WO2011114990A1 - Rubber composition, cross-linked rubber composition and high-performance damping laminate - Google Patents
Rubber composition, cross-linked rubber composition and high-performance damping laminate Download PDFInfo
- Publication number
- WO2011114990A1 WO2011114990A1 PCT/JP2011/055675 JP2011055675W WO2011114990A1 WO 2011114990 A1 WO2011114990 A1 WO 2011114990A1 JP 2011055675 W JP2011055675 W JP 2011055675W WO 2011114990 A1 WO2011114990 A1 WO 2011114990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- rubber composition
- parts
- present
- mass
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 386
- 239000005060 rubber Substances 0.000 title claims abstract description 385
- 239000000203 mixture Substances 0.000 title claims abstract description 240
- 238000013016 damping Methods 0.000 title abstract description 83
- 239000011256 inorganic filler Substances 0.000 claims abstract description 61
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 61
- -1 polypropylene Polymers 0.000 claims abstract description 55
- 125000005372 silanol group Chemical group 0.000 claims abstract description 51
- 239000004743 Polypropylene Substances 0.000 claims abstract description 45
- 229920001155 polypropylene Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 43
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 37
- 239000004626 polylactic acid Substances 0.000 claims abstract description 37
- 238000004132 cross linking Methods 0.000 claims abstract description 14
- 238000010030 laminating Methods 0.000 claims abstract description 7
- 239000006229 carbon black Substances 0.000 claims description 22
- 229920001577 copolymer Polymers 0.000 claims description 16
- 229920001194 natural rubber Polymers 0.000 claims description 14
- 229920002857 polybutadiene Polymers 0.000 claims description 13
- 239000005062 Polybutadiene Substances 0.000 claims description 12
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 12
- 244000043261 Hevea brasiliensis Species 0.000 claims description 11
- 229920003052 natural elastomer Polymers 0.000 claims description 11
- 239000003208 petroleum Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 229920003244 diene elastomer Polymers 0.000 claims description 7
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 33
- 238000004073 vulcanization Methods 0.000 description 32
- 238000012360 testing method Methods 0.000 description 27
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 21
- 235000019241 carbon black Nutrition 0.000 description 20
- 230000006872 improvement Effects 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 16
- 230000002238 attenuated effect Effects 0.000 description 15
- 239000000377 silicon dioxide Substances 0.000 description 14
- 239000004927 clay Substances 0.000 description 13
- 238000002955 isolation Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004310 lactic acid Substances 0.000 description 11
- 235000014655 lactic acid Nutrition 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 9
- 229920003048 styrene butadiene rubber Polymers 0.000 description 9
- AFVDZBIIBXWASR-WAYWQWQTSA-N (Z)-1,3,5-hexatriene Chemical compound C=C\C=C/C=C AFVDZBIIBXWASR-WAYWQWQTSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229920005549 butyl rubber Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004636 vulcanized rubber Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000003712 anti-aging effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001384 propylene homopolymer Polymers 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 239000006237 Intermediate SAF Substances 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004902 Softening Agent Substances 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 150000001261 hydroxy acids Chemical class 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- VETPHHXZEJAYOB-UHFFFAOYSA-N 1-n,4-n-dinaphthalen-2-ylbenzene-1,4-diamine Chemical compound C1=CC=CC2=CC(NC=3C=CC(NC=4C=C5C=CC=CC5=CC=4)=CC=3)=CC=C21 VETPHHXZEJAYOB-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 1
- BYLSIPUARIZAHZ-UHFFFAOYSA-N 2,4,6-tris(1-phenylethyl)phenol Chemical compound C=1C(C(C)C=2C=CC=CC=2)=C(O)C(C(C)C=2C=CC=CC=2)=CC=1C(C)C1=CC=CC=C1 BYLSIPUARIZAHZ-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- YRVRZDIWEXCJSX-UHFFFAOYSA-N 2-methyl-3-(3-triethoxysilylpropyl)thiirane-2-carboxylic acid Chemical compound CCO[Si](OCC)(OCC)CCCC1SC1(C)C(O)=O YRVRZDIWEXCJSX-UHFFFAOYSA-N 0.000 description 1
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 1
- IYBOGQYZTIIPNI-UHFFFAOYSA-N 2-methylhexano-6-lactone Chemical compound CC1CCCCOC1=O IYBOGQYZTIIPNI-UHFFFAOYSA-N 0.000 description 1
- UHKPXKGJFOKCGG-UHFFFAOYSA-N 2-methylprop-1-ene;styrene Chemical compound CC(C)=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 UHKPXKGJFOKCGG-UHFFFAOYSA-N 0.000 description 1
- OORRCVPWRPVJEK-UHFFFAOYSA-N 2-oxidanylethanoic acid Chemical compound OCC(O)=O.OCC(O)=O OORRCVPWRPVJEK-UHFFFAOYSA-N 0.000 description 1
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- MFNWUMRYUYUAAV-UHFFFAOYSA-N 4-(3-trimethoxysilylpropyl)-3H-1,3-benzothiazole-2-thione Chemical compound CO[Si](OC)(OC)CCCC1=CC=CC2=C1N=C(S2)S MFNWUMRYUYUAAV-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- WZRNGGFHDMOCEA-UHFFFAOYSA-N 7-methyloxepan-2-one Chemical compound CC1CCCCC(=O)O1 WZRNGGFHDMOCEA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- ZZOXWBGGPBLVNQ-UHFFFAOYSA-N CN(C)C(SSSSC(N(C)C)=[S+]CCC[SiH2]C(OC)OC)=[S+]CCC[SiH2]C(OC)OC Chemical compound CN(C)C(SSSSC(N(C)C)=[S+]CCC[SiH2]C(OC)OC)=[S+]CCC[SiH2]C(OC)OC ZZOXWBGGPBLVNQ-UHFFFAOYSA-N 0.000 description 1
- SKFGZHGVWONCTD-UHFFFAOYSA-N CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC Chemical compound CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC SKFGZHGVWONCTD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920003193 cis-1,4-polybutadiene polymer Polymers 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003046 intermediate neglect of differential overlap Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- LVMTVPFRTKXRPH-UHFFFAOYSA-N penta-1,2-diene Chemical compound CCC=C=C LVMTVPFRTKXRPH-UHFFFAOYSA-N 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003329 sebacic acid derivatives Chemical class 0.000 description 1
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 1
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- JTTSZDBCLAKKAY-UHFFFAOYSA-N trimethoxy-[3-(3-trimethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CO[Si](OC)(OC)CCCSSSSCCC[Si](OC)(OC)OC JTTSZDBCLAKKAY-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/02—Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/546—Flexural strength; Flexion stiffness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/56—Damping, energy absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/744—Non-slip, anti-slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
Definitions
- the present invention relates to a rubber composition, a crosslinked rubber composition, and a high attenuation laminate.
- vibration isolation devices In recent years, anti-vibration devices, vibration isolation devices, seismic isolation devices, and the like are rapidly spreading as vibration energy absorbing devices.
- a rubber composition having vibration energy damping performance is used.
- laminated rubber for seismic isolation used in bridge bearings and building seismic isolation devices has high damping (attenuates vibration energy by converting vibration into more heat) and has a desired rigidity. It is required to be expressed.
- Patent Document 1 As a rubber composition used for such a seismic isolation laminated rubber, the present applicant has disclosed in Patent Document 1 “100 parts by mass of a diene rubber, 40 to 75 parts by mass of carbon black, 5 to 35 parts by mass of silica, , A rubber composition for a high attenuation laminate comprising 5 to 55 parts by weight of an inorganic filler and 5 to 50 parts by weight of a petroleum resin.
- a vulcanized rubber comprising a vulcanized diene-containing rubber in which polypropylene fibrils are randomly dispersed.
- the polypropylene fibrils form a blend of (1) (a) a polymer alloy containing polypropylene and (b) an unvulcanized rubber material, wherein the polypropylene is in the blend from about 5 to about Present in an amount in the range of 25 phr; and (2) vulcanizing the rubber stock in the blend after orienting the polypropylene by applying heat and flowing the rubber stock through a molding cavity
- a polymer alloy containing polypropylene and (b) an unvulcanized rubber material, wherein the polypropylene is in the blend from about 5 to about Present in an amount in the range of 25 phr
- the present invention provides a rubber composition or a crosslinked rubber composition for a highly attenuated laminate that can achieve both improvement in damping properties and rigidity, and a highly attenuated laminate using at least one of these. For the purpose.
- the present inventor formulated a specific amount of an inorganic filler having a silanol group, a polylactic acid resin, and polypropylene with respect to two or more types of crosslinkable rubber components. It has been found that a rubber composition and a crosslinked rubber composition obtained by crosslinking the rubber composition can achieve both improvement in damping property and rigidity.
- the inventor of the present application also provides a rubber composition in which a specific amount of an inorganic filler having a silanol group, a polylactic acid resin, and polypropylene are blended with two or more kinds of crosslinkable rubber components, and a crosslinked rubber obtained by crosslinking the rubber composition.
- the present inventors have found that the composition can simultaneously improve the grip performance and rigidity of the tire, and have completed the present invention. That is, the present invention provides the following 1 to 18.
- the rubber component includes rubber A and rubber B, the rubber A is at least one selected from the group consisting of natural rubber and polyisoprene, and the rubber B is selected from the group consisting of polybutadiene and a butadiene copolymer. 4.
- the rubber composition as described in 2. 11. 11.
- 12 The rubber composition according to any one of 1 to 11, further comprising a silane coupling agent, wherein the amount of the silane coupling agent is 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic filler having the silanol group. object. 13. 13.
- 14 A crosslinked rubber composition containing a crosslinked rubber obtained by crosslinking the rubber composition according to any one of 1 to 13 above.
- 15. A rubber composition for a high attenuation laminate, wherein the rubber composition according to any one of 1 to 13 or the crosslinked rubber composition according to 14 is used for a high attenuation laminate.
- 16. 15.
- a rubber composition for a pneumatic tire wherein the rubber composition according to any one of 1 to 13 or the crosslinked rubber composition according to 14 is used for a pneumatic tire.
- 17. 16 A high attenuation laminate obtained by alternately laminating the rubber composition for a high attenuation laminate according to 15 and a hard plate. 18.
- the rubber composition of the present invention and the crosslinked rubber composition of the present invention can achieve both improvement in damping property or grip performance and rigidity.
- the highly attenuated laminate of the present invention has both excellent attenuation and excellent rigidity.
- the pneumatic tire of the present invention combines excellent grip performance and excellent rigidity.
- the rigidity of the high-damping laminate and the rigidity of the tire are the same in the sense that they are difficult to deform.
- FIG. 1 is a schematic cross-sectional view of a highly attenuated laminate that represents an example of an embodiment of the laminate of the present invention.
- FIG. 2 is a schematic side view of a sample for a lap shear type shear test.
- FIG. 3 is a graph showing an example of a hysteresis curve obtained by a lap shear type shear test.
- FIG. 4 is a graph showing the relationship between damping property and rigidity obtained in the example of the present invention.
- FIG. 5 is a cross-sectional view of a rubber composition schematically showing an example of the morphology that the rubber composition of the present invention can have.
- FIG. 6 is a photograph of one example of the morphology of the rubber composition of the present invention observed with a scanning probe microscope (SMP).
- SMP scanning probe microscope
- the present invention is described in detail below.
- the rubber composition of the present invention comprises 100 parts by weight of two or more crosslinkable rubber components, 10 to 100 parts by weight of an inorganic filler having a silanol group, 0.1 to 30 parts by weight of a polylactic acid resin, polypropylene A rubber composition containing 0.1 to 10 parts by mass.
- the rubber composition of the present invention can be used as a rubber composition for a high-damping laminate and a rubber composition for a pneumatic tire.
- the rubber component contained in the rubber composition of the present invention is not particularly limited as long as it is a rubber component that can be crosslinked with a sulfur compound or a peroxide. Specific examples thereof include a diene rubber and a heat having a double bond. Examples thereof include a plastic elastomer.
- diene rubber examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), vinyl-cis butadiene rubber (VCR), and styrene-butadiene copolymer rubber (SBR). ), Acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR), and the like.
- NR natural rubber
- IR isoprene rubber
- BR butadiene rubber
- VCR vinyl-cis butadiene rubber
- SBR styrene-butadiene copolymer rubber
- NBR Acrylonitrile-butadiene copolymer rubber
- IIR butyl rubber
- Br-IIR halogenated butyl rubber
- Cl-IIR chloroprene rubber
- thermoplastic elastomer having a double bond examples include ethylene-propylene-diene rubber (EPDM), styrene-butadiene-styrene block copolymer (SBS), and hydrogenation (hydrogenation) thereof.
- EPDM ethylene-propylene-diene rubber
- SBS styrene-butadiene-styrene block copolymer
- SEBS styrene-ethylene-propylene-styrene block copolymer
- SEPS styrene-isoprene-styrene block copolymer
- SIBS styrene-isobutylene-styrene block copolymer
- the resulting rubber composition of the present invention has good physical properties such as tensile strength after vulcanization and elongation at break, and the rubber composition of the present invention.
- laminate of the present invention obtained by alternately laminating and hard plates, a rubber composition and a hard plate (for example, general structural steel plate, A diene rubber is preferred because it has good adhesion to a hot rolled steel sheet and the like and is excellent in repeated deformation as a pneumatic tire.
- two or more types of crosslinkable rubber components can be used as a rubber component containing two or more types of crosslinkable rubber.
- a case where the rubber component contains rubber A and rubber B can be mentioned.
- gum B are incompatible from a viewpoint that the improvement of damping property or grip performance and rigidity can be made to make compatible further.
- Examples of the rubber A include at least one selected from the group consisting of natural rubber and polyisoprene.
- Examples of the rubber B include at least one selected from the group consisting of polybutadiene and butadiene copolymers.
- Examples of the butadiene copolymer include styrene butadiene copolymer and vinyl-cis butadiene rubber.
- the mass ratio of rubber A and rubber B can improve both damping performance and grip performance and rigidity, and can ensure rigidity with a small amount of polypropylene and durability. From the standpoint of superiority, it is preferably 90/10 to 10/90, and more preferably 70/30 to 30/70.
- rubber A contains natural rubber and rubber B contains vinyl-cis butadiene rubber from the viewpoint that both improvement in damping property and rigidity can be achieved, and that damping property at low temperature is excellent.
- rubber B contains vinyl-cisbutadiene rubber
- the mass ratio with rubber B is preferably 90/10 to 10/90, and more preferably 70/30 to More preferably, it is 30/70.
- the vinyl-cis butadiene rubber is a polybutadiene rubber composite composed of cis-1,4-polymerization and syndiotactic-1,2 polymerization in an inert organic solvent mainly composed of a C 4 fraction. It is.
- Specific examples of the vinyl-cis butadiene rubber include, for example, 97-80% by mass of cis-1,4-polybutadiene rubber having a cis 1,4-bond content of 90% or more, and syndiotactic-1,2-polybutadiene. Examples include composites composed of 3 to 20% by mass.
- vinyl-cis butadiene rubber for example, commercially available products such as UBEPOL-VCR manufactured by Ube Industries, Ltd. can be used.
- rubber A contains natural rubber
- rubber B can be improved in both grip performance and rigidity, and excellent in grip performance at low temperatures. It preferably contains a styrene butadiene copolymer.
- the mass ratio to rubber B is preferably 20/80 to 80/20, and more preferably 30/70 to 80/20 from the viewpoint that both improvement in grip performance and rigidity can be achieved. More preferably, it is 70/30.
- the styrene butadiene copolymer preferably has a styrene content of 5 to 40% by weight and more preferably 5 to 30% by weight from the viewpoint that both improvement in grip performance and rigidity can be achieved. .
- the inorganic filler having a silanol group contained in the rubber composition of the present invention is not particularly limited as long as it is an inorganic filler having a silanol group (Si—OH) on at least a part of the surface.
- examples of the inorganic filler having a silanol group include silica, clay, talc and the like, and these may be used alone or in combination of two or more.
- silica examples include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, and colloidal silica.
- Silica preferably has an average aggregate particle size of 5 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
- the BET specific surface area of silica is preferably 50 to 300 m 2 / g from the viewpoints of reinforcing property, high damping property and excellent tire grip.
- the clay is not particularly limited as long as it is a white powdery product, for example, industrially refined from natural ore containing hydrous aluminum silicate as a main component.
- Specific examples of the clay include T-clay, kaolin clay, waxite clay, sericite clay, calcined clay, and silane-modified clay.
- those forming an aggregate of fine particles of clay minerals such as pyrophyllite, kaolinite, halloysite, sericite, montmorillonite can be used.
- aggregates of quartz and kaolinite, diatomaceous earth, and the like can be used.
- the amount ratio of silica and clay is 25 to 150 parts by mass with respect to 100 parts by mass of silica from the viewpoint of excellent mixing properties. It is preferably 25 to 100 parts by mass.
- the content of the inorganic filler having a silanol group is 10 to 100 parts by mass with respect to 100 parts by mass of the two or more types of crosslinkable rubber components described above, and the damping property or grip performance and rigidity are increased. And more preferably 10 to 90 parts by mass from the viewpoint of durability and low temperature performance (for example, damping property and grip performance at low temperature). More preferably, it is part.
- the content of the inorganic filler having a silanol group can achieve both improvement in damping property and rigidity, and durability and low-temperature performance (for example, from the viewpoint of excellent attenuation at low temperatures, the amount is preferably 10 to 60 parts by weight, more preferably 15 to 50 parts by weight with respect to 100 parts by weight of the two or more crosslinkable rubber components described above. More preferably, it is 20 to 40 parts by mass.
- the content of the inorganic filler having a silanol group can achieve both improvement in grip performance and rigidity, durability and low temperature performance (for example, From the viewpoint of excellent grip performance at low temperature), it is preferably 20 to 90 parts by weight, more preferably 20 to 80 parts by weight, based on 100 parts by weight of two or more kinds of crosslinkable rubber components. More preferably, it is 30 to 70 parts by mass.
- the polylactic acid resin contained in the rubber composition of the present invention is a homopolymer of lactic acid and / or a copolymer of lactic acid.
- the homopolymer of lactic acid is polylactic acid.
- the lactic acid copolymer is a copolymer of lactic acid and one kind of monomer selected from the group consisting of hydroxy acids other than lactic acid, lactones and diene compounds copolymerizable with lactic acid.
- hydroxy acids other than lactic acid include hydroxyacetic acid (glycolic acid), hydroxybutyric acid, malic acid, citric acid, ricinoleic acid, shikimic acid, salicylic acid, and coumaric acid.
- lactones include ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -Propiolactone and the like are exemplified.
- Specific examples of the diene compound copolymerizable with lactic acid include butadiene and isoprene.
- the copolymer of these and lactic acid may be a block copolymer, a random block copolymer, a random copolymer, or a graft polymer as long as lactic acid is a main component. Preferably there is.
- the resulting rubber composition of the present invention has excellent melting properties, such as tensile strength after vulcanization, elongation at break, etc., so that the melting point is 180 ° C. or less. However, it is preferably 160 ° C. or lower, and more preferably 135 ° C. or lower.
- the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,000 to 100,000.
- the melting point is a value measured at a heating rate of 10 ° C./min by differential scanning calorimetry (DSC-Differential Scanning Calorimetry).
- the number average molecular weight is a number average molecular weight (polystyrene conversion) measured by gel permeation chromatography (GPC). Tetrahydrofuran (THF), N, N-dimethylformamide (DMF) is used for the measurement. ), Chloroform is preferably used as a solvent.
- the content of the polylactic acid-based resin is 0.1 to 30 parts by mass with respect to 100 parts by mass of the two or more cross-linkable rubber components described above. From the standpoint that both improvement in rigidity can be achieved and durability is excellent, the amount is more preferably 1 to 20 parts by mass, and still more preferably 3 to 15 parts by mass.
- polylactic acid-based resin for example, LACEA H-440 (melting point: 155 ° C., number average molecular weight: 78000, weight average molecular weight: 150,000) manufactured by Mitsui Chemicals, Shimadzu Corporation
- Lacti # 1012 melting point: 170 ° C., number average molecular weight: 180000
- the rubber composition of the present invention obtained is excellent in processability
- the laminate of the invention has a high damping property
- the rubber obtained using the rubber composition of the invention has excellent grip performance and good rigidity.
- the inorganic filler having a silanol group forms a crosslink by a siloxane bond, and due to the interaction between the remaining silanol group or the siloxane bond and the ester bond of the polylactic acid resin, This is probably because the polylactic acid resin collects around the crosslinked filler and crystallizes.
- the processability of the resulting rubber composition of the present invention becomes better, the damping property of the laminate of the present invention is higher, and the rubber obtained using the rubber composition of the present invention has grip performance.
- the mass ratio of the above-mentioned inorganic filler having a silanol group to the polylactic acid resin is 1/1 to 10 because / 1 is preferred.
- the processability of the resulting rubber composition of the present invention becomes better, and the attenuation of the laminate of the present invention is also improved.
- the mass ratio of the silanol group-containing inorganic filler to the polylactic acid resin is 1/1 to It is preferably 10/1, more preferably 8/1 to 4/1.
- the processability of the resulting rubber composition of the present invention becomes better, and the rubber composition of the present invention is used.
- the mass ratio of the above-mentioned inorganic filler having a silanol group to the polylactic acid resin is 1/1 to 8/1 is preferable, and 2/1 to 7/1 is more preferable.
- the polypropylene contained in the rubber composition of the present invention is not particularly limited as long as it is a homopolymer or copolymer obtained from a monomer containing propylene.
- a conventionally well-known thing is mentioned.
- a propylene homopolymer and a polypropylene copolymer containing 50 mol% or more of a propylene monomer are preferable from the viewpoint of being able to achieve both improvement in damping property or grip performance and rigidity, and excellent durability.
- Polypropylene is not particularly limited for its production. For example, a conventionally well-known thing is mentioned. Polypropylenes can be used alone or in combination of two or more.
- the amount of polypropylene is 0.1 to 10 parts by mass with respect to 100 parts by mass of two or more kinds of crosslinkable rubber components. In such a range, it is possible to achieve both improvement in damping performance or grip performance and rigidity, satisfy high breaking elongation required for a rubber composition for a high damping laminate, and excellent durability. .
- the amount of polypropylene exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component, the horizontal rigidity is increased, but the damping property or grip performance is not improved so much, and is required for a rubber composition for a high attenuation laminate.
- the amount of polypropylene is 0.5 to 8 with respect to 100 parts by mass of the rubber component from the viewpoints that both the damping property and the improvement in grip performance and rigidity can be achieved, the durability is excellent, and the elongation at break is high.
- the amount is preferably part by mass, and more preferably 1 to 5 parts by mass.
- the rubber composition of the present invention preferably contains a petroleum resin from the viewpoint of improving physical properties such as tensile strength after vulcanization and elongation at break and improving the damping property of the laminate of the present invention.
- a petroleum resin conventionally known ones can be used, for example, C5 aliphatic unsaturated hydrocarbon polymer, C9 aromatic unsaturated hydrocarbon polymer, C5 aliphatic unsaturated polymer. Copolymers of saturated hydrocarbons and C9 aromatic unsaturated hydrocarbons can be used.
- C5 aliphatic unsaturated hydrocarbon examples include, for example, 1-pentene, 2-pentene, 2-methyl-1-butene contained in a C5 fraction obtained by thermal decomposition of naphtha, Olefinic hydrocarbons such as 3-methyl-1-butene and 2-methyl-2-butene; 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, 3-methyl-1 , 2-olefin hydrocarbons such as 2-butadiene; and the like. These can be polymerized or copolymerized in the presence of a suitable catalyst.
- the C5 aliphatic unsaturated hydrocarbon polymer is a co-polymer of a single C5 aliphatic unsaturated hydrocarbon homopolymer and two or more C5 aliphatic unsaturated hydrocarbons. It refers to any polymer.
- the C9 aromatic unsaturated hydrocarbon include, for example, ⁇ -methylstyrene, o-vinyltoluene, m-vinyltoluene, p contained in a C9 fraction obtained by thermal decomposition of naphtha.
- -Vinyl-substituted aromatic hydrocarbons such as vinyltoluene.
- the C9 aromatic unsaturated hydrocarbon polymer is a co-polymer of a single C9 aromatic unsaturated hydrocarbon homopolymer and two or more C9 aromatic unsaturated hydrocarbons. It refers to any polymer.
- a copolymer of a C5 aliphatic unsaturated hydrocarbon and a C9 aromatic unsaturated hydrocarbon is a C9 aromatic unsaturated hydrocarbon in that the softening point of the copolymer is high. What a unit is 60 mol% or more is preferable, and what is 90 mol% or more is more preferable.
- a copolymer of a C5 aliphatic unsaturated hydrocarbon and a C9 aromatic unsaturated hydrocarbon can be copolymerized in the presence of a suitable catalyst.
- the petroleum resin has a softening point (JIS K2207) of 100 ° C. or higher because the molecular weight and the reactivity of double bonds affect the physical properties of the crosslinkable rubber component (particularly diene rubber).
- the thing of 120 degreeC or more is more preferable.
- the content in the case of containing a petroleum resin as desired makes the physical properties such as tensile strength after vulcanization and elongation at break good, and the viewpoint of increasing the damping property of the laminate of the present invention. Therefore, the amount is preferably 5 to 50 parts by mass, more preferably 10 to 45 parts by mass with respect to 100 parts by mass of the crosslinkable rubber component described above.
- the rubber composition of the present invention has a higher damping property of the laminate of the present invention, more excellent grip performance of rubber obtained by using the rubber composition of the present invention, and from the viewpoint of better rigidity. It is preferable to further contain an inorganic filler other than the inorganic filler having a silanol group described above. Specific examples of such inorganic fillers include calcium carbonate, heavy calcium carbonate, magnesium carbonate, aluminum hydroxide, and barium sulfate.
- these inorganic fillers are calcium carbonate and heavy calcium carbonate because they can maintain particularly high damping properties and stability against long-term shear deformation and improve workability. Is preferred.
- the content of the inorganic filler other than the inorganic filler having a silanol group is determined by the attenuation of the laminate of the present invention. From the viewpoint of higher grip performance of the rubber obtained using the rubber composition of the present invention and better rigidity, it is 5 to The amount is preferably 55 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 15 to 40 parts by mass.
- the total amount of the inorganic filler having a silanol group and the inorganic filler other than the inorganic filler having a silanol group is higher in the attenuation of the laminate of the present invention, and the rubber composition of the present invention.
- it is preferably 20 to 75 parts by mass with respect to 100 parts by mass of the crosslinkable rubber component described above. 30 to 65 parts by mass is more preferable.
- the rubber composition with a good balance (high damping laminate) that has higher damping performance and grip performance, and more stable damping performance and rigidity against long-term repeated shear deformation. For body and pneumatic tire).
- the mass ratio of the inorganic filler having a silanol group and the inorganic filler other than the inorganic filler having a silanol group is:
- the ratio is preferably 1/1 to 1 / 2.5, more preferably 1/1 to 1 / 2.0. When the mass ratio is within this range, good workability can be obtained.
- the rubber composition of the present invention has good physical properties such as tensile strength after vulcanization and elongation at break, higher damping properties of the laminate of the present invention, and the rubber composition obtained using the rubber composition of the present invention. From the viewpoint of improving grip performance and improving rigidity, it is preferable to further contain carbon black.
- carbon black having a CTAB adsorption specific surface area of 100 m 2 / g or more is preferably used, and carbon black of 110 to 370 m 2 / g is more preferably used.
- the CTAB adsorption specific surface area is in the range of 100 m 2 / g or more, the damping property of the obtained laminate of the present invention can be maintained higher, and the grip performance of the rubber obtained by using the rubber composition of the present invention. Can be made more excellent.
- the CTAB adsorption specific surface area is a value obtained by measuring the surface area that carbon black can be used for adsorption with rubber molecules by adsorption of CTAB (cetyltrimethylammonium bromide). Examples of such carbon black include SAF, ISAF, and HAF.
- the CATB adsorption specific surface area can be measured by the method described in ASTM D3765-80.
- N 2 AB specific surface area by nitrogen adsorption method
- carbon black is preferably 110 to 370 m 2 / g, and more preferably 150 to 350 m 2 / g.
- examples of such carbon black include SAF class, ISAF class, and HAF class carbon blacks.
- the carbon black content when carbon black is optionally contained, can maintain the damping property of the obtained laminate of the present invention higher, and the rubber composition of the present invention is used.
- the amount is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the crosslinkable rubber component described above. More preferably, the amount is 20 to 75 parts by mass.
- the content of the carbon black when carbon black is optionally contained, can be crosslinked as described above from the viewpoint that the resulting laminate of the present invention can maintain a higher attenuation.
- the amount is preferably 10 to 90 parts by weight, more preferably 10 to 75 parts by weight, and still more preferably 20 to 75 parts by weight with respect to 100 parts by weight of the rubber component. Further, in the present invention, when carbon black is optionally contained, the content of the carbon black is a viewpoint that the grip performance of the rubber obtained using the rubber composition of the present invention can be further improved. Therefore, the amount is preferably 10 to 90 parts by weight, more preferably 10 to 75 parts by weight, and still more preferably 20 to 75 parts by weight with respect to 100 parts by weight of the crosslinkable rubber component. .
- the rubber composition of the present invention promotes the decomposition (hydrolysis) of the polylactic acid-based resin described above, and increases the number of sites where the polylactic acid-based resin and the inorganic filler having a silanol group interact with each other. It is preferable to contain.
- a zinc compound, an aluminum compound, a copper compound etc. are mentioned, for example. Of these, zinc compounds are preferable, and specifically zinc oxide, organic zinc phosphate, and fatty acid zinc are more preferable. Of these, zinc oxide is more preferable.
- the content in the case of containing a metal compound as desired is 0 with respect to 100 parts by mass of the crosslinkable rubber component described above from the viewpoint of excellent dispersion of the metal compound and mechanical strength of the crosslinked product.
- the amount is preferably 1 to 10 parts by mass, more preferably 0.1 to 3 parts by mass.
- the rubber composition of the present invention preferably contains a silane coupling agent from the viewpoint of improving physical properties such as tensile strength after vulcanization and elongation at break of the rubber composition of the present invention to be obtained.
- silane coupling agent examples include bis- [3- (triethoxysilyl) -propyl] tetrasulfide, bis- [3- (trimethoxysilyl) -propyl] tetrasulfide, and bis- [ 3- (triethoxysilyl) -propyl] disulfide, mercaptopropyl-trimethoxysilane, mercaptopropyl-triethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, trimethoxysilylpropyl-mercapto Benzothiazole tetrasulfide, triethoxysilylpropyl-methacrylate-monosulfide, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, etc. may be mentioned,
- the content of the silane coupling agent when a silane coupling agent is optionally contained, is 0.1 of the content of the inorganic filler having a silanol group described above from the viewpoint of excellent mechanical strength. It is preferably ⁇ 10% by mass, more preferably 1 to 8% by mass.
- the content of the silane coupling agent when the rubber composition of the present invention is used as a rubber composition for a pneumatic tire, is an inorganic material having a silanol group described above from the viewpoint of excellent balance between grip performance and rolling resistance.
- the content of the filler is preferably 0.1 to 10% by mass, and more preferably 1 to 8% by mass.
- the amount of the silane coupling agent can be 5% by mass or more of the silanol group-containing inorganic filler.
- the rubber composition of the present invention can contain other additives as necessary within a range not impairing the object of the present invention.
- the additive include a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a plasticizer, a softening agent, a vulcanization aid, a flame retardant, a weathering agent, and a heat resistance agent.
- the rubber composition of this invention can contain the additive which the rubber composition for high attenuation
- Specific examples of the vulcanizing agent include sulfur; organic sulfur-containing compounds such as TMTD; organic peroxides such as dicumyl peroxide; and the like.
- vulcanization accelerator examples include sulfenamides such as N-cyclohexyl-2-benzothiazole sulfenamide (CBS); thiazoles such as mercaptobenzothiazole; tetramethylthiuram monosulfide and the like. Thiurams; stearic acid; and the like.
- Specific examples of the antiaging agent include ketone / amine condensates such as TMDQ; amines such as DNPD; monophenols such as styrenated phenol; and the like.
- plasticizer examples include phthalic acid derivatives (for example, DBP, DOP and the like), sebacic acid derivatives (for example, DBS and the like) monoesters, and the like.
- softening agent examples include paraffinic oil (process oil), aroma oil, stearic acid, and wax.
- the method for producing the rubber composition of the present invention is not particularly limited.
- a method of producing a rubber composition (for a high-attenuation laminate or for a pneumatic tire) by kneading an unvulcanized rubber composition containing at least the above-described essential components can be mentioned.
- an unvulcanized rubber composition containing the above-described components can be prepared by kneading using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.).
- the vulcanization conditions (primary crosslinking) of the rubber composition of the present invention are not particularly limited, and vulcanization can be performed under conventionally known vulcanization conditions using a sulfur compound or a peroxide.
- the primary crosslinking temperature is preferably from 130 to 200 ° C. from the viewpoint of being more excellent in rigidity (for example, horizontal rigidity).
- the temperature condition of the heat treatment is not particularly limited as long as it is the same temperature as the primary crosslinking temperature, but is preferably in the range of a temperature 10 ° C. to 10 ° C. higher than the temperature of the primary crosslinking. More preferably, the temperature is in the range of 5 ° C. to 5 ° C., more preferably in the range of 2 ° C. to 2 ° C. higher than the temperature of primary crosslinking.
- the heat treatment time is obtained from a vulcanization curve obtained from a rheometer torque defined in JIS K6300-2: 2001 using the rubber composition of the present invention before primary crosslinking (unvulcanized). Is preferably 0.5 to 3 times, more preferably 0.5 to 2 times.
- the vulcanization curve is based on JIS K6300-2: 2001 “How to determine vulcanization characteristics using a vibration vulcanization tester”, using a rotorless vulcanization tester as a rheometer at a predetermined test temperature.
- the obtained torque is on the vertical axis and the vulcanization time is on the horizontal axis.
- the rheometer test temperature is the above-described primary crosslinking temperature.
- the damping property of the laminate of the present invention can be further improved, and excellent vibration damping properties can be secured in a wide temperature range, which is obtained using the rubber composition of the present invention.
- the grip performance of the obtained rubber can be made more excellent. This is because the polylactic acid-based resin described above is decomposed (hydrolyzed) during vulcanization, for example, by moisture in the system, so that the polylactic acid-based resin after decomposition and an inorganic filler having a silanol group interact with each other. It is thought that it can be done.
- FIG. 5 is a cross-sectional view of a rubber composition schematically showing an example of the morphology that the rubber composition of the present invention (for example, for a high-damping laminate and for a pneumatic tire) can have.
- the rubber composition of the present invention for example, for a high-damping laminate and for a pneumatic tire
- the rubber composition 100 of the present invention has rubber A (reference numeral 10) as a matrix, rubber B (reference numeral 20) as a domain, and polypropylene (reference numeral 30).
- the rubber A10 and the rubber B20 form a sea-island structure (that is, the rubber A and the rubber B are incompatible), and the polypropylene 30 is added to the rubber A10 and the rubber B20 by adding a small amount of the polypropylene 30 thereto.
- the rubber composition 100 forms a continuous phase (network) 30 of polypropylene 30 in the rubber composition 100.
- the continuous phase 30 can form a substantially continuous continuous phase.
- the inventors of the present application infer that the continuous phase 30 of the polypropylene 30 hardens the rubber composition 100 in an appropriate range, and as a result, the rigidity (shear elastic modulus, horizontal rigidity) is improved.
- Such a continuous phase of polypropylene also applies to the crosslinked rubber composition of the present invention, the highly attenuated laminate of the present invention, and the pneumatic tire of the present invention.
- the said mechanism is a presumption of this inventor to the last, and it is in the scope of the present invention even if the mechanism is other than the above.
- Rubber composition of the present invention examples include, for example, a rubber composition for a high damping laminate, a rubber composition for a pneumatic tire, a damping industrial belt, and the like.
- the crosslinked rubber composition of the present invention is a crosslinked rubber composition containing a crosslinked rubber obtained by crosslinking the rubber composition of the present invention.
- the crosslinked rubber composition of the present invention can contain polypropylene in addition to the crosslinked rubber.
- the crosslinked rubber composition of the present invention is not particularly limited as long as it uses the rubber composition of the present invention as a raw material.
- Examples of the vulcanization conditions include the same as described above.
- the contained polypropylene is contained in the crosslinked rubber (especially rubber A and rubber B are incompatible with each other) from the viewpoint that both the damping property and the improvement in grip performance and rigidity can be achieved. Forming a continuous phase (network) is a preferred embodiment.
- the rubber composition of the present invention or the crosslinked rubber composition of the present invention can achieve both improvement in damping property or grip performance and rigidity. Therefore, according to the rubber composition of the present invention or the crosslinked rubber composition of the present invention. For example, it is possible to reduce the size of the high attenuation laminate required to obtain the same characteristics (for example, attenuation).
- Applications of the crosslinked rubber composition of the present invention include, for example, a rubber composition for a high damping laminate, a rubber composition for a pneumatic tire, a damping industrial belt, and the like.
- the highly attenuated laminate of the present invention will be described below.
- the high damping laminate of the present invention is obtained by alternately laminating the rubber composition of the present invention (the rubber composition for a high damping laminate of the present invention) or the crosslinked rubber composition of the present invention and a hard plate. It is a laminate.
- the highly attenuated laminate of the present invention (hereinafter sometimes referred to as “the laminate of the present invention”) is formed by alternately laminating the above-described rubber composition of the present invention or the crosslinked rubber composition of the present invention and a hard plate. It is a high-damping laminate obtained by the above, and is a structure used for bridge support and building base isolation.
- FIG. 1 shows a schematic cross-sectional view of a highly attenuated laminate that represents an example of an embodiment of the laminate of the present invention.
- symbol 1 represents a high attenuation
- symbol 2 represents a hard board
- symbol 3 represents the rubber composition (rubber composition for high attenuation
- the high attenuation laminate 1 of the present invention includes a rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and a hard plate 2 (for example, a general structural steel plate, Cold rolled steel sheets and the like) are alternately laminated.
- the high attenuation laminate 1 may be configured by providing an adhesive layer between the rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and the hard plate 2. You may comprise by vulcanizing directly, without providing.
- the high attenuation laminate 1 of the present invention shows a state in which the rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and hard plates 2 are alternately laminated.
- the rubber composition (rubber composition for a high attenuation laminate) 3 may have a structure in which two or more layers are laminated.
- FIG. 1 shows an example of a total of 13 layers including 6 layers for the rubber composition (rubber composition for high attenuation laminate) 3 of the present invention and 7 layers for the hard plate 2.
- the number of laminations of the rubber composition (rubber composition for high attenuation laminate) 3 of the present invention and the hard plate 2 of the damping laminate 1 is not limited to this, depending on the application used, required characteristics, etc.
- the rubber composition of the present invention (rubber composition for highly attenuated laminate) is molded into a sheet and then vulcanized to obtain a sheet-like rubber composition.
- a layer containing an adhesive may be provided and alternately laminated with a hard plate, or an unvulcanized rubber composition of the present invention (a rubber composition for a high attenuation laminate) is formed into a sheet shape in advance, After alternately laminating with the hard plate, heating and vulcanization and adhesion may be performed simultaneously.
- the laminated body of the present invention uses the above-described rubber composition of the present invention, it has an effect of high damping and excellent rigidity.
- the equivalent damping constant (Heq) which is an index of damping performance measured by a lap shear shear test described later, is 0.21 or more, and the stiffness (Geq) measured similarly is 0.78 to 0.96. Can be.
- FIG. 2 is a schematic side view of a sample for a lap shear type shear test.
- symbol 4 represents the sample for a lap shear type shear test
- symbol 5 represents the rolled unvulcanized rubber composition
- symbol 6 represents a steel plate.
- the unvulcanized rubber composition 5 is an unvulcanized rubber composition of the rubber composition of the present invention that has been rolled to a size of 25 mm wide ⁇ 25 mm long ⁇ 5 mm thick.
- the steel plate 6 is a steel plate (width 25 mm ⁇ length 100 mm ⁇ thickness 20 mm) having a surface sandblasted and coated with a metal adhesive.
- the sample 4 for lap shear type shear test is obtained by placing (stacking) the unvulcanized rubber composition 5 and the steel plate 6 as shown in FIG. 2 and then press vulcanizing at 130 ° C. for 120 minutes.
- the lap shear shear test is performed under the following conditions using a vibrator (manufactured by Saginomiya), an input signal oscillator, and an output signal processor.
- a vibrator manufactured by Saginomiya
- an input signal oscillator an input signal oscillator
- an output signal processor an output signal processor.
- ⁇ W is the area of the hysteresis loop (the shaded area in FIG. 3).
- Keq is represented by the following formula (3), H represents the total thickness of the rubber layer laminated in the high attenuation laminate, and A is the cross-sectional area of the rubber layer.
- the high damping laminate of the present invention is formed by using the rubber composition of the present invention (rubber composition for a high damping laminate) or the crosslinked rubber composition of the present invention, both the damping property and the rigidity are improved. Therefore, according to the high attenuation laminate of the present invention, the size of the high attenuation laminate required to obtain the same characteristic (eg, attenuation) can be reduced.
- the use, application conditions, and the like of the high attenuation laminate are not particularly limited as long as the high attenuation laminate is used as a vibration energy absorber. Among these, since it has the above-described excellent characteristics, it is preferably used as a vibration energy absorption device for buildings. For example, various vibration energy absorption devices for vibration isolation, vibration isolation, vibration isolation, etc. Is suitably used for, for example, support of road bridges, basic isolation of bridges and buildings, seismic isolation of detached houses, metal bearings, and replacement of bearings.
- the pneumatic tire of the present invention is a pneumatic tire formed using the rubber composition of the present invention. If the rubber composition used when forming the pneumatic tire of this invention is a rubber composition of this invention, it will not restrict
- By forming the pneumatic tire of the present invention using the rubber composition of the present invention both the grip performance and the rigidity can be improved.
- a tread part, a side part, and a belt part of a pneumatic tire can be formed using the rubber composition of the present invention.
- the pneumatic tire of the present invention is not particularly limited except that the rubber composition of the present invention is used for a pneumatic tire, and can be produced, for example, according to a conventionally known method.
- inert gas such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
- ⁇ Lap shear test> The lap shear type shear test sample obtained as described above was subjected to a lap shear shear test using a vibrator (manufactured by Saginamiya), an input signal oscillator, and an output signal processor.
- the number of lap shear type shear test samples used in each example was ten. Specifically, the shear characteristics of each time when 175% strain was applied 10 times at a deformation frequency of 0.5 Hz by a biaxial shear tester and a measurement temperature of 23 ° C. with respect to the lap shear type shear test sample. The average of the values was obtained.
- Rubber A1 Natural rubber, TSR20, manufactured by SIAM INDO RUBBER
- Rubber B1 Vinyl-cisbutadiene rubber, UBEPOL-VCR412, Ube Industries, Ltd.
- Rubber B2 Styrene-butadiene copolymer, Nipol 1502, manufactured by Nippon Zeon Carbon black 1: Diamond black I, manufactured by Mitsubishi Chemical Co., Ltd.
- Silanol group-containing inorganic filler 1 Silica, nip seal VN3, manufactured by Tosoh Silica, BET specific surface area 215 m 2 / g Silanol group-containing inorganic filler 2: Clay, SUPREX PLAY, manufactured by Kentucky Tennessee Clay Company, Ltd.
- Inorganic filler not containing silanol group 1 Calcium carbonate
- Inorganic filler not containing silanol group 2 Magnesium carbonate Petroleum resin 1 : High Resin # 120S (softening point 120 ° C., manufactured by Toho Chemical Co., Ltd.) ⁇ Metal compound 1: Zinc oxide, Zinc Hana No. 3, manufactured by Shodo Chemical Industry Co., Ltd.
- Polylactic acid 1 LACEA H-440 (melting point: 155 ° C., number average molecular weight: 78000, weight average molecular weight: 150,000, manufactured by Mitsui Chemicals, Inc. )
- Polylactic acid 2 NatureWorks 4060D (softening point 81 ° C., weight average molecular weight 180000, manufactured by NatureWorks)
- Polypropylene 1 Propylene homopolymer, trade name E-333GV, manufactured by Prime Polymer Co., Ltd.
- Polypropylene 2 Propylene homopolymer, trade name E-2900H, manufactured by Prime Polymer Co., Ltd.
- Polyethylene 1 Low density polyethylene (Homo polymer), trade name YF30, manufactured by Nippon Polyethylene Co., Ltd.
- Sulfur 1 powder sulfur, manufactured by Hosoi Chemical Co., Ltd.
- Vulcanization accelerator 1 Noxeller CZ, manufactured by Ouchi Shinsei Chemical Co., Ltd.
- FIG. 4 is a graph showing the relationship between damping property and rigidity obtained in the example of the present invention
- the rubber compositions (Comparative Examples 2 and 3) in which a polylactic acid resin was added to the prepared rubber composition for highly attenuated laminates showed improved rigidity as compared with Comparative Example 1, but reduced rigidity.
- the comparative example 4 which does not contain a polypropylene and contains polyethylene instead also improved the damping property as compared with the comparative example 1, the rigidity was lowered, and it was impossible to achieve both the damping property and the improvement in rigidity.
- the rubber compositions (rubber compositions for highly attenuated laminates) produced in Examples 1 to 10 have higher attenuation than Comparative Example 1, and the rigidity is improved without decreasing the rigidity.
- the rubber composition of the present invention (the rubber composition for a high-damping laminate) has a high damping property, and accordingly the rigidity is improved without decreasing the stiffness. Can be improved at the same time.
- the rubber composition for highly attenuated laminates of the present invention is excellent in damping property, rigidity and durability at low temperature (23 ° C.), and excellent in low temperature performance.
- Rubber B3 Styrene butadiene rubber (SBR), N9520 manufactured by Nippon Zeon Co., Ltd. (bonded styrene content: 35.0% by weight)
- Carbon black 2 Dia Black SA manufactured by Mitsubishi Chemical Corporation (N 2 SA: 137 m 2 / g)
- Silanol group-containing inorganic filler 3 sica: Silica, Ultraseal VN3 (BET: 175 m 2 / g) manufactured by Degussa Silane coupling agent 1: bis- [3- (triethoxysilyl) -propyl] tetrasulfide, trade name Si69, manufactured by DEGGUSA ⁇
- Aroma oil 1 Process X-140 manufactured by Japan Energy Co., Ltd.
- ⁇ Stearic acid manufactured by Nippon Oil & Fats Co., Ltd.
- Metal compound 2 (zinc flower) Zinc flower, manufactured by Mitsui Mining & Smelting Co., Ltd.
- ⁇ Wax Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
- Anti-aging agent 1 Antigen 6c (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
- Sulfur 2 manufactured by Tsurumi Chemical Co., Ltd.
- rubber A1, polylactic acid 1, polypropylene 1, and vulcanization accelerator 1 in Table 2 are the same as those used in Table 1.
- Comparative Examples 6 and 7 not containing polypropylene had 100% modulus, low hardness and poor rigidity, and low grip performance.
- Examples 11 and 12 had 100% modulus, high hardness and excellent rigidity, and were able to achieve both grip performance and rigidity.
- FIG. 6 is a photograph of one example of the morphology of the rubber composition of the present invention observed with a scanning probe microscope (SMP).
- the rubber composition sample (unvulcanized) used in FIG. 6 is composed of 61 parts by mass of rubber A1 (NR) shown in Table 1 and rubber shown in Table 1 as two or more types of crosslinkable rubber components. 36 parts by mass of B1 (BR) and polypropylene 1 (3 parts by mass) shown in Table 1 are contained. Measurement with a scanning probe microscope was performed at 23 ° C. The obtained photograph is an enlarged cross section of the sample 3500 times.
- SMP scanning probe microscope
- the phase portion of the same color reflects the same hardness in the measurement result by the scanning probe microscope.
- the rubber composition 60 has a soft phase 61 as a matrix, and has a hard phase 63 that is elongated in the matrix. Since the hardest of the rubber component and polypropylene contained in the sample is polypropylene, the phase 63 that is elongated in the phase 61 is considered to be polypropylene.
- the results of FIG. 6 are believed to suggest that polypropylene forms a continuous phase (network) of polypropylene in the rubber composition.
- the phase 63 in FIG. 6 occupies a relatively wide part and forms a substantially continuous continuous phase. This is believed to prove that polypropylene is unevenly distributed at the interface between incompatible rubber A and rubber B to form a continuous phase of polypropylene in the rubber composition, as shown in FIG. .
- Rubber composition of the present invention (rubber composition for highly attenuated laminate) 4 Sample for lap shear type shear test 5 Rolled unvulcanized rubber composition 6 Steel plate 10 Rubber A 20 Rubber B 30 Polypropylene (continuous phase) 60 Rubber composition 61, 63 Phase 100 Rubber composition of the present invention (crosslinked rubber composition) (rubber composition for highly attenuated laminate)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
例えば、橋梁の支承やビルの免震装置に用いられる免震用積層ゴムには、減衰性(振動をより多くの熱に変換して振動エネルギーを減衰させる)が高いことや、所望の剛性が発現することが要求されている。
このような免震用積層ゴムに用いられるゴム組成物として、本出願人は、特許文献1において「ジエン系ゴム100質量部と、カーボンブラック40~75質量部と、シリカ5~35質量部と、無機充填剤5~55質量部と、石油樹脂5~50質量部とを含有する高減衰積層体用ゴム組成物。」を提案している。 In recent years, anti-vibration devices, vibration isolation devices, seismic isolation devices, and the like are rapidly spreading as vibration energy absorbing devices. In such an apparatus, a rubber composition having vibration energy damping performance is used.
For example, laminated rubber for seismic isolation used in bridge bearings and building seismic isolation devices has high damping (attenuates vibration energy by converting vibration into more heat) and has a desired rigidity. It is required to be expressed.
As a rubber composition used for such a seismic isolation laminated rubber, the present applicant has disclosed in Patent Document 1 “100 parts by mass of a diene rubber, 40 to 75 parts by mass of carbon black, 5 to 35 parts by mass of silica, , A rubber composition for a high attenuation laminate comprising 5 to 55 parts by weight of an inorganic filler and 5 to 50 parts by weight of a petroleum resin.
したがって、本願発明は、減衰性と剛性との向上を両立させることができる、高減衰積層体用ゴム組成物または架橋ゴム組成物、およびこれらのうち少なくともいずれかを用いる高減衰積層体を提供することを目的とする。 However, the inventors of the present application have found that, when the conventional rubber composition for a high-damping laminate is improved in its damping property, its rigidity is lowered and the composition becomes soft.
Accordingly, the present invention provides a rubber composition or a crosslinked rubber composition for a highly attenuated laminate that can achieve both improvement in damping properties and rigidity, and a highly attenuated laminate using at least one of these. For the purpose.
また本願発明者は2種以上の架橋可能なゴム成分に対して、シラノール基を有する無機充填剤とポリ乳酸系樹脂とポリプロピレンとを特定量配合したゴム組成物、およびこれを架橋させた架橋ゴム組成物が、タイヤのグリップ性能と剛性との向上を両立させることができることを知見し、本発明を完成させた。
即ち、本発明は、以下の1~18を提供する。 As a result of intensive studies to solve the above-mentioned problems, the present inventor formulated a specific amount of an inorganic filler having a silanol group, a polylactic acid resin, and polypropylene with respect to two or more types of crosslinkable rubber components. It has been found that a rubber composition and a crosslinked rubber composition obtained by crosslinking the rubber composition can achieve both improvement in damping property and rigidity.
The inventor of the present application also provides a rubber composition in which a specific amount of an inorganic filler having a silanol group, a polylactic acid resin, and polypropylene are blended with two or more kinds of crosslinkable rubber components, and a crosslinked rubber obtained by crosslinking the rubber composition. The present inventors have found that the composition can simultaneously improve the grip performance and rigidity of the tire, and have completed the present invention.
That is, the present invention provides the following 1 to 18.
2. 前記ゴム成分はジエン系ゴムである上記1に記載のゴム組成物。
3. 前記ゴム成分はゴムAとゴムBとを含み、前記ゴムAと前記ゴムBとは非相溶である上記1または2に記載のゴム組成物。
4. 前記ゴム成分はゴムAとゴムBとを含み、前記ゴムAが天然ゴムおよびポリイソプレンからなる群から選ばれる少なくとも1種であり、前記ゴムBがポリブタジエンおよびブタジエン共重合体からなる群から選ばれる少なくとも1種である上記1~3のいずれかに記載のゴム組成物。
5. 前記ゴムAと前記ゴムBとの質量比(ゴムA/ゴムB)が、90/10~10/90である上記3または4に記載のゴム組成物。
6. 前記ゴム成分100質量部に対して、更に、石油樹脂を5~50質量部含有する上記1~5のいずれかに記載のゴム組成物。
7. 前記ゴム成分100質量部に対して、更に、前記シラノール基を有する無機充填剤以外の無機充填剤を5~55質量部含有する上記1~6のいずれかに記載のゴム組成物。
8. 前記ポリ乳酸系樹脂の融点が、180℃以下である上記1~7のいずれかに記載のゴム組成物。
9. 前記ポリ乳酸系樹脂の数平均分子量が、1,000~200,000である上記1~8のいずれかに記載のゴム組成物。
10. 前記シラノール基を有する無機充填剤と前記ポリ乳酸系樹脂との質量比(シラノール基を有する無機充填剤/ポリ乳酸系樹脂)が、1/1~10/1である上記1~9のいずれかに記載のゴム組成物。
11. さらにカーボンブラックを含有し、前記カーボンブラックの量が前記ゴム成分100質量部に対して10~90質量部である上記1~10のいずれかに記載のゴム組成物。
12. さらにシランカップリング剤を含有し、前記シランカップリング剤の量が前記シラノール基を有する無機充填剤100質量部に対して1~10質量部である上記1~11のいずれかに記載のゴム組成物。
13. 前記ポリプロピレンが、前記ゴム成分中に連続相を形成する上記3~12のいずれかに記載のゴム組成物。
14. 上記1~13のいずれかに記載のゴム組成物を架橋させることによって得られる、架橋ゴムを含有する架橋ゴム組成物。
15. 上記1~13のいずれかに記載のゴム組成物または上記14に記載の架橋ゴム組成物が高減衰積層体用に使用される、高減衰積層体用ゴム組成物。
16. 上記1~13のいずれかに記載のゴム組成物または上記14に記載の架橋ゴム組成物が空気入りタイヤ用に使用される、空気入りタイヤ用ゴム組成物。
17. 上記15に記載の高減衰積層体用ゴム組成物と硬質板とを交互に積層して得られる高減衰積層体。
18. 上記16に記載の空気入りタイヤ用ゴム組成物を用いて形成される空気入りタイヤ。 1. 100 parts by weight of two or more crosslinkable rubber components, 10 to 100 parts by weight of an inorganic filler having a silanol group, 0.1 to 30 parts by weight of a polylactic acid resin, and 0.1 to 10 parts by weight of polypropylene Containing a rubber composition.
2. 2. The rubber composition as described in 1 above, wherein the rubber component is a diene rubber.
3. The rubber composition according to 1 or 2 above, wherein the rubber component includes rubber A and rubber B, and the rubber A and the rubber B are incompatible.
4). The rubber component includes rubber A and rubber B, the rubber A is at least one selected from the group consisting of natural rubber and polyisoprene, and the rubber B is selected from the group consisting of polybutadiene and a butadiene copolymer. 4. The rubber composition as described in any one of 1 to 3 above, which is at least one kind.
5. 5. The rubber composition according to 3 or 4 above, wherein a mass ratio of the rubber A and the rubber B (rubber A / rubber B) is 90/10 to 10/90.
6). 6. The rubber composition as described in any one of 1 to 5 above, further containing 5 to 50 parts by mass of a petroleum resin with respect to 100 parts by mass of the rubber component.
7). 7. The rubber composition according to any one of 1 to 6 above, further containing 5-55 parts by mass of an inorganic filler other than the inorganic filler having a silanol group with respect to 100 parts by mass of the rubber component.
8). 8. The rubber composition as described in any one of 1 to 7 above, wherein the polylactic acid resin has a melting point of 180 ° C. or lower.
9. 9. The rubber composition as described in any one of 1 to 8 above, wherein the polylactic acid resin has a number average molecular weight of 1,000 to 200,000.
10. Any one of 1 to 9 above, wherein a mass ratio of the inorganic filler having a silanol group and the polylactic acid resin (inorganic filler having a silanol group / polylactic acid resin) is 1/1 to 10/1. The rubber composition as described in 2.
11. 11. The rubber composition according to any one of 1 to 10, further comprising carbon black, wherein the amount of the carbon black is 10 to 90 parts by mass with respect to 100 parts by mass of the rubber component.
12 The rubber composition according to any one of 1 to 11, further comprising a silane coupling agent, wherein the amount of the silane coupling agent is 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic filler having the silanol group. object.
13. 13. The rubber composition according to any one of 3 to 12, wherein the polypropylene forms a continuous phase in the rubber component.
14 14. A crosslinked rubber composition containing a crosslinked rubber obtained by crosslinking the rubber composition according to any one of 1 to 13 above.
15. 15. A rubber composition for a high attenuation laminate, wherein the rubber composition according to any one of 1 to 13 or the crosslinked rubber composition according to 14 is used for a high attenuation laminate.
16. 15. A rubber composition for a pneumatic tire, wherein the rubber composition according to any one of 1 to 13 or the crosslinked rubber composition according to 14 is used for a pneumatic tire.
17. 16. A high attenuation laminate obtained by alternately laminating the rubber composition for a high attenuation laminate according to 15 and a hard plate.
18. A pneumatic tire formed using the rubber composition for a pneumatic tire described in 16 above.
本発明の高減衰積層体は優れた減衰性と優れた剛性とを兼ね備える。
本発明の空気入りタイヤは優れたグリップ性能と優れた剛性とを兼ね備える。
本願明細書において、高減衰積層体の剛性とタイヤの剛性とは、変形しにくさという意味で同じである。 The rubber composition of the present invention and the crosslinked rubber composition of the present invention can achieve both improvement in damping property or grip performance and rigidity.
The highly attenuated laminate of the present invention has both excellent attenuation and excellent rigidity.
The pneumatic tire of the present invention combines excellent grip performance and excellent rigidity.
In the present specification, the rigidity of the high-damping laminate and the rigidity of the tire are the same in the sense that they are difficult to deform.
本発明のゴム組成物は、2種以上の架橋可能なゴム成分100質量部と、シラノール基を有する無機充填剤10~100質量部と、ポリ乳酸系樹脂0.1~30質量部と、ポリプロピレン0.1~10質量部とを含有するゴム組成物である。
本願明細書において本発明のゴム組成物は、高減衰積層体用ゴム組成物、空気入りタイヤ用ゴム組成物として使用することができる。 The present invention is described in detail below.
The rubber composition of the present invention comprises 100 parts by weight of two or more crosslinkable rubber components, 10 to 100 parts by weight of an inorganic filler having a silanol group, 0.1 to 30 parts by weight of a polylactic acid resin, polypropylene A rubber composition containing 0.1 to 10 parts by mass.
In the present specification, the rubber composition of the present invention can be used as a rubber composition for a high-damping laminate and a rubber composition for a pneumatic tire.
本発明のゴム組成物に含有するゴム成分は、硫黄化合物や過酸化物による架橋が可能なゴム成分であれば特に限定されず、その具体例としては、ジエン系ゴム、二重結合を有する熱可塑性エラストマー等が挙げられる。 <Crosslinkable rubber component>
The rubber component contained in the rubber composition of the present invention is not particularly limited as long as it is a rubber component that can be crosslinked with a sulfur compound or a peroxide. Specific examples thereof include a diene rubber and a heat having a double bond. Examples thereof include a plastic elastomer.
また、上記二重結合を有する熱可塑性エラストマーとしては、具体的には、例えば、エチレン-プロピレン-ジエンゴム(EPDM)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、その水素化(水添)物(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)およびスチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。 Specific examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), vinyl-cis butadiene rubber (VCR), and styrene-butadiene copolymer rubber (SBR). ), Acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR), and the like.
Specific examples of the thermoplastic elastomer having a double bond include ethylene-propylene-diene rubber (EPDM), styrene-butadiene-styrene block copolymer (SBS), and hydrogenation (hydrogenation) thereof. (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-isoprene-styrene block copolymer (SIS), styrene-isobutylene-styrene block copolymer (SIBS), and the like.
そして、ゴムAとゴムBとは非相溶であるのが、減衰性またはグリップ性能と剛性との向上をより両立させることができるという観点から好ましい。 In the present invention, two or more types of crosslinkable rubber components can be used as a rubber component containing two or more types of crosslinkable rubber. As one of preferred embodiments of the present invention, a case where the rubber component contains rubber A and rubber B can be mentioned.
And it is preferable that rubber | gum A and rubber | gum B are incompatible from a viewpoint that the improvement of damping property or grip performance and rigidity can be made to make compatible further.
ゴムBとしては、例えば、ポリブタジエン、ブタジエン共重合体からなる群から選ばれる少なくとも1種が挙げられる。ブタジエン共重合体としては、例えば、スチレンブタジエン共重合体、ビニル-シスブタジエンゴムが挙げられる。 Examples of the rubber A include at least one selected from the group consisting of natural rubber and polyisoprene.
Examples of the rubber B include at least one selected from the group consisting of polybutadiene and butadiene copolymers. Examples of the butadiene copolymer include styrene butadiene copolymer and vinyl-cis butadiene rubber.
また、減衰性と剛性との向上をより両立させることができ、低温での減衰性に優れるという観点から、ゴムAが天然ゴムでありゴムBがビニル-シスブタジエンゴムである場合、ゴムAとゴムBとの質量比(ゴムA/ゴムB)は、減衰性と剛性との向上をより両立させることができるという観点から、90/10~10/90であるのが好ましく、70/30~30/70であるのがより好ましい。 Among these, it is preferable that rubber A contains natural rubber and rubber B contains vinyl-cis butadiene rubber from the viewpoint that both improvement in damping property and rigidity can be achieved, and that damping property at low temperature is excellent. .
In addition, from the viewpoint that both the damping property and the rigidity can be improved and the damping property at low temperature is excellent, when the rubber A is a natural rubber and the rubber B is a vinyl-cisbutadiene rubber, The mass ratio with rubber B (rubber A / rubber B) is preferably 90/10 to 10/90, and more preferably 70/30 to More preferably, it is 30/70.
ビニル-シスブタジエンゴムとしては、具体的には、例えば、シス1,4-結合含量90%以上のシス-1,4-ポリブタジエンゴム97~80質量%と、シンジオタクチック-1,2-ポリブタジエン3~20質量%とからなる複合体等が挙げられる。 Here, the vinyl-cis butadiene rubber is a polybutadiene rubber composite composed of cis-1,4-polymerization and syndiotactic-1,2 polymerization in an inert organic solvent mainly composed of a C 4 fraction. It is.
Specific examples of the vinyl-cis butadiene rubber include, for example, 97-80% by mass of cis-1,4-polybutadiene rubber having a cis 1,4-bond content of 90% or more, and syndiotactic-1,2-polybutadiene. Examples include composites composed of 3 to 20% by mass.
また、グリップ性能と剛性との向上をより両立させることができ、低温でのグリップ性能に優れるという観点から、ゴムAが天然ゴムでありゴムBがスチレンブタジエン共重合体である場合、ゴムAとゴムBとの質量比(ゴムA/ゴムB)は、グリップ性能と剛性との向上をより両立させることができるという観点から、20/80~80/20であるのが好ましく、30/70~70/30であるのがより好ましい。 In addition, for the combination of rubber A and rubber B, rubber A contains natural rubber, and rubber B can be improved in both grip performance and rigidity, and excellent in grip performance at low temperatures. It preferably contains a styrene butadiene copolymer.
In addition, from the viewpoint that the improvement in grip performance and rigidity can be achieved at the same time and the grip performance at low temperature is excellent, when rubber A is natural rubber and rubber B is a styrene butadiene copolymer, The mass ratio to rubber B (rubber A / rubber B) is preferably 20/80 to 80/20, and more preferably 30/70 to 80/20 from the viewpoint that both improvement in grip performance and rigidity can be achieved. More preferably, it is 70/30.
本発明のゴム組成物に含有するシラノール基を有する無機充填剤は、表面の少なくとも一部にシラノール基(Si-OH)を有する無機充填剤であれば特に限定されない。
シラノール基を有する無機充填剤としては、例えば、シリカ、クレー、タルク等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Inorganic filler having silanol group (silanol group-containing inorganic filler)>
The inorganic filler having a silanol group contained in the rubber composition of the present invention is not particularly limited as long as it is an inorganic filler having a silanol group (Si—OH) on at least a part of the surface.
Examples of the inorganic filler having a silanol group include silica, clay, talc and the like, and these may be used alone or in combination of two or more.
また、シリカは、平均凝集粒径が、5~50μmのものが好ましく、5~30μmのものがより好ましい。
シリカのBET比表面積は、補強性と高減衰性およびタイヤのグリップに優れるという観点から、50~300m2/gであるのが好ましい。 Specific examples of silica include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, and colloidal silica.
Silica preferably has an average aggregate particle size of 5 to 50 μm, more preferably 5 to 30 μm.
The BET specific surface area of silica is preferably 50 to 300 m 2 / g from the viewpoints of reinforcing property, high damping property and excellent tire grip.
本発明のゴム組成物を高減衰積層体用として使用する場合、シラノール基を有する無機充填剤の含有量は、減衰性と剛性との向上をより両立させることができ、耐久性および低温性能(例えば低温での減衰性)に優れるという観点から、上述した2種以上の架橋可能なゴム成分100質量部に対して10~60質量部であるのが好ましく、15~50質量部であるのがより好ましく、20~40質量部であるのがさらに好ましい。
本発明のゴム組成物を空気入りタイヤ用として使用する場合、シラノール基を有する無機充填剤の含有量は、グリップ性能と剛性との向上をより両立させることができ、耐久性および低温性能(例えば低温でのグリップ性能)に優れるという観点から、2種以上の架橋可能なゴム成分100質量部に対して20~90質量部であるのが好ましく、20~80質量部であるのがより好ましく、30~70質量部であるのがさらに好ましい。 In the present invention, the content of the inorganic filler having a silanol group is 10 to 100 parts by mass with respect to 100 parts by mass of the two or more types of crosslinkable rubber components described above, and the damping property or grip performance and rigidity are increased. And more preferably 10 to 90 parts by mass from the viewpoint of durability and low temperature performance (for example, damping property and grip performance at low temperature). More preferably, it is part.
When the rubber composition of the present invention is used for a high-damping laminate, the content of the inorganic filler having a silanol group can achieve both improvement in damping property and rigidity, and durability and low-temperature performance ( For example, from the viewpoint of excellent attenuation at low temperatures, the amount is preferably 10 to 60 parts by weight, more preferably 15 to 50 parts by weight with respect to 100 parts by weight of the two or more crosslinkable rubber components described above. More preferably, it is 20 to 40 parts by mass.
When the rubber composition of the present invention is used for a pneumatic tire, the content of the inorganic filler having a silanol group can achieve both improvement in grip performance and rigidity, durability and low temperature performance (for example, From the viewpoint of excellent grip performance at low temperature), it is preferably 20 to 90 parts by weight, more preferably 20 to 80 parts by weight, based on 100 parts by weight of two or more kinds of crosslinkable rubber components. More preferably, it is 30 to 70 parts by mass.
本発明のゴム組成物に含有するポリ乳酸系樹脂は、乳酸の単独重合体および/または乳酸の共重合体である。
ここで、乳酸の単独重合体は、ポリ乳酸である。
また、乳酸の共重合体は、乳酸以外のヒドロキシ酸、ラクトンおよび乳酸と共重合可能なジエン系化合物からなる群から選択される1種のモノマーと、乳酸との共重合体である。 <Polylactic acid resin>
The polylactic acid resin contained in the rubber composition of the present invention is a homopolymer of lactic acid and / or a copolymer of lactic acid.
Here, the homopolymer of lactic acid is polylactic acid.
The lactic acid copolymer is a copolymer of lactic acid and one kind of monomer selected from the group consisting of hydroxy acids other than lactic acid, lactones and diene compounds copolymerizable with lactic acid.
ラクトンとしては、具体的には、例えば、ε-カプロラクトン、α-メチル-ε-カプロラクトン、ε-メチル-ε-カプロラクトン、γ-バレロラクトン、δ-バレロラクトン、β-ブチロラクトン、γ-ブチロラクトン、β-プロピオラクトン等が例示される。
乳酸と共重合可能なジエン系化合物としては、具体的には、例えば、ブタジエン、イソプレン等が挙げられる。
また、これらと乳酸との共重合体は、乳酸が主成分であれば、ブロック共重合体、ランダムブロック共重合体、ランダム共重合体、グラフト重合体のいずれでもよいが、ブロック共重合体であるのが好ましい。 Specific examples of hydroxy acids other than lactic acid include hydroxyacetic acid (glycolic acid), hydroxybutyric acid, malic acid, citric acid, ricinoleic acid, shikimic acid, salicylic acid, and coumaric acid.
Specific examples of lactones include ε-caprolactone, α-methyl-ε-caprolactone, ε-methyl-ε-caprolactone, γ-valerolactone, δ-valerolactone, β-butyrolactone, γ-butyrolactone, β -Propiolactone and the like are exemplified.
Specific examples of the diene compound copolymerizable with lactic acid include butadiene and isoprene.
The copolymer of these and lactic acid may be a block copolymer, a random block copolymer, a random copolymer, or a graft polymer as long as lactic acid is a main component. Preferably there is.
また、同様の理由から、数平均分子量が1,000~200,000であるのが好ましく、1,000~100,000であるのがより好ましい。
ここで、融点は、示差走査熱量測定(DSC-Differential Scanning Calorimetry)により、昇温速度10℃/minで測定した値である。
また、数平均分子量は、ゲルパーミエションクロマトグラフィー(Gel permeation chromatography(GPC))により測定した数平均分子量(ポリスチレン換算)であり、測定にはテトラヒドロフラン(THF)、N,N-ジメチルホルムアミド(DMF)、クロロホルムを溶媒として用いるのが好ましい。 In the present invention, among such polylactic acid-based resins, the resulting rubber composition of the present invention has excellent melting properties, such as tensile strength after vulcanization, elongation at break, etc., so that the melting point is 180 ° C. or less. However, it is preferably 160 ° C. or lower, and more preferably 135 ° C. or lower.
For the same reason, the number average molecular weight is preferably 1,000 to 200,000, more preferably 1,000 to 100,000.
Here, the melting point is a value measured at a heating rate of 10 ° C./min by differential scanning calorimetry (DSC-Differential Scanning Calorimetry).
The number average molecular weight is a number average molecular weight (polystyrene conversion) measured by gel permeation chromatography (GPC). Tetrahydrofuran (THF), N, N-dimethylformamide (DMF) is used for the measurement. ), Chloroform is preferably used as a solvent.
これは、詳細なメカニズムは不明であるが、シラノール基を有する無機充填剤がシロキサン結合による架橋を形成するとともに、残存するシラノール基やシロキサン結合とポリ乳酸系樹脂のエステル結合との相互作用により、架橋した充填剤の周囲にポリ乳酸系樹脂が集まり結晶化するためであると考えられる。 In the present invention, by containing the above-described inorganic filler having a silanol group and a polylactic acid resin within the above-described content range, the rubber composition of the present invention obtained is excellent in processability, The laminate of the invention has a high damping property, and the rubber obtained using the rubber composition of the invention has excellent grip performance and good rigidity.
Although the detailed mechanism is unknown, the inorganic filler having a silanol group forms a crosslink by a siloxane bond, and due to the interaction between the remaining silanol group or the siloxane bond and the ester bond of the polylactic acid resin, This is probably because the polylactic acid resin collects around the crosslinked filler and crystallizes.
また、本発明においては、本発明のゴム組成物を高減衰積層体用として使用する場合、得られる本発明のゴム組成物の加工性がより良好となり、また、本発明の積層体の減衰性がより高く、剛性がより良好となる理由から、上述したシラノール基を有する無機充填剤とポリ乳酸系樹脂との質量比(シラノール基含有無機充填剤/ポリ乳酸系樹脂)が、1/1~10/1であるのが好ましく、8/1~4/1であるのがより好ましい。
また、本発明においては、本発明のゴム組成物を空気入りタイヤ用として使用する場合、得られる本発明のゴム組成物の加工性がより良好となり、また、本発明のゴム組成物を用いて得られるゴムがグリップ性能に優れ、剛性がより良好となる理由から、上述したシラノール基を有する無機充填剤とポリ乳酸系樹脂との質量比(シラノール基含有無機充填剤/ポリ乳酸系樹脂)が、1/1~8/1であるのが好ましく、2/1~7/1であるのがより好ましい。 In the present invention, the processability of the resulting rubber composition of the present invention becomes better, the damping property of the laminate of the present invention is higher, and the rubber obtained using the rubber composition of the present invention has grip performance. The mass ratio of the above-mentioned inorganic filler having a silanol group to the polylactic acid resin (silanol group-containing inorganic filler / polylactic acid resin) is 1/1 to 10 because / 1 is preferred.
Further, in the present invention, when the rubber composition of the present invention is used for a high attenuation laminate, the processability of the resulting rubber composition of the present invention becomes better, and the attenuation of the laminate of the present invention is also improved. Is higher and the rigidity is better, the mass ratio of the silanol group-containing inorganic filler to the polylactic acid resin (silanol group-containing inorganic filler / polylactic acid resin) is 1/1 to It is preferably 10/1, more preferably 8/1 to 4/1.
In the present invention, when the rubber composition of the present invention is used for a pneumatic tire, the processability of the resulting rubber composition of the present invention becomes better, and the rubber composition of the present invention is used. Because the resulting rubber has excellent grip performance and better rigidity, the mass ratio of the above-mentioned inorganic filler having a silanol group to the polylactic acid resin (silanol group-containing inorganic filler / polylactic acid resin) is 1/1 to 8/1 is preferable, and 2/1 to 7/1 is more preferable.
本発明のゴム組成物(例えば、高減衰積層体用、空気入りタイヤ用等)に含有されるポリプロピレンは、プロピレンを含有するモノマーから得られる、ホモポリマーまたはコポリマーであれば特に制限されない。例えば、従来公知のものが挙げられる。
なかでも、減衰性またはグリップ性能と剛性との向上をより両立させることができ、耐久性に優れるという観点から、プロピレンホモポリマー、プロピレンモノマーを50mol%以上含むポリプロピレンコポリマーであるのが好ましい。
ポリプロピレンはその製造について特に制限されない。例えば従来公知のものが挙げられる。ポリプロピレンはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。 <Polypropylene>
The polypropylene contained in the rubber composition of the present invention (for example, for high damping laminates, pneumatic tires, etc.) is not particularly limited as long as it is a homopolymer or copolymer obtained from a monomer containing propylene. For example, a conventionally well-known thing is mentioned.
Of these, a propylene homopolymer and a polypropylene copolymer containing 50 mol% or more of a propylene monomer are preferable from the viewpoint of being able to achieve both improvement in damping property or grip performance and rigidity, and excellent durability.
Polypropylene is not particularly limited for its production. For example, a conventionally well-known thing is mentioned. Polypropylenes can be used alone or in combination of two or more.
ポリプロピレンの量は、減衰性またはグリップ性能と剛性との向上をより両立させることができ、耐久性に優れ、破断伸びが高いという観点から、ゴム成分100質量部に対して、0.5~8質量部であるのが好ましく、1~5質量部であるのがより好ましい。 In the present invention, the amount of polypropylene is 0.1 to 10 parts by mass with respect to 100 parts by mass of two or more kinds of crosslinkable rubber components. In such a range, it is possible to achieve both improvement in damping performance or grip performance and rigidity, satisfy high breaking elongation required for a rubber composition for a high damping laminate, and excellent durability. . When the amount of polypropylene exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component, the horizontal rigidity is increased, but the damping property or grip performance is not improved so much, and is required for a rubber composition for a high attenuation laminate. Thus, the elongation at break of 550% or more cannot be obtained, and it tends to break before exhibiting high damping performance or to be fatigued during repeated deformation.
The amount of polypropylene is 0.5 to 8 with respect to 100 parts by mass of the rubber component from the viewpoints that both the damping property and the improvement in grip performance and rigidity can be achieved, the durability is excellent, and the elongation at break is high. The amount is preferably part by mass, and more preferably 1 to 5 parts by mass.
本発明のゴム組成物は、加硫後の引張強さや切断時伸び等の物性を良好とし、また、本発明の積層体の減衰性をより高くする観点から、さらに石油樹脂を含有するのが好ましい。
石油樹脂としては、従来公知のものを使用することができ、例えば、C5系の脂肪族不飽和炭化水素の重合体、C9系の芳香族不飽和炭化水素の重合体、C5系の脂肪族不飽和炭化水素とC9系の芳香族不飽和炭化水素との共重合体等を使用することができる。 <Petroleum resin>
The rubber composition of the present invention preferably contains a petroleum resin from the viewpoint of improving physical properties such as tensile strength after vulcanization and elongation at break and improving the damping property of the laminate of the present invention. preferable.
As the petroleum resin, conventionally known ones can be used, for example, C5 aliphatic unsaturated hydrocarbon polymer, C9 aromatic unsaturated hydrocarbon polymer, C5 aliphatic unsaturated polymer. Copolymers of saturated hydrocarbons and C9 aromatic unsaturated hydrocarbons can be used.
これらは、適当な触媒の存在下で、重合または共重合されることが可能である。ここで、C5系の脂肪族不飽和炭化水素の重合体とは、一種のC5系の脂肪族不飽和炭化水素の単独重合体と、二種以上のC5系の脂肪族不飽和炭化水素の共重合体のいずれをもいう。 Specific examples of the C5 aliphatic unsaturated hydrocarbon include, for example, 1-pentene, 2-pentene, 2-methyl-1-butene contained in a C5 fraction obtained by thermal decomposition of naphtha, Olefinic hydrocarbons such as 3-methyl-1-butene and 2-methyl-2-butene; 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, 3-methyl-1 , 2-olefin hydrocarbons such as 2-butadiene; and the like.
These can be polymerized or copolymerized in the presence of a suitable catalyst. Here, the C5 aliphatic unsaturated hydrocarbon polymer is a co-polymer of a single C5 aliphatic unsaturated hydrocarbon homopolymer and two or more C5 aliphatic unsaturated hydrocarbons. It refers to any polymer.
これらは、適当な触媒の存在下で、重合または共重合されることが可能である。ここで、C9系の芳香族不飽和炭化水素の重合体とは、一種のC9系の芳香族不飽和炭化水素の単独重合体と、二種以上のC9系の芳香族不飽和炭化水素の共重合体のいずれをもいう。 Specific examples of the C9 aromatic unsaturated hydrocarbon include, for example, α-methylstyrene, o-vinyltoluene, m-vinyltoluene, p contained in a C9 fraction obtained by thermal decomposition of naphtha. -Vinyl-substituted aromatic hydrocarbons such as vinyltoluene.
These can be polymerized or copolymerized in the presence of a suitable catalyst. Here, the C9 aromatic unsaturated hydrocarbon polymer is a co-polymer of a single C9 aromatic unsaturated hydrocarbon homopolymer and two or more C9 aromatic unsaturated hydrocarbons. It refers to any polymer.
C5系の脂肪族不飽和炭化水素とC9系の芳香族不飽和炭化水素との共重合体は、適当な触媒の存在下で、共重合可能である。 In addition, a copolymer of a C5 aliphatic unsaturated hydrocarbon and a C9 aromatic unsaturated hydrocarbon is a C9 aromatic unsaturated hydrocarbon in that the softening point of the copolymer is high. What a unit is 60 mol% or more is preferable, and what is 90 mol% or more is more preferable.
A copolymer of a C5 aliphatic unsaturated hydrocarbon and a C9 aromatic unsaturated hydrocarbon can be copolymerized in the presence of a suitable catalyst.
本発明のゴム組成物は、本発明の積層体の減衰性をより高く、本発明のゴム組成物を用いて得られるゴムのグリップ性能をより優れたものとし、剛性をより良好とする観点から、上述したシラノール基を有する無機充填剤以外の無機充填剤をさらに含有するのが好ましい。
このような無機充填剤としては、具体的には、例えば、炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、硫酸バリウム等が挙げられる。 <Inorganic filler>
The rubber composition of the present invention has a higher damping property of the laminate of the present invention, more excellent grip performance of rubber obtained by using the rubber composition of the present invention, and from the viewpoint of better rigidity. It is preferable to further contain an inorganic filler other than the inorganic filler having a silanol group described above.
Specific examples of such inorganic fillers include calcium carbonate, heavy calcium carbonate, magnesium carbonate, aluminum hydroxide, and barium sulfate.
本発明のゴム組成物は、加硫後の引張強さや切断時伸び等の物性を良好とし、本発明の積層体の減衰性をより高く、本発明のゴム組成物を用いて得られるゴムのグリップ性能をより優れたものとし、剛性をより良好とする観点から、さらにカーボンブラックを含有するのが好ましい。 <Carbon black>
The rubber composition of the present invention has good physical properties such as tensile strength after vulcanization and elongation at break, higher damping properties of the laminate of the present invention, and the rubber composition obtained using the rubber composition of the present invention. From the viewpoint of improving grip performance and improving rigidity, it is preferable to further contain carbon black.
CTAB吸着比表面積が100m2/g以上の範囲であると、得られる本発明の積層体の減衰性をより高く維持することができ、本発明のゴム組成物を用いて得られるゴムのグリップ性能をより優れたものとすることができる。
ここで、CTAB吸着比表面積は、カーボンブラックがゴム分子との吸着に利用できる表面積を、CTAB(セチルトリメチルアンモニウムブロミド)の吸着により測定した値である。
このようなカーボンブラックとしては、例えば、SAF、ISAF、HAFを挙げることができる。なお、CATB吸着比表面積は、ASTM D3765-80に記載の方法により測定することができる。 In the present invention, carbon black having a CTAB adsorption specific surface area of 100 m 2 / g or more is preferably used, and carbon black of 110 to 370 m 2 / g is more preferably used.
When the CTAB adsorption specific surface area is in the range of 100 m 2 / g or more, the damping property of the obtained laminate of the present invention can be maintained higher, and the grip performance of the rubber obtained by using the rubber composition of the present invention. Can be made more excellent.
Here, the CTAB adsorption specific surface area is a value obtained by measuring the surface area that carbon black can be used for adsorption with rubber molecules by adsorption of CTAB (cetyltrimethylammonium bromide).
Examples of such carbon black include SAF, ISAF, and HAF. The CATB adsorption specific surface area can be measured by the method described in ASTM D3765-80.
このようなカーボンブラックとしては、例えば、SAF級、ISAF級、HAF級のカーボンブラックを挙げることができる。 In the present invention, it is possible to maintain the damping property of the laminate of the present invention higher, and to improve the grip performance of the rubber obtained using the rubber composition of the present invention. From the viewpoint, N 2 AB (specific surface area by nitrogen adsorption method) of carbon black is preferably 110 to 370 m 2 / g, and more preferably 150 to 350 m 2 / g.
Examples of such carbon black include SAF class, ISAF class, and HAF class carbon blacks.
また、本発明においては、所望によりカーボンブラックを含有する場合、カーボンブラックの含有量は、得られる本発明の積層体の減衰性をより高く維持することができるという観点から、上述した架橋可能なゴム成分100質量部に対して、10~90質量部であるのが好ましく、10~75質量部であるのがより好ましく、20~75質量部であるのがさらに好ましい。
また、本発明においては、所望によりカーボンブラックを含有する場合、カーボンブラックの含有量は、本発明のゴム組成物を用いて得られるゴムのグリップ性能をより優れたものとすることができるという観点から、上述した架橋可能なゴム成分100質量部に対して、10~90質量部であるのが好ましく、10~75質量部であるのがより好ましく、20~75質量部であるのがさらに好ましい。 Further, in the present invention, when carbon black is optionally contained, the carbon black content can maintain the damping property of the obtained laminate of the present invention higher, and the rubber composition of the present invention is used. From the standpoint that the grip performance of the rubber obtained can be further improved, the amount is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the crosslinkable rubber component described above. More preferably, the amount is 20 to 75 parts by mass.
In the present invention, when carbon black is optionally contained, the content of the carbon black can be crosslinked as described above from the viewpoint that the resulting laminate of the present invention can maintain a higher attenuation. The amount is preferably 10 to 90 parts by weight, more preferably 10 to 75 parts by weight, and still more preferably 20 to 75 parts by weight with respect to 100 parts by weight of the rubber component.
Further, in the present invention, when carbon black is optionally contained, the content of the carbon black is a viewpoint that the grip performance of the rubber obtained using the rubber composition of the present invention can be further improved. Therefore, the amount is preferably 10 to 90 parts by weight, more preferably 10 to 75 parts by weight, and still more preferably 20 to 75 parts by weight with respect to 100 parts by weight of the crosslinkable rubber component. .
本発明のゴム組成物は、上述したポリ乳酸系樹脂の分解(加水分解)を促進し、ポリ乳酸系樹脂とシラノール基を有する無機充填剤とが相互作用する部位を増加させる観点から、金属化合物を含有するのが好ましい。
上記金属化合としては、例えば、亜鉛化合物、アルミニウム化合物、銅化合物等が挙げられる。
これらのうち、亜鉛化合物であるのが好ましく、具体的には、酸化亜鉛、有機リン酸亜鉛、脂肪酸亜鉛であるのがより好ましい。なかでも、酸化亜鉛であるのが更に好ましい。 <Metal compound>
The rubber composition of the present invention promotes the decomposition (hydrolysis) of the polylactic acid-based resin described above, and increases the number of sites where the polylactic acid-based resin and the inorganic filler having a silanol group interact with each other. It is preferable to contain.
As said metal compound, a zinc compound, an aluminum compound, a copper compound etc. are mentioned, for example.
Of these, zinc compounds are preferable, and specifically zinc oxide, organic zinc phosphate, and fatty acid zinc are more preferable. Of these, zinc oxide is more preferable.
本発明のゴム組成物は、得られる本発明のゴム組成物の加硫後の引張強さ、切断時伸び等の物性を向上させる観点から、シランカップリング剤を含有するのが好ましい。
上記シランカップリング剤としては、具体的には、例えば、ビス-[3-(トリエトキシシリル)-プロピル]テトラスルフィド、ビス-[3-(トリメトキシシリル)-プロピル]テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]ジスルフィド、メルカプトプロピル-トリメトキシシラン、メルカプトプロピル-トリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド、トリメトキシシリルプロピル-メルカプトベンゾチアゾールテトラスルフィド、トリエトキシシリルプロピル-メタクリレート-モノスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイル-テトラスルフィド等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 <Silane coupling agent>
The rubber composition of the present invention preferably contains a silane coupling agent from the viewpoint of improving physical properties such as tensile strength after vulcanization and elongation at break of the rubber composition of the present invention to be obtained.
Specific examples of the silane coupling agent include bis- [3- (triethoxysilyl) -propyl] tetrasulfide, bis- [3- (trimethoxysilyl) -propyl] tetrasulfide, and bis- [ 3- (triethoxysilyl) -propyl] disulfide, mercaptopropyl-trimethoxysilane, mercaptopropyl-triethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, trimethoxysilylpropyl-mercapto Benzothiazole tetrasulfide, triethoxysilylpropyl-methacrylate-monosulfide, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl-tetrasulfide, etc. may be mentioned, and these may be used alone. It may be used in combination with more species.
また本発明のゴム組成物が空気入りタイヤ用ゴム組成物として使用される場合、シランカップリング剤の含有量は、グリップ性能と転がり抵抗のバランスに優れるという観点から、上述したシラノール基を有する無機充填剤の含有量の0.1~10質量%であるのが好ましく、1~8質量%であるのがより好ましい。シランカップリング剤の量はシラノール基含有無機充填剤の5質量%以上とすることができる。 In the present invention, when a silane coupling agent is optionally contained, the content of the silane coupling agent is 0.1 of the content of the inorganic filler having a silanol group described above from the viewpoint of excellent mechanical strength. It is preferably ˜10% by mass, more preferably 1 to 8% by mass.
Further, when the rubber composition of the present invention is used as a rubber composition for a pneumatic tire, the content of the silane coupling agent is an inorganic material having a silanol group described above from the viewpoint of excellent balance between grip performance and rolling resistance. The content of the filler is preferably 0.1 to 10% by mass, and more preferably 1 to 8% by mass. The amount of the silane coupling agent can be 5% by mass or more of the silanol group-containing inorganic filler.
本発明のゴム組成物は、本発明の目的を損なわない範囲で、必要に応じて、その他の添加剤を含有することができる。
上記添加剤としては、例えば、加硫剤、加硫促進剤、老化防止剤、可塑剤、軟化剤、加硫助剤、難燃剤、耐候剤、耐熱剤等が挙げられる。本発明のゴム組成物は、例えば、高減衰積層体用ゴム組成物、空気入りタイヤ用ゴム組成物が一般的に含有することができる添加剤を含有することができる。
加硫剤としては、具体的には、例えば、硫黄;TMTDなどの有機含硫黄化合物;ジクミルペルオキシドなどの有機過酸化物;等が挙げられる。
加硫促進剤としては、具体的には、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)などのスルフェンアミド類;メルカプトベンゾチアゾールなどのチアゾール類;テトラメチルチウラムモノスルフィドなどのチウラム類;ステアリン酸;等が挙げられる。
老化防止剤としては、具体的には、例えば、TMDQなどのケトン・アミン縮合物;DNPDなどのアミン類;スチレン化フェノールなどのモノフェノール類;等が挙げられる。
可塑剤としては、具体的には、例えば、フタル酸誘導体(例えば、DBP、DOP等)、セバシン酸誘導体(例えば、DBS等)のモノエステル類等が挙げられる。
軟化剤としては、具体的には、例えば、パラフィン系オイル(プロセスオイル)、アロマオイル、ステアリン酸、ワックス等が挙げられる。 <Other additives>
The rubber composition of the present invention can contain other additives as necessary within a range not impairing the object of the present invention.
Examples of the additive include a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a plasticizer, a softening agent, a vulcanization aid, a flame retardant, a weathering agent, and a heat resistance agent. The rubber composition of this invention can contain the additive which the rubber composition for high attenuation | damping laminated bodies and the rubber composition for pneumatic tires can contain generally, for example.
Specific examples of the vulcanizing agent include sulfur; organic sulfur-containing compounds such as TMTD; organic peroxides such as dicumyl peroxide; and the like.
Specific examples of the vulcanization accelerator include sulfenamides such as N-cyclohexyl-2-benzothiazole sulfenamide (CBS); thiazoles such as mercaptobenzothiazole; tetramethylthiuram monosulfide and the like. Thiurams; stearic acid; and the like.
Specific examples of the antiaging agent include ketone / amine condensates such as TMDQ; amines such as DNPD; monophenols such as styrenated phenol; and the like.
Specific examples of the plasticizer include phthalic acid derivatives (for example, DBP, DOP and the like), sebacic acid derivatives (for example, DBS and the like) monoesters, and the like.
Specific examples of the softening agent include paraffinic oil (process oil), aroma oil, stearic acid, and wax.
本発明において一次架橋温度は、剛性(例えば水平剛性)により優れるという観点から、130~200℃であるのが好ましい。 The vulcanization conditions (primary crosslinking) of the rubber composition of the present invention are not particularly limited, and vulcanization can be performed under conventionally known vulcanization conditions using a sulfur compound or a peroxide.
In the present invention, the primary crosslinking temperature is preferably from 130 to 200 ° C. from the viewpoint of being more excellent in rigidity (for example, horizontal rigidity).
加熱処理の温度条件は、一次架橋温度と同程度の温度であれば特に限定されないが、一次架橋の温度より10℃低い温度から10℃高い温度の範囲内であるのが好ましく、一次架橋の温度より5℃低い温度から5℃高い温度の範囲内であるのがより好ましく、一次架橋の温度より2℃低い温度から2℃高い温度の範囲内であるのが更に好ましい。 In the present invention, it is preferable to heat-treat the rubber composition of the present invention that has undergone primary crosslinking.
The temperature condition of the heat treatment is not particularly limited as long as it is the same temperature as the primary crosslinking temperature, but is preferably in the range of a
ここで、加硫曲線とは、JIS K6300-2:2001「振動式加硫試験機による加硫特性の求め方」に準拠し、レオメータとしてロータレス加硫試験機を使用し、所定の試験温度において、得られるトルクを縦軸とし、加硫時間を横軸にして得られるものである。なお、レオメータの試験温度は上述した一次架橋温度とする。
このような加硫曲線において、トルクが最小値MLから最大値MHに達したことが明らかなときは、加硫開始からトルクが最小値と最大値の幅の95%に達するまで要した加硫時間をT95とする。
また、加硫時間の経過によりトルクが上がり続けて明確な最大値MHを示さないときは、JIS K6300-2:2001において「加硫曲線が上昇し続け加硫曲線の傾きが安定した領域での特定時間における値を最大値とする」と定義されているので、本発明においては、特定時間として挙示されたうちからtc(max)=30分とし、そのときのトルクをMHとする。 The heat treatment time is obtained from a vulcanization curve obtained from a rheometer torque defined in JIS K6300-2: 2001 using the rubber composition of the present invention before primary crosslinking (unvulcanized). Is preferably 0.5 to 3 times, more preferably 0.5 to 2 times.
Here, the vulcanization curve is based on JIS K6300-2: 2001 “How to determine vulcanization characteristics using a vibration vulcanization tester”, using a rotorless vulcanization tester as a rheometer at a predetermined test temperature. The obtained torque is on the vertical axis and the vulcanization time is on the horizontal axis. The rheometer test temperature is the above-described primary crosslinking temperature.
In such a vulcanization curve, when the torque is clear that you have reached the maximum value M H from the minimum value M L is required vulcanized start until the torque reaches 95% of the width of the minimum and maximum values The vulcanization time is T95.
Also, when the torque continues to increase with the passage of the vulcanization time and does not show a clear maximum value MH , JIS K6300-2: 2001 states that “In the region where the vulcanization curve continues to rise and the slope of the vulcanization curve is stable. Therefore, in the present invention, t c (max) = 30 minutes from the time listed as the specific time, and the torque at that time is expressed as MH . To do.
本発明において、ポリプロピレンは、減衰性またはグリップ性能と剛性との向上をより両立させることができるという観点から、ゴム成分中(特にゴムA、ゴムBが非相溶である場合)に連続相(ネットワーク)を形成するのが好ましい態様の1つとして挙げられる。
図5は、本発明のゴム組成物(例えば高減衰積層体用、空気入りタイヤ用)が有することができるモルフォロジーの1例を模式的に示す、ゴム組成物の断面図である。
図5において、本発明のゴム組成物100は、マトリックスとしてのゴムA(符号10)、ドメインとしてのゴムB(符号20)およびポリプロピレン(符号30)を有する。ゴムA10とゴムB20とは海島構造を形成しており(つまりゴムA、ゴムBが非相溶である。)、ここに少量のポリプロピレン30を添加することによって、ポリプロピレン30がゴムA10とゴムB20との界面(図示せず。)に偏在して、ゴム組成物100中にポリプロピレン30の連続相(ネットワーク)30を形成する。連続相30は略連続的な連続相を形成することができる。このポリプロピレン30の連続相30によって、ゴム組成物100が適切な範囲で硬くなりその結果剛性(せん断弾性率、水平剛性率)が向上すると本願発明者らは推測する。このようなポリプロピレンの連続相は本発明の架橋ゴム組成物、本発明の高減衰積層体および本発明の空気入りタイヤにおいても当てはまる。なお、上記メカニズムはあくまで本願発明者らの推測であり、メカニズムが上記以外のものであっても本発明の範囲内である。 The morphology of the rubber composition of the present invention (for example, for high-attenuation laminates and pneumatic tires) will be described below with reference to the accompanying drawings.
In the present invention, polypropylene has a continuous phase in the rubber component (especially when rubber A and rubber B are incompatible with each other) from the viewpoint that both the damping property and the improvement in grip performance and rigidity can be achieved. One preferred embodiment is to form a network.
FIG. 5 is a cross-sectional view of a rubber composition schematically showing an example of the morphology that the rubber composition of the present invention (for example, for a high-damping laminate and for a pneumatic tire) can have.
In FIG. 5, the
本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋させることによって得られる、架橋ゴムを含有する架橋ゴム組成物である。なお、本発明の架橋ゴム組成物は架橋ゴムの他にポリプロピレンを含有することができる。 The crosslinked rubber composition of the present invention will be described below.
The crosslinked rubber composition of the present invention is a crosslinked rubber composition containing a crosslinked rubber obtained by crosslinking the rubber composition of the present invention. The crosslinked rubber composition of the present invention can contain polypropylene in addition to the crosslinked rubber.
本発明の架橋ゴム組成物は、減衰性またはグリップ性能と剛性との向上をより両立させることができるという観点から、含有されるポリプロピレンが、架橋ゴム中(特にゴムA、ゴムBが非相溶である場合)に連続相(ネットワーク)を形成するのが好ましい態様の1つとして挙げられる。 The crosslinked rubber composition of the present invention is not particularly limited as long as it uses the rubber composition of the present invention as a raw material. Examples of the vulcanization conditions include the same as described above.
In the crosslinked rubber composition of the present invention, the contained polypropylene is contained in the crosslinked rubber (especially rubber A and rubber B are incompatible with each other) from the viewpoint that both the damping property and the improvement in grip performance and rigidity can be achieved. Forming a continuous phase (network) is a preferred embodiment.
本発明の架橋ゴム組成物の用途としては、例えば、高減衰積層体用ゴム組成物、空気入りタイヤ用ゴム組成物、減衰性工業用ベルト等が挙げられる。 The rubber composition of the present invention or the crosslinked rubber composition of the present invention can achieve both improvement in damping property or grip performance and rigidity. Therefore, according to the rubber composition of the present invention or the crosslinked rubber composition of the present invention. For example, it is possible to reduce the size of the high attenuation laminate required to obtain the same characteristics (for example, attenuation).
Applications of the crosslinked rubber composition of the present invention include, for example, a rubber composition for a high damping laminate, a rubber composition for a pneumatic tire, a damping industrial belt, and the like.
本発明の高減衰積層体は、本発明のゴム組成物(本発明の高減衰積層体用ゴム組成物)または本発明の架橋ゴム組成物と硬質板とを交互に積層して得られる高減衰積層体である。
本発明の高減衰積層体(以下これを「本発明の積層体」ということがある。)は、上述した本発明のゴム組成物または本発明の架橋ゴム組成物と硬質板とを交互に積層して得られる高減衰積層体であり、橋梁の支承やビルの基礎免震等に用いられる構造体である。 The highly attenuated laminate of the present invention will be described below.
The high damping laminate of the present invention is obtained by alternately laminating the rubber composition of the present invention (the rubber composition for a high damping laminate of the present invention) or the crosslinked rubber composition of the present invention and a hard plate. It is a laminate.
The highly attenuated laminate of the present invention (hereinafter sometimes referred to as “the laminate of the present invention”) is formed by alternately laminating the above-described rubber composition of the present invention or the crosslinked rubber composition of the present invention and a hard plate. It is a high-damping laminate obtained by the above, and is a structure used for bridge support and building base isolation.
また、この高減衰積層体1は、本発明のゴム組成物(高減衰積層体用ゴム組成物)3と硬質板2との間に接着層を設けて構成してもよく、また、接着層を設けずに直接加硫して構成してもよい。 As shown in FIG. 1 as an example, the high attenuation laminate 1 of the present invention includes a rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and a hard plate 2 (for example, a general structural steel plate, Cold rolled steel sheets and the like) are alternately laminated.
The high attenuation laminate 1 may be configured by providing an adhesive layer between the rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and the
また、図1においては、本発明のゴム組成物(高減衰積層体用ゴム組成物)3について6層、硬質板2について7層の合計13層の例を示してあるが、本発明の高減衰積層体1の本発明のゴム組成物(高減衰積層体用ゴム組成物)3と硬質板2との積層数はこれに限定されず、用いられる用途、要求される特性等に応じて、任意に設定できる。
更に、本発明の高減衰構造体1の大きさ、全体の厚さ、本発明のゴム組成物(高減衰積層体用ゴム組成物)3の層の厚さ、硬質板の厚さ等についても、用いられる用途、要求される特性等に応じて、任意に設定できる。 In FIG. 1, the high attenuation laminate 1 of the present invention shows a state in which the rubber composition (rubber composition for a high attenuation laminate) 3 of the present invention and
FIG. 1 shows an example of a total of 13 layers including 6 layers for the rubber composition (rubber composition for high attenuation laminate) 3 of the present invention and 7 layers for the
Further, the size and overall thickness of the high attenuation structure 1 of the present invention, the layer thickness of the rubber composition (rubber composition for high attenuation laminate) 3 of the present invention, the thickness of the hard plate, etc. It can be arbitrarily set according to the intended use, required characteristics, and the like.
具体的には、後述するラップシェアせん断試験により測定する減衰性能の指標となる等価減衰定数(Heq)が0.21以上となり、同様に測定する剛性(Geq)が0.78~0.96となることができる。 Since the laminated body of the present invention uses the above-described rubber composition of the present invention, it has an effect of high damping and excellent rigidity.
Specifically, the equivalent damping constant (Heq), which is an index of damping performance measured by a lap shear shear test described later, is 0.21 or more, and the stiffness (Geq) measured similarly is 0.78 to 0.96. Can be.
図2は、ラップシェア型せん断試験用試料の模式的な側面図である。図2において、符号4はラップシェア型せん断試験用試料を表し、符号5は圧延した未加硫ゴム組成物を表し、符号6は鋼板を表す。
未加硫ゴム組成物5は、幅25mm×長さ25mm×厚さ5mmのサイズに圧延された、本発明のゴム組成物の未加硫ゴム組成物である。鋼板6は、表面がサンドブラストされ、金属接着剤が塗布された鋼板(幅25mm×長さ100mm×厚さ20mm)である。
ラップシェア型せん断試験用試料4は、未加硫ゴム組成物5と鋼板6とを、図2に示されるように配置(積層)した後に、130℃で120分プレス加硫して得られる。 The equivalent damping constant (Heq) and stiffness (Geq) are measured by a lap shear shear test.
FIG. 2 is a schematic side view of a sample for a lap shear type shear test. In FIG. 2, the code |
The
The
上記のように作製されたラップシェア型せん断試験用試料を用いて、2軸せん断試験機による変形周波数0.5Hz、測定温度23℃で、175%歪みを10回加えたときの各1回のせん断特性値の平均を求める。
具体的には、上記ラップシェア型せん断試験にて得られたヒステリシス曲線が示すXmaxおよびQmaxを用い、等価減衰定数(Heq)および剛性(Geq)を下記式(1)、(2)に従って算出する。図3に、ラップシェア型せん断試験にて得られたヒステリシス曲線の一例を示す。 The lap shear shear test is performed under the following conditions using a vibrator (manufactured by Saginomiya), an input signal oscillator, and an output signal processor.
Using the lap shear type shear test sample prepared as described above, each time when a 175% strain was applied 10 times at a deformation frequency of 0.5 Hz by a biaxial shear tester at a measurement temperature of 23 ° C. Obtain the average shear characteristic value.
Specifically, the equivalent damping constant (Heq) and stiffness (Geq) are calculated according to the following equations (1) and (2) using Xmax and Qmax indicated by the hysteresis curve obtained in the lap shear type shear test. . FIG. 3 shows an example of a hysteresis curve obtained by a lap shear type shear test.
式(2)中、Keqは下記式(3)で表され、Hは高減衰積層体中に積層されるゴム層の合計の厚みを表し、Aはゴム層の断面積である。 In equation (1), ΔW is the area of the hysteresis loop (the shaded area in FIG. 3).
In the formula (2), Keq is represented by the following formula (3), H represents the total thickness of the rubber layer laminated in the high attenuation laminate, and A is the cross-sectional area of the rubber layer.
高減衰積層体は、振動エネルギーの吸収装置として用いられればその用途、適用条件等は、特に限定されない。中でも、上述の優れた特性を有するため、建築用の振動エネルギーの吸収装置として用いられるのが好ましく、例えば、各種の免震、除振、防振等の振動エネルギーの吸収装置(より具体的には、例えば、道路橋の支承や、橋梁、ビルの基礎免震、戸建免震用途、金属支承、支承の架け替え)に好適に用いられる。 Since the high damping laminate of the present invention is formed by using the rubber composition of the present invention (rubber composition for a high damping laminate) or the crosslinked rubber composition of the present invention, both the damping property and the rigidity are improved. Therefore, according to the high attenuation laminate of the present invention, the size of the high attenuation laminate required to obtain the same characteristic (eg, attenuation) can be reduced.
The use, application conditions, and the like of the high attenuation laminate are not particularly limited as long as the high attenuation laminate is used as a vibration energy absorber. Among these, since it has the above-described excellent characteristics, it is preferably used as a vibration energy absorption device for buildings. For example, various vibration energy absorption devices for vibration isolation, vibration isolation, vibration isolation, etc. Is suitably used for, for example, support of road bridges, basic isolation of bridges and buildings, seismic isolation of detached houses, metal bearings, and replacement of bearings.
本発明の空気入りタイヤは、本発明のゴム組成物を用いて形成される空気入りタイヤである。
本発明の空気入りタイヤを形成する際に使用されるゴム組成物は本発明のゴム組成物であれば特に制限されない。本発明の空気入りタイヤは本発明のゴム組成物用いて形成されることによってグリップ性能と剛性との向上を両立させることができる。本発明のゴム組成物を使用して例えば、空気入りタイヤのトレッド部、サイド部、ベルト部を形成することができる。
なお、本発明の空気入りタイヤは、本発明のゴム組成物を空気入りタイヤに用いる以外特に制限はなく、例えば従来公知の方法に従って製造することができる。また、タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 The pneumatic tire of the present invention will be described below.
The pneumatic tire of the present invention is a pneumatic tire formed using the rubber composition of the present invention.
If the rubber composition used when forming the pneumatic tire of this invention is a rubber composition of this invention, it will not restrict | limit in particular. By forming the pneumatic tire of the present invention using the rubber composition of the present invention, both the grip performance and the rigidity can be improved. For example, a tread part, a side part, and a belt part of a pneumatic tire can be formed using the rubber composition of the present invention.
The pneumatic tire of the present invention is not particularly limited except that the rubber composition of the present invention is used for a pneumatic tire, and can be produced, for example, according to a conventionally known method. Moreover, as gas with which a tire is filled, inert gas, such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
下記第1表に示す組成(単位は質量部)になるように、各化合物を配合してB型バンバリーミキサーにて5分間混練し、未加硫ゴム組成物(高減衰積層体用ゴム組成物)を製造した。 <Manufacture of rubber composition (for high damping laminate)>
Each compound was blended so as to have the composition shown in Table 1 below (unit: parts by mass), kneaded for 5 minutes with a B-type Banbury mixer, and an unvulcanized rubber composition (rubber composition for high attenuation laminate) ) Was manufactured.
上記のようにして得られた未加硫ゴム組成物を幅25mm×長さ25mm×厚さ5mmのサイズに圧延した。
圧延後の未加硫ゴム組成物(図2中の5)と、表面をサンドブラストして金属接着剤を塗布した鋼板(幅25mm×長さ100mm×厚さ20mm、図2中の6)とを、図2のラップシェア型せん断試験用試料4の側面図に示すように配置(積層)した後に、130℃で120分プレス加硫して高減衰積層体(架橋ゴム組成物)を製造した。得られた高減衰積層体をラップシェア型せん断試験用試料として用いた。 <Manufacture of highly attenuated laminate and crosslinked rubber composition>
The unvulcanized rubber composition obtained as described above was rolled into a size of 25 mm width × 25 mm length × 5 mm thickness.
An unvulcanized rubber composition after rolling (5 in FIG. 2) and a steel plate (25 mm wide × 100 mm long × 20 mm thick, 6 in FIG. 2) coated with a metal adhesive by sandblasting the surface. After placing (lamination) as shown in the side view of the lap shear type
上記のようにして得られたラップシェア型せん断試験用試料に対して、加振機(サギノミヤ社製)、入力信号発振機、出力信号処理機を用い、ラップシェアせん断試験を行った。なお、各実施例で使用したラップシェア型せん断試験用試料の数は10個であった。
具体的には、上記ラップシェア型せん断試験用試料に対し、2軸せん断試験機による変形周波数0.5Hz、測定温度23℃で、175%歪みを10回加えたときの各1回のせん断特性値の平均を求めた。
このラップシェアせん断試験によって得られたヒステリシス曲線が示すXmaxおよびQmaxを用い、上記式(1)および(2)に従って平均せん断特性値(Heq、Geq)を求めた。結果を第1表に減衰定数、水平剛性定数として示す。減衰定数、水平剛性定数の結果は比較例1を基準(100)とする指数で示される。 <Lap shear test>
The lap shear type shear test sample obtained as described above was subjected to a lap shear shear test using a vibrator (manufactured by Saginamiya), an input signal oscillator, and an output signal processor. The number of lap shear type shear test samples used in each example was ten.
Specifically, the shear characteristics of each time when 175% strain was applied 10 times at a deformation frequency of 0.5 Hz by a biaxial shear tester and a measurement temperature of 23 ° C. with respect to the lap shear type shear test sample. The average of the values was obtained.
Using Xmax and Qmax indicated by the hysteresis curve obtained by this lap shear shear test, average shear characteristic values (Heq, Geq) were determined according to the above formulas (1) and (2). The results are shown in Table 1 as damping constants and horizontal stiffness constants. The results of the damping constant and the horizontal stiffness constant are indicated by an index with Comparative Example 1 as a reference (100).
JIS K6251:2004に準拠して、加硫後の本発明のゴム組成物を2mm厚のダンベル状試験片(ダンベル条3号形)に切り出し、23℃における切断時伸び[%]を測定した。結果を第1表に示す。 <Elongation at cutting, rigidity>
In accordance with JIS K6251: 2004, the rubber composition of the present invention after vulcanization was cut into 2 mm-thick dumbbell-shaped test pieces (dumbbell strip No. 3 shape), and the elongation at break [%] at 23 ° C. was measured. The results are shown in Table 1.
・ゴムA1:天然ゴム、TSR20、SIAM INDO RUBBER社製
・ゴムB1:ビニル-シスブタジエンゴム、UBEPOL-VCR412、宇部興産社製
・ゴムB2:スチレン-ブタジエン共重合体、Nipol 1502、日本ゼオン社製
・カーボンブラック1:ダイヤブラックI、三菱化学社製
・シラノール基含有無機充填剤1:シリカ、ニップシールVN3、東ソー・シリカ社製、BET比表面積215m2/g
・シラノール基含有無機充填剤2:クレー、SUPREX CLAY、ケンタッキーテネシークレイカンパニー社製
・シラノール基を含有しない無機充填剤1:炭酸カルシウム
・シラノール基を含有しない無機充填剤2:炭酸マグネシウム
・石油樹脂1:ハイレジン#120S(軟化点120℃、東邦化学社製)
・金属化合物1:酸化亜鉛、亜鉛華3号、正同化学工業社製
・ポリ乳酸1:LACEA H-440(融点:155℃、数平均分子量:78000、重量平均分子量:150000、三井化学社製)
・ポリ乳酸2:NatureWorks 4060D(軟化点81℃、重量平均分子量180000、NatureWorks社製)
・ポリプロピレン1:プロピレンホモポリマー、商品名E-333GV、プライムポリマー社製
・ポリプロピレン2:プロピレンホモポリマー、商品名E-2900H、プライムポリマー社製
・ポリエチレン1:低密度ポリエチレン(ホモポリマー)、商品名YF30、日本ポリエチレン社製
・硫黄1:粉末イオウ、細井化学工業社製
・加硫促進剤1:ノクセラーCZ、大内新興化学工業社製 The details of each component shown in Table 1 are as follows.
・ Rubber A1: Natural rubber, TSR20, manufactured by SIAM INDO RUBBER ・ Rubber B1: Vinyl-cisbutadiene rubber, UBEPOL-VCR412, Ube Industries, Ltd. ・ Rubber B2: Styrene-butadiene copolymer, Nipol 1502, manufactured by Nippon Zeon Carbon black 1: Diamond black I, manufactured by Mitsubishi Chemical Co., Ltd. Silanol group-containing inorganic filler 1: Silica, nip seal VN3, manufactured by Tosoh Silica, BET specific surface area 215 m 2 / g
Silanol group-containing inorganic filler 2: Clay, SUPREX PLAY, manufactured by Kentucky Tennessee Clay Company, Ltd. Inorganic filler not containing silanol group 1: Calcium carbonate Inorganic filler not containing silanol group 2: Magnesium carbonate Petroleum resin 1 : High Resin # 120S (softening
・ Metal compound 1: Zinc oxide, Zinc Hana No. 3, manufactured by Shodo Chemical Industry Co., Ltd. ・ Polylactic acid 1: LACEA H-440 (melting point: 155 ° C., number average molecular weight: 78000, weight average molecular weight: 150,000, manufactured by Mitsui Chemicals, Inc. )
Polylactic acid 2: NatureWorks 4060D (softening point 81 ° C., weight average molecular weight 180000, manufactured by NatureWorks)
Polypropylene 1: Propylene homopolymer, trade name E-333GV, manufactured by Prime Polymer Co., Ltd. Polypropylene 2: Propylene homopolymer, trade name E-2900H, manufactured by Prime Polymer Co., Ltd. Polyethylene 1: Low density polyethylene (Homo polymer), trade name YF30, manufactured by Nippon Polyethylene Co., Ltd. ・ Sulfur 1: powder sulfur, manufactured by Hosoi Chemical Co., Ltd. ・ Vulcanization accelerator 1: Noxeller CZ, manufactured by Ouchi Shinsei Chemical Co., Ltd.
配合するポリプロピレンが多すぎる場合は、水平剛性は高くなるものの、高減衰積層体用ゴム組成物に要求される550%以上の破断伸びが得られず、高い減衰性能を発揮する前に破断したり、繰り返し変形の際に疲労しやすくなり、耐久性に劣った(比較例5)。
これに対し、実施例1~10で製造したゴム組成物(高減衰積層体用ゴム組成物)は、比較例1よりも減衰性が高くなり、剛性が低下することがなくむしろ剛性が向上することが分かった。
このように、本発明のゴム組成物(高減衰積層体用ゴム組成物)は、減衰性が高くなり、これに伴って剛性が低下することがなくむしろ剛性が向上し、減衰性と剛性との向上を両立させることができる。また、本発明の高減衰積層体用ゴム組成物は、低温(23℃)での、減衰性、剛性、耐久性に優れ、低温性能に優れる。 As is clear from the results shown in Table 1 and attached FIG. 4 (FIG. 4 is a graph showing the relationship between damping property and rigidity obtained in the example of the present invention), in Comparative Example 1, The rubber compositions (Comparative Examples 2 and 3) in which a polylactic acid resin was added to the prepared rubber composition for highly attenuated laminates showed improved rigidity as compared with Comparative Example 1, but reduced rigidity. Although the comparative example 4 which does not contain a polypropylene and contains polyethylene instead also improved the damping property as compared with the comparative example 1, the rigidity was lowered, and it was impossible to achieve both the damping property and the improvement in rigidity.
When too much polypropylene is blended, the horizontal rigidity is increased, but the elongation at break of 550% or more required for the rubber composition for a high-damping laminate cannot be obtained, and it breaks before exhibiting high damping performance. Further, fatigue was easily caused during repeated deformation, and the durability was poor (Comparative Example 5).
In contrast, the rubber compositions (rubber compositions for highly attenuated laminates) produced in Examples 1 to 10 have higher attenuation than Comparative Example 1, and the rigidity is improved without decreasing the rigidity. I understood that.
As described above, the rubber composition of the present invention (the rubber composition for a high-damping laminate) has a high damping property, and accordingly the rigidity is improved without decreasing the stiffness. Can be improved at the same time. Moreover, the rubber composition for highly attenuated laminates of the present invention is excellent in damping property, rigidity and durability at low temperature (23 ° C.), and excellent in low temperature performance.
下記第2表に示す配合処方にしたがい(各成分の使用量の単位は質量部)、硫黄および加硫促進剤以外の成分を16Lバンバリーミキサーを用いてゴム排出温度150℃でベース練りをし混練り物を得た。次に、得られた混練り物に硫黄および加硫促進剤を添加しオープンロールを用いて70℃の条件下で5分間混練りし未加硫ゴム組成物を得た。
<空気入りタイヤの製造>
上記のとおり得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材とともに貼りあわせ170℃の条件下でタイヤ用の金型に入れ15分間プレス加硫し空気入りタイヤを得た。 <Manufacture of rubber composition (for pneumatic tire)>
In accordance with the formulation shown in Table 2 below (units for use amount of each component are parts by mass), components other than sulfur and a vulcanization accelerator are kneaded with a base at a rubber discharge temperature of 150 ° C. using a 16 L Banbury mixer. A kneaded paste was obtained. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes at 70 ° C. using an open roll to obtain an unvulcanized rubber composition.
<Manufacture of pneumatic tires>
The unvulcanized rubber composition obtained as described above was molded into a tread shape, and bonded together with other tire members, placed in a tire mold at 170 ° C., and press vulcanized for 15 minutes to produce a pneumatic tire. Obtained.
上記のようにして得られた、ゴム組成物(空気入りタイヤ用)、空気入りタイヤを用いて以下に示す方法で、硬度、100%モジュラス、グリップ性を評価した。結果を第2表に示す。
(硬度)
上述のとおり製造した空気入りタイヤのトレッドゴムから所定のサイズの試験片を切りとり、JIS K 6253「加硫ゴムおよび熱可塑性ゴムの硬さ試験方法」に準じてスプリング式タイプAにて室温での硬度を測定した。硬度が大きい場合剛性も高くなる傾向にある。本発明では硬度を空気入りタイヤの剛性の指標とした。
(100%モジュラス)
JIS K6251:2004に準拠して、上記のとおり得られた未加硫ゴム組成物を148℃の条件下で45分間プレス加硫して得られた加硫ゴムから2mm厚のダンベル状試験片(ダンベル条3号形)に切り出し、これを用いて23℃における100%モジュラス(M100)[MPa]を測定した。M100から剛性を評価した。
(グリップ性能)
上述のとおり製造した空気入りタイヤの制動時トルクをドラム試験機によりそれぞれ測定し、その結果を従来の空気入りタイヤに相当する比較例6の制動時トルク値を100とする指数値で表し、グリップ性能を評価した。この値が大きい程、制駆動性能(グリップ性能)が優れている。 <Evaluation>
Using the rubber composition (for pneumatic tire) and pneumatic tire obtained as described above, hardness, 100% modulus, and grip properties were evaluated by the following methods. The results are shown in Table 2.
(hardness)
A test piece of a predetermined size is cut out from the tread rubber of the pneumatic tire manufactured as described above, and is measured at room temperature with a spring type A according to JIS K 6253 “Testing method for hardness of vulcanized rubber and thermoplastic rubber”. Hardness was measured. When the hardness is large, the rigidity tends to increase. In the present invention, the hardness is used as an index of the stiffness of the pneumatic tire.
(100% modulus)
In accordance with JIS K6251: 2004, a dumbbell-shaped test piece having a thickness of 2 mm is obtained from a vulcanized rubber obtained by press-vulcanizing the unvulcanized rubber composition obtained as described above for 45 minutes at 148 ° C. ( Dumbbell strip No. 3) was cut out, and 100% modulus (M 100 ) [MPa] at 23 ° C. was measured using this. It was to evaluate the rigidity from M 100.
(Grip performance)
The braking torque of the pneumatic tire manufactured as described above was measured with a drum testing machine, and the result was expressed as an index value with the braking torque value of Comparative Example 6 corresponding to a conventional pneumatic tire as 100, and the grip Performance was evaluated. The greater this value, the better the braking / driving performance (grip performance).
・ゴムB3(SBR):スチレンブタジエンゴム(SBR)、日本ゼオン(株)製のN9520(結合スチレン量:35.0重量%)
・カーボンブラック2:三菱化学(株)製のダイアブラックSA(N2SA:137m2/g)
・シラノール基含有無機充填剤3(シリカ):シリカ、デグッサ社製のウルトラシールVN3(BET:175m2/g)
・シランカップリング剤1:ビス-[3-(トリエトキシシリル)-プロピル]テトラスルフィド、商品名Si69、DEGGUSA社製
・アロマオイル1:(株)ジャパンエナジー製のプロセスX-140
・ステアリン酸:日本油脂(株)製
・金属化合物2(亜鉛華):亜鉛華、三井金属鉱業(株)製
・ワックス:日本精蝋(株)製のオゾエース0355
・老化防止剤1:住友化学(株)製のアンチゲン6c(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
・硫黄2:鶴見化学工業(株)製
なお、第2表中の、ゴムA1、ポリ乳酸1、ポリプロピレン1、加硫促進剤1は第1表において使用したものと同様である。 Details of the components shown in Table 2 are as follows.
Rubber B3 (SBR): Styrene butadiene rubber (SBR), N9520 manufactured by Nippon Zeon Co., Ltd. (bonded styrene content: 35.0% by weight)
Carbon black 2: Dia Black SA manufactured by Mitsubishi Chemical Corporation (N 2 SA: 137 m 2 / g)
Silanol group-containing inorganic filler 3 (silica): Silica, Ultraseal VN3 (BET: 175 m 2 / g) manufactured by Degussa
Silane coupling agent 1: bis- [3- (triethoxysilyl) -propyl] tetrasulfide, trade name Si69, manufactured by DEGGUSA ・ Aroma oil 1: Process X-140 manufactured by Japan Energy Co., Ltd.
・ Stearic acid: manufactured by Nippon Oil & Fats Co., Ltd. ・ Metal compound 2 (zinc flower): Zinc flower, manufactured by Mitsui Mining & Smelting Co., Ltd. ・ Wax: Ozoace 0355 manufactured by Nippon Seiwa Co., Ltd.
Anti-aging agent 1: Antigen 6c (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
Sulfur 2: manufactured by Tsurumi Chemical Co., Ltd. In addition, rubber A1, polylactic acid 1, polypropylene 1, and vulcanization accelerator 1 in Table 2 are the same as those used in Table 1.
これに対して、実施例11、12は100%モジュラス、硬度が高く剛性に優れ、グリップ性能と剛性とを両立させることができた。 As is apparent from the results shown in Table 2, Comparative Examples 6 and 7 not containing polypropylene had 100% modulus, low hardness and poor rigidity, and low grip performance.
In contrast, Examples 11 and 12 had 100% modulus, high hardness and excellent rigidity, and were able to achieve both grip performance and rigidity.
図6は、本発明のゴム組成物が有するモルフォロジーの1例を走査型プローブ顕微鏡(SMP)で観察した写真である。
図6において使用されたゴム組成物のサンプル(未加硫)は、2種以上の架橋可能なゴム成分として、第1表に示すゴムA1(NR)61質量部と、第1表に示すゴムB1(BR)36質量部と、第1表に示すポリプロピレン1(3質量部)とを含有する。
走査型プローブ顕微鏡による測定は23℃にて行われた。得られた写真はサンプルの断面を3500倍に拡大したものである。走査型プローブ顕微鏡による測定結果では同じ色の位相部分が同じ硬さを反映していると考えられる。
図6において、ゴム組成物60は、柔らかい位相61をマトリックスとし、その中に細長く連なっている硬い位相63を有する。
サンプルに含まれるゴム成分とポリプロピレンのなかで最も硬いのはポリプロピレンなので、位相61の中に細長く連なっている位相63はポリプロピレンであると考えられる。
このように、図6の結果は、ポリプロピレンはゴム組成物中にポリプロピレンの連続相(ネットワーク)を形成することを示唆すると考えられる。
また、サンプル中ポリプロピレンは3質量部しかないにもかかわらず、図6において位相63は比較的広い部分を占め略連続的な連続相を形成している。このことは、添付の図5に示すように、ポリプロピレンが非相溶なゴムAとゴムBとの界面に偏在して、ゴム組成物中にポリプロピレンの連続相を形成することを証明すると考えられる。 The morphology of the rubber composition of the present invention will be described below with reference to the accompanying drawings.
FIG. 6 is a photograph of one example of the morphology of the rubber composition of the present invention observed with a scanning probe microscope (SMP).
The rubber composition sample (unvulcanized) used in FIG. 6 is composed of 61 parts by mass of rubber A1 (NR) shown in Table 1 and rubber shown in Table 1 as two or more types of crosslinkable rubber components. 36 parts by mass of B1 (BR) and polypropylene 1 (3 parts by mass) shown in Table 1 are contained.
Measurement with a scanning probe microscope was performed at 23 ° C. The obtained photograph is an enlarged cross section of the sample 3500 times. It is considered that the phase portion of the same color reflects the same hardness in the measurement result by the scanning probe microscope.
In FIG. 6, the
Since the hardest of the rubber component and polypropylene contained in the sample is polypropylene, the
Thus, the results of FIG. 6 are believed to suggest that polypropylene forms a continuous phase (network) of polypropylene in the rubber composition.
Moreover, although the polypropylene in the sample has only 3 parts by mass, the
2 硬質板
3 本発明のゴム組成物(高減衰積層体用ゴム組成物)
4 ラップシェア型せん断試験用試料
5 圧延した未加硫ゴム組成物
6 鋼板
10 ゴムA
20 ゴムB
30 ポリプロピレン(連続相)
60 ゴム組成物
61、63 位相
100 本発明のゴム組成物(架橋ゴム組成物)(高減衰積層体用ゴム組成物) 1 High attenuation laminate (Seismic isolation laminate)
2 Hard plate 3 Rubber composition of the present invention (rubber composition for highly attenuated laminate)
4 Sample for lap shear
20 Rubber B
30 Polypropylene (continuous phase)
60
Claims (18)
- 2種以上の架橋可能なゴム成分100質量部と、シラノール基を有する無機充填剤10~100質量部と、ポリ乳酸系樹脂0.1~30質量部と、ポリプロピレン0.1~10質量部とを含有するゴム組成物。 100 parts by weight of two or more crosslinkable rubber components, 10 to 100 parts by weight of an inorganic filler having a silanol group, 0.1 to 30 parts by weight of a polylactic acid resin, and 0.1 to 10 parts by weight of polypropylene Containing a rubber composition.
- 前記ゴム成分はジエン系ゴムである請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the rubber component is a diene rubber.
- 前記ゴム成分はゴムAとゴムBとを含み、前記ゴムAと前記ゴムBとは非相溶である請求項1または2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the rubber component includes rubber A and rubber B, and the rubber A and the rubber B are incompatible.
- 前記ゴム成分はゴムAとゴムBとを含み、前記ゴムAが天然ゴムおよびポリイソプレンからなる群から選ばれる少なくとも1種であり、前記ゴムBがポリブタジエンおよびブタジエン共重合体からなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載のゴム組成物。 The rubber component includes rubber A and rubber B, the rubber A is at least one selected from the group consisting of natural rubber and polyisoprene, and the rubber B is selected from the group consisting of polybutadiene and a butadiene copolymer. The rubber composition according to any one of claims 1 to 3, wherein the rubber composition is at least one kind.
- 前記ゴムAと前記ゴムBとの質量比(ゴムA/ゴムB)が、90/10~10/90である請求項3または4に記載のゴム組成物。 The rubber composition according to claim 3 or 4, wherein a mass ratio of the rubber A and the rubber B (rubber A / rubber B) is 90/10 to 10/90.
- 前記ゴム成分100質量部に対して、更に、石油樹脂を5~50質量部含有する請求項1~5のいずれかに記載のゴム組成物。 6. The rubber composition according to claim 1, further comprising 5 to 50 parts by mass of a petroleum resin with respect to 100 parts by mass of the rubber component.
- 前記ゴム成分100質量部に対して、更に、前記シラノール基を有する無機充填剤以外の無機充填剤を5~55質量部含有する請求項1~6のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, further comprising 5-55 parts by mass of an inorganic filler other than the inorganic filler having a silanol group with respect to 100 parts by mass of the rubber component.
- 前記ポリ乳酸系樹脂の融点が、180℃以下である請求項1~7のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, wherein the polylactic acid resin has a melting point of 180 ° C or lower.
- 前記ポリ乳酸系樹脂の数平均分子量が、1,000~200,000である請求項1~8のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 8, wherein the polylactic acid resin has a number average molecular weight of 1,000 to 200,000.
- 前記シラノール基を有する無機充填剤と前記ポリ乳酸系樹脂との質量比(シラノール基を有する無機充填剤/ポリ乳酸系樹脂)が、1/1~10/1である請求項1~9のいずれかに記載のゴム組成物。 10. The mass ratio of the inorganic filler having silanol groups and the polylactic acid resin (inorganic filler having silanol groups / polylactic acid resin) is 1/1 to 10/1. A rubber composition according to any one of the above.
- さらにカーボンブラックを含有し、前記カーボンブラックの量が前記ゴム成分100質量部に対して10~90質量部である請求項1~10のいずれかに記載のゴム組成物。 11. The rubber composition according to claim 1, further comprising carbon black, wherein the amount of the carbon black is 10 to 90 parts by mass with respect to 100 parts by mass of the rubber component.
- さらにシランカップリング剤を含有し、前記シランカップリング剤の量が前記シラノール基を有する無機充填剤100質量部に対して1~10質量部である請求項1~11のいずれかに記載のゴム組成物。 The rubber according to any one of claims 1 to 11, further comprising a silane coupling agent, wherein the amount of the silane coupling agent is 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic filler having the silanol group. Composition.
- 前記ポリプロピレンが、前記ゴム成分中に連続相を形成する請求項3~12のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 3 to 12, wherein the polypropylene forms a continuous phase in the rubber component.
- 請求項1~13のいずれかに記載のゴム組成物を架橋させることによって得られる、架橋ゴムを含有する架橋ゴム組成物。 A crosslinked rubber composition containing a crosslinked rubber, obtained by crosslinking the rubber composition according to any one of claims 1 to 13.
- 請求項1~13のいずれかに記載のゴム組成物または請求項14に記載の架橋ゴム組成物が高減衰積層体用に使用される、高減衰積層体用ゴム組成物。 A rubber composition for a high attenuation laminate, wherein the rubber composition according to any one of claims 1 to 13 or the crosslinked rubber composition according to claim 14 is used for a high attenuation laminate.
- 請求項1~13のいずれかに記載のゴム組成物または請求項14に記載の架橋ゴム組成物が空気入りタイヤ用に使用される、空気入りタイヤ用ゴム組成物。 A rubber composition for a pneumatic tire, wherein the rubber composition according to any one of claims 1 to 13 or the crosslinked rubber composition according to claim 14 is used for a pneumatic tire.
- 請求項15に記載の高減衰積層体用ゴム組成物と硬質板とを交互に積層して得られる高減衰積層体。 A high attenuation laminate obtained by alternately laminating the rubber composition for a high attenuation laminate according to claim 15 and a hard plate.
- 請求項16に記載の空気入りタイヤ用ゴム組成物を用いて形成される空気入りタイヤ。 A pneumatic tire formed using the rubber composition for a pneumatic tire according to claim 16.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011522177A JP4900538B1 (en) | 2010-03-17 | 2011-03-10 | Rubber composition, cross-linked rubber composition, and highly attenuated laminate |
CN2011800073685A CN102725343B (en) | 2010-03-17 | 2011-03-10 | Rubber composition, cross-linked rubber composition and high-performance damping laminate |
KR1020127018967A KR101186117B1 (en) | 2010-03-17 | 2011-03-10 | Rubber composition, cross-linked rubber composition and high-performance damping laminate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010061124 | 2010-03-17 | ||
JP2010-061124 | 2010-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011114990A1 true WO2011114990A1 (en) | 2011-09-22 |
Family
ID=44649085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055675 WO2011114990A1 (en) | 2010-03-17 | 2011-03-10 | Rubber composition, cross-linked rubber composition and high-performance damping laminate |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4900538B1 (en) |
KR (1) | KR101186117B1 (en) |
CN (1) | CN102725343B (en) |
WO (1) | WO2011114990A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103374148A (en) * | 2012-04-24 | 2013-10-30 | 比亚迪股份有限公司 | Rubber composition, rubber and shock-reducing rubber piece |
CN104159962A (en) * | 2012-03-05 | 2014-11-19 | 日东电工株式会社 | Vibration-damping sheet |
WO2016088979A1 (en) * | 2014-12-05 | 2016-06-09 | 주식회사 불스원 | Composition for gel cushion, and gel cushion manufactured therefrom |
WO2017037636A1 (en) * | 2015-08-31 | 2017-03-09 | Bridgestone Corporation | Rubber compound to produce treads |
WO2017209263A1 (en) * | 2016-06-01 | 2017-12-07 | 株式会社ブリヂストン | Rubber composition and tire |
KR101831332B1 (en) * | 2016-07-26 | 2018-04-04 | 주식회사 불스원 | Composition of gel cushion and gel cushion manufactured by the same |
WO2018096910A1 (en) * | 2016-11-24 | 2018-05-31 | Jxtgエネルギー株式会社 | Conductive thermoplastic elastomer composition |
JP2018177836A (en) * | 2017-04-03 | 2018-11-15 | 住友ゴム工業株式会社 | Rubber composition for cap tread and studless tire |
JP2022535367A (en) * | 2019-05-29 | 2022-08-08 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | Tire tread rubber composition and related methods |
US12103334B2 (en) | 2018-05-04 | 2024-10-01 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
US12215231B2 (en) | 2018-05-04 | 2025-02-04 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
US12251965B2 (en) | 2018-05-04 | 2025-03-18 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
US12325797B2 (en) | 2019-05-29 | 2025-06-10 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition and related methods |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3015493B1 (en) * | 2013-12-20 | 2017-04-28 | Michelin & Cie | PNEUMATIC FOR VEHICLES INTENDED TO WEAR HEAVY LOADS |
JP6616793B2 (en) * | 2016-04-15 | 2019-12-04 | 三ツ星ベルト株式会社 | Friction transmission belt |
CN119872140A (en) * | 2020-02-17 | 2025-04-25 | 横滨橡胶株式会社 | RFID module and pneumatic tire embedded with the same |
JP7443133B2 (en) * | 2020-03-31 | 2024-03-05 | 住友理工株式会社 | Rubber composition for seismic damper, method for producing the same, and seismic damper |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0559216A (en) * | 1991-08-30 | 1993-03-09 | Toyo Tire & Rubber Co Ltd | Highly damping rubber composition |
JPH10139933A (en) * | 1996-11-07 | 1998-05-26 | Cci Corp | Vibration-proofing material |
JP2001040165A (en) * | 1999-07-26 | 2001-02-13 | Sekisui Chem Co Ltd | Highly damping rubber composition and base-isolated structure using same |
JP2004091716A (en) * | 2002-09-03 | 2004-03-25 | Bridgestone Corp | tire |
JP2004168987A (en) * | 2002-11-22 | 2004-06-17 | Mitsui Chemicals Inc | Tire rubber composition containing fine particle |
JP2005220251A (en) * | 2004-02-06 | 2005-08-18 | Sumitomo Rubber Ind Ltd | Rubber composition for tire tread and pneumatic tire using the same |
JP2007224253A (en) * | 2006-02-27 | 2007-09-06 | Sumitomo Rubber Ind Ltd | Rubber composition for tread and pneumatic tire having the same |
JP2007262310A (en) * | 2006-03-29 | 2007-10-11 | Nippon Zeon Co Ltd | Rubber composition and rubber cross-linked product |
JP2009149856A (en) * | 2007-11-26 | 2009-07-09 | Yokohama Rubber Co Ltd:The | Rubber composition for high-damping laminate, and high-damping laminate |
JP2010001439A (en) * | 2008-06-23 | 2010-01-07 | Yokohama Rubber Co Ltd:The | Rubber composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1228374C (en) * | 2002-06-11 | 2005-11-23 | 邵毅 | Composite polyolefine thermoplastic vulcanizate |
EP1535961B1 (en) * | 2002-09-03 | 2011-07-13 | Bridgestone Corporation | Tire |
-
2011
- 2011-03-10 CN CN2011800073685A patent/CN102725343B/en not_active Expired - Fee Related
- 2011-03-10 KR KR1020127018967A patent/KR101186117B1/en not_active Expired - Fee Related
- 2011-03-10 JP JP2011522177A patent/JP4900538B1/en not_active Expired - Fee Related
- 2011-03-10 WO PCT/JP2011/055675 patent/WO2011114990A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0559216A (en) * | 1991-08-30 | 1993-03-09 | Toyo Tire & Rubber Co Ltd | Highly damping rubber composition |
JPH10139933A (en) * | 1996-11-07 | 1998-05-26 | Cci Corp | Vibration-proofing material |
JP2001040165A (en) * | 1999-07-26 | 2001-02-13 | Sekisui Chem Co Ltd | Highly damping rubber composition and base-isolated structure using same |
JP2004091716A (en) * | 2002-09-03 | 2004-03-25 | Bridgestone Corp | tire |
JP2004168987A (en) * | 2002-11-22 | 2004-06-17 | Mitsui Chemicals Inc | Tire rubber composition containing fine particle |
JP2005220251A (en) * | 2004-02-06 | 2005-08-18 | Sumitomo Rubber Ind Ltd | Rubber composition for tire tread and pneumatic tire using the same |
JP2007224253A (en) * | 2006-02-27 | 2007-09-06 | Sumitomo Rubber Ind Ltd | Rubber composition for tread and pneumatic tire having the same |
JP2007262310A (en) * | 2006-03-29 | 2007-10-11 | Nippon Zeon Co Ltd | Rubber composition and rubber cross-linked product |
JP2009149856A (en) * | 2007-11-26 | 2009-07-09 | Yokohama Rubber Co Ltd:The | Rubber composition for high-damping laminate, and high-damping laminate |
JP2010001439A (en) * | 2008-06-23 | 2010-01-07 | Yokohama Rubber Co Ltd:The | Rubber composition |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104159962A (en) * | 2012-03-05 | 2014-11-19 | 日东电工株式会社 | Vibration-damping sheet |
CN103374148A (en) * | 2012-04-24 | 2013-10-30 | 比亚迪股份有限公司 | Rubber composition, rubber and shock-reducing rubber piece |
WO2016088979A1 (en) * | 2014-12-05 | 2016-06-09 | 주식회사 불스원 | Composition for gel cushion, and gel cushion manufactured therefrom |
CN107001745A (en) * | 2014-12-05 | 2017-08-01 | 韩商牛有限公司 | Gel mat composition and the gel mat being produced from it |
US10519308B2 (en) | 2014-12-05 | 2019-12-31 | Bullstone Co., Ltd. | Composition for gel cushion, and gel cushion manufactured therefrom |
WO2017037636A1 (en) * | 2015-08-31 | 2017-03-09 | Bridgestone Corporation | Rubber compound to produce treads |
CN107921819A (en) * | 2015-08-31 | 2018-04-17 | 株式会社普利司通 | For producing the Rubber compound of tyre surface |
US10710408B2 (en) | 2015-08-31 | 2020-07-14 | Bridgestone Corporation | Rubber compound to produce treads |
JP2018532008A (en) * | 2015-08-31 | 2018-11-01 | 株式会社ブリヂストン | Rubber compound for tread manufacturing |
JPWO2017209263A1 (en) * | 2016-06-01 | 2019-03-28 | 株式会社ブリヂストン | Rubber composition and tire |
WO2017209263A1 (en) * | 2016-06-01 | 2017-12-07 | 株式会社ブリヂストン | Rubber composition and tire |
JP7000318B2 (en) | 2016-06-01 | 2022-01-19 | 株式会社ブリヂストン | Rubber composition and tires |
KR101831332B1 (en) * | 2016-07-26 | 2018-04-04 | 주식회사 불스원 | Composition of gel cushion and gel cushion manufactured by the same |
CN110234714A (en) * | 2016-11-24 | 2019-09-13 | Jxtg能源株式会社 | Conductive thermoplastic elastic composition |
JP2018083894A (en) * | 2016-11-24 | 2018-05-31 | Jxtgエネルギー株式会社 | Conductive thermoplastic elastomer composition |
US11024440B2 (en) | 2016-11-24 | 2021-06-01 | Eneos Corporation | Conductive thermoplastic elastomer composition |
WO2018096910A1 (en) * | 2016-11-24 | 2018-05-31 | Jxtgエネルギー株式会社 | Conductive thermoplastic elastomer composition |
JP2018177836A (en) * | 2017-04-03 | 2018-11-15 | 住友ゴム工業株式会社 | Rubber composition for cap tread and studless tire |
US12103334B2 (en) | 2018-05-04 | 2024-10-01 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
US12215231B2 (en) | 2018-05-04 | 2025-02-04 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
US12251965B2 (en) | 2018-05-04 | 2025-03-18 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition |
JP2022535367A (en) * | 2019-05-29 | 2022-08-08 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | Tire tread rubber composition and related methods |
JP7445681B2 (en) | 2019-05-29 | 2024-03-07 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | Tire tread rubber composition and related methods |
US12325797B2 (en) | 2019-05-29 | 2025-06-10 | Bridgestone Americas Tire Operations, Llc | Tire tread rubber composition and related methods |
Also Published As
Publication number | Publication date |
---|---|
KR101186117B1 (en) | 2012-09-27 |
KR20120091457A (en) | 2012-08-17 |
CN102725343B (en) | 2013-08-21 |
JPWO2011114990A1 (en) | 2013-06-27 |
CN102725343A (en) | 2012-10-10 |
JP4900538B1 (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4900538B1 (en) | Rubber composition, cross-linked rubber composition, and highly attenuated laminate | |
JP5554230B2 (en) | Tire internal rubber composition | |
JP2010174232A (en) | Rubber composition for tire | |
JP2011168740A (en) | Rubber composition, rubber composition for high damping laminate, and rubber composition for tire | |
US11028255B2 (en) | Composition for tire tread comprising resin alternative to process oil | |
JP7256192B2 (en) | tire | |
JP5714828B2 (en) | Rubber composition for high damping bearing and high damping bearing | |
JP6136106B2 (en) | Rubber composition for high damping rubber bearing and high damping rubber bearing | |
JP4595171B2 (en) | Rubber composition for high damping bearing | |
JP2009149856A (en) | Rubber composition for high-damping laminate, and high-damping laminate | |
JP2011038069A (en) | Rubber composition for high damping laminate and high damping laminate | |
JP4030412B2 (en) | Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition | |
JP2010121033A (en) | Rubber composition for high damping laminate, and high damping laminate | |
JP4941384B2 (en) | High damping laminate | |
WO2014112654A1 (en) | Rubber composition | |
JP6849024B2 (en) | Rubber composition for tires and tires | |
JP5987489B2 (en) | Rubber composition for high damping rubber bearing and high damping rubber bearing | |
JP5912930B2 (en) | Rubber composition for tire and pneumatic tire | |
JP2011032384A (en) | Rubber composition and damping material | |
JP2010285560A (en) | Carbon black, rubber composition for high damping laminate and high damping laminate | |
JP4331003B2 (en) | Rubber composition for high damping bearing and high damping bearing | |
JP2018035235A (en) | Rubber composition and tire | |
WO2001088030A1 (en) | Rubber composition, vulcanizable rubber composition, vulcanizate, and vibration-damping rubber member | |
JP2011006587A (en) | Rubber composition for high damping laminate and high damping laminate | |
JP4693723B2 (en) | Rubber composition for inner liner and tire having inner liner using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180007368.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011522177 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756176 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127018967 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11756176 Country of ref document: EP Kind code of ref document: A1 |