WO2011117265A1 - Process for producing cling films - Google Patents
Process for producing cling films Download PDFInfo
- Publication number
- WO2011117265A1 WO2011117265A1 PCT/EP2011/054386 EP2011054386W WO2011117265A1 WO 2011117265 A1 WO2011117265 A1 WO 2011117265A1 EP 2011054386 W EP2011054386 W EP 2011054386W WO 2011117265 A1 WO2011117265 A1 WO 2011117265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- components
- mol
- iii
- dicarboxylic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000008569 process Effects 0.000 title claims abstract description 18
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims abstract description 41
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims abstract description 33
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229920000642 polymer Polymers 0.000 claims abstract description 32
- 239000004622 biodegradable polyester Substances 0.000 claims abstract description 30
- 229920000229 biodegradable polyester Polymers 0.000 claims abstract description 30
- 239000004971 Cross linker Substances 0.000 claims abstract description 20
- 239000001361 adipic acid Substances 0.000 claims abstract description 20
- 235000011037 adipic acid Nutrition 0.000 claims abstract description 20
- 239000004970 Chain extender Substances 0.000 claims abstract description 19
- 150000001991 dicarboxylic acids Chemical class 0.000 claims abstract description 19
- DXNCZXXFRKPEPY-UHFFFAOYSA-N tridecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCC(O)=O DXNCZXXFRKPEPY-UHFFFAOYSA-N 0.000 claims abstract description 17
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 claims abstract description 16
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 claims abstract description 14
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims abstract description 13
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims abstract description 13
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 13
- 150000003503 terephthalic acid derivatives Chemical class 0.000 claims abstract description 10
- 229920002959 polymer blend Polymers 0.000 claims abstract description 5
- 229920000728 polyester Polymers 0.000 claims description 53
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 30
- -1 aliphatic diols Chemical class 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 21
- 239000011888 foil Substances 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 11
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- 239000004626 polylactic acid Substances 0.000 claims description 8
- 239000000314 lubricant Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 6
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 229920001610 polycaprolactone Polymers 0.000 claims description 5
- 239000004632 polycaprolactone Substances 0.000 claims description 5
- 229920001661 Chitosan Polymers 0.000 claims description 4
- 108010068370 Glutens Proteins 0.000 claims description 4
- 235000021312 gluten Nutrition 0.000 claims description 4
- 229920001281 polyalkylene Polymers 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 239000000306 component Substances 0.000 claims 39
- NIHJEJFQQFQLTK-UHFFFAOYSA-N butanedioic acid;hexanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCCCC(O)=O NIHJEJFQQFQLTK-UHFFFAOYSA-N 0.000 claims 1
- LXVAEMFXVFEJNV-UHFFFAOYSA-N decanedioic acid;hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.OC(=O)CCCCCCCCC(O)=O LXVAEMFXVFEJNV-UHFFFAOYSA-N 0.000 claims 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 22
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 18
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 9
- 150000002009 diols Chemical class 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- 235000013871 bee wax Nutrition 0.000 description 4
- 239000012166 beeswax Substances 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 239000002361 compost Substances 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- 229920005692 JONCRYL® Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 2
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- MGHSCXCFVZJHPT-UHFFFAOYSA-N Polyester A1 Natural products C=1C=CC=CC=1C(=O)OC1C2(COC(C)=O)C(OC(C)=O)C(OC(=O)C=3C=CC=CC=3)C(C(O3)(C)C)C(OC(C)=O)C32C(C)CC1OC(=O)C1=CC=CC=C1 MGHSCXCFVZJHPT-UHFFFAOYSA-N 0.000 description 2
- CVIBEPBSEBXMEB-UHFFFAOYSA-N Polyester A2 Natural products CC1CC(OC(=O)c2ccccc2)C(OC(=O)C)C3(COC(=O)C)C(OC(=O)C)C(OC(=O)c4ccccc4)C5C(OC(=O)C)C13OC5(C)C CVIBEPBSEBXMEB-UHFFFAOYSA-N 0.000 description 2
- YBVKMVCZNISULF-UHFFFAOYSA-N Polyester A3 Natural products CC1CC(OC(=O)c2ccccc2)C(OC(=O)C)C3(COC(=O)C)C(OC(=O)C)C(OC(=O)c4ccccc4)C5C(O)C13OC5(C)C YBVKMVCZNISULF-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 239000006085 branching agent Substances 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009264 composting Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical class CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- HPMGFDVTYHWBAG-UHFFFAOYSA-N 3-hydroxyhexanoic acid Chemical compound CCCC(O)CC(O)=O HPMGFDVTYHWBAG-UHFFFAOYSA-N 0.000 description 1
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical class CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 240000004792 Corchorus capsularis Species 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical class OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 229920001736 Metabolix Polymers 0.000 description 1
- 229920013643 Mirel Polymers 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 241000606752 Pasteurellaceae Species 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 238000000237 capillary viscometry Methods 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- AIXMJTYHQHQJLU-UHFFFAOYSA-N chembl210858 Chemical compound O1C(CC(=O)OC)CC(C=2C=CC(O)=CC=2)=N1 AIXMJTYHQHQJLU-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920005839 ecoflex® Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002791 poly-4-hydroxybutyrate Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- CUNPJFGIODEJLQ-UHFFFAOYSA-M potassium;2,2,2-trifluoroacetate Chemical compound [K+].[O-]C(=O)C(F)(F)F CUNPJFGIODEJLQ-UHFFFAOYSA-M 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/20—Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
Definitions
- the present invention relates to a process for the production of cling foils using biodegradable polyesters obtainable by polycondensation of:
- dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and hydrosilicic acid;
- the invention relates to a process for the preparation of cling foils using the polymer components a) and b):
- the invention relates to a process for the production of cling foils using the polymer components a), b) and c): a) 10 to 40 wt .-% of a biodegradable polyester according to claim 1 and
- an aliphatic-aromatic polyester obtainable by polycondensation of: i) 40 to 70 mol%, based on components i to ii, of one or more dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: Succinic, adipic, sebacic, azelaic and brassylic acids; ii) 60 to 30 mol%, based on the components i to ii, of a terephthalic acid derivative; iii) 98 to 102 mol%, based on components i to ii, of a C 2 -C 8 -alkylenediol or C 2 -C 6 -oxyalkylenediol; iv) 0 to 2% by weight, based on the polymer obtainable from components i to iii, of an at least trifunctional crosslinker or difunctional chain extender;
- polymers selected from the group consisting of: polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyalkylene lencarbonat, chitosan and gluten and one or more polyesters based on aliphatic diols and aliphatic dicarboxylic - and
- WO-A 92/09654 describes linear aliphatic-aromatic polyesters which are biodegradable. Crosslinked, biodegradable polyesters are described in WO-A 96/15173. The polyesters described have a higher terephthalic acid content and can not always convince with regard to their film properties - in particular their elastic behavior, which is of great importance for cling film. The aim of the present invention was therefore to provide a process for the production of cling foils.
- polyesters described at the outset which have a narrowly defined terephthalic acid content and a narrowly defined content of crosslinking agent, are surprisingly very suitable for cling film.
- biodegradable polyesters having the following constituents: Components i) is preferably adipic acid and / or sebacic acid. Component iii), the diol, is preferably 1,4-butanediol. Component iv), the crosslinker, is preferably glycerol.
- the synthesis of the polyesters described is generally carried out in a two-stage reaction cascade (see WO09 / 127555 and WO09 / 127556).
- the dicarboxylic acid derivatives as in the synthesis examples, are reacted together with the diol (for example 1,4-butanediol) in the presence of a transesterification catalyst to give a prepolyester.
- This prepolyester generally has a viscosity number (CV) of 50 to 100 ml / g, preferably 60 to 90 ml / g.
- the catalysts used are usually zinc, aluminum and in particular titanium catalysts.
- Titanium catalysts such as tetra (isopropyl) orthotitanate and in particular tetrabutyl orthotitanate (TBOT) have the advantage over the tin, antimony, cobalt and lead catalysts commonly used in the literature, such as tin dioctanoate, that residual amounts of the catalyst or secondary product of the catalyst remaining in the product are less toxic are.
- TBOT tetrabutyl orthotitanate
- the polyesters according to the invention are optionally subsequently chain-extended according to the processes described in WO 96/15173 and EP-A 488 617.
- the prepolyester is reacted, for example, with chain extenders vib), as with diisocyanates or with epoxy-containing polymethacrylates, in a chain extension reaction to give a polyester having a viscosity of 60 to 450 ml / g, preferably 80 to 250 ml / g.
- a mixture of the dicarboxylic acids is initially condensed in the presence of an excess of diol together with the catalyst initially.
- the melt of the prepolyester thus obtained is usually at an internal temperature of 200 to 250 ° C within 3 to 6 hours at reduced pressure while distilling off diols to the desired viscosity with a viscosity number (VZ) of 60 to 450 mL / g and preferably 80 to 250 mL / g condensed.
- VZ viscosity number
- the polyesters according to the invention can also be prepared in a batch process.
- the aliphatic and the aromatic dicarboxylic acid derivative, the diol and a branching agent are mixed in any metering order and condensed to form a prepolyester.
- a polyester can be adjusted with the desired viscosity number.
- polybutylene terephthalate succinates, azelates, brassates and, in particular, adipates and sebacates having an acid number, measured in accordance with DIN EN 12634, of less than 1.0 mg KOH / g and a viscosity number greater than 130 ml / g can be obtained by the abovementioned processes and a MVR according to ISO 1133 of less than 6 cm 3/10 min (190 ° C, 2.16 kg weight). These products are particularly interesting for film applications.
- Sebacic acid, azelaic acid and brassylic acid (i) are derived from renewable resources, in particular from vegetable oils such as e.g. Castor oil accessible.
- the terephthalic acid ii is used in 20 to 35 mol%, based on the acid components i and ii.
- Terephthalic acid and the aliphatic dicarboxylic acid can be used either as the free acid or in the form of ester-forming derivatives.
- Particularly suitable ester-forming derivatives are the di-C 1 - to C 6 -alkyl esters, such as dimethyl, diethyl, di-n-propyl, diisopropyl, di-n-butyl, diisobutyl, di-t-butyl, Di-n-pentyl, di-iso-pentyl or di-n-hexyl esters to name.
- Anhydrides of dicarboxylic acids can also be used.
- the dicarboxylic acids or their ester-forming derivatives can be used individually or as a mixture.
- 09/024294 discloses a biotechnological process for the production of 1,4-butanediol from different carbohydrates with microorganisms from the class of Pasteurellaceae.
- the diol (component iii) is added to the acids (components i and ii) in a ratio of diol to diacids of from 1.0 to 2.5: 1 and preferably from 1.3 to 2.2: l set.
- Excess diol quantities are withdrawn during the polymerization, so that at the end of the polymerization an approximately equimolar ratio is established.
- approximately equimolar is meant a diol / diacid ratio of 0.98 to 1.02: 1.
- the said polyesters may have hydroxyl and / or carboxyl end groups in any ratio.
- the abovementioned partially aromatic polyesters can also be end-group-modified.
- OH end groups can be acid-modified by reaction with phthalic acid, phthalic anhydride, trimellitic acid, trimellitic anhydride, pyromellitic acid or pyromellitic anhydride. Preference is given to polyesters having acid numbers of less than 1.5 mg KOH / g.
- a crosslinker iva and optionally additionally a chain extender ivb selected from the group consisting of: a polyfunctional isocyanate, isocyanurate, oxazoline, epoxide, carboxylic anhydride, an at least trifunctional alcohol or an at least trifunctional carboxylic acid are used.
- Suitable chain extenders ivb are polyfunctional and in particular difunctional isocyanates, isocyanurates, oxazolines, carboxylic anhydride or epoxides.
- the crosslinkers iva are generally in a concentration of 0.1 to 2 wt .-%, preferably 0.2 to 1, 5 wt .-% and particularly preferably 0.3 to 1 wt .-% based on the polymer available from components i to iii used.
- the chain extenders ivb) are generally used in a concentration of 0.01 to 2 wt .-%, preferably 0.1 to 1 wt .-% and particularly preferably 0.35 to 2 wt .-% based on the total weight of the components i used to iii.
- Chain extenders and alcohols or carboxylic acid derivatives having at least three functional groups can also be understood as crosslinkers.
- Particularly preferred compounds have three to six functional groups. Examples include: tartaric acid, citric acid, malic acid; Trimethylolpropane, trimethylolethane; pentaerythritol; Polyether triols and glycerol, trimesic acid, trimellitic acid, trimellitic anhydride, pyromellitic acid and pyromellitic dianhydride. Preference is given to polyols such as trimethylolpropane, pentaerythritol and in particular glycerol.
- biodegradable polyesters with a structural viscosity can be built up.
- the rheological behavior of the melts improves;
- the biodegradable polyesters are easier to process, for example, better by melt consolidation to remove films.
- the compounds iv are shear-thinning, i. the viscosity under load becomes lower.
- Suitable bifunctional chain extenders are aromatic diisocyanates and in particular aliphatic diisocyanates, especially linear or branched alkylene diisocyanates or cycloalkylene diisocyanates having 2 to 20 carbon atoms, preferably 3 to 12 carbon atoms, eg 1, 6-hexa-methylene diisocyanate, isophorone diisocyanate or methylene bis (4- isocyanatocyclo-hexane).
- Particularly preferred aliphatic diisocyanates are isophorone diisocyanate and in particular 1,6-hexamethylene diisocyanate.
- the polyesters of the invention generally have a number average molecular weight (Mn) in the range from 5000 to 100,000, in particular in the range from 10,000 to 60,000 g / mol, preferably in the range from 15,000 to 38,000 g / mol, a weight-average molecular weight (Mw) from 30,000 to 300,000, preferably 60,000 to 200,000 g / mol, and a Mw / Mn ratio of 1 to 15, preferably 2 to 8.
- the viscosity number is between 30 and 450, preferably from 50 to 400 ml / g and in particular preferably from 80 to 250 ml / g (measured in o-dichlorobenzene / phenol (weight ratio 50/50)).
- the melting point is in the range of 85 to 150, preferably in the range of 95 to 140 ° C.
- an organic filler is selected from the group consisting of: native or plasticized starch, natural fibers, wood flour, comminuted cork, ground bark, Nutshells, ground press cakes (vegetable oil refinery), dried production residues from the fermentation or distillation of beverages such as Beer, brewed sodas (eg bionade), wine or sake and / or an inorganic filler selected from the group consisting of: chalk, graphite, gypsum, carbon black, iron oxide, calcium chloride, dolomite, kaolin, silicon dioxide (quartz), sodium carbonate, titanium dioxide, Silicate, wollastonite, mica, montmorillonite, talc, glass fibers and mineral fibers added.
- Starch and amylose may be native, i. not thermoplasticized or thermoplasticized with plasticizers such as glycerol or sorbitol (EP-A 539 541, EP-A
- Natural fibers are, for example, cellulose fibers, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
- cellulose fibers for example, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
- Ceisal for example, hemp fibers, sisal, kenaf, Jute, Flax, Abacca, coconut fiber or regenerated cellulose fibers (rayon) such.
- Preferred fibrous fillers are glass fibers, carbon fibers, aramid fibers, potassium titanate fibers and natural fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or in particular as chopped glass in the commercial forms. These fibers generally have a diameter of 3 to 30 ⁇ , preferably 6 to 20 ⁇ and special preferably from 8 to 15 ⁇ on.
- the fiber length in the compound is generally 20 ⁇ to ⁇ ⁇ , preferably 180 to 500 ⁇ and more preferably 200 to 400 ⁇ .
- the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastic, for example with a silane compound.
- the biodegradable polyester or polyester mixtures may contain further ingredients known to the person skilled in the art but not essential to the invention.
- the customary in plastics technology additives such as stabilizers;
- Plasticizers such as citric acid esters (especially acetyl tributyl citrate), glyceric acid esters such as triacetylglycerol or ethylene glycol derivatives, surfactants such as polysorbates, palmitates or laurates; Waxes such as beeswax or beeswax esters; Antistatic, UV absorber; UV-stabilizer; Antifog agents or dyes.
- the additives are used in concentrations of 0 to 5 wt .-%, in particular 0.1 to 2 wt .-% based on the polyesters of the invention. Plasticizers may be present in 0.1 to 10% by weight in the polyesters of the invention.
- the biodegradable polyesters of claim 1 are often tacky. In order to accomplish their processing into films without problems, it is advisable, if the polyesters are to be used without further mixing partners, to add additives such as, in particular, lubricants and release agents.
- lubricants or mold release agents are in particular hydrocarbons, fatty alcohols, higher carboxylic acids, metal salts of higher carboxylic acids such as calcium or zinc stearate, fatty acid amides such as erucic acid amide and wax types, z.
- lubricants are erucic acid amide and / or wax types, and more preferably combinations of these lubricants.
- Preferred types of wax are beeswax and Esterwachse, in particular glycerol monostearate or dimethylsiloxane or polydimethylsiloxane such as Belsil ® DM Fa. Wacker.
- the component e is usually added in 0.05 to 5.0 wt .-% and preferably 0.1 to 2.0 wt .-% based on the biodegradable polyester.
- a preferred formulation of the biodegradable polyester comprises: a) 99.9 to 98% by weight of an aliphatic-aromatic polyester obtainable by polycondensation of: 65 to 80 mol%, based on the components i to ii, of one or more dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and brassylic acid;
- a lubricant or release agent 0.1 to 2 wt .-% of a lubricant or release agent.
- Preference is furthermore Clingfolien containing the aforementioned formulations.
- Typical polyester mixtures for cling film preparation contain: a) 5 to 95% by weight, preferably 10 to 40% by weight and particularly preferably 25 to 35% by weight of a biodegradable polyester according to Claim 1 and b) 95 to 50% by weight. %, preferably 90 to 60 wt .-% and particularly preferably 75 to 65 wt .-% of an aliphatic-aromatic polyester obtainable by polycondensation of: i) 40 to 60 mol%, based on the components i to ii, of one or a plurality of dicarboxylic acid derivatives or dicarboxylic acids selected from the group consisting of: succinic acid, adipic acid, sebacic acid, azelaic acid and brassylic acid; ii) 60 to 40 mol%, based on the components i to ii, of a terephthalic acid derivative; iii) 98 to 102 mol%, based on components i to ii, of
- polymer mixtures are suitable for the production of cling foils: a) 10 to 40% by weight, preferably 20 to 30% by weight, of a biodegradable polyester according to claim 1 and
- Alkylenediols or C 2 -C 6 -oxyalkylenediols vi) 0 to 2 wt .-%, based on the polymer obtainable from the components to iii, of an at least trifunctional crosslinker or difunctional Ketten tenverinaterers;
- a compatibilizer 0 to 2 wt .-% of a compatibilizer.
- the aforementioned polyester mixtures comprising the components a) and b) or a), b) and c) are suitable as Clingfolien due to their excellent recovery behavior.
- the polymer mixtures in turn preferably contain from 0.05 to 2% by weight of a compatibilizer.
- Preferred compatibilizers are carboxylic acid anhydrides, such as maleic anhydride, and in particular the previously described epoxide group-containing copolymers based on styrene, acrylic esters and / or methacrylic acid esters.
- the epoxy groups bearing units are preferably glycidyl (meth) acrylates.
- the epoxy-containing copolymers of the above type are sold for example by BASF Resins BV under the trademark Joncryl ® ADR. Is particularly suitable as compatibilizers, for example, Joncryl ADR ® 4368.
- As a biodegradable polyester (component b) is suitable, for example, re Polymilchkla-.
- Polylactic acid having the following property profile is preferably used:
- a melt volume rate (MVR at 190 ° C. and 2.16 kg according to ISO 1 133 of 0.5 to 30, preferably 2 to 18 ml / 10 minutes)
- Preferred polylactic acids are, for example, NatureWorks® 3001, 3051, 3251, 4020, 4032 or 4042D (polylactic acid from NatureWorks or NL-Naarden and USA Blair / Kansas).
- Polyhydroxyalkanoates are understood as meaning primarily poly-4-hydroxybutyrates and poly-3-hydroxybutyrates, furthermore copolyesters of the abovementioned hydroxybutyrates with 3-hydroxyvalerates or 3-hydroxyhexanoate are included.
- Poly-3-hydroxybutyrate-co-4-hydroxybutyrates are known in particular from Metabolix. They are sold under the trade name Mirel®.
- Poly-3-hydroxybutyrate-co-3-hydroxyhexanoates are known from the company P & G or Kaneka.
- Poly-3-hydroxybutyrates are sold, for example, by PHB Industrial under the brand name Biocycle® and by Tianan under the name Enmat®.
- the polyhydroxyalkanoates generally have a molecular weight Mw of from 100,000 to 1,000,000, and preferably from 300,000 to 600,000.
- Polycaprolactone is marketed by the company. Daicel under the product names Placcel ®.
- Polyalkylene carbonates are understood as meaning, in particular, polyethylene carbonate and polypropylene propylene carbonate.
- Partly aromatic (aliphatic-aromatic) polyesters based on aliphatic diols and aliphatic / aromatic dicarboxylic acids (component c) are also understood to mean polyester derivatives such as polyether esters, polyester amides or polyetherresteramides.
- Suitable partially aromatic polyesters include linear non-chain-extended polyesters (WO 92/09654).
- aliphatic / aromatic polyesters of butanediol, terephthalic acid and aliphatic C6-Ci8 dicarboxylic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid and brassylic acid (for example as described in WO 2006/097353 to 56) suitable mixing partners.
- Preferred are chain-extended and / or branched partially aromatic polyesters. The latter are known from the aforementioned documents WO 96/15173 to 15176, 21689 to 21692, 25446, 25448 or WO 98/12242, to which reference is expressly made. Mixtures of different partially aromatic polyesters are also possible.
- biodegradable for a substance or a substance mixture is fulfilled if this substance or the substance mixture according to DIN EN 13432 has a percentage degree of biodegradation of at least 90%.
- biodegradability causes the polyester blends to disintegrate in a reasonable and detectable time.
- Degradation can be effected enzymatically, hydrolytically, oxidatively and / or by the action of electromagnetic radiation, for example UV radiation, and is usually effected for the most part by the action of microorganisms such as bacteria, yeasts, fungi and algae.
- the biodegradability can be quantified, for example, by mixing polyesters with compost and storing them for a certain period of time. For example, according to DIN EN 13432 (referring to ISO 14855), C02-free air is allowed to flow through matured compost during composting and subjected to a defined temperature program.
- the biodegradability is determined by the ratio of the net CO 2 release of the sample (after subtraction of CO 2 release by the compost without sample) to the maximum CO 2 release of the sample (calculated from the carbon content of the sample) as a percentage of the CO 2 release defined biodegradation.
- Biodegradable polyesters mixtures generally show signs of decomposition after only a few days of composting, such as fungal growth, cracking and hole formation. Other methods of determining biodegradability are described, for example, in ASTM D 5338 and ASTM D 6400-4.
- the Clingfolien (cling film) are generally produced in the thickness range of 10 to 25 ⁇ .
- the usual manufacturing process is the tubular film extrusion in a monolayer film.
- chill-roll extrusion has also established itself as a process for coextruded cling films.
- the cling foils hitherto on the market consist mainly of PVC, plasticizers (e.g., 20-30% dioctyl phthalate), and anti-fog additives which prevent the film from fogging during temperature cycling.
- plasticizers e.g., 20-30% dioctyl phthalate
- anti-fog additives which prevent the film from fogging during temperature cycling.
- cling foils based on LDPE have prevailed, but they require a clinging additive (polyisobutylene).
- Cling foils made of PE also contain anti-fog additives.
- a specific version of the cling foil contains a styrene / butadiene copolymer (styroflex), which has excellent recovery on deformation. These films are produced in 3 layers. The outer layers contain an ethylenevinyl acetate, which is equipped with antifogging additives. The middle layer contains the styrene / butadiene copolymer which provides strength, extensibility and resilience. Cling foils are used for the packaging of fruits and vegetables as well as fresh meat, bones and fish. You have the following requirement profile:
- Films of biodegradable polyester according to claim 1 have good film properties and can be very good to 10 ⁇ undress.
- the mechanical properties such as longitudinal and transverse strength for extrusion and puncture resistance are at a high level.
- Tubular films made from these polyesters show a highly elastomeric behavior. They achieve higher strengths than PVC before the film breaks. Therefore, one is Modification of the stiffness-toughness ratio by the use of branching agents and the reduction of the terephthalic acid content for Clingfolien useful.
- Cling foils made from these polyesters can also be equipped with anti-fog additives. The transparency of these cling foils is sufficient for most applications. However, they are not quite as transparent as PVC and therefore distinguishable from traditional PVC.
- the Clingfolien invention impressed by the improved hysteresis (resilience of deformations).
- the cling foils of the present invention are also easier to cut without tearing longitudinally to the direction of extrusion, since with lower terephthalic acid content and increased branching, the strong anisotropy of the film is reduced.
- the weldability of the cling foils of the invention is at a similar level as PVC or PE.
- the molecular weights Mn and Mw of the semiaromatic polyesters were determined in accordance with DIN 55672-1 eluent hexafluoroisopropanol (HFIP) + 0.05% by weight of trifluoroacetic acid potassium salt; The calibration was carried out with narrowly distributed polymethyl methacrylate standards. The determination of the viscosity numbers was carried out according to DIN 53728 Part 3, January 3, 1985, capillary viscometry. A micro Ubbelohde viscometer, type M-II was used. The solvent used was the mixture: phenol / o-dichlorobenzene in a weight ratio of 50/50.
- the hysteresis test was carried out on 60 ⁇ thick films according to DIN 53835 at 23 ° C. The film was first loaded at 120 mm / min. After reaching the 50% elongation was relieved without holding time again. Then was waited for 5 minutes. This was followed by the second cycle with 100% stretch in the top.
- the degradation rates of the biodegradable polyester blends and the blends prepared for comparison were determined as follows:
- films having a thickness of 30 ⁇ m were produced by pressing at 190 ° C. These films were each cut into square pieces with edge lengths of 2 x 5 cm. The weight of these pieces of film was determined in each case and defined as "100% by weight.” Over a period of four weeks, the pieces of film were heated to 58 ° C. in a drying box in a plastic can filled with humidified compost remain- Bending weight of the film pieces measured and converted to wt .-% (based on the determined at the beginning of the test and defined as "100 wt .-%" weight).
- a polybutylene terephthalate adipate prepared as follows: 1, 10.1 g of dimethyl terephthalate (27 mol%), 224 g of adipic acid (73 mol%), 246 g of 1,4-butanediol (130 mol%) and 0.34 ml of glycerol (0.1% by weight based on the polymer) were mixed together with 0.37 ml of tetrabutyl orthotitanate (TBOT), the molar ratio between alcohol components and acid component being 1.30.
- TBOT tetrabutyl orthotitanate
- the reaction mixture was heated to a temperature of 210 ° C and held at this temperature for 2 hours. Subsequently, the temperature was raised to 240 ° C and gradually evacuated. The excess dihydroxy compound was distilled off under a vacuum of less than 1 mbar over a period of 3 h.
- the polyester A1 thus obtained had a melting point of 60 ° C and a V
- a polybutylene terephthalate adipate prepared as follows: 583.3 g of dimethyl terephthalate (27 mol%), 1280.2 g of adipic acid (73 mol%), 1405.9 g of 1,4-butanediol (130 mol%) and 37 g Glycerol (1, 5 wt .-% based on the polymer) were mixed together with 1 g of tetrabutyl orthotitanate (TBOT), wherein the molar ratio between alcohol components and acid component was 1.30.
- TBOT tetrabutyl orthotitanate
- polyester A3 had a melting point of 60 ° C and a VZ of 146 ml / g. Polyester A3
- a polybutylene terephthalate adipate prepared as follows: 697.7 g of terephthalic acid (35 mol%), 1 139.9 g of adipic acid (65 mol%), 1405.9 g of 1,4-butanediol
- polyester A3 had a melting point of 80 ° C (broad) and a VZ of 191 ml / g. Polyester A4
- a polybutylene terephthalate adipate prepared as follows: 726.8 g of terephthalic acid (35 mol%), 1 187.4 g of adipic acid (65 mol%), 1464.5 g of 1,4-butanediol
- the reaction mixture was heated to a temperature of 210 ° C and held at this temperature for 2 hours. Subsequently, the temperature was raised to 240 ° C and gradually evacuated. The excess dihydroxy compound was distilled off under a vacuum of less than 1 mbar over a period of 3 h.
- the polyester A4 thus obtained had a melting point of 80 ° C and a VZ of 157 ml / g.
- a polybutylene terephthalate adipate prepared as follows: 87.3 kg of dimethyl terephthalate (44 mol%), 80.3 kg of adipic acid (56 mol%), 17 g of 1, 4-butanediol and 0.2 kg of glycerol (0, 1% by weight based on the polymer) were mixed together with 0.028 kg of tetrabutyl orthotitanate (TBOT), the molar ratio between alcohol components and acid component being 1.30.
- TBOT tetrabutyl orthotitanate
- the reaction mixture was heated to a temperature of 180 ° C and reacted at this temperature for 6 hours. Subsequently, the temperature was raised to 240 ° C and the excess dihydroxy compound distilled off under vacuum over a period of 3h.
- the polyester B1 thus obtained had a melting temperature of 1 19 ° C and a molecular weight (M n ) of 23000 g / mol, molecular weight (M w ) of 13000 g / mol.
- polyesters A1, A3, A4 and Comparative Example B1 were hot presses to the press foils FA1; FA3, FA4 and comparative film FB1 processed and subjected to a hysteresis test.
- the hysteresis test was carried out on 60 m thick films according to DIN 53835 at 23 ° C. First the slides were cut to 4mm * 25mm. Such film was then loaded at 120 mm / min. After reaching the 50% elongation, the film was relieved without holding time (first measurement of the resilience). Then it waited 6 minutes. This was followed by the second cycle with the 100% stretch in the top.
- the films which consist of a polyester with a low terephthalic acid content such as, for example, FA1, had a higher restoring force than the comparison film FB1.
- a further increase in the restoring force experienced films with a high crosslinking agent content (FA3 compared to FA4).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Laminated Bodies (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127027563A KR20130010080A (en) | 2010-03-24 | 2011-03-23 | Process for producing cling films |
AU2011231669A AU2011231669A1 (en) | 2010-03-24 | 2011-03-23 | Process for producing cling films |
CN2011800155350A CN102869723A (en) | 2010-03-24 | 2011-03-23 | Process for producing cling films |
EP11709426A EP2550330A1 (en) | 2010-03-24 | 2011-03-23 | Process for producing cling films |
CA2792845A CA2792845A1 (en) | 2010-03-24 | 2011-03-23 | Process for producing clingfilms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10157598.3 | 2010-03-24 | ||
EP10157598 | 2010-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011117265A1 true WO2011117265A1 (en) | 2011-09-29 |
Family
ID=44247002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/054386 WO2011117265A1 (en) | 2010-03-24 | 2011-03-23 | Process for producing cling films |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2550330A1 (en) |
KR (1) | KR20130010080A (en) |
CN (1) | CN102869723A (en) |
AU (1) | AU2011231669A1 (en) |
CA (1) | CA2792845A1 (en) |
WO (1) | WO2011117265A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102848581A (en) * | 2012-10-03 | 2013-01-02 | 广东华业包装材料有限公司 | Tape casting method for thin film made of 3-hydroxybutyrate-4-hydroxybutyrate copolymer |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104059341B (en) * | 2014-06-24 | 2016-03-30 | 新疆康润洁环保科技股份有限公司 | A kind of nano-silver polyester biodegradable plastic wrap and its preparation and application |
CN104356372B (en) * | 2014-10-27 | 2016-10-26 | 清华大学 | A kind of cladodification aliphatic-aromatic copolyester and synthetic method thereof |
CN109401213B (en) * | 2017-08-16 | 2022-07-12 | 中国石油化工股份有限公司 | Polyester composition, 3D printing wire and preparation method thereof |
CN109401214B (en) * | 2017-08-16 | 2022-06-21 | 中国石油化工股份有限公司 | Polyester composition and elastic fiber and method for producing the same |
CN109401211B (en) * | 2017-08-16 | 2022-12-13 | 中国石油化工股份有限公司 | Polyester composition, medical limb fixing support and preparation method thereof |
CN109401212B (en) * | 2017-08-16 | 2022-12-13 | 中国石油化工股份有限公司 | Polyester composition, heat-shrinkable film and process for producing the same |
CN109401216B (en) * | 2017-08-16 | 2022-07-12 | 中国石油化工股份有限公司 | Polyester composition and functional layer, preparation method and application thereof |
CA3040988A1 (en) | 2016-10-21 | 2018-04-26 | China Petroleum & Chemical Corporation | Polyester composition, preparation method therefor and application thereof |
CN109401215B (en) * | 2017-08-16 | 2022-07-12 | 中国石油化工股份有限公司 | Polyester composition and non-woven fabric, and preparation method and application thereof |
IT202000015022A1 (en) | 2020-06-23 | 2021-12-23 | Novamont Spa | PACKAGING FILMS WITH ANTI-FOG AGENT |
KR102436243B1 (en) * | 2020-10-20 | 2022-08-26 | 주식회사 안코바이오플라스틱스 | Biodegradable resin composition from natural materials having improved mechanical property and formability and method for manufacturing the same |
CN114763429B (en) * | 2021-05-17 | 2024-01-26 | 瑞拓峰高新科技有限公司 | Synthetic method of biodegradable polyester alloy with high compatibility |
CN116023765A (en) * | 2021-10-26 | 2023-04-28 | 中国石油化工股份有限公司 | A kind of copolyester material and its preparation method and its dental impression material |
WO2024251665A1 (en) | 2023-06-06 | 2024-12-12 | Novamont S.P.A. | Multilayer packaging film |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0488617A2 (en) | 1990-11-26 | 1992-06-03 | Showa Highpolymer Co., Ltd. | A method for producing saturated polyester |
WO1992009654A2 (en) | 1990-11-30 | 1992-06-11 | Eastman Kodak Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
EP0539541A1 (en) | 1991-05-03 | 1993-05-05 | Novamont Spa | Biodegradable polymeric compositions based on starch and thermoplastic polymers. |
EP0575349A1 (en) | 1991-02-20 | 1993-12-29 | NOVAMONT S.p.A. | Biodegradable polymeric compositions based on starch and thermoplastic polymers |
EP0652910A1 (en) | 1992-08-03 | 1995-05-17 | NOVAMONT S.p.A. | Biodegradable polymeric composition |
WO1996015173A1 (en) | 1994-11-15 | 1996-05-23 | Basf Aktiengesellschaft | Biodegradable polymers, process for their production and their use in producing biodegradable mouldings |
DE19508737A1 (en) * | 1995-03-10 | 1996-09-12 | Biotechnolog Forschung Gmbh | Naturally biodegradable polyester compsn. |
WO1998012242A1 (en) | 1996-09-20 | 1998-03-26 | Basf Aktiengesellschaft | Biodegradable polyesters |
US5883199A (en) | 1997-04-03 | 1999-03-16 | University Of Massachusetts | Polyactic acid-based blends |
WO2004052646A1 (en) * | 2002-12-09 | 2004-06-24 | Biop Biopolymer Technologies Ag | Biodegradable multi-layer film |
WO2006097353A1 (en) | 2005-03-18 | 2006-09-21 | Novamont S.P.A. | Biodegradable aliphatic -aromatic polyesters |
WO2009024294A1 (en) | 2007-08-17 | 2009-02-26 | Basf Se | Microbial succinic acid producer mannheimia succini producens ddl |
WO2009127555A1 (en) | 2008-04-15 | 2009-10-22 | Basf Se | Method for the continuous production of biodegradable polyesters |
WO2009127556A1 (en) | 2008-04-15 | 2009-10-22 | Basf Se | Method for the continuous production of biodegradable polyesters |
WO2010034720A1 (en) * | 2008-09-23 | 2010-04-01 | Ecole Normale Superieure De Lyon | Methods for prolonging the health benefits triggered by a dietary restriction using a sphingosine kinase inhibitor |
WO2011005178A1 (en) * | 2009-07-10 | 2011-01-13 | Billerud Ab | Biocling |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101098932B (en) * | 2005-01-12 | 2011-08-17 | 巴斯福股份公司 | Biologically-degradable polyester mixture |
-
2011
- 2011-03-23 CN CN2011800155350A patent/CN102869723A/en active Pending
- 2011-03-23 AU AU2011231669A patent/AU2011231669A1/en not_active Abandoned
- 2011-03-23 WO PCT/EP2011/054386 patent/WO2011117265A1/en active Application Filing
- 2011-03-23 KR KR1020127027563A patent/KR20130010080A/en not_active Withdrawn
- 2011-03-23 EP EP11709426A patent/EP2550330A1/en not_active Withdrawn
- 2011-03-23 CA CA2792845A patent/CA2792845A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0488617A2 (en) | 1990-11-26 | 1992-06-03 | Showa Highpolymer Co., Ltd. | A method for producing saturated polyester |
WO1992009654A2 (en) | 1990-11-30 | 1992-06-11 | Eastman Kodak Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
EP0575349A1 (en) | 1991-02-20 | 1993-12-29 | NOVAMONT S.p.A. | Biodegradable polymeric compositions based on starch and thermoplastic polymers |
EP0539541A1 (en) | 1991-05-03 | 1993-05-05 | Novamont Spa | Biodegradable polymeric compositions based on starch and thermoplastic polymers. |
EP0652910A1 (en) | 1992-08-03 | 1995-05-17 | NOVAMONT S.p.A. | Biodegradable polymeric composition |
WO1996015173A1 (en) | 1994-11-15 | 1996-05-23 | Basf Aktiengesellschaft | Biodegradable polymers, process for their production and their use in producing biodegradable mouldings |
EP0792309A1 (en) | 1994-11-15 | 1997-09-03 | Basf Aktiengesellschaft | Biodegradable polymers, process for their production and their use in producing biodegradable mouldings |
DE19508737A1 (en) * | 1995-03-10 | 1996-09-12 | Biotechnolog Forschung Gmbh | Naturally biodegradable polyester compsn. |
WO1998012242A1 (en) | 1996-09-20 | 1998-03-26 | Basf Aktiengesellschaft | Biodegradable polyesters |
US5883199A (en) | 1997-04-03 | 1999-03-16 | University Of Massachusetts | Polyactic acid-based blends |
WO2004052646A1 (en) * | 2002-12-09 | 2004-06-24 | Biop Biopolymer Technologies Ag | Biodegradable multi-layer film |
WO2006097353A1 (en) | 2005-03-18 | 2006-09-21 | Novamont S.P.A. | Biodegradable aliphatic -aromatic polyesters |
WO2009024294A1 (en) | 2007-08-17 | 2009-02-26 | Basf Se | Microbial succinic acid producer mannheimia succini producens ddl |
WO2009127555A1 (en) | 2008-04-15 | 2009-10-22 | Basf Se | Method for the continuous production of biodegradable polyesters |
WO2009127556A1 (en) | 2008-04-15 | 2009-10-22 | Basf Se | Method for the continuous production of biodegradable polyesters |
WO2010034720A1 (en) * | 2008-09-23 | 2010-04-01 | Ecole Normale Superieure De Lyon | Methods for prolonging the health benefits triggered by a dietary restriction using a sphingosine kinase inhibitor |
WO2011005178A1 (en) * | 2009-07-10 | 2011-01-13 | Billerud Ab | Biocling |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102848581A (en) * | 2012-10-03 | 2013-01-02 | 广东华业包装材料有限公司 | Tape casting method for thin film made of 3-hydroxybutyrate-4-hydroxybutyrate copolymer |
Also Published As
Publication number | Publication date |
---|---|
EP2550330A1 (en) | 2013-01-30 |
CN102869723A (en) | 2013-01-09 |
AU2011231669A1 (en) | 2012-10-25 |
KR20130010080A (en) | 2013-01-25 |
CA2792845A1 (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011117265A1 (en) | Process for producing cling films | |
EP2350162B1 (en) | Aliphatic polyesters | |
EP2331603B1 (en) | Aliphatic-aromatic polyester | |
EP2920245B1 (en) | Biodegradable polyester composition | |
EP2331634B1 (en) | Biodegradable polymerblends | |
EP2550329B1 (en) | Process for the preparation of films | |
EP2499189A1 (en) | Method for producing shrink films | |
BRPI0611457A2 (en) | biodegradable aliphatic-aromatic polyesters | |
US20110237743A1 (en) | Process for producing clingfilms | |
WO2013017431A1 (en) | Biodegradable polyester film | |
US20110237750A1 (en) | Process for film production | |
WO2015086463A1 (en) | Polymer mixture for barrier film | |
EP3140350A1 (en) | Injection-moulded article | |
WO2014029692A2 (en) | Polymer mixtures for the production of thin-walled injection molded parts | |
WO2019011643A1 (en) | Biodegradable film for food packaging | |
WO2016087372A1 (en) | Biodegradable copolyesters | |
EP3891208B1 (en) | Method for purifying a (co)polyester | |
EP2826817B1 (en) | Biodegradable polyester mixture | |
WO2012126921A1 (en) | Polyesters based on 2-methylsuccinic acid | |
EP2888322B1 (en) | Use of polymer mixtures for the production of cartridges, pipettes, cuvettes, or pipette holders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015535.0 Country of ref document: CN |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11709426 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2792845 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011709426 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127027563 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2011231669 Country of ref document: AU Date of ref document: 20110323 Kind code of ref document: A |