separated from each other by the partition plate 55 and are in contact with each other. Therefore, when the defibrillation catheter 100 is used, even if a voltage necessary for defibrillation in the heart chamber is applied, the lead wires 41 (first insulating tube) constituting the first lead wire group 41G are applied. 26 of the lead wire 41 extending from the proximal end opening of the lead wire 26 and the lead wire 42 constituting the second lead wire group 42G (the lead wire 42 extending from the proximal end opening of the second insulating tube 27). A short circuit does not occur between the base end portion and the base end portion.
- the lead wire 41 constituting the first lead wire group 41G is connected to the second terminal group region.
- the lead 41 straddles the partition wall 55, so that a connection error can be easily found.
- the lead wire 43 (pin terminal 53) constituting the third lead wire group 43G is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52).
- the present invention is not limited to this, and may be separated from the lead wire 42 (pin terminal 52) by the partition plate 55 together with the lead wire 41 (pin terminal 51).
- the distal end edge of the partition plate 55 is located on the distal end side with respect to both the proximal end of the first insulating tube 26 and the proximal end of the second insulating tube 27.
- the lead wire (lead wire 41 constituting the first lead wire group 41G) extending from the base end opening of the first insulating tube 26 and the lead extending from the base end opening of the second insulating tube 27 are provided.
- the partition plate 55 is always present, and the short circuit due to the contact between the lead wires 41 and the lead wires 42 is surely prevented. Can do.
- eight lead wires 41 extending from the base end opening of the first insulating tube 26 and connected and fixed to the pin terminal 51 of the connector 50, and from the base end opening of the second insulating tube 27 are connected.
- Eight lead wires 42 extending and fixedly connected to the pin terminal 52 of the connector 50, and four leads extending from the proximal end opening of the third insulating tube 28 and fixedly connected to the pin terminal 53 of the connector 50.
- the shape of the wire 43 is held and fixed by the periphery of the wire 43 being hardened by the resin 58.
- the resin 58 that retains the shape of the lead wire is formed into a cylindrical shape having the same diameter as the connector 50, and the pin terminal, the lead wire, the base end portion of the insulating tube, and the partition plate 55 are formed inside the resin molded body. Is embedded. According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire region of the end portion can be completely covered with the resin 58, and the shape of the lead wire (base end portion) can be completely held and fixed. Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the partition plate 55, and is 9 mm, for example, when the height of the partition plate 55 is 8 mm.
- the resin 58 constituting the resin molded body is not particularly limited, but it is preferable to use a thermosetting resin or a photocurable resin.
- a thermosetting resin or a photocurable resin Specifically, urethane-based, epoxy-based, and urethane-epoxy-based curable resins can be exemplified.
- the shape of the lead wire is held and fixed by the resin 58, when the defibrillation catheter 100 is manufactured (when the connector 50 is mounted inside the handle 20), an insulating tube is used. It is possible to prevent the lead wire extending from the base end opening from being kinked or coming into contact with the edge of the pin terminal and causing damage (for example, generation of cracks in the coating resin of the lead wire).
- a defibrillation catheter 1 constituting the catheter system of this embodiment. 00 includes a memory 110 having a catheter serial storage unit 111, an initial connection information storage unit 112, and an event information storage unit 113.
- the memory 110 provided in the defibrillation catheter 100 is composed of, for example, a memory chip stored inside the handle 20.
- Table 1 below shows an example of the memory structure of the defibrillation catheter 100, along with written information.
- Serial information of the defibrillation catheter 100 is stored in the catheter serial storage unit 111 of the memory 110.
- serial information of the defibrillation catheter 100 a manufacturing number (serial number), a manufacturing date, etc. can be mentioned.
- This serial information is information on product management written at the time of manufacture of the defibrillation catheter 100, and cannot be rewritten or added.
- the deserialization catheter serial number (123456) is written in the catheter serial storage unit 111.
- the first connection information storage unit 112 of the memory 110 stores the time (date and time) when the power supply device is first connected to the defibrillation catheter 100 and the serial information of the power supply device connected first.
- the first connection time and the serial information of the first connected power supply device are written by the arithmetic processing unit of the first connected power supply device, and cannot be rewritten once written.
- the performance of the defibrillation catheter 100 which is a disposable product, deteriorates when used for a certain period of time. For this reason, the defibrillation catheter 100 is set with a use time limit (this use time limit is stored in the memory 752 of the power supply device 700) from the viewpoint of performance and safety.
- the “time when the power supply device is first connected to the catheter 100” is a starting point of the use time limit of the defibrillation catheter 100.
- the first connection information storage unit 112 is written with the time when the power supply device was first connected (December 5, 2009, 10:00:00).
- a serial number (10011) is written as serial information of the connected power supply device.
- Information related to an event (operation) including defibrillation by the defibrillation catheter 100 was connected to the event information storage unit 113 of the memory 110 and the time (date and time) when the event was performed, and at that time It is stored together with the power supply serial information.
- the resistance value (intracardiac resistance value) between the first DC electrode group 31G and the second DC electrode group 32G is attempted to be applied between these electrode groups.
- the information on the set value of electric energy, the actually applied output voltage and the output time is stored in the event information storage unit 113 together with the time when this defibrillation is performed and the serial information of the power supply device connected at that time. Written.
- the event 2 of the event information storage unit 113 has a defibrillation as an event, a resistance value (75 ⁇ ) between the electrode groups, an energy set value (15J), an output The voltage (300V) and output time (13.5 msec) are the time when defibrillation was performed (December 5, 2009, 10:06:12) and the serial number of the power supply unit connected at that time ( 10011) and the event information storage unit 113.
- the measurement of the resistance value between the first DC electrode group 31G and the second DC electrode group 32G is usually performed prior to defibrillation, it can be included in the defibrillation event.
- the measurement of the resistance value is recognized as a single event, and the measured resistance value is measured together with the measured time and the serial information of the connected power supply device, and the event information storage unit 113. Is written to.
- the resistance value (75 ⁇ ) between the electrode groups has a measurement time (December 5, 2009 10:05:00 Second) and the serial number (10011) of the power supply device connected at that time are written in the event information storage unit 113.
- the resistance value (79 ⁇ ) between the electrode groups is measured at the measurement time (December 5, 2009 10:53:22) and the serial number (10032) of the power supply device connected at that time. At the same time, it is written in the event information storage unit 113.
- the power supply device when the power supply device is connected to the defibrillation catheter 100, if it is the first connection, the time and serial information of this power supply device are written in the initial connection information storage unit 112. However, when the same or different power supply devices are reconnected, the information is written in the event information storage unit 113.
- the event 5 in the event information storage unit 113 includes the reconnection time (December 5, 2009, 10:40:08) and the reconnected power supply device.
- the serial number (10032) is written in the event information storage unit 113.
- the time of reconnection (December 6, 2009 11:30:30) and the serial number (10055) of the reconnected power supply device are written in the event information storage unit 113.
- the power supply device 700 constituting the catheter system of the present embodiment includes a DC power supply unit 71, a catheter connection connector 72, an electrocardiograph connection connector 73, an external switch (input means) 74, and the like. , An arithmetic processing unit 75, a switching unit 76, an electrocardiogram input connector 77, and an electrocardiogram information display unit 78.
- the DC power supply unit 71 has a built-in capacitor, and the built-in capacitor is charged by the input of the external switch 74 (charge switch 743).
- the catheter connector 72 is connected to the connector 50 of the defibrillation catheter 100, and is electrically connected to the proximal end side of the first lead wire group (41G), the second lead wire group (42G), and the third lead wire group (43G). Connected.
- the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1, Pin terminals 51 (actually 8) that connect and fix the eight lead wires 41 constituting the first lead wire group, and terminals 721 (actually 8) of the catheter connector 72, Pin terminals 52 (actually 8) that connect and fix the eight lead wires 42 constituting the second lead wire group, and terminals 722 (actually 8) of the catheter connector 72, Pin terminals 53 (actually four) to which the four lead wires 43 constituting the third lead wire group are connected and fixed, and terminals 723 (actually four) of the catheter connector 72 are connected to each other. Yes.
- the terminal 721 and the terminal 722 of the catheter connection connector 72 are connected to the switching unit 76, and the terminal 723 is directly connected to the electrocardiograph connection connector 73 without passing through the switching unit 76.
- the cardiac potential information measured by the first DC electrode group 31G and the second DC electrode group 32G reaches the electrocardiograph connection connector 73 via the switching unit 76, and is measured by the proximal-side potential measurement electrode group 33G.
- the electrocardiogram information thus reached reaches the electrocardiograph connector 73 without passing through the switching unit 76.
- the electrocardiograph connector 73 is connected to the input terminal of the electrocardiograph 800.
- An external switch 74 serving as input means includes a mode switch 741 for switching between a cardiac potential measurement mode and a defibrillation mode, an electrical energy setting switch 742 for setting electrical energy applied during defibrillation, and a DC power supply unit A charge switch 743 for charging 71 and an electric energy application switch (discharge switch) 744 for defibrillation by applying electric energy. All input signals from these external switches 74 are sent to the arithmetic processing unit 75.
- the arithmetic processing unit 75 of the power supply device controls the DC power supply unit 71, the switching unit 76, and the electrocardiogram information display unit 78 based on the input of the external switch 74.
- the arithmetic processing unit 75 has an output circuit 751 for outputting a DC voltage from the DC power supply unit 71 to the electrode of the defibrillation catheter 100 via the switching unit 76.
- the terminal 721 of the catheter connection connector 72 shown in FIG. 9 finally, the first DC electrode group 31G of the defibrillation catheter 100
- the terminal 722 of the catheter connection connector 72 finally, The DC voltage may be applied so that the second DC electrode group 32G of the defibrillation catheter 100 has a different polarity from each other (when one electrode group is a negative electrode, the other electrode group is a positive electrode). it can.
- the arithmetic processing unit 75 includes a memory 752 in which serial information of the power supply device 700 and a catheter use time limit are stored, and an internal clock 753 for determining the time.
- the serial information of the power supply device 700 stored in the memory 752 can include a manufacturing number (serial number), a manufacturing date, and the like. This serial information is information on product management written at the time of manufacturing the power supply device, and cannot be rewritten or added.
- the “catheter use time limit” stored in the memory 752 is set from the viewpoint of the performance and safety of the defibrillation catheter 100 and cannot be rewritten by the user of the catheter system.
- the time limit for using the catheter is longer than the maximum time required for one procedure, and is a time that does not cause a problem from the viewpoint of the performance and safety of the defibrillation catheter. For example, it is set to 24 hours. Of course, the present invention is not limited to this.
- the time determined by the internal clock 753 includes the time when the power supply device is first connected to the defibrillation catheter 100, and the event (defibrillation, measurement of resistance value between electrode groups, power supply device) by the defibrillation catheter 100.
- the time at which the reconnection is performed can be given.
- the arithmetic processing unit 75 obtains the connected time with reference to the internal clock 753, and this time is stored in the memory 752. Are written in the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100.
- the means for detecting that the power supply device 700 is connected to the defibrillation catheter 100 is not particularly limited.
- a circuit in which a weak current flows when the power supply device 700 is connected or a power supply device 700 is provided.
- a means for providing a physical switch to the catheter connector 72 is not particularly limited.
- connection of the power supply device 700 is the “first” connection or reconnection in the defibrillation catheter 100 is calculated by the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100.
- the processing unit 75 refers to and the information is not stored in the first connection information storage unit 112, it is determined that the connection is the “first” connection, and when the information is stored in the first connection information storage unit 112, Judge that it is a reconnection.
- the arithmetic processing unit 75 has a resistance value between the first DC electrode group 31G and the second DC electrode group 32G (prior to the defibrillation. Measured intracardiac resistance value), set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), output voltage and output time (actual Information on the voltage and time applied to the power supply device, and this information is stored in the memory 752 in the time when this defibrillation is performed (time by the internal clock 753) and the power supply device 700 connected thereto. Together with the stored serial information), the event information is stored in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 (events 2, 3, 4, Reference).
- the arithmetic processing unit 75 measures the resistance value. And the measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the time at which it was measured and the serial information of the connected power supply device 700 (see the above table). 1 event 1 and 6). Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
- the arithmetic processing unit 75 reconnects the same or different power supply device 700 to the defibrillation catheter 100 (initial connection information in the memory 110). (When connected to the defibrillation catheter 100 whose time is stored in the storage unit 112), this is recognized as an event, and the reconnection time and the serial information of the power supply device 700 are stored in the memory 110 of the defibrillation catheter 100. The information is written in the event information storage unit 113 (see events 5 and 8 in Table 1 above). As a result, a history of reconnection (exchange) of the power supply device can be recorded.
- the catheter system of the present embodiment it is possible to record a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100.
- a history of events defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device
- information related to these events is stored not in the power supply device side but in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100, an event of one defibrillation catheter 100 is stored in a plurality of power supply devices. Even if it is performed using the above, the information related to these events is not distributed to a plurality of power supply apparatuses.
- the arithmetic processing unit 75 performs the initial connection information storage unit in the memory 110 of the defibrillation catheter 100 for each event written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100. It is determined whether or not the elapsed time from the connection time written in 112 to the time when the event is performed exceeds the catheter use time limit stored in the memory 752 of the power supply device 700. If it is determined, control is performed so that the next event by the defibrillation catheter 100 is not executed.
- the event information storage unit 113 For example, in the structure of the memory 110 shown in Table 1 above, it is stored in the event information storage unit 113 from the connection time (December 5, 10:00:00) written in the initial connection information storage unit 112.
- the elapsed time until the time of defibrillation of event 3 (December 5, 10:09:25) is 9 minutes 25 seconds
- the catheter use time limit stored in the memory 752 of the power supply device 700 Is 24 hours 00 minutes 00 seconds, for example, since the elapsed time does not exceed the catheter use time limit, the next event 4 can be defibrillated.
- the connection time (December 5, 10:00:00) written in the initial connection information storage unit 112 the power supply device of the event 8 stored in the event information storage unit 113 is reconnected again.
- the elapsed time up to the time when it was performed (11:30 on December 6th) was 25 hours 3:30 seconds, and the catheter use time limit (24 hours 00 minutes) stored in the memory 752 of the power supply 700. 00 seconds), the next event cannot be executed.
- the manner in which the event is not executed by the arithmetic processing unit there is no particular limitation on the manner in which the event is not executed by the arithmetic processing unit.
- the defragmentation is performed even if a mode switch is input.
- a mode in which a control signal for applying a DC voltage is not sent even when an electric energy application switch is input can be given.
- examples of events that are controlled not to be executed by the arithmetic processing unit include defibrillation and measurement of resistance values. “Reconnecting the same or different power supply device to the defibrillation catheter from which the power supply device has been removed” is recognized as an event written to the event storage unit. Since it is an action, it is not included in the event that controls the arithmetic processing unit not to execute.
- a defibrillation catheter that is a disposable product can be used only during a time when there is no problem in terms of performance and safety. Moreover, since the connection time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as the starting point of the use time limit of the defibrillation catheter 100, the same or different power supply devices are defibrillated. Even when reconnecting to the catheter 100, if a certain event is performed after the use limit time has elapsed from the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112, The next event by the defibrillation catheter 100 is not executed.
- the switching unit 76 has a common contact to which the catheter connection connector 72 (terminal 721 and terminal 722) is connected, an electrocardiograph connection connector 73 is connected to the first contact, and an arithmetic processing unit 75 is connected to the second contact. It consists of a switch with two circuit contacts. That is, when the first contact is selected, a path connecting the catheter connection connector 72 and the electrocardiograph connection connector 73 is secured, and when the second contact is selected, the catheter connection connector 72 and the arithmetic processing unit 75 are connected. A connecting route is secured.
- the switching operation of the switching unit 76 is controlled by the arithmetic processing unit 75 based on the input of the external switch 74 (mode switching switch 741 and electrical energy application switch 744).
- the electrocardiogram input connector 77 is connected to the arithmetic processing unit 75 and also connected to the output terminal of the electrocardiograph 800. With this electrocardiogram input connector 77, the electrocardiogram information output from the electrocardiograph 800 (usually part of the electrocardiogram information input to the electrocardiograph 800) can be input to the arithmetic processing unit 75.
- the unit 75 can control the DC power supply unit 71 and the switching unit 76 based on the cardiac potential information.
- the cardiac potential information display unit 78 is connected to the arithmetic processing unit 75, and the cardiac potential information display unit 78 displays the cardiac potential information (mainly the cardiac potential waveform) input from the electrocardiogram input connector 77 to the arithmetic processing unit 75. Then, the operator can perform defibrillation treatment (such as input of an external switch) while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit 75.
- defibrillation treatment such as input of an external switch
- the electrocardiograph 800 (input terminal) constituting the catheter system of the present embodiment is connected to the electrocardiograph connector 73 of the power supply device 700, and the defibrillation catheter 100 (first DC electrode group 31G, second DC electrode group 32G). And electrocardiographic potential information measured by the base-side potential measuring electrode group 33G) is input to the electrocardiograph 800 from the electrocardiograph connector 73.
- the electrocardiograph 800 (other input terminal) is also connected to the electrocardiogram measuring unit 900, and the electrocardiogram information measured by the electrocardiogram measuring unit 900 is also input to the electrocardiograph 800.
- the electrocardiogram measuring means 900 includes an electrode pad attached to the patient's body surface for measuring a 12-lead electrocardiogram, and an electrode catheter (an electrode different from the defibrillation catheter 100) mounted in the patient's heart. Catheter).
- the electrocardiograph 800 (output terminal) is connected to the electrocardiogram input connector 77 of the power supply device 700, and the electrocardiogram information (cardiac potential information from the defibrillation catheter 100 and the electrocardiogram measuring means 900) input to the electrocardiograph 800. A part of the electrocardiogram information) from the electrocardiogram input connector 77 to the arithmetic processing unit 75.
- the defibrillation catheter 100 in this embodiment can be used as an electrode catheter for measuring cardiac potential when defibrillation treatment is not required.
- FIG. 10 shows the flow of cardiac potential information when cardiac potential is measured by the defibrillation catheter 100 according to the present embodiment when performing cardiac catheterization (for example, high frequency therapy).
- the switching unit 76 of the power supply device 700 selects the first contact to which the electrocardiograph connection connector 73 is connected.
- the cardiac potential measured by the electrodes constituting the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 passes through the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73. Input to the electrocardiograph 800.
- the cardiac potential measured by the electrodes constituting the proximal-side potential measurement electrode group 33G of the defibrillation catheter 100 passes directly from the catheter connection connector 72 through the electrocardiograph connection connector 73 without passing through the switching unit 76. And input to the electrocardiograph 800.
- Cardiac potential information (cardiac potential waveform) from the defibrillation catheter 100 is displayed on a monitor (not shown) of the electrocardiograph 800. Further, a part of the cardiac potential information from the defibrillation catheter 100 (for example, the potential difference between the electrodes 31 (first pole and second pole) constituting the first DC electrode group 31G) is transferred from the electrocardiograph 800 to the electrocardiogram. Via the input connector 77 and the arithmetic processing unit 75, it can be input to the electrocardiogram information display unit 78 and displayed.
- the defibrillation catheter 100 can be used as an electrode catheter for measuring cardiac potential.
- defibrillation treatment can be immediately performed with the defibrillation catheter 100 used as an electrode catheter.
- the trouble of newly inserting a catheter for defibrillation can be saved.
- the power supply device 700 is connected to the defibrillation catheter 100. Specifically, the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1 (see Step 1 in FIG. 11A and FIG. 9).
- the arithmetic processing unit 75 of the power supply device 700 Upon detecting that the power supply device 700 is connected to the defibrillation catheter 100, the arithmetic processing unit 75 of the power supply device 700 reads serial information from the catheter serial storage unit 111 in the memory of the defibrillation catheter 100. In order to determine whether this connection is the first connection in the defibrillation catheter 100 or the reconnection of the same or different power supply device, the initial connection information storage unit 112 in the memory 110 is referred to. Then, it is determined whether or not information is written therein. If no information is written in the initial connection information storage unit 112, the process proceeds to Step 3, and if information is written, the process proceeds to Step 4 (Step 2, (See FIG. 12).
- the arithmetic processing unit 75 of the power supply device 700 causes the time when the power supply device 700 is connected at Step 1 (time by the internal clock 753) and the power supply device 700.
- Serial information (serial information stored in the memory 752) is written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the process proceeds to Step 5 (Step 3, see FIG. 12).
- Step 4 When information is written in the initial connection information storage unit 112, the arithmetic processing unit 75 of the power supply device 700 delimits the time when the power supply device 700 was connected in Step 1 and the serial information of the power supply device 700. Write to the event information storage unit 113 in the memory 110 of the kinetic catheter 100 and proceed to Step 5 (Step 4, see FIG. 12).
- the position of the electrodes of the defibrillation catheter 100 (constituting electrodes of the first DC electrode group 31G, the second DC electrode group 32G, and the proximal end side potential measurement electrode group 33G) is confirmed on the X-ray image, and the cardiac potential measurement is performed.
- a part of the electrocardiogram information (12-lead electrocardiogram) input to the electrocardiograph 800 is selected from the means 900 (electrode pad affixed to the body surface), and the arithmetic processing unit 75 of the power supply 700 is selected from the electrocardiogram input connector 77. (Step 5).
- a part of the electrocardiogram information input to the arithmetic processing unit 75 is displayed on the electrocardiogram information display unit 78 (see FIG. 13).
- the constituent electrodes of the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73.
- the inputted cardiac potential information and the heart inputted from the constituent electrodes of the proximal side potential measurement electrode group 33G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connector 72 and the electrocardiograph connector 73.
- the potential information is displayed on a monitor (not shown) of the electrocardiograph 800.
- the mode changeover switch 741 which is the external switch 74, is input (Step 6).
- the power supply device 700 in the present embodiment is in the “cardiac potential measurement mode” in the initial state, the switching unit 76 selects the first contact, and the electrocardiograph connection connector from the catheter connection connector 72 via the switching unit 76. A route to 73 is secured.
- the arithmetic processing unit 75 of the power supply device 700 starts from the time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the event information storage unit It is determined whether or not the elapsed time up to the time of the last writing in 113 exceeds the catheter use time limit stored in the memory 752 of the arithmetic processing unit 75. If not, the process proceeds to Step 8. If it exceeds, the subsequent operation cannot be performed and “end” is performed (Step 7).
- connection of the power supply device 700 in Step 1 is the first connection in this defibrillation catheter 100 (when going through Steps 2, 3, 5, 6), information is stored in the event information storage unit 113. Since it has not been written, it is possible to proceed to Step 8.
- the connection of the power supply device 700 in Step 1 is a connection again in this defibrillation catheter 100 (when going through Steps 2, 4, 5, and 6)
- the event information storage unit 113 is finally written.
- the time is the time when the power supply device 700 written in Step 4 is reconnected.
- the time last written in the event information storage unit 113 is the application of electric energy (defibrillation) in Step 17 described later. ).
- the arithmetic processing unit 75 switches the mode of the power supply device 700 from the “cardiac potential measurement mode” to the “defibrillation mode” (Step 8 in FIG. 11B).
- Step 9 As shown in FIG. 14, when the mode changeover switch 741 is input to switch to the defibrillation mode, the contact of the switching unit 76 is switched to the second contact by the control signal of the arithmetic processing unit 75, and the catheter connection connector 72. Thus, a route from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 9).
- the switching unit 76 selects the second contact point, the electrocardiographic information from the constituent electrodes of the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is input to the electrocardiograph 800. (Therefore, this electrocardiographic information cannot be sent to the arithmetic processing unit 75). However, the electrocardiographic information from the constituent electrodes of the proximal-side potential measurement electrode group 33G that does not pass through the switching unit 76 is input to the electrocardiograph 800.
- Step 10 When the contact point of the switching unit 76 is switched to the second contact point, the resistance value between the first DC electrode group (31G) and the second DC electrode group (32G) of the defibrillation catheter 100 is measured (Step 10). .
- the resistance value input to the arithmetic processing unit 75 from the catheter connection connector 72 via the switching unit 76 is combined with a part of the cardiac potential information from the cardiac potential measuring means 900 input to the arithmetic processing unit 75. It can be displayed on the potential information display section 78 (see FIG. 14).
- the contact point of the switching unit 76 is switched to the first contact point, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored (Step 11).
- the time during which the contact of the switching unit 76 selects the second contact is, for example, 1 second.
- the arithmetic processing unit 75 determines whether or not the resistance value measured in Step 10 exceeds a certain value, and if not, in the next Step 13 (preparation for applying a DC voltage). If it has exceeded, the process returns to Step 5 (confirmation of the electrode position of the defibrillation catheter 100) (Step 12).
- the resistance value exceeds a certain value the first DC electrode group and / or the second DC electrode group is surely placed at a predetermined site (for example, a coronary vein tube wall, an inner wall of the right atrium). Since it means that the contact has not been made, it is necessary to return to Step 5 and readjust the position of the electrode.
- the voltage is applied only when the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 are reliably brought into contact with a predetermined part (for example, the coronary vein tube wall or the right atrial inner wall). Therefore, an effective defibrillation treatment can be performed.
- a predetermined part for example, the coronary vein tube wall or the right atrial inner wall. Therefore, an effective defibrillation treatment can be performed.
- the electric energy setting switch 742 which is the external switch 74 is input to set the applied energy at the time of defibrillation (Step 13).
- the applied energy can be set from 1J to 30J in increments of 1J.
- the operation processing unit 75 switches the contact of the switching unit 76 to the second contact, and the catheter connection connector 72 reaches the operation processing unit 75 via the switching unit 76. A path is secured, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 16).
- the output circuit 751, the switching unit 76, and the catheter connection connector of the calculation processing unit 75 are received from the DC power supply unit 71 that has received the control signal from the calculation processing unit 75.
- Direct current voltages having different polarities are applied to the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 via 72 (see Step 17 in FIG. 11C and FIG. 15).
- the arithmetic processing unit 75 performs arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77, and sends a control signal to the DC power supply unit 71.
- one R wave maximum peak
- the electrocardiogram waveform a part of the 12-lead electrocardiogram from the electrocardiogram measurement means 900
- the peak height is detected.
- a certain time for example, 1/10 of the peak width of the R wave
- the application is started after a very short time).
- the horizontal axis represents time and the vertical axis represents potential.
- the time (t 0 ) from the time when the trigger level is reached until the start of application is 0.01 to 0.05 seconds, for example, 0.01 seconds if a suitable example is shown.
- t 1 + t 2 is, for example, 0.006 to 0.03 seconds, and 0.02 seconds if a suitable example is shown.
- the measured peak voltage (V 1 ) is, for example, 300 to 600V.
- Step 18 After a certain time (t 0 + t) has elapsed after the potential difference in the cardiac potential waveform reaches the trigger level, application of a voltage from the DC power supply unit 71 is stopped in response to a control signal from the arithmetic processing unit 75. (Step 18).
- the applied record (cardiac potential waveform at the time of application as shown in FIG. 16) is displayed on the cardiac potential information display section 78 (Step 19).
- the display time is, for example, 5 seconds.
- the arithmetic processing unit 75 of the power supply device 700 has a resistance value (defibrillation) between the first DC electrode group 31G and the second DC electrode group 32G.
- the intracardiac resistance value measured in advance when performing the measurement) the set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), Information on the output voltage (actually applied voltage indicated by V 1 in FIG. 16) and output time (actually applied time indicated by t in FIG. 16) is obtained, and this information is obtained by this defibrillation.
- the contact point of the switching unit 76 is switched to the first contact point, the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored, and the first DC electrode of the defibrillation catheter 100 is restored.
- the electrocardiographic information from the constituent electrodes of the group 31G and the second DC electrode group 32G is input to the electrocardiograph 800 (Step 21, see FIG. 13).
- the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 can directly apply electrical energy to the heart that has caused fibrillation.
- the electrical stimulation (electric shock) necessary and sufficient for fibrillation treatment can be reliably applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
- a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100 can be recorded.
- the event history can be used for investigating the cause of the occurrence of the abnormality.
- information related to these events is stored in the memory 110 (event information storage unit 113) of the defibrillation catheter 100, an event of one defibrillation catheter 100 is performed using a plurality of power supply devices. Even so, the information related to these events is not distributed to a plurality of power supply apparatuses. Therefore, event history information can be managed for each defibrillation catheter 100 specified by the serial information.
- the memory 100 storage means
- the role of processing these information is the power supply device 700. Since the arithmetic processing unit 75 is in charge, the defibrillation catheter is not increased in size and the structure thereof is not complicated. Information written in the memory 110 of the defibrillation catheter 100 can be read out by an appropriate information reading device.
- a defibrillation catheter that is a disposable product can be used only for a time when there is no problem from the viewpoint of performance and safety.
- the connection time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as the starting point of the use time limit of the defibrillation catheter 100, the same or different power supply devices are defibrillated. Even after reconnection to the catheter 100, a certain event is generated by the defibrillation catheter 100 after the use restriction time has elapsed from the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112. If performed, the next event by the defibrillation catheter 100 is not executed.
- the electrocardiogram information measured by the constituent electrodes 33 of the proximal-side potential measurement electrode group 33G is transmitted from the catheter connector 72 to the electrocardiograph via the electrocardiograph connector 73 without passing through the switching unit 76. Since the electrocardiograph 800 is connected to the electrocardiogram measuring means 900, the electrocardiograms from the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are detected by the heart. During defibrillation treatment that cannot be obtained by the electrometer 800 (the switching unit 76 switches to the second contact, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked. The electrocardiograph 800 can acquire the electrocardiogram information measured by the proximal-side potential measurement electrode group 33G and the electrocardiogram measurement means 900. Monitoring the cardiac potential (monitoring) can be performed defibrillation therapy while in total 800.
- the arithmetic processing unit 75 of the power supply device 700 controls the DC power source 71 by performing arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77 ( Application is started after a lapse of a certain time (for example, 0.01 seconds) after the potential difference in the cardiac potential waveform reaches the trigger level), so that the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are The voltage can be applied in synchronization with the cardiac potential waveform, and an effective defibrillation treatment can be performed.
- the arithmetic processing unit 75 that is, the first DC electrode group 31G and the second DC electrode group 32G have a predetermined part (for example, Only when it is securely abutted against the coronary vein wall, the inner wall of the right atrium), it is controlled so that it can proceed to preparation for applying a DC voltage, so effective defibrillation treatment is performed. be able to.
- the arithmetic processing unit 75 of the power supply device 700 periodically refers to the time indicated by the internal clock 753 and is written in the initial connection information storage unit 112 of the memory 110 of the defibrillation catheter 100. It may have a function (timer) for controlling an event by the defibrillation catheter 100 not to be executed after the use limit time stored in the memory 752 has elapsed since the connection time.
- timer a function for controlling an event by the defibrillation catheter 100 not to be executed after the use limit time stored in the memory 752 has elapsed since the connection time.
- FIG. 18 is a block diagram showing another embodiment of the intracardiac defibrillation catheter system of the present invention.
- symbol is used for the component which is the same as that of 1st Embodiment, or respond
- the arithmetic processing unit 75a of the power supply device 700a constituting the catheter system of the present embodiment tries to execute a new event (for example, defibrillation) by the defibrillation catheter 100, the memory of the defibrillation catheter 100 is stored.
- a new event for example, defibrillation
- FIG. 19 is a flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG.
- Step 7 in the flowchart shown in FIG. 11A is changed to Step 7 in the flowchart shown in FIG. 19A. Similar to defibrillation treatment with a catheter system.
- the arithmetic processing unit 75a of the power supply device 700a receives the time stored in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 (the power supply device is connected first). The elapsed time from this time to the current time indicated by the internal clock 753 (the time when the defibrillation catheter 100 is used) exceeds the usage limit time stored in the memory 752 of the power supply device 700. If it does not exceed, the process proceeds to Step 8 of FIG. 19B, and if it exceeds, the subsequent operation cannot be performed and “end” is performed.
- the defibrillation catheter 100 can be used only when there is no problem from the viewpoint of performance and safety.
- this invention is not limited to these embodiment, A various change is possible.
- the “next event by the defibrillation catheter 100” that is not executed after the use limit time has elapsed in the first embodiment and the “new event by the defibrillation catheter 100” that is not executed after the use limit time has elapsed in the second embodiment. Only defibrillation may be used.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
AEDによる除細動治療では、患者の体表に電極パッドを装着して直流電圧を印加することにより、患者の体内に電気エネルギーを与える。ここに、電極パッドから患者の体内に流れる電気エネルギーは、通常150~200Jとされ、そのうちの一部(通常、数%~20%程度)が心臓に流れて除細動治療に供される。 An external defibrillator (AED) is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
In defibrillation treatment by AED, electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage. Here, the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
しかしながら、電気エネルギーを体外から供給するAEDによっては、細動を起こしている心臓に対して効果的な電気エネルギー(例えば10~30J)を供給することは困難である。 Thus, atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
However, depending on the AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
一方、体外から供給される電気エネルギーが高い割合で心臓に流れた場合には、心臓の組織が損傷を受ける虞も考えられる。
また、AEDによる除細動治療では、電極パッドを装着した体表に火傷が生じやすい。そして、上記のように、心臓に流れる電気エネルギーの割合が少ない場合には、電気エネルギーの供給を繰り返して行うことによって火傷の程度が重くなり、カテーテル術を受けている患者にとって相当の負担となる。 That is, sufficient defibrillation treatment cannot be performed when the proportion of electrical energy supplied from outside the body is small (for example, about several percent).
On the other hand, when the electrical energy supplied from outside the body flows to the heart at a high rate, the heart tissue may be damaged.
Further, in the defibrillation treatment by AED, burns are likely to occur on the body surface to which the electrode pad is attached. And as mentioned above, when the ratio of the electrical energy flowing to the heart is small, repeated supply of electrical energy increases the degree of burns, which is a considerable burden for patients undergoing catheterization. .
また、除細動カテーテルを長時間にわたり使用すると、フルワイヤーの疲労、リード線の絶縁破壊、構成材料の血液への溶出などの安全上の問題が生じる。
そこで、性能や安全性の観点から、除細動カテーテルを使用できる時間に制限を設けて、この制限時間を超えて使用できないようにすることが望ましい。 By the way, a defibrillation catheter is a disposable product, and its performance deteriorates when it is used for a certain period of time.
Further, when the defibrillation catheter is used for a long time, safety problems such as fatigue of full wires, insulation breakdown of lead wires, and elution of constituent materials into blood arise.
Therefore, from the viewpoint of performance and safety, it is desirable to limit the time during which the defibrillation catheter can be used so that it cannot be used beyond this time limit.
ルに電源装置を接続した時刻を当該電源装置に記憶させ、その時刻から制限時間経過後には、当該除細動カテーテルによる動作を行わせないように当該電源装置により制御させることが考えられる。 In order to prevent the use of the defibrillation catheter beyond the time limit, the time when the power supply device is connected to the defibrillation catheter is stored in the power supply device, and after the time limit has elapsed from that time, the defibrillation is performed. It is conceivable to control the power supply device so that the operation by the catheter is not performed.
本発明の他の目的は、患者の体表に火傷を生じさせることなく、除細動治療を行うことのできる心腔内除細動カテーテルシステムを提供することにある。 The present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be supplied to a patient.
Another object of the present invention is to provide an intracardiac defibrillation catheter system capable of performing defibrillation treatment without causing burns on the patient's body surface.
本発明の更に他の目的は、同一または異なる電源装置を除細動カテーテルに再接続しても、その性能や安全性の観点から問題のない時間に限り当該除細動カテーテルを使用する(動作させる)ことのできる心腔内除細動カテーテルシステムを提供することにある。 Still another object of the present invention is to provide a defibrillation catheter, which is a disposable product, which can be used (operated) only during a time when there is no problem from the viewpoint of performance and safety. It is to provide a fibrillation catheter system.
Still another object of the present invention is to use the defibrillation catheter only when there is no problem in terms of performance and safety even if the same or different power supply device is reconnected to the defibrillation catheter (operation). It is an object of the present invention to provide an intracardiac defibrillation catheter system.
前記除細動カテーテルは、絶縁性のチューブ部材と、
前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群(第1DC電極群)と、
前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群(第2DC電極群)と、
前記第1DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
前記第2DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、
前記除細動カテーテルに電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部、並びに、
前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
前記電源装置は、DC電源部と、
前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報およびカテーテルの使用制限時間を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
前記除細動カテーテルにより除細動を行うときには、前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群とに、互いに異なる極性の電圧が印加され、
前記電源装置の演算処理部は、
(a)前記除細動カテーテルに当該電源装置を最初に接続したときに、最初に接続した時刻および最初に接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおける初回接続情報記憶部に書き込み、
(b)前記除細動カテーテルにより除細動が行われたときに、前記第1DC電極群と前記第2DC電極群との間の抵抗値、前記第1DC電極群と前記第2DC電極群との間に印加しようとした電気エネルギーの設定値、出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(c)前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(d)使用していた電源装置が取り外された除細動カテーテルに対して、同一または異なる当該電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(e)前記除細動カテーテルのメモリにおけるイベント記憶部に書き込まれたイベントごとに、当該除細動カテーテルのメモリにおける初回接続情報記憶部に書き込まれた接続時刻から、そのイベントが行われた時刻までの経過時間が、前記使用制限時間(電源装置の演算処理部に記憶されている使用制限時間)を超えているか否かを判断し、超えていると判断した場合には、当該除細動カテーテルによる次のイベントを実行させないように制御することを特徴とする。 (1) An intracardiac defibrillation catheter system according to the present invention (first invention) includes a defibrillation catheter that is inserted into the heart chamber to perform defibrillation, and a DC voltage applied to an electrode of the defibrillation catheter. A catheter system with a power supply for applying
The defibrillation catheter includes an insulating tube member;
A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member;
A second electrode group (second DC electrode group) comprising a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal end side;
A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group;
A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group;
A catheter serial storage unit storing serial information of the defibrillation catheter;
An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and
A memory having an event information storage unit that stores information related to an event including defibrillation by the defibrillation catheter together with a time when the event is performed and serial information of a connected power supply device;
The power supply device includes a DC power supply unit,
A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device and a catheter use time limit, An internal clock for determining the time, and an arithmetic processing unit that controls writing to and reading from the memory of the defibrillation catheter;
When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group is measured, and then, based on an input of the external switch, the DC of the power supply device is measured. Voltages having different polarities are applied from the power supply unit to the first DC electrode group and the second DC electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
The arithmetic processing unit of the power supply device is
(A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department,
(B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, and between the first DC electrode group and the second DC electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter,
(C) When the defibrillation is not performed after the resistance value between the first DC electrode group and the second DC electrode group of the defibrillation catheter is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device,
(D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter,
(E) For each event written in the event storage unit in the memory of the defibrillation catheter, the time when the event was performed from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter It is determined whether or not the elapsed time has exceeded the use limit time (use limit time stored in the arithmetic processing unit of the power supply device). Control is performed so that the next event by the catheter is not executed.
除細動治療に必要かつ十分な電気的刺激(電気ショック)を心臓のみに確実に与えることができる。
そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。 Thus, according to the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber, by directly giving electrical energy to the heart that has caused fibrillation,
The electrical stimulation (electric shock) necessary and sufficient for defibrillation treatment can be surely applied only to the heart.
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
すなわち、電源装置の演算処理部は、使用制限時間の経過により新たなイベントを実行させないようにするタイマー機能を有していてもよい。 (2) The arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention (first invention) periodically refers to the time indicated by the internal clock, and After the time limit for use (time limit for use stored in the processing unit of the power supply unit) has elapsed from the connection time written in the initial connection information storage unit of the memory, an event by the defibrillation catheter is executed. It can be controlled so that it does not.
In other words, the arithmetic processing unit of the power supply device may have a timer function that prevents a new event from being executed when the use time limit elapses.
状態で長い時間経過したような場合には、使用制限時間を大幅に超える時刻において「次の」イベントが実行できるようになる。
そこで、第1の発明においてタイマーを併用することにより、そのような場合であっても、使用制限時間の経過後にはイベントを実行させないようにすることができる。 In the first invention, when the elapsed time from the time when the power supply device is first connected to the defibrillation catheter to the time when an event is performed by the defibrillation catheter exceeds the use limit time Controls so that the “next” event by the defibrillation catheter is not executed, so it seems that a long time has passed with the power supply connected after performing an event just before the usage limit time has elapsed. In such a case, the “next” event can be executed at a time significantly exceeding the usage time limit.
Therefore, by using a timer together in the first invention, even in such a case, it is possible to prevent the event from being executed after the use time limit has elapsed.
前記除細動カテーテルは、絶縁性のチューブ部材と、
前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1DC電極群と、
前記第1DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2DC電極群と、
前記第1DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
前記第2DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、
前記除細動カテーテルに電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部、並びに、
前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
前記電源装置は、DC電源部と、
前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報およびカテーテルの使用制限時間を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
前記除細動カテーテルにより除細動を行うときには、前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群とに、互いに異なる極性の電圧が印加され、
前記電源装置の演算処理部は、
(a)前記除細動カテーテルに当該電源装置を最初に接続したときに、最初に接続した時刻および最初に接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおける初回接続情報記憶部に書き込み、
(b)前記除細動カテーテルにより除細動が行われたときに、前記第1DC電極群と前記第2DC電極群との間の抵抗値、前記第1DC電極群と前記第2DC電極群との間に印加しようとした電気エネルギーの設定値、出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(c)前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(d)使用していた電源装置が取り外された除細動カテーテルに対して、同一または異なる当該電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(e)前記除細動カテーテルによって新たなイベントを実行しようとするときに、当該除細動カテーテルのメモリにおける初回接続情報記憶部に書き込まれた接続時刻から、前記内部時計が示している現在時刻までの経過時間が、前記使用制限時間(電源装置の演算処理部に記憶されている使用制限時間)を超えているか否かを判断し、超えていると判断した場合には、当該イベントを実行させないように制御することを特徴とする。 (3) An intracardiac defibrillation catheter system according to the present invention (second invention) includes a defibrillation catheter that is inserted into the heart chamber to perform defibrillation, and a DC voltage applied to an electrode of the defibrillation catheter. A catheter system with a power supply for applying
The defibrillation catheter includes an insulating tube member;
A first DC electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
A second DC electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side;
A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group;
A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group;
A catheter serial storage unit storing serial information of the defibrillation catheter;
An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and
A memory having an event information storage unit that stores information related to an event including defibrillation by the defibrillation catheter together with a time when the event is performed and serial information of a connected power supply device;
The power supply device includes a DC power supply unit,
A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device and a catheter use time limit, An internal clock for determining the time, and an arithmetic processing unit that controls writing to and reading from the memory of the defibrillation catheter;
When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group is measured, and then, based on an input of the external switch, the DC of the power supply device is measured. Voltages having different polarities are applied from the power supply unit to the first DC electrode group and the second DC electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
The arithmetic processing unit of the power supply device is
(A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department,
(B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, and between the first DC electrode group and the second DC electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter,
(C) When the defibrillation is not performed after the resistance value between the first DC electrode group and the second DC electrode group of the defibrillation catheter is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device,
(D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter,
(E) The current time indicated by the internal clock from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter when a new event is to be executed by the defibrillation catheter. It is determined whether or not the elapsed time has exceeded the use time limit (use time limit stored in the arithmetic processing unit of the power supply device). It is characterized by controlling so that it does not occur.
前記電源装置は、前記心電計の入力端子に接続される心電計接続コネクタと、
1回路2接点の切替スイッチからなり、共通接点に前記カテーテル接続コネクタが接続され、第1接点に前記心電計接続コネクタが接続され、第2接点に前記演算処理部が接続された切替部とを備えてなり;
前記除細動カテーテルの第1電極群および/または第2電極群を構成する電極により心電位を測定するときには、前記切替部において第1接点が選択され、前記除細動カテーテルからの心電位情報が、前記電源装置の前記カテーテル接続コネクタ、前記切替部および前記心電計接続コネクタを経由して前記心電計に入力され、
前記除細動カテーテルにより除細動を行うときには、前記電源装置の前記演算処理部によって前記切替部の接点が第2接点に切り替わり、前記DC電源部から、前記演算処理部の出力回路、前記切替部および前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることが好ましい。 (4) In the intracardiac defibrillation catheter system of the present invention, an electrocardiograph is provided together with the defibrillation catheter and the power supply device,
The power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
A switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact; Comprising:
When the cardiac potential is measured by the electrodes constituting the first electrode group and / or the second electrode group of the defibrillation catheter, the first contact is selected in the switching unit, and the cardiac potential information from the defibrillation catheter is selected. Is input to the electrocardiograph via the catheter connection connector of the power supply device, the switching unit and the electrocardiograph connection connector,
When defibrillation is performed by the defibrillation catheter, the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching It is preferable that voltages having different polarities are applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connection connector.
すなわち、心臓カテーテル術中において除細動治療を必要としないときには、本発明を構成する除細動カテーテルを心電位測定用の電極カテーテルとして用いることができる。この結果、心臓カテーテル術中に心房細動が起きたときに、電極カテーテルを抜去して、除細動のためのカテーテルを新に挿入するなどの手間を省くことができる。 Since the path from the catheter connector to the electrocardiograph connector is secured by selecting the first contact in the switching unit constituting the power supply device, the first DC electrode group and / or the second DC of the defibrillation catheter is secured. The electrocardiogram can be measured by the electrodes constituting the electrode group, and the obtained electrocardiogram information can be input to the electrocardiograph via the catheter connector, the switching unit, and the electrocardiograph connector.
That is, when defibrillation treatment is not required during cardiac catheterization, the defibrillation catheter constituting the present invention can be used as an electrode catheter for measuring cardiac potential. As a result, when atrial fibrillation occurs during cardiac catheterization, it is possible to save the trouble of removing the electrode catheter and newly inserting a catheter for defibrillation.
前記電位測定電極群を構成する電極の各々に先端が接続された複数のリード線からなり、その基端側が、前記電源装置のカテーテル接続コネクタに接続される電位測定用のリード線群とを備えてなり、
前記電源装置には、前記カテーテル接続コネクタと、前記心電計接続コネクタとを直接結ぶ経路が形成され、
前記電位測定電極群を構成する電極によって測定された心電位情報は、前記電源装置の
前記カテーテル接続コネクタから、前記切替部を経ることなく、前記心電計接続コネクタを経由して前記心電計に入力されることが好ましい。
このような構成によれば、除細動カテーテルの第1DC電極群および前記第2DC電極群からの心電位を心電計が取得することのできない除細動治療の際にも、電位測定電極群によって測定された心電位を心電計が取得することができ、心電計において心電位を監視(モニタリング)しながら除細動治療を行うことができる。 (5) In the intracardiac defibrillation catheter system according to (4), the defibrillation catheter is a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group. A potential measuring electrode group comprising:
The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device. And
In the power supply device, a path directly connecting the catheter connector and the electrocardiograph connector is formed,
The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit. Is preferably entered.
According to such a configuration, even in the case of defibrillation treatment in which the electrocardiograph cannot acquire the cardiac potential from the first DC electrode group and the second DC electrode group of the defibrillation catheter, the potential measurement electrode group The electrocardiograph can acquire the electrocardiogram measured by the above-mentioned, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
(7)また、この心電位測定手段が電極パッドまたは電極カテーテルであることが好ましい。
このような構成によれば、除細動カテーテルの第1DC電極群および前記第2DC電極群からの心電位を心電計が取得することのできない除細動治療の際にも、当該心電位測定手段によって測定された心電位を心電計が取得することができ、心電計において心電位を監視(モニタリング)しながら除細動治療を行うことができる。 (6) It is preferable that an electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph constituting the intracardiac defibrillation catheter system of (4) or (5).
(7) Moreover, it is preferable that this cardiac potential measuring means is an electrode pad or an electrode catheter.
According to such a configuration, even in the case of defibrillation treatment in which the electrocardiograph cannot obtain the electrocardiogram from the first DC electrode group and the second DC electrode group of the defibrillation catheter, the electrocardiogram measurement is performed. The electrocardiograph can acquire the electrocardiogram measured by the means, and the defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
前記心電図入力コネクタに入力された前記心電計からの心電位情報は、前記演算処理部に入力され、さらに、前記心電位情報表示部に表示されることが好ましい。 (8) The power supply device constituting the intracardiac defibrillation catheter system of (4) to (7) includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and the arithmetic operation A cardiac potential information display unit connected to the processing unit,
It is preferable that the electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit.
また、演算処理部に入力された心電位情報(波形)を心電位情報表示部で監視しながら除細動治療(外部スイッチの入力など)を行うことができる。 According to such a configuration, cardiac potential information input to the electrocardiograph (cardiac potential acquired by the electrodes constituting the first DC electrode group and / or the second DC electrode group of the defibrillation catheter, the defibrillation catheter) A part of the cardiac potential acquired by the electrodes constituting the potential measuring electrode group or the cardiac potential acquired by the cardiac potential measuring means other than the defibrillation catheter) is input to the arithmetic processing unit. The DC power supply unit can be controlled based on this electrocardiographic information.
Further, defibrillation treatment (such as input of an external switch) can be performed while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit with the electrocardiogram information display unit.
(1)心臓カテーテル術中に心房細動等を起こした心臓に対して、除細動に必要かつ十分な電気エネルギーを確実に供給することができる。また、患者の体表に火傷を生じさせることもなく侵襲性も少ない。
(2)使い捨て(Disposable)の製品である除細動カテーテルを、その性能や安全性の観点から問題のない時間に限り使用すること(イベントを実行させること)ができる。これにより、除細動カテーテルの性能および安全性を確保することができる。
(3)同一または異なる電源装置を除細動カテーテルに再接続することによっても、この除細動カテーテルを、その性能や安全性の観点から問題のない時間に限り使用することができる。
(4)除細動カテーテルのイベント履歴を記録することができる。
(5)異なる電源装置を接続し直すことにより、除細動カテーテルによるイベントを複数の電源装置を使用して行ったとしても、この除細動カテーテルによるイベント履歴を1つのメモリ(イベント情報記憶部)に記憶させることができ、除細動カテーテルごとにイベント履歴情報の管理を行うことができる。 According to the intracardiac defibrillation catheter system of the present invention, the following effects are exhibited.
(1) The electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive.
(2) A defibrillation catheter, which is a disposable product, can be used only when there is no problem from the viewpoint of performance and safety (event can be executed). Thereby, the performance and safety of the defibrillation catheter can be ensured.
(3) By reconnecting the same or different power supply device to the defibrillation catheter, the defibrillation catheter can be used only when there is no problem from the viewpoint of performance and safety.
(4) An event history of a defibrillation catheter can be recorded.
(5) Even if an event by a defibrillation catheter is performed using a plurality of power supply devices by reconnecting different power supply devices, the event history by this defibrillation catheter is stored in one memory (event information storage unit) Event history information can be managed for each defibrillation catheter.
本実施形態の心腔内除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテル100と、この除細動カテーテル100の電極に直流電圧を印加する電源装置700と、心電計800と、心電位測定手段900を備えたカテーテルシステムであって;
除細動カテーテル100は、マルチルーメンチューブ10と、
マルチルーメンチューブ10の先端領域に装着された8個のリング状電極31からなる第1DC電極群31Gと、
第1DC電極群31Gから基端側に離間してマルチルーメンチューブ10に装着された8個のリング状電極32からなる第2DC電極群32Gと、
第2DC電極群32Gから基端側に離間してマルチルーメンチューブ10に装着された4個のリング状電極33からなる基端側電位測定電極群33Gと、
第1DC電極群31Gを構成する電極31の各々に先端が接続された8本のリード線41からなる第1リード線群41Gと、
第2DC電極群32Gを構成する電極32の各々に先端が接続された8本のリード線42からなる第2リード線群42Gと、
基端側電位測定電極群33Gを構成する電極33の各々に先端が接続された4本のリード線43からなる第3リード線群43Gと、
除細動カテーテル100のシリアル情報が記憶されたカテーテルシリアル記憶部111、除細動カテーテル100に電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部112、並びに、除細動カテーテル100による除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部113を有するメモリ110とを備えてなり;
電源装置700は、DC電源部71と、
除細動カテーテル100の第1リード線群41G、第2リード線群42Gおよび第3リード線群43Gの基端側に接続されるカテーテル接続コネクタ72と、
心電計800の入力端子に接続される心電計接続コネクタ73と、
電源装置700を除細動モードにするためのモード切替スイッチ741、電気エネルギー設定スイッチ742、充電スイッチ743および電気エネルギー印加スイッチ744を含む外部スイッチ74と、
外部スイッチ74の入力に基いてDC電源部71を制御するとともに、DC電源部71からの直流電圧の出力回路751を有し、さらに、電源装置700のシリアル情報およびカテーテルの使用制限時間が記憶されたメモリ752、並びに時刻を確定するための内部時計753を有し、除細動カテーテル100のメモリ110への書き込みおよび読み出しを制御する演算処理部75と、
1回路2接点の切替スイッチからなり、共通接点にカテーテル接続コネクタ72が接続され、第1接点に前記心電計接続コネクタ73が接続され、第2接点に演算処理部75が接続された切替部76とを備えてなり;
除細動カテーテル100の第1DC電極群31Gおよび/または第2DC電極群32Gを構成する電極により心電位を測定するときには、切替部76において第1接点が選択され、除細動カテーテル100からの心電位情報が、電源装置700のカテーテル接続コネクタ72、切替部76および心電計接続コネクタ73を経由して心電計800に入力され、
除細動カテーテル100により除細動を行うときには、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値(心内抵抗値)が測定された後、外部スイッチ74(電気エネルギー設定スイッチ742、充電スイッチ743、電気エネルギー印加スイッチ744)の入力に基いて、電源装置700の演算処理部75によって切替部76の接点が第2接点に切り替わり、電源装置700のDC電源部71から、演算処理部75の出力回路751、切替部76およびカテーテル接続コネクタ72を経由して、除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとに、互いに異なる極性の電圧が印加され;
電源装置700の演算処理部75は、
(a)除細動カテーテル100に電源装置700を最初に接続したときに、最初に接続した時刻および最初に接続した電源装置700のシリアル情報を、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込み、
(b)除細動カテーテル100により除細動が行われたときに、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値、第1DC電極群31Gと第2DC電極群32Gとの間に印加しようとした電気エネルギーの設定値、実際に印加された出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
(c)除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
(d)使用していた電源装置が取り外された除細動カテーテル100に対して、同一または異なる電源装置700を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した電源装置700のシリアル情報を、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
(e)除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込まれたイベントごとに、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻から、そのイベントが行われた時刻までの経過時間が、電源装置700のメモリ752に記憶されたカテーテルの使用制限時間を超えているか否かを判断し、超えていると判断した場合には、当該除細動カテーテル100による次のイベントとしての除細動または抵抗値の測定を実行させないように制御するシステムである。 <First Embodiment>
The intracardiac defibrillation catheter system of this embodiment includes a
The
A first
A second
A proximal-side potential
A first
A second
A third
The catheter serial storage unit 111 in which serial information of the
The
A catheter connection connector 72 connected to the proximal end side of the first
An electrocardiograph connector 73 connected to an input terminal of the
An external switch 74 including a mode changeover switch 741, an electric energy setting switch 742, a charging switch 743, and an electric energy application switch 744 for setting the
The DC power supply unit 71 is controlled based on the input of the external switch 74, and the DC
A switching unit comprising a switching switch of one circuit and two contacts, a catheter connection connector 72 connected to a common contact, the electrocardiograph connection connector 73 connected to a first contact, and an arithmetic processing unit 75 connected to a
When the cardiac potential is measured by the electrodes constituting the first
When defibrillation is performed by the
The arithmetic processing unit 75 of the
(A) When the
(B) When defibrillation is performed by the
(C) When the defibrillation is not performed after the resistance value between the first
(D) When the same or different
(E) For each event written in the event information storage unit 113 in the memory 110 of the
好適な一例を示せば、図3において、L1(長さ52mm)で示す領域の硬度(D型硬
度計による硬度)は40、L2(長さ108mm)で示す領域の硬度は55、L3(長さ25.7mm)で示す領域の硬度は63、L4(長さ10mm)で示す領域の硬度は68、L5(長さ500mm)で示す領域の硬度は72である。 The nylon elastomer that forms the
As a preferable example, in FIG. 3, the hardness of the region indicated by L1 (
マルチルーメンチューブ10の外径は、例えば1.2~3.3mmとされる。 The braided blade composed of the
The outer diameter of the
摘まみ22を回転操作することにより、マルチルーメンチューブ10の先端部を偏向(首振り)させることができる。 The
By rotating the
第1DC電極群31Gを構成する電極31は、リード線(第1リード線群41Gを構成するリード線41)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。 In the present embodiment, the first
The
電極31の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極31の幅が広過ぎると、マルチルーメンチューブ10における第1DC電極群31Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
Here, the width (length in the axial direction) of the
If the width of the
除細動カテーテル100の使用時(心腔内に配置されるとき)において、第1DC電極群31Gは、例えば冠状静脈内に位置する。 The mounting interval of the electrodes 31 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the
第2DC電極群32Gを構成する電極32は、リード線(第2リード線群42Gを構成するリード線42)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。 In the present embodiment, the second
The
電極32の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極32の幅が広過ぎると、マルチルーメンチューブ10における第2DC電極群32Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
Here, the width (length in the axial direction) of the
If the width of the
除細動カテーテル100の使用時(心腔内に配置されるとき)において、第2DC電極群32Gは、例えば右心房に位置する。 The mounting interval of the electrodes 32 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the
基端側電位測定電極群33Gを構成する電極33は、リード線(第3リード線群43Gを構成するリード線43)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。 In the present embodiment, the proximal-side potential
The
電極33の幅が広過ぎると、心電位の測定精度が低下したり、異常電位の発生部位の特定が困難となったりする。 Here, the width (length in the axial direction) of the
If the width of the
除細動カテーテル100の使用時(心腔内に配置されるとき)において、基端側電位測定電極群33Gは、例えば、異常電位が発生しやすい上大静脈に位置する。 The mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
When the
この先端チップ35には、リード線は接続されておらず、本実施形態では電極として使用していない。但し、リード線を接続させることにより、電極として使用することも可能である。先端チップ35の構成材料は、白金、ステンレスなどの金属材料、各種の樹脂材料など、特に限定されるものではない。 A
A lead wire is not connected to the
第1リード線群41G(リード線41)により、第1DC電極群31Gを構成する8個の電極31の各々を電源装置700に電気的に接続することができる。 The first
Each of the eight
第2リード線群42G(リード線42)により、第2DC電極群32Gを構成する8個の電極32の各々を電源装置700に電気的に接続することができる。 The second
Each of the eight
第3リード線群43G(リード線43)により、基端側電位測定電極群33Gを構成する電極33の各々を電源装置700に電気的に接続することができる。 The third
Each of the
プルワイヤ65は、第4ルーメン14に延在し、マルチルーメンチューブ10の中心軸に対して偏心して延びている。 4 and 5, 65 is a pull wire.
The
プルワイヤ65は、ステンレスやNi-Ti系超弾性合金製で構成してあるが、必ずしも金属で構成する必要はない。プルワイヤ65は、たとえば高強度の非導電性ワイヤなどで構成してもよい。
なお、マルチルーメンチューブの先端部を偏向させる機構は、これに限定されるものではなく、例えば、板バネを備えてなるものであってもよい。 On the other hand, the proximal end portion of the
The
Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
また、図6乃至図8に示すように、ハンドル20の内部には、3つのリード線群(第1リード線群41G、第2リード線群42G、第3リード線群43G)の各々が挿通される3本の絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)が延在している。 As shown in FIGS. 6 and 8, a
As shown in FIGS. 6 to 8, each of the three lead wire groups (first
絶縁性チューブ26は、第1リード線群41Gが延在する第1ルーメン11に連結されている。
第1ルーメン11に連結された第1絶縁性チューブ26は、ハンドル20の内部に延在する第1の保護チューブ61の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第1リード線群41Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第1ルーメン11)から延び出した第1リード線群41Gは、キンクすることなく、ハンドル20の内部(第1絶縁性チューブ26の内孔)を延在することができる。
第1絶縁性チューブ26の基端開口から延び出した第1リード線群41Gは、これを構成する8本のリード線41にばらされ、これらリード線41の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第1リード線群41Gを構成するリード線41が接続固定されたピン端子(ピン端子51)が配置されている領域を「第1端子群領域」とする。 As shown in FIGS. 6 and 7, the distal end portion (about 10 mm from the distal end) of the first insulating
The insulating
The first insulating
The first
第2ルーメン12に連結された第2絶縁性チューブ27は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第2リード線群42Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第2ルーメン12)から延び出した第2リード線群42Gは、キンクすることなく、ハンドル20の内部(第2絶縁性チューブ27の内孔)を延在することができる。
第2絶縁性チューブ27の基端開口から延び出した第2リード線群42Gは、これを構成する8本のリード線42にばらされ、これらリード線42の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第2リード線群42Gを構成するリード線42が接続固定されたピン端子(ピン端子52)が配置されている領域を「第2端子群領域」とする。 The distal end portion (about 10 mm from the distal end) of the second insulating
The second insulating
The second
第3ルーメン13に連結された第3絶縁性チューブ28は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第3リード線群43Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第3ルーメン13)から延び出した第3リード線群43Gは、キンクすることなく、ハンドル20の内部(第3絶縁性チューブ28の内孔)を延在することができる。
第3絶縁性チューブ28の基端開口から延び出した第3リード線群43Gは、これを構成する4本のリード線43にばらされ、これらリード線43の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第3リード線群43Gを構成するリード線43が接続固定されたピン端子(ピン端子53)が配置されている領域を「第3端子群領域」とする。 The distal end portion (about 10 mm from the distal end) of the third insulating
The third insulating
The third
絶縁性チューブの肉厚としては、20~40μmであることが好ましく、好適な一例を示せば30μmである。 Here, examples of the constituent material of the insulating tubes (the first insulating
The thickness of the insulating tube is preferably 20 to 40 μm, and is 30 μm as a suitable example.
隔壁板55の高さ(基端縁から先端縁までの距離)は、コネクタ50の先端面50Aと絶縁性チューブ(第1絶縁性チューブ26および第2絶縁性チューブ27)との離間距離より高いことが必要であり、この離間距離が7mmの場合、隔壁板55の高さは、例えば8mmとされる。高さが7mm未満の隔壁板では、その先端縁を、絶縁性チューブの基端よりも先端側に位置させることができない。 The thickness of the
The height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the
隔壁板55を備えていない場合には、リード線41と、リード42とを整然と隔離する(分ける)ことができず、これらが混線するおそれがある。 According to such a configuration, the lead wire 41 (the base end portion of the
When the
1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)との間で短絡が発生することはない。 The
これにより、第1絶縁性チューブ26の基端開口から延び出したリード線(第1リード線群41Gを構成するリード線41)と、第2絶縁性チューブ27の基端開口から延び出たリード線(第2リード線群42Gを構成するリード線42)との間には、常に隔壁板55が存在することになり、リード線41とリード線42との接触による短絡を確実に防止することができる。 In the
Thereby, the lead wire (
そして、絶縁性チューブの基端部が樹脂成形体の内部に埋め込まれている構成によれば、絶縁性チューブの基端開口より延び出してからピン端子に接続固定されるまでのリード線(基端部分)の全域を樹脂58によって完全に覆うことができ、リード線(基端部分)の形状を完全に保持固定することができる。
また、樹脂成形体の高さ(基端面から先端面までの距離)は、隔壁板55の高さよりも高いことが好ましく、隔壁板55の高さが8mmの場合に、例えば9mmとされる。 The
According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire region of the end portion can be completely covered with the
Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the
00は、カテーテルシリアル記憶部111と、初回接続情報記憶部112と、イベント情報記憶部113とを有するメモリ110を備えている。
除細動カテーテル100に備えられたメモリ110は、例えば、ハンドル20の内部に格納されたメモリチップから構成される。 As shown in FIG. 1, a
00 includes a memory 110 having a catheter serial storage unit 111, an initial connection information storage unit 112, and an event information storage unit 113.
The memory 110 provided in the
除細動カテーテル100のシリアル情報としては、製造番号(シリアル番号)、製造年
月日などを挙げることができる。このシリアル情報は、除細動カテーテル100の製造時に書き込まれた製品管理上の情報であって、書き換えたり、追記したりすることはできない。
例えば、表1に示したメモリ110の構造において、カテーテルシリアル記憶部111には、除細動カテーテルのシリアル番号(123456)が書き込まれている。 Serial information of the
As serial information of the
For example, in the structure of the memory 110 shown in Table 1, the deserialization catheter serial number (123456) is written in the catheter serial storage unit 111.
最初に接続された時刻および最初に接続した電源装置のシリアル情報は、最初に接続した電源装置の演算処理部によって書き込まれ、一度書き込まれた後は書き換えることはできない。
使い捨て(Disposable)の製品である除細動カテーテル100は、ある程度の時間使用することによって性能が低下する。このため、除細動カテーテル100には、性能および安全の観点から使用制限時間(この使用制限時間は、電源装置700のメモリ752に記憶されている。)が設定されており、「除細動カテーテル100に電源装置が最初に接続された時刻」は、除細動カテーテル100の使用制限時間の起算点となる。 The first connection information storage unit 112 of the memory 110 stores the time (date and time) when the power supply device is first connected to the
The first connection time and the serial information of the first connected power supply device are written by the arithmetic processing unit of the first connected power supply device, and cannot be rewritten once written.
The performance of the
(1)除細動カテーテル100による除細動(電気エネルギーの印加)、
(2)除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値の測定、
(3)除細動カテーテル100によるイベントに使用した電源装置が取り外された後、この除細動カテーテル100に対して、同一または異なる電源装置を再接続する操作を挙げることができる。 As an event stored in the event information storage unit 113,
(1) Defibrillation (application of electrical energy) by the
(2) measurement of a resistance value between the first
(3) After the power supply device used for the event by the
行われなかった場合には、抵抗値の測定が単独のイベントとして認識され、測定された抵抗値が、測定された時刻および接続されている電源装置のシリアル情報とともに、イベント情報記憶部113に書き込まれる。 Since the measurement of the resistance value between the first
また、イベント6には、電極群間の抵抗値(79Ω)が、測定時刻(2009年12月5日10時53分22秒)およびそのときに接続されていた電源装置のシリアル番号(10032)とともに、イベント情報記憶部113に書き込まれている。 For example, in the structure of the memory 110 shown in Table 1 above, in the
In
また、イベント8には、再々接続した時刻(2009年12月6日11時30分00秒)、および再々接続した電源装置のシリアル番号(10055)がイベント情報記憶部113に書き込まれている。 For example, in the structure of the memory 110 shown in Table 1, the
In the
第1リード線群を構成する8本のリード線41を接続固定したピン端子51(実際には8個)と、カテーテル接続コネクタ72の端子721(実際には8個)、
第2リード線群を構成する8本のリード線42を接続固定したピン端子52(実際には8個)と、カテーテル接続コネクタ72の端子722(実際には8個)、
第3リード線群を構成する4本のリード線43を接続固定したピン端子53(実際には4個)と、カテーテル接続コネクタ72の端子723(実際には4個)が、それぞれ接続されている。 As shown in FIG. 9, the
Pin terminals 51 (actually 8) that connect and fix the eight
Pin terminals 52 (actually 8) that connect and fix the eight
Pin terminals 53 (actually four) to which the four
されている。
これにより、第1DC電極群31Gおよび第2DC電極群32Gにより測定された心電位情報は、切替部76を経由して心電計接続コネクタ73に到達し、基端側電位測定電極群33Gにより測定された心電位情報は、切替部76を経ることなく、心電計接続コネクタ73に到達する。 Here, the terminal 721 and the
As a result, the cardiac potential information measured by the first
入力手段である外部スイッチ74は、心電位測定モードと除細動モードとを切り替えるためのモード切替スイッチ741、除細動の際に印加する電気エネルギーを設定する電気エネルギー設定スイッチ742、DC電源部71を充電するための充電スイッチ743、電気エネルギーを印加して除細動を行うための電気エネルギー印加スイッチ(放電スイッチ)744からなる。これら外部スイッチ74からの入力信号はすべて演算処理部75に送られる。 The electrocardiograph connector 73 is connected to the input terminal of the
An external switch 74 serving as input means includes a mode switch 741 for switching between a cardiac potential measurement mode and a defibrillation mode, an electrical energy setting switch 742 for setting electrical energy applied during defibrillation, and a DC power supply unit A charge switch 743 for charging 71 and an electric energy application switch (discharge switch) 744 for defibrillation by applying electric energy. All input signals from these external switches 74 are sent to the arithmetic processing unit 75.
この演算処理部75には、DC電源部71からの直流電圧を切替部76を介して除細動カテーテル100の電極に出力するための出力回路751を有している。 The arithmetic processing unit 75 of the power supply device controls the DC power supply unit 71, the switching
The arithmetic processing unit 75 has an
メモリ752に記憶された「カテーテルの使用制限時間」は、除細動カテーテル100の性能および安全の観点から設定され、カテーテルシステムの使用者によって書き換えることはできない。
カテーテルの使用制限時間としては、1回の手技に要する最大時間より長い時間であり、かつ、除細動カテーテルの性能および安全の観点から問題を起こすことのない時間とされ、例えば24時間と設定することができるが、これに限定されるものではないことは勿論である。 The serial information of the
The “catheter use time limit” stored in the memory 752 is set from the viewpoint of the performance and safety of the
The time limit for using the catheter is longer than the maximum time required for one procedure, and is a time that does not cause a problem from the viewpoint of the performance and safety of the defibrillation catheter. For example, it is set to 24 hours. Of course, the present invention is not limited to this.
は特に限定されるものではなく、例えば、接続したときに微弱電流が流れるような回路を設けたり、電源装置700のカテーテル接続コネクタ72に物理的なスイッチを設けたりする手段を挙げることができる。 Here, the means for detecting that the
これにより、除細動を行わなかったときの心内抵抗値のデータについても記録することができる。 When the defibrillation is not performed after the resistance value between the first
Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
これにより、電源装置を再接続(交換)したことの履歴を記録することができる。 Further, after the power supply device used for the event by the
As a result, a history of reconnection (exchange) of the power supply device can be recorded.
これに対して、初回接続情報記憶部112に書き込まれた接続時刻(12月5日10時00分00秒)から、イベント情報記憶部113に記憶されているイベント8の電源装置の再々接続が行われた時刻(12月6日11時30分00秒)までの経過時間は25時間30分00秒であり、電源装置700のメモリ752に記憶されたカテーテルの使用制限時間(24時間00分00秒)を超えているので、次のイベントを実行することができない。 For example, in the structure of the memory 110 shown in Table 1 above, it is stored in the event information storage unit 113 from the connection time (December 5, 10:00:00) written in the initial connection information storage unit 112. The elapsed time until the time of defibrillation of event 3 (December 5, 10:09:25) is 9 minutes 25 seconds, and the catheter use time limit stored in the memory 752 of the
On the other hand, from the connection time (December 5, 10:00:00) written in the initial connection information storage unit 112, the power supply device of the
ここに、演算処理部が実行させないよう制御するイベントとしては、除細動および抵抗値の測定を挙げることができる。「電源装置が取り外された除細動カテーテルに対して、同一または異なる当該電源装置を再接続」することは、イベント記憶部に書き込まれるイベントとして認識されるが、「再接続」は、オペレータの行為であるために、演算処理部が実行させないよう制御するイベントには含まれない。 In the present invention, there is no particular limitation on the manner in which the event is not executed by the arithmetic processing unit. For example, when defibrillation is to be executed as an event, the defragmentation is performed even if a mode switch is input. For example, a mode in which a control signal for applying a DC voltage is not sent even when an electric energy application switch is input can be given.
Here, examples of events that are controlled not to be executed by the arithmetic processing unit include defibrillation and measurement of resistance values. “Reconnecting the same or different power supply device to the defibrillation catheter from which the power supply device has been removed” is recognized as an event written to the event storage unit. Since it is an action, it is not included in the event that controls the arithmetic processing unit not to execute.
しかも、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻を、除細動カテーテル100の使用制限時間の起算点としているので、同一または異なる電源装置を除細動カテーテル100に再接続しても、初回接続情報記憶部112に書き込まれた接続時刻(電源装置を最初に接続した時刻)から使用制限時間を経過した後に或るイベントが行われた場合には、この除細動カテーテル100による次のイベントを実行させない。 According to the catheter system of this embodiment having such a configuration, a defibrillation catheter that is a disposable product can be used only during a time when there is no problem in terms of performance and safety.
Moreover, since the connection time written in the initial connection information storage unit 112 in the memory 110 of the
すなわち、第1接点を選択したときには、カテーテル接続コネクタ72と、心電計接続コネクタ73とを結ぶ経路が確保され、第2接点を選択したときには、カテーテル接続コネクタ72と、演算処理部75とを結ぶ経路が確保される。 The switching
That is, when the first contact is selected, a path connecting the catheter connection connector 72 and the electrocardiograph connection connector 73 is secured, and when the second contact is selected, the catheter connection connector 72 and the arithmetic processing unit 75 are connected. A connecting route is secured.
心電図入力コネクタ77は、演算処理部75に接続され、また、心電計800の出力端子に接続される。
この心電図入力コネクタ77により、心電計800から出力される心電位情報(通常、心電計800に入力された心電位情報の一部)を演算処理部75に入力することができ、演算処理部75では、この心電位情報に基いて、DC電源部71および切替部76を制御
することができる。 The switching operation of the switching
The electrocardiogram input connector 77 is connected to the arithmetic processing unit 75 and also connected to the output terminal of the
With this electrocardiogram input connector 77, the electrocardiogram information output from the electrocardiograph 800 (usually part of the electrocardiogram information input to the electrocardiograph 800) can be input to the arithmetic processing unit 75. The unit 75 can control the DC power supply unit 71 and the switching
ここに、心電位測定手段900としては、12誘導心電図を測定するために患者の体表面に貼付される電極パッド、患者の心臓内に装着される電極カテーテル(除細動カテーテル100とは異なる電極カテーテル)を挙げることができる。 The electrocardiograph 800 (other input terminal) is also connected to the
Here, the electrocardiogram measuring means 900 includes an electrode pad attached to the patient's body surface for measuring a 12-lead electrocardiogram, and an electrode catheter (an electrode different from the defibrillation catheter 100) mounted in the patient's heart. Catheter).
このとき、電源装置700の切替部76は、心電計接続コネクタ73が接続された第1接点を選択している。 FIG. 10 shows the flow of cardiac potential information when cardiac potential is measured by the
At this time, the switching
また、除細動カテーテル100の基端側電位測定電極群33Gを構成する電極によって測定された心電位は、カテーテル接続コネクタ72から、切替部76を通ることなく直接心電計接続コネクタ73を経由して心電計800に入力される。 The cardiac potential measured by the electrodes constituting the first
In addition, the cardiac potential measured by the electrodes constituting the proximal-side potential
また、除細動カテーテル100からの心電位情報の一部(例えば、第1DC電極群31Gを構成する電極31(第1極と第2極)間の電位差)を、心電計800から、心電図入力コネクタ77および演算処理部75を経由して、心電位情報表示部78に入力して表示することができる。 Cardiac potential information (cardiac potential waveform) from the
Further, a part of the cardiac potential information from the defibrillation catheter 100 (for example, the potential difference between the electrodes 31 (first pole and second pole) constituting the first
。この結果、心房細動が起きたときに、除細動のためのカテーテルを新に挿入するなどの手間を省くことができる。 When atrial fibrillation occurs during cardiac catheterization, defibrillation treatment can be immediately performed with the
また、除細動カテーテル100の第1DC電極群31Gおよび/または第2DC電極群32Gの構成電極から、カテーテル接続コネクタ72、切替部76、心電計接続コネクタ73を経由して心電計800に入力された心電位情報、除細動カテーテル100の基端側電位測定電極群33Gの構成電極から、カテーテル接続コネクタ72、心電計接続コネクタ73を経由して心電計800に入力された心電位情報は、心電計800のモニタ(図示省略)に表示されている。 (5) The position of the electrodes of the defibrillation catheter 100 (constituting electrodes of the first
In addition, from the constituent electrodes of the first
ている時刻から、イベント情報記憶部113に最後に書き込まれた時刻までの経過時間が、演算処理部75のメモリ752に記憶されているカテーテルの使用制限時間を超えているか否かを判断し、超えていない場合にはStep8に進み、超えている場合には、以後の動作を行うことができず「終了」となる(Step7)。 (7) When the mode changeover switch 741 is input, the arithmetic processing unit 75 of the
また、後述するStep22からStep6に戻った場合(Step22、6を経由した場合)には、イベント情報記憶部113に最後に書き込まれた時刻は、後述するStep17において、電気エネルギーの印加(除細動)を行った時刻となる。 Here, when the connection of the
In addition, when returning from
なお、切替部76の接点が第2接点を選択している時間(上記のStep9~Step10)は、例えば1秒間とされる。 (11) The contact point of the switching
Note that the time during which the contact of the switching
ここに、抵抗値が一定の値を超えている場合には、第1DC電極群および/または第2DC電極群が、所定の部位(例えば、冠状静脈の管壁、右心房の内壁)に確実に当接されていないことを意味するので、Step5に戻り電極の位置を再調整する必要がある。
このように、除細動カテーテル100の第1DC電極群および第2DC電極群が、所定
の部位(例えば、冠状静脈の管壁、右心房の内壁)に対し確実に当接されたときにのみ電圧を印加することができるので、効果的な除細動治療を行うことができる。 (12) The arithmetic processing unit 75 determines whether or not the resistance value measured in
Here, when the resistance value exceeds a certain value, the first DC electrode group and / or the second DC electrode group is surely placed at a predetermined site (for example, a coronary vein tube wall, an inner wall of the right atrium). Since it means that the contact has not been made, it is necessary to return to
Thus, the voltage is applied only when the first DC electrode group and the second DC electrode group of the
本実施形態における電源装置700によれば、印加エネルギーは1Jから30Jまで、1J刻みで設定することができる。 (13) The electric energy setting switch 742 which is the external switch 74 is input to set the applied energy at the time of defibrillation (Step 13).
According to the
具体的には、演算処理部75に逐次入力される心電位波形(心電位測定手段900からの12誘導心電図の一部)において1つのR波(最大ピーク)を検知して、そのピーク高さを求め、次に、このピーク高さの80%の高さ(トリガーレベル)に電位差が到達した時点(次のR波が立ち上がり時)から一定時間(例えば、R波のピーク幅の1/10程度の極めて短い時間)の経過後に印加を開始する。 Here, the arithmetic processing unit 75 performs arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77, and sends a control signal to the DC power supply unit 71.
Specifically, one R wave (maximum peak) is detected in the electrocardiogram waveform (a part of the 12-lead electrocardiogram from the electrocardiogram measurement means 900) sequentially input to the arithmetic processing unit 75, and the peak height is detected. Next, a certain time (for example, 1/10 of the peak width of the R wave) from when the potential difference reaches the height (trigger level) of 80% of the peak height (when the next R wave rises) is obtained. The application is started after a very short time).
先ず、演算処理部75に入力された心電位波形における電位差がトリガーレベルに到達してから一定時間(t0 )経過後、第1DC電極群31Gが-極、第2DC電極群32Gが+極となるよう、両者の間で直流電圧を印加することにより、電気エネルギーが供給されて測定電位が立ち上がる(V1 は、このときのピーク電圧である。)。一定時間(t1 )経過後、第1DC電極群31Gが+極、第2DC電極群32Gが-極となるよう、±を反転した直流電圧を両者の間で印加することにより、電気エネルギーが供給されて測定電位が立ち上がる(V2 は、このときのピーク電圧である。)。 FIG. 16 is a diagram illustrating a potential waveform measured when predetermined electrical energy (for example, set output = 10 J) is applied by the
First, after a lapse of a certain time (t 0 ) after the potential difference in the electrocardiographic waveform input to the arithmetic processing unit 75 reaches the trigger level, the first
これにより、演算処理部75に入力された心電位波形(最大ピークであるR波)に同期をとって電圧を印加することができ、効果的な除細動治療を行うことができる。
測定されるピーク電圧(V1 )は、例えば300~600Vとされる。 Here, the time (t 0 ) from the time when the trigger level is reached until the start of application is 0.01 to 0.05 seconds, for example, 0.01 seconds if a suitable example is shown. t 1 + t 2 ) is, for example, 0.006 to 0.03 seconds, and 0.02 seconds if a suitable example is shown.
Thereby, a voltage can be applied synchronizing with the cardiac potential waveform (R wave which is the maximum peak) input to the arithmetic processing unit 75, and effective defibrillation treatment can be performed.
The measured peak voltage (V 1 ) is, for example, 300 to 600V.
そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。 According to the catheter system of the present embodiment, the first
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
これにより、例えば、使用している途中で除細動カテーテルに異常が発生した場合に、イベント履歴を異常発生の原因究明に利用することができる。
しかも、これらのイベントに係る情報が、除細動カテーテル100のメモリ110(イベント情報記憶部113)に記憶されるので、1つの除細動カテーテル100のイベントを複数の電源装置を使用して行ったとしても、これらのイベントに係る情報が、複数の電源装置に分散されることはない。従って、シリアル情報で特定された除細動カテーテル100ごとに、イベント履歴情報の管理を行うことができる。 In addition, a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the
Thereby, for example, when an abnormality occurs in the defibrillation catheter during use, the event history can be used for investigating the cause of the occurrence of the abnormality.
In addition, since information related to these events is stored in the memory 110 (event information storage unit 113) of the
、これらの情報を処理する役割は電源装置700の演算処理部75が担っているので、除細動カテーテルが大型化したり、その構造が複雑化したりすることはない。
なお、除細動カテーテル100のメモリ110に書き込まれた情報は、適宜の情報読出装置によって読み出すことができる。 In the catheter system of the present embodiment, only the memory 100 (storage means) is provided in the
Information written in the memory 110 of the
また、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻を、除細動カテーテル100の使用制限時間の起算点としているので、同一または異なる電源装置を除細動カテーテル100に再接続しても、初回接続情報記憶部112に書き込まれた接続時刻(電源装置を最初に接続した時刻)から使用制限時間を経過した後に、除細動カテーテル100により或るイベントが行われた場合には、この除細動カテーテル100による次のイベントを実行させない。 According to the catheter system of this embodiment, a defibrillation catheter that is a disposable product can be used only for a time when there is no problem from the viewpoint of performance and safety.
In addition, since the connection time written in the initial connection information storage unit 112 in the memory 110 of the
タイマーを併用することにより、例えば、使用制限時間直前に除細動カテーテル100によってイベントを行った後、電源装置700が接続された状態で長時間経過したような場合にも、この除細動カテーテル100による「次の」イベントの実行を阻止することができる。 In the catheter system of the present embodiment, the arithmetic processing unit 75 of the
By using the timer together, for example, even when an event is performed by the
図18は、本発明の心腔内除細動カテーテルシステムの他の実施形態を示すブロック図である。同図において、第1実施形態と同一または対応する構成要素には、同一の符号を用いている。
本実施形態のカテーテルシステムを構成する電源装置700aの演算処理部75aは、除細動カテーテル100によって新たなイベント(例えば除細動)を実行しようとするときに、この除細動カテーテル100のメモリ110の初回接続情報記憶部112に書き込まれた時刻から、内部時計753が示している現在時刻までの経過時間が、電源装置700aのメモリ752に記憶された使用制限時間を超えているか否かを判断し、超えていると判断した場合には、当該イベントを実行させないように制御する。 Second Embodiment
FIG. 18 is a block diagram showing another embodiment of the intracardiac defibrillation catheter system of the present invention. In the same figure, the same code | symbol is used for the component which is the same as that of 1st Embodiment, or respond | corresponds.
When the arithmetic processing unit 75a of the
本実施形態の心腔内除細動カテーテルシステムによる除細動治療としては、図11Aに示したフローチャートのStep7を、図19Aに示したフローチャートのStep7に変更すること以外は、第1実施形態のカテーテルシステムによる除細動治療と同様である。 FIG. 19 is a flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG.
As the defibrillation treatment by the intracardiac defibrillation catheter system of this embodiment,
これにより、初回接続情報記憶部112に書き込まれた接続時刻(最初に電源装置を接続した時刻)から使用制限時間を経過した後には、新たなイベントを実行させることはなく、使い捨ての製品である除細動カテーテル100を、その性能や安全性の観点から問題のない時間に限り使用することができる。 That is, when the mode changeover switch 741 is input, the arithmetic processing unit 75a of the
Thus, after the use time limit has elapsed from the connection time (time when the power supply device is first connected) written in the first connection information storage unit 112, a new event is not executed and the product is a disposable product. The
例えば、第1実施形態において使用制限時間経過後に実行させない「除細動カテーテル100による次のイベント」、第2実施形態において使用制限時間経過後に実行させない「除細動カテーテル100による新たなイベント」は、除細動のみであってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, A various change is possible.
For example, the “next event by the
10 マルチルーメンチューブ
11 第1ルーメン
12 第2ルーメン
13 第3ルーメン
14 第4ルーメン
15 フッ素樹脂層
16 インナー(コア)部
17 アウター(シェル)部
18 ステンレス素線
20 ハンドル
21 ハンドル本体
22 摘まみ
24 ストレインリリーフ
26 第1絶縁性チューブ
27 第2絶縁性チューブ
28 第3絶縁性チューブ
31G 第1DC電極群
31 リング状電極
32G 第2DC電極群
32 リング状電極
33G 基端側電位測定電極群
33 リング状電極
35 先端チップ
41G 第1リード線群
41 リード線
42G 第2リード線群
42 リード線
43G 第3リード線群
43 リード線
50 除細動カテーテルのコネクタ
51,52,53 ピン端子
55 隔壁板
58 樹脂
61 第1の保護チューブ
62 第2の保護チューブ
65 プルワイヤ
110 メモリ
111 カテーテルシリアル記憶部
112 初回接続情報記憶部
113 イベント情報記憶部
700 電源装置
71 DC電源部
72 カテーテル接続コネクタ
721,722,723 端子
73 心電計接続コネクタ
74 外部スイッチ(入力手段)
741 モード切替スイッチ
742 電気エネルギー設定スイッチ
743 充電スイッチ
744 電気エネルギー印加スイッチ(放電スイッチ)
75 演算処理部
751 出力回路
752 メモリ
753 内部時計
76 切替部
78 心電位情報表示部
700a 電源装置
75a 演算処理部
800 心電計
900 心電位測定手段 DESCRIPTION OF
741 Mode changeover switch 742 Electric energy setting switch 743 Charging switch 744 Electric energy application switch (discharge switch)
75
Claims (8)
- 心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置とを備えたカテーテルシステムであって;
前記除細動カテーテルは、絶縁性のチューブ部材と、
前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群と、
前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群と、
前記第1電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
前記第2電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、
前記除細動カテーテルに電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部、並びに、
前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
前記電源装置は、DC電源部と、
前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報およびカテーテルの使用制限時間を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
前記除細動カテーテルにより除細動を行うときには、前記第1電極群と前記第2電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と前記第2電極群とに、互いに異なる極性の電圧が印加され、
前記電源装置の演算処理部は、
(a)前記除細動カテーテルに当該電源装置を最初に接続したときに、最初に接続した時刻および最初に接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおける初回接続情報記憶部に書き込み、
(b)前記除細動カテーテルにより除細動が行われたときに、前記第1電極群と前記第2電極群との間の抵抗値、前記第1電極群と前記第2電極群との間に印加しようとした電気エネルギーの設定値、出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(c)前記除細動カテーテルの前記第1電極群と前記第2電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(d)使用していた電源装置が取り外された除細動カテーテルに対して、同一または異なる当該電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(e)前記除細動カテーテルのメモリにおけるイベント記憶部に書き込まれたイベント
ごとに、当該除細動カテーテルのメモリにおける初回接続情報記憶部に書き込まれた接続時刻から、そのイベントが行われた時刻までの経過時間が、前記使用制限時間を超えているか否かを判断し、超えていると判断した場合には、当該除細動カテーテルによる次のイベントを実行させないように制御する
ことを特徴とする心腔内除細動カテーテルシステム。 A catheter system comprising a defibrillation catheter inserted into a heart chamber for defibrillation and a power supply device for applying a DC voltage to an electrode of the defibrillation catheter;
The defibrillation catheter includes an insulating tube member;
A first electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
A second electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal end side;
A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first electrode group;
A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second electrode group;
A catheter serial storage unit storing serial information of the defibrillation catheter;
An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and
A memory having an event information storage unit that stores information related to an event including defibrillation by the defibrillation catheter together with a time when the event is performed and serial information of a connected power supply device;
The power supply device includes a DC power supply unit,
A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device and a catheter use time limit, An internal clock for determining the time, and an arithmetic processing unit that controls writing to and reading from the memory of the defibrillation catheter;
When defibrillation is performed by the defibrillation catheter, after the resistance value between the first electrode group and the second electrode group is measured, the DC of the power supply device is determined based on the input of the external switch. Voltages having different polarities are applied from the power supply unit to the first electrode group and the second electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
The arithmetic processing unit of the power supply device is
(A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department,
(B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first electrode group and the second electrode group, and between the first electrode group and the second electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter,
(C) When the defibrillation is not performed after the resistance value between the first electrode group and the second electrode group of the defibrillation catheter is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device,
(D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter,
(E) For each event written in the event storage unit in the memory of the defibrillation catheter, the time when the event was performed from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter It is determined whether or not the elapsed time up to the use limit time is exceeded, and when it is determined that it has exceeded, control is performed so that the next event by the defibrillation catheter is not executed. An intracardiac defibrillation catheter system. - 前記電源装置の演算処理部は、前記内部時計が示す時刻を定期的に参照し、前記除細動カテーテルのメモリの初回接続情報記憶部に書き込まれている接続時刻から、前記使用制限時間を経過した後は、当該除細動カテーテルによるイベントを実行させないように制御することを特徴とする請求項1に記載の心腔内除細動カテーテルシステム。 The arithmetic processing unit of the power supply device periodically refers to the time indicated by the internal clock, and the use time limit has elapsed from the connection time written in the initial connection information storage unit of the memory of the defibrillation catheter. 2. The intracardiac defibrillation catheter system according to claim 1, wherein after the operation is performed, control is performed so that an event by the defibrillation catheter is not executed.
- 心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置とを備えたカテーテルシステムであって;
前記除細動カテーテルは、絶縁性のチューブ部材と、
前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群と、
前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群と、
前記第1電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
前記第2電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、
前記除細動カテーテルに電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部、並びに、
前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
前記電源装置は、DC電源部と、
前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報およびカテーテルの使用制限時間を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
前記除細動カテーテルにより除細動を行うときには、前記第1電極群と前記第2電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と前記第2電極群とに、互いに異なる極性の電圧が印加され、
前記電源装置の演算処理部は、
(a)前記除細動カテーテルに当該電源装置を最初に接続したときに、最初に接続した時刻および最初に接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおける初回接続情報記憶部に書き込み、
(b)前記除細動カテーテルにより除細動が行われたときに、前記第1電極群と前記第2電極群との間の抵抗値、前記第1電極群と前記第2電極群との間に印加しようとした電気エネルギーの設定値、出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(c)前記除細動カテーテルの前記第1電極群と前記第2電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている当該電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(d)使用していた電源装置が取り外された除細動カテーテルに対して、同一または異なる当該電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した当該電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント記憶部に書き込み、
(e)前記除細動カテーテルによって新たなイベントを実行しようとするときに、当該除細動カテーテルのメモリにおける初回接続情報記憶部に書き込まれた接続時刻から、前記内部時計が示している現在時刻までの経過時間が、前記使用制限時間を超えているか否かを判断し、超えていると判断した場合には、当該イベントを実行させないように制御することを特徴とする心腔内除細動カテーテルシステム。 A catheter system comprising a defibrillation catheter inserted into a heart chamber for defibrillation and a power supply device for applying a DC voltage to an electrode of the defibrillation catheter;
The defibrillation catheter includes an insulating tube member;
A first electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
A second electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal end side;
A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first electrode group;
A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second electrode group;
A catheter serial storage unit storing serial information of the defibrillation catheter;
An initial connection information storage unit for storing a time when a power supply device is first connected to the defibrillation catheter and serial information of the power supply device connected first; and
A memory having an event information storage unit that stores information related to an event including defibrillation by the defibrillation catheter together with a time when the event is performed and serial information of a connected power supply device;
The power supply device includes a DC power supply unit,
A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device and a catheter use time limit, An internal clock for determining the time, and an arithmetic processing unit that controls writing to and reading from the memory of the defibrillation catheter;
When defibrillation is performed by the defibrillation catheter, after the resistance value between the first electrode group and the second electrode group is measured, the DC of the power supply device is determined based on the input of the external switch. Voltages having different polarities are applied from the power supply unit to the first electrode group and the second electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
The arithmetic processing unit of the power supply device is
(A) When the power supply device is first connected to the defibrillation catheter, the first connection information is stored in the memory of the defibrillation catheter with the time of the first connection and the serial information of the power supply device connected first Write to the department,
(B) When defibrillation is performed by the defibrillation catheter, a resistance value between the first electrode group and the second electrode group, and between the first electrode group and the second electrode group Obtain information on the set value of electrical energy, output voltage, and output time that were to be applied in between, along with the time when this defibrillation was performed and the serial information of the connected power supply device, Write to the event storage in the memory of the defibrillation catheter,
(C) When the defibrillation is not performed after the resistance value between the first electrode group and the second electrode group of the defibrillation catheter is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written to the event storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device,
(D) When the same or different power supply device is reconnected to the defibrillation catheter from which the power supply device used has been removed, this is recognized as an event, and the time of reconnection and the reconnected Write the serial information of the power supply device to the event storage unit in the memory of the defibrillation catheter,
(E) The current time indicated by the internal clock from the connection time written in the initial connection information storage unit in the memory of the defibrillation catheter when a new event is to be executed by the defibrillation catheter. It is determined whether or not the elapsed time until the use limit time is exceeded, and if it is determined that the elapsed time is exceeded, control is performed so that the event is not executed. Catheter system. - 心電計を備えた請求項1乃至請求項3の何れかに記載の心腔内除細動カテーテルシステムであって、
前記電源装置は、前記心電計の入力端子に接続される心電計接続コネクタと、
1回路2接点の切替スイッチからなり、共通接点に前記カテーテル接続コネクタが接続され、第1接点に前記心電計接続コネクタが接続され、第2接点に前記演算処理部が接続された切替部とを備えてなり;
前記除細動カテーテルの第1電極群および/または第2電極群を構成する電極により心電位を測定するときには、前記切替部において第1接点が選択され、前記除細動カテーテルからの心電位情報が、前記電源装置の前記カテーテル接続コネクタ、前記切替部および前記心電計接続コネクタを経由して前記心電計に入力され、
前記除細動カテーテルにより除細動を行うときには、前記電源装置の前記演算処理部によって前記切替部の接点が第2接点に切り替わり、前記DC電源部から、前記演算処理部の出力回路、前記切替部および前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることを特徴とする心腔内除細動カテーテルシステム。 An intracardiac defibrillation catheter system according to any one of claims 1 to 3, comprising an electrocardiograph,
The power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
A switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact; Comprising:
When the cardiac potential is measured by the electrodes constituting the first electrode group and / or the second electrode group of the defibrillation catheter, the first contact is selected in the switching unit, and the cardiac potential information from the defibrillation catheter is selected. Is input to the electrocardiograph via the catheter connection connector of the power supply device, the switching unit and the electrocardiograph connection connector,
When defibrillation is performed by the defibrillation catheter, the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching A voltage having different polarities is applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connector. Fibrillation catheter system. - 前記除細動カテーテルは、前記第1電極群または前記第2電極群から離間して前記チューブ部材に装着された複数の電極からなる電位測定電極群と、
前記電位測定電極群を構成する電極の各々に先端が接続された複数のリード線からなり、その基端側が、前記電源装置のカテーテル接続コネクタに接続される電位測定用のリード線群とを備えてなり、
前記電源装置には、前記カテーテル接続コネクタと、前記心電計接続コネクタとを直接結ぶ経路が形成され、
前記電位測定電極群を構成する電極によって測定された心電位情報は、前記電源装置の前記カテーテル接続コネクタから、前記切替部を経ることなく、前記心電計接続コネクタを経由して前記心電計に入力されることを特徴とする請求項4に記載の心腔内除細動カテーテルシステム。 The defibrillation catheter includes a potential measurement electrode group composed of a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group;
The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device. And
In the power supply device, a path directly connecting the catheter connector and the electrocardiograph connector is formed,
The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit. The intracardiac defibrillation catheter system according to claim 4, wherein - 前記心電計には、前記除細動カテーテル以外の心電位測定手段が接続されていることを特徴とする請求項4または請求項5に記載の心腔内除細動カテーテルシステム。 6. The intracardiac defibrillation catheter system according to claim 4 or 5, wherein electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph.
- 前記心電位測定手段が電極パッドまたは電極カテーテルであることを特徴とする請求項6に記載の心腔内除細動カテーテルシステム。 The intracardiac defibrillation catheter system according to claim 6, wherein the cardiac potential measuring means is an electrode pad or an electrode catheter.
- 前記電源装置は、前記演算処理部および前記心電計の出力端子に接続された心電図入力コネクタと、前記演算処理部に接続された心電位情報表示部とを備えてなり、
前記心電図入力コネクタに入力された前記心電計からの心電位情報は、前記演算処理部に入力され、さらに、前記心電位情報表示部に表示されることを特徴とする請求項4乃至請求項7の何れかに記載の心腔内除細動カテーテルシステム。 The power supply device includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and an electrocardiogram information display unit connected to the arithmetic processing unit,
The electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit. 8. The intracardiac defibrillation catheter system according to any one of 7 above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080065718.9A CN102905758B (en) | 2010-03-25 | 2010-09-29 | Intercardiac defibrillation catheter system |
KR1020127023304A KR101217403B1 (en) | 2010-03-25 | 2010-09-29 | Intercardiac defibrillation catheter system |
HK13106696.9A HK1179553A1 (en) | 2010-03-25 | 2013-06-06 | Intercardiac defibrillation catheter system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010070708A JP4672802B1 (en) | 2010-03-25 | 2010-03-25 | Intracardiac defibrillation catheter system |
JP2010-070708 | 2010-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118061A1 true WO2011118061A1 (en) | 2011-09-29 |
Family
ID=44079999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066881 WO2011118061A1 (en) | 2010-03-25 | 2010-09-29 | Intercardiac defibrillation catheter system |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP4672802B1 (en) |
KR (1) | KR101217403B1 (en) |
CN (1) | CN102905758B (en) |
HK (1) | HK1179553A1 (en) |
TW (1) | TWI455737B (en) |
WO (1) | WO2011118061A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109922861A (en) * | 2016-11-04 | 2019-06-21 | 日本来富恩株式会社 | Intracardiac defibrillation catheter system |
CN113573775A (en) * | 2019-03-15 | 2021-10-29 | 日本来富恩株式会社 | Intracardiac defibrillation catheter |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5737765B2 (en) * | 2013-02-28 | 2015-06-17 | 日本ライフライン株式会社 | Catheter system |
JP5900974B2 (en) * | 2013-05-10 | 2016-04-06 | 日本ライフライン株式会社 | Intracardiac defibrillation catheter system |
BR102015016843A2 (en) * | 2015-06-17 | 2016-02-02 | Medtronic Inc | implantable medical device |
KR102045714B1 (en) * | 2017-03-31 | 2019-11-15 | 니혼라이프라인 가부시키가이샤 | Defibrillation catheter system |
WO2021171540A1 (en) * | 2020-02-28 | 2021-09-02 | 日本ライフライン株式会社 | Defibrillation catheter system |
JPWO2021171531A1 (en) * | 2020-02-28 | 2021-09-02 | ||
CN114796854A (en) * | 2022-04-28 | 2022-07-29 | 深圳市联普医疗科技有限公司 | Application method of electrode plate |
CN118121839B (en) * | 2024-03-15 | 2024-09-10 | 北京维康达心科技有限公司 | Defibrillation equipment control method, device and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003528698A (en) * | 2000-04-04 | 2003-09-30 | アシスト メディカル システムズ, インコーポレイテッド | Angiographic injector subassembly |
JP4221492B2 (en) * | 2001-12-31 | 2009-02-12 | バイオセンス・ウエブスター・インコーポレーテツド | Method and apparatus for atrial defibrillation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3340753B2 (en) * | 1991-08-14 | 2002-11-05 | カーデイアツク ペースメーカーズ,インコーポレーテツド | Intravascular defibrillator |
US20030036774A1 (en) * | 2000-06-01 | 2003-02-20 | Chris Maier | Switching apparatus for monitoring catherter signals and performing cardioversion defibrillations |
JP4346109B1 (en) * | 2008-12-12 | 2009-10-21 | 日本ライフライン株式会社 | Defibrillation catheter |
-
2010
- 2010-03-25 JP JP2010070708A patent/JP4672802B1/en active Active
- 2010-09-29 KR KR1020127023304A patent/KR101217403B1/en active IP Right Grant
- 2010-09-29 WO PCT/JP2010/066881 patent/WO2011118061A1/en active Application Filing
- 2010-09-29 CN CN201080065718.9A patent/CN102905758B/en active Active
- 2010-11-23 TW TW099140397A patent/TWI455737B/en not_active IP Right Cessation
-
2013
- 2013-06-06 HK HK13106696.9A patent/HK1179553A1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003528698A (en) * | 2000-04-04 | 2003-09-30 | アシスト メディカル システムズ, インコーポレイテッド | Angiographic injector subassembly |
JP4221492B2 (en) * | 2001-12-31 | 2009-02-12 | バイオセンス・ウエブスター・インコーポレーテツド | Method and apparatus for atrial defibrillation |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109922861A (en) * | 2016-11-04 | 2019-06-21 | 日本来富恩株式会社 | Intracardiac defibrillation catheter system |
CN109922861B (en) * | 2016-11-04 | 2023-07-14 | 日本来富恩株式会社 | Intracardiac defibrillation catheter system |
CN113573775A (en) * | 2019-03-15 | 2021-10-29 | 日本来富恩株式会社 | Intracardiac defibrillation catheter |
EP3939652A4 (en) * | 2019-03-15 | 2022-09-28 | Japan Lifeline Co., Ltd. | Intercardiac defibrillation catheter |
CN113573775B (en) * | 2019-03-15 | 2024-09-27 | 日本来富恩株式会社 | Intraventricular defibrillation catheter |
Also Published As
Publication number | Publication date |
---|---|
CN102905758B (en) | 2014-09-10 |
KR20120114401A (en) | 2012-10-16 |
JP2011200434A (en) | 2011-10-13 |
KR101217403B1 (en) | 2013-01-02 |
TWI455737B (en) | 2014-10-11 |
JP4672802B1 (en) | 2011-04-20 |
TW201138887A (en) | 2011-11-16 |
CN102905758A (en) | 2013-01-30 |
HK1179553A1 (en) | 2013-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4545216B1 (en) | Intracardiac defibrillation catheter system | |
JP4672802B1 (en) | Intracardiac defibrillation catheter system | |
JP4545210B2 (en) | Defibrillation catheter | |
JP5900974B2 (en) | Intracardiac defibrillation catheter system | |
JP6632511B2 (en) | Intracardiac defibrillation catheter system | |
JP4672801B1 (en) | Intracardiac defibrillation catheter system | |
JP4346110B1 (en) | Defibrillation catheter | |
US20230211154A1 (en) | Intracardiac defibrillation catheter system | |
TW202204004A (en) | Intracardiac defibrillation catheter system | |
JP6560288B2 (en) | Defibrillation catheter system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065718.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10848453 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127023304 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10848453 Country of ref document: EP Kind code of ref document: A1 |