[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011115237A1 - 光触媒フィルター及びそれを具備する脱臭装置 - Google Patents

光触媒フィルター及びそれを具備する脱臭装置 Download PDF

Info

Publication number
WO2011115237A1
WO2011115237A1 PCT/JP2011/056509 JP2011056509W WO2011115237A1 WO 2011115237 A1 WO2011115237 A1 WO 2011115237A1 JP 2011056509 W JP2011056509 W JP 2011056509W WO 2011115237 A1 WO2011115237 A1 WO 2011115237A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
layer
binder
substrate
photocatalytic
Prior art date
Application number
PCT/JP2011/056509
Other languages
English (en)
French (fr)
Inventor
里恵 野中
信幸 谷
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to JP2012505758A priority Critical patent/JPWO2011115237A1/ja
Publication of WO2011115237A1 publication Critical patent/WO2011115237A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/77Compounds characterised by their crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/34Mechanical properties

Definitions

  • the present invention relates to a photocatalytic filter excellent in durability and having a high photocatalytic ability, and a deodorizing apparatus including the same.
  • a photocatalytic component such as titanium oxide has an action of decomposing various organic substances into substances having a simple structure such as water and carbon dioxide when irradiated with light.
  • Such a photocatalyst carrying a photocatalyst component on the substrate surface is used for a filter or the like of a deodorizer for the purpose of purifying bad odors in the air (Japanese Patent Laid-Open Nos. 2000-21372 and 2001-259003). JP-A-11-188089, JP-A-2001-170497, JP-A-2003-93890, JP-A-2005-169298, JP-A-2004-016832, JP-A-2002-071298) .
  • the photocatalyst demonstrates its photocatalytic activity using sunlight and light from room lights. By increasing the intensity of light applied to the photocatalyst, the decomposition rate of harmful substances and the like is accelerated.
  • conventional photocatalysts do not have sufficient light utilization efficiency.
  • improvement of light utilization efficiency becomes a major problem. In this case, a light source is secured by incorporating an ultraviolet lamp or a fluorescent lamp in the apparatus, but the problem has not been solved.
  • the photocatalyst component is easily detached from the base material, and it has been difficult to ensure the strength with which the conventional photocatalyst can withstand actual use.
  • photocatalytic filters that ensure high strength by interposing a binder between the base material and the photocatalyst layer, but depending on the shape of the filter, pressure loss increases over time, maintaining purification performance for a long time The problem of being unable to do so remains.
  • An object of the present invention is to provide a possible photocatalytic filter excellent in durability in addition to having a high photocatalytic ability and a deodorizing apparatus including the photocatalytic filter.
  • the inventor combined or combined specific materials for the base material, binder layer, and photocatalyst layer constituting the photocatalytic filter, so that the reflectance of the base material was maintained or improved, and the photocatalytic ability of the photocatalytic filter was improved. It has been found that the photocatalytic component does not fall off from the base material for a long time, and as a result, high photocatalytic ability is maintained for a long time, and the present invention has been completed.
  • the present invention provides: (1) A photocatalyst having a substrate and a photocatalyst layer in which a photocatalyst component is supported directly on the substrate surface or via a binder layer, wherein the binder layer is a single organic binder layer or organic layer It consists of a layer made of a mixture of a binder and an inorganic binder, or consists of two or more layers in which an organic binder layer or a layer made of a mixture of an organic binder and an inorganic binder is laminated on the organic binder layer.
  • the crystallite diameter of the photocatalytic component is 50 to 150 nm when measured with an X-ray diffractometer
  • a photocatalytic filter having a photocatalyst component loading on the binder layer of 5 to 50 g / L or less (2) The photocatalyst filter, wherein the photocatalyst layer further comprises an inorganic binder, and the weight ratio of the photocatalyst component and the inorganic binder contained in the photocatalyst layer is 3 or less with respect to the photocatalyst component 1, (3)
  • the photocatalytic filter according to (1) or (2), wherein the reflectance of the substrate surface is 60% or more when measured at a wavelength of 400 nm using a spectrophotometer, (4) The photocatalytic filter according to any one of (1) to (3), wherein the substrate has a honeycomb shape, (5) A deodorizing apparatus comprising the photocatalytic filter according to any one of (1) to (4) and a UV and / or fluorescent lamp.
  • a photocatalyst filter having a photocatalytic performance equal to or higher than that of a conventional photocatalyst filter and having excellent durability is provided. Can be provided.
  • FIG. 1 is a diagram showing the acetaldehyde purification performance of the photocatalyst of the present invention.
  • FIG. 2 is a diagram showing the ammonia purification performance of the photocatalyst of the present invention.
  • FIG. 3 is a diagram showing the acetic acid purification performance of the photocatalyst of the present invention.
  • FIG. 4 is a diagram showing the relationship between the coating amount of the photocatalyst layer constituting the photocatalyst of the present invention and the acetaldehyde purification performance.
  • FIG. 5 is a graph showing the relationship between the thickness of the base material constituting the photocatalyst of the present invention and the acetaldehyde purification performance.
  • FIG. 6 is a diagram showing the relationship between the number of cells of the base material constituting the photocatalyst of the present invention and the acetaldehyde purification performance.
  • the present invention is a photocatalyst having a substrate and a photocatalyst layer on which the photocatalyst component is supported directly or via a binder layer on the surface of the substrate,
  • the binder layer is composed of one organic binder layer or a layer composed of a mixture of an organic binder and an inorganic binder, or a layer composed of an inorganic binder layer or a mixture of an organic binder and an inorganic binder is laminated on the organic binder layer.
  • the crystallite diameter of the photocatalytic component is 50 to 150 nm when measured with an X-ray diffractometer, Provided is a photocatalytic filter having a photocatalyst component loading on the binder layer of 5 to 50 g / L or less.
  • the base material used in the present invention stably holds the photocatalyst layer and imparts strength that can be used as a photocatalyst filter.
  • the material of the base material is not particularly limited, but has a strength capable of holding the shape independently, and is a material that is chemically and physically stable in a use environment as a photocatalytic filter, such as UV, moisture, and photocatalyst.
  • the metal surface is made of a material that is not easily oxidized or eroded by a reaction product or the like.
  • the substrate itself has a high reflectance.
  • a preferable material is a metal such as aluminum, iron, or stainless steel.
  • the substrate may be used after being subjected to a coating treatment.
  • the substrate may be formed from ceramics such as cordierite, alumina, mullite, silicon carbide, or mixtures thereof.
  • the reflectance can be improved to a desired value by polishing or glazing the surface.
  • the reflectance of the ceramics may be improved by applying a mirror finish by metal plating such as nickel or copper.
  • the reflectance (%) of the substrate can be measured using a spectrophotometer.
  • the reflectance described in this specification is measured by UV-3150 manufactured by Shimadzu Corporation.
  • the reflectance of the base material or the material itself constituting the base material is 60% or more, preferably 70% or more, more preferably 75% or more.
  • the “reflectance” used in the present specification refers to the reflectance of the base material or the material constituting the base material itself that does not carry a coating layer. However, the reflectance may be derived from light reflected from the substrate surface after the light passes through the coating layer and reaches the substrate surface.
  • the reflectance before the base material is molded for example, in the case of a honeycomb
  • the reflectance of the foil is measured.
  • the photocatalyst supported on the substrate can be used efficiently. Specifically, the light emitted from the light source passes through the photocatalyst layer and binder layer located in the vicinity of the light source, then reflects off the substrate surface, and passes through the binder layer and photocatalyst layer located away from the light source. Therefore, the entire photocatalyst layer is effectively used, and as a result, the photocatalyst utilization rate is improved.
  • the photocatalytic ability as a filter is improved.
  • the coat layer or the like absorbs light and there is no reflection, the light does not reach the substrate surface, and the reflected light from the substrate surface cannot be used effectively.
  • a material having a high reflectance such as metal is adopted as the base material, but the reflectance of the base material surface is desired through the pretreatment process even if the material does not reach the above reflectance. It can be used as a base material by improving to the value of.
  • the reflectance may be improved by acid-treating the base material surface in advance before supporting the photocatalyst layer or the organic binder layer on the base material surface.
  • the substrate is made of ceramics, the reflectance is improved by polishing or glazing the surface.
  • the amount of light applied to the coat layer formed on the base material passes through the coat layer and reaches the base material. May decrease significantly. That is, even when sufficient light is irradiated to the photocatalyst filter, depending on the presence of the coating layer, the photocatalyst itself is not irradiated with light, and the photoactivity can be reduced. Therefore, in order to ensure a sufficient amount of light used for the photocatalyst and to make the most of the photocatalytic activity, in addition to selecting a substrate having the above reflectance, a coat layer through which light passes sufficiently is employed. This is very important.
  • the light transmittance of the coating layer varies depending on the thickness of the coating layer and affects the photocatalytic activity.
  • the coat layer is thin and has light transmission properties, the light that has passed through the coat layer passes through the coat layer again after being reflected by the substrate.
  • the coat layer is thick and does not transmit light, the coat layer absorbs light and the photocatalyst utilization rate decreases.
  • “coat layer” means a binder layer, a photocatalyst layer, or both.
  • the thickness of the binder layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the thickness of the photocatalyst layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Even if the thickness of the photocatalyst layer is outside this range, the photocatalyst utilization rate can be ensured by reflection that occurs in a portion of the photocatalyst layer if the thickness falls within this range.
  • the photocatalytic component of the entire coat layer can be effectively used.
  • a metal base material with light reflectivity is selected and a reflective material is added to the coating layer on the base material, in addition to the reflection from the base material, the added reflective material reduces the photocatalyst utilization rate. Can be raised. Even when a metal base material that does not reflect light or a base material that does not reflect light is used, when a reflective material is included in the coat layer, the reflective material plays a role of reflecting light.
  • photocatalytic components that are difficult to reach and are located away from the light source can be fully utilized.
  • a non-reflective substrate it may be possible to make the substrate reflective by applying a reflective material on the substrate. Light is absorbed by the substrate located so that only the photocatalytic component near the light source is irradiated.
  • the coat layer on the reflective material is thin and has light transmission, the light reaching the reflective material is reflected and contributes to the improvement of the photocatalyst utilization rate.
  • High photocatalytic activity can be secured by appropriately selecting the shape of the substrate in addition to the material of the substrate. For example, when a foam-shaped base material is used, light is reflected to the opposite position that is a shadow of light incidence of the foam, and the light reaches a photocatalyst existing at a position away from the light source, so that the photocatalytic activity is improved.
  • the shape of the substrate used in the present invention is not particularly limited as long as at least a part of the photocatalyst layer is irradiated with light.
  • the base material since the harmful substance removal ability of the photocatalyst contributes to the surface area, it is desirable that the base material has a large geometric surface area.
  • preferred shapes include a porous shape such as a honeycomb shape, a pellet shape, and a foam shape, a thin film such as paper, a cloth formed from a fibrous material, and a secondary processed product thereof.
  • a honeycomb has a smaller pressure loss than paper and is preferable as a substrate.
  • the manufacturing method of the honeycomb is not particularly limited.
  • Examples of the secondary processed product include a sheet shape, a sheet-shaped base material having a bellows shape, a corrugated shape, a cylindrical shape, and a columnar / ellipsoidal column.
  • the honeycomb-shaped and foam-shaped substrates are preferable from the viewpoint of effectively utilizing the photocatalytic component.
  • the number of cells formed by the foam skeleton aligned between 1 inch in a straight line can be adjusted to a predetermined range.
  • a ceramic foam such as cordierite
  • it is preferably 2 to 20 pieces / inch
  • a metal foam it is preferably 2 to 50 pieces / inch.
  • the BET specific surface area of the photocatalyst layer of the present invention is not particularly limited. However, when a honeycomb-shaped substrate is used, by adjusting the BET specific surface area to 50 m 2 / g or more, dust or the like originally passing through the through holes of the honeycomb Can be trapped on the surface, which is preferable.
  • the BET specific surface area described in the present specification refers to a value measured using FLOWSORB-3 (manufactured by Shimadzu Corporation).
  • the cell density is preferably 50 to 1500 cells / (inch) 2 , more preferably 400 to 1000 cells / (inch) 2 .
  • the size of the honeycomb itself varies depending on the use conditions as in the case of the cell, but the honeycomb thickness is within 50 mm, preferably within 30 mm.
  • the photocatalytic layer is coated on the surface of the base material directly or via a binder layer. Since photocatalyst components such as titanium oxide constituting the photocatalyst layer are easily removed from the substrate, it is preferable to form a binder layer on the substrate surface and form the photocatalyst layer on the binder layer. When the binder is interposed between the base material and the photocatalyst layer, the photocatalyst component is less likely to drop off as the photocatalyst layer is peeled off.
  • the binder constituting the binder layer may be an organic binder, an inorganic binder, or a mixture thereof.
  • the organic binder may not be used, and the binder layer can be formed with an inorganic binder alone.
  • an organic binder layer made of a thermoplastic synthetic resin is softened by a part of the organic binder layer in the drying stage of photocatalyst layer formation. This is desirable because the photocatalyst layer is easily fixed.
  • organic binders examples include highly transparent amorphous synthetic resins such as acrylic resins, and polyvinyl acetate.
  • a highly transparent resin such as an acrylic resin is preferable because it does not hinder reflection on the substrate.
  • the acrylic resin is also preferable from the viewpoint of preventing the coating layer such as the photocatalyst layer from peeling off from the base material and preventing the photocatalytic component in the coating layer from being detached.
  • the synthetic resin stock solution is diluted with water to a predetermined concentration, an aqueous dispersion is desirable.
  • the immobilization of the photocatalyst component becomes strong.
  • the inorganic binder becomes a skeleton, and the photocatalyst is prevented from falling off.
  • the inorganic binder contained in the binder layer may be any one or a combination of two or more of silica-based, titania-based, zirconia-based, alumina-based, and the like.
  • the titania binder itself may have a photocatalytic ability, it is desirable as an inorganic binder from the viewpoint of improving the photocatalytic ability.
  • a binder that forms a coating layer having a high BET specific surface area for example, a BET specific surface area of 50 m 2 / g or more is preferable because it traps dust in the air.
  • a titania binder is a titanium compound, an organic titanium compound, or a mixture of an organic titanium compound and other compounds, and is a substance that can bind photocatalyst components or photocatalyst components to a substrate surface or a binder layer. There is no particular limitation on what kind of substance it is.
  • titania binder examples include titanium alkoxide, titanium oxide sol (for example, STS-01, STS-02 manufactured by Ishihara Sangyo, A-6, M-6 manufactured by Taki Chemical), titanium oxide sol containing an inorganic binder in titanium oxide sol (for example, CA-62) manufactured by Taki Chemical Co., Ltd., and titanium oxide sol containing metal alkoxide in titanium oxide (for example, Tynok CZG manufactured by Taki Chemical Co., Ltd .; ethyl polysilicate is used as the metal alkoxide).
  • titanium alkoxide titanium alkoxide
  • titanium oxide sol for example, STS-01, STS-02 manufactured by Ishihara Sangyo, A-6, M-6 manufactured by Taki Chemical
  • titanium oxide sol containing an inorganic binder in titanium oxide sol for example, CA-62
  • titanium oxide sol containing metal alkoxide in titanium oxide for example, Tynok CZG manufactured by Taki Chemical Co., Ltd .
  • ethyl polysilicate
  • the inorganic binder may be either gel or sol.
  • the inorganic binder may be a sol having a certain degree of viscosity in the form of a colloid dispersed in a medium such as water.
  • the inorganic binder preferably has a sol particle diameter of 5 to 200 nm from the viewpoint of fixing the photocatalyst.
  • the crystallite diameter can be measured with an X-ray diffractometer according to Scherrer's formula (Scherrer, P. (1918). Nachr. Ges. Wiss. Gottingen, 26 September, p. 98-100).
  • the crystallite diameter described in the present specification refers to a value measured using RINT-2500V (manufactured by Rigaku Corporation).
  • the binder layer may be a single organic binder layer or a layer composed of a mixture of an organic binder and an inorganic binder.
  • the binder layer is not limited to a single layer, and may be composed of a plurality of layers.
  • each layer is composed of the same or different kinds of organic binders, inorganic binders and / or mixtures thereof, and when the organic binder and the inorganic binder are combined, the ratio is It is determined appropriately so as to improve the strength.
  • the binder layer is preferably a single binder layer, particularly a single binder layer comprising an organic binder.
  • a binder layer consists of a several layer
  • these layers may contain an optional component such as a phosphorescent material and a reflective material in addition to the binder. Due to the presence of the reflective material, the reflectance of the base material is improved, and as a result, the photocatalytic ability is also improved.
  • the reflective material there is Unibeads (manufactured by Unitika).
  • the method for supporting the binder layer on the substrate surface is not particularly limited.
  • a method in which a solution in which a binder is dissolved or suspended is prepared in advance, and the solution is directly applied to the substrate surface and dried to form a binder layer.
  • a method of forming a binder layer on the surface of the substrate by immersing and drying the substrate in the solution, or a method of forming a binder layer by pressing the binder onto the surface of the substrate without using a solution is conceivable.
  • the thickness of the binder layer can be adjusted by repeating the above supporting method. From the viewpoint of maintaining the reflectance, the thickness of the binder layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the photocatalytic layer is formed on the surface of the base material or the binder layer.
  • the term “photocatalytic component” means a substance that is activated when irradiated with light to decompose harmful substances in the air. The light is selected depending on the application and the light source installed, and a photocatalyst that responds to the light source used therefor is selected.
  • Photocatalyst components include titanium oxide (titania), zinc oxide, tungsten oxide, copper oxide and other metal oxides, or metal oxide-supported titanium oxide such as platinum, gold, silver, copper, iron, palladium, zirconium, or ruthenium complexes.
  • a simple substance of a metal complex such as, or a complex thereof can be used. What substituted a part of titanium oxide with other elements, such as nitrogen, can also be used.
  • the crystal structure of titanium oxide may be any of anatase type, rutile type, brookite type, or a mixture thereof.
  • the photocatalyst may be either gel or sol.
  • the photocatalyst may be a sol having a certain degree of viscosity in the form of a colloid dispersed in a medium such as water.
  • the particle size of the sol may be within the range normally used, for example, 5 to 200 nm. From the viewpoint of uniformly dispersing the photocatalytic component, the particle size is preferably 10 to 50 nm.
  • the crystallite diameter of the photocatalyst component is preferably 50 to 150 nm, more preferably 60 to 120 nm, and even more preferably 70 to 100 nm.
  • the supported amount of the photocatalyst component is preferably 5 to 50 g, more preferably 6 to 35 g, and still more preferably 7 to 20 g per liter.
  • the photocatalyst layer may further contain an inorganic binder.
  • an inorganic binder in the photocatalyst layer, the immobilization of the photocatalyst component can be made stronger.
  • the kind of the inorganic binder in the photocatalyst layer may be the same as or different from that contained in the binder layer.
  • the inorganic binder may be either gel or sol, and it is preferable to select a sol as the precursor.
  • the particle size of the inorganic binder is preferably 5 to 300 nm, more preferably 5 to 100 nm, from the viewpoint of fixing the photocatalytic component. If it is in the range of the said particle diameter, it can also be used combining the inorganic binder which has a different particle diameter.
  • the photocatalyst layer When an inorganic binder is included in the photocatalyst layer, by increasing the ratio of the inorganic binder, the adhesion between the substrate and the coating layer is improved, and the photocatalyst component can be prevented from peeling off from the substrate. That is, by increasing the weight ratio of the inorganic binder in the photocatalyst layer, it is possible to prevent the degradation of the photocatalytic performance due to the loss of the photocatalytic action. On the other hand, when the inorganic binder increases and the absolute amount of the photocatalyst component decreases, the photocatalytic ability decreases.
  • the weight ratio of the photocatalyst component to the inorganic binder is 3 or less, preferably 2.5 or less, with respect to the photocatalyst component 1. Note that the decrease in the photocatalytic ability accompanying the increase in the amount of the inorganic binder also occurs when the photocatalytic component is buried in the binder.
  • the photocatalyst layer may contain arbitrary components as long as the photocatalytic ability of the photocatalyst is not impaired.
  • a phosphorescent material or a reflective material as described above may be included.
  • the method for supporting the photocatalyst layer on the surface of the substrate or the binder layer is not particularly limited, and a solution in which the photocatalyst component and optionally an inorganic binder are dissolved or suspended is used as a base on which the substrate surface or the binder layer is formed.
  • a method of coating and drying on the surface of the material a method of immersing and drying a substrate on which a binder layer is formed in the solution, or a photocatalyst component or a mixture of a photocatalyst component and an inorganic binder without using such a solution.
  • a method of pressure-bonding to the surface of the base material on which the adsorbent layer is formed is conceivable.
  • the thickness of the photocatalyst layer can be adjusted by repeating the above supporting method. From the viewpoint of effectively utilizing light while maintaining the reflectance, the thickness of the photocatalyst layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Even if the thickness of a part of the photocatalyst layer is outside the numerical value range, the photocatalyst utilization rate may be ensured if the thickness of the other part is within the numerical value range.
  • the photocatalytic filter of the present invention is suitable for treating malodors such as three components of acetaldehyde, acetic acid and ammonia contained in tobacco odor, as well as formaldehyde, hydrogen sulfide, methyl mercaptan, toluene, nitrogen oxides, ozone and the like. .
  • the photocatalytic filter of the present invention can efficiently purify toluene, ammonia and acetic acid. You may arrange
  • the arrangement of the photocatalytic filter in the deodorizing apparatus is not particularly limited, but a UV lamp or a fluorescent lamp lamp, particularly a UV lamp, is arranged around the filter in order to maximize the photocatalytic ability of the filter. It is desirable. For example, you may arrange
  • a filter, a fan or the like having a dustproof function and an adsorption deodorizing function may be installed in the apparatus.
  • the coexistence of the photocatalyst filter of the present invention and the filter having an adsorption deodorizing function complements each other and makes it possible to remove malodors that could not be removed alone.
  • the acrylic resin was diluted with ion-exchanged water so as to have a nonvolatile content of 2.5% by weight, the substrate was immersed in the diluent, and the diluent was uniformly attached to the substrate surface. After blowing off the excessive diluent on the substrate surface, the substrate was dried at 110 ° C. to form an organic binder layer. It was immersed in the aqueous photocatalyst liquid (pH 7) prepared beforehand, and the said photocatalyst liquid was made to adhere evenly to the surface of the organic binder layer. After blowing off excess photocatalyst solution on the substrate surface, the substrate was dried at 110 ° C.
  • Example 1 a photocatalyst filter as shown in the following table was obtained (Example 1).
  • ⁇ 6 and Comparative Example 1) photocatalyst layer coating amount: 30 g / L; photocatalyst component / inorganic binder: 50/50 ... weight ratio.
  • the crystallite diameter of the photocatalyst component in the following table is measured using RINT-2500V (manufactured by Rigaku Corporation).
  • Acetaldehyde purification performance evaluation A 60 x 60 mm filter test piece of the photocatalytic filter was prepared. The test piece was placed in an acrylic box (30 L) and sealed, and then 1% acetaldehyde (300 mL) was added so that the inside of the box was about 100 ppm. The acetaldehyde concentration in the box was made uniform using a container stirring fan. The initial concentration C 0 was measured 60 minutes after the addition of acetaldehyde. Irradiating the initial concentration measured after black light, to determine the concentration C t after 15, 30, 45, 60 minutes from the irradiation.
  • Acetic acid purification performance evaluation instead of 1% acetaldehyde, 1% acetic acid (prepared as a 1% gas with tetrabac) was used, and the concentration C t was performed 15 and 30 minutes after irradiation with black light.
  • the test piece (60 ⁇ 60 mm) of the photocatalytic filter was subjected to an acetic acid purification performance evaluation test under the same conditions as the acetaldehyde purification performance evaluation.
  • the initial concentration was measured using a detector tube (81 manufactured by Gastec). The measurement results after 15 minutes are shown in FIG.
  • the purification rate was calculated based on the above formula.
  • the photocatalytic filter of the present invention deodorizes any offensive odors tested in a short time.
  • the photocatalytic filter of the present invention was prepared according to the following procedure. 1. Weight measurement (S 0 ) of aluminum honeycomb (made by Cataler) (W30 ⁇ D30 ⁇ H20 mm) made of aluminum foil having a reflectance of 81% 2. An organic binder having a nonvolatile content of 50% by weight (see Table 1 below) was diluted 20 times with ion-exchanged water to prepare a binder solution having a nonvolatile content of 2.5% by weight. 3. The base material is Then, the substrate is dried (110 ° C.) (formation of an organic binder layer). 4.3. Weight measurement (S 1 ). 5.
  • a photocatalytic filter having a substrate, an organic binder layer carried on the surface of the substrate, and a photocatalyst layer containing an inorganic binder carried on the surface of the organic binder layer (implementation) Examples 17 to 19) were prepared (photocatalyst component loading: 13.9 g / L; photocatalyst component / inorganic binder: 50/50 weight ratio).
  • the crystallite size of the photocatalyst component used in Examples 17 to 19 was measured using RINT-2500V (manufactured by Rigaku Corporation), and as a result, all were in the range of 81 to 82 nm.
  • the photocatalytic filter of the present invention was prepared according to the following procedure. 1. Weight measurement (S 0 ) of an aluminum honeycomb (made by Cataler) (W30 ⁇ D30 ⁇ H20 mm) made of an aluminum foil having a reflectance of 81%. 2. An organic binder having a nonvolatile content of 50% by weight (see Table 1 below) was diluted 20 times with ion-exchanged water to prepare a binder solution having a nonvolatile content of 2.5% by weight. 3. The base material is Then, the substrate is dried (110 ° C.) (formation of an organic binder layer). 4.3. Weight measurement (S 1 ). 5. 2.
  • a photocatalyst filter (Examples 20 to 22) having a photocatalyst layer containing an inorganic binder was prepared (photocatalyst component loading: 6.9 g / L; photocatalyst component / inorganic binder: 50/50 ... weight ratio) .
  • the crystallite diameter of the photocatalyst component used in Examples 20 to 22 was measured using RINT-2500V (manufactured by Rigaku Corporation), and as a result, all were in the range of 81 to 82 nm.
  • Photocatalyst component drop-off test by peeling off coat layer A 30 ⁇ 30 mm test piece of the photocatalyst filter of each example was dried at 110 ° C. for 3 hours or more, allowed to cool, and its weight was measured (W 1 ). The test piece was placed in a 200 mL tall beaker containing 100 mL of distilled water, and subjected to ultrasonic treatment for 60 minutes in an ultrasonic cleaning machine (UT105 manufactured by Sharp Corporation). Then, the test piece was taken out and dried for 10 hours or more with a dryer (110 ° C.). After leaving it to be 30 ° C. or lower, the weight of the test piece was measured (W 2 ). The coating layer peeling rate was calculated from the following formula: (W 1 ⁇ W 2 / CW) ⁇ 100. The results are shown in Table 6 below.
  • the photocatalytic filter of the present invention has a photocatalytic performance equal to or higher than that of a conventional photocatalytic filter and is excellent in durability, so that it is required to maintain a high photocatalytic performance for a long period of time, for home use or for business use. It is suitable for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Catalysts (AREA)

Abstract

基材と、当該基材表面上に直接、又はバインダー層を介して光触媒成分が担持されてなる光触媒層とを有する光触媒であって、前記バインダー層が、一層の有機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層から成るか、あるいは当該有機バインダー層に、無機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層が積層された二又はそれ以上の複数の層から成り、前記光触媒成分の結晶子径がX線回折装置で測定した場合に50~150nmであり、前記バインダー層への光触媒成分担持量が5~50g/L以下である、光触媒フィルター及びそれを具備する脱臭装置。

Description

光触媒フィルター及びそれを具備する脱臭装置
 本発明は、耐久性に優れた、高い光触媒能を有する光触媒フィルター及びそれを具備する脱臭装置に関する。
 酸化チタンなどの光触媒成分は、光が照射されることで、様々な有機物を水や二酸化炭素などの単純な構造の物質に分解する作用を有している。このような光触媒成分を基材表面に担持した光触媒は、空気中の悪臭を浄化する目的で脱臭装置のフィルターなどに使用されている(特開2000−21372号公報、特開2001−259003号公報、特開平11−188089号公報、特開2001−170497号公報、特開2003−93890号公報、特開2005−169298号公報、特開2004−016832号公報、特開2002−071298号公報等)。
 光触媒は、太陽光や室内灯の光を利用してその光触媒能を発揮する。光触媒に照射する光の強度を上げることで、有害物質等の分解速度は促進される。しかしながら、従来の光触媒は光の利用効率が十分でなく、特に、光触媒を光の当たらない装置内部に配置する場合、光利用効率の向上は大きな問題となる。この場合、紫外線ランプや蛍光灯ランプを装置に内蔵させることで光源が確保されているが、問題の解決には至っていない。
 また、光触媒成分は基材から脱落しやすく、従来の光触媒は実際の使用に耐えうる強度を確保するのが困難であった。基材と光触媒層との間にバインダーを介在させて高い強度を確保した光触媒フィルターも存在しているが、フィルターの形状によっては、経時的に圧力損失が増大し、長期間浄化性能を維持することができないという問題が残されている。
特開2000−21372号公報 特開2001−259003号公報 特開平11−188089号公報 特開2001−170497号公報 特開2003−93890号公報 特開2005−169298号公報 特開2004−016832号公報 特開2002−071298号公報
 本発明は、高い光触媒能を有することに加え、耐久性に優れた可能な光触媒フィルター及びそれを具備する脱臭装置を提供することを課題とする。
 本発明者は、鋭意検討した結果、光触媒フィルターを構成する基材、バインダー層及び光触媒層について、特定のものを組み合わせることで、基材の反射率が維持又は向上されて光触媒フィルターの光触媒能が向上すること、そして、長期間光触媒成分が基材から脱落せず、その結果、高い光触媒能が長期間維持されることを見出し、本発明を完成させるに至った。
 具体的には、本発明は、
(1)基材と、当該基材表面上に直接、又はバインダー層を介して光触媒成分が担持されてなる光触媒層とを有する光触媒であって、前記バインダー層が、一層の有機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層から成るか、あるいは当該有機バインダー層に、無機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層が積層された二又はそれ以上の複数の層から成り、
前記光触媒成分の結晶子径がX線回折装置で測定した場合に50~150nmであり、
前記バインダー層への光触媒成分担持量が5~50g/L以下である、光触媒フィルター、
(2)前記光触媒層が無機バインダーを更に含んで成り、前記光触媒層に含まれる光触媒成分と無機バインダーとの重量比が光触媒成分1に対して無機バインダーは3以下である、光触媒フィルター、
(3)前記基材表面の反射率が、分光光度計を用いて400nmの波長で測定した場合に60%以上である、(1)又は(2)の光触媒フィルター、
(4)前記基材がハニカム形状である、(1)~(3)のいずれかの光触媒フィルター、
(5)(1)~(4)のいずれかの光触媒フィルター並びにUV及び/又は蛍光灯ランプを具備する脱臭装置、
を提供する。
 本発明によれば、特定の基材、光触媒層、そして任意にこれらとバインダー層とを組み合わせることで、従来の光触媒フィルターと同等以上の光触媒性能を有し、耐久性に優れた可能な光触媒フィルターの提供が可能となる。
 図1は、本発明の光触媒のアセトアルデヒド浄化性能を示す図である。
 図2は、本発明の光触媒のアンモニア浄化性能を示す図である。
 図3は、本発明の光触媒の酢酸浄化性能を示す図である。
 図4は、本発明の光触媒を構成する光触媒層のコート量とアセトアルデヒド浄化性能との関係を示す図である。
 図5は、本発明の光触媒を構成する基材の厚さとアセトアルデヒド浄化性能との関係を示す図である。
 図6は、本発明の光触媒を構成する基材のセル数とアセトアルデヒド浄化性能との関係を示す図である。
 本発明は、基材と、当該基材表面上に直接、又はバインダー層を介して光触媒成分が担持されてなる光触媒層とを有する光触媒であって、
前記バインダー層が、一層の有機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層から成るか、あるいは当該有機バインダー層に、無機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層が積層された二又はそれ以上の複数の層から成り、
前記光触媒成分の結晶子径がX線回折装置で測定した場合に50~150nmであり、
前記バインダー層への光触媒成分担持量が5~50g/L以下である、光触媒フィルター、を提供する。
 本発明で使用する基材は、光触媒層を安定して保持し、光触媒フィルターとして使用可能な強度を付与するものである。当該基材の材料は、特に限定しないが、自立的に形状を保持できる強度を有し、光触媒フィルターとしての使用環境化において化学的および物理的に安定である材料、例えばUVや水分、光触媒の反応生成物等により金属面が酸化、侵食等されにくい材質の金属であることが好ましい。更に、基材自体が高い反射率を有することが好ましい。たとえば、アルミニウム、鉄、ステンレスなどの金属製が好ましい材料として挙げられる。基材の酸化や侵食を防止し、あるいは反射率を維持するために、覆膜処理等を施して使用してもよい。別の態様において、基材はコーディエライト、アルミナ、ムライト、炭化珪素質又はそれらの混合物等のセラミックスにより成形してもよい。セラミックスを用いる場合、表面を研磨処理又は施釉処理することで反射率を所望の値に向上させることができる。更に別の態様において、セラミックスの反射率はニッケルや銅などの金属メッキ等により鏡面加工処理を施すことで向上させてもよい。
 上記基材の反射率(%)は、分光光度計を用いて測定することができる。本明細書に記載の反射率は、島津製作所製UV−3150により測定したものである。
 基材又は基材を構成する材料自体の反射率は、60%以上、好ましくは70%以上、より好ましくは75%以上である。特に断らない限り、本明細書で使用する「反射率」とは、コート層を担持していない、基材又は基材を構成する材料自体の反射率を指す。しかしながら、反射率は、光がコート層を透過し、基材表面に到達したあとの基材表面から反射された光に由来することもある。
 基材の構成材料の反射率を測定する場合、基材を成形する前の状態の反射率、例えばハニカムの場合、箔の反射率が測定される。基材に照射された光の「反射」を有効利用することで、基材に担持された光触媒を効率よく利用することが出来る。具体的には、光源から照射された光は、光源付近に位置する光触媒層、バインダー層を透過した後、基材表面で反射され、光源から離れた位置にあるバインダー層、そして光触媒層を透過するため、光触媒層全体が有効活用され、その結果光触媒利用率が向上する。その結果、フィルターとしての光触媒能が向上する。コート層などが光を吸収し、反射がない場合には基材表面にまで光が到達せず、基材表面からの反射光を有効に利用することができない。金属等の高い反射率を有する材料が基材として採用することが好ましいが、上記の反射率に達していない材料であっても、前処理工程を経由して、基材表面の反射率を所望の値に向上させることで基材として使用することができる。例えば、基材が金属製である場合、基材表面に光触媒層又は有機バインダー層を担持する前に、予め基材表面を酸処理することで反射率を向上させてもよい。基材がセラミックス製である場合、表面を研磨処理又は施釉処理することで反射率は向上する。
 基材が所望の反射率を有する場合であっても、基材上に形成されるコート層に照射された光は、当該コート層を通過して基材へ到達するまでの間にその光量が有意に減少することがある。すなわち、光触媒フィルターに十分な光が照射された場合でも、コート層の存在によっては、光触媒自体に光が照射されず、光活性は低下しうる。従って、光触媒に使用される光量を十分確保して光触媒活性を最大限に利用するためには、上記反射率を有する基材を選択することに加え、十分に光が通過するコート層を採用することが重要である。
 コート層の光の透過性はコート層の厚さによって変動し、光触媒活性に影響を与える。コート層が薄く、光の透過性がある場合には、コート層を通過した光は、基材で反射した後に再度コート層を通過する。コート層が厚く光を透過しない場合には、コート層が光を吸収し光触媒利用率が低下する。尚、本明細書で使用する場合、「コート層」とはバインダー層、光触媒層又はその両者を意味する。
 バインダー層の厚さは、好ましくは50μm以下、より好ましくは30μm以下、更により好ましくは20μm以下である。光触媒層の厚さは、好ましくは50μm以下、より好ましくは30μm以下、更により好ましくは20μm以下である。光触媒層の厚さがこの範囲外にあっても、光触媒層の一部にこの範囲の厚さが含まれていれば、その部分で生じる反射により、光触媒利用率を確保することができる。
 金属基材を用いた場合であって、その基材上のコート層が薄く、光の透過性がある場合、光源付近に存在するコート層を透過して金属基材に達した光は基材表面で反射し、その反射光は光源から離れて存在するコート層に到達するため、コート層全体の光触媒成分を有効活用できる。光の反射性がある金属基材を選択した場合であって、その基材上のコート層に反射材を加えた場合、基材からの反射に加え、加えられた反射材が光触媒利用率を上げることができる。光の反射性がない金属基材や、反射しない基材を用いた場合であっても、コート層に反射材を含めた場合、反射材が光を反射する役割を果たし、その結果、光が届きにくい、光源から離れた位置に存在する光触媒成分まで十分活用できる。あるいは、反射しない基材を用いた場合であっても、基材上に反射材を塗るなどして反射性を持たせることが考えられるが、反射材上のコート層が厚い場合、光源付近に位置する基材に光が吸収されて光源付近の光触媒成分にしか光が当たらない。一方、反射材上のコート層が薄く、光の透過性がある場合、反射材に達した光は、反射して光触媒利用率の向上に寄与する。
 基材の材質に加え、基材の形状を適宜選択することで、高い光触媒活性を確保することもできる。例えばフォーム形状の基材を使用する場合、光はフォームの光入射の影となる正反対の位置まで反射し、光源から離れた位置に存在する光触媒にまで光が達するため、光触媒活性が向上する。
 本発明で使用する基材の形状は、光触媒層の少なくとも一部に光が照射されるような形状であれば特に限定されるものではない。ただし、光触媒の有害物質除去能は表面積に寄与するので、基材は幾何学的表面積の大きい形状とすることが望ましい。たとえば、ハニカム形状、ペレット形状、フォーム形状等のような多孔質形状、紙等のような薄膜、繊維状物から形成した布、およびこれらの二次加工品が好ましい形状として挙げられる。ハニカムは、紙と比較して圧力損失が小さく、基材として好ましい。ハニカムの製法は特に限定されない。かかる二次加工品としては、シート状、当該シート状の基材をジャバラ状、波形状、円筒状等にしたものや、円柱/楕円柱が好ましい形状として挙げられる。ハニカム形状およびフォーム形状の基材は、上述のとおり、光触媒成分を有効利用する観点から好ましい。
 フォーム形状の基材を用いる場合、気泡(セル)数が多すぎると、光が透過され難く、光触媒の効果が低下し、圧力損失もより増大する。一方、セル数が少なすぎると、幾何学的表面積がより減少し、その結果光触媒のコート面積も減少する。従って、フォーム形状の基材において、直線1インチ間に並んでいるフォーム骨格で形成されたセルの数は所定の範囲に調節され得る。例えばコーディエライト等のセラミックスのフォームの場合、2~20ヶ/インチであることが好ましく、金属製のフォームの場合、2~50ヶ/インチであることが好ましい。
 本発明の光触媒層のBET比表面積は特に限定されないが、ハニカム形状の基材を用いた場合、BET比表面積を50m/g以上に調節することで、本来ハニカムの貫通孔を通過する埃などをその表面上でトラップすることができるため好ましい。本明細書に記載のBET比表面積は、FLOWSORB−3(島津製作所社製)を用いて測定した値を指す。
 基材としてハニカムを使用する場合、そのセル密度(1平方インチあたりのセル数)やその開口径は、本発明の光触媒フィルターを配置する条件等によって変化する。しかしながら、高い幾何学的表面積を確保する観点から、セル密度は、好ましくは50~1500セル/(インチ)、より好ましくは400~1000セル/(インチ)である。ハニカム自体の大きさも、セルと同様に使用条件等によって異なるが、ハニカム厚さは、50mm以内、好ましくは30mm以内である。
 上記基材表面には、直接、又はバインダー層を介して光触媒層がコートされる。光触媒層を構成する酸化チタン等の光触媒成分は基材から脱落し易いため、基材表面上にバインダー層を形成させ、当該バインダー層上に光触媒層を形成するのが好ましい。バインダーが基材と光触媒層との間に介在することで、光触媒層の剥離に伴ない生じる光触媒成分の脱落が生じにくくなる。
 上記バインダー層を構成するバインダーは、有機バインダー、無機バインダー又はそれらの混合物のいずれでもよい。セラミックスを基材として用いる場合、有機バインダーを用いなくてもよく、無機バインダー単独でもバインダー層を形成することができる。金属製の基材を使用する場合、金属基材と無機バインダーとの接着性は低いため、有機バインダー又は有機バインダーと無機バインダーの混合物を使用することが好ましい。理論に拘束されることを意図するものではないが、有機バインダーの中でも、熱可塑性の合成樹脂から成る有機バインダー層は、光触媒層形成の乾燥段階で有機バインダー層の一部が軟化することにより、光触媒層が固定され易くなるため望ましい。このような有機バインダーの例として、アクリル樹脂のような、透明性の高い非晶質の合成樹脂や、ポリ酢酸ビニルなどが挙げられる。透明性の高い樹脂、例えばアクリル樹脂は、基材上での反射を阻害しないため好ましい。また、アクリル樹脂は、基材から光触媒層などのコート層が剥離し、コート層中の光触媒成分が脱離するのを防ぐ観点からも好ましい。合成樹脂原液を水で所定濃度に希釈する場合には、水分散体であることが望ましい。基材の反射率を維持するために、形成した層が光を吸収しにくいものを選択する必要がある。
 バインダー層に無機バインダーを含めることで、光触媒成分の固定化が強固なものとなる。特に、光触媒成分が有機バインダー層の一部を分解した場合、無機バインダーが骨格となり、光触媒の脱落が抑制される。異なる結晶子径又は粒子径のバインダーを組み合わせて使用することで、バインダー効果が高まり、更なる脱落抑制を達成することができる。バインダー層に含まれる無機バインダーは、シリカ系、チタニア系、ジルコニア系、アルミナ系などのうち、いずれか1つまたは2つ以上の組み合わせであってもよい。チタニア系バインダーは、それ自体が光触媒能を有することがあるため、光触媒能を向上させる観点から無機バインダーとして望ましい。高いBET比表面積、例えば50m/g以上のBET比表面積を有るコート層を形成するバインダーは、空気中の埃をトラップするため好ましい。
 チタニア系バインダーは、チタン化合物、有機チタン化合物、もしくは有機チタン化合物とその他の化合物との混合物であって、光触媒成分同士、あるいは光触媒成分と基材表面又はバインダー層とを結合することができる物質であればどのような物質であるかは特に限定されない。チタニア系バインダーとしては、たとえばチタンアルコキシド、酸化チタンゾル(たとえば、石原産業製STS−01、STS−02、多木化学製A−6、M−6)、酸化チタンゾルに無機バインダーを含む酸化チタンゾル(たとえば、多木化学製CA−62)、酸化チタンに金属アルコキシドを含む酸化チタンゾル(たとえば、多木化学製タイノックCZG、CZPタイプ;金属アルコキシドとしてエチルポリシリケートを使用している)等が挙げられる。
 上記無機バインダーはゲル状又はゾル状のいずれでもよい。無機バインダーは、その前駆体として、水等の媒体に分散したコロイドの形態の、ある程度の粘度を有するゾルとなっていることもある。無機バインダーは、光触媒の固定化の観点から、ゾル粒子径が5~200nmであることが好ましい。
 単一の結晶子径又は粒子径を有する無機バインダーだけでなく、異なる結晶子径又は粒子径の組み合わせを有する無機バインダーも使用することもできる。結晶子径は、シェラーの式(Scherrer,P.(1918).Nachr.Ges.Wiss.Gottingen,26 September,p.98−100)に従い、X線回折装置で測定することができる。本明細書に記載の結晶子径は、RINT−2500V(リガク社製)を用いて測定した値を指す。
 バインダー層は、一層の有機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層であってもよい。しかしながら、バインダー層は一層に限定されず、複数の層から構成されていてもよい。バインダー層が複数の層から構成される場合、それぞれの層は同一又は互いに異なる種類の有機バインダー、無機バインダー及び/又はこれらの混合物から成り、有機バインダーと無機バインダーとが組み合わされる場合、その比率は強度が向上するよう適宜決定される。光触媒フィルターの強度を向上させる観点からは、バインダー層は、一層のバインダー層、特に有機バインダーなる一層のバインダー層が好ましい。また、バインダー層が複数の層から成る場合には、基材表面に形成された一層の有機バインダー層の上に別のバインダー層が積層されていることが好ましい。別の態様において、これらの層は、上記バインダーに加え、任意の成分、例えば、蓄光材や反射材を含んでもよい。反射材が存在することで、基材の反射率が向上し、その結果光触媒能も向上する。反射材の例として、ユニビーズ(ユニチカ社製)などがある。
 基材表面へのバインダー層の担持方法は特に限定されず、バインダーを溶解ないし懸濁させた溶液をあらかじめ調製して、その溶液を基材表面に直接塗布、乾燥してバインダー層を形成する方法、その溶液中に基材を浸漬、乾燥して基材表面にバインダー層を形成する方法、あるいは溶液を使用せずにバインダーを基材表面に圧着させてバインダー層を形成する方法などが考えられる。バインダー層の厚さは、上記担持方法を繰り返すことで調節することができる。反射率維持の観点から、バインダー層の厚さは、好ましくは50μm以下、より好ましくは30μm以下、更により好ましくは20μm以下である。
 光触媒層は、基材又はバインダー層の表面上に形成される。本明細書で使用する用語「光触媒成分」とは、光が照射されることにより活性化されて、空気中の有害物質を分解する物質を意味する。光は用途および設置される光源によって選択され、それに用いる光源に応答する光触媒が選択される。光触媒成分としては、酸化チタン(チタニア)、酸化亜鉛、酸化タングステン、酸化銅などの金属酸化物、又は白金、金、銀、銅、鉄、パラジウム、ジルコニウムなどの金属微粒子担持酸化チタン、あるいはルテニウム錯体などの金属錯体の単体又はその複合体を用いることが出来る。酸化チタンの一部を窒素などの他元素で置換したものも用いることが出来る。
 光触媒成分として酸化チタンを用いる場合、酸化チタンの結晶構造は、アナターゼ型、ルチル型またはブルッカイト型、あるいはその混合物のいずれでもよい。光触媒はゲル状又はゾル状のいずれでもよい。光触媒は、その前駆体として、水等の媒体に分散したコロイドの形態の、ある程度の粘度を有するゾルとなっていることもある。ゾルの粒子径は通常使用される範囲内のもの、例えば5~200nmでよく、光触媒成分を均一に分散させる観点から、当該粒子径は10~50nmであることが好ましい。光触媒成分の結晶子径は、好ましくは50~150nm、より好ましくは60~120nm、更により好ましくは70~100nmである。光触媒成分の担持量は、1L当たり、好ましくは5~50g、より好ましくは6~35g、更により好ましくは7~20gである。
 上記光触媒層は、更に無機バインダーを含んで成ることがある。光触媒層に無機バインダーを含めることで、光触媒成分の固定化をより強固なものとすることができる。光触媒層中の無機バインダーの種類は、バインダー層に含まれるものと同一のものでも互いに異なるものでもよい。当該無機バインダーはゲル状又はゾル状のいずれでもよく、前駆体にはゾル状のものを選択するのが好ましい。当該無機バインダーの粒子径は、光触媒成分を固定化する観点から、好ましくは5~300nm、より好ましくは5~100nmである。当該粒子径の範囲内であれば、異なる粒子径を有する無機バインダーを組み合わせて使用することもできる。
 光触媒層に無機バインダーを含める場合、無機バインダーの比率を増大させることで、基材とコート層との密着性が向上し、光触媒成分が基材から剥離するのを抑制できる。すなわち、光触媒層における無機バインダーの重量比を増大させることで、光触媒作用の脱落による光触媒性能の低下を防ぐことができる。一方、無機バインダーが増大して光触媒成分の絶対量が少なくなると、光触媒能が低下する。従って、このような観点から、光触媒成分と無機バインダーとの重量比は、光触媒成分1に対して、無機バインダーは3以下、好ましく2.5以下である。尚、無機バインダー量の増大に伴う光触媒能の低下は、光触媒成分がバインダーに埋もれてしまうことによっても生じる。
 光触媒層は、光触媒の光触媒能を損なわない限度において、任意の成分を含有してもよい。例えば、光触媒成分の光触媒能を向上させる目的で、上述のような蓄光材や反射材を含んでもよい。
 光触媒層を基材又はバインダー層の表面に担持させる方法は、特に限定されず、光触媒成分及び任意に無機バインダーとを溶解ないし懸濁させた溶液を、基材表面又はバインダー層が形成された基材表面に塗布、乾燥する方法、当該溶液中にバインダー層が形成された基材を浸漬、乾燥する方法、あるいはこのような溶液を用いずに、光触媒成分又は光触媒成分と無機バインダーとの混合物を吸着剤層を形成した基材表面に圧着する方法などが考えられる。光触媒層の厚さは、上記担持方法を繰り返すことで調節することができる。反射率を維持して光を有効活用する観点から、光触媒層の厚さは、好ましくは50μm以下、より好ましくは30μm以下、更により好ましくは20μm以下である。光触媒層の一部の厚さが当該数値範囲外にあっても、その他の部分の厚さが当該数値範囲であれば、光触媒利用率を確保することができる場合もある。
 本発明の光触媒フィルターは、悪臭、例えばタバコ臭に含まれるアセトアルデヒド、酢酸、アンモニアの三成分、その他、ホルムアルデヒド、硫化水素、メチルメルカプタン、トルエン、窒素酸化物、オゾン等を処理するのに適している。これらの悪臭の中でも、本発明の光触媒フィルターはトルエン、アンモニア、酢酸を効率良く浄化することができる。本発明の光触媒フィルターは、脱臭装置、例えば汎用の空気清浄機内に配置してもよい。脱臭装置における光触媒フィルターの配置は特に限定されるものではないが、当該フィルターの光触媒能を最大限発揮させるために、UVランプ又は蛍光灯ランプ、特にUVランプが当該フィルターの周囲に配置されていることが望ましい。例えば、当該光触媒フィルターは、UVランプ又は蛍光灯ランプの悪臭の流れ方向下流側部分に配置してもよい。UVランプ又は蛍光灯ランプに加え、防塵機能や吸着脱臭機能を有するフィルター、ファン等が上記装置内に設置されることもある。本発明の光触媒フィルターと吸着脱臭機能を有するフィルターとが併存することで、脱臭機能を補完し合い、単独では除去できなかった悪臭の除去も可能となる。
 以下の実施例を用いて、本発明を更に具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
光触媒フィルターの作製
 反射率が81%のアルミ材の箔から成るアルミハニカム(キャタラー社製)を使用し、有機バインダーとしてアクリル樹脂(ボンコートAB−795(DIC株式会社製))を使用した。反射率は、分光光度計(島津製作所製UV−3150)を用いて、400nmの波長で測定した。
 上記アクリル樹脂をイオン交換水で不揮発分2.5重量%となるように希釈し、上記基材を当該希釈液に浸漬させ、基材表面に満遍なく当該希釈液を付着させた。基材表面上の過剰な希釈液を吹き払った後、当該基材を110℃で乾燥させ、有機バインダー層を形成させた。事前に調製した水性光触媒液(pH7)に浸漬させ、有機バインダー層の表面に満遍なく当該光触媒液を付着させた。基材表面上の過剰な光触媒液を吹き払った後、当該基材を110℃で乾燥させることで、光触媒層が形成し、下記の表に示すような光触媒フィルターが得られた(実施例1~6及び比較例1)(光触媒層コート量:30g/L;光触媒成分/無機バインダー:50/50…重量比)。ここで、下記の表中の光触媒成分の結晶子径は、RINT−2500V(リガク社製)を用いて測定したものである。
Figure JPOXMLDOC01-appb-T000001
悪臭浄化試験
1.アセトアルデヒド浄化性能評価
 上記光触媒フィルターの60×60mmのフィルター試験片を用意した。アクリルボックス(30L)内に当該試験片を設置し、密閉した後、ボックス内がおよそ100ppmとなるように、1%アセトアルデヒド(300mL)を添加した。容器攪拌ファンを用いてボックス内のアセトアルデヒド濃度を均一にした。アセトアルデヒドの添加から60分後に初期濃度Cを測定した。初期濃度測定後ブラックライトを照射し、照射から15、30、45、60分後の濃度Cを測定した。濃度C及び濃度Cの測定は、水素炎イオン検出器(FID:島津製作所社製GC−8A)を用いて行った。30分後の測定結果を図1に示す。浄化率は、以下の計算式に基づき算出した。
浄化率(%)=(100−(C−C)/C)×100
2.アンモニア浄化性能評価
 1%アセトアルデヒドの代わりに、1%アンモニアを用い、また、濃度Cをブラックライト照射後5、15分後に行った点を除き、アセトアルデヒド浄化性能評価と同様の条件下で上記光触媒フィルターの試験片(60×60mm)をアンモニア浄化性能評価試験にかけた。濃度C及び濃度Cの測定は、検知管(光明理化学工業社製105SD(0.2~20ppmの濃度用)及び105SC(5~260ppm))を用いて行った。5分後の測定結果を図2に示す。浄化率は、上記計算式に基づき算出した。
3.酢酸浄化性能評価
 1%アセトアルデヒドの代わりに、1%酢酸(テトラバックで1%ガスとして調製したもの)を用い、また、濃度Cをブラックライト照射後15、30分後に行った点を除き、アセトアルデヒド浄化性能評価と同様の条件下で上記光触媒フィルターの試験片(60×60mm)を酢酸浄化性能評価試験にかけた。初期濃度の測定は、検知管(ガステック社製81)を用いて行った。15分後の測定結果を図3に示す。浄化率は、上記計算式に基づき算出した。
 図1~3の結果から明らかなとおり、本発明の光触媒フィルターは、試験したいずれの悪臭も短時間で脱臭することが分かる。
光触媒層コート量の検討
 光触媒層コート量と浄化性能との関係について検討するために、以下の表に記載の光触媒フィルターを調製した。
Figure JPOXMLDOC01-appb-T000002
 上記表及び図4から明らかなように、コート量が増大するほどアセトアルデヒド浄化率は向上した。
基材厚さの検討
 基材厚さと浄化性能との関係について検討するために、以下の表に記載の光触媒フィルターを調製した。
Figure JPOXMLDOC01-appb-T000003
 上記表及び図5から明らかなように、基材厚さが増すほどアセトアルデヒド浄化率は向上する。
基材セル数の検討
 基材セル数と浄化性能との関係について検討するために、以下の表に記載の光触媒フィルターを調製した。
Figure JPOXMLDOC01-appb-T000004
 上記表及び図6から明らかなように、基材セル数が増大するほどアセトアルデヒド浄化率は向上するが、1200セル/(インチ)の光触媒フィルターのアセトアルデヒド浄化率は400セル/(インチ)のものより低かった。
剥離試験
 本発明の光触媒フィルターの強度を試験するべく、一層のバインダー層を有する光触媒フィルター(実施例17~19)と、二層のバインダー層を有する光触媒フィルター(実施例20~22)を調製した。
A)一層のバインダー層を有する光触媒フィルターの調製
 下記の手順に従い、本発明の光触媒フィルターを調製した。
1.反射率が81%のアルミ材の箔から成るアルミハニカム(キャタラー社製)(W30×D30×H20mm)の重量測定(S
2.不揮発分50重量%の有機バインダー(下記の表1を参照のこと)をイオン交換水で20倍希釈し、不揮発分2.5重量%のバインダー液を調製。
3.上記基材を2.のバインダー液に浸漬し、基材表面上の過剰なバインダー液を吹き払った後、当該基材を乾燥(110℃)(有機バインダー層の形成)。
4.3.の重量測定(S)。
5.光触媒(TiOゾル 固形分20重量%)と無機バインダー(シリカゾル 固形分重量20%)を重量比5:5で混合。
6.4.を5.に浸漬し、基材表面上の過剰な混合物を吹き払った後、当該基材を乾燥(110℃)(無機バインダーを含む光触媒層の形成)。
7.6.の重量測定(S)。
8.コート後サンプルと基材の重量差からコート層重量(CW)を算出 CW=(S−S)。
 上記手順に従うことで、基材と、当該基材表面上に担持されてなる有機バインダー層と、当該有機バインダー層表面上に担持されてなる、無機バインダーを含む光触媒層とを有する光触媒フィルター(実施例17~19)が調製された(光触媒成分担持量:13.9g/L;光触媒成分/無機バインダー:50/50…重量比)。ここで、実施例17~19で使用した光触媒成分の結晶子径は、RINT−2500V(リガク社製)を用いて測定した結果、いずれも81~82nmの範囲内であった。
B)二層のバインダー層を有する光触媒フィルターの調製
 下記の手順に従い、本発明の光触媒フィルターを調製した。
1.反射率が81%のアルミ材の箔から成るアルミハニカム(キャタラー社製)(W30×D30×H20mm)の重量測定(S)。
2.不揮発分50重量%の有機バインダー(下記の表1を参照のこと)をイオン交換水で20倍希釈し、不揮発分2.5重量%のバインダー液を調製。
3.上記基材を2.のバインダー液に浸漬し、基材表面上の過剰なバインダー液を吹き払った後、当該基材を乾燥(110℃)(有機バインダー層の形成)。
4.3.の重量測定(S)。
5.無機バインダー(シリカゾル 固形分20重量%)に3.を浸漬し、基材表面上の過剰なバインダーを吹き払った後、当該基材を乾燥(110℃)(無機バインダー層の形成)。
6.光触媒(TiOゾル 固形分20重量%)と無機バインダー(シリカゾル 固形分20重量%)を重量比5:5で混合。
7.5.の重量測定(S)。
8.6.を7.に浸漬し、基材表面上の過剰な混合物を吹き払った後、当該基材を乾燥(110℃)(無機バインダーを含む光触媒層の形成)。
9.8.の重量測定(S)。
10.コート後サンプルと基材の重量差からコート層重量(CW)を算出 CW=(S−S)。
 上記手順に従うことで、基材と、当該基材表面上に担持されてなる有機バインダー層と、当該有機バインダー層表面上に担持されてなる無機バインダー層と、当該無機バインダー層表面上に担持されてなる、無機バインダーを含む光触媒層とを有する光触媒フィルター(実施例20~22)が調製された(光触媒成分担持量:6.9g/L;光触媒成分/無機バインダー:50/50…重量比)。ここで、実施例20~22で使用した光触媒成分の結晶子径は、RINT−2500V(リガク社製)を用いて測定した結果、いずれも81~82nmの範囲内であった。
Figure JPOXMLDOC01-appb-T000005
コート層剥離による光触媒成分の脱落試験
 各実施例の光触媒フィルターの30×30mm試験片を110℃で3時間以上乾燥後、放冷し、その重量を測定した(W)。100mLの蒸留水の入った200mLのトールビーカーに当該試験片を入れ、これを超音波洗浄機(シャープ社製UT105)において60分間超音波処理した。その後、試験片を取り出し、乾燥機(110℃)で10時間以上乾燥させた。30℃以下になるまで放置した後、試験片重量を測定した(W)。コート層剥離率を以下の式から算出した:(W−W/CW)×100。結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表2の結果から、有機バインダーの種類により剥離率が変化すること、そして剥離率は有機バインダー層上にコートした層のコート回数にも依存することが分かる。また、有機バインダーの中でも、アクリル系の有機バインダーをバインダー層に含めると、当該バインダー層上のコート層が剥離しにくいことが明らかになった。
 本発明の光触媒フィルターは、従来の光触媒フィルターと同等以上の光触媒性能を有し、耐久性に優れているため、高い光触媒能を長期間維持することが要求される家庭用又は業務用の脱臭装置に好適である。

Claims (5)

  1.  基材と、当該基材表面上に直接、又はバインダー層を介して光触媒成分が担持されてなる光触媒層とを有する光触媒であって、
    前記バインダー層が、一層の有機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層から成るか、あるいは当該有機バインダー層に、無機バインダー層又は有機バインダーと無機バインダーとの混合物から成る層が積層された二又はそれ以上の複数の層から成り、
    前記光触媒成分の結晶子径がX線回折装置で測定した場合に50~150nmであり、
    前記バインダー層への光触媒成分担持量が5~50g/L以下である、光触媒フィルター。
  2.  前記光触媒層が無機バインダーを更に含んで成り、前記光触媒層に含まれる光触媒成分と無機バインダーとの重量比が光触媒成分1に対して無機バインダーは3以下である、請求項1に記載の光触媒フィルター。
  3.  前記基材表面の反射率が、分光光度計を用いて400nmの波長で測定した場合に60%以上である、請求項1又は2に記載の光触媒フィルター。
  4.  前記基材がハニカム形状である、請求項1~3のいずれか1項に記載の光触媒フィルター。
  5.  請求項1~4のいずれか1項に記載の光触媒フィルター並びにUV及び/又は蛍光灯ランプを具備する脱臭装置。
PCT/JP2011/056509 2010-03-15 2011-03-14 光触媒フィルター及びそれを具備する脱臭装置 WO2011115237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505758A JPWO2011115237A1 (ja) 2010-03-15 2011-03-14 光触媒フィルター及びそれを具備する脱臭装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010057961 2010-03-15
JP2010-057961 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011115237A1 true WO2011115237A1 (ja) 2011-09-22

Family

ID=44649318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056509 WO2011115237A1 (ja) 2010-03-15 2011-03-14 光触媒フィルター及びそれを具備する脱臭装置

Country Status (2)

Country Link
JP (1) JPWO2011115237A1 (ja)
WO (1) WO2011115237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151249A1 (en) * 2012-04-13 2015-06-04 Nichias Corporation Holding material for gas treatment device, gas treatment device, and method relating to same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225321A (ja) * 1995-04-14 1997-09-02 Sekisui Chem Co Ltd 光触媒体
JPH11188089A (ja) * 1997-12-26 1999-07-13 Toshiba Lighting & Technology Corp 光触媒体および照明器具
JPH11299875A (ja) * 1998-04-21 1999-11-02 Nitto Denko Corp 空気の浄化方法及び空気の浄化装置
WO1999063011A1 (fr) * 1998-06-04 1999-12-09 Toto Ltd. Agent de couche intermediaire permettant de former un film de revetement photo-emetteur ou un film de revetement photocatalytique et hydrophile
JP2000254518A (ja) * 1999-03-08 2000-09-19 Nippon Shokubai Co Ltd 表面被覆用光触媒並びにこれを用いた表面被覆剤及び光触媒性部材
JP2001070420A (ja) * 1999-09-01 2001-03-21 Equos Research Co Ltd 車載用空気清浄フィルタ
JP2004107841A (ja) * 2002-09-20 2004-04-08 Asahi Kasei Chemicals Corp 機能性繊維
JP2004160359A (ja) * 2002-11-13 2004-06-10 Nok Corp 光触媒ロ材およびその製造法
JP2005058931A (ja) * 2003-08-15 2005-03-10 Asahi Kasei Chemicals Corp ハニカム触媒構造体
WO2005044447A1 (ja) * 2003-11-06 2005-05-19 Toagosei Co., Ltd. 複合酸化型チタニア系光触媒及びその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371104B2 (ja) * 2000-03-24 2003-01-27 日新製鋼株式会社 光触媒活性及び耐光性に優れた光触媒被覆複合部材及びその製造方法
JP2002355562A (ja) * 2001-03-29 2002-12-10 Ecodevice Co Ltd 光応答性材料及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225321A (ja) * 1995-04-14 1997-09-02 Sekisui Chem Co Ltd 光触媒体
JPH11188089A (ja) * 1997-12-26 1999-07-13 Toshiba Lighting & Technology Corp 光触媒体および照明器具
JPH11299875A (ja) * 1998-04-21 1999-11-02 Nitto Denko Corp 空気の浄化方法及び空気の浄化装置
WO1999063011A1 (fr) * 1998-06-04 1999-12-09 Toto Ltd. Agent de couche intermediaire permettant de former un film de revetement photo-emetteur ou un film de revetement photocatalytique et hydrophile
JP2000254518A (ja) * 1999-03-08 2000-09-19 Nippon Shokubai Co Ltd 表面被覆用光触媒並びにこれを用いた表面被覆剤及び光触媒性部材
JP2001070420A (ja) * 1999-09-01 2001-03-21 Equos Research Co Ltd 車載用空気清浄フィルタ
JP2004107841A (ja) * 2002-09-20 2004-04-08 Asahi Kasei Chemicals Corp 機能性繊維
JP2004160359A (ja) * 2002-11-13 2004-06-10 Nok Corp 光触媒ロ材およびその製造法
JP2005058931A (ja) * 2003-08-15 2005-03-10 Asahi Kasei Chemicals Corp ハニカム触媒構造体
WO2005044447A1 (ja) * 2003-11-06 2005-05-19 Toagosei Co., Ltd. 複合酸化型チタニア系光触媒及びその用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151249A1 (en) * 2012-04-13 2015-06-04 Nichias Corporation Holding material for gas treatment device, gas treatment device, and method relating to same
US9266063B2 (en) * 2012-04-13 2016-02-23 Nichias Corporation Holding material for gas treatment device, gas treatment device, and method relating to same

Also Published As

Publication number Publication date
JPWO2011115237A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
US7255831B2 (en) Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
US20030050196A1 (en) Photocatalyst compositions and methods for making the same
Li et al. Active complexes on engineered crystal facets of MnOx–CeO2 and scale-up demonstration on an air cleaner for indoor formaldehyde removal
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
JP6352527B2 (ja) 光触媒機能性フィルム及びこの製造方法
JP2001070800A (ja) 光触媒膜組成物及びこれを用いた光触媒体
JPWO2007039984A1 (ja) 光触媒含有有機材
US11224860B2 (en) Nanofiber surfaces
JP2017526523A (ja) 光触媒機能性フィルム及びこの製造方法
Tao et al. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams
JP4112661B2 (ja) 光触媒体及びその用途
US8617478B2 (en) Photocatalytic device with mixed photocatalyst/silica structure
WO2006054954A1 (en) Fabrication of a densely packed nano-structured photocatalyst for environmental applications
WO2011115237A1 (ja) 光触媒フィルター及びそれを具備する脱臭装置
JP2000225349A (ja) フィルター
JP2005254128A (ja) 光触媒粒子およびその固定化方法ならびに光触媒性部材
US8309484B2 (en) Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
RU2465046C1 (ru) Композитный адсорбционно-каталитический материал для фотокаталитического окисления
JP2001025668A (ja) 光触媒コルゲートフィルター
RU2562485C1 (ru) Фотокаталитический сорбирующий тканевый материал
RU2559506C1 (ru) Способ получения фотокаталитического сорбирующего тканевого материала
WO2010052848A1 (ja) 空質浄化装置
RU154765U1 (ru) Фотокаталитический сорбирующий материал
CN102131577B (zh) 具有混合的光催化剂/二氧化硅结构的光催化装置
JP2001259003A (ja) 空気浄化フィルターおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505758

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756420

Country of ref document: EP

Kind code of ref document: A1