WO2011114964A1 - 自動車排気系部材用フェライト系ステンレス鋼 - Google Patents
自動車排気系部材用フェライト系ステンレス鋼 Download PDFInfo
- Publication number
- WO2011114964A1 WO2011114964A1 PCT/JP2011/055513 JP2011055513W WO2011114964A1 WO 2011114964 A1 WO2011114964 A1 WO 2011114964A1 JP 2011055513 W JP2011055513 W JP 2011055513W WO 2011114964 A1 WO2011114964 A1 WO 2011114964A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- corrosion
- corrosion resistance
- stainless steel
- exhaust system
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2530/00—Selection of materials for tubes, chambers or housings
- F01N2530/02—Corrosion resistive metals
- F01N2530/04—Steel alloys, e.g. stainless steel
Definitions
- the present invention relates to a ferritic stainless steel of an alloy-saving type (a composition with a low content of alloying elements) that is excellent in corrosion resistance after heating and can be suitably used for automobile exhaust system members. Especially suitable for parts that are exposed to relatively mild temperature conditions such as center pipes, mufflers, and tail pipes, and does not contain Mo, which is an expensive alloy element, or the amount of Mo is reduced as much as possible after heating.
- the present invention relates to a ferritic stainless steel material that can ensure sufficient corrosion resistance.
- SUH409L is a steel type containing 11% Cr and fixing C and N with Ti to prevent sensitization of the welded portion and have excellent workability.
- This SUH409L is most often used because it has a sufficiently high temperature characteristic at 700 ° C. or lower and exhibits some resistance against condensed water corrosion.
- steel types with improved resistance to condensed water corrosion and corrosion resistance such as SUS436J1L and SUS436L containing 17% Cr and C and N fixed with Ti, and SUS436J1L and SUS436L containing Mo are also used. Yes.
- Patent Document 1 instead of not containing Mo, Cu: 0.3 to 2.0% and P: 0.06 to 0.5% are combined and contained, so that the equivalent of 17Cr-1Mo steel or more is achieved. Steels that ensure corrosion resistance are disclosed. However, since Cu and P are both solid solution strengthening elements, deterioration of workability due to inclusion of a large amount of them is inevitable. In addition to corrosion resistance, workability is an indispensable element for materials applied to exhaust system parts, so it is difficult to apply this steel to exhaust system members.
- Patent Document 2 Cu: 0.5-2.0% and V: 0.05-2.0% are contained in a composite instead of not containing Mo, so that the equivalent of 17Cr-0.5Mo steel or more is achieved. Steels that ensure corrosion resistance are disclosed.
- Cu is a solid solution strengthening element, deterioration of workability due to inclusion of a large amount is inevitable.
- V has a problem that it is an expensive alloy element like Mo.
- Patent Document 3 the amount of Si is reduced in order to ensure workability, and 0.01 to 1.0% of Co, which improves corrosion resistance without impairing workability, is contained, and the corrosion resistance is equivalent to that of 18Cr-Mo steel. Steels that have been secured are disclosed.
- the Co content of about 0.05% may be as small as about 25% of Cr.
- the amount of Cr is about 18%, the Co content is about 0.5%. is needed.
- Co also has a problem that it is an expensive and rare alloy element like Mo.
- Patent Document 4 Mo is contained by adding one or both of Ni: 0.1 to 2.0% and Cu: 0.1 to 1.0% in total amount: 0.6% or more. Steels with improved corrosion resistance that are not included are disclosed. However, in order to obtain corrosion resistance exceeding SUS436L, it is necessary to contain a large amount of alloy elements as much as steel containing 20% Cr and 1% Ni, and there is a problem that the cost is not necessarily reduced. Further, Cu is an element that strengthens steel more than Mo, and there is a problem that workability deteriorates even with a small amount of Cu.
- Patent Document 5 proposes a ferritic stainless steel in which oxidation resistance is improved by containing 0.02 to 0.2% of Sb.
- Patent Document 6 by containing either or both of 0.005 to 0.10% of Sn and Sb, grain boundary segregation of P is prevented, and grain boundaries when pickling with sulfuric acid are used.
- Ferritic stainless steel sheets free from surface flaws due to corrosion have been presented.
- Patent Document 7 suggests that it is effective to contain Sn of 0.5% or less in order to suppress intergranular corrosion caused by Cr carbonitride in the weld heat affected zone.
- Patent Document 8 discloses a ferritic stainless steel sheet that contains one or both of Sn and Sb and has excellent crevice corrosion resistance.
- Patent Document 9 also proposes a ferritic stainless steel sheet containing Sn and Sb as selective elements in order to suppress flow rust from the gap.
- JP-A-6-145906 Japanese Examined Patent Publication No. 64-4576 Japanese Patent No. 2756190 JP 2007-92163 A JP 2005-146345 A Japanese Patent Laid-Open No. 11-92872 Japanese Patent Laid-Open No. 2002-38221 JP 2008-190003 A JP 2009-97079 A
- An object of the present invention is to provide a steel that does not contain Mo or that has a reduced amount of Mo and that has corrosion resistance and workability equivalent to or higher than those of SUS436L (17Cr-1.2Mo series).
- the corrosion resistance handled in the present invention is intended for the condensed water corrosion resistance and salt corrosion resistance in a general plane portion required for exhaust system parts used in a relatively low temperature region such as a muffler.
- the present invention deals with the corrosion resistance after the material has been heated to form an oxide film, i.e. the properties of perforated corrosion that determine the lifetime of exhaust system components.
- the heating environment is assumed to be an air atmosphere at 400 ° C.
- the corrosion resistance after holding for 8 hours which is a sufficient time for forming an oxide film in a heating environment, is handled.
- the present inventors have conducted numerous salt damage corrosion tests and condensed water corrosion tests on various stainless steel materials. As a result, it was found that by adding an appropriate amount of Sn and Ni in combination, the corrosion resistance after heating was drastically improved, and the effect exceeded that of Mo.
- the ferritic stainless steel for automobile exhaust system members according to one aspect of the present invention is in mass%, C: ⁇ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P: ⁇ 0.050%, S: ⁇ 0.010%, N: ⁇ 0.015%, Al: 0.010 to 0.100%, Cr: 16.5 to 22.5% Ni: 0.5-2.0%, Sn: 0.01-0.50%, Ti: 0.03-0.30% and Nb: 0.03-0.30% Among them, one or both of them are contained, and the balance consists of Fe and inevitable impurities.
- the ferritic stainless steel for automobile exhaust system members according to one aspect of the present invention described in (1) above may contain B: 0.0002 to 0.0050% by mass%.
- the ferritic stainless steel for automobile exhaust system members according to one aspect of the present invention described in the above (1) or (2) is in mass%, Mo: 0.01 to 0.50%, and Cu: Any one or both of 0.01 to 0.35% may be contained.
- the inventors fixed the content of Cr, which controls the corrosion resistance, at 17%, and changed the contents of Mo, Sn, and Ni, and a steel sheet containing both Sn and Ni.
- the salt corrosion resistance and condensate corrosion resistance after heat treatment at °C ⁇ 8Hr were investigated.
- the salt corrosion resistance was evaluated by a combined cycle corrosion test specified in JASO-M609-91. Here, in the combined cycle corrosion test, salt spray, drying and wetting were repeated. For the salt spray, 5% NaCl was sprayed onto the 2Hr sample at a temperature of 35 ° C. In drying, the sample was left for 4 hours at a temperature of 60 ° C. in an atmosphere with a relative humidity of 20%.
- FIG. 1 is a diagram showing the relationship between the content of alloy elements and the maximum corrosion depth, where (a) shows the results of salt damage corrosion and (b) shows the results of condensed water corrosion.
- Ni + 0.14% Sn in the footnote indicates that the Sn content is fixed at 0.14% and the Ni content is changed as indicated by the horizontal axis in FIG.
- Sn + 0.61% Ni indicates that the Ni content is fixed to 0.61%, and the Sn content is changed as indicated by the horizontal axis in FIG.
- FIG. 1 clearly shows that Mo, Sn, and Ni all improve the corrosion resistance.
- Sn is an element that exhibits an effect of improving the corrosion resistance, which is about 2.5 times that of Mo.
- Ni is an element which expresses the effect which improves the corrosion resistance equivalent to Mo.
- Ni and Sn alone have a function of substituting for Mo, but it has been found that when both Ni and Sn are contained, the effect is further enhanced.
- the Ni content can be reduced to about 2/3 as compared with the case where Ni is contained alone.
- Ni and Sn are solid solution strengthening elements and degrade workability
- the effect that Ni can be saved by adding a small amount of Sn is advantageous not only in resource saving and alloy cost saving but also in workability. Is generated.
- the Sn—Ni composite added steel could be evaluated as a steel type having a value sufficient to replace the Mo-containing steel.
- Sn—Ni The mechanism of the effect of such coexistence of Sn—Ni has not been elucidated.
- Sn and Ni are both elements that are ineffective in the process of occurrence of corrosion, and it is presumed that the active dissolution is suppressed and the repassivation is promoted in the progress of corrosion. Further, it is presumed that Sn and Ni are also involved in the action of densifying the oxide film formed by the heat treatment.
- Such an effect is not useful for the problem of rust (occurrence of rust) such as initial rust, but it is effective for improving the hole opening life, and for exhaust system members whose life is more important than appearance, It can be a great means of improvement.
- FIG. 2 shows the range of the Sn and Ni contents that can ensure the same workability by using the elongation value (30.7%) of SUS436L as a reference. From this, it was found that the upper limit of Sn content should be set to 0.5% and the upper limit of Ni content should be set to 2.0%.
- C, N C and N are elements that cause intergranular corrosion in the weld heat affected zone, and deteriorate the corrosion resistance after heating. Moreover, cold workability is deteriorated. For this reason, the content of C and N should be limited to the lowest possible level, and the upper limit of the content of C and N is preferably 0.015%, more preferably 0.010%, respectively. is there.
- Si has an effect of improving the corrosion resistance after heating, so it is contained in an amount of 0.01% or more. However, since Si deteriorates workability, it should not be contained in a large amount, and the upper limit of the Si content should be limited to 0.50%.
- the Si content is preferably 0.05 to 0.30%.
- Mn also has an effect of improving the corrosion resistance after heating, so it is contained in an amount of 0.01% or more. However, since Mn deteriorates workability, it should not be contained in a large amount, and the upper limit of the Mn content should be limited to 0.50%.
- the Mn content is preferably 0.05 to 0.30%.
- P is an element that deteriorates workability. For this reason, it is desirable that the content of P is as low as possible.
- the upper limit of the allowable P content is 0.050%.
- the upper limit value of P is preferably 0.030%.
- S is an element that deteriorates the corrosion resistance after heating. For this reason, the content of S is desirably as low as possible.
- the upper limit of the allowable S content is 0.010%.
- the upper limit of the S content is preferably 0.0050%, and more preferably 0.0030%.
- Cr is an element that is fundamental for ensuring corrosion resistance after heating, and it is essential to contain an appropriate amount of Cr.
- the lower limit of the Cr content needs to be 16.5%.
- Cr is an element that deteriorates workability, and the upper limit of the Cr content is preferably set to 22.5% from the viewpoint of suppressing alloy costs.
- the Cr content is preferably 16.8 to 19.5%.
- Al is useful as a deoxidizing element and has the effect of improving the corrosion resistance after heating, so it is contained in an amount of 0.010% or more. However, since Al deteriorates workability, it should not be contained in a large amount. It is preferable to limit the upper limit of the Al content to 0.100%.
- the Al content is preferably 0.020 to 0.060%.
- one or both of Ti and Nb are contained.
- Ti has the action of fixing C and N as carbonitrides to suppress intergranular corrosion. For this reason, when it contains Ti, the minimum of Ti content shall be 0.03%. However, even if contained excessively, the effect is saturated and the workability is impaired, so the upper limit of the Ti content is made 0.30%.
- the upper limit of the Ti content is preferably 0.20%.
- the Ti content is preferably not less than 5 times and not more than 30 times the total amount of C and N.
- Nb Similar to Ti, Nb has the effect of suppressing intergranular corrosion by fixing C and N as carbonitrides. For this reason, when it contains Nb, the minimum of Nb content shall be 0.03%. However, if excessively contained, workability is impaired, so the upper limit of Nb content is 0.30%.
- the Nb content is preferably 0.03 to 0.10%.
- Sn is extremely useful as an element that greatly improves the corrosion resistance after heating in a small amount, and is an alloy element that is the basis of the stainless steel of this embodiment.
- the lower limit of the Sn content is 0.01%.
- the lower limit of the Sn content is preferably 0.05%.
- Sn is an element that deteriorates workability, and also deteriorates weld toughness. Therefore, it is not desirable to contain Sn exceeding 0.5%.
- the upper limit of the Sn content is preferably 0.4%, more preferably 0.3%.
- Ni By adding Ni and Sn in combination, the corrosion resistance after heating is significantly improved with a relatively small amount of Ni.
- Ni is an extremely useful element, and is an alloy element that is the basis of the stainless steel of the present embodiment.
- the lower limit of the Ni content is 0.5%.
- the upper limit of the Ni content is set to 2.0%.
- the upper limit of the Ni content is preferably 1.5%, more preferably 1.0%.
- the stainless steel of this embodiment may contain the following selective elements as needed.
- B is an element useful for suppressing Sn grain boundary segregation and preventing secondary work embrittlement and hot workability deterioration due to a decrease in grain boundary strength.
- B is an element that does not affect the corrosion resistance after heating. For this reason, you may contain B as needed, and the minimum of B content shall be 0.0002%. If the B content exceeds 0.0050%, the hot workability deteriorates, so the upper limit of the B content is preferably 0.0050%.
- the B content is preferably 0.0004 to 0.0015%.
- Mo Reversing from the viewpoint of alloying (reducing alloying element content) and low cost, but Mo may be contained in a very small range when pursuing ultimate corrosion resistance after heating.
- the lower limit of the Mo content is 0.01%. This makes it easier to exceed the corrosion resistance of SUS436L after heating.
- the upper limit of Mo content is made 0.50%.
- the upper limit of the Mo content is preferably 0.3%, more preferably 0.2%.
- Cu Similar to Mo, alloy saving (reduction of alloying element content) and low cost. However, when pursuing ultimate corrosion resistance after heating, Cu is contained in a small amount. You may let them. When Cu is contained, the lower limit of the Cu content is 0.01%. This makes it easier to exceed the corrosion resistance of SUS436L after heating. Moreover, since it is necessary to keep Cu content to the minimum necessary in the range which does not deteriorate workability, the upper limit of Cu content shall be 0.35%. The Cu content is preferably 0.10 to 0.30%.
- a normal stainless steel plate for exhaust system members is manufactured by the following method. First, slabs are produced by melting and refining in a converter or electric furnace. Subsequently, a steel plate is manufactured by performing hot rolling, pickling, cold rolling, annealing, finishing pickling, etc. with respect to a steel piece. Moreover, a normal stainless steel pipe for exhaust system members is manufactured by using electric resistance welding, TIG welding, laser welding or the like using this steel plate as a raw material. Ferritic stainless steel having the above-described composition is manufactured as a steel plate by a normal method for manufacturing a stainless steel plate for exhaust system members. Moreover, the ferritic stainless steel which has an above described composition is manufactured as a welded pipe by the normal manufacturing method of the stainless steel pipe for exhaust system members.
- the ferritic stainless steel sheet thus produced is preferably superior to SUS436J1L from the viewpoint of workability, and the total elongation is preferably 30.7% or more.
- the total elongation is determined by a tensile test specified in JISZ2201. By using a conventional method to produce a stainless steel plate having the components of the present embodiment, the total elongation can be in a good range.
- the corrosion resistance after heating specified in the present embodiment is evaluated by the maximum corrosion depth measured by the following method.
- a flat plate corrosion test piece is held at 400 ° C. for 8 hours in an air atmosphere.
- a combined cycle corrosion test and a condensed water corrosion test are performed on the heat-treated corrosion test piece, and the maximum corrosion depth is measured.
- the combined cycle corrosion test is performed according to JASO-M609-91.
- the maximum corrosion depth of the test piece after the corrosion test is measured.
- the condensed water corrosion test is performed according to JASO-M611-92-A, except that the Cl ion concentration of the corrosive liquid is 1000 ppm.
- the maximum corrosion depth of the test piece after the corrosion test is measured. Superiority is evaluated by comparing the obtained maximum corrosion depth result with the maximum corrosion depth of the comparative standard SUS436L.
- the heat treatment is performed on the corrosion test piece in the atmosphere because it is necessary to incorporate the conditions encountered by the exhaust system members of the actual vehicle (that is, the conditions under which an oxide film is formed due to the high temperature of the exhaust gas). It is.
- This oxide film affects the Cr concentration at the film / base metal interface and acts to block environmental substances in the film. For this reason, if the heat treatment for forming the oxide film is not performed, the corrosion characteristics of the exhaust system member in the actual vehicle cannot be simulated, and a proper evaluation cannot be performed.
- Sn and Ni contained in the present embodiment not only improve the corrosion resistance of the base iron, but also affect the growth behavior and denseness of the oxide film. For this reason, Sn and Ni also contribute to the effect of blocking the corrosive substances of the oxide film. As a result, it is speculated that Sn and Ni have the effect of improving the corrosion resistance after heating.
- the Cl ion concentration is set to 1000 ppm in the condensed water corrosion test.
- the Cl ion concentration is 100 ppm in accordance with the JASO standard, stainless steel of SUS436L class hardly corrodes, and the evaluation result may deviate from the corrosion trouble (corrosion example) of the actual vehicle (the evaluation result and the corrosion example of the actual vehicle). May not be correlated).
- the Cl ion concentration is set to 1000 ppm in order to make the conditions more severe on the basis of the corrosion cases occurring in the actual vehicle.
- the hot-rolled sheet having a material thickness of 3.2 mm was cold-rolled so that the finished thickness was 1.0 mm.
- the cold-rolled sheet was air-cooled at 920 ° C. for 1 minute.
- the hot-rolled sheet pickling step the hot-rolled sheet was shot blasted and then pickled using an aqueous sulfuric acid solution.
- pickling was performed using a nitric hydrofluoric acid aqueous solution (mixed solution of nitric acid and hydrofluoric acid).
- Tables 1 and 2 component values that fall outside the range defined in this embodiment are underlined. The balance other than the elements listed in Tables 1 and 2 is iron and inevitable impurities.
- a corrosion test piece was collected from the steel plate, and the test surface was polished using # 600 emery polishing paper. Subsequently, the corrosion test piece was subjected to a heat treatment of 8 hours at a temperature of 400 ° C. in a furnace in an air atmosphere.
- a cycle corrosion test and a condensed water corrosion test were performed on the corrosion test pieces subjected to the heat treatment.
- salt spraying, drying and wetting were repeated according to JASO-M609-91 simulating a salt damage environment.
- salt spraying 5% NaCl was sprayed onto the test piece at a temperature of 35 ° C. for 2 hours. In drying, the test piece was left for 4 hours at a temperature of 60 ° C.
- the condensed water corrosion test was performed according to JASO-M611-92-A, except that the test solution was adjusted to have a Cl ion concentration of 1000 ppm.
- the corrosion test piece after completion of the corrosion test was subjected to derusting treatment, and then the maximum corrosion depth was determined by a microscope depth of focus method.
- No. 13 B test piece in JIS Z2201 was produced from the steel sheet, and a tensile test was performed. Then, the total elongation in the plate length direction of the test piece was evaluated.
- the goal is to improve the corrosion resistance after heating to be equal to or higher than that of SUS436L. Therefore, Table 3 shows the ratio of the maximum corrosion depth of the steel sheet sample to the maximum corrosion depth of SUS436L (maximum corrosion depth of the steel sheet sample / maximum corrosion depth of SUS436L). Comparative Example No. 101 is SUS436L.
- the ferritic stainless steel according to one embodiment of the present invention does not contain Mo or has a reduced amount of Mo and has workability equivalent to or better than SUS436L and corrosion resistance after heating. For this reason, the ferritic stainless steel which concerns on 1 aspect of this invention can be applied suitably as a material for motor vehicle exhaust system members, such as a center pipe, a muffler, and a tail pipe.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Exhaust Silencers (AREA)
Abstract
Description
本願は、2010年3月15日に、日本に出願された特願2010-057865号に基づき優先権を主張し、その内容をここに援用する。
なお、本発明で扱う耐食性は、マフラーなどのように比較的低温度の領域で使用される排気系部品に要求される一般平面部における凝縮水耐食性と塩害耐食性を対象とする。特に、本発明は、素材が加熱されて酸化膜が形成された後の耐食性、すなわち排気系部品の寿命を決定する穴あき腐食の特性を取り扱う。なお、本発明では加熱環境は400℃の大気雰囲気を前提とする。また、加熱環境において酸化膜が形成されるに十分な時間である8hrにわたって保定された後の耐食性を取り扱う。
(1)本発明の一態様に係る自動車排気系部材用フェライト系ステンレス鋼は、質量%で、C:≦0.015%、Si:0.01~0.50%、Mn:0.01~0.50%、P:≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010~0.100%、Cr:16.5~22.5%、Ni:0.5~2.0%、Sn:0.01~0.50%を含有し、更に、Ti:0.03~0.30%およびNb:0.03~0.30%のうち、いずれか一方又は両方を含有し、残部がFeおよび不可避的不純物からなる。
(2)前記(1)に記載の本発明の一態様に係る自動車排気系部材用フェライト系ステンレス鋼は、質量%で、さらにB:0.0002~0.0050%を含有してもよい。
(3)前記(1)または(2)に記載の本発明の一態様に係る自動車排気系部材用フェライト系ステンレス鋼は、質量%で、さらにMo:0.01~0.50%及びCu:0.01~0.35%のうち、いずれか一方又は両方を含有してもよい。
塩害耐食性は、JASO-M609-91に規定される複合サイクル腐食試験により評価した。ここで、複合サイクル腐食試験では、塩水噴霧、乾燥、及び湿潤を繰り返し行った。塩水噴霧では、5%のNaClを35℃の温度で2Hr試料に噴霧した。乾燥では、相対湿度20%の雰囲気にて60℃の温度で試料を4Hr放置した。湿潤では、相対湿度90%の雰囲気にて50℃の温度で試料を2Hr放置した。
凝縮水耐食性は、JASO-M611-92-Aに準拠した凝縮水腐食試験により評価した。ただし、凝縮水腐食試験の条件のうち、腐食液のClイオン濃度を1000ppmに変更した点がJASO規格と異なる。
結果の一例を図1に示す。図1は、合金元素の含有量と最大腐食深さとの関係を示す図であり、(a)は塩害腐食、(b)は凝縮水腐食の結果を示す。図1の横軸に記載の合金元素含有量とは、図1中の脚注(符号の説明)に記されたMo,Ni,Snのそれぞれの含有量を意味する。脚注の「Ni+0.14%Sn」とは、Sn含有量を0.14%に固定し、Niの含有量を図1の横軸のように変化させていることを示す。「Sn+0.61%Ni」も同様に、Ni含有量を0.61%に固定し、Snの含有量を図1の横軸のように変化させていることを示す。
B:Bは、Snの粒界偏析を抑制して、粒界強度の低下による2次加工脆化や熱間加工性劣化を防止するのに有用な元素である。Bは、加熱後の耐食性には影響を与えない元素である。このため必要に応じてBを含有してもよく、B含有量の下限は、0.0002%とする。B含有量が0.0050%を超えると、かえって熱間加工性が劣化するので、B含有量の上限を0.0050%とするのが良い。B含有量は、好ましくは0.0004~0.0015%である。
前記した組成を有するフェライト系ステンレス鋼は、通常の排気系部材用ステンレス鋼板の製造方法によって、鋼板として製造される。また、前記した組成を有するフェライト系ステンレス鋼は、通常の排気系部材用ステンレス鋼管の製造方法によって、溶接管として製造される。
複合サイクル腐食試験は、JASO-M609-91に従って行う。そして、腐食試験後の試験片の最大腐食深さを測定する。凝縮水腐食試験は、腐食液のClイオン濃度を1000ppmとする以外は、JASO-M611-92-Aに準拠して行う。そして、腐食試験後の試験片の最大腐食深さを測定する。得られた最大腐食深さの結果を、比較基準のSUS436Lの最大腐食深さと比較することによって、優劣を評価する。
熱延板の作製工程では、素材厚みが90mmの鋼塊に対して、1160℃の加熱温度で9パスの熱間圧延を施して、板厚を3.2mmとし、次いで水冷した。熱延板の焼鈍工程では、熱延板を940℃で3分間、空冷した。冷延板の作製工程では、素材厚みが3.2mmの熱延板に対して、仕上げ厚さが1.0mmとなるように冷間圧延を施した。焼鈍工程では、冷延板を920℃で1分間、空冷した。熱延板の酸洗工程では、熱延板に対してショットブラストを施し、次いで硫酸水溶液を用いて酸洗した。仕上げ酸洗の工程では、硝フッ酸水溶液(硝酸とフッ化水素酸の混合液)を用いて酸洗した。
表1,2において、本実施形態で規定された範囲から外れる成分値にアンダーラインを付している。また、表1,2に記載の元素以外の残部は、鉄及び不可避不純物である。
腐食試験終了後の腐食試験片に対して脱錆処理を施し、次いで顕微鏡焦点深度法によって最大腐食深さを求めた。
また、腐食試験と並行して、加工性を評価するために、鋼板より、JIS Z2201における13号B試験片を作製し、引張試験を行った。そして、試験片の板長さ方向の全伸びを評価した。
最大腐食深さとSUS436Lの最大腐食深さとの比(鋼板試料の最大腐食深さ/SUS436Lの最大腐食深さ)が1未満の場合、耐食性が良好(good)であると評価した。また、全伸びの値がSUS436Lの全伸びの値(30.7%)以上の場合、加工性が良好(good)であると評価した。
試験結果を表3に示す。
なお、比較例No.101がSUS436Lである。
Claims (3)
- 質量%で、
C:≦0.015%、
Si:0.01~0.50%、
Mn:0.01~0.50%、
P:≦0.050%、
S:≦0.010%、
N:≦0.015%、
Al:0.010~0.100%、
Cr:16.5~22.5%、
Ni:0.5~2.0%、
Sn:0.01~0.50%を含有し、
更に、Ti:0.03~0.30%及びNb:0.03~0.30%のうち、いずれか一方又は両方を含有し、
残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系部材用フェライト系ステンレス鋼。 - 質量%で、更にB:0.0002~0.0050%を含有することを特徴とする請求項1に記載の自動車排気系部材用フェライト系ステンレス鋼。
- 質量%で、更にMo:0.01~0.50%及びCu:0.01~0.35%のうち、いずれか一方又は両方を含有することを特徴とする請求項1又は2に記載の自動車排気系部材用フェライト系ステンレス鋼。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112012023149-9A BR112012023149B1 (pt) | 2010-03-15 | 2011-03-09 | Aço inoxidável à base de ferrita para uso em componentes de sistema de exaustão de automóvel |
ES11756153T ES2731687T3 (es) | 2010-03-15 | 2011-03-09 | Acero inoxidable basado en ferrita para uso en componentes del sistema de escape de automóviles |
EP11756153.0A EP2548988B1 (en) | 2010-03-15 | 2011-03-09 | Ferrite-based stainless steel for use in components of automobile exhaust system |
KR1020157001574A KR20150015049A (ko) | 2010-03-15 | 2011-03-09 | 자동차 배기계 부재용 페라이트계 스테인리스 강 |
CN201180013600.6A CN102791899B (zh) | 2010-03-15 | 2011-03-09 | 汽车排气系统部件用铁素体系不锈钢 |
US13/634,593 US9238855B2 (en) | 2010-03-15 | 2011-03-09 | Ferrite-based stainless steel for use in components of automobile exhaust system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010057865A JP5586279B2 (ja) | 2010-03-15 | 2010-03-15 | 自動車排気系部材用フェライト系ステンレス鋼 |
JP2010-057865 | 2010-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011114964A1 true WO2011114964A1 (ja) | 2011-09-22 |
Family
ID=44649062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055513 WO2011114964A1 (ja) | 2010-03-15 | 2011-03-09 | 自動車排気系部材用フェライト系ステンレス鋼 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9238855B2 (ja) |
EP (1) | EP2548988B1 (ja) |
JP (1) | JP5586279B2 (ja) |
KR (2) | KR20150015049A (ja) |
CN (1) | CN102791899B (ja) |
BR (1) | BR112012023149B1 (ja) |
ES (1) | ES2731687T3 (ja) |
WO (1) | WO2011114964A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013114777A1 (ja) * | 2012-02-02 | 2013-08-08 | 住友電気工業株式会社 | 内燃機関用材料の評価試験方法 |
CN104769144A (zh) * | 2012-10-30 | 2015-07-08 | 新日铁住金不锈钢株式会社 | 耐热性优良的铁素体系不锈钢板 |
CN105296860A (zh) * | 2011-03-29 | 2016-02-03 | 新日铁住金不锈钢株式会社 | 生物燃料供给系统部件用铁素体系不锈钢以及生物燃料供给系统部件 |
US20170275723A1 (en) * | 2014-10-31 | 2017-09-28 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103403205B (zh) * | 2011-02-17 | 2015-08-12 | 新日铁住金不锈钢株式会社 | 抗氧化性和高温强度优异的高纯度铁素体系不锈钢板及其制造方法 |
CN103060712B (zh) * | 2012-12-26 | 2015-06-03 | 宁波市瑞通新材料科技有限公司 | 一种锅炉用不锈耐酸钢 |
JP6006660B2 (ja) * | 2013-02-26 | 2016-10-12 | 新日鐵住金ステンレス株式会社 | 耐酸化性および耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼 |
EP2980251B1 (en) * | 2013-03-27 | 2017-12-13 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
WO2016117458A1 (ja) | 2015-01-19 | 2016-07-28 | 新日鐵住金ステンレス株式会社 | 加熱後耐食性に優れた排気系部材用フェライト系ステンレス鋼 |
CA2988556C (en) * | 2015-07-01 | 2020-04-21 | Nippon Steel & Sumitomo Metal Corporation | Austenitic heat-resistant alloy and welded structure |
CN109844153B (zh) * | 2016-10-06 | 2021-02-02 | 杰富意钢铁株式会社 | 原油油船用钢材和原油油船 |
KR101844577B1 (ko) | 2016-12-13 | 2018-04-03 | 주식회사 포스코 | 내열성 및 내응축수 부식성이 개선된 자동차 배기계용 페라이트계 스테인리스강 및 이의 제조 방법 |
CN106636944A (zh) * | 2016-12-27 | 2017-05-10 | 柳州市金岭汽车配件厂 | 汽车门槛踏板及其制备方法 |
KR102272169B1 (ko) | 2017-03-30 | 2021-07-05 | 닛테츠 스테인레스 가부시키가이샤 | 간극부의 내염해성이 우수한 페라이트계 스테인리스 강관, 관 단부 두께 증가 구조체, 용접 조인트, 및 용접 구조체 |
CN109234631B (zh) * | 2018-10-26 | 2021-01-08 | 山西太钢不锈钢股份有限公司 | 一种耐低温不锈钢及其制备方法 |
JP7186601B2 (ja) * | 2018-12-21 | 2022-12-09 | 日鉄ステンレス株式会社 | 高圧水素ガス用機器の金属材料として用いるCr系ステンレス鋼 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644576B2 (ja) | 1983-08-25 | 1989-01-26 | Kawasaki Steel Co | |
JPH06145906A (ja) | 1992-11-02 | 1994-05-27 | Kawasaki Steel Corp | 耐凝縮水腐食性に優れたフェライト系ステンレス鋼 |
JP2756190B2 (ja) | 1991-01-11 | 1998-05-25 | 川崎製鉄株式会社 | 耐凝縮水腐食性に優れ、かつ降伏強度の低いフェライト系ステンレス鋼 |
JPH1192872A (ja) | 1997-09-12 | 1999-04-06 | Nippon Steel Corp | 表面性状に優れたフェライト系ステンレス鋼及びその製造方法 |
JP2001288543A (ja) * | 2000-04-04 | 2001-10-19 | Nippon Steel Corp | 表面特性及び耐食性に優れたフェライト系ステンレス鋼及びその製造方法 |
JP2002038221A (ja) | 2000-07-24 | 2002-02-06 | Nippon Steel Corp | プレス成形性に優れる高純度Cr含有薄鋼板の製造方法 |
JP2005146345A (ja) | 2003-11-14 | 2005-06-09 | Nippon Steel & Sumikin Stainless Steel Corp | 耐酸化性に優れたフェライト系ステンレス鋼 |
JP2007092163A (ja) | 2005-09-02 | 2007-04-12 | Nisshin Steel Co Ltd | 自動車用排ガス流路部材 |
JP2008190003A (ja) | 2007-02-06 | 2008-08-21 | Nippon Steel & Sumikin Stainless Steel Corp | 耐すきま腐食性に優れたフェライト系ステンレス鋼 |
JP2009097079A (ja) | 2007-09-27 | 2009-05-07 | Nippon Steel & Sumikin Stainless Steel Corp | 耐流れさび性に優れるフェライト系ステンレス鋼 |
JP2010031315A (ja) * | 2008-07-28 | 2010-02-12 | Nippon Steel & Sumikin Stainless Steel Corp | 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644576A (en) | 1987-06-29 | 1989-01-09 | Komatsu Mfg Co Ltd | Hydraulic steering circuit |
FR2798394B1 (fr) * | 1999-09-09 | 2001-10-26 | Ugine Sa | Acier ferritique a 14% de chrome stabilise au niobium et son utilisation dans le domaine de l'automobile |
KR100762151B1 (ko) * | 2001-10-31 | 2007-10-01 | 제이에프이 스틸 가부시키가이샤 | 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법 |
US7682559B2 (en) * | 2002-12-12 | 2010-03-23 | Nippon Steel Corporation | Cr-bearing heat-resistant steel sheet excellent in workability and method for production thereof |
JP4586489B2 (ja) * | 2004-10-22 | 2010-11-24 | 住友金属工業株式会社 | 海浜耐候性に優れた鋼材と構造物 |
KR101261192B1 (ko) | 2006-05-09 | 2013-05-09 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | 내간극 부식성이 우수한 페라이트계 스테인리스 강 |
JP5058574B2 (ja) * | 2006-12-07 | 2012-10-24 | 新日本製鐵株式会社 | 電気防食される船舶バラストタンク用防錆鋼板および船舶バラストタンクの防錆方法 |
JP4651682B2 (ja) | 2008-01-28 | 2011-03-16 | 新日鐵住金ステンレス株式会社 | 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法 |
JP4624473B2 (ja) * | 2008-12-09 | 2011-02-02 | 新日鐵住金ステンレス株式会社 | 耐銹性に優れた高純度フェライト系ステンレス鋼およびその製造方法 |
-
2010
- 2010-03-15 JP JP2010057865A patent/JP5586279B2/ja active Active
-
2011
- 2011-03-09 CN CN201180013600.6A patent/CN102791899B/zh active Active
- 2011-03-09 EP EP11756153.0A patent/EP2548988B1/en active Active
- 2011-03-09 ES ES11756153T patent/ES2731687T3/es active Active
- 2011-03-09 US US13/634,593 patent/US9238855B2/en active Active
- 2011-03-09 KR KR1020157001574A patent/KR20150015049A/ko active Search and Examination
- 2011-03-09 BR BR112012023149-9A patent/BR112012023149B1/pt active IP Right Grant
- 2011-03-09 WO PCT/JP2011/055513 patent/WO2011114964A1/ja active Application Filing
- 2011-03-09 KR KR1020127023846A patent/KR20120118067A/ko active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644576B2 (ja) | 1983-08-25 | 1989-01-26 | Kawasaki Steel Co | |
JP2756190B2 (ja) | 1991-01-11 | 1998-05-25 | 川崎製鉄株式会社 | 耐凝縮水腐食性に優れ、かつ降伏強度の低いフェライト系ステンレス鋼 |
JPH06145906A (ja) | 1992-11-02 | 1994-05-27 | Kawasaki Steel Corp | 耐凝縮水腐食性に優れたフェライト系ステンレス鋼 |
JPH1192872A (ja) | 1997-09-12 | 1999-04-06 | Nippon Steel Corp | 表面性状に優れたフェライト系ステンレス鋼及びその製造方法 |
JP2001288543A (ja) * | 2000-04-04 | 2001-10-19 | Nippon Steel Corp | 表面特性及び耐食性に優れたフェライト系ステンレス鋼及びその製造方法 |
JP2002038221A (ja) | 2000-07-24 | 2002-02-06 | Nippon Steel Corp | プレス成形性に優れる高純度Cr含有薄鋼板の製造方法 |
JP2005146345A (ja) | 2003-11-14 | 2005-06-09 | Nippon Steel & Sumikin Stainless Steel Corp | 耐酸化性に優れたフェライト系ステンレス鋼 |
JP2007092163A (ja) | 2005-09-02 | 2007-04-12 | Nisshin Steel Co Ltd | 自動車用排ガス流路部材 |
JP2008190003A (ja) | 2007-02-06 | 2008-08-21 | Nippon Steel & Sumikin Stainless Steel Corp | 耐すきま腐食性に優れたフェライト系ステンレス鋼 |
JP2009097079A (ja) | 2007-09-27 | 2009-05-07 | Nippon Steel & Sumikin Stainless Steel Corp | 耐流れさび性に優れるフェライト系ステンレス鋼 |
JP2010031315A (ja) * | 2008-07-28 | 2010-02-12 | Nippon Steel & Sumikin Stainless Steel Corp | 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105296860A (zh) * | 2011-03-29 | 2016-02-03 | 新日铁住金不锈钢株式会社 | 生物燃料供给系统部件用铁素体系不锈钢以及生物燃料供给系统部件 |
US9611525B2 (en) | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
CN105296860B (zh) * | 2011-03-29 | 2017-04-05 | 新日铁住金不锈钢株式会社 | 生物燃料供给系统部件用铁素体系不锈钢以及生物燃料供给系统部件 |
WO2013114777A1 (ja) * | 2012-02-02 | 2013-08-08 | 住友電気工業株式会社 | 内燃機関用材料の評価試験方法 |
JP2013178220A (ja) * | 2012-02-02 | 2013-09-09 | Sumitomo Electric Ind Ltd | 内燃機関用材料の評価試験方法 |
CN104769144A (zh) * | 2012-10-30 | 2015-07-08 | 新日铁住金不锈钢株式会社 | 耐热性优良的铁素体系不锈钢板 |
US20170275723A1 (en) * | 2014-10-31 | 2017-09-28 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
US10752973B2 (en) | 2014-10-31 | 2020-08-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
BR112012023149B1 (pt) | 2019-04-02 |
EP2548988A4 (en) | 2017-07-26 |
JP2011190504A (ja) | 2011-09-29 |
ES2731687T3 (es) | 2019-11-18 |
EP2548988A1 (en) | 2013-01-23 |
KR20120118067A (ko) | 2012-10-25 |
EP2548988B1 (en) | 2019-05-01 |
BR112012023149A2 (ja) | 2018-06-26 |
JP5586279B2 (ja) | 2014-09-10 |
US20130004361A1 (en) | 2013-01-03 |
CN102791899A (zh) | 2012-11-21 |
US9238855B2 (en) | 2016-01-19 |
CN102791899B (zh) | 2015-11-25 |
KR20150015049A (ko) | 2015-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011114964A1 (ja) | 自動車排気系部材用フェライト系ステンレス鋼 | |
JP5320034B2 (ja) | 加熱後耐食性に優れた自動車排気系部材用省Mo型フェライト系ステンレス鋼 | |
JP5297713B2 (ja) | 加熱後耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼 | |
US9279172B2 (en) | Heat-resistance ferritic stainless steel | |
TWI431122B (zh) | 耐熱性和韌性優異之肥粒鐵系不鏽鋼 | |
US8153055B2 (en) | Ferritic stainless steel with excellent heat resistance | |
JP5658893B2 (ja) | 耐熱性に優れたフェライト系ステンレス鋼板およびその製造方法 | |
WO2012050226A1 (ja) | 耐熱性と加工性に優れるフェライト系ステンレス鋼 | |
JP5703075B2 (ja) | 耐熱性に優れたフェライト系ステンレス鋼板 | |
JP6779790B2 (ja) | 加熱後耐食性に優れた排気系部材用フェライト系ステンレス鋼 | |
JP6006660B2 (ja) | 耐酸化性および耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼 | |
JPWO2017013850A1 (ja) | フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法 | |
JP4241431B2 (ja) | フェライト系ステンレス鋼 | |
JP7542323B2 (ja) | 表面色ムラの少ないオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品 | |
JP5796398B2 (ja) | 熱疲労特性と高温疲労特性に優れたフェライト系ステンレス鋼 | |
JP7019482B2 (ja) | 耐高温塩害特性に優れたフェライト系ステンレス鋼板及び自動車排気系部品 | |
JP5343446B2 (ja) | 熱疲労特性、耐酸化性および耐高温塩害腐食性に優れるフェライト系ステンレス鋼 | |
JP7479210B2 (ja) | フェライト系ステンレス鋼板、フェライト系ステンレス鋼板の製造方法および自動車排気系部品 | |
JPH11229034A (ja) | フェライト系ステンレス鋼管の加工方法 | |
JP7475205B2 (ja) | フェライト系ステンレス鋼板、フェライト系ステンレス鋼板の製造方法および自動車排気系部品 | |
JP7479209B2 (ja) | フェライト系ステンレス鋼板、フェライト系ステンレス鋼板の製造方法および自動車排気系部品 | |
JP5089103B2 (ja) | 耐食性に優れたステンレス鋼 | |
JP2008095138A (ja) | オーステナイト鋼 | |
JP4286055B2 (ja) | 溶接部の耐粒界腐食性に優れた自動車用クロム含有鋼 | |
JP5796397B2 (ja) | 熱疲労特性と耐酸化性に優れたフェライト系ステンレス鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180013600.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756153 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127023846 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13634593 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011756153 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8392/DELNP/2012 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012023149 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012023149 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120913 |