[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011115228A1 - Anti-glare film, manufacturing method for same, polarizing plate and image display device - Google Patents

Anti-glare film, manufacturing method for same, polarizing plate and image display device Download PDF

Info

Publication number
WO2011115228A1
WO2011115228A1 PCT/JP2011/056472 JP2011056472W WO2011115228A1 WO 2011115228 A1 WO2011115228 A1 WO 2011115228A1 JP 2011056472 W JP2011056472 W JP 2011056472W WO 2011115228 A1 WO2011115228 A1 WO 2011115228A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
diffusion layer
antiglare film
light
antiglare
Prior art date
Application number
PCT/JP2011/056472
Other languages
French (fr)
Japanese (ja)
Inventor
崇 児玉
誠 本田
裕子 鈴木
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020127027006A priority Critical patent/KR101604514B1/en
Priority to CN201180012291.0A priority patent/CN102782530B/en
Publication of WO2011115228A1 publication Critical patent/WO2011115228A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an antiglare film, a method for producing the antiglare film, a polarizing plate, and an image display device.
  • an optical layer for preventing reflection is usually provided on the outermost surface.
  • the body is provided.
  • Such an anti-reflection optical laminate suppresses the reflection of an image or reduces the reflectance by light diffusion or interference.
  • an antiglare film in which an antiglare layer having an uneven shape is formed on the surface of a transparent substrate.
  • This anti-glare film can prevent deterioration of visibility by diffusing external light by the uneven shape of the surface.
  • a certain degree of hard coat property is also required.
  • a conventional anti-glare film for example, a film in which an anti-glare layer is formed by coating a resin containing a filler such as silicon dioxide (silica) is known (for example, see Patent Documents 1 and 2).
  • a conventional anti-glare film a type in which aggregated particles and inorganic and / or organic fillers are added to the resin to form an uneven shape on the layer surface, or a film having an uneven surface on the layer surface is laminated.
  • the concavo-convex shape is transferred, and types in which the concavo-convex shape is formed by phase separation using the compatibility of the compounds constituting the binder, such as two or more types of polymers.
  • Such a conventional anti-glare film is designed to obtain a light diffusing and anti-glare action by the action of the surface shape of the anti-glare layer in any type. It is necessary to increase the uneven shape on the surface.
  • a method for increasing the uneven shape of the surface of the antiglare layer for example, a method of containing an aggregate formed by agglomerating fine particles in the antiglare layer is known.
  • An antiglare layer containing particles in an aggregated form formed by aggregating certain primary particles is described.
  • the agglomerated particles in Patent Document 3 have an extremely small average primary particle size of 0.005 to 0.03 ⁇ m, and the agglomerated morphology obtained by aggregating a large number of such fine primary particles is arbitrarily controlled. This is practically difficult, and there is a problem that the uneven shape on the surface of the antiglare layer to be formed cannot be controlled to a desired shape.
  • Patent Document 4 describes an optical laminate in which the total haze value and the internal haze value are in a specific relationship, and the antiglare layer having an uneven shape on the outermost surface includes aggregated fine particles.
  • the antiglare layer described in Patent Document 4 no study has been made on the control of the aggregation state of the fine particles, and aggregates in which many fine particles are aggregated in the thickness direction of the antiglare layer, Aggregates aggregated in the in-plane direction were included.
  • the optical laminated body described in Patent Document 4 a large number of large convex portions are formed on the surface of the antiglare layer, and generation of white browning cannot be sufficiently suppressed, and so-called surface glare is generated. In some cases, the visibility of the display screen may be reduced.
  • Patent Document 5 includes an antiglare layer containing an aggregate of fine particles, and the surface of the antiglare layer has a fine uneven shape with an arithmetic mean roughness Ra and a root mean square slope R ⁇ q within a predetermined range.
  • An antiglare film inside is described.
  • the antiglare layer described in Patent Document 5 is an aggregate of fine particles aggregated in the in-plane direction of the antiglare layer, and an antiglare layer containing such an aggregate provides sufficient antiglare performance. In addition to being unable to do so, aggregates aggregated in the in-plane direction increased reflected light, causing white-brownness.
  • Patent Document 6 describes an antiglare film in which the ten-point surface roughness of the surface of the antiglare layer is within a predetermined range, and describes that the antiglare layer contains particles of irregular aggregates. Has been. However, in Patent Document 6, the aggregation state of the particles of the irregular aggregate contained in the antiglare layer is not examined, and the aggregate of particles aggregated in the height direction of the antiglare layer or the surface of the antiglare layer It is described that an aggregate in which particles are aggregated in an inward direction is contained in an antiglare layer.
  • the present invention is excellent in anti-glare properties, can sufficiently suppress the occurrence of white brown, has high contrast, can suitably prevent occurrence of surface glare, etc., and also has a hard coat property.
  • An object is to provide an antiglare film provided, a method for producing the antiglare film, a polarizing plate and an image display device to which the antiglare film is applied.
  • the present invention is an antiglare film comprising a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having a concavo-convex shape on the surface.
  • a coating liquid containing fine particles (A) and a radiation curable binder containing a (meth) acrylate monomer as essential components is applied onto at least one surface of the light-transmitting substrate, dried, and coated
  • the fine particles (A) in the diffusion layer are inclined with respect to the surface of the light-transmitting base material by 50% or more of the fine particles (A) in the diffusion layer. It is an anti-glare film characterized by forming two aggregates aggregated so as to form a corner.
  • the inclination angle formed by the straight line connecting the centers of the two fine particles (A) forming the aggregate and the surface of the light-transmitting substrate is 20 to 70 °. It is preferable.
  • the said coating liquid contains a layered inorganic compound further.
  • the layered inorganic compound is preferably talc. Further, the content of the layered inorganic compound is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the radiation curable binder.
  • the fine particles (A) are preferably styrene fine particles and / or acrylic-styrene copolymer fine particles.
  • the D A is the thickness T of the diffusion layer
  • the coating liquid further contains organic fine particles (B), and the organic fine particles (B) in the diffusion layer preferably have a larger average particle diameter than the fine particles (A) in the diffusion layer.
  • the organic fine particles (B) in the diffusion layer are preferably not aggregated.
  • the said coating liquid contains the solvent which swells organic fine particles (B).
  • the organic fine particles (B) in the diffusion layer have an impregnation layer impregnated with a radiation curable binder, and the average thickness of the impregnation layer is preferably 0.01 to 1.0 ⁇ m. Further, when the average particle diameter of the organic fine particles (B) was D B, said D B is the thickness T of the diffusion layer, it is preferable to satisfy the following formula (B). D B ⁇ T (B)
  • the present invention also provides a method for producing an antiglare film comprising a light transmissive substrate and a diffusion layer formed on at least one surface of the light transmissive substrate and having a concavo-convex shape on the surface.
  • a coating liquid containing a radiation curable binder containing fine particles (A) and (meth) acrylate monomers as essential components is applied on at least one surface of the light-transmitting substrate and dried to form a coating film
  • the step of curing the coating film to form the diffusion layer, and the fine particles (A) in the diffusion layer have a straight line connecting the centers of 50% or more of the surface of the light-transmitting substrate.
  • It is also a method for producing an antiglare film characterized in that aggregates are formed so as to form an inclination angle with respect to the film.
  • this invention is a polarizing plate provided with a polarizing element, Comprising:
  • the anti-glare film of this invention is provided on the surface of the said polarizing element, It is also a polarizing plate characterized by the above-mentioned.
  • the present invention is also an image display device comprising the antiglare film of the present invention or the polarizing plate of the present invention on the outermost surface.
  • the antiglare film of the present invention has a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having an uneven shape on the surface.
  • the light transmissive substrate preferably has smoothness and heat resistance and is excellent in mechanical strength.
  • Specific examples of the material forming the light-transmitting substrate include polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, and polypropylene.
  • Thermoplastic resins such as polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, polyurethane, or cyclopolyolefin, preferably polyester (polyethylene terephthalate, polyethylene naphthalate), A cellulose triacetate is mentioned.
  • the light-transmitting substrate is preferably used as a flexible film-like body, but it is also possible to use these thermoplastic resin plates depending on the usage mode in which curability is required. Alternatively, a glass plate plate may be used.
  • the thickness of the light transmissive substrate is preferably 20 to 300 ⁇ m, more preferably an upper limit of 200 ⁇ m and a lower limit of 30 ⁇ m. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses.
  • the above light-transmitting substrate has an anchor in addition to a physical treatment such as corona discharge treatment, plasma treatment, saponification treatment, oxidation treatment, etc., in order to improve adhesion when an antiglare layer is formed thereon. Application of a paint called an agent or a primer may be performed in advance.
  • the diffusion layer comprises a coating liquid containing a radiation curable binder containing the fine particles (A) and a (meth) acrylate monomer as essential components, and at least the light transmissive substrate. It is formed by applying and drying on one surface to form a coating film and curing the coating film.
  • the monomer includes all molecules that can be a constitutional unit of the basic structure of the polymer film because the monomer film is cured by ionizing radiation. That is, if the oligomer or prepolymer is a basic unit of a cured film, the oligomer or prepolymer is also included.
  • the monomer preferably has a small weight average molecular weight of 5000 or less.
  • the diffusion layer is a cured coating layer unless otherwise specified.
  • the fine particles (A) are fine particles having an internal diffusion function in the diffusion layer and a function of forming convex portions on the surface of the diffusion layer.
  • FIG. 1 is a cross-sectional view schematically showing the state of aggregates in the diffusion layer.
  • two fine particles (A) 13 aggregate in a diffusion layer 12 formed on at least one surface of a light-transmitting substrate 11. Aggregates are formed.
  • the two fine particles (A) 13 forming the aggregate are aggregated so that a straight line connecting the centers thereof forms an inclination angle with respect to the surface of the light transmissive substrate 11. Since the diffusion layer contains such an aggregate, the antiglare film of the present invention is excellent in antiglare property, can sufficiently suppress the occurrence of white brown, and also suitably prevents the occurrence of surface glare. It becomes possible.
  • the fine particles (A) in the diffusion layer are composed of two aggregates in which the straight lines connecting the centers of each other are aggregated so as to form an inclination angle with respect to the surface of the light-transmitting substrate. A collection is formed.
  • the above-mentioned "straight line connecting the centers of each other” refers to the cross section of the two fine particles (A) constituting the aggregate in the cross section obtained by cutting the diffusion layer of the antiglare film of the present invention in the thickness direction. This means a straight line connecting the centers of the shapes.
  • the “center of the shape drawn by the cross section” means the center of the circle because the shape drawn by the cross section is usually a circle, and if the shape drawn by the cross section is other than a circle, it means the center of gravity of the cross section. .
  • the two fine particles (A) forming the aggregates preferably have an inclination angle of 20 to 70 ° formed by a straight line connecting the centers of the fine particles and the surface of the light-transmitting substrate.
  • the antiglare property of the antiglare film of the present invention may be inferior, and the aggregates contained in the diffusion layer may reflect outside light to cause white brown.
  • the convex portion formed on the surface of the diffusion layer at the corresponding position of the agglomerate becomes too large, and the antiglare film of the present invention has problems such as occurrence of whitening and surface glare. May occur.
  • a more preferable lower limit of the inclination angle is 30 °, and a more preferable upper limit is 60 °.
  • the tilt angle is within the above range, the balance of the antiglare performance, the anti-glare property, and the anti-glare property is extremely excellent.
  • the tilt angle is less than 20 °, it is assumed that the two fine particles (A) are aggregated in parallel to the surface of the light-transmitting substrate, and the tilt angle is 70 °. In the case of exceeding the above, it is assumed that the two fine particles (A) are aggregated perpendicularly to the surface of the light-transmitting substrate.
  • 50% or more of the fine particles (A) in the diffusion layer form the above-mentioned aggregate.
  • “50% or more forms the above-mentioned aggregate” means that the cross-section of the diffusion layer is randomly divided into 20 fine particles (A by observation with a microscope such as SEM, transmission type, or reflection type optical microscope).
  • 10 or more fine particles (A) form the above-mentioned aggregates.
  • the ratio of the fine particles (A) forming the aggregate is preferably 65%, more preferably 80%.
  • the lower limit of the proportion of the fine particles (A) forming the aggregate is 65%, the antiglare property and the ability to prevent white brown are more suitable, and when the lower limit of the proportion is 80%, sufficient Anti-glare and contrast can be obtained.
  • the fine particles (A) not forming the above-mentioned aggregates are less than 50%. That is, the diffusion layer is an aggregate in which the number of single-particulate fine particles (A) and two fine particles (A) are aggregated perpendicularly or parallel to the surface of the light-transmitting substrate in the region described above.
  • Such fine particles (A) are preferably particles that are not swollen by the radiation curable binder and / or solvent in the coating liquid.
  • particles that are not swollen include not only the case where the particles are not swollen by the radiation-curable binder and / or the solvent, but also a case where they are slightly swollen.
  • an impregnation layer similar to the organic fine particles (B) described later is formed on the fine particles (A) in the diffusion layer. Is smaller than the impregnated layer formed on the organic fine particles (B) and less than 0.1 ⁇ m.
  • fine particles (A2) Whether or not an impregnation layer is formed on the fine particles (A) in the diffusion layer can be determined by, for example, observing a cross section of the fine particles (A) in the diffusion layer with a microscope (SEM or the like). .
  • the fine particles (A) in the diffusion layer are also referred to as “fine particles (A2)”.
  • Examples of the fine particles (A) that are not swollen by the radiation curable binder and / or solvent include inorganic fine particles such as silica fine particles, polystyrene resin, melamine resin, polyester resin, acrylic resin, olefin resin, or a combination of these. Examples include organic fine particles such as coalescence with a higher degree of crosslinking. These fine particles (A) may be used alone or in combination of two or more.
  • organic fine particles that can easily be controlled in refractive index and particle diameter are preferable, and since a difference in refractive index from the radiation curable binder is easily provided (the refractive index of a normal radiation curable binder is 1.48 to 1.54), melamine fine particles, polystyrene fine particles and / or acrylic-styrene copolymer fine particles are preferably used.
  • the fine particles (A) are organic fine particles.
  • resin is a concept including resin components such as monomers and oligomers.
  • an acrylic-styrene copolymer resin may be used as a material.
  • the core-shell type there are polystyrene fine particles using fine particles made of acrylic resin for the core, and conversely acrylic fine particles using fine particles made of styrene resin for the core. Therefore, in this specification, the distinction between the acrylic fine particles, the polystyrene fine particles, and the acrylic-styrene copolymer fine particles is determined based on which resin has the closest characteristic (for example, refractive index) to the fine particles. .
  • the refractive index of the fine particles is less than 1.50, acrylic fine particles are obtained, and if the refractive index of the fine particles is 1.50 or more and less than 1.59, acrylic-styrene copolymer fine particles are obtained, and the refractive index of the fine particles is 1. If it is 59 or more, it can be regarded as styrene fine particles.
  • the fine particles may be referred to as “highly crosslinked” or “lowly crosslinked”, and the “highly crosslinked” and “lowly crosslinked” are defined as follows.
  • a coating liquid containing 190 parts by mass with respect to 100 parts by mass is prepared. Fine particles are immersed in the resulting coating liquid for 24 hours, and fine particles in which swelling is observed are defined as “low crosslinking”, and fine particles in which swelling is not observed are defined as “high crosslinking”.
  • the diffusion layer has a large particle size.
  • the surface is rough (the roughness of the image, such as the blurred outline of the display image to which the antiglare film of the present invention is applied). May occur and the image quality may deteriorate due to lack of precision.
  • the formed anti-glare film may curl or cracks may occur due to curing shrinkage of the binder component when the diffusion layer is formed.
  • the inventors of the present invention selected relatively small fine particles as fine particles to be contained in the diffusion layer, while paying attention to the relationship between the antiglare performance of such a diffusion layer and the size of the fine particles to be contained.
  • An anti-glare film capable of exhibiting sufficient anti-glare performance while avoiding the problems when the above-mentioned fine particles having a large particle diameter are selected by making the fine particles take a predetermined aggregation form in the diffusion layer. It was. That is, in the present invention, as the fine particles (A) to be contained in the diffusion layer, those having a smaller particle size are selected as compared with the fine particles that have been conventionally added to exhibit sufficient antiglare performance. is there.
  • the average particle diameter of the fine particles (A) is preferably in the range of 0.5 to 10.0 ⁇ m.
  • the thickness is less than 0.5 ⁇ m, the above-mentioned aggregate cannot be formed at a predetermined ratio, and the antiglare performance of the antiglare film of the present invention may be insufficient.
  • the thickness exceeds 10.0 ⁇ m, the uneven shape formed on the surface of the diffusion layer increases, and the anti-glare film of the present invention may cause whitening or surface glare.
  • a more preferable lower limit is 1.0 ⁇ m, and a more preferable upper limit is 8.0 ⁇ m.
  • the average particle diameter of the fine particles (A) is the particle diameter in the coating film, and means the arithmetic average of the particles if each of the contained fine particles has a single shape. In the case of irregular-shaped fine particles having a fine particle size distribution, it means the particle size of the most existing fine particles by particle size distribution measurement.
  • the particle diameter can be measured by a Coulter counter method or the like when only fine particles are present.
  • the average particle size of the fine particles (A) in the diffusion layer of the antiglare film of the present invention Is preferably measured by transmission optical microscope observation or cross-sectional SEM photography.
  • the height in the thickness direction of the aggregate when the tilt angle is 20 ° is (1.34 ⁇ D A ), and the tilt angle is 70. Since the height of the aggregate in the thickness direction at (°) is (1.94 ⁇ D A ), the above D A satisfies the following formula (A) as the positional relationship with the thickness T of the diffusion layer. Is preferred.
  • the average particle size D A of the particulate (A) to form aggregates and the thickness T of the diffusion layer it satisfies the relation of the formula (A), it can be suitably formed aggregates described above. That is, when the diffusion layer thickness is 1.34 times or less of the average particle diameter, the slope formed by the straight line connecting the centers of the two fine particles (A) constituting the aggregate and the surface of the light-transmitting substrate is formed. The angle may be too small, and if it is 1.94 times or more, the inclination angle formed between the straight line connecting the centers of the two fine particles (A) constituting the aggregate and the surface of the light-transmitting substrate is formed.
  • a more preferable range is the following formula (A ′) using approximate values of sin 30 ° ⁇ 0.50 and sin 60 ° ⁇ 0.87 from the positional relationship of the inclination angles of the two fine particles (A) described above. (1.50 ⁇ D A ) ⁇ T ⁇ (1.87 ⁇ D A ) (A ′)
  • the thickness T of the diffusion layer means an average value of the thickness of the diffusion layer measured by the SEM photograph of the cross section of the antiglare film.
  • the D A represents an average particle diameter of the fine particles (A) in the diffusion layer after curing.
  • an antiglare film is prepared in advance with a coating solution using organic fine particles having different crosslinking degrees, and the organic fine particles conform to a preferable degree of impregnation. Can be selected and used.
  • the content of the fine particles (A) in the coating liquid is not particularly limited, but is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the radiation curable binder described later. If it is less than 0.5 parts by mass, the antiglare performance of the antiglare film of the present invention may be insufficient, and surface glare may easily occur. On the other hand, when it exceeds 30 mass parts, the contrast of the image display layer using the anti-glare film of this invention may fall.
  • fine-particles (A) is 1 mass part, and a more preferable upper limit is 20 mass parts. By being in this range, the above-mentioned effect can be further ensured.
  • the coating liquid preferably further contains organic fine particles (B).
  • the difference in refractive index between the organic fine particles (B) and the binder is preferably less than 0.04.
  • the organic fine particles (B) mainly form convex portions on the surface of the diffusion layer at positions corresponding to the organic fine particles (B), and are formed by containing such organic fine particles (B). Smooth unevenness can be formed in the diffusion layer to achieve both antiglare properties and contrast.
  • the material constituting the organic fine particles (B) those which are swollen by a radiation curable binder and / or a solvent described later are preferable.
  • a silicone resin, a polyester resin, a styrene resin, an acrylic resin examples include olefin resins, copolymers thereof, and the like.
  • acrylic resins are preferably used, and further, the degree of cross-linking such as improving the cross-linking density when producing fine particles is changed.
  • Resins are preferred.
  • the “resin” is a concept including a resin component such as a reactive or non-reactive polymer, monomer or oligomer.
  • an acrylic-styrene copolymer resin may be used as a material.
  • the organic fine particles (B) are core-shell type fine particles, there are styrene fine particles using fine particles made of acrylic resin for the core, and conversely acrylic fine particles using fine particles made of styrene resin for the core.
  • the distinction between the acrylic fine particles, the styrene fine particles, and the acrylic-styrene copolymer fine particles is determined based on which resin has the closest characteristic (for example, refractive index) to the fine particles. .
  • refractive index of the fine particles is less than 1.50, acrylic fine particles are obtained, and if the refractive index of the fine particles is 1.50 or more and less than 1.59, acrylic-styrene copolymer fine particles are obtained, and the refractive index of the fine particles is 1. If it is 59 or more, it can be regarded as styrene fine particles.
  • the cross-linked acrylic resin examples include acrylic monomers such as acrylic acid and acrylic acid ester, methacrylic acid and methacrylic acid ester, acrylamide and acrylonitrile, a polymerization initiator such as persulfuric acid, and a cross-linking agent such as ethylene glycol dimethacrylate.
  • acrylic monomers such as acrylic acid and acrylic acid ester, methacrylic acid and methacrylic acid ester, acrylamide and acrylonitrile
  • a polymerization initiator such as persulfuric acid
  • a cross-linking agent such as ethylene glycol dimethacrylate.
  • a homopolymer or a copolymer obtained by polymerization using a suspension polymerization method or the like is preferable.
  • the acrylic monomer a cross-linked acrylic resin obtained using methyl methacrylate is particularly suitable.
  • the thickness of the impregnation layer described later can be controlled by adjusting the degree of swelling by the radiation curable binder and / or solvent described later
  • the average particle size of the organic fine particles (B) is not particularly limited, but may be equal to the average particle size of the fine particles (A) described above.
  • the organic fine particles (B) in the diffusion layer preferably have a larger average particle diameter than the fine particles (A2) in the diffusion layer.
  • the average particle size of the organic fine particles (B) in the diffusion layer is equal to or smaller than the average particle size of the fine particles (A2) in the diffusion layer, the effect of adding the fine particles (A) can hardly be obtained. Sometimes.
  • the average particle diameter of the diffusion layer of the organic fine particles (B) was D B
  • said D B is the thickness T of the diffusion layer
  • the average particle size D B of the organic fine particles (B) is, if not satisfied the above formula (B), i.e., the average particle size D B of the organic fine particles (B) is a thickness T greater than or equal to the diffusion layer
  • the uneven shape formed on the surface of the diffusion layer by the organic fine particles (B) becomes large, the hard coat property of the antiglare film of the present invention is inferior, and the contrast when applied to an image display device is lowered. It may cause.
  • the organic fine particles (B) in the diffusion layer preferably have an impregnation layer impregnated with a radiation curable binder described later.
  • the organic fine particles (B) on which the impregnation layer is formed that is, the organic fine particles (B) in the diffusion layer are also referred to as “organic fine particles (B2)”.
  • the organic fine particles (B2) have extremely excellent adhesion to the cured product of the radiation curable binder (hereinafter also referred to as binder resin) of the diffusion layer.
  • the impregnation layer in the organic fine particles (B2) is formed in a state where the radiation curable binder and the material constituting the organic fine particles (B2) are mixed.
  • the refractive index is between the refractive index of the curable binder and the refractive index of the organic fine particles (B), and the transmitted light of the diffusion layer is reflected at the interface between the organic fine particles (B2) (impregnated layer) and the binder resin. It can be suitably reduced.
  • the impregnated layer has an appropriate layer thickness, and the center of the organic fine particles (B2) maintains the refractive index of the initial organic fine particles (B), so that the internal diffusion does not decrease. Therefore, it becomes possible to suitably prevent surface glare.
  • the impregnated layer is a layer formed by swelling the organic fine particles (B) with the radiation curable binder and / or solvent. Therefore, the organic fine particles (B2) are extremely Fine particles with high flexibility. For this reason, the shape of the convex part formed in the position corresponding to the organic fine particles (B2) on the surface of the diffusion layer can be made gentle. This point will be described in more detail later.
  • the impregnation layer is a layer formed by impregnating a radiation curable binder from the outer surface of the organic fine particles (B2) in the diffusion layer toward the center thereof.
  • the impregnated layer is a layer formed by impregnating mainly low molecular weight components of the radiation curable binder, that is, monomers, and polymers and oligomers that are polymers of the radiation curable binder that is a high molecular weight component. Difficult to impregnate. However, even an oligomer or a polymer may have a relatively small molecular weight or may be impregnated together when the monomer is impregnated.
  • the impregnated layer can be identified, for example, by observing a cross section of the organic fine particles (B2) in the diffusion layer with a microscope (SEM or the like).
  • the radiation curable binder impregnated in the impregnation layer may be impregnated with all the constituent components, or may be impregnated with a part of the constituent components.
  • the impregnated layer preferably has an average thickness of 0.01 to 1.0 ⁇ m. If it is less than 0.01 ⁇ m, the effect obtained by forming the above-mentioned impregnation layer may not be sufficiently obtained. If it exceeds 1.0 ⁇ m, the internal diffusion function of the organic fine particles (B2) is sufficiently exhibited. The effect of preventing surface glare may not be obtained sufficiently.
  • the more preferable lower limit of the average thickness of the impregnated layer is 0.1 ⁇ m, and the more preferable upper limit is 0.8 ⁇ m. By being in this range, the above-mentioned effect can be exhibited more.
  • the diameter of the portion where the impregnated layer of the organic fine particles (B2) is not formed is preferably equal to or greater than the wavelength of light from the viewpoint of securing the internal diffusion function and preventing surface glare.
  • the average thickness of the impregnated layer means the average value of the thickness of the impregnated layer of organic fine particles (B2) observed in the cross-sectional SEM photograph of the antiglare film.
  • the cross section of the diffusion layer is 3000 to 50,000 times by SEM, and after observing and photographing any 5 scenes in which at least one fine particle with an impregnation layer is present, The thickness can be obtained as a value obtained by measuring two points for each fine particle and averaging 10 measured values. The thickness of the impregnated layer is measured by selecting two points where the boundary between the binder resin and the fine particles around the fine particles is relatively clear and the maximum impregnation is performed.
  • the organic fine particles generally have a cross-linked structure, but the degree of swelling by the radiation curable binder and / or solvent varies depending on the degree of the cross-linking, and the organic fine particles usually have a high degree of cross-linking. If so, the degree of swelling becomes low, and if the degree of crosslinking is low, the degree of swelling becomes high. For this reason, for example, when the material constituting the organic fine particles (B) is the above-mentioned crosslinked acrylic resin, the thickness of the impregnated layer of the organic fine particles (B2) appropriately adjusts the degree of crosslinking of the crosslinked acrylic resin. By doing so, it can be controlled within a desired range.
  • the organic fine particles (B2) have a higher degree of cross-linking toward the central portion, and the inner side than the thickness of the impregnated layer of the organic fine particles (B2) is impregnated.
  • the degree of crosslinking is not low and the degree of crosslinking is as low as the surface. The same applies to the fine particles (A) described above.
  • the D B 1 and D B 2 are as follows: It is preferable to satisfy the formula (2). 0.01 ⁇ m ⁇ D B 2 ⁇ D B 1 ⁇ 1.0 ⁇ m (2) In the above formula (2), when “D B 2 -D B 1” is 0.01 ⁇ m or less, the thickness of the impregnated layer becomes too thin, and the effect obtained by forming the above impregnated layer is obtained. There are times when you can't.
  • D B 2 -D B 1 is 1.0 ⁇ m or more, the unevenness formed on the surface becomes too large, and the internal diffusion function is not sufficiently exhibited, and the effect of preventing surface glare can be sufficiently obtained. There may not be.
  • the more preferable lower limit of the above “D B 2-D B 1” is 0.1 ⁇ m, and the more preferable upper limit is 0.5 ⁇ m.
  • “D B 2 -D B 1” is within this range, the above-described effects can be further exerted.
  • the organic fine particles (B) when the organic fine particles (B) have an impregnated layer in the diffusion layer, the organic fine particles (B) may have, for example, organic fine particles having different degrees of crosslinking in advance.
  • An anti-glare film may be prepared with a coating solution using, and organic fine particles matching a preferable degree of impregnation may be selected and used.
  • the antiglare film of the present invention has an average particle diameter of the fine particles (A) and the organic fine particles (B) described above as D.
  • D A 1 and D B 1 and the average particle diameters of the fine particles (A2) and the organic fine particles (B2) in the diffusion layer are D A 2 and D B 2, respectively, D A 1, D B 1, D A 2 and D B 2 preferably satisfy the following formula (3).
  • the uneven shape on the surface of the diffusion layer is made smooth, and the change in the refractive index of the particles due to the impregnation of the binder or the like into the particles contributing to internal diffusion can be suppressed.
  • the internal diffusion can be easily maintained, and the reflection on the surface of the particles in the diffusion layer can be reduced, so that the antiglare film of the present invention can be more reliably prevented from whitening and surface glare.
  • the organic fine particles (B) are preferably not aggregated in the thickness direction (longitudinal direction) of the diffusion layer in the diffusion layer.
  • the organic fine particles (B) in the diffusion layer are aggregated so as to be stacked in the thickness direction of the diffusion layer, a large convex portion is formed on the surface of the diffusion layer at a position corresponding to the aggregated organic fine particles (B).
  • white brown or surface glare may occur.
  • aggregation of the organic fine particles (B) in the diffusion layer can be suitably prevented by containing, for example, a layered inorganic compound described later.
  • the above problem is less likely to occur than the aggregation in the vertical direction. Since a similar problem also occurs, it is preferable to add a layered inorganic compound as in the case of aggregation in the vertical direction.
  • the content of the organic fine particles (B) in the coating solution is not particularly limited, but is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the radiation curable binder described later. If the amount is less than 0.5 part by mass, a sufficient uneven shape cannot be formed on the surface of the diffusion layer, and the antiglare performance of the antiglare film of the present invention may be insufficient. On the other hand, when the amount exceeds 30 parts by mass, aggregation of the organic fine particles (B) is likely to occur in the coating liquid, aggregation in the vertical or horizontal direction described above occurs in the diffusion layer, and the surface of the diffusion layer is large. Protrusions may be formed and white browning or surface glare may occur.
  • the minimum with more preferable content of the said organic fine particle (B) is 1.0 mass part, and a more preferable upper limit is 20 mass parts. By being in this range, the above-mentioned effect can be further ensured.
  • the radiation curable binder contains a (meth) acrylate monomer as an essential component.
  • the diffusion layer can include the above-described aggregate without impairing hard coat properties.
  • a radiation curable binder those that swell the organic fine particles (B) described above are preferably exemplified, and those having transparency are preferred, and examples thereof include ionizing radiation curable resins that are cured by ultraviolet rays or electron beams. It is done.
  • “(meth) acrylate” refers to methacrylate and acrylate.
  • Examples of the (meth) acrylate monomer include compounds having one or more unsaturated bonds such as a compound having a (meth) acrylate functional group.
  • Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( (Meth) acrylate, pentaerythritol penta (meth) acrylate, polyethylene glycol di (meth) acrylate, bisphenol F EO modified di (meth) acrylate, bisphenol A EO modified di (meth) acrylate, trimethylolpropane tri (meth) acrylate, di Pentaerythritol penta (meth) acrylate, isocyanuric acid EO-modified di (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, trime Roll propane PO modified tri (meth) acrylate, trimethylolprop
  • a relatively low molecular weight polyester resin having an unsaturated double bond polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, Polybutadiene resin, polythiol polyene resin, and the like can also be used as the ionizing radiation curable resin.
  • the coating liquid preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime esters, thioxanthones, propiophenones, benzyls, benzoins, and acylphosphine oxides. It is done. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the photopolymerization initiator acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. are used alone or in combination when the ultraviolet curable resin is a resin system having a radical polymerizable unsaturated group. It is preferable.
  • the photopolymerization initiator includes aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfonic acid. It is preferable to use esters or the like alone or as a mixture.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the ionizing radiation curable resin is used in combination with a solvent-drying resin (a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating).
  • a solvent-drying resin a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating.
  • the solvent-drying resin plays an additive role, and an ionizing radiation curable resin is mainly used.
  • the addition amount of the solvent-drying resin is preferably 40% by mass or less based on the total solid content of the resin component contained in the coating liquid.
  • the solvent-drying resin include thermoplastic resins. As the thermoplastic resin, those generally exemplified are used. By adding the solvent-drying resin, coating film defects on the coated surface can be effectively prevented.
  • thermoplastic resins include, for example, styrene resins, (meth) acrylic resins, vinyl acetate resins, vinyl ether resins, halogen-containing resins, alicyclic olefin resins, polycarbonate resins, and polyester resins. , Polyamide resins, cellulose derivatives, silicone resins, and rubbers or elastomers.
  • the thermoplastic resin it is usually preferable to use a resin that is non-crystalline and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • resins with high moldability or film formability, transparency and weather resistance such as styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) Etc. are preferred.
  • the material of the light-transmitting substrate is a cellulose resin such as triacetyl cellulose “TAC”, as a preferred specific example of the thermoplastic resin, a cellulose resin such as nitrocellulose, Examples include acetyl cellulose, cellulose acetate propionate, and ethyl hydroxyethyl cellulose.
  • TAC triacetyl cellulose
  • nitrocellulose examples include acetyl cellulose, cellulose acetate propionate, and ethyl hydroxyethyl cellulose.
  • the coating liquid may further contain a thermosetting resin.
  • the thermosetting resin include phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin.
  • a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, and the like can be used in combination as necessary.
  • the refractive index of the radiation-curable binder a difference between the refractive index of the fine particles (A) and organic fine particles (B), when the respective delta A and delta B, the delta A and delta B, it is preferable to satisfy the following formula (1).
  • the refractive index of the radiation curable binder, fine particles (A) and organic fine particles (B) can be measured by any method.
  • the Becke method, the minimum deviation method, the deviation analysis, the mode It can be measured by the line method, ellipsometry method or the like.
  • the refractive index of the radiation curable binder is the refractive index of all the resin components contained excluding fine particles.
  • a preferable method for measuring the refractive index in the case of a radiation curable binder, there is a method in which only the binder portion is removed from the cured film and measured by the Becke method.
  • the refractive index difference between the organic fine particles and the resin component can be measured by measuring the phase difference using a transmission type phase shift laser micro interference device PLM-OPT manufactured by NTT Advanced Technology. Therefore, the method of obtaining the refractive index of the organic fine particles in the form of the refractive index ⁇ refractive index difference of the resin component obtained previously can be mentioned.
  • the coating liquid preferably further contains a solvent.
  • the solvent is not particularly limited.
  • water alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone), ester ( Examples, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform) , Carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, di
  • the radiation curable binder and the solvent may be selected from those having the property of swelling the organic fine particles (B), but only one of them may be used. Those having the property of swelling the organic fine particles (B) may be selected and used.
  • the formation of the impregnated layer of the organic fine particles (B) can be performed more reliably regardless of the degree of swelling of the radiation curable binder because of the presence of a solvent having a swelling property, It is more preferable that at least the solvent has a property of swelling the organic fine particles (B). This is because the organic fine particles (B) are first swelled by the action of the solvent, and then the low molecular weight components contained in the radiation curable binder are impregnated.
  • the combination of the radiation curable binder and the solvent is a (meth) acrylate monomer and the organic solvent as the solvent because the molecular weight is small and the impregnation is easy.
  • a combination with a ketone or ester having a strong property of swelling the fine particles (B) is preferable.
  • the amount of impregnation of the low molecular weight component contained in the radiation-curable binder can be controlled by adjusting the degree of swelling of the organic fine particles (B) by mixing the solvent.
  • cellulose triacetate hereinafter also referred to as a TAC substrate
  • the above-mentioned for preventing interference fringes generated at the interface and the interface of the diffusion layer to the light-transmitting substrate is preferable to use a solvent that can swell the TAC substrate and impregnate the TAC substrate with the low molecular weight component in the solvent and the resin component. It is more preferable that the solvent used for swelling the organic fine particles (B) and the solvent that impregnates the TAC substrate are common.
  • the solvent for the TAC substrate and the solvent used for preparing the organic fine particles (B) having the impregnated layer in advance are almost the same, the balance of the compound contained in the coating liquid becomes very stable.
  • an excellent coating liquid that can be stably processed even when an antiglare film is processed for a long time can be obtained.
  • a solvent is methyl isobutyl ketone.
  • the low molecular weight component in the resin component are pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. .
  • the said coating liquid contains a layered inorganic compound.
  • the diffusion layer to be formed contains the above layered inorganic compound, and the hard coat property, curl prevention property, ultraviolet resistance, crack prevention property and the like of the diffusion layer can be improved.
  • the aggregate of the fine particles (A) described above can be suitably formed.
  • the organic fine particles (B) when the organic fine particles (B) are contained, the fine particles (A) can be suitably aggregated and aggregation of the fine particles (A) and the organic fine particles (B) can be prevented.
  • the particle diameter D50 (laser diffraction method) is preferably 0.3 to 5.0 ⁇ m, more preferably 0.5. It is about 3.0 ⁇ m. Since the layered inorganic compound is a plate-like particle, D50 is used for the particle diameter. For example, when talc having a D50 of 0.6 ⁇ m is used, when the cross-sectional SEM observation of the diffusion layer is performed, the major axis is roughly large. It appears to be about 0.6 ⁇ m in part of the particles.
  • the layered inorganic compound is not particularly limited. Examples include margarite, muscovite, phlogopite, tetrasilic mica, teniolite, antigolite, chlorite, cookite, and nanthite. These layered inorganic fine particles may be natural products or synthetic products. Among these, as the layered inorganic compound, inorganic compounds containing Si, Al, Mg, and O elements are preferable, and talc is preferable as a compound containing such elements.
  • talc as the layered inorganic compound
  • cross-linked acrylic beads are used as the organic fine particles (B) and styrene is used as the fine particles (A)
  • aggregates of the fine particles (A) described above in the diffusion layer It is possible to suitably control the formation of the organic particles, the aggregation of the organic fine particles (B) in the diffusion layer, and the prevention of the aggregation of the fine particles (A) and the organic fine particles (B).
  • the resulting antiglare film can attain a high level of antiglare properties, white-browning prevention properties, and surface glare prevention properties. This is presumed to be due to the fact that the talc is a highly lipophilic substance.
  • the fine particles (A) (styrene) have lipophilic properties and the organic fine particles (B) (crosslinked acrylic resin) have hydrophilic properties, both fine particles are aggregated by the highly lipophilic talc.
  • the said layered inorganic compound means the inorganic compound used as a layered structure, and includes what looks like a needle shape or a fiber shape in cross-sectional microscope observation.
  • the copolymer fine particles of acryl-styrene can easily have appropriate hydrophilicity or lipophilicity by changing the ratio of the highly hydrophilic acrylic component and the highly lipophilic styrene component, the layered inorganic It can be easily performed to exhibit the aggregation performance by the compound.
  • the content may be adjusted to exceed 1 part by weight and 40 parts by weight or less with respect to 100 parts by weight of the radiation curable binder. preferable. If the amount is 1 part by mass or less, the effect of containing the layered inorganic compound may not be sufficiently obtained. If the amount exceeds 40 parts by mass, the viscosity of the coating liquid becomes too high, and thus the antiglare property of the present invention. The smoothness of the surface of the film cannot be obtained, resulting in poor optical characteristics, and the viscosity of the coating solution may become too high to be applied.
  • the minimum with more preferable content of the said layered inorganic compound is 2 mass parts, and a more preferable upper limit is 30 mass parts. By being in this range, it is possible to ensure the preferable aggregation and inclination angle of the fine particles.
  • the said coating liquid can be prepared by mixing each material mentioned above.
  • a method for preparing the coating liquid by mixing the above materials is not particularly limited, and for example, a paint shaker or a bead mill may be used.
  • the said diffusion layer can be formed by apply
  • the method for applying the coating liquid is not particularly limited, and examples thereof include a roll coating method, a Miya bar coating method, a gravure coating method, and a die coating method.
  • the thickness of the coating film formed by applying the coating liquid is not particularly limited, and is appropriately determined in consideration of the uneven shape formed on the surface, the material used, and the like.
  • the dry film thickness is preferably about 1 to 20 ⁇ m, and more preferably 2 to 15 ⁇ m. This is because if the film thickness is less than 1 ⁇ m, the hard coat property is inferior, and if it exceeds 20 ⁇ m, curls and cracks are likely to occur.
  • the thickness of the diffusion layer can be measured by, for example, cross-sectional SEM observation of the diffusion layer. In the measurement, the thickness from the diffusion layer surface position where the organic fine particles (A2) are not present to the light transmissive substrate interface is measured at 5 points or more, and the average value is obtained.
  • the fine particles (A) in the diffusion layer form the two aggregates described above.
  • Such an aggregate can be formed by the following method, for example, when the coating liquid contains a layered inorganic compound. That is, first, the type and amount of a layered inorganic compound (for example, talc) suitable for agglomeration of the two fine particles (A) depending on the degree of hydrophilicity / hydrophobicity are determined by checking in advance. Subsequently, the determined layered inorganic compound is mixed with the coating liquid together with the fine particles (A) and the like, and the coating film formed using the coating liquid is set to the above-described film thickness range.
  • the reason why the aggregate can be formed by such a method is not clear, but in the coating film, it is affected by the difference in lipophilicity or surface tension between the light-transmitting substrate on the lower surface and the air layer on the upper surface. Analogy with things.
  • the organic fine particles (B) having an impregnated layer are formed by swelling the organic fine particles (B) with the radiation curable binder and / or solvent and impregnating the radiation curable binder.
  • the preparation of the organic fine particles (B) having the impregnated layer may be performed in the coating liquid, and in the coating film formed by applying to the light-transmitting substrate. May be performed.
  • the diffusion layer can be formed by curing the coating film formed on the light transmissive substrate. Although it does not specifically limit as a hardening method of the said coating film, It is preferable to carry out by ultraviolet irradiation. When curing by ultraviolet rays, it is preferable to use ultraviolet rays having a wavelength range of 190 to 380 nm. Curing with ultraviolet rays can be performed, for example, with a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, or the like.
  • the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • the diffusion layer has an uneven shape on the surface.
  • the concavo-convex shape on the surface of the diffusion layer preferably has a convex portion (hereinafter also referred to as a convex portion (A)) at a position corresponding to the above-mentioned aggregate of fine particles (A) in the diffusion layer. Since the convex part (A) formed on the surface of the diffusion layer is formed by the above-mentioned aggregate, it can be made higher than the particle size, so that it exhibits sufficient anti-glare performance and particles.
  • the diffusion layer since it is not necessary to increase the thickness of the diffusion layer, it is possible to suitably prevent the anti-glare film of the present invention from being curled or cracking in the diffusion layer.
  • the diffusion layer contains the organic fine particles (B) having the above-described impregnation layer, convex portions (hereinafter referred to as convex portions (B)) formed at positions corresponding to the organic fine particles (B) of the diffusion layer.
  • the height corresponds to the organic fine particles (C) on the surface of the diffusion layer (C) containing the organic fine particles (C) satisfying all the following requirements (1), (2) and (3). It is preferable that the height is lower than the height of the convex portion (hereinafter also referred to as the convex portion (C)).
  • Requirement (1) Requirement (2) for forming the diffusion layer (C) under the same conditions as the diffusion layer containing the organic fine particles (B) except that the organic fine particles (C) are used instead of the organic fine particles (B).
  • the organic fine particles (C) in the diffusion layer (C) have the same average particle size as the organic fine particles (B) in the diffusion layer (3): The organic fine particles (C) are in the diffusion layer (C) No impregnated layer is formed
  • the convex part (B) at a position corresponding to the organic fine particles (B) of the diffusion layer has a gentle shape with a lower height and / or average inclination angle than the convex part (C).
  • the antiglare film of the present invention having such a diffusion layer on which the convex portion (B) is formed can be further improved in antiglare property and anti-glare property. This is presumably because the organic fine particles (B) in the diffusion layer are very flexible as compared with the organic fine particles (C). That is, when the coating film is cured, the radiation curable binder causes curing shrinkage, but the curing shrinkage of the surface where the organic fine particles (B) are located is the shrinkage of the surface where the organic fine particles (B) are not located.
  • the amount of the radiation curable binder is small, so it becomes small.
  • the organic fine particles (B) are very flexible fine particles, the organic fine particles (B) are deformed by curing shrinkage of the coating film.
  • the height and / or average inclination angle of the formed convex part (B) is compared with the convex part (C) formed on the surface of the diffusion layer (C) containing the harder organic fine particles (C). I guess it will be low and smooth.
  • the height of the convex portion is the difference between the height of the convex portion existing on the surface and the concave portion between the convex portion adjacent to the convex portion when the antiglare film surface is observed by AFM. It is measured as the height n of the convex part (n is 1 to 10). And it calculates
  • the fine particles (A) in the diffusion layer form two aggregates at a predetermined ratio, and the two fine particles (A) in the aggregates are light-transmitting groups.
  • the straight lines connecting the centers thereof are aggregated so as to form an inclination angle.
  • the antiglare film of the present invention can have a convex portion formed at a position corresponding to the aggregate of the fine particles (A) on the surface thereof to an appropriate height, and is excellent in antiglare property, Generation of white brown can be sufficiently suppressed, and generation of surface glare can be suitably prevented.
  • the anti-glare film of this invention is the organic fine particle (B) in this diffusion layer, and the hardened
  • the adhesion is extremely excellent.
  • the anti-glare film of the present invention does not cause cracks in a mandrel test under the condition that the mandrel diameter is 10 mm, more preferably 8 mm, and even more preferably 6 mm.
  • the impregnation layer is formed on the organic fine particles (B) in the diffusion layer, the impregnation layer is formed in a state in which a radiation curable binder is mixed.
  • the refractive index of the organic fine particles (B) (impregnated layer) in the diffusion layer and the cured product of the radiation curable binder is reduced, and reflection at the interface can be suitably reduced.
  • the impregnated layer has an appropriate layer thickness, and the center of the organic fine particles (B) maintains the refractive index of the initial organic fine particles (B). It is possible to prevent surface glare.
  • the convex part formed in the position corresponding to the organic fine particles (B) of the diffusion layer can be formed into a gentle shape with a low height. For this reason, the antiglare property, the anti-glare property and the anti-glare property of the antiglare film of the present invention can be achieved at a higher level.
  • the method for producing such an antiglare film of the present invention is also one of the present invention. That is, the method for producing an antiglare film of the present invention includes an antiglare film having a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having an uneven shape on the surface.
  • examples of the material constituting the coating liquid are the same as those described in the above-described antiglare film of the present invention. Moreover, the process similar to the method demonstrated in the anti-glare film of this invention mentioned above as the process of forming the said diffused layer is mentioned.
  • a polarizing plate comprising a polarizing element, comprising the antiglare film of the present invention by bonding a light-transmitting substrate to the surface of the polarizing element. It is one of the inventions.
  • the polarizing element is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched can be used.
  • a polyvinyl alcohol film a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched
  • the adhesiveness is improved and an antistatic effect can be obtained.
  • This invention is also an image display apparatus provided with the said anti-glare film or the said polarizing plate on the outermost surface.
  • the image display device include LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, touch panel, and electronic paper.
  • the LCD includes a transmissive display body and a light source device that irradiates the transmissive display body from the back.
  • the image display device of the present invention is an LCD
  • the antiglare film of the present invention or the polarizing plate of the present invention is formed on the surface of the transmissive display.
  • the light source of the light source device is irradiated from below the antiglare film.
  • a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the PDP includes a front glass substrate and a rear glass substrate disposed with a discharge gas sealed between the front glass substrate and the front glass substrate.
  • the image display device of the present invention is a PDP
  • the surface of the surface glass substrate or the front plate is provided with the above-described antiglare film.
  • image display devices include zinc sulfide and diamine substances that emit light when a voltage is applied: an ELD device that emits light on a glass substrate, controls the voltage applied to the substrate, and displays electrical signals as light. It may be an image display device such as a CRT that generates an image visible to human eyes.
  • the antiglare film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
  • the antiglare film of the present invention can be used for display displays of televisions, computers and the like.
  • it can be suitably used for the surface of high-definition image displays such as CRT, liquid crystal panel, PDP, ELD, touch panel, and electronic paper.
  • the fine particles (A) in the diffusion layer form two aggregates at a predetermined ratio, and the two fine particles (A) in the aggregates are light-transmitting groups.
  • the straight lines connecting the centers thereof are aggregated so as to form an inclination angle.
  • the antiglare film of the present invention can have a convex portion formed at a position corresponding to the aggregate of the fine particles (A) on the surface thereof to an appropriate height, and is excellent in antiglare property, Since the particles exist at an angle, the area of the particles irradiated with external light is reduced and reflection at the interface with the binder is reduced compared to the case where they are arranged in parallel.
  • the contrast is high, the generation of surface glare can be suitably prevented, and the hard coat property is also provided. Moreover, since it is not necessary to thicken the said diffusion layer, it can prevent suitably that a curl and a crack arise in a diffusion layer in the anti-glare film of this invention.
  • FIG. 4 is a cross-sectional SEM photograph showing an aggregate in which two fine particles (A) in the diffusion layer of the antiglare film according to Example 1 are aggregated.
  • 4 is a cross-sectional SEM photograph of a diffusion layer of an antiglare film according to Example 2.
  • 4 is a cross-sectional SEM photograph of a diffusion layer of an antiglare film according to Example 3.
  • Example 1 First, triacetyl cellulose (manufactured by Fuji Film Co., Ltd., thickness 80 ⁇ m) was prepared as a light transmissive substrate.
  • the fine particles (A) highly crosslinked polystyrene particles (refractive index 1.59, average particle size 4.0 ⁇ m) are 12.0 parts by mass with respect to 100 parts by mass of the radiation curable binder, and
  • a coating solution was prepared by blending 190 parts by mass of a mixture of toluene and methyl isobutyl ketone (mass ratio 8: 2) as a solvent with respect to 100 parts by mass of the radiation curable binder.
  • the obtained coating liquid was allowed to stand for 24 hours, and then applied to a light-transmitting substrate by a gravure method, and dried at a flow rate of 1.2 m / s through 70 ° C. and dried for 1 minute. A film was formed.
  • the coating film was irradiated with ultraviolet rays (200 mJ / cm 2 in a nitrogen atmosphere) to cure the radiation curable binder to form a diffusion layer, and an antiglare film was produced.
  • the thickness of the diffusion layer was 6.6 ⁇ m.
  • Example 1 Comparative Examples 1 to 9, Reference Example 1
  • An antiglare film was produced in the same manner as in Example 1 except that each component added to the coating liquid and the thickness of the diffusion layer to be formed were as shown in Table 1.
  • (Fine particle A) A: Highly crosslinked polystyrene particles (refractive index 1.59, average particle size 4.0 ⁇ m, manufactured by Soken Chemical Co., Ltd.) B: Highly cross-linked acrylic-polystyrene particles (refractive index 1.57, average particle size 3.5 ⁇ m, manufactured by Soken Chemical Co., Ltd.) C: Highly cross-linked polystyrene particles (refractive index 1.59, average particle size 2.0 ⁇ m, manufactured by Soken Chemical Co., Ltd.) D: Highly crosslinked polystyrene particles (refractive index 1.59, average particle size 9.0 ⁇ m, manufactured by Soken Chemical Co., Ltd.)
  • the average value of the inclination angle is in the range of 30 to 60 ° ⁇ : The average value of the inclination angle is out of the range of 30 to 60 °, but is in the range of 20 to 70 ° ⁇ : The average value of the inclination angle is 2 out of the range of 20 to 70 ° is a cross-sectional SEM photograph of an aggregate in which two fine particles (A) in the diffusion layer of the antiglare film according to Example 1 are aggregated.
  • the antiglare film containing organic fine particles (B) in the diffusion layer is cut in the thickness direction, and the thickness of the impregnated layer formed on the cross section of the five organic fine particles (B) is determined by SEM observation of the cross section. Each of the two points was measured for a total of 10 points, and the average value was calculated.
  • 3 shows one of the cross-sectional SEM photographs of the diffusion layer of the antiglare film according to Example 2
  • FIG. 4 shows one of the cross-sectional SEM photographs of the diffusion layer of the antiglare film according to Example 3. Indicated.
  • the anti-glare film obtained in Examples, Comparative Examples and Reference Examples is further coated with the transparent adhesive film for optical film (total light transmittance of 91% or more, haze 0 so that the diffusion layer side is the outermost surface. 3% or less and a film thickness of 20 to 50 ⁇ m, for example, MHM series (manufactured by Nichiei Kako Co., Ltd.).
  • the LCD TV was installed in a room with an illuminance of about 1000 Lx, displayed on a white screen, and 15 subjects from various angles up and down and left and right from a location about 1.5 to 2.0 m away from the LCD TV.
  • visual sensory evaluation was performed on the antiglare property and surface glare, respectively. Evaluation was made according to the following criteria. ⁇ : 10 or more people who answered good ⁇ : 9-8 people who answered good ⁇ : 7-5 people who answered good ⁇ : 4 or less people who answered good
  • the antiglare films according to Examples 1, 2, 4 and 7 were all good in contrast, antiglare properties, surface glare and hard coat properties.
  • the antiglare film according to Example 3 was inferior in surface glare evaluation because the inclination angle of the fine particles (A) was in the range of 60 to 70 °, and the antiglare film according to Example 5 was a layered inorganic compound.
  • the antiglare film according to Example 6 has a considerably higher content of the layered inorganic compound than that of Example 1 and the like. Since the viscosity of the liquid was high and the surface smoothness of the antiglare film was inferior, the evaluation of contrast, antiglare property and surface glare was inferior, but all were results that could be judged as good overall.
  • the antiglare films according to the comparative examples had good contrast, antiglare properties, surface glare, and hard coat properties. Moreover, since the average particle diameter of the organic fine particles (B) was not less than the thickness of the diffusion layer, the antiglare film according to Reference Example 1 was inferior in contrast and hard coat properties.
  • the antiglare film of the present invention is suitable for displays such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), touch panel, electronic paper, especially high definition display. It can be preferably used.
  • displays such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), touch panel, electronic paper, especially high definition display. It can be preferably used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is an anti-glare film that has excellent anti-glare properties, can sufficiently suppress discoloration, has high contrast, and can prevent surface glare. The anti-glare film is provided with a light-permeable base material and a diffusion layer that has an uneven pattern on the surface and is formed on at least one surface of the light-permeable base material. The anti-glare film is characterized in that a coating solution, which includes a radiation-curable binder that comprises, as necessary components, microparticles (A) and a (meth)acrylate monomer, is coated onto at least one surface of the light-permeable base material, is dried to form a coating film, and then cured to form the diffusion layer, and in that 50% of the microparticles (A) within the diffusion layer form an agglomerated pair in which the line extending through the centers of both microparticles forms an angle of inclination relative to the surface of the above light-permeable surface.

Description

防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置Antiglare film, method for producing antiglare film, polarizing plate and image display device
本発明は、防眩性フィルム、該防眩性フィルムの製造方法、偏光板及び画像表示装置に関する。 The present invention relates to an antiglare film, a method for producing the antiglare film, a polarizing plate, and an image display device.
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、電子ペーパー等の画像表示装置においては、通常、最表面には反射防止のための光学積層体が設けられている。このような反射防止用光学積層体は、光の拡散や干渉によって、像の映り込みを抑制したり反射率を低減したりするものである。 In an image display device such as a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), and electronic paper, an optical layer for preventing reflection is usually provided on the outermost surface. The body is provided. Such an anti-reflection optical laminate suppresses the reflection of an image or reduces the reflectance by light diffusion or interference.
反射防止用光学積層体の一つとして、透明性基材の表面に凹凸形状を有する防眩層を形成した防眩性フィルムが知られている。この防眩性フィルムは、表面の凹凸形状によって外光を拡散させることで視認性の低下を防止することができる。また、このような防眩性フィルムは、通常、画像表示装置の最表面に設置されるものであるため、ある程度のハードコート性も要求される。 As one of the antireflection optical laminates, an antiglare film is known in which an antiglare layer having an uneven shape is formed on the surface of a transparent substrate. This anti-glare film can prevent deterioration of visibility by diffusing external light by the uneven shape of the surface. Moreover, since such an anti-glare film is usually installed on the outermost surface of the image display device, a certain degree of hard coat property is also required.
従来の防眩性フィルムとしては、例えば、二酸化ケイ素(シリカ)等のフィラーを含む樹脂を塗工して防眩層を形成したものが知られている(例えば、特許文献1、2参照)。
このような従来の防眩性フィルムとしては、凝集粒子や無機及び/又は有機フィラーを樹脂中に添加して層表面に凹凸形状を形成するタイプ、あるいは層表面に凹凸をもったフィルムをラミネートして凹凸形状を転写するタイプや、2種類以上のポリマー等、バインダーを構成する化合物同士の相溶性を利用して相分離させることで凹凸形状を形成するタイプ等がある。
As a conventional anti-glare film, for example, a film in which an anti-glare layer is formed by coating a resin containing a filler such as silicon dioxide (silica) is known (for example, see Patent Documents 1 and 2).
As such a conventional anti-glare film, a type in which aggregated particles and inorganic and / or organic fillers are added to the resin to form an uneven shape on the layer surface, or a film having an uneven surface on the layer surface is laminated. There are types in which the concavo-convex shape is transferred, and types in which the concavo-convex shape is formed by phase separation using the compatibility of the compounds constituting the binder, such as two or more types of polymers.
このような従来の防眩性フィルムは、いずれのタイプでも、防眩層の表面形状の作用により、光拡散・防眩作用を得るようにしていて、防眩性を高めるためには防眩層表面の凹凸形状を大きくする必要がある。防眩層の表面の凹凸形状を大きくする方法としては、例えば、防眩層に微粒子を凝集させてなる凝集体を含有させる方法が知られており、例えば、特許文献3に、微細な粒子である一次粒子が凝集してなる凝集形態の粒子を含む防眩層が記載されている。
しかしながら、特許文献3における凝集形態の粒子は、一次粒子の平均粒径が0.005~0.03μmと極めて小さく、このような微細な一次粒子を多数凝集させてなる凝集形態を任意に制御することは事実上困難であり、形成する防眩層の表面の凹凸形状を所望の形状に制御することができないという問題があった。
Such a conventional anti-glare film is designed to obtain a light diffusing and anti-glare action by the action of the surface shape of the anti-glare layer in any type. It is necessary to increase the uneven shape on the surface. As a method for increasing the uneven shape of the surface of the antiglare layer, for example, a method of containing an aggregate formed by agglomerating fine particles in the antiglare layer is known. An antiglare layer containing particles in an aggregated form formed by aggregating certain primary particles is described.
However, the agglomerated particles in Patent Document 3 have an extremely small average primary particle size of 0.005 to 0.03 μm, and the agglomerated morphology obtained by aggregating a large number of such fine primary particles is arbitrarily controlled. This is practically difficult, and there is a problem that the uneven shape on the surface of the antiglare layer to be formed cannot be controlled to a desired shape.
また、例えば、特許文献4には、全ヘイズ値と内部ヘイズ値とが特定の関係にあり、最表面に凹凸形状を有する防眩層に凝集型微粒子を含む光学積層体が記載されている。
しかしながら、特許文献4に記載の防眩層では、微粒子の凝集状態の制御についての検討はされておらず、多くの微粒子が防眩層の厚さ方向に凝集した凝集体や、防眩層の面内方向に凝集した凝集体が含まれていた。このため、特許文献4に記載の光学積層体では、防眩層の表面に大きな凸部が多数形成され、白茶けの発生を充分に抑制できず、いわゆる面ギラと呼ばれるキラキラ光る輝きが発生することもあり表示画面の視認性が低下することがあった。
For example, Patent Document 4 describes an optical laminate in which the total haze value and the internal haze value are in a specific relationship, and the antiglare layer having an uneven shape on the outermost surface includes aggregated fine particles.
However, in the antiglare layer described in Patent Document 4, no study has been made on the control of the aggregation state of the fine particles, and aggregates in which many fine particles are aggregated in the thickness direction of the antiglare layer, Aggregates aggregated in the in-plane direction were included. For this reason, in the optical laminated body described in Patent Document 4, a large number of large convex portions are formed on the surface of the antiglare layer, and generation of white browning cannot be sufficiently suppressed, and so-called surface glare is generated. In some cases, the visibility of the display screen may be reduced.
また、例えば、特許文献5には、微粒子の凝集体を含有する防眩層を備え、該防眩層の表面の微細凹凸形状が、算術平均粗さRa及び二乗平均平方根傾斜RΔqが所定の範囲内にある防眩性フィルムが記載されている。
しかしながら、特許文献5に記載の防眩層は、微粒子の凝集体が防眩層の面内方向に凝集したものであり、このような凝集体を含む防眩層では充分な防眩性能を得ることができないばかりでなく、面内方向に凝集した凝集体が反射光を増大させて白茶けの原因ともなっていた。
Further, for example, Patent Document 5 includes an antiglare layer containing an aggregate of fine particles, and the surface of the antiglare layer has a fine uneven shape with an arithmetic mean roughness Ra and a root mean square slope RΔq within a predetermined range. An antiglare film inside is described.
However, the antiglare layer described in Patent Document 5 is an aggregate of fine particles aggregated in the in-plane direction of the antiglare layer, and an antiglare layer containing such an aggregate provides sufficient antiglare performance. In addition to being unable to do so, aggregates aggregated in the in-plane direction increased reflected light, causing white-brownness.
更に、例えば、特許文献6には、防眩層表面の十点表面粗さが所定の範囲内にある防眩フィルムが記載され、該防眩層に不定形凝集体の粒子を含むことが記載されている。
しかしながら、特許文献6では、防眩層に含まれる不定形凝集体の粒子の凝集状態は検討されておらず、防眩層の高さ方向に粒子が凝集した凝集体や、防眩層の面内方向に粒子が凝集した凝集体が防眩層に含まれることが記載されている。このため、特許文献6に記載の防眩フィルムでは、防眩層の表面に大きな凸部が多数形成され、白茶けの発生を充分に抑制できず、また、いわゆる面ギラと呼ばれるキラキラ光る輝きが発生したりして表示画面の視認性が低下することがあった。
Further, for example, Patent Document 6 describes an antiglare film in which the ten-point surface roughness of the surface of the antiglare layer is within a predetermined range, and describes that the antiglare layer contains particles of irregular aggregates. Has been.
However, in Patent Document 6, the aggregation state of the particles of the irregular aggregate contained in the antiglare layer is not examined, and the aggregate of particles aggregated in the height direction of the antiglare layer or the surface of the antiglare layer It is described that an aggregate in which particles are aggregated in an inward direction is contained in an antiglare layer. For this reason, in the anti-glare film described in Patent Document 6, a large number of large convex portions are formed on the surface of the anti-glare layer, and the generation of white brown cannot be sufficiently suppressed, and the so-called surface glare has a glittering shine. Or the visibility of the display screen may be reduced.
特開平6-18706号公報Japanese Patent Laid-Open No. 6-18706 特開平10-20103号公報Japanese Patent Laid-Open No. 10-20103 特開2009-008782号公報JP 2009-008782 A 国際公開第2008-020587号International Publication No. 2008-020587 特開2008-233870号公報JP 2008-233870 A 特開2008-191310号公報JP 2008-191310 A
本発明は、上記現状に鑑み、防眩性に優れるとともに、白茶けの発生を充分に抑制でき、コントラストが高く、面ギラの発生等も好適に防止することができ、更に、ハードコート性も具備した防眩性フィルム、該防眩性フィルムの製造方法、該防眩性フィルムを適用した偏光板及び画像表示装置を提供することを目的とする。 In view of the above situation, the present invention is excellent in anti-glare properties, can sufficiently suppress the occurrence of white brown, has high contrast, can suitably prevent occurrence of surface glare, etc., and also has a hard coat property. An object is to provide an antiglare film provided, a method for producing the antiglare film, a polarizing plate and an image display device to which the antiglare film is applied.
本発明は、光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する防眩性フィルムであって、上記拡散層は、微粒子(A)と、(メタ)アクリレートモノマーを必須成分として含む放射線硬化型バインダーとを含有する塗液を、上記光透過性基材の少なくとも一方の面上に塗布し、乾燥して塗膜を形成し、該塗膜を硬化させてなるものであり、上記拡散層中の微粒子(A)は、50%以上が互いの中心を結ぶ直線が上記光透過性基材の表面に対して傾斜角をなすように凝集した2個の凝集体を形成していることを特徴とする防眩性フィルムである。 The present invention is an antiglare film comprising a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having a concavo-convex shape on the surface. A coating liquid containing fine particles (A) and a radiation curable binder containing a (meth) acrylate monomer as essential components is applied onto at least one surface of the light-transmitting substrate, dried, and coated The fine particles (A) in the diffusion layer are inclined with respect to the surface of the light-transmitting base material by 50% or more of the fine particles (A) in the diffusion layer. It is an anti-glare film characterized by forming two aggregates aggregated so as to form a corner.
本発明の防眩性フィルムにおいて、上記凝集体を形成する2個の微粒子(A)の互いの中心を結ぶ直線と、光透過性基材の表面とがなす傾斜角が20~70°であることが好ましい。
また、上記塗液は、更に層状無機化合物を含有することが好ましい。
また、上記層状無機化合物は、タルクであることが好ましい。
また、上記放射線硬化型バインダー100質量部に対して、層状無機化合物の含有量が2~40質量部であることが好ましい。
また上記微粒子(A)は、スチレン微粒子及び/又はアクリル-スチレン共重合微粒子であることが好ましい。
また、上記微粒子(A)の平均粒径をDとしたとき、該Dは、拡散層の厚さTに対して、下記式(A)を満たすことが好ましい。
 (1.34×D)<T<(1.94×D)  (A)
また、上記塗液は、更に有機微粒子(B)を含有し、拡散層中の上記有機微粒子(B)は、上記拡散層中の微粒子(A)よりも平均粒径が大きいことが好ましい。
また、上記拡散層中の有機微粒子(B)は、凝集していないことが好ましい。
また、上記塗液は、有機微粒子(B)を膨潤する溶剤を含有することが好ましい。
また、上記拡散層中の有機微粒子(B)は、放射線硬化型バインダーが含浸された含浸層を有し、該含浸層の平均厚さが0.01~1.0μmであることが好ましい。
また、上記有機微粒子(B)の平均粒径をDとしたとき、該Dは、拡散層の厚さTに対して、下記式(B)を満たすことが好ましい。
 D<T  (B)
In the antiglare film of the present invention, the inclination angle formed by the straight line connecting the centers of the two fine particles (A) forming the aggregate and the surface of the light-transmitting substrate is 20 to 70 °. It is preferable.
Moreover, it is preferable that the said coating liquid contains a layered inorganic compound further.
The layered inorganic compound is preferably talc.
Further, the content of the layered inorganic compound is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the radiation curable binder.
The fine particles (A) are preferably styrene fine particles and / or acrylic-styrene copolymer fine particles.
Further, when the average particle size of the fine particles (A) was D A, the D A is the thickness T of the diffusion layer, it is preferable to satisfy the following formula (A).
(1.34 × D A ) <T <(1.94 × D A ) (A)
The coating liquid further contains organic fine particles (B), and the organic fine particles (B) in the diffusion layer preferably have a larger average particle diameter than the fine particles (A) in the diffusion layer.
The organic fine particles (B) in the diffusion layer are preferably not aggregated.
Moreover, it is preferable that the said coating liquid contains the solvent which swells organic fine particles (B).
The organic fine particles (B) in the diffusion layer have an impregnation layer impregnated with a radiation curable binder, and the average thickness of the impregnation layer is preferably 0.01 to 1.0 μm.
Further, when the average particle diameter of the organic fine particles (B) was D B, said D B is the thickness T of the diffusion layer, it is preferable to satisfy the following formula (B).
D B <T (B)
また、本発明は、光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する防眩性フィルムの製造方法であって、上記光透過性基材の少なくとも一方の面上に、微粒子(A)及び(メタ)アクリレートモノマーを必須成分として含む放射線硬化型バインダーを含有する塗液を塗布し、乾燥させて塗膜を形成し、該塗膜を硬化させて上記拡散層を形成する工程を有し、上記拡散層中の微粒子(A)は、50%以上が互いの中心を結ぶ直線が上記光透過性基材の表面に対して傾斜角をなすように凝集した凝集体を形成していることを特徴とする防眩性フィルムの製造方法でもある。 The present invention also provides a method for producing an antiglare film comprising a light transmissive substrate and a diffusion layer formed on at least one surface of the light transmissive substrate and having a concavo-convex shape on the surface. A coating liquid containing a radiation curable binder containing fine particles (A) and (meth) acrylate monomers as essential components is applied on at least one surface of the light-transmitting substrate and dried to form a coating film And the step of curing the coating film to form the diffusion layer, and the fine particles (A) in the diffusion layer have a straight line connecting the centers of 50% or more of the surface of the light-transmitting substrate. It is also a method for producing an antiglare film, characterized in that aggregates are formed so as to form an inclination angle with respect to the film.
また、本発明は、偏光素子を備えてなる偏光板であって、上記偏光素子の表面に本発明の防眩性フィルムを備えることを特徴とする偏光板でもある。
また、本発明は、最表面に本発明の防眩性フィルム、又は、本発明の偏光板を備えることを特徴とする画像表示装置でもある。
以下、本発明を詳細に説明する。
Moreover, this invention is a polarizing plate provided with a polarizing element, Comprising: The anti-glare film of this invention is provided on the surface of the said polarizing element, It is also a polarizing plate characterized by the above-mentioned.
The present invention is also an image display device comprising the antiglare film of the present invention or the polarizing plate of the present invention on the outermost surface.
Hereinafter, the present invention will be described in detail.
本発明の防眩性フィルムは、光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する。
上記光透過性基材は、平滑性、耐熱性を備え、機械的強度に優れたものが好ましい。上記光透過性基材を形成する材料の具体例としては、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン、又は、シクロポリオレフィン等の熱可塑性樹脂が挙げられ、好ましくはポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテートが挙げられる。
The antiglare film of the present invention has a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having an uneven shape on the surface.
The light transmissive substrate preferably has smoothness and heat resistance and is excellent in mechanical strength. Specific examples of the material forming the light-transmitting substrate include polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, and polypropylene. , Thermoplastic resins such as polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, polyurethane, or cyclopolyolefin, preferably polyester (polyethylene terephthalate, polyethylene naphthalate), A cellulose triacetate is mentioned.
上記光透過性基材は、柔軟性に富んだフィルム状体として使用することが好ましいが、硬化性が要求される使用態様に応じて、これら熱可塑性樹脂の板を使用することも可能であり、又は、ガラス板の板状体のものを使用してもよい。 The light-transmitting substrate is preferably used as a flexible film-like body, but it is also possible to use these thermoplastic resin plates depending on the usage mode in which curability is required. Alternatively, a glass plate plate may be used.
上記光透過性基材の厚さとしては、20~300μmであることが好ましく、より好ましくは上限が200μmであり、下限が30μmである。光透過性基材が板状体の場合にはこれらの厚さを超える厚さであってもよい。
また、上記光透過性基材は、その上に防眩層を形成するに際して、接着性向上のために、コロナ放電処理、プラズマ処理、鹸化処理、酸化処理等の物理的な処理のほか、アンカー剤もしくはプライマーと呼ばれる塗料の塗布を予め行ってもよい。
The thickness of the light transmissive substrate is preferably 20 to 300 μm, more preferably an upper limit of 200 μm and a lower limit of 30 μm. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses.
In addition, the above light-transmitting substrate has an anchor in addition to a physical treatment such as corona discharge treatment, plasma treatment, saponification treatment, oxidation treatment, etc., in order to improve adhesion when an antiglare layer is formed thereon. Application of a paint called an agent or a primer may be performed in advance.
本発明の防眩性フィルムにおいて、上記拡散層は、微粒子(A)と、(メタ)アクリレートモノマーとを必須成分として含む放射線硬化型バインダーを含有する塗液を、上記光透過性基材の少なくとも一方の面上に塗布、乾燥して塗膜を形成し、該塗膜を硬化させてなるものである。
なお、本明細書において、モノマーとは、電離放射線硬化してポリマー膜となるために、このポリマー膜の基本構造の構成単位となりうる分子を全て含む。つまり、オリゴマーやプレポリマーが硬化膜の基本単位であれば、オリゴマーやプレポリマーも含まれる。
本発明において、上記モノマーは、重量平均分子量が5000以下の小さいものが好ましい。
なお、本発明において、上記拡散層は、特に説明がない限り、硬化した塗膜層を示す。
In the antiglare film of the present invention, the diffusion layer comprises a coating liquid containing a radiation curable binder containing the fine particles (A) and a (meth) acrylate monomer as essential components, and at least the light transmissive substrate. It is formed by applying and drying on one surface to form a coating film and curing the coating film.
In the present specification, the monomer includes all molecules that can be a constitutional unit of the basic structure of the polymer film because the monomer film is cured by ionizing radiation. That is, if the oligomer or prepolymer is a basic unit of a cured film, the oligomer or prepolymer is also included.
In the present invention, the monomer preferably has a small weight average molecular weight of 5000 or less.
In the present invention, the diffusion layer is a cured coating layer unless otherwise specified.
上記微粒子(A)は、上記拡散層に内部拡散機能と拡散層の表面に凸部を形成する機能とを備えた微粒子である。
図1は、上記拡散層中の凝集体の状態を模式的に示す断面図である。
図1に示すように、本発明の防眩性フィルム10は、光透過性基材11の少なくとも一方の面上に形成された拡散層12中で、2個の微粒子(A)13が凝集した凝集体を形成している。この凝集体を形成する2個の微粒子(A)13は、互いの中心を結ぶ直線が光透過性基材11の表面に対して傾斜角をなすように凝集している。
このような凝集体を拡散層が含有するため、本発明の防眩性フィルムは、防眩性に優れるとともに、白茶けの発生を充分に抑制でき、更に、面ギラの発生も好適に防止することが可能となる。
The fine particles (A) are fine particles having an internal diffusion function in the diffusion layer and a function of forming convex portions on the surface of the diffusion layer.
FIG. 1 is a cross-sectional view schematically showing the state of aggregates in the diffusion layer.
As shown in FIG. 1, in the antiglare film 10 of the present invention, two fine particles (A) 13 aggregate in a diffusion layer 12 formed on at least one surface of a light-transmitting substrate 11. Aggregates are formed. The two fine particles (A) 13 forming the aggregate are aggregated so that a straight line connecting the centers thereof forms an inclination angle with respect to the surface of the light transmissive substrate 11.
Since the diffusion layer contains such an aggregate, the antiglare film of the present invention is excellent in antiglare property, can sufficiently suppress the occurrence of white brown, and also suitably prevents the occurrence of surface glare. It becomes possible.
本発明の防眩性フィルムにおいて、上記拡散層中の微粒子(A)は、互いの中心を結ぶ直線が上記光透過性基材の表面に対して傾斜角をなすように凝集した2個の凝集体を形成している。
上記「互いの中心を結ぶ直線」とは、本発明の防眩性フィルムの拡散層をその厚さ方向に切断した断面において、上記凝集体を構成する2個の微粒子(A)の断面が描く形状の中心を結ぶ直線を意味する。上記「断面が描く形状の中心」とは、上記断面が描く形状は通常円であるため、該円の中心を意味し、上記断面が描く形状が円形以外の場合、その断面の重心を意味する。
In the anti-glare film of the present invention, the fine particles (A) in the diffusion layer are composed of two aggregates in which the straight lines connecting the centers of each other are aggregated so as to form an inclination angle with respect to the surface of the light-transmitting substrate. A collection is formed.
The above-mentioned "straight line connecting the centers of each other" refers to the cross section of the two fine particles (A) constituting the aggregate in the cross section obtained by cutting the diffusion layer of the antiglare film of the present invention in the thickness direction. This means a straight line connecting the centers of the shapes. The “center of the shape drawn by the cross section” means the center of the circle because the shape drawn by the cross section is usually a circle, and if the shape drawn by the cross section is other than a circle, it means the center of gravity of the cross section. .
また、上記凝集体を形成する2個の微粒子(A)は、互いの中心を結ぶ直線と、上記光透過性基材の表面とがなす傾斜角が20~70°であることが好ましい。20°未満であると、本発明の防眩性フィルムの防眩性が劣ることがあり、また、拡散層に含まれる凝集体が外光を反射して白茶けが生じることがある。一方、70°を超えると、上記凝集体の対応する位置の拡散層表面に形成される凸部が大きくなり過ぎ、本発明の防眩性フィルムに白茶けの発生、面ギラの発生といった不具合が生じることがある。上記傾斜角のより好ましい下限は30°、より好ましい上限は60°である。上記傾斜角が上記範囲内にあることで、防眩性能、白茶け防止性及び面ギラ防止性能のバランスが極めて優れたものとなる。
なお、本明細書において、上記傾斜角が20°未満である場合を2個の微粒子(A)が光透過性基材の表面に対して平行に凝集しているとし、上記傾斜角が70°を超える場合を2個の微粒子(A)が光透過性基材の表面に対して垂直に凝集しているということとする。
The two fine particles (A) forming the aggregates preferably have an inclination angle of 20 to 70 ° formed by a straight line connecting the centers of the fine particles and the surface of the light-transmitting substrate. When it is less than 20 °, the antiglare property of the antiglare film of the present invention may be inferior, and the aggregates contained in the diffusion layer may reflect outside light to cause white brown. On the other hand, if it exceeds 70 °, the convex portion formed on the surface of the diffusion layer at the corresponding position of the agglomerate becomes too large, and the antiglare film of the present invention has problems such as occurrence of whitening and surface glare. May occur. A more preferable lower limit of the inclination angle is 30 °, and a more preferable upper limit is 60 °. When the tilt angle is within the above range, the balance of the antiglare performance, the anti-glare property, and the anti-glare property is extremely excellent.
In the present specification, when the tilt angle is less than 20 °, it is assumed that the two fine particles (A) are aggregated in parallel to the surface of the light-transmitting substrate, and the tilt angle is 70 °. In the case of exceeding the above, it is assumed that the two fine particles (A) are aggregated perpendicularly to the surface of the light-transmitting substrate.
本発明の防眩性フィルムにおいて、上記拡散層中の微粒子(A)は、50%以上が上述の凝集体を形成している。
ここで、上記「50%以上が上述の凝集体を形成している」とは、上記拡散層の断面をSEMや透過型、反射型光学顕微鏡等の顕微鏡観察でランダムに20個の微粒子(A)を観察した際に、10個以上の微粒子(A)が上述した凝集体を形成していることを意味する。
上記凝集体を形成する微粒子(A)が50%未満であると、本発明の防眩性フィルムの防眩性能が不充分となったり、白茶けの発生や面ギラの発生を充分に抑制できなくなったりする。上記凝集体を形成する微粒子(A)の割合は、好ましい下限が65%であり、さらに好ましい下限は80%である。上記凝集体を形成する微粒子(A)の割合の下限が65%であると、防眩性と白茶けの防止性能がより好適なものとなり、上記割合の下限が80%であると、充分な防眩性とコントラストが得られる。
なお、上記拡散層は、上述の凝集体を形成していない微粒子(A)が50%未満である。すなわち、上記拡散層は、上述した領域内において、単粒子状の微粒子(A)の数、2個の微粒子(A)が光透過性基材の表面に対して垂直又は平行に凝集した凝集体を構成する微粒子(A)の数、及び、3個以上の微粒子(A)が凝集した凝集体を構成する微粒子(A)の数の合計が、ランダムに20個の微粒子(A)を計測したときに10個未満であると規定することもできる。
In the antiglare film of the present invention, 50% or more of the fine particles (A) in the diffusion layer form the above-mentioned aggregate.
Here, “50% or more forms the above-mentioned aggregate” means that the cross-section of the diffusion layer is randomly divided into 20 fine particles (A by observation with a microscope such as SEM, transmission type, or reflection type optical microscope). ) Means that 10 or more fine particles (A) form the above-mentioned aggregates.
When the fine particles (A) forming the agglomerates are less than 50%, the anti-glare performance of the anti-glare film of the present invention is insufficient, and the occurrence of white-brown and surface glare can be sufficiently suppressed. It will disappear. The ratio of the fine particles (A) forming the aggregate is preferably 65%, more preferably 80%. When the lower limit of the proportion of the fine particles (A) forming the aggregate is 65%, the antiglare property and the ability to prevent white brown are more suitable, and when the lower limit of the proportion is 80%, sufficient Anti-glare and contrast can be obtained.
In the diffusion layer, the fine particles (A) not forming the above-mentioned aggregates are less than 50%. That is, the diffusion layer is an aggregate in which the number of single-particulate fine particles (A) and two fine particles (A) are aggregated perpendicularly or parallel to the surface of the light-transmitting substrate in the region described above. The total number of fine particles (A) constituting the aggregate and the number of fine particles (A) constituting the aggregate in which three or more fine particles (A) are aggregated randomly measured 20 fine particles (A). Sometimes it can be defined that it is less than ten.
このような微粒子(A)としては、上記塗液中の放射線硬化型バインダー及び/又は溶剤により膨潤されない粒子であることが好ましい。
ここで、「膨潤されない粒子」とは、上記放射線硬化型バインダー及び/又は溶剤により全く膨潤されることがない場合のほか、僅かに膨潤される場合も含む。上記「僅かに膨潤される場合」とは、上記拡散層中において、上記微粒子(A)に、後述する有機微粒子(B)と同様の含浸層が形成されるが、この含浸層の平均厚さが有機微粒子(B)に形成される含浸層よりも小さく、かつ、0.1μm未満の場合をいう。
上記拡散層中の微粒子(A)に含浸層が形成されているか否かの判断は、例えば、上記拡散層の微粒子(A)の断面を顕微鏡(SEM等)で観察することで行うことができる。
なお、以下の説明において、上記拡散層中の微粒子(A)を「微粒子(A2)」ともいうこととする。
Such fine particles (A) are preferably particles that are not swollen by the radiation curable binder and / or solvent in the coating liquid.
Here, “particles that are not swollen” include not only the case where the particles are not swollen by the radiation-curable binder and / or the solvent, but also a case where they are slightly swollen. In the case of “slightly swollen”, an impregnation layer similar to the organic fine particles (B) described later is formed on the fine particles (A) in the diffusion layer. Is smaller than the impregnated layer formed on the organic fine particles (B) and less than 0.1 μm.
Whether or not an impregnation layer is formed on the fine particles (A) in the diffusion layer can be determined by, for example, observing a cross section of the fine particles (A) in the diffusion layer with a microscope (SEM or the like). .
In the following description, the fine particles (A) in the diffusion layer are also referred to as “fine particles (A2)”.
上記放射線硬化型バインダー及び/又は溶剤により膨潤されない微粒子(A)としては、例えば、シリカ微粒子等の無機微粒子や、ポリスチレン樹脂、メラミン樹脂、ポリエステル樹脂、アクリル樹脂、オレフィン樹脂、又は、これらの共重合体等の有機微粒子で、架橋度を上げたもの等が挙げられる。これらの微粒子(A)は、単独で用いられてもよく、2種以上が併用されてもよい。
なかでも、屈折率や粒径の制御が容易な有機微粒子であることが好ましく、放射線硬化型バインダーとの屈折率差を設けやすいことから(通常の放射線硬化型バインダーの屈折率は1.48~1.54程度)、メラミン微粒子、ポリスチレン微粒子及び/又はアクリル-スチレン共重合体微粒子が好適に用いられる。なお、以下では微粒子(A)が有機微粒子であるとして説明する。なお、本明細書において、「樹脂」は、モノマー、オリゴマー等の樹脂成分も包含する概念である。
ここで、アクリル樹脂、ポリスチレン樹脂及びアクリル-スチレン共重合体による有機微粒子は、一般的に知られている製造方法で製造する際、いずれも材料としてアクリル-スチレン共重合樹脂を用いることがある。また、上記微粒子が、コア-シェルタイプでは、コアにアクリル樹脂からなる微粒子を用いたポリスチレン微粒子や、逆にコアにスチレン樹脂からなる微粒子を用いたアクリル微粒子が存在する。このため、本明細書では、アクリル微粒子、ポリスチレン微粒子及びアクリル-スチレン共重合微粒子の区別については、微粒子の持つ特性(例えば、屈折率)が、どの樹脂に一番近いかで判断するものとする。例えば、微粒子の屈折率が1.50未満であればアクリル微粒子とし、微粒子の屈折率が1.50以上1.59未満であればアクリル-スチレン共重合体微粒子とし、微粒子の屈折率が1.59以上であればスチレン微粒子ととらえることができる。
また、以下、微粒子について「高架橋」、「低架橋」という場合があるが、該「高架橋」、「低架橋」とは、下記のように定義することとする。
トルエンとメチルイソブチルケトンの混合物(質量比8:2)を、放射線硬化型バインダー(ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及び、ポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9))100質量部に対して、190質量部配合した塗液を調製する。
得られた塗液に微粒子を24時間浸漬し、膨潤が認められる微粒子を「低架橋」、膨潤が認められない微粒子を「高架橋」と定義する。
Examples of the fine particles (A) that are not swollen by the radiation curable binder and / or solvent include inorganic fine particles such as silica fine particles, polystyrene resin, melamine resin, polyester resin, acrylic resin, olefin resin, or a combination of these. Examples include organic fine particles such as coalescence with a higher degree of crosslinking. These fine particles (A) may be used alone or in combination of two or more.
Of these, organic fine particles that can easily be controlled in refractive index and particle diameter are preferable, and since a difference in refractive index from the radiation curable binder is easily provided (the refractive index of a normal radiation curable binder is 1.48 to 1.54), melamine fine particles, polystyrene fine particles and / or acrylic-styrene copolymer fine particles are preferably used. In the following description, it is assumed that the fine particles (A) are organic fine particles. In the present specification, “resin” is a concept including resin components such as monomers and oligomers.
Here, when the organic fine particles made of an acrylic resin, a polystyrene resin and an acrylic-styrene copolymer are produced by a generally known production method, an acrylic-styrene copolymer resin may be used as a material. In the case of the core-shell type, there are polystyrene fine particles using fine particles made of acrylic resin for the core, and conversely acrylic fine particles using fine particles made of styrene resin for the core. Therefore, in this specification, the distinction between the acrylic fine particles, the polystyrene fine particles, and the acrylic-styrene copolymer fine particles is determined based on which resin has the closest characteristic (for example, refractive index) to the fine particles. . For example, if the refractive index of the fine particles is less than 1.50, acrylic fine particles are obtained, and if the refractive index of the fine particles is 1.50 or more and less than 1.59, acrylic-styrene copolymer fine particles are obtained, and the refractive index of the fine particles is 1. If it is 59 or more, it can be regarded as styrene fine particles.
Hereinafter, the fine particles may be referred to as “highly crosslinked” or “lowly crosslinked”, and the “highly crosslinked” and “lowly crosslinked” are defined as follows.
A mixture of toluene and methyl isobutyl ketone (mass ratio 8: 2) is mixed with a radiation curable binder (a mixture of pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), and polymethyl methacrylate (PMMA) ( Mass ratio: PETA / DPHA / PMMA = 86/5/9)) A coating liquid containing 190 parts by mass with respect to 100 parts by mass is prepared.
Fine particles are immersed in the resulting coating liquid for 24 hours, and fine particles in which swelling is observed are defined as “low crosslinking”, and fine particles in which swelling is not observed are defined as “high crosslinking”.
ここで、上述のように、防眩性フィルムに充分な防眩性能を発揮させるためには、拡散層の表面に大きな凸部が形成されることが好ましく、例えば、拡散層に大粒径の微粒子を含有させると、容易に拡散層の表面に大きな凸部を形成することができる。しかしながら、拡散層が大粒径の微粒子を含有する場合、その表面が荒れた状態(本発明の防眩性フィルムを適用してなるディスプレイの画像の輪郭がぼけるなどの画像の緻密さに欠けるガサツキが生じ、画質が緻密さに欠けて低下してしまう状態)となって画質が低下することがある。また、微粒子の脱落防止等のために拡散層を厚くする必要があるため、形成した防眩性フィルムにカールが発生したり、拡散層形成時のバインダー成分の硬化収縮等に起因したクラックが発生したりするという問題がある。
本発明者らは、このような拡散層の防眩性能と含有させる微粒子の大きさとの関係に着目し、鋭意検討した結果、拡散層に含有させる微粒子として、比較的小さな微粒子を選択するとともに、該微粒子を拡散層中で所定の凝集形態をとるものとすることで、上述した大粒径の微粒子を選択した場合の不具合を回避しつつ、充分な防眩性能を発揮し得る防眩性フィルムとしたのである。
すなわち、本発明では、上記拡散層に含有させる微粒子(A)として、従来、充分な防眩性能を発揮させるために添加されていた微粒子と比較して、より小さな粒径のものを選択するのである。
Here, as described above, in order for the antiglare film to exhibit sufficient antiglare performance, it is preferable that a large convex portion is formed on the surface of the diffusion layer. For example, the diffusion layer has a large particle size. When fine particles are contained, large convex portions can be easily formed on the surface of the diffusion layer. However, when the diffusion layer contains fine particles having a large particle diameter, the surface is rough (the roughness of the image, such as the blurred outline of the display image to which the antiglare film of the present invention is applied). May occur and the image quality may deteriorate due to lack of precision. In addition, since it is necessary to thicken the diffusion layer in order to prevent fine particles from falling off, the formed anti-glare film may curl or cracks may occur due to curing shrinkage of the binder component when the diffusion layer is formed. There is a problem of doing.
As a result of diligent study, the inventors of the present invention selected relatively small fine particles as fine particles to be contained in the diffusion layer, while paying attention to the relationship between the antiglare performance of such a diffusion layer and the size of the fine particles to be contained. An anti-glare film capable of exhibiting sufficient anti-glare performance while avoiding the problems when the above-mentioned fine particles having a large particle diameter are selected by making the fine particles take a predetermined aggregation form in the diffusion layer. It was.
That is, in the present invention, as the fine particles (A) to be contained in the diffusion layer, those having a smaller particle size are selected as compared with the fine particles that have been conventionally added to exhibit sufficient antiglare performance. is there.
上記微粒子(A)の平均粒径としては、具体的には、0.5~10.0μmの範囲のものが好適である。0.5μm未満であると、上述した凝集体を所定の割合で形成することができず、本発明の防眩性フィルムの防眩性能が不充分となることがある。一方、10.0μmを超えると、拡散層表面に形成される凹凸形状が大きくなり、本発明の防眩性フィルムに白茶けや面ギラが発生することがある。より好ましい下限は1.0μm、より好ましい上限は8.0μmである。
なお、上記微粒子(A)の平均粒径とは、塗膜中での粒径であって、含有される各々の微粒子の形状が単一な粒子であれば、その算術平均を意味し、ブロードな粒度分布を持つ不定形型の微粒子であれば、粒度分布測定により、最も多く存在する微粒子の粒径を意味する。なお、粒径は、微粒子だけの状態のときは、コールターカウンター法等により計測できる。しかし、塗膜中に存在する微粒子は、膨潤等により粉体状態とは異なる粒径を示すことがあるので、本発明の防眩性フィルムの拡散層中における上記微粒子(A)の平均粒径は、透過型光学顕微鏡観察や断面SEM写真撮影により測定することが好ましい。
Specifically, the average particle diameter of the fine particles (A) is preferably in the range of 0.5 to 10.0 μm. When the thickness is less than 0.5 μm, the above-mentioned aggregate cannot be formed at a predetermined ratio, and the antiglare performance of the antiglare film of the present invention may be insufficient. On the other hand, when the thickness exceeds 10.0 μm, the uneven shape formed on the surface of the diffusion layer increases, and the anti-glare film of the present invention may cause whitening or surface glare. A more preferable lower limit is 1.0 μm, and a more preferable upper limit is 8.0 μm.
The average particle diameter of the fine particles (A) is the particle diameter in the coating film, and means the arithmetic average of the particles if each of the contained fine particles has a single shape. In the case of irregular-shaped fine particles having a fine particle size distribution, it means the particle size of the most existing fine particles by particle size distribution measurement. The particle diameter can be measured by a Coulter counter method or the like when only fine particles are present. However, since the fine particles present in the coating film may have a particle size different from the powder state due to swelling or the like, the average particle size of the fine particles (A) in the diffusion layer of the antiglare film of the present invention. Is preferably measured by transmission optical microscope observation or cross-sectional SEM photography.
本発明の防眩性フィルムにおいて、上記凝集体を形成する微粒子(A)の平均粒径をDとしたとき、上述した2個の微粒子(A)の傾斜角の位置関係から、凝集体を形成する2個の微粒子(A)の互いの中心を結ぶ直線と光透過性基材の表面とがなす傾斜角をθと定義したとき、2個の微粒子(A)が隣接した凝集体の厚み方向の高さは、
 1/2D+Dsinθ+1/2D=D(1+sinθ)
となる。
このとき、sin20°≒0.34、sin70°≒0.94の近似値を用いると、傾斜角20°時の凝集体の厚み方向の高さは(1.34×D)、傾斜角70°時の凝集体の厚み方向の高さは(1.94×D)となることから、上記Dは、上記拡散層の厚みTとの位置関係として、下記式(A)を満たすことが好ましい。
 (1.34×D)<T<(1.94×D)  (A)
凝集体を形成する微粒子(A)の平均粒径Dと拡散層の厚さTとが、上記式(A)の関係を満たすことで、上述した凝集体を好適に形成することができる。
すなわち、拡散層厚みが平均粒径の1.34倍以下であると、上述した凝集体を構成する2個の微粒子(A)の中心を結ぶ直線と光透過性基材の表面とがなす傾斜角が小さくなりすぎることがあり、1.94倍以上であると上述した凝集体を構成する2個の微粒子(A)の中心を結ぶ直線と光透過性基材の表面とがなす傾斜角が大きくなりすぎることがある。
より好ましい範囲は、上述した2個の微粒子(A)の傾斜角の位置関係から、sin30°≒0.50、sin60°≒0.87の近似値を用いた下記式(A’)である。
 (1.50×D)<T<(1.87×D)  (A’)
なお、上記拡散層の厚さTとは、防眩性フィルム断面のSEM写真により測定した拡散層の厚みの平均値を意味する。
また、特に断りのない限り、上記Dは、硬化後の拡散層における微粒子(A)の平均粒径を表す。
In the antiglare film of the present invention, when the average particle diameter of the fine particles (A) forming the aggregates was D A, from the positional relationship of the tilt angle of the two particles as described above (A), the aggregate When the inclination angle formed by the straight line connecting the centers of the two fine particles (A) to be formed and the surface of the light-transmitting substrate is defined as θ, the thickness of the aggregate in which the two fine particles (A) are adjacent to each other The height of the direction is
1 / 2D A + D A sin θ + 1 / 2D A = D A (1 + sin θ)
It becomes.
At this time, when approximate values of sin 20 ° ≈0.34 and sin 70 ° ≈0.94 are used, the height in the thickness direction of the aggregate when the tilt angle is 20 ° is (1.34 × D A ), and the tilt angle is 70. Since the height of the aggregate in the thickness direction at (°) is (1.94 × D A ), the above D A satisfies the following formula (A) as the positional relationship with the thickness T of the diffusion layer. Is preferred.
(1.34 × D A ) <T <(1.94 × D A ) (A)
The average particle size D A of the particulate (A) to form aggregates and the thickness T of the diffusion layer, it satisfies the relation of the formula (A), it can be suitably formed aggregates described above.
That is, when the diffusion layer thickness is 1.34 times or less of the average particle diameter, the slope formed by the straight line connecting the centers of the two fine particles (A) constituting the aggregate and the surface of the light-transmitting substrate is formed. The angle may be too small, and if it is 1.94 times or more, the inclination angle formed between the straight line connecting the centers of the two fine particles (A) constituting the aggregate and the surface of the light-transmitting substrate is formed. May become too large.
A more preferable range is the following formula (A ′) using approximate values of sin 30 ° ≈0.50 and sin 60 ° ≈0.87 from the positional relationship of the inclination angles of the two fine particles (A) described above.
(1.50 × D A ) <T <(1.87 × D A ) (A ′)
In addition, the thickness T of the diffusion layer means an average value of the thickness of the diffusion layer measured by the SEM photograph of the cross section of the antiglare film.
Further, unless otherwise noted, the D A represents an average particle diameter of the fine particles (A) in the diffusion layer after curing.
本発明の防眩性フィルムにおいて、上記微粒子(A)としては、例えば、事前に、架橋度の異なる有機微粒子を用いた塗液にて防眩フィルムを作製し、好ましい含浸度合いに合致する有機微粒子を選定して用いればよい。 In the antiglare film of the present invention, as the fine particles (A), for example, an antiglare film is prepared in advance with a coating solution using organic fine particles having different crosslinking degrees, and the organic fine particles conform to a preferable degree of impregnation. Can be selected and used.
上記塗液における微粒子(A)の含有量としては特に限定されないが、後述する放射線硬化型バインダー100質量部に対して0.5~30質量部であることが好ましい。0.5質量部未満であると、本発明の防眩性フィルムの防眩性能が不充分となることがあり、また、面ギラが発生しやすくなることもある。一方、30質量部を超えると、本発明の防眩性フィルムを用いた画像表示層のコントラストが低下することがある。上記微粒子(A)の含有量のより好ましい下限は1質量部、より好ましい上限は20質量部である。この範囲内にあることで、より上述の効果を確実にすることができる。 The content of the fine particles (A) in the coating liquid is not particularly limited, but is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the radiation curable binder described later. If it is less than 0.5 parts by mass, the antiglare performance of the antiglare film of the present invention may be insufficient, and surface glare may easily occur. On the other hand, when it exceeds 30 mass parts, the contrast of the image display layer using the anti-glare film of this invention may fall. The minimum with more preferable content of the said microparticles | fine-particles (A) is 1 mass part, and a more preferable upper limit is 20 mass parts. By being in this range, the above-mentioned effect can be further ensured.
上記塗液は、更に有機微粒子(B)を含有することが好ましい。
上記有機微粒子(B)とバインダーとの屈折率の差は0.04未満であることが好ましい。
上記有機微粒子(B)は、該有機微粒子(B)に対応する位置の拡散層の表面に主として凸部を形成するものであり、このような有機微粒子(B)を含有することで、形成する拡散層に滑らかな凹凸を形成し防眩性とコントラストとの両立を図ることができる。
The coating liquid preferably further contains organic fine particles (B).
The difference in refractive index between the organic fine particles (B) and the binder is preferably less than 0.04.
The organic fine particles (B) mainly form convex portions on the surface of the diffusion layer at positions corresponding to the organic fine particles (B), and are formed by containing such organic fine particles (B). Smooth unevenness can be formed in the diffusion layer to achieve both antiglare properties and contrast.
上記有機微粒子(B)を構成する材料としては、後述する放射線硬化型バインダー及び/又は溶剤により膨潤されるものが好ましく、具体的には、例えば、シリコーン樹脂、ポリエステル樹脂、スチレン樹脂、アクリル樹脂、オレフィン樹脂、又は、これらの共重合体等が挙げられ、なかでも、アクリル樹脂が好適に用いられ、更には微粒子を製造する折、架橋密度を向上させるなど架橋の度合いを変更したタイプの架橋アクリル樹脂が好ましい。なお、本明細書において、「樹脂」は、反応性又は非反応性のポリマー、モノマー、オリゴマー等の樹脂成分も包含する概念である。
ここで、アクリル樹脂、スチレン樹脂及びアクリル-スチレン共重合体による有機微粒子は、一般的に知られている製造方法で製造する際、いずれも材料としてアクリル-スチレン共重合樹脂を用いることがある。また、上記有機微粒子(B)が、コア-シェルタイプの微粒子では、コアにアクリル樹脂からなる微粒子を用いたスチレン微粒子や、逆にコアにスチレン樹脂からなる微粒子を用いたアクリル微粒子が存在する。このため、本明細書では、アクリル微粒子、スチレン微粒子及びアクリル-スチレン共重合微粒子の区別については、微粒子の持つ特性(例えば、屈折率)が、どの樹脂に一番近いかで判断するものとする。例えば、微粒子の屈折率が1.50未満であればアクリル微粒子とし、微粒子の屈折率が1.50以上1.59未満であればアクリル-スチレン共重合体微粒子とし、微粒子の屈折率が1.59以上であればスチレン微粒子ととらえることができる。
As the material constituting the organic fine particles (B), those which are swollen by a radiation curable binder and / or a solvent described later are preferable. Specifically, for example, a silicone resin, a polyester resin, a styrene resin, an acrylic resin, Examples include olefin resins, copolymers thereof, and the like. Among them, acrylic resins are preferably used, and further, the degree of cross-linking such as improving the cross-linking density when producing fine particles is changed. Resins are preferred. In the present specification, the “resin” is a concept including a resin component such as a reactive or non-reactive polymer, monomer or oligomer.
Here, when the organic fine particles made of an acrylic resin, a styrene resin, and an acrylic-styrene copolymer are produced by a generally known production method, an acrylic-styrene copolymer resin may be used as a material. Further, when the organic fine particles (B) are core-shell type fine particles, there are styrene fine particles using fine particles made of acrylic resin for the core, and conversely acrylic fine particles using fine particles made of styrene resin for the core. Therefore, in this specification, the distinction between the acrylic fine particles, the styrene fine particles, and the acrylic-styrene copolymer fine particles is determined based on which resin has the closest characteristic (for example, refractive index) to the fine particles. . For example, if the refractive index of the fine particles is less than 1.50, acrylic fine particles are obtained, and if the refractive index of the fine particles is 1.50 or more and less than 1.59, acrylic-styrene copolymer fine particles are obtained, and the refractive index of the fine particles is 1. If it is 59 or more, it can be regarded as styrene fine particles.
上記架橋アクリル樹脂としては、例えば、アクリル酸及びアクリル酸エステル、メタクリル酸及びメタクリル酸エステル、アクリルアミド、アクリロニトリル等のアクリル系モノマーに、過硫酸等の重合開始剤及びエチレングリコールジメタクリレート等の架橋剤を用いて、懸濁重合法等により重合させて得られる単独重合体や、共重合体が好適である。
上記アクリル系モノマーとして、メチルメタクリレートを用いて得られた架橋アクリル樹脂が特に好適である。なお、後述する放射線硬化型バインダー及び/又は溶剤による膨潤度合いを調整することで後述する含浸層の厚みを制御することができるが、このためには、放射線硬化型バインダーの含浸量が好ましい範囲となるように架橋の程度を変えておくことが好ましい。
Examples of the cross-linked acrylic resin include acrylic monomers such as acrylic acid and acrylic acid ester, methacrylic acid and methacrylic acid ester, acrylamide and acrylonitrile, a polymerization initiator such as persulfuric acid, and a cross-linking agent such as ethylene glycol dimethacrylate. A homopolymer or a copolymer obtained by polymerization using a suspension polymerization method or the like is preferable.
As the acrylic monomer, a cross-linked acrylic resin obtained using methyl methacrylate is particularly suitable. In addition, the thickness of the impregnation layer described later can be controlled by adjusting the degree of swelling by the radiation curable binder and / or solvent described later. For this purpose, the impregnation amount of the radiation curable binder is within a preferable range. It is preferable to change the degree of crosslinking so that
上記有機微粒子(B)の平均粒径としては特に限定されないが、上述した微粒子(A)の平均粒径と同等であってもよい。ただし、上記拡散層中の有機微粒子(B)は、上記拡散層中の微粒子(A2)よりも平均粒径が大きなものであることが好ましい。上記拡散層中の有機微粒子(B)の平均粒径が上記拡散層中の微粒子(A2)の平均粒径以下であると、上記微粒子(A)を添加することの効果を殆ど得ることができないことがある。 The average particle size of the organic fine particles (B) is not particularly limited, but may be equal to the average particle size of the fine particles (A) described above. However, the organic fine particles (B) in the diffusion layer preferably have a larger average particle diameter than the fine particles (A2) in the diffusion layer. When the average particle size of the organic fine particles (B) in the diffusion layer is equal to or smaller than the average particle size of the fine particles (A2) in the diffusion layer, the effect of adding the fine particles (A) can hardly be obtained. Sometimes.
さらに、上記有機微粒子(B)の拡散層中での平均粒径をDとしたとき、該Dは、上記拡散層の厚さTに対して、下記式(B)を満たすことが好ましい。
 D<T  (B)
上記有機微粒子(B)の平均粒径Dが、上記式(B)を満たさない場合、すなわち、上記有機微粒子(B)の平均粒径Dが、拡散層の厚さT以上の値である場合、該有機微粒子(B)により拡散層表面に形成される凹凸形状が大きくなり、本発明の防眩性フィルムのハードコート性が劣ったり、画像表示装置に適用した際のコントラストの低下を引き起こしたりすることがある。
Further, when the average particle diameter of the diffusion layer of the organic fine particles (B) was D B, said D B is the thickness T of the diffusion layer, it is preferable to satisfy the following formula (B) .
D B <T (B)
The average particle size D B of the organic fine particles (B) is, if not satisfied the above formula (B), i.e., the average particle size D B of the organic fine particles (B) is a thickness T greater than or equal to the diffusion layer In some cases, the uneven shape formed on the surface of the diffusion layer by the organic fine particles (B) becomes large, the hard coat property of the antiglare film of the present invention is inferior, and the contrast when applied to an image display device is lowered. It may cause.
本発明の防眩性フィルムにおいて、上記拡散層中の有機微粒子(B)は、後述する放射線硬化型バインダーが含浸した含浸層を有することが好ましい。なお、以下の説明において、上記含浸層が形成された有機微粒子(B)、すなわち、拡散層中の有機微粒子(B)を「有機微粒子(B2)」ともいう。
上記含浸層を有することで、上記有機微粒子(B2)は、拡散層の放射線硬化型バインダーの硬化物(以下、バインダー樹脂ともいう)との密着性が極めて優れたものとなる。また、有機微粒子(B2)における上記含浸層は、放射線硬化型バインダーと有機微粒子(B2)を構成する材料とが混合した状態で形成されたものであるので、上記含浸層の屈折率は、放射線硬化型バインダーの屈折率と有機微粒子(B)の屈折率との間の屈折率となり、上記有機微粒子(B2)(含浸層)とバインダー樹脂との界面での上記拡散層の透過光の反射を好適に減少させることができる。また、同時に、上記含浸層は、適度な層厚であって、有機微粒子(B2)の中心は、初期の有機微粒子(B)の屈折率を保持しているので、内部拡散が減少することなく、面ギラを好適に防止することが可能となる。
更に、後述するように、上記含浸層は、上記放射線硬化型バインダー及び/又は溶剤が、有機微粒子(B)を膨潤させることで形成される層であるため、上記有機微粒子(B2)は、極めて柔軟性に富んだ微粒子となる。このため、上記拡散層の表面の有機微粒子(B2)に対応する位置に形成される凸部の形状をなだらかなものとすることができる。なお、この点については、後で更に詳細に説明する。
In the antiglare film of the present invention, the organic fine particles (B) in the diffusion layer preferably have an impregnation layer impregnated with a radiation curable binder described later. In the following description, the organic fine particles (B) on which the impregnation layer is formed, that is, the organic fine particles (B) in the diffusion layer are also referred to as “organic fine particles (B2)”.
By having the impregnation layer, the organic fine particles (B2) have extremely excellent adhesion to the cured product of the radiation curable binder (hereinafter also referred to as binder resin) of the diffusion layer. In addition, the impregnation layer in the organic fine particles (B2) is formed in a state where the radiation curable binder and the material constituting the organic fine particles (B2) are mixed. The refractive index is between the refractive index of the curable binder and the refractive index of the organic fine particles (B), and the transmitted light of the diffusion layer is reflected at the interface between the organic fine particles (B2) (impregnated layer) and the binder resin. It can be suitably reduced. At the same time, the impregnated layer has an appropriate layer thickness, and the center of the organic fine particles (B2) maintains the refractive index of the initial organic fine particles (B), so that the internal diffusion does not decrease. Therefore, it becomes possible to suitably prevent surface glare.
Further, as will be described later, the impregnated layer is a layer formed by swelling the organic fine particles (B) with the radiation curable binder and / or solvent. Therefore, the organic fine particles (B2) are extremely Fine particles with high flexibility. For this reason, the shape of the convex part formed in the position corresponding to the organic fine particles (B2) on the surface of the diffusion layer can be made gentle. This point will be described in more detail later.
上記含浸層は、上記拡散層中の有機微粒子(B2)の外表面からその中心に向かって、放射線硬化型バインダーが含浸して形成された層である。なお、上記含浸層は、放射線硬化型バインダーのうち低分子量成分、すなわち、主としてモノマーが含浸して形成された層であり、高分子量成分である放射線硬化型バインダーの重合物であるポリマーやオリゴマーは含浸しづらい。ただし、オリゴマーやポリマーであっても、分子量が比較的小さいものであったり、モノマーが含浸する折に、共に含浸したりすることもある。
上記含浸層は、例えば、上記拡散層中の有機微粒子(B2)の断面を顕微鏡(SEM等)観察することで判別することができる。
なお、上記含浸層に含浸する放射線硬化型バインダーは、構成する全成分が含浸されたものであってもよく、構成する成分の一部が含浸したものであってもよい。
The impregnation layer is a layer formed by impregnating a radiation curable binder from the outer surface of the organic fine particles (B2) in the diffusion layer toward the center thereof. The impregnated layer is a layer formed by impregnating mainly low molecular weight components of the radiation curable binder, that is, monomers, and polymers and oligomers that are polymers of the radiation curable binder that is a high molecular weight component. Difficult to impregnate. However, even an oligomer or a polymer may have a relatively small molecular weight or may be impregnated together when the monomer is impregnated.
The impregnated layer can be identified, for example, by observing a cross section of the organic fine particles (B2) in the diffusion layer with a microscope (SEM or the like).
The radiation curable binder impregnated in the impregnation layer may be impregnated with all the constituent components, or may be impregnated with a part of the constituent components.
上記含浸層は、平均厚さが0.01~1.0μmであることが好ましい。0.01μm未満であると、上述した含浸層を形成することで得られる効果を充分に得られないことがあり、1.0μmを超えると、有機微粒子(B2)の内部拡散機能が充分に発揮されなくなり、面ギラの防止効果を充分に得られないことがある。上記含浸層の平均厚さのより好ましい下限は0.1μm、より好ましい上限は0.8μmである。この範囲内にあることで、より前述の効果を発揮することができる。また、有機微粒子(B2)の含浸層の形成されていない部分の径は、光の波長以上であることが、内部拡散機能を確保して面ギラを防止する観点から好ましい。
なお、上記含浸層の平均厚さとは、防眩性フィルムの断面SEM写真で観察される有機微粒子(B2)の含浸層の厚さの平均値を意味する。具体的には、上記拡散層の断面をSEMにて3000~5万倍で、含浸層のある微粒子が必ず1個以上存在している任意の5場面を観察し、撮影した後に、含浸層の厚さを微粒子1個につき2点測定し、測定値10点を平均した値として求めることができる。上記含浸層の厚さの測定は、微粒子の周りのバインダー樹脂と微粒子との境目が比較的明瞭であり、かつ、最大含浸しているような部分を2点選択して行う。
The impregnated layer preferably has an average thickness of 0.01 to 1.0 μm. If it is less than 0.01 μm, the effect obtained by forming the above-mentioned impregnation layer may not be sufficiently obtained. If it exceeds 1.0 μm, the internal diffusion function of the organic fine particles (B2) is sufficiently exhibited. The effect of preventing surface glare may not be obtained sufficiently. The more preferable lower limit of the average thickness of the impregnated layer is 0.1 μm, and the more preferable upper limit is 0.8 μm. By being in this range, the above-mentioned effect can be exhibited more. Further, the diameter of the portion where the impregnated layer of the organic fine particles (B2) is not formed is preferably equal to or greater than the wavelength of light from the viewpoint of securing the internal diffusion function and preventing surface glare.
The average thickness of the impregnated layer means the average value of the thickness of the impregnated layer of organic fine particles (B2) observed in the cross-sectional SEM photograph of the antiglare film. Specifically, the cross section of the diffusion layer is 3000 to 50,000 times by SEM, and after observing and photographing any 5 scenes in which at least one fine particle with an impregnation layer is present, The thickness can be obtained as a value obtained by measuring two points for each fine particle and averaging 10 measured values. The thickness of the impregnated layer is measured by selecting two points where the boundary between the binder resin and the fine particles around the fine particles is relatively clear and the maximum impregnation is performed.
ここで、有機微粒子は、一般的に架橋された構造を有するが、この架橋の程度により上記放射線硬化型バインダー及び/又は溶剤による膨潤度合いが異なることとなり、通常、有機微粒子は、架橋度が高くなると膨潤度が低くなり、架橋度が低いと膨潤度が高くなる。このため、例えば、上記有機微粒子(B)を構成する材料が上述した架橋アクリル樹脂である場合、上記有機微粒子(B2)の含浸層の厚さは、上記架橋アクリル樹脂の架橋の度合いを適宜調整することで所望の範囲に制御することができる。また、反射防止性能と面ギラ防止の観点から、上記有機微粒子(B2)は、中心部ほど架橋度を高くすることがより好ましく、上記有機微粒子(B2)の含浸層の厚みより内側は含浸性のでない架橋度であって、かつ、表面ほど架橋度が低いことが最も好ましい。なお、上述した微粒子(A)についても同様である。 Here, the organic fine particles generally have a cross-linked structure, but the degree of swelling by the radiation curable binder and / or solvent varies depending on the degree of the cross-linking, and the organic fine particles usually have a high degree of cross-linking. If so, the degree of swelling becomes low, and if the degree of crosslinking is low, the degree of swelling becomes high. For this reason, for example, when the material constituting the organic fine particles (B) is the above-mentioned crosslinked acrylic resin, the thickness of the impregnated layer of the organic fine particles (B2) appropriately adjusts the degree of crosslinking of the crosslinked acrylic resin. By doing so, it can be controlled within a desired range. Further, from the viewpoint of antireflection performance and surface glare prevention, it is more preferable that the organic fine particles (B2) have a higher degree of cross-linking toward the central portion, and the inner side than the thickness of the impregnated layer of the organic fine particles (B2) is impregnated. Most preferably, the degree of crosslinking is not low and the degree of crosslinking is as low as the surface. The same applies to the fine particles (A) described above.
また、上記有機微粒子(B)の平均粒径をD1とし、拡散層中の有機微粒子(B2)の平均粒径をD2としたとき、該D1、D2は、下記式(2)を満たすことが好ましい。
  0.01μm<D2-D1<1.0μm   (2)
上記式(2)において、「D2-D1」が0.01μm以下であると、上記含浸層の厚さが薄くなりすぎ、上述した含浸層を形成することで得られる効果を得ることができないことがある。「D2-D1」が1.0μm以上であると、表面に形成される凹凸が大きくなり過ぎる他、内部拡散機能が充分に発揮されなくなり、面ギラの防止効果を充分に得られないことがある。
上記「D2-D1」のより好ましい下限は0.1μm、より好ましい上限は0.5μmである。「D2-D1」がこの範囲にあることで、より前述の効果を発揮することができる。
When the average particle diameter of the organic fine particles (B) is D B 1 and the average particle diameter of the organic fine particles (B2) in the diffusion layer is D B 2, the D B 1 and D B 2 are as follows: It is preferable to satisfy the formula (2).
0.01 μm <D B 2−D B 1 <1.0 μm (2)
In the above formula (2), when “D B 2 -D B 1” is 0.01 μm or less, the thickness of the impregnated layer becomes too thin, and the effect obtained by forming the above impregnated layer is obtained. There are times when you can't. If “D B 2 -D B 1” is 1.0 μm or more, the unevenness formed on the surface becomes too large, and the internal diffusion function is not sufficiently exhibited, and the effect of preventing surface glare can be sufficiently obtained. There may not be.
The more preferable lower limit of the above “D B 2-D B 1” is 0.1 μm, and the more preferable upper limit is 0.5 μm. When “D B 2 -D B 1” is within this range, the above-described effects can be further exerted.
なお、本発明の防眩性フィルムにおいて、上記有機微粒子(B)が拡散層中で含浸層を有する場合、このような有機微粒子(B)としては、例えば、事前に、架橋度の異なる有機微粒子を用いた塗液にて防眩性フィルムを作製し、好ましい含浸度合いに合致する有機微粒子を選定して用いればよい。 In the antiglare film of the present invention, when the organic fine particles (B) have an impregnated layer in the diffusion layer, the organic fine particles (B) may have, for example, organic fine particles having different degrees of crosslinking in advance. An anti-glare film may be prepared with a coating solution using, and organic fine particles matching a preferable degree of impregnation may be selected and used.
また、本発明の防眩性フィルムは、上記拡散層中の有機微粒子(B)に含浸層が形成される場合、上述した微粒子(A)及び有機微粒子(B)の平均粒径を、各々D1及びD1とし、拡散層中の微粒子(A2)及び有機微粒子(B2)の平均粒径を、各々D2及びD2としたとき、上記D1、D1、D2及びD2は、下記式(3)を満たすことが好ましい。
  1.0μm>D2-D1>D2-D1≧0   (3)
上記式(3)を満たすことで、拡散層表面の凹凸形状を滑らかなものにするとともに、内部拡散に寄与する粒子へのバインダー等の含浸による粒子の屈折率の変化が抑えられる等のため、内部拡散の維持が容易となり、更に、拡散層中の粒子表面での反射が減じることから、本発明の防眩性フィルムの白茶け防止、及び、面ギラ防止をより確実にすることができる。
Further, when the impregnated layer is formed on the organic fine particles (B) in the diffusion layer, the antiglare film of the present invention has an average particle diameter of the fine particles (A) and the organic fine particles (B) described above as D. When A 1 and D B 1 and the average particle diameters of the fine particles (A2) and the organic fine particles (B2) in the diffusion layer are D A 2 and D B 2, respectively, D A 1, D B 1, D A 2 and D B 2 preferably satisfy the following formula (3).
1.0 μm> D B 2-D B 1> D A 2-D A 1 ≧ 0 (3)
By satisfying the above formula (3), the uneven shape on the surface of the diffusion layer is made smooth, and the change in the refractive index of the particles due to the impregnation of the binder or the like into the particles contributing to internal diffusion can be suppressed. The internal diffusion can be easily maintained, and the reflection on the surface of the particles in the diffusion layer can be reduced, so that the antiglare film of the present invention can be more reliably prevented from whitening and surface glare.
また、上記有機微粒子(B)は、上記拡散層中で該拡散層の厚み方向(縦方向)に凝集していないことが好ましい。上記拡散層中の有機微粒子(B)が該拡散層の厚み方向に積み重なるような凝集していると、凝集した有機微粒子(B)に対応する位置の拡散層の表面に大きな凸部が形成され、本発明の防眩性フィルムに白茶けや面ギラが発生してしまうことがある。なお、上記拡散層中の有機微粒子(B)の凝集は、例えば、後述する層状無機化合物を含有させることで好適に防止することができる。なお、上記有機微粒子(B)の凝集が拡散層の厚み方向と垂直方向(横方向)の場合は、縦方向の凝集よりも上記問題を起こすことは少ないが、凝集塊が大きくなりすぎると、同様な問題も起こるので、縦方向の凝集の場合と同様に層状無機物化合物の添加が好適である。 The organic fine particles (B) are preferably not aggregated in the thickness direction (longitudinal direction) of the diffusion layer in the diffusion layer. When the organic fine particles (B) in the diffusion layer are aggregated so as to be stacked in the thickness direction of the diffusion layer, a large convex portion is formed on the surface of the diffusion layer at a position corresponding to the aggregated organic fine particles (B). In the antiglare film of the present invention, white brown or surface glare may occur. In addition, aggregation of the organic fine particles (B) in the diffusion layer can be suitably prevented by containing, for example, a layered inorganic compound described later. In the case where the aggregation of the organic fine particles (B) is in the direction perpendicular to the thickness direction of the diffusion layer (lateral direction), the above problem is less likely to occur than the aggregation in the vertical direction. Since a similar problem also occurs, it is preferable to add a layered inorganic compound as in the case of aggregation in the vertical direction.
上記塗液における有機微粒子(B)の含有量としては特に限定されないが、後述する放射線硬化型バインダー100質量部に対して、0.5~30質量部であることが好ましい。0.5質量部未満であると、拡散層の表面に充分な凹凸形状を形成することができず、本発明の防眩性フィルムの防眩性能が不充分となることがある。一方、30質量部を超えると、上記塗液中で有機微粒子(B)同士の凝集が生じやすくなり、上記拡散層中に上述した縦又は横方向への凝集が生じ、拡散層の表面に大きな凸部が形成されて白茶けや面ギラが発生してしまうことがある。上記有機微粒子(B)の含有量のより好ましい下限は1.0質量部、より好ましい上限は20質量部である。この範囲内にあることで、より上述の効果を確実にすることができる。 The content of the organic fine particles (B) in the coating solution is not particularly limited, but is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the radiation curable binder described later. If the amount is less than 0.5 part by mass, a sufficient uneven shape cannot be formed on the surface of the diffusion layer, and the antiglare performance of the antiglare film of the present invention may be insufficient. On the other hand, when the amount exceeds 30 parts by mass, aggregation of the organic fine particles (B) is likely to occur in the coating liquid, aggregation in the vertical or horizontal direction described above occurs in the diffusion layer, and the surface of the diffusion layer is large. Protrusions may be formed and white browning or surface glare may occur. The minimum with more preferable content of the said organic fine particle (B) is 1.0 mass part, and a more preferable upper limit is 20 mass parts. By being in this range, the above-mentioned effect can be further ensured.
本発明の防眩性フィルムにおいて、上記放射線硬化型バインダーとしては、(メタ)アクリレートモノマーを必須成分として含むものである。
上記(メタ)アクリレートモノマーを必須成分として含むことで、上記拡散層を、ハードコート性を損なうことなく上述した凝集体を含むものとすることができる。
このような放射線硬化型バインダーとしては、上述した有機微粒子(B)を膨潤させるものが好適に挙げられ、透明性のものが好ましく、例えば、紫外線又は電子線により硬化する電離放射線硬化型樹脂が挙げられる。なお、本明細書において「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指すものである。
In the antiglare film of the present invention, the radiation curable binder contains a (meth) acrylate monomer as an essential component.
By including the (meth) acrylate monomer as an essential component, the diffusion layer can include the above-described aggregate without impairing hard coat properties.
As such a radiation curable binder, those that swell the organic fine particles (B) described above are preferably exemplified, and those having transparency are preferred, and examples thereof include ionizing radiation curable resins that are cured by ultraviolet rays or electron beams. It is done. In the present specification, “(meth) acrylate” refers to methacrylate and acrylate.
上記(メタ)アクリレートモノマーとしては、例えば、(メタ)アクリレート系の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物が挙げられる。
1の不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等が挙げられる。2以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ビスフェノールF EO変性ジ(メタ)アクリレート、ビスフェノールA EO変性ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物と(メタ)アルリレート等の反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル)等が挙げられる。
また、2以上の不飽和結合を有するウレタン(メタ)アクリレートやポリエステル(メタ)アクリレートも挙げられる。
Examples of the (meth) acrylate monomer include compounds having one or more unsaturated bonds such as a compound having a (meth) acrylate functional group.
Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like. Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( (Meth) acrylate, pentaerythritol penta (meth) acrylate, polyethylene glycol di (meth) acrylate, bisphenol F EO modified di (meth) acrylate, bisphenol A EO modified di (meth) acrylate, trimethylolpropane tri (meth) acrylate, di Pentaerythritol penta (meth) acrylate, isocyanuric acid EO-modified di (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, trime Roll propane PO modified tri (meth) acrylate, trimethylolpropane EO modified tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate And polyfunctional compounds such as neopentyl glycol di (meth) acrylate and reaction products such as (meth) allylate (for example, poly (meth) acrylate ester of polyhydric alcohol).
Moreover, the urethane (meth) acrylate and polyester (meth) acrylate which have two or more unsaturated bonds are also mentioned.
上記電離放射線硬化型樹脂としては、上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。 As the ionizing radiation curable resin, in addition to the above compound, a relatively low molecular weight polyester resin having an unsaturated double bond, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, Polybutadiene resin, polythiol polyene resin, and the like can also be used as the ionizing radiation curable resin.
上記電離放射線硬化型樹脂を紫外線硬化型樹脂として使用する場合には、上記塗液は、光重合開始剤を含有することが好ましい。
上記光重合開始剤としては、具体例には、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
When the ionizing radiation curable resin is used as an ultraviolet curable resin, the coating liquid preferably contains a photopolymerization initiator.
Specific examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime esters, thioxanthones, propiophenones, benzyls, benzoins, and acylphosphine oxides. It is done. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
上記光重合開始剤としては、上記紫外線硬化型樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、上記紫外線硬化型樹脂がカチオン重合性官能基を有する樹脂系の場合は、上記光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
上記光重合開始剤の添加量は、紫外線硬化型樹脂100質量部に対して、0.1~10質量部であることが好ましい。
As the photopolymerization initiator, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. are used alone or in combination when the ultraviolet curable resin is a resin system having a radical polymerizable unsaturated group. It is preferable. When the ultraviolet curable resin is a resin system having a cationic polymerizable functional group, the photopolymerization initiator includes aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfonic acid. It is preferable to use esters or the like alone or as a mixture.
The addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂(熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)と併用して使用することもできる。この場合、上記溶剤乾燥型樹脂は、添加剤的役割を担うものであり、主には電離放射線硬化型樹脂を使用する。上記溶剤乾燥型樹脂の添加量としては、上記塗液に含まれる樹脂成分の全固形分に対して40質量%以下であることが好ましい。
上記溶剤乾燥型樹脂としては、主として熱可塑性樹脂が挙げられる。上記熱可塑性樹脂としては、一般的に例示されるものが利用される。上記溶剤乾燥型樹脂の添加により、塗布面の塗膜欠陥を有効に防止することができる。
好ましい熱可塑性樹脂の具体例としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂、及びゴム又はエラストマー等が挙げられる。
上記熱可塑性樹脂としては、通常、非結晶性であり、かつ有機溶剤(特に複数のポリマーや硬化性化合物を溶解可能な共通溶剤)に可溶な樹脂を使用することが好ましい。特に、成形性又は製膜性、透明性や耐候性の高い樹脂、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
The ionizing radiation curable resin is used in combination with a solvent-drying resin (a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating). You can also In this case, the solvent-drying resin plays an additive role, and an ionizing radiation curable resin is mainly used. The addition amount of the solvent-drying resin is preferably 40% by mass or less based on the total solid content of the resin component contained in the coating liquid.
Examples of the solvent-drying resin include thermoplastic resins. As the thermoplastic resin, those generally exemplified are used. By adding the solvent-drying resin, coating film defects on the coated surface can be effectively prevented.
Specific examples of preferable thermoplastic resins include, for example, styrene resins, (meth) acrylic resins, vinyl acetate resins, vinyl ether resins, halogen-containing resins, alicyclic olefin resins, polycarbonate resins, and polyester resins. , Polyamide resins, cellulose derivatives, silicone resins, and rubbers or elastomers.
As the thermoplastic resin, it is usually preferable to use a resin that is non-crystalline and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds). In particular, resins with high moldability or film formability, transparency and weather resistance, such as styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) Etc. are preferred.
本発明の好ましい態様によれば、上記光透過性基材の材料がトリアセチルセルロース「TAC」等のセルロース系樹脂の場合、熱可塑性樹脂の好ましい具体例として、セルロース系樹脂、例えば、ニトロセルロース、アセチルセルロース、セルロースアセテートプロピオネート、エチルヒドロキシエチルセルロース等が挙げられる。上記セルロース系樹脂を用いることにより、光透過性基材と拡散層との密着性及び透明性を向上させることができる。 According to a preferred embodiment of the present invention, when the material of the light-transmitting substrate is a cellulose resin such as triacetyl cellulose “TAC”, as a preferred specific example of the thermoplastic resin, a cellulose resin such as nitrocellulose, Examples include acetyl cellulose, cellulose acetate propionate, and ethyl hydroxyethyl cellulose. By using the cellulose resin, the adhesion and transparency between the light-transmitting substrate and the diffusion layer can be improved.
上記塗液は、更に熱硬化性樹脂を含有していてもよい。上記熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等が挙げられる。熱硬化性樹脂を用いる場合、必要に応じて、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等を併用して使用することもできる。 The coating liquid may further contain a thermosetting resin. Examples of the thermosetting resin include phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin. When a thermosetting resin is used, a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, and the like can be used in combination as necessary.
本発明の防眩性フィルムにおいて、上記放射線硬化型バインダーの屈折率と、微粒子(A)及び有機微粒子(B)の屈折率との差を、各々Δ及びΔとしたとき、上記Δ及びΔは、下記式(1)を満たすことが好ましい。
  |Δ|<|Δ|   (1)
上記式(1)を満たすことで、有機微粒子(B)による拡散角の小さな内部拡散と微粒子(A)による拡散角の大きい内部拡散とを併せ持つ面ギラがなく画面輝度の均一性に優れた防眩性フィルムを得ることができる。
なお、上記放射線硬化型バインダー、微粒子(A)及び有機微粒子(B)の屈折率の測定方法としては任意の方法が挙げられるが、例えば、ベッケ法、最小偏角法、偏角解析、モード・ライン法、エリプソメトリ法等により測定することができる。
更に、上記放射線硬化型バインダーが、上記(メタ)アクリレートとそれ以外の樹脂とを含有する場合、上記放射線硬化型バインダーの屈折率とは、微粒子を除いた含有する全ての樹脂成分による屈折率を言う。
上記屈折率の好ましい測定方法としては、放射線硬化型バインダーであれば、硬化膜からバインダー部分のみを削り取ってベッケ法で測定する方法が挙げられる。また、NTTアドバンステクノロジ社製の透過型位相シフトレーザー顕微干渉計測装置PLM-OPTを用いて位相差を測定することで、有機微粒子と樹脂成分との屈折率差を実測することができる。よって有機微粒子の屈折率については、先に求めた樹脂成分の屈折率±屈折率差という形で求める方法が挙げられる。
In the antiglare film of the present invention, the refractive index of the radiation-curable binder, a difference between the refractive index of the fine particles (A) and organic fine particles (B), when the respective delta A and delta B, the delta A and delta B, it is preferable to satisfy the following formula (1).
| Δ B | <| Δ A | (1)
By satisfying the above formula (1), there is no surface glare that has both internal diffusion with a small diffusion angle due to organic fine particles (B) and internal diffusion with a large diffusion angle due to fine particles (A), and excellent prevention of screen luminance uniformity. A dazzling film can be obtained.
The refractive index of the radiation curable binder, fine particles (A) and organic fine particles (B) can be measured by any method. For example, the Becke method, the minimum deviation method, the deviation analysis, the mode It can be measured by the line method, ellipsometry method or the like.
Further, when the radiation curable binder contains the (meth) acrylate and other resins, the refractive index of the radiation curable binder is the refractive index of all the resin components contained excluding fine particles. To tell.
As a preferable method for measuring the refractive index, in the case of a radiation curable binder, there is a method in which only the binder portion is removed from the cured film and measured by the Becke method. Further, the refractive index difference between the organic fine particles and the resin component can be measured by measuring the phase difference using a transmission type phase shift laser micro interference device PLM-OPT manufactured by NTT Advanced Technology. Therefore, the method of obtaining the refractive index of the organic fine particles in the form of the refractive index ± refractive index difference of the resin component obtained previously can be mentioned.
上記塗液は、更に溶剤を含有することが好ましい。
上記溶剤としては特に限定されず、例えば、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラヒドロフラン)、エーテルアルコール(例、1-メトキシ-2-プロパノール)等が挙げられる。
The coating liquid preferably further contains a solvent.
The solvent is not particularly limited. For example, water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone), ester ( Examples, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform) , Carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, tetrahydrophenol) Emissions), ether alcohols (e.g., 1-methoxy-2-propanol) and the like.
本発明の防眩性フィルムにおいて、上記放射線硬化型バインダー、及び、溶剤は、いずれも上記有機微粒子(B)を膨潤させる性質のものを選択して用いてもよいが、いずれか一方のみが上記有機微粒子(B)を膨潤させる性質のものを選択して用いてもよい。
なお、上記有機微粒子(B)の含浸層の形成は、膨潤させる性質を持つ溶剤が存在することで、上記放射線硬化型バインダーの膨潤性の程度によらず、より確実に行うことができるので、少なくとも上記溶剤は、上記有機微粒子(B)を膨潤させる性質を持つことがより好ましい。これは、上記有機微粒子(B)に、まず、上記溶剤が作用して上記有機微粒子(B)が膨潤し、次いで上記放射線硬化型バインダーに含まれる低分子量成分が含浸してゆくためであると類推している。
本発明の防眩性フィルムでは、上記放射線硬化型バインダー及び溶剤の組み合わせとしては、なかでも、放射線硬化型バインダーとして、分子量が小さく含浸しやすいことから(メタ)アクリレートモノマーと、溶剤として、上記有機微粒子(B)を膨潤させる性質の強いケトン、エステル系との組み合わせが好ましい。
また、上記溶剤を混合して用いることで、有機微粒子(B)の膨潤度合いを調整することにより、上記放射線硬化型バインダーに含まれる低分子量成分の含浸量を制御することができる。
なお、光透過性基材としてセルローストリアセテート(以下、TAC基材ともいう)を使用する場合は、光透過性基材への拡散層の界面密着性や界面で生じる干渉縞防止のために、上記TAC基材を膨潤させ、かつ、TAC基材中に溶剤及び樹脂成分中の低分子量成分を含浸させることができるような溶剤を使用することが好ましい。有機微粒子(B)膨潤のために用いる溶剤と、TAC基材に含浸するような溶剤は、共通であるとなおよい。つまり、TAC基材への溶剤と、予め含浸層を有する有機微粒子(B)を調製する場合に用いる溶剤とがほぼ同じであると、上記塗液が含有する化合物バランスが非常に安定した状態となり、長時間、防眩性フィルムを加工する場合でも安定加工できる、優れた塗液とすることができる。
そのような溶剤として好ましいのは、メチルイソブチルケトン等である。また、樹脂成分中の低分子量成分として好ましいのは、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等である。
In the antiglare film of the present invention, the radiation curable binder and the solvent may be selected from those having the property of swelling the organic fine particles (B), but only one of them may be used. Those having the property of swelling the organic fine particles (B) may be selected and used.
In addition, since the formation of the impregnated layer of the organic fine particles (B) can be performed more reliably regardless of the degree of swelling of the radiation curable binder because of the presence of a solvent having a swelling property, It is more preferable that at least the solvent has a property of swelling the organic fine particles (B). This is because the organic fine particles (B) are first swelled by the action of the solvent, and then the low molecular weight components contained in the radiation curable binder are impregnated. Analogy.
In the antiglare film of the present invention, the combination of the radiation curable binder and the solvent is a (meth) acrylate monomer and the organic solvent as the solvent because the molecular weight is small and the impregnation is easy. A combination with a ketone or ester having a strong property of swelling the fine particles (B) is preferable.
Moreover, the amount of impregnation of the low molecular weight component contained in the radiation-curable binder can be controlled by adjusting the degree of swelling of the organic fine particles (B) by mixing the solvent.
When cellulose triacetate (hereinafter also referred to as a TAC substrate) is used as the light-transmitting substrate, the above-mentioned for preventing interference fringes generated at the interface and the interface of the diffusion layer to the light-transmitting substrate. It is preferable to use a solvent that can swell the TAC substrate and impregnate the TAC substrate with the low molecular weight component in the solvent and the resin component. It is more preferable that the solvent used for swelling the organic fine particles (B) and the solvent that impregnates the TAC substrate are common. That is, when the solvent for the TAC substrate and the solvent used for preparing the organic fine particles (B) having the impregnated layer in advance are almost the same, the balance of the compound contained in the coating liquid becomes very stable. In addition, an excellent coating liquid that can be stably processed even when an antiglare film is processed for a long time can be obtained.
Preferable as such a solvent is methyl isobutyl ketone. Also preferred as the low molecular weight component in the resin component are pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. .
また、上記塗液は、層状無機化合物を含有することが好ましい。形成する拡散層が上記層状無機化合物を含有することとなり、該拡散層のハードコート性、カール防止性、耐紫外線性、クラック防止性等を向上させることができる。また、上述した微粒子(A)の凝集体を好適に形成することができる。また、上記有機微粒子(B)を含有する場合、該微粒子(A)を好適に凝集するとともに、上記微粒子(A)と有機微粒子(B)との凝集を防止し得るからである。
上記層状無機化合物としては、本発明の防眩性フィルムの透明性を維持するため、粒子径D50(レーザー回折法)は、0.3~5.0μmが好ましく、より好ましいのは、0.5~3.0μmのものである。上記層状無機化合物は板状の粒子であるため、粒子径にはD50を用いるが、例えば、D50が0.6μmのタルクを用いた場合、拡散層の断面SEM観察を実施すると、おおよそ長径が大部分の粒子において0.6μm程度に見える。
Moreover, it is preferable that the said coating liquid contains a layered inorganic compound. The diffusion layer to be formed contains the above layered inorganic compound, and the hard coat property, curl prevention property, ultraviolet resistance, crack prevention property and the like of the diffusion layer can be improved. Moreover, the aggregate of the fine particles (A) described above can be suitably formed. Further, when the organic fine particles (B) are contained, the fine particles (A) can be suitably aggregated and aggregation of the fine particles (A) and the organic fine particles (B) can be prevented.
As the layered inorganic compound, in order to maintain the transparency of the antiglare film of the present invention, the particle diameter D50 (laser diffraction method) is preferably 0.3 to 5.0 μm, more preferably 0.5. It is about 3.0 μm. Since the layered inorganic compound is a plate-like particle, D50 is used for the particle diameter. For example, when talc having a D50 of 0.6 μm is used, when the cross-sectional SEM observation of the diffusion layer is performed, the major axis is roughly large. It appears to be about 0.6 μm in part of the particles.
上記層状無機化合物としては特に限定されず、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト、バーミキュライト、ハロイサイト、カオリナイト、エンデライト、ディッカイト、タルク、パイロフィライト、マイカ、マーガライト、白雲母、金雲母、テトラシリリックマイカ、テニオライト、アンチゴライト、クロライト、クックアイト、ナンタイト等が挙げられる。これらの層状無機微粒子は、天然物であってもよく、合成物であってもよい。
なかでも、上記層状無機化合物としては、Si、Al、Mg、O元素を含有する無機化合物が好ましく、このような元素を含有する化合物としてタルクが好適である。
上記層状無機化合物としてタルクを含有することで、例えば、上記有機微粒子(B)として架橋アクリルビーズ、微粒子(A)としてスチレンを用いた場合、拡散層中での上述した微粒子(A)の凝集体の形成、及び、拡散層中の有機微粒子(B)の凝集、及び、微粒子(A)と有機微粒子(B)との凝集の防止とを好適に制御することができる。この結果、得られる防眩性フィルムの防眩性、白茶け防止性、面ギラ防止性を高レベルで達成することができる。
これは、上記タルクが親油性の高い物質であることが影響しているものと推測している。すなわち、微粒子(A)(スチレン)が親油性、有機微粒子(B)(架橋アクリル樹脂)が親水性の各性質を有するため、両微粒子が凝集するのを、親油性の高いタルクが調整しているものと推測している。
なお、上記層状無機化合物とは、層状構造となる無機化合物をいい、断面顕微鏡観察において針状又は繊維状に見えるものも含む。
また、アクリル-スチレンの共重合微粒子では、親水性の強いアクリル成分と親油性の強いスチレン成分との比率を変えることにより適度な親水又は親油性を持たせることが容易であるため、上記層状無機化合物による凝集性能を発揮することが容易に行い得る。
The layered inorganic compound is not particularly limited. Examples include margarite, muscovite, phlogopite, tetrasilic mica, teniolite, antigolite, chlorite, cookite, and nanthite. These layered inorganic fine particles may be natural products or synthetic products.
Among these, as the layered inorganic compound, inorganic compounds containing Si, Al, Mg, and O elements are preferable, and talc is preferable as a compound containing such elements.
By containing talc as the layered inorganic compound, for example, when cross-linked acrylic beads are used as the organic fine particles (B) and styrene is used as the fine particles (A), aggregates of the fine particles (A) described above in the diffusion layer It is possible to suitably control the formation of the organic particles, the aggregation of the organic fine particles (B) in the diffusion layer, and the prevention of the aggregation of the fine particles (A) and the organic fine particles (B). As a result, the resulting antiglare film can attain a high level of antiglare properties, white-browning prevention properties, and surface glare prevention properties.
This is presumed to be due to the fact that the talc is a highly lipophilic substance. That is, since the fine particles (A) (styrene) have lipophilic properties and the organic fine particles (B) (crosslinked acrylic resin) have hydrophilic properties, both fine particles are aggregated by the highly lipophilic talc. I guess that.
In addition, the said layered inorganic compound means the inorganic compound used as a layered structure, and includes what looks like a needle shape or a fiber shape in cross-sectional microscope observation.
In addition, since the copolymer fine particles of acryl-styrene can easily have appropriate hydrophilicity or lipophilicity by changing the ratio of the highly hydrophilic acrylic component and the highly lipophilic styrene component, the layered inorganic It can be easily performed to exhibit the aggregation performance by the compound.
上記塗膜が上記層状無機化合物を含有する場合、その含有量としては、上記放射線硬化型バインダー100質量部に対して、1質量部を超え、40質量部以下となるように調整されることが好ましい。1質量部以下であると、上記層状無機化合物を含有させる効果を充分に得ることができないことがあり、40質量部を超えると、塗液の粘度が高くなりすぎるため、本発明の防眩性フィルムの表面の滑らかさを得ることができなくなり光学的特性が劣ることや、塗液の粘度が高くなりすぎて塗布できないことがある。上記層状無機化合物の含有量のより好ましい下限は、2質量部、より好ましい上限は30質量部である。この範囲にあることで、上記微粒子の好適な凝集及び傾斜角をより確実にすることが可能となる。 When the coating film contains the layered inorganic compound, the content may be adjusted to exceed 1 part by weight and 40 parts by weight or less with respect to 100 parts by weight of the radiation curable binder. preferable. If the amount is 1 part by mass or less, the effect of containing the layered inorganic compound may not be sufficiently obtained. If the amount exceeds 40 parts by mass, the viscosity of the coating liquid becomes too high, and thus the antiglare property of the present invention. The smoothness of the surface of the film cannot be obtained, resulting in poor optical characteristics, and the viscosity of the coating solution may become too high to be applied. The minimum with more preferable content of the said layered inorganic compound is 2 mass parts, and a more preferable upper limit is 30 mass parts. By being in this range, it is possible to ensure the preferable aggregation and inclination angle of the fine particles.
上記塗液は、上述した各材料を混合することで調製することができる。
上記各材料を混合し塗液を調製する方法としては特に限定されず、例えば、ペイントシェーカー又はビーズミル等を使用するとよい。
The said coating liquid can be prepared by mixing each material mentioned above.
A method for preparing the coating liquid by mixing the above materials is not particularly limited, and for example, a paint shaker or a bead mill may be used.
上記拡散層は、上記塗液を上記光透過性基材の少なくとも一方の面上に塗布、乾燥して塗膜を形成し、該塗膜を硬化させることで形成することができる。
上記塗液の塗布方法としては特に限定されず、例えば、ロールコート法、ミヤバーコート法、グラビアコート法、ダイコート法等が挙げられる。
The said diffusion layer can be formed by apply | coating the said coating liquid on the at least one surface of the said translucent base material, drying, forming a coating film, and hardening this coating film.
The method for applying the coating liquid is not particularly limited, and examples thereof include a roll coating method, a Miya bar coating method, a gravure coating method, and a die coating method.
上記塗液を塗布して形成する塗膜の厚さとしては特に限定されず、表面に形成する凹凸形状、使用する材料等を考慮して適宜決定される。好ましくは、乾燥膜厚として1~20μm程度であり、2~15μmがより好ましい。膜厚みが1μm未満ではハードコート性に劣り、20μmを超えるとカールやクラックが発生しやすくなるためである。
上記拡散層の厚さは、拡散層の断面SEM観察などで測定できる。測定する場合には、有機微粒子(A2)が存在しない拡散層表面位置から光透過性基材界面までの厚さを5点以上測定し、その平均値を求める。
The thickness of the coating film formed by applying the coating liquid is not particularly limited, and is appropriately determined in consideration of the uneven shape formed on the surface, the material used, and the like. The dry film thickness is preferably about 1 to 20 μm, and more preferably 2 to 15 μm. This is because if the film thickness is less than 1 μm, the hard coat property is inferior, and if it exceeds 20 μm, curls and cracks are likely to occur.
The thickness of the diffusion layer can be measured by, for example, cross-sectional SEM observation of the diffusion layer. In the measurement, the thickness from the diffusion layer surface position where the organic fine particles (A2) are not present to the light transmissive substrate interface is measured at 5 points or more, and the average value is obtained.
ここで、本発明の防眩性フィルムにおいて、上記拡散層中の上記微粒子(A)は、上述した2個の凝集体を形成している。
このような凝集体は、例えば、上記塗液が層状無機化合物を含有する場合、以下のような方法で形成することができる。
すなわち、まず、上記微粒子(A)がその親水/疎水の程度に応じて2個凝集するに適した層状無機化合物(例えば、タルク)の種類と量とを、事前にチェックして決定する。
次いで、決定した層状無機化合物を、上記微粒子(A)等とともに上記塗液に混合し、該塗液を用いて形成する塗膜を前述の膜厚み範囲とする。
このような方法で上記凝集体を形成できる理由は明確ではないが、上記塗膜において、下面の光透過性基材と上面の空気層との親油性又は表面張力が異なることが影響しているものと類推している。
Here, in the antiglare film of the present invention, the fine particles (A) in the diffusion layer form the two aggregates described above.
Such an aggregate can be formed by the following method, for example, when the coating liquid contains a layered inorganic compound.
That is, first, the type and amount of a layered inorganic compound (for example, talc) suitable for agglomeration of the two fine particles (A) depending on the degree of hydrophilicity / hydrophobicity are determined by checking in advance.
Subsequently, the determined layered inorganic compound is mixed with the coating liquid together with the fine particles (A) and the like, and the coating film formed using the coating liquid is set to the above-described film thickness range.
The reason why the aggregate can be formed by such a method is not clear, but in the coating film, it is affected by the difference in lipophilicity or surface tension between the light-transmitting substrate on the lower surface and the air layer on the upper surface. Analogy with things.
なお、上述のように、含浸層を有する有機微粒子(B)は、上記有機微粒子(B)を上記放射線硬化型バインダー及び/又は溶剤で膨潤させ、放射線硬化型バインダーを含浸させて含浸層を形成することで好適に調製されるが、該含浸層を有する有機微粒子(B)の調製は、上記塗液中で行われてもよく、上記光透過性基材に塗布して形成した塗膜中で行なわれてもよい。 As described above, the organic fine particles (B) having an impregnated layer are formed by swelling the organic fine particles (B) with the radiation curable binder and / or solvent and impregnating the radiation curable binder. However, the preparation of the organic fine particles (B) having the impregnated layer may be performed in the coating liquid, and in the coating film formed by applying to the light-transmitting substrate. May be performed.
上記光透過性基材上に形成した塗膜を硬化させることで拡散層を形成することができる。
上記塗膜の硬化方法としては特に限定されないが、紫外線照射によって行うことが好ましい。紫外線によって硬化を行う場合、190~380nmの波長域の紫外線を使用することが好ましい。紫外線による硬化は、例えば、メタルハライドランプ灯、高圧水銀灯、低圧水銀灯、超高圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯等によって行うことができる。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。
The diffusion layer can be formed by curing the coating film formed on the light transmissive substrate.
Although it does not specifically limit as a hardening method of the said coating film, It is preferable to carry out by ultraviolet irradiation. When curing by ultraviolet rays, it is preferable to use ultraviolet rays having a wavelength range of 190 to 380 nm. Curing with ultraviolet rays can be performed, for example, with a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, or the like. Specific examples of the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
本発明の防眩性フィルムにおいて、上記拡散層は、表面に凹凸形状を有する。
上記拡散層の表面の凹凸形状は、該拡散層中の上述した微粒子(A)の凝集体に対応する位置に凸部(以下凸部(A)ともいう)を有することが好ましい。
上記拡散層の表面に形成される凸部(A)は、上述した凝集体によって形成されるものであるため、粒径に比べ高くすることができるので充分な防眩性能を発揮するとともに、粒子が斜めに存在するので、平行に並んでいる場合に比べ、外光に照射される粒子の面積が小さくなりバインダーとの界面での反射が減少するので、白茶けの発生を好適に防止できる。また、拡散層の厚さも厚くする必要がないため、本発明の防眩性フィルムにカールや拡散層にクラックが発生することも好適に防止することができる。
In the antiglare film of the present invention, the diffusion layer has an uneven shape on the surface.
The concavo-convex shape on the surface of the diffusion layer preferably has a convex portion (hereinafter also referred to as a convex portion (A)) at a position corresponding to the above-mentioned aggregate of fine particles (A) in the diffusion layer.
Since the convex part (A) formed on the surface of the diffusion layer is formed by the above-mentioned aggregate, it can be made higher than the particle size, so that it exhibits sufficient anti-glare performance and particles. Are present obliquely, and the area of the particles irradiated with external light is reduced and reflection at the interface with the binder is reduced as compared with the case where they are arranged in parallel. Further, since it is not necessary to increase the thickness of the diffusion layer, it is possible to suitably prevent the anti-glare film of the present invention from being curled or cracking in the diffusion layer.
また、上記拡散層が上述した含浸層を有する有機微粒子(B)を含有する場合、上記拡散層の有機微粒子(B)に対応する位置に形成される凸部(以下、凸部(B)ともいう)は、その高さが、下記要件(1)、(2)及び(3)の全てを充足する有機微粒子(C)を含む拡散層(C)の表面の上記有機微粒子(C)に対応する位置の凸部(以下、凸部(C)ともいう)の高さよりも低いことが好ましい。
要件(1):有機微粒子(B)に代えて有機微粒子(C)を用いる以外は、有機微粒子(B)を含有する拡散層と同条件で、拡散層(C)を形成する
要件(2):拡散層(C)中の有機微粒子(C)は、拡散層中の有機微粒子(B)と同じ平均粒径を有する
要件(3):有機微粒子(C)は、拡散層(C)中で含浸層が形成されていない
Further, when the diffusion layer contains the organic fine particles (B) having the above-described impregnation layer, convex portions (hereinafter referred to as convex portions (B)) formed at positions corresponding to the organic fine particles (B) of the diffusion layer. The height corresponds to the organic fine particles (C) on the surface of the diffusion layer (C) containing the organic fine particles (C) satisfying all the following requirements (1), (2) and (3). It is preferable that the height is lower than the height of the convex portion (hereinafter also referred to as the convex portion (C)).
Requirement (1): Requirement (2) for forming the diffusion layer (C) under the same conditions as the diffusion layer containing the organic fine particles (B) except that the organic fine particles (C) are used instead of the organic fine particles (B). : The organic fine particles (C) in the diffusion layer (C) have the same average particle size as the organic fine particles (B) in the diffusion layer (3): The organic fine particles (C) are in the diffusion layer (C) No impregnated layer is formed
上記拡散層の有機微粒子(B)に対応する位置の凸部(B)は、上記凸部(C)と比較して高さ及び/又は平均傾斜角が低く、なだらかな形状である。このような凸部(B)が形成された拡散層を有する本発明の防眩性フィルムは、防眩性、白茶け性防止性を更に優れたものとすることができる。
これは、上記拡散層中の有機微粒子(B)が、上記有機微粒子(C)と比較して、非常に柔軟性に富んだ微粒子であるからと考えられる。すなわち、上記塗膜を硬化させると、放射線硬化型バインダーは硬化収縮を起こすが、上記有機微粒子(B)が位置する表面の硬化収縮は、該有機微粒子(B)の位置しない表面の硬化収縮と比較して、上記放射線硬化型バインダー量が少ないため小さくなる。しかしながら、上記有機微粒子(B)は、非常に柔軟性に富んだ微粒子であるため、上記塗膜の硬化収縮により上記有機微粒子(B)が変形する。その結果、形成される凸部(B)の高さ及び/又は平均傾斜角が、より硬い有機微粒子(C)を含む拡散層(C)の表面に形成される上記凸部(C)と比較して低く、滑らかになるものと推測している。
なお、上記凸部の高さとは、防眩性フィルム表面をAFMにより観察し、表面に存在する凸部の高さと、該凸部に隣接する他の凸部との間の凹部との差を凸部の高さn(nは1~10)として測定する。そして、このように求めた任意の凸部高さ10点を平均して求めたものである。
The convex part (B) at a position corresponding to the organic fine particles (B) of the diffusion layer has a gentle shape with a lower height and / or average inclination angle than the convex part (C). The antiglare film of the present invention having such a diffusion layer on which the convex portion (B) is formed can be further improved in antiglare property and anti-glare property.
This is presumably because the organic fine particles (B) in the diffusion layer are very flexible as compared with the organic fine particles (C). That is, when the coating film is cured, the radiation curable binder causes curing shrinkage, but the curing shrinkage of the surface where the organic fine particles (B) are located is the shrinkage of the surface where the organic fine particles (B) are not located. In comparison, the amount of the radiation curable binder is small, so it becomes small. However, since the organic fine particles (B) are very flexible fine particles, the organic fine particles (B) are deformed by curing shrinkage of the coating film. As a result, the height and / or average inclination angle of the formed convex part (B) is compared with the convex part (C) formed on the surface of the diffusion layer (C) containing the harder organic fine particles (C). I guess it will be low and smooth.
The height of the convex portion is the difference between the height of the convex portion existing on the surface and the concave portion between the convex portion adjacent to the convex portion when the antiglare film surface is observed by AFM. It is measured as the height n of the convex part (n is 1 to 10). And it calculates | requires by averaging 10 points | pieces of arbitrary convex part height calculated | required in this way.
本発明の防眩性フィルムは、拡散層中の微粒子(A)が所定の割合で2個の凝集体を形成しており、該凝集体における2個の微粒子(A)は、光透過性基材の表面に対して、それらの中心を結ぶ直線が傾斜角をなすように凝集している。このため、本発明の防眩性フィルムは、その表面に上記微粒子(A)の凝集体に対応する位置に形成された凸部を適度な高さとすることができ、防眩性に優れるとともに、白茶けの発生を充分に抑制でき、更に、面ギラの発生も好適に防止することができる。また、上記拡散層を厚くする必要がないため、本発明の防眩性フィルムにカールや拡散層にクラックが生じることを好適に防止することができる。
更に、上記拡散層が上述した含浸層を有する有機微粒子(B)を含む場合、本発明の防眩性フィルムは、該拡散層中の有機微粒子(B)と放射線硬化型バインダーの硬化物との密着性が極めて優れたものとなる。なお、本発明の防眩性フィルムは、マンドレル試験で、マンドレルの直径が10mmの条件において、より好ましくは8mmの条件において、更に好ましくは6mmの条件においてクラックが生じないものであることが好ましい。
また、上記拡散層中の有機微粒子(B)に上記含浸層が形成されている場合、該含浸層は、放射線硬化型バインダーが混合された状態で形成されたものであるので、上記拡散層は、上記拡散層中の有機微粒子(B)(含浸層)と放射線硬化型バインダーの硬化物との屈折率が減少し、界面での反射を好適に減少できる。また、同時に、上記含浸層は、適度な層厚であって、有機微粒子(B)の中心は、初期の有機微粒子(B)の屈折率を保持しているので、適度な内部拡散性を発現することができ、面ギラを好適に防止できる。
更に、上記拡散層の有機微粒子(B)に対応する位置に形成された凸部を、その高さが低く、なだらかな形状とすることができる。そのため、本発明の防眩性フィルムの防眩性、白茶け防止性及び面ギラ防止性をより高いレベルで達成することができる。
In the antiglare film of the present invention, the fine particles (A) in the diffusion layer form two aggregates at a predetermined ratio, and the two fine particles (A) in the aggregates are light-transmitting groups. With respect to the surface of the material, the straight lines connecting the centers thereof are aggregated so as to form an inclination angle. For this reason, the antiglare film of the present invention can have a convex portion formed at a position corresponding to the aggregate of the fine particles (A) on the surface thereof to an appropriate height, and is excellent in antiglare property, Generation of white brown can be sufficiently suppressed, and generation of surface glare can be suitably prevented. Moreover, since it is not necessary to thicken the said diffusion layer, it can prevent suitably that a curl and a crack arise in a diffusion layer in the anti-glare film of this invention.
Furthermore, when the said diffusion layer contains the organic fine particle (B) which has the impregnation layer mentioned above, the anti-glare film of this invention is the organic fine particle (B) in this diffusion layer, and the hardened | cured material of a radiation-curable binder. The adhesion is extremely excellent. In addition, it is preferable that the anti-glare film of the present invention does not cause cracks in a mandrel test under the condition that the mandrel diameter is 10 mm, more preferably 8 mm, and even more preferably 6 mm.
Further, when the impregnation layer is formed on the organic fine particles (B) in the diffusion layer, the impregnation layer is formed in a state in which a radiation curable binder is mixed. The refractive index of the organic fine particles (B) (impregnated layer) in the diffusion layer and the cured product of the radiation curable binder is reduced, and reflection at the interface can be suitably reduced. At the same time, the impregnated layer has an appropriate layer thickness, and the center of the organic fine particles (B) maintains the refractive index of the initial organic fine particles (B). It is possible to prevent surface glare.
Furthermore, the convex part formed in the position corresponding to the organic fine particles (B) of the diffusion layer can be formed into a gentle shape with a low height. For this reason, the antiglare property, the anti-glare property and the anti-glare property of the antiglare film of the present invention can be achieved at a higher level.
このような本発明の防眩性フィルムを製造する方法もまた、本発明の一つである。
すなわち、本発明の防眩性フィルムの製造方法は、光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する防眩性フィルムの製造方法であって、上記光透過性基材の少なくとも一方の面上に、微粒子(A)及び(メタ)アクリレートモノマーを必須成分として含む放射線硬化型バインダーを含有する塗液を塗布し、乾燥させて塗膜を形成し、該塗膜を硬化させて前記拡散層を形成する工程を有し、上記拡散層中の微粒子(A)は、50%以上が互いの中心を結ぶ直線が上記光透過性基材の表面に対して傾斜角をなすように凝集した凝集体を形成していることを特徴とするものである。
The method for producing such an antiglare film of the present invention is also one of the present invention.
That is, the method for producing an antiglare film of the present invention includes an antiglare film having a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having an uneven shape on the surface. A coating film containing a radiation curable binder containing fine particles (A) and (meth) acrylate monomers as essential components on at least one surface of the light transmissive substrate. , Drying to form a coating film, curing the coating film to form the diffusion layer, and the fine particles (A) in the diffusion layer have a straight line connecting the centers of 50% or more. Aggregates aggregated so as to form an inclination angle with respect to the surface of the light transmissive substrate are formed.
本発明の防眩性フィルムの製造方法において、上記塗液を構成する材料等は、上述した本発明の防眩性フィルムにおいて説明したものと同様のものが挙げられる。
また、上記拡散層を形成する工程も、上述した本発明の防眩性フィルムにおいて説明した方法と同様の方法が挙げられる。
In the method for producing an antiglare film of the present invention, examples of the material constituting the coating liquid are the same as those described in the above-described antiglare film of the present invention.
Moreover, the process similar to the method demonstrated in the anti-glare film of this invention mentioned above as the process of forming the said diffused layer is mentioned.
また、偏光素子を備えてなる偏光板であって、上記偏光素子の表面に、光透過性基材を貼り合わせる等して本発明の防眩性フィルムを備えることを特徴とする偏光板も本発明の一つである。 Also provided is a polarizing plate comprising a polarizing element, comprising the antiglare film of the present invention by bonding a light-transmitting substrate to the surface of the polarizing element. It is one of the inventions.
上記偏光素子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等を使用することができる。上記偏光素子と本発明の防眩性フィルムとのラミネート処理においては、光透過性基材にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。 The polarizing element is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched can be used. In the laminating process of the polarizing element and the antiglare film of the present invention, it is preferable to saponify the light-transmitting substrate. By the saponification treatment, the adhesiveness is improved and an antistatic effect can be obtained.
本発明は、最表面に上記防眩性フィルム又は上記偏光板を備えてなる画像表示装置でもある。上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タッチパネル、電子ペーパー等が挙げられる。 This invention is also an image display apparatus provided with the said anti-glare film or the said polarizing plate on the outermost surface. Examples of the image display device include LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, touch panel, and electronic paper.
上記LCDは、透過性表示体と、上記透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の防眩性フィルム又は本発明の偏光板が形成されてなるものである。 The LCD includes a transmissive display body and a light source device that irradiates the transmissive display body from the back. When the image display device of the present invention is an LCD, the antiglare film of the present invention or the polarizing plate of the present invention is formed on the surface of the transmissive display.
本発明が上記防眩性フィルムを有する液晶表示装置の場合、光源装置の光源は防眩性フィルムの下側から照射される。なお、STN型の液晶表示装置には、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。 In the case where the present invention is a liquid crystal display device having the antiglare film, the light source of the light source device is irradiated from below the antiglare film. Note that in the STN liquid crystal display device, a retardation plate may be inserted between the liquid crystal display element and the polarizing plate. An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
上記PDPは、表面ガラス基板と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又はその前面板(ガラス基板又はフィルム基板)に上述した防眩性フィルムを備えるものでもある。 The PDP includes a front glass substrate and a rear glass substrate disposed with a discharge gas sealed between the front glass substrate and the front glass substrate. When the image display device of the present invention is a PDP, the surface of the surface glass substrate or the front plate (glass substrate or film substrate) is provided with the above-described antiglare film.
その他の画像表示装置としては、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した防眩性フィルムを備えるものである。 Other image display devices include zinc sulfide and diamine substances that emit light when a voltage is applied: an ELD device that emits light on a glass substrate, controls the voltage applied to the substrate, and displays electrical signals as light. It may be an image display device such as a CRT that generates an image visible to human eyes. In this case, the antiglare film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
本発明の防眩性フィルムは、いずれの場合も、テレビジョン、コンピュータなどのディスプレイ表示に使用することができる。特に、CRT、液晶パネル、PDP、ELD、タッチパネル、電子ペーパー等の高精細画像用ディスプレイの表面に好適に使用することができる。 In any case, the antiglare film of the present invention can be used for display displays of televisions, computers and the like. In particular, it can be suitably used for the surface of high-definition image displays such as CRT, liquid crystal panel, PDP, ELD, touch panel, and electronic paper.
本発明の防眩性フィルムは、拡散層中の微粒子(A)が所定の割合で2個の凝集体を形成しており、該凝集体における2個の微粒子(A)は、光透過性基材の表面に対して、それらの中心を結ぶ直線が傾斜角をなすように凝集している。このため、本発明の防眩性フィルムは、その表面に上記微粒子(A)の凝集体に対応する位置に形成された凸部を適度な高さとすることができ、防眩性に優れるとともに、粒子が斜めに存在するので、平行に並んでいる場合に比べ、外光に照射される粒子の面積が小さくなりバインダーとの界面での反射が減少するので、白茶けの発生を充分に抑制でき、コントラストが高く、面ギラの発生も好適に防止することができ、更に、ハードコート性も具備したものとなる。また、上記拡散層を厚くする必要がないため、本発明の防眩性フィルムにカールや拡散層にクラックが生じることを好適に防止することができる。 In the antiglare film of the present invention, the fine particles (A) in the diffusion layer form two aggregates at a predetermined ratio, and the two fine particles (A) in the aggregates are light-transmitting groups. With respect to the surface of the material, the straight lines connecting the centers thereof are aggregated so as to form an inclination angle. For this reason, the antiglare film of the present invention can have a convex portion formed at a position corresponding to the aggregate of the fine particles (A) on the surface thereof to an appropriate height, and is excellent in antiglare property, Since the particles exist at an angle, the area of the particles irradiated with external light is reduced and reflection at the interface with the binder is reduced compared to the case where they are arranged in parallel. Further, the contrast is high, the generation of surface glare can be suitably prevented, and the hard coat property is also provided. Moreover, since it is not necessary to thicken the said diffusion layer, it can prevent suitably that a curl and a crack arise in a diffusion layer in the anti-glare film of this invention.
本発明の防眩性フィルムの拡散層中の凝集体の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state of the aggregate in the diffusion layer of the anti-glare film of this invention. 実施例1に係る防眩性フィルムの拡散層中の2個の微粒子(A)が凝集した凝集体を示す断面SEM写真である。4 is a cross-sectional SEM photograph showing an aggregate in which two fine particles (A) in the diffusion layer of the antiglare film according to Example 1 are aggregated. 実施例2に係る防眩性フィルムの拡散層の断面SEM写真である。4 is a cross-sectional SEM photograph of a diffusion layer of an antiglare film according to Example 2. 実施例3に係る防眩性フィルムの拡散層の断面SEM写真である。4 is a cross-sectional SEM photograph of a diffusion layer of an antiglare film according to Example 3.
本発明の内容を以下の実施例により説明するが、本発明の内容はこれらの実施例に限定して解釈されるものではない。 The contents of the present invention will be described by the following examples, but the contents of the present invention should not be construed as being limited to these examples.
(実施例1)
まず、光透過性基材としてトリアセチルセルロース(富士フィルム(株)製、厚さ80μm)を用意した。
次に、放射線硬化型バインダーとしてペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及びポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)を用い(屈折率1.51)、光重合開始剤として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:イルガキュア184(BASF社製)を用い(バインダー固形分100質量部に対し、5質量部)、これに微粒子(A)として、高架橋ポリスチレン粒子(屈折率1.59、平均粒径4.0μm)を、放射線硬化型バインダー100質量部に対して、12.0質量部、層状無機化合物としてタルク粒子(屈折率1.57、平均粒径D50;0.8μm)を放射線硬化型バインダー100質量部に対して、20.0質量部含有させた。これに溶剤としてトルエンとメチルイソブチルケトンの混合物(質量比8:2)を放射線硬化型バインダー100質量部に対して、190質量部配合して塗液を調製した。
得られた塗液を24時間静置した後、光透過性基材にグラビア法にて塗工し、1.2m/sの流速で70℃の乾燥空気を流通させ、1分間乾燥させて塗膜を形成した。
その後、塗膜に紫外線を照射して(窒素雰囲気下にて200mJ/cm)放射線硬化型バインダーを硬化させて拡散層を形成し、防眩性フィルムを作製した。なお、拡散層の厚さは6.6μmとした。
Example 1
First, triacetyl cellulose (manufactured by Fuji Film Co., Ltd., thickness 80 μm) was prepared as a light transmissive substrate.
Next, as a radiation curable binder, a mixture of pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), and polymethyl methacrylate (PMMA) (mass ratio; PETA / DPHA / PMMA = 86/5/9) ) (Refractive index 1.51), 1-hydroxy-cyclohexyl-phenyl-ketone: Irgacure 184 (manufactured by BASF) as a photopolymerization initiator (5 parts by mass with respect to 100 parts by mass of binder solid content), As the fine particles (A), highly crosslinked polystyrene particles (refractive index 1.59, average particle size 4.0 μm) are 12.0 parts by mass with respect to 100 parts by mass of the radiation curable binder, and talc particles as a layered inorganic compound. (Refractive index 1.57, average particle diameter D50; 0.8 μm) Against over 100 parts by weight it was contained 20.0 parts by weight. A coating solution was prepared by blending 190 parts by mass of a mixture of toluene and methyl isobutyl ketone (mass ratio 8: 2) as a solvent with respect to 100 parts by mass of the radiation curable binder.
The obtained coating liquid was allowed to stand for 24 hours, and then applied to a light-transmitting substrate by a gravure method, and dried at a flow rate of 1.2 m / s through 70 ° C. and dried for 1 minute. A film was formed.
Thereafter, the coating film was irradiated with ultraviolet rays (200 mJ / cm 2 in a nitrogen atmosphere) to cure the radiation curable binder to form a diffusion layer, and an antiglare film was produced. The thickness of the diffusion layer was 6.6 μm.
(実施例2~7、比較例1~9、参考例1)
塗液に添加する各成分、及び、形成する拡散層の厚さを表1に示したようにした以外は、実施例1と同様にして防眩性フィルムを作製した。
(Examples 2 to 7, Comparative Examples 1 to 9, Reference Example 1)
An antiglare film was produced in the same manner as in Example 1 except that each component added to the coating liquid and the thickness of the diffusion layer to be formed were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1において、微粒子(A)、有機微粒子(B)、放射線硬化型バインダー及び層状無機化合物において示した記号の詳細は以下のとおりである。また、表1中、微粒子(A)、有機微粒子(B)及び層状無機化合物の含有量は、放射線硬化型バインダー100質量部に対する含有量(質量部)を示す。 In Table 1, details of symbols shown in the fine particles (A), the organic fine particles (B), the radiation curable binder, and the layered inorganic compound are as follows. In Table 1, the content of the fine particles (A), the organic fine particles (B), and the layered inorganic compound indicates the content (parts by mass) relative to 100 parts by mass of the radiation curable binder.
(微粒子A)
A:高架橋ポリスチレン粒子(屈折率1.59、平均粒径4.0μm、綜研化学社製)
B:高架橋アクリル-ポリスチレン粒子(屈折率1.57、平均粒径3.5μm、綜研化学社製)
C:高架橋ポリスチレン粒子(屈折率1.59、平均粒径2.0μm、綜研化学社製)
D:高架橋ポリスチレン粒子(屈折率1.59、平均粒径9.0μm、綜研化学社製)
(Fine particle A)
A: Highly crosslinked polystyrene particles (refractive index 1.59, average particle size 4.0 μm, manufactured by Soken Chemical Co., Ltd.)
B: Highly cross-linked acrylic-polystyrene particles (refractive index 1.57, average particle size 3.5 μm, manufactured by Soken Chemical Co., Ltd.)
C: Highly cross-linked polystyrene particles (refractive index 1.59, average particle size 2.0 μm, manufactured by Soken Chemical Co., Ltd.)
D: Highly crosslinked polystyrene particles (refractive index 1.59, average particle size 9.0 μm, manufactured by Soken Chemical Co., Ltd.)
(有機微粒子B)
E:低架橋アクリル粒子(屈折率1.49、平均粒径5.0μm、綜研化学社製)
(Organic fine particle B)
E: Low cross-linked acrylic particles (refractive index 1.49, average particle size 5.0 μm, manufactured by Soken Chemical Co., Ltd.)
(層状無機化合物)
M:タルク(屈折率1.57、平均粒径 0.8μm、日本タルク社製)
N:ベントナイト(屈折率1.52、平均粒径0.5μm、ホージュン社製)
(Layered inorganic compound)
M: Talc (refractive index 1.57, average particle size 0.8 μm, manufactured by Nippon Talc)
N: Bentonite (refractive index 1.52, average particle size 0.5 μm, manufactured by Hojun Co.)
(放射線硬化型バインダー)
P:ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、及び、ポリメタクリル酸メチル(PMMA)の混合物(質量比;PETA/DPHA/PMMA=86/5/9)(屈折率1.51)
Q:ペンタエリスリトールトリアクリレート(PETA)(屈折率1.51)
R:酢酸ビニル樹脂60部とメタクリル酸メチル樹脂40部との混合物(屈折率1.47)
(Radiation curable binder)
P: A mixture of pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), and polymethyl methacrylate (PMMA) (mass ratio; PETA / DPHA / PMMA = 86/5/9) (refractive index 1 .51)
Q: Pentaerythritol triacrylate (PETA) (refractive index 1.51)
R: Mixture of 60 parts of vinyl acetate resin and 40 parts of methyl methacrylate resin (refractive index 1.47)
実施例及び比較例で得られた防眩性フィルムについて、以下の評価を行った。その結果を表2に示す。 The following evaluation was performed about the anti-glare film obtained by the Example and the comparative example. The results are shown in Table 2.
(凝集体の測定)
実施例、比較例及び参考例で得られた防眩性フィルムを厚さ方向に切断し、断面のSEMでランダムに20個の微粒子(A)を観察し、2個の微粒子(A)が互いの中心を結ぶ直線が光透過性基材の表面に対して、20~70°の傾斜角をなすように凝集した凝集体を形成している割合を算出した。
(Measurement of aggregates)
The antiglare films obtained in Examples, Comparative Examples, and Reference Examples were cut in the thickness direction, and 20 fine particles (A) were randomly observed with a cross-sectional SEM. The ratio of the aggregates formed so that the straight line connecting the centers of the films formed an inclination angle of 20 to 70 ° with respect to the surface of the light-transmitting substrate was calculated.
(凝集体の傾斜角の測定)
実施例、比較例及び参考例で得られた防眩性フィルムを厚さ方向に切断し、断面のSEMでランダムに20個の微粒子(A)を観察し、2個の微粒子(A)が凝集した凝集体について、互いの中心を結ぶ直線が光透過性基材の表面に対して形成する傾斜角の平均値を測定し、以下の基準にて評価した。
○:傾斜角の平均値が30~60°の範囲内にある
△:傾斜角の平均値が30~60°は外れるが、20~70°の範囲内にある
×:傾斜角の平均値が20~70°の範囲を外れる
なお、図2に実施例1に係る防眩性フィルムの拡散層中の2個の微粒子(A)が凝集した凝集体の断面SEM写真を示した。
(Measurement of tilt angle of aggregates)
The anti-glare films obtained in Examples, Comparative Examples and Reference Examples were cut in the thickness direction, and 20 fine particles (A) were randomly observed with a cross-sectional SEM, and two fine particles (A) were aggregated. For the aggregates, the average value of the inclination angles formed by the straight lines connecting the centers of the aggregates with respect to the surface of the light-transmitting substrate was measured and evaluated according to the following criteria.
○: The average value of the inclination angle is in the range of 30 to 60 ° Δ: The average value of the inclination angle is out of the range of 30 to 60 °, but is in the range of 20 to 70 ° ×: The average value of the inclination angle is 2 out of the range of 20 to 70 ° is a cross-sectional SEM photograph of an aggregate in which two fine particles (A) in the diffusion layer of the antiglare film according to Example 1 are aggregated.
(有機微粒子(B)の含浸層の厚さ)
拡散層に有機微粒子(B)を含有する防眩性フィルムを厚さ方向に切断し、断面のSEM観察にて、5個の有機微粒子(B)の断面に形成された含浸層の厚さを、それぞれ2点ずつ合計10点測定し、その平均値を算出した。
なお、図3に実施例2に係る防眩性フィルムの拡散層の断面SEM写真の一つを示し、図4に実施例3に係る防眩性フィルムの拡散層の断面SEM写真の一つを示した。
(Thickness of impregnated layer of organic fine particles (B))
The antiglare film containing organic fine particles (B) in the diffusion layer is cut in the thickness direction, and the thickness of the impregnated layer formed on the cross section of the five organic fine particles (B) is determined by SEM observation of the cross section. Each of the two points was measured for a total of 10 points, and the average value was calculated.
3 shows one of the cross-sectional SEM photographs of the diffusion layer of the antiglare film according to Example 2, and FIG. 4 shows one of the cross-sectional SEM photographs of the diffusion layer of the antiglare film according to Example 3. Indicated.
(コントラスト)
黒色アクリル板に実施例、比較例及び参考例で得られた防眩性フィルムを、光学フィルム用透明粘着フィルムを用いて貼合し、防眩性フィルムの表面状態を、15名の被験者が、1000Lxの明室条件で様々な方向から目視官能評価を行った。艶のある黒色を再現することができるか否かを判定し、以下の基準により評価した。
◎:良好と答えた人が10人以上
○:良好と答えた人が9~8人
△:良好と答えた人が7~5人
×:良好と答えた人が4人以下
(contrast)
The antiglare films obtained in Examples, Comparative Examples and Reference Examples were bonded to a black acrylic plate using a transparent adhesive film for an optical film, and the surface condition of the antiglare film was determined by 15 subjects. Visual sensory evaluation was performed from various directions under bright room conditions of 1000 Lx. It was determined whether or not glossy black color could be reproduced, and evaluated according to the following criteria.
◎: 10 or more people who answered good ○: 9-8 people who answered good △: 7-5 people who answered good ×: 4 or less people who answered good
(防眩性及び面ギラ評価)
ソニー社製液晶テレビ「KDL-40X2500」の最表面の偏光板を剥離し、表面塗布のない偏光板を貼付した。
次いで、その上に実施例、比較例及び参考例で得られた防眩性フィルムを、拡散層側が最表面となるように、光学フィルム用透明粘着フィルム(全光線透過率91%以上、ヘイズ0.3%以下、膜厚20~50μmの製品、例えばMHMシリーズ:日栄化工(株)製等)により貼付した。
該液晶テレビを、照度が約1000Lxの環境下の室内に設置し、白画面表示して、液晶テレビから1.5~2.0m程度離れた場所から上下、左右様々な角度から、被験者15人が、防眩性及び面ギラについて、それぞれ目視官能評価を行った。以下の基準に従って評価した。
◎:良好と答えた人が10人以上
○:良好と答えた人が9~8人
△:良好と答えた人が7~5人
×:良好と答えた人が4人以下
(Anti-glare and surface glare evaluation)
The polarizing plate on the outermost surface of the liquid crystal television “KDL-40X2500” manufactured by Sony Corporation was peeled off, and a polarizing plate without surface coating was attached.
Next, the anti-glare film obtained in Examples, Comparative Examples and Reference Examples is further coated with the transparent adhesive film for optical film (total light transmittance of 91% or more, haze 0 so that the diffusion layer side is the outermost surface. 3% or less and a film thickness of 20 to 50 μm, for example, MHM series (manufactured by Nichiei Kako Co., Ltd.).
The LCD TV was installed in a room with an illuminance of about 1000 Lx, displayed on a white screen, and 15 subjects from various angles up and down and left and right from a location about 1.5 to 2.0 m away from the LCD TV. However, visual sensory evaluation was performed on the antiglare property and surface glare, respectively. Evaluation was made according to the following criteria.
◎: 10 or more people who answered good ○: 9-8 people who answered good △: 7-5 people who answered good ×: 4 or less people who answered good
(ハードコート性)
実施例、比較例及び参考例に係る防眩性フィルムの表面を、JIS K5600-5-4(1999)に従い、荷重750g、3Hで5本線を引いて鉛筆硬度試験を実施した。
○:3Hの鉛筆硬度試験で傷が2本以下
△:3Hの鉛筆硬度試験で傷が3~4本
×:3Hの鉛筆硬度試験で傷が5本
(Hard coat property)
The pencil hardness test was performed on the surface of the antiglare film according to Examples, Comparative Examples, and Reference Examples according to JIS K5600-5-4 (1999) by drawing five lines at a load of 750 g and 3H.
○: No more than 2 scratches in 3H pencil hardness test Δ: 3-4 scratches in 3H pencil hardness test ×: 5 scratches in 3H pencil hardness test
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2に示したように、実施例1、2、4及び7に係る防眩性フィルムは、コントラスト、防眩性、面ギラ及びハードコート性のいずれも良好であった。
実施例3に係る防眩性フィルムは、微粒子(A)の傾斜角が60~70°の範囲内にあったため面ギラの評価に劣り、実施例5に係る防眩性フィルムは、層状無機化合物の含有量が実施例1等と比較して少なかったためハードコート性に劣り、実施例6に係る防眩性フィルムは、層状無機化合物の含有量が実施例1等と比較してかなり多く、塗液の粘度が高く防眩フィルムの表面平滑性に劣るため、コントラスト、防眩性及び面ギラの評価が劣るものであったが、いずれも全体としては良好と判定できる結果であった。
これに対して、比較例に係る防眩性フィルムは、コントラスト、防眩性、面ギラ及びハードコート性の全てが良好なものはなかった。
また、参考例1に係る防眩性フィルムは、有機微粒子(B)の平均粒径が拡散層の厚さ以上であったため、コントラスト及びハードコート性に劣るものであった。
As shown in Table 2, the antiglare films according to Examples 1, 2, 4 and 7 were all good in contrast, antiglare properties, surface glare and hard coat properties.
The antiglare film according to Example 3 was inferior in surface glare evaluation because the inclination angle of the fine particles (A) was in the range of 60 to 70 °, and the antiglare film according to Example 5 was a layered inorganic compound. The antiglare film according to Example 6 has a considerably higher content of the layered inorganic compound than that of Example 1 and the like. Since the viscosity of the liquid was high and the surface smoothness of the antiglare film was inferior, the evaluation of contrast, antiglare property and surface glare was inferior, but all were results that could be judged as good overall.
On the other hand, none of the antiglare films according to the comparative examples had good contrast, antiglare properties, surface glare, and hard coat properties.
Moreover, since the average particle diameter of the organic fine particles (B) was not less than the thickness of the diffusion layer, the antiglare film according to Reference Example 1 was inferior in contrast and hard coat properties.
本発明の防眩性フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、タッチパネル、電子ペーパー等のディスプレイ、特に高精細化ディスプレイに好適に使用することができる。 The antiglare film of the present invention is suitable for displays such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), touch panel, electronic paper, especially high definition display. It can be preferably used.
10 防眩性フィルム
11 光透過性基材
12 拡散層
13 微粒子(A)
 
DESCRIPTION OF SYMBOLS 10 Anti-glare film 11 Light transmissive base material 12 Diffusion layer 13 Fine particle (A)

Claims (15)

  1. 光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する防眩性フィルムであって、
    前記拡散層は、微粒子(A)と、(メタ)アクリレートモノマーを必須成分として含む放射線硬化型バインダーとを含有する塗液を、前記光透過性基材の少なくとも一方の面上に塗布し、乾燥して塗膜を形成し、該塗膜を硬化させてなるものであり、
    前記拡散層中の微粒子(A)は、50%以上が互いの中心を結ぶ直線が前記光透過性基材の表面に対して傾斜角をなすように凝集した2個の凝集体を形成している
    ことを特徴とする防眩性フィルム。
    An anti-glare film having a light-transmitting substrate and a diffusion layer formed on at least one surface of the light-transmitting substrate and having an uneven shape on the surface,
    The diffusion layer is formed by applying a coating liquid containing fine particles (A) and a radiation curable binder containing a (meth) acrylate monomer as essential components onto at least one surface of the light-transmitting substrate, and then drying. To form a coating film, and to cure the coating film,
    The fine particles (A) in the diffusion layer form two aggregates in which 50% or more of the particles are aggregated so that a straight line connecting the centers thereof forms an inclination angle with respect to the surface of the light-transmitting substrate. An anti-glare film characterized by
  2. 凝集体を形成する2個の微粒子(A)の互いの中心を結ぶ直線と、光透過性基材の表面とがなす傾斜角が20~70°であることを特徴とする請求項1記載の防眩性フィルム。 2. The inclination angle formed by a straight line connecting the centers of the two fine particles (A) forming the aggregate and the surface of the light-transmitting substrate is 20 to 70 °. Antiglare film.
  3. 塗液は、更に層状無機化合物を含有することを特徴とする請求項1又は2記載の防眩性フィルム。 The antiglare film according to claim 1 or 2, wherein the coating liquid further contains a layered inorganic compound.
  4. 層状無機化合物は、タルクであることを特徴とする請求項3記載の防眩性フィルム。 The antiglare film according to claim 3, wherein the layered inorganic compound is talc.
  5. 放射線硬化型バインダー100質量部に対して、層状無機化合物の含有量が2~40質量部であることを特徴とする請求項3又は4記載の防眩性フィルム。 5. The antiglare film according to claim 3, wherein the content of the layered inorganic compound is 2 to 40 parts by mass with respect to 100 parts by mass of the radiation curable binder.
  6. 微粒子(A)がポリスチレン微粒子及び/又はアクリル-スチレン共重合微粒子であることを特徴とする請求項1、2、3、4又は5記載の防眩性フィルム。 6. The antiglare film according to claim 1, wherein the fine particles (A) are polystyrene fine particles and / or acrylic-styrene copolymer fine particles.
  7. 微粒子(A)の平均粒径をDとしたとき、該Dは、拡散層の厚さTに対して、下記式(A)を満たすことを特徴とする請求項1、2、3、4、5又は6記載の防眩性フィルム。
     (1.34×D)<T<(1.94×D)  (A)
    When the average particle diameter of the fine particles (A) was D A, the D A is claim 1, 2, 3 and satisfies the thickness T of the diffusion layer, the following equation (A), The antiglare film according to 4, 5 or 6.
    (1.34 × D A ) <T <(1.94 × D A ) (A)
  8. 塗液は、更に有機微粒子(B)を含有し、拡散層中の前記有機微粒子(B)は、前記拡散層中の微粒子(A)よりも平均粒径が大きいことを特徴とする請求項1、2、3、4、5、6又は7記載の防眩性フィルム。 The coating liquid further contains organic fine particles (B), and the organic fine particles (B) in the diffusion layer have a larger average particle diameter than the fine particles (A) in the diffusion layer. The antiglare film according to 2, 3, 4, 5, 6 or 7.
  9. 拡散層中の有機微粒子(B)は、凝集していないことを特徴とする請求項8記載の防眩性フィルム。 The antiglare film according to claim 8, wherein the organic fine particles (B) in the diffusion layer are not aggregated.
  10. 塗液は、有機微粒子(B)を膨潤する溶剤を含有することを特徴とする請求項8又は9記載の防眩性フィルム。 The antiglare film according to claim 8 or 9, wherein the coating liquid contains a solvent that swells the organic fine particles (B).
  11. 拡散層中の有機微粒子(B)は、放射線硬化型バインダーが含浸された含浸層を有し、前記含浸層の平均厚さが0.01~1.0μmであることを特徴とする請求項8、9又は10記載の防眩性フィルム。 9. The organic fine particles (B) in the diffusion layer have an impregnation layer impregnated with a radiation curable binder, and the average thickness of the impregnation layer is 0.01 to 1.0 μm. , 9 or 10 Antiglare film.
  12. 有機微粒子(B)の平均粒径をDとしたとき、該Dは、拡散層の厚さTに対して、下記式(B)を満たすことを特徴とする請求項8、9、10又は11記載の防眩性フィルム。
     D<T  (B)
    When the average particle diameter of the organic fine particles (B) was D B, said D B is claim and satisfies the thickness T of the diffusion layer, the following formula (B) 8, 9, 10 Or 11. The antiglare film according to 11.
    D B <T (B)
  13. 光透過性基材と、該光透過性基材の少なくとも一方の面上に形成され、表面に凹凸形状を有する拡散層とを有する防眩性フィルムの製造方法であって、
    前記光透過性基材の少なくとも一方の面上に、微粒子(A)及び(メタ)アクリレートモノマーを必須成分として含む放射線硬化型バインダーを含有する塗液を塗布し、乾燥させて塗膜を形成し、該塗膜を硬化させて前記拡散層を形成する工程を有し、
    前記拡散層中の微粒子(A)は、50%以上が互いの中心を結ぶ直線が前記光透過性基材の表面に対して傾斜角をなすように凝集した凝集体を形成している
    ことを特徴とする防眩性フィルムの製造方法。
    A method for producing an antiglare film comprising a light transmissive substrate and a diffusion layer formed on at least one surface of the light transmissive substrate and having an uneven shape on the surface,
    A coating liquid containing a radiation curable binder containing fine particles (A) and (meth) acrylate monomers as essential components is applied onto at least one surface of the light-transmitting substrate and dried to form a coating film. , Having a step of curing the coating film to form the diffusion layer,
    The fine particles (A) in the diffusion layer form an aggregate in which 50% or more of the fine particles (A) are aggregated so that straight lines connecting the centers thereof form an inclination angle with respect to the surface of the light-transmitting substrate. A method for producing an anti-glare film.
  14. 偏光素子を備えてなる偏光板であって、
    前記偏光素子の表面に請求項1、2、3、4、5、6、7、8、9、10、11又は12記載の防眩性フィルムを備えることを特徴とする偏光板。
    A polarizing plate comprising a polarizing element,
    A polarizing plate comprising the antiglare film according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 on a surface of the polarizing element.
  15. 最表面に請求項1、2、3、4、5、6、7、8、9、10、11若しくは12記載の防眩性フィルム、又は、請求項14記載の偏光板を備えることを特徴とする画像表示装置。 The antiglare film according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 or the polarizing plate according to claim 14 is provided on the outermost surface. An image display device.
PCT/JP2011/056472 2010-03-18 2011-03-17 Anti-glare film, manufacturing method for same, polarizing plate and image display device WO2011115228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127027006A KR101604514B1 (en) 2010-03-18 2011-03-17 Anti-glare film, manufacturing method for same, polarizing plate and image display device
CN201180012291.0A CN102782530B (en) 2010-03-18 2011-03-17 Anti-glare film, manufacturing method for same, polarizing plate and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063332A JP4788830B1 (en) 2010-03-18 2010-03-18 Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP2010-063332 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011115228A1 true WO2011115228A1 (en) 2011-09-22

Family

ID=44649310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056472 WO2011115228A1 (en) 2010-03-18 2011-03-17 Anti-glare film, manufacturing method for same, polarizing plate and image display device

Country Status (5)

Country Link
JP (1) JP4788830B1 (en)
KR (1) KR101604514B1 (en)
CN (1) CN102782530B (en)
TW (1) TWI588020B (en)
WO (1) WO2011115228A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696223A3 (en) * 2012-06-28 2014-02-26 Nitto Denko Corporation Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
EP2696224A3 (en) * 2012-06-28 2014-02-26 Nitto Denko Corporation Image display, anti-glare film, and method for producing anti-glare film
CN113167940A (en) * 2018-11-29 2021-07-23 日东电工株式会社 Anti-glare film, method for producing anti-glare film, optical member, and image display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979002B2 (en) * 2010-10-04 2016-08-24 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5948763B2 (en) * 2011-08-29 2016-07-06 大日本印刷株式会社 Anti-glare film, polarizing plate and image display device
KR101273789B1 (en) 2012-04-19 2013-06-11 다이니폰 인사츠 가부시키가이샤 Anti-glare film, polarizer and image display device
JP6105930B2 (en) * 2012-06-28 2017-03-29 日東電工株式会社 Method for producing antiglare film, antiglare film, coating liquid, polarizing plate and image display device
KR101915286B1 (en) * 2012-12-11 2018-11-05 동우 화인켐 주식회사 Anti-glare film and polarizing plate using the same
TWI628457B (en) * 2014-04-17 2018-07-01 日商大日本印刷股份有限公司 Anti-glare film, polarizing plate, liquid crystal panel, and image display device
JP6476582B2 (en) * 2014-04-23 2019-03-06 大日本印刷株式会社 LAMINATE MANUFACTURING METHOD, LAMINATE, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
JP6295237B2 (en) * 2014-09-30 2018-03-14 富士フイルム株式会社 Backlight unit, liquid crystal display device, and wavelength conversion member
JP7113760B2 (en) * 2016-12-19 2022-08-05 日本製紙株式会社 hard coat film
KR102520586B1 (en) * 2019-04-30 2023-04-10 주식회사 엘지화학 Anti-glare film and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011317A (en) * 2005-05-31 2007-01-18 Dainippon Ink & Chem Inc Light diffusion film
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display
JP2007322779A (en) * 2006-06-01 2007-12-13 Nitto Denko Corp Glare-proof hard coating film, polarizing plate and liquid display using them
JP2009265341A (en) * 2008-04-24 2009-11-12 Dainippon Printing Co Ltd Manufacturing method of optical sheet, and optical sheet

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507344B2 (en) * 1998-10-14 2004-03-15 大日本印刷株式会社 Anti-glare film, polarizing plate and transmission type display device
JP2003114304A (en) 2001-08-02 2003-04-18 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device
JP2003057415A (en) 2001-08-21 2003-02-26 Fuji Photo Film Co Ltd Optical diffusion film, method for manufacturing the same, polarizing plate and liquid crystal display device
JP2002221610A (en) * 2001-10-16 2002-08-09 Dainippon Printing Co Ltd Glare-proof film, polarizing plate and transmission display device
JP2003315505A (en) * 2002-02-25 2003-11-06 Fuji Photo Film Co Ltd Method for manufacturing antireflection film
JP2004226832A (en) * 2003-01-24 2004-08-12 Fuji Photo Film Co Ltd Light diffusing film, polarizing plate and liquid crystal display
JP4361754B2 (en) * 2003-04-24 2009-11-11 日本製紙株式会社 Anti-glare film
JP2005309399A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing light diffusing film, antireflection film, and polarizing plate using the same, and liquid crystal display device
JP4641846B2 (en) * 2004-03-29 2011-03-02 大日本印刷株式会社 Antiglare laminate
JP4641829B2 (en) * 2004-03-29 2011-03-02 大日本印刷株式会社 Antiglare laminate
JP4806541B2 (en) * 2004-05-27 2011-11-02 富士フイルム株式会社 Optical film, polarizing plate, and image display device
JP2006251043A (en) 2005-03-08 2006-09-21 Fuji Photo Film Co Ltd Optical functional film, manufacturing method of the same and polarizing plate using the same, and image display device
JP2006251665A (en) * 2005-03-14 2006-09-21 Fuji Photo Film Co Ltd Optical film, polarizing plate and image display device using them
JP2006267556A (en) * 2005-03-24 2006-10-05 Dainippon Printing Co Ltd Optical layered body
JP2007133384A (en) 2005-10-13 2007-05-31 Fujifilm Corp Antiglare film, polarizing plate and image display apparatus
JP2007233375A (en) * 2006-02-02 2007-09-13 Fujifilm Corp Antireflection film, polarizing plate using the same, and image display device
JP2007233374A (en) * 2006-02-02 2007-09-13 Fujifilm Corp Hard coat film, polarizing plate using the same, and image display device
JP2007249191A (en) * 2006-02-17 2007-09-27 Fujifilm Corp Optical film, antireflection film, polarizing plate and image display device
JP2007264113A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Optical film, polarizing plate, and image display device
US7813038B2 (en) * 2006-03-28 2010-10-12 Fujifilm Corporation Light-scattering film, polarizing plate and image display
JP2007269993A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Glare-proof antistatic hard coat resin composition and glare-proof antistatic hard coat film formed body coated with the same
JP5220286B2 (en) * 2006-06-15 2013-06-26 日東電工株式会社 Anti-glare hard coat film, polarizing plate and image display device using the same
JP2008122832A (en) * 2006-11-15 2008-05-29 Toppan Printing Co Ltd Antiglare light diffusing member
JP2008145499A (en) * 2006-12-06 2008-06-26 Toppan Printing Co Ltd Antiglare light diffusing member
CN101324677A (en) * 2007-03-14 2008-12-17 索尼株式会社 Method for producing anti-glare film
JP2008304638A (en) * 2007-06-06 2008-12-18 Sony Corp Anti-glare film and manufacturing method thereof, polarizer and display device
JP2009020288A (en) * 2007-07-11 2009-01-29 Sony Corp Antiglare film, method of manufacturing the same, polarizer, and display device
JP5332255B2 (en) * 2008-03-26 2013-11-06 凸版印刷株式会社 Anti-glare film
JP4651705B2 (en) * 2008-11-25 2011-03-16 大日本印刷株式会社 Anti-glare film, polarizing plate and transmissive display device
JP4698723B2 (en) * 2008-11-25 2011-06-08 大日本印刷株式会社 Anti-glare film, polarizing plate and transmissive display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011317A (en) * 2005-05-31 2007-01-18 Dainippon Ink & Chem Inc Light diffusion film
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display
JP2007322779A (en) * 2006-06-01 2007-12-13 Nitto Denko Corp Glare-proof hard coating film, polarizing plate and liquid display using them
JP2009265341A (en) * 2008-04-24 2009-11-12 Dainippon Printing Co Ltd Manufacturing method of optical sheet, and optical sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696223A3 (en) * 2012-06-28 2014-02-26 Nitto Denko Corporation Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
EP2696224A3 (en) * 2012-06-28 2014-02-26 Nitto Denko Corporation Image display, anti-glare film, and method for producing anti-glare film
CN113167940A (en) * 2018-11-29 2021-07-23 日东电工株式会社 Anti-glare film, method for producing anti-glare film, optical member, and image display device
CN113167940B (en) * 2018-11-29 2024-04-09 日东电工株式会社 Antiglare film, process for producing antiglare film, optical member, and image display

Also Published As

Publication number Publication date
TW201139140A (en) 2011-11-16
JP4788830B1 (en) 2011-10-05
CN102782530B (en) 2015-01-14
KR20130008046A (en) 2013-01-21
TWI588020B (en) 2017-06-21
CN102782530A (en) 2012-11-14
JP2011197330A (en) 2011-10-06
KR101604514B1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
WO2011115228A1 (en) Anti-glare film, manufacturing method for same, polarizing plate and image display device
JP5008734B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP4893840B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5979000B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5120490B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5979002B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP5979001B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and image display device
JP2011197677A (en) Anti-glare film, method for manufacturing the same, polarizing plate, and image display device
JP2009086329A (en) Optical laminate, method for manufacturing the same, polarizing plate and image display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012291.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027006

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11756412

Country of ref document: EP

Kind code of ref document: A1