WO2011114718A1 - Dental oct device - Google Patents
Dental oct device Download PDFInfo
- Publication number
- WO2011114718A1 WO2011114718A1 PCT/JP2011/001518 JP2011001518W WO2011114718A1 WO 2011114718 A1 WO2011114718 A1 WO 2011114718A1 JP 2011001518 W JP2011001518 W JP 2011001518W WO 2011114718 A1 WO2011114718 A1 WO 2011114718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- oct
- tooth
- light
- sheath
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/24—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00172—Optical arrangements with means for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4542—Evaluating the mouth, e.g. the jaw
- A61B5/4547—Evaluating teeth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/178—Methods for obtaining spatial resolution of the property being measured
- G01N2021/1785—Three dimensional
- G01N2021/1787—Tomographic, i.e. computerised reconstruction from projective measurements
Definitions
- the present invention relates to a dental optical coherence tomography (OCT) apparatus used when acquiring a tomographic image in a root canal. More specifically, the tomographic images of the tooth apex, apical periodontal tissue, and side branches can be acquired and the tissue images can be drawn, and the conventional dental diagnostic imaging equipment is extremely photographed.
- the present invention relates to a dental OCT apparatus that enables diagnosis and diagnosis of dental diseases such as remnants, pulpal root canals, fractures, and cracks. Moreover, it is related with the dental OCT apparatus which image
- Caries are a disease that accounts for about 40% of the causes of tooth extraction. As the caries deepen into the tooth, inflammation occurs in the pulp, causing pulpitis. Pulpitis is classified into, for example, acute pulpitis and chronic pulpitis, and in the initial symptoms of acute pulpitis, odontoblasts undergo degenerative atrophy, hyperemia, serous exudation, etc. at the site of inflammation. For deciduous teeth and young people who have a fast progress of touching, the dentin is destroyed almost before and after acute purulent pulpitis, and open total purulent pulpitis occurs, resulting in pulp necrosis. In the case of pulpitis, if left untreated, inflammation or infection may develop in the periodontal tissue including the periodontal ligament, periosteum, and jawbone.
- Periapical periodontitis has a long period of time compared to pulpitis and the pain symptoms are mild, and it often destroys the jawbone over time with apical periodontal abscess ⁇ granulomas ⁇ cyst, There are cases that are discovered after becoming serious, such as retrograde infection of surrounding teeth, which is a major cause of tooth loss.
- Infected lesions formed in the jawbone continuously infiltrate the whole body blood vessels even when chronic, causing infective endocarditis, myocardial infarction, cerebral infarction, and the like.
- the anatomical form of the tooth apex often has side branches and a net-like apex compared to the root body. Since the structures of the side branches and the reticulated apex are fine and complex, and these complex structures vary from person to person, it is extremely difficult to evaluate the side branch and the reticulated apex in vivo. In addition, it is extremely difficult to find an excessively stenotic root canal that is present in the medullary canal that is narrowed with age, which reduces the outcome of endodontic therapy.
- Root canal treatment is performed blindly using a reamer and a file, and there is no method for directly confirming the condition inside the root canal or the root canal wall or root apex.
- Hard tissue examination methods in dental clinics include dental X-ray photography, panoramic X-ray examination, and dental CT, etc., all of which have low resolution and accurate depiction of tooth apex anatomy. It is extremely difficult to depict apical periodontitis, detect fractures of roots, etc.
- OCT is a state-of-the-art technology that can acquire tomographic images from the surface layer to the inside of a living tissue at high speed and with high resolution, and has attracted attention as non-invasive imaging including ophthalmology.
- Non-Patent Document 1 describes intra-root OCT imaging of the root of the tooth root using OCT for cardiovascular (Light-Lab (registered trademark)).
- Patent Document 1 describes an OCT probe that acquires a tomographic image of an observation object in the oral cavity using low-coherence light emitted from a light source.
- the light emission angle is 90 degrees with respect to the optical fiber, and the diameter of the OCT probe is larger than the root canal diameter. It is possible to depict only the tooth apex and apical periodontal tissue, and excessive root canal enlargement that penetrates the tooth is necessary, and the root apex and root apex without root canal enlargement. It is impossible to visualize the periodontal tissue.
- the OCT probe of Patent Document 1 also has a light emission angle of 90 degrees with respect to the optical fiber. Even if this OCT probe is applied to intra-root canal imaging, the upper pulp cavity and the root canal body part Although it is possible to depict the tooth apex and the apical periodontal tissue, it is impossible.
- the first is the occlusal surface of the tooth
- the second is the cervical part
- the third is the tooth and teeth adjacent to each other. It is a tooth adjacent surface that is a surface that is present.
- an X-ray imaging apparatus an intraoral camera, a dental camera, X-ray CT, MRI, and the like are used for inspection and examination.
- the image obtained by the X-ray imaging apparatus is a transmission image, and it is difficult to know the internal structure of the measurement object three-dimensionally, and X-rays are harmful to the human body.
- the intraoral camera images only the surface of the intraoral tissue, internal information such as teeth cannot be obtained.
- X-ray CT is harmful to the human body as well as an X-ray imaging apparatus and has a poor resolution.
- MRI has poor resolution and a large and expensive apparatus.
- an OCT (Optical Coherence Tomography) apparatus is harmless to the human body and can obtain three-dimensional information of a measurement object with high resolution.
- an invention using an OCT apparatus has been made.
- low-coherent light generating means for irradiating a tooth part of a subject, and means for scanning a predetermined region of the tooth part using the low-coherent light as signal light
- OCT means for acquiring an optical tomographic image of a scanning region by interference between reflected light from a predetermined depth in the scanning region and reference light, and describes a low-coherent light as a subject.
- a handpiece type OCT probe attached to the tip of an arm is described.
- the maximum opening of a person which is the distance from the mandibular anterior tooth incision to the maxillary anterior incision, is limited to about 35 to 40 mm for adults. Especially, the average maximum opening for women is about 7 mm than that for men. There are few. Therefore, in the above-described dental diagnosis OCT apparatus, it is difficult to accurately photograph the occlusal surface where the lingual inclination is recognized from the anatomical form of the dentition.
- the tooth adjacent surface is very narrow, it is a site that is less cleanable and self-cleaning than other tooth surfaces, and easily becomes an unclean area, and is therefore considered a touch-prone site.
- an adjacent tooth may be slightly opened using an instrument called an interdental opener for visual inspection.
- an interdental opener for visual inspection.
- pathologically initial caudal lesions have occurred, it is difficult to find a crust change on the surface by visual inspection, and therefore, it is difficult to find a crust on the adjacent tooth surface.
- a dental X-ray examination or a wing-type X-ray examination in which a small X-ray film is attached with a wing and then bitten and fixed to emit X-rays. X-ray imaging of the tooth adjacent surface by the method is performed.
- Patent Document 4 describes an X-ray photography holder that enables good positioning for photographing an anterior bite wing.
- Patent Document 5 describes a receptor positioning device that has a sighting plate that forms a substantially rectangular opening and that is used to take dental dental wing X-rays of a tooth inside a patient's mouth.
- image processing that improves the contrast of an object and does not deteriorate the graininess is performed, the sharpness of a dental digital X-ray image is improved, and the X-ray photograph image of the adjacent caries is sharpened.
- An X-ray image acquisition method is described.
- the present invention has been made in view of such problems, and an object of the present invention is to provide a dental OCT apparatus that enables accurate imaging of the occlusal surface of the tooth and enables accurate examination of the occlusal surface of the tooth.
- a dental OCT apparatus includes a light source that emits light, a flexible sheath in which at least the distal end side region is transparent, and a probe main body disposed in the sheath, An OCT probe, one end of which is connected to the light source and the other end of which is connected to the probe body, and an image display unit that displays an image of an observation target in the oral cavity.
- the light guided from the light source through the light guiding unit is emitted to the observation target, the reflected light is swept to the light guiding unit, and an image based on the reflected light is displayed on the image display unit.
- the OCT probe includes a first OCT probe that changes the direction of incident light from the light guide unit to a viewing object while changing the direction to a right angle, a second OCT probe that emits the incident light to the observation object, and the incident light.
- a first OCT probe that changes the direction of incident light from the light guide unit to a viewing object while changing the direction to a right angle
- a second OCT probe that emits the incident light to the observation object
- the incident light a third OCT probe that emits to the observation object at an emission angle between the emission angle by the second OCT probe and the first OCT probe
- the OCT probe has a rotating means for rotating the probe main body and a moving means for moving the probe main body back and forth within the sheath, and the OCT probe is located above or below the interdental space.
- a probe is inserted, the sheath is fixed in the interdental space where the OCT probe is inserted, the probe body is rotated by the rotating means, and the probe is moved by the moving means in the fixed sheath. Since the image of the tooth adjacent surface is imaged with the OCT probe by performing at least one of the main body back and forth movement, it is possible to accurately capture the tooth adjacent surface touch.
- a rotating means for rotating the probe body a forward / backward moving means for moving the probe body back and forth within the sheath, a horizontal moving means for moving the OCT probe horizontally, and the OCT probe vertically Since it is provided with a vertical moving means for moving, it is possible to accurately photograph the tooth occlusal surface.
- the present invention it is possible to acquire an image of the upper root canal from the first OCT probe, acquire an image of the tooth apex and the like from the second OCT probe, and acquire an image of the side wall of the root canal from the third OCT probe.
- the root apex of the tooth, the apical periodontal tissue, and the side branch can be drawn without performing root canal enlargement. Therefore, it is possible to conduct a precise examination at the first treatment of pulpitis and apical periodontitis, and to directly confirm the actual condition inside the root canal and root canal wall and apical lesions. Therefore, root canal treatment can be performed easily and accurately.
- objective image inspections such as the presence or absence of fractures, cracks, deformed excessively stenosed root canals, and remnants are possible, making it possible to diagnose and diagnose dental diseases that were extremely difficult with conventional dental imaging equipment. Make it possible.
- an image of the adjacent tooth surface from various directions can be obtained by inserting an OCT probe into the interdental space and performing at least one of rotation and forward / backward movement.
- the entire tooth adjacent surface can be directly irradiated with light, so that it is possible to accurately photograph the touch of the tooth adjacent surface, and particularly early detection of an initial lesion is possible.
- an OCT probe is inserted in the vicinity of the tooth occlusion surface, and at least one of rotation and back-and-forth movement of the probe body is performed, and OCT imaging is performed according to the surface form of the tooth occlusion surface. Therefore, for example, even a woman with a small maximum opening can accurately photograph a tooth occlusal surface. Further, by disposing the sheath along the undulating form of the tooth occlusal surface, it is possible to perform precise scanning along the surface form of the tooth occlusal surface and to accurately detect the tooth occlusal surface touch.
- emits incident light with respect to an optical fiber It is explanatory drawing of the 3rd probe main body which injects incident light with the direction changed at an obtuse angle with respect to the optical fiber. It is a use mode figure of the OCT probe which uses the 2nd probe main part.
- the dental OCT apparatus 900 photographs the adjacent tooth surface by inserting the OCT probe 140 into the interdental space and performing at least one of rotation and back-and-forth movement.
- the OCT device is a device that can measure in vivo tissue with a very high resolution in the micro order.
- OCT by using a near-infrared light source that can reach below the body surface, it is possible to measure not only the surface portion of the subject but also the deep portion.
- Near-infrared rays are not radiation that is harmful to the living body, such as X-rays (X-rays), so that it is possible to strictly inspect a non-invasive subject.
- FIG. 1 is a block diagram showing the overall configuration of a dental OCT apparatus 900 according to this embodiment.
- the dental OCT apparatus 900 uses a near-infrared light source 110 that oscillates an optical signal in a certain frequency range as a wavelength scanning light source. Since it is a wavelength scanning type OCT, the two-dimensional data collection speed is remarkably fast.
- the wavelength of the light source 110 is, for example, 700 nm to 2500 nm, and corresponds to the wavelength of near infrared light that enters the living body.
- the output of the light source 110 is given to an optical fiber 111 as a light guiding means. In the middle portion of the optical fiber 111, a coupling portion 113 is provided for causing another optical fiber 112 to approach and interfere.
- An OCT probe 140 is provided at one end of the optical fiber 112 as a light guiding means.
- the OCT probe 140 includes a sheath 150 and a probe main body 131 disposed in the sheath 150.
- the sheath 150 is permeable at least in the distal end region and is formed of a flexible material.
- the probe body 131 emits light guided from the optical fiber 112 to the tooth adjacent surface that is the observation target 200, sweeps the reflected light to the optical fiber 112, and displays an image based on the reflected light on an image display unit 125 described later. indicate.
- a reference mirror 118 is provided perpendicularly to the optical axis via a collimating lens 117.
- the optical distance L1 from the coupling portion 113 to the reference mirror 118 and the optical distance L2 from the coupling portion 113 to the surface that is the measurement site of the observation target 200 are set equal.
- a photodetector 121 is connected to the other end of the optical fiber 112 via a lens 120.
- the reference mirror 118 interferes with the backscattered light returning from the observation target 200 and generates interference light.
- the light detector 121 is composed of, for example, a light receiving element or a CCD (Charge Coupled Device) image sensor, and receives the interference light between the reflected light from the reference mirror 118 and the light reflected from the measurement site, thereby converting the beat signal into an electrical signal.
- the optical fiber 111, the optical fiber 112, the coupling portion 113, the collimator lens 117, the reference mirror 118, and the lens 120 constitute an interference optical system.
- the output of the photodetector 121 is input to the signal processing unit 123 via the amplifier 122.
- the signal processing unit 123 obtains a tomographic image signal by performing a Fourier transform on the received light signal obtained from the interference optical system.
- the output from the signal processing unit 123 is given to the image processing unit 124.
- the image processing unit 124 generates a two-dimensional or three-dimensional image of the observation target 200 based on the output from the signal processing unit 123.
- the display image generated in this way is displayed by the image display unit 125.
- FIG. 2 is an explanatory diagram for explaining the OCT probe 140.
- the OCT probe 140 includes a sheath 150 and a probe main body 131 disposed in the sheath 150.
- the probe main body 131 is connected to the end face of the optical fiber 112 in an axially aligned state.
- the probe main body 131 includes a prism 135, a GRIN lens (refractive index inclined lens) 136, and a connection light guide unit 137 that connects the GRIN lens 136 and the optical fiber 112 in order from the distal end side.
- the prism 135 is, for example, a right-angle prism, and is arranged so that the emission angle of the light guided by the optical fiber 112 is a right angle. The light deflected at a right angle by the prism 135 passes through the sheath 150 and irradiates the observation target 200 existing outside.
- the OCT probe 140 is provided with a rotating means 160 at the end on the proximal end side of the probe main body 131.
- the rotating means 160 has an actuator provided with a motor, and the probe main body 131 is connected to the rotating shaft of the motor.
- the probe main body 131 is configured to be detachable from the actuator, and is rotated by the actuator of the rotating means 160.
- the rotating means 160 can be driven by a controller (not shown).
- the rotating means 160 is not limited to the configuration provided at the proximal end of the probe main body 131.
- the rotating means 160 is provided at the proximal end of the OCT probe 140 and extends from the rotating means 160 to the distal end. It is also possible to adopt a configuration in which the outgoing optical fiber and the probe main body 131 are rotated.
- the OCT probe 140 is provided with a moving means 171 having a guide rail 171b provided along the longitudinal direction inside the sheath 150 and a slider 171a.
- the slider 171a is provided between the probe main body 131 and the guide rail 171b, supports the probe main body 131, and is movable back and forth along the guide rail 171b.
- the probe main body 131 can be moved back and forth within the sheath 150 by moving the slider 171a back and forth.
- the slider 171a can be moved back and forth by a slider cylinder, for example, and can be driven by a controller (not shown).
- the probe main body 131 is moved in the sheath 150 by moving the roller back and forth. Can be moved back and forth.
- FIG. 3A and FIG. 3B are explanatory diagrams for explaining the touch of the adjacent tooth surface.
- FIG. 3A is a photographic view of the tooth adjacent surface contact
- FIG. 3B is a schematic view of the tooth adjacent surface contact.
- an interval of about 50 to 80 ⁇ m, which does not cause food impaction, is appropriate between teeth, and the interval between adjacent teeth is very narrow. It is difficult to find the touch.
- FIG. 4A and FIG. 4B are photographic diagrams as comparative examples in which OCT imaging is performed from the side of the buccal side of the tooth contact surface.
- 4A is a photograph of the buccal side view
- FIG. 4B is an OCT photograph from the buccal side.
- OCT imaging is performed from the side of the cheek so as to pass through the solid line shown in FIG. 4A
- the tomographic image shown in FIG. 4B is obtained.
- a slight touch abnormality is shown.
- FIGS. 5A and 5B are photographic views as comparative examples in which OCT imaging is performed from the occlusal surface side of the tooth adjacent surface.
- 5A is a photograph of the occlusal view
- FIG. 5B is an OCT photograph from the occlusal surface.
- OCT imaging is performed from the occlusal surface so as to pass through the solid line shown in FIG. 5A
- a tomographic image shown in FIG. 5B is obtained.
- a slight touch abnormality is shown.
- FIGS. 6A and 6B are photographic views as comparative examples in which OCT imaging is performed from the side of the lingual surface of the tooth adjacent surface.
- 6A is a photograph of the lingual side view
- FIG. 6B is an OCT photograph from the lingual side.
- OCT imaging is performed from the side of the tongue so as to pass the solid line shown in FIG. 6A
- a tomographic image shown in FIG. 6B is obtained.
- the abnormal touch findings are hardly understood in the OCT imaging from the side of the tongue.
- FIG. 7A, FIG. 7B and FIG. 7C are explanatory views for explaining a method for photographing a tooth adjacent surface according to the present embodiment.
- 7A is an explanatory view from the cheek side
- FIG. 7B is an explanatory view from the tongue side
- FIG. 7C is an explanatory view from the occlusal surface.
- the OCT probe 140 is inserted into the upper part or the lower part of the interdental hour space, and the sheath 150 is fixed in the interdental hour space where the OCT probe 140 is inserted.
- the sheath 150 is flexible, it is easy to insert the OCT probe 140 into the interdental space and it is difficult to damage periodontal tissue in the vicinity of the interdental space. Then, while rotating the probe main body 131 by the rotating means 160, an image of the tooth adjacent surface is taken by the OCT probe 140. Alternatively, the probe body 131 is moved forward or backward by the moving means 171 in the fixed sheath 150 and an image of the tooth adjacent surface is taken by the OCT probe 140. Alternatively, the probe body 131 is moved forward or backward by the moving means 171 in the fixed sheath 150 while the probe body 131 is rotated by the rotating means 160, and an image of the tooth adjacent surface is taken by the OCT probe 140.
- the rotation of the probe body 131 is 360 degrees, but is not limited to this.
- the rotation is 180 degrees downward.
- the OCT probe 140 is inserted in the lower part of the interdental space, it can be rotated 180 degrees upward.
- the probe main body 131 can be moved forward or backward together with the sheath 150 and an image of the tooth adjacent surface can be taken with the OCT probe 140.
- a sheath moving means for moving the sheath 150 is provided without providing the moving means 171 for moving the probe main body 131 back and forth within the sheath 150.
- the sheath 150 has a double structure formed by an outer sheath and an inner sheath, the outer sheath is fixed in the interdental space, and the probe body 131 is moved forward or backward together with the inner sheath. It is also possible to take an image of the tooth adjacent surface.
- FIG. 8A and FIG. 8B are photographic views for explaining photographing of a tooth adjacent surface according to the present embodiment.
- 8A is a photographic view for explaining the incident direction
- FIG. 8B is a photographic view for explaining the position of the cross section corresponding to each incident direction.
- the OCT probe 140 is inserted into the upper part of the interdental space, the sheath 150 is fixed, and an image of the adjacent tooth surface is taken while the probe body 131 is rotated as indicated by an arrow R in FIG. 8A.
- the position of the cross section in such a case is indicated by R in FIG. 8B.
- the OCT probe 140 is inserted into the upper part of the interdental space, and the sheath 150 is fixed.
- the main body 131 is moved forward or backward to take an image of the tooth adjacent surface.
- the position of the cross section in such a case is indicated by S 1 , S 2 , S 3 , and S 4 in FIG. 8B, respectively.
- FIG. 9 is a tomographic image obtained by rotating the probe main body 131 in the imaging of the tooth adjacent surface according to the present embodiment.
- the progress of the touch can be clearly confirmed in the tomographic photograph of the cross section indicated by R in FIG. 8B.
- 10A, 10B, 10C, and 10D are tomographic photographs obtained by moving the probe main body 131 forward or backward in imaging of a tooth adjacent surface according to the present embodiment.
- the tomographic images of the cross sections indicated by S 1 , S 2 , S 3 , and S 4 in FIG. can do.
- the rotation of the probe main body 131 is performed by the rotating means 160 in the imaging of the tooth adjacent surface.
- the rotation is not limited to such an embodiment, and the rotation of the probe main body 131 is not performed by humans. Manual operation is also possible.
- the probe body 131 is moved back and forth by the moving means 171.
- the probe body 131 is not limited to such an embodiment, and the probe body 131 can be moved back and forth by a human hand.
- the probe main body 131 emits incident light from the optical fiber while changing the direction to a right angle (first probe main body).
- first probe main body the probe main body 131 emits incident light from the optical fiber while changing the direction to a right angle
- FIG. 11A and 11B are diagrams illustrating the OCT probe according to Embodiment 1B in which the direction of incident light is changed in a direction different from a right angle.
- FIG. 11A is an explanatory diagram of the second probe main body 132 that emits incident light at an acute angle with respect to the optical fiber
- FIG. 11B emits incident light at an obtuse angle with respect to the optical fiber. It is explanatory drawing of the 3rd probe main body.
- the prism 235 is configured so that the emission angle of the light guided by the optical fiber 112 is irradiated at an acute angle.
- the irradiation angle ⁇ is For example, it is 60 degrees.
- the prism 335 is configured so that the emission angle of the light guided by the optical fiber 112 is irradiated at an obtuse angle.
- ⁇ is 130 degrees.
- Other configurations are the same as those of the first probe main body 131 described above.
- FIG. 12A and FIG. 12B are diagrams for explaining how to use the OCT probe according to Embodiment 1B.
- FIG. 12A shows how the OCT probe uses the second probe body
- FIG. 12B shows how the OCT probe uses the third probe body.
- the probe main body includes three types of the first probe main body 131, the second probe main body 132, or the third probe main body 133, and the first probe main body 131, the second probe main body 132, or the third probe main body.
- the main body 133 is used interchangeably. That is, in the normal usage mode, the first probe body 131 is used.
- FIG. 12A shows how the OCT probe uses the second probe body
- FIG. 12B shows how the OCT probe uses the third probe body.
- the probe main body includes three types of the first probe main body 131, the second probe main body 132, or the third probe main body 133, and the first probe main body 131, the second probe main body 132, or the third probe main body.
- the 2nd probe main body 132 is used.
- the third probe body 133 is used when it is difficult to insert the OCT probe 140 because the lower part of the interdental drum-shaped gap is narrow. Thereby, even when the lower part of the interdental space is narrow and it is difficult to insert the OCT probe 140, it is possible to accurately photograph the adjacent tooth surface.
- the sheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131.
- the refractive index of the matching oil may be the same as or close to the refractive index of the prism 135, or the same or close to the refractive index of the sheath 150 may be used.
- the refractive index of the prism 135 and the refractive index of the sheath 150 are the same or close to each other, it is possible to use the refractive index.
- the matching oil filled in the sheath 150 has a viscosity enough to ensure the rotation and back-and-forth movement of the OCT probe 131 smoothly.
- the matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131, it is possible to prevent light connection loss and to photograph a clear tooth adjacent surface.
- Embodiment 1D In the above-described embodiment 1A, when the space between the sheath 150 and the observation target 200 is air, the refractive index of each connection portion is different between the sheath 150 ⁇ air and the air ⁇ observation target 200. In some cases, optical connection loss due to the difference may occur. Therefore, in the present embodiment, matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200 is disposed around the sheath 150.
- the refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150.
- the matching oil disposed around the sheath 150 is preferably viscous so that it stays in the interdental hour space for a certain period of time, and because it contacts the dental hour space, it may not have any biological harm. is necessary.
- the type of matching oil disposed around the sheath 150 is not particularly limited, and for example, vegetable oil or the like can be used.
- FIG. 13 is an explanatory view of photographing a tooth adjacent surface using an expanding body 300 having a shape closely contacting with an interdental space.
- an OCT probe 140 is inserted into the inner cavity 310 of the expansion body 300, and an anti-attenuation medium that prevents light attenuation due to a difference in refractive index is injected into the expansion body 300. Then, the expansion body 300 is brought into close contact with the interdental space, and an image of the adjacent tooth surface is taken with the OCT probe 140.
- the anti-attenuation medium is filled in the expansion body 300, it does not matter whether there is any biological harm or no viscosity.
- the anti-attenuation medium is not particularly limited. For example, water, physiological saline, vegetable oil, or the like can be used. Thereby, the connection loss of the light resulting from the air in the space between the sheath 150 and the observation target 200 can be prevented, and clear imaging of the adjacent tooth surface becomes possible.
- FIG. 14 is an explanatory view showing a specific example of a cross section of the expansion body 300.
- the expanded body 300 is formed with a smooth concave curve in which the cross section when expanded is recessed inward.
- the interdental space is formed by a smooth convex curve that protrudes to the outside. By having such a cross-sectional shape, the interdental space has a shape that can easily adhere to the interdental space when the expansion body 300 expands. Become.
- the moving means 171 for moving the probe main body 131 back and forth within the sheath 150 includes the slider 171a and the guide rail 171b provided inside the sheath 150.
- the moving means for moving the probe main body 131 back and forth within the sheath 150 is not limited to such an embodiment.
- FIG. 15 is an explanatory diagram for explaining an OCT probe having moving means according to another embodiment.
- the end of the probe main body 131 on the proximal end side is provided with a telescopic moving means 179 composed of a multistage rod.
- the moving means 179 may be attached to the rotating means 160 located at the proximal end of the probe main body 131 as shown in FIG. 15, or directly to the proximal end of the probe main body 131. It is also possible to attach.
- the moving means 179 may be formed of a string-like member without being configured as an expandable / contractible multi-stage rod structure, and the string-like member may be wound up by a reel or the like. Note that 179 can exist at the center of probe rotation. According to such a configuration, the probe main body 131 cannot be moved to the distal end side within the sheath 150, but the probe main body 131 can be moved to the proximal end side within the sheath 150 with a simple configuration.
- the dental OCT apparatus 900 inserts an OCT probe 140 in the vicinity of the tooth occlusion surface, performs at least one of rotation and forward / backward movement, and performs OCT imaging according to the surface form of the tooth occlusion surface.
- the overall configuration of the dental OCT apparatus 900 according to this embodiment is the same as that of Embodiment 1A as shown in FIG.
- the observation target 200 is a tooth occlusal surface.
- the configuration of the OCT probe 140 is the same as that of the embodiment 1A as shown in FIG.
- the thickness of the probe main body 131 is not particularly limited as long as it is a size that can be inserted into the oral cavity, but is 0.4 to 0.8 mm, for example.
- FIG. 16 is an explanatory diagram for explaining the horizontal moving means 220 for moving the OCT probe 140 horizontally and the vertical moving means 230 for moving the OCT probe 140 vertically.
- the moving means 171 is omitted in FIG.
- support rails 210 are laid on both outer sides of the sheath 150, and the support rails 210 support the OCT probe 140.
- the horizontal moving means 220 supports the base end portion of the support rail 210 and can freely move the support rail 210 left and right (in the y-axis direction in FIG. 16) or front and rear (in the x-axis direction in FIG. 16). is there.
- the vertical moving unit 230 can move the horizontal moving unit 220 vertically (up and down), and moves the OCT probe 140 vertically (up and down) freely (in the z-axis direction in FIG. 16).
- the vertical moving unit 230 moves the horizontal moving unit 220 vertically.
- the horizontal moving unit 220 is the vertical moving unit 230. It is also possible to adopt a configuration in which the is moved horizontally.
- FIG. 17A and 17B are explanatory views for explaining the surface form of the occlusal surface of the molar tooth, in which FIG. 17A is the surface form of the occlusal surface of the upper first premolar, and FIG. 17B is the upper first molar tooth. It is the surface form of the tooth occlusal surface. 17A and 17B, 611 is a buccal lateral ridge, 612 is a buccal lateral surface, 613 is a central occlusal ridge, 614 is a corner angle, 615 is a mesial occlusal surface ridge, and 616 is a mesial marginal ridge.
- the tooth occlusal surface is a concave surface facing each other between the cusps of the upper and lower molars, and is a ridge, fissure, fossa or the like.
- tooth occlusal surface ensures the function of chewing food, and the spillway assures the function of finely grinding the chewed food.
- a tooth occlusal surface is not formed in an anterior tooth part, but a cutting edge part is formed.
- FIG. 18A and FIG. 18B are photographic diagrams as comparative examples in which the occlusal surface of the tooth is OCT imaged using a handpiece type OCT probe.
- 18A is an OCT image of the occlusal surface of the lower molar
- FIG. 18B is an OCT image of the occlusal surface of the upper molar.
- the maximum human opening is limited to about 35 to 40 mm for adults. Therefore, in OCT imaging using a handpiece type OCT probe, light is applied to the tooth occlusal surface. It is extremely difficult to make the light incident vertically.
- differences in the refraction and scattering phenomena occur due to slight differences in the incident angle of light. Therefore, in imaging methods in which light cannot be incident perpendicularly to the tooth occlusal surface, there is a difference in image rendering ability and accuracy. It is difficult to photograph the occlusal surface of the teeth.
- FIG. 19A and FIG. 19B are a method for photographing a tooth occlusal surface according to this embodiment.
- 19A is a view for explaining horizontal movement of the OCT probe 140
- FIG. 19B is a view for explaining vertical movement of the OCT probe 140.
- the OCT probe 140 is placed in the vicinity of the tooth occlusion surface. Since the sheath 150 is flexible, it is difficult to damage the periodontal tissue.
- the rotation range angle of the probe main body 131 needs to be a rotation range angle that can cover the form of the tooth occlusal surface by the rotation of the probe main body 131 and is not particularly limited, but is, for example, 30 ° to 90 °. is there. It is also possible to rotate the probe main body 131 without moving back and forth and photograph with the OCT probe 140, or move the probe main body 131 back and forth without rotating and photograph with the OCT probe 140. Then, as shown in FIG.
- the OCT probe 140 is moved horizontally (front and rear, left and right) by the horizontal moving means 220, and OCT imaging according to the form of the tooth occlusal surface at the horizontal position is performed. Further, as shown in FIG. 19B, the OCT probe 140 is moved vertically (up and down) by the vertical moving means 230, the distance from the observation target 200 is kept constant, and the shape of the tooth occlusal surface is improved with high sensitivity and resolution. Perform OCT imaging.
- the OCT probe is inserted in the vicinity of the tooth occlusal surface, and at least one of rotation and forward / backward movement of the probe body is performed, and OCT imaging is performed according to the surface form of the tooth occlusal surface. It is possible to shoot a proper tooth occlusal surface. Furthermore, according to the present invention, accurate and clear imaging can be performed not only on the occlusal surface of the tooth but also on the tongue side surface and the lingual side of the tooth / periodontal tissue and the lingual side of the tooth.
- the OCT probe 140 can also take an image of the tooth occlusal surface by moving the probe body 131 forward or backward together with the sheath 150. In such a case, it is not necessary to provide moving means 171 for moving the probe main body 131 back and forth within the sheath 150.
- the sheath 150 has a double structure formed by an outer sheath and an inner sheath, the outer sheath is fixed in the vicinity of the tooth occlusion surface, and the probe body 131 is moved forward or backward together with the inner sheath to occlude the tooth. It is also possible to take an image of the surface.
- the rotation of the probe main body 131 is performed by the rotating means 160 in photographing the occlusal surface of the tooth.
- the rotation of the probe main body 131 is not limited to such an embodiment. Manual operation is also possible.
- the probe body 131 is moved back and forth by the moving means 171.
- the probe body 131 is not limited to such an embodiment, and the probe body 131 can be moved back and forth by a human hand.
- the horizontal and vertical movements of the OCT probe 140 can be operated by human hands.
- FIG. 20 is an explanatory diagram for explaining a sheath 151 provided along the undulation form of the tooth occlusal surface.
- the tooth occlusion surface has a complicated shape having a raised portion and a groove bottom portion at the center, and the sheath 151 is arranged at a constant distance from the tooth occlusion surface.
- the distance between the tooth occlusal surface and the sheath 151 is not particularly limited, and can be, for example, 0 to 10 mm.
- the sheath 151 When the distance is set to 0 mm, the sheath 151 can be fixedly supported while being in close contact with the tooth occlusal surface.
- the sheath 151 is made of a material that is flexible and plastically deformed. By pressing the sheath 151 against the tooth occlusal surface to be observed 200, the sheath 151 along the undulation form of the tooth occlusion surface can be easily formed. Can do.
- the support rail 210 that supports the sheath 151 is not shown, it can be laid along the form of the sheath 151, for example, and the horizontal moving means 220 supports the proximal end of the support rail 210 and supports the OCT probe 140.
- the vertical moving means 230 moves the OCT probe 140 vertically freely by moving the horizontal moving means 220 vertically.
- the horizontal moving means 220 and the vertical moving means 230 only the sheath 151 provided along the undulating form of the tooth occlusal surface is provided, and the probe main body 131 is rotated in the sheath 151 to move back and forth. It is also possible to photograph the tooth occlusion surface.
- the sheath 151 provided along the undulation form of the tooth occlusal surface By using the sheath 151 provided along the undulation form of the tooth occlusal surface, the distance between the tooth occlusal surface to be observed 200 and the probe main body 131 can be accurately maintained at a constant interval, and the resolution can be further improved. Shooting is possible.
- Embodiment 2C In the present embodiment, as shown in Embodiment 1B, the second probe main body 132 that emits incident light with an acute angle changed with respect to the optical fiber, and the incident light emitted with an obtuse angle changed with respect to the optical fiber. And a third probe body 133 to be used.
- FIG. 21A and FIG. 21B are diagrams for explaining how to use the OCT probe according to Embodiment 2C.
- 21A shows how the OCT probe uses the second probe body 132
- FIG. 21B shows how the OCT probe uses the third probe body 133.
- the probe main body includes three types of the first probe main body 131, the second probe main body 132, or the third probe main body 133, and the first probe main body 131, the second probe main body 132, or the third probe main body.
- the main body 133 is used interchangeably. That is, in the normal usage mode, the first probe body 131 is used. Then, as shown in FIG.
- the second probe main body 132 when the OCT probe 140 is inserted on the tooth occlusion surface and the tooth occlusion surface is imaged obliquely rearward from the distal end side to the proximal end side, the second probe main body 132 is used. .
- the third probe main body 133 is used when photographing the occlusal surface obliquely forward from the proximal end side to the distal end side.
- the sheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131.
- matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200 is disposed around the sheath 150.
- the refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150.
- the matching oil disposed around the sheath 150 has a viscosity that is in contact with the tooth occlusal surface and stagnates for a certain period of time. In contact with the tooth occlusal surface, in the case of the tooth occlusal surface of the lower molar, it is immediately above the tooth occlusal surface, and in the case of the tooth occlusal surface of the upper molar, directly under the tooth occlusal surface. Moreover, since the matching oil arrange
- the type of matching oil disposed around the sheath 150 is not particularly limited, and for example, vegetable oil or the like can be used. By using the matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200, it is possible to prevent loss of light connection and to photograph a clear tooth occlusal surface.
- FIG. 22 is an explanatory diagram of the vessel portion 301 installed in contact with the tooth occlusal surface.
- a container 301 installed in contact with the tooth occlusal surface may be provided, and the container 301 may be filled with an anti-attenuation medium that prevents light attenuation due to a difference in refractive index.
- An insertion hole 311 into which the OCT probe 140 can be inserted is formed on the side surface of the vessel portion 301.
- the OCT probe 140 is inserted into the insertion hole 311 of the vessel part 301.
- the anti-attenuation medium is not particularly limited as long as it has no biological harm, but for example, water, physiological saline, vegetable oil, or the like can be used. Thereby, the connection loss of the light resulting from the air in the space between the sheath 150 and the observation object 200 can be prevented, and a clear image of the occlusal surface can be obtained.
- the insertion hole 311 has a size that allows the OCT probe 140 to move vertically and horizontally. Therefore, when the OCT probe 140 moves vertically and horizontally, a small amount of the anti-attenuation medium filled in the vessel portion 301 may flow out from the insertion hole 311.
- the size of the shape is set such that the insertion hole 311 of the vessel part 301 is located outside the oral cavity. As a result, even if a small amount of the anti-attenuation medium flows out from the insertion hole 311, since it flows out of the oral cavity, there is no possibility of giving discomfort to the patient.
- FIG. 23 is a block diagram showing the overall structure of the dental OCT apparatus 900 of this embodiment.
- the path of the electric signal is indicated by a one-dot chain line.
- the dental OCT apparatus 900 according to this embodiment includes a first OCT probe 101 that externally irradiates the OCT probe so that the light emission angle becomes a right angle, and a first OCT probe 101 that externally irradiates light toward the probe tip.
- a 2OCT probe 102 and a third OCT probe 103 that performs external irradiation at an irradiation angle between the irradiation angle of the first OCT probe 101 and the irradiation angle of the second OCT probe 102 are configured. These are selected and used interchangeably according to the rendering target position of the tissue in the root canal. In FIG. 23, the first OCT probe 101 is used.
- the dental OCT apparatus 900 includes a first OCT probe 101, an OCT main apparatus 800, and an image display unit 125, and an intraoral examination body that is an observation target using the first OCT probe 101.
- a tomographic image relating to a living tissue is acquired.
- the direction approaching the light source of the OCT probe 101 on the optical path is defined as the proximal end side, and the direction away from the light source is defined as the distal end side.
- the OCT main device 800 includes a light source 110, a fiber coupler 213, a controller 281, a rotary joint 214, a first actuator 215, a light detection unit 216, a signal processing unit 123, a lens 218, a roof mirror 219, a second actuator 282, and a light guiding unit.
- First to fourth optical fibers F1 to F4 the first optical fiber F1 connects the light source 110 and the fiber coupler 213, the second optical fiber F2 connects the fiber coupler 213 and the rotary joint 214,
- the third optical fiber F3 is led out from the fiber coupler 213 to the roof mirror 219, and the fourth optical fiber F4 connects the fiber coupler 213 and the light detection unit 216.
- the optical fiber of this embodiment is assumed to be a single mode optical fiber.
- the controller 281 controls the OCT main apparatus 800 as a whole, specifically turns on and off the light source 110, controls the first actuator 215 and the second actuator 282, and controls the signal processing unit 123.
- the light source 110 is a near-infrared light source and is a wavelength scanning laser light source that enables OCT. Since it is a wavelength scanning OCT, the two-dimensional data collection speed can be remarkably increased.
- the rotary joint 214 is coupled with a fifth optical fiber F5 as a light guide, and a probe attached portion 142 for attaching an OCT probe is provided at the end of the fifth optical fiber F5.
- the rotary joint 214 rotates the fifth optical fiber F5 and the sixth optical fiber F6.
- a tomographic image is acquired as follows. First, near-infrared light is irradiated from the light source 110, and the irradiated near-infrared light travels through the first optical fiber F1 and travels to the fiber coupler 213. Near-infrared light incident through the first optical fiber F1 is split by the fiber coupler 213 into light passing through the second optical fiber F2 and light passing through the third optical fiber F3.
- the division ratio of the fiber coupler 213 is not particularly limited, and can be set as appropriate so that a tomographic image of the root canal tissue can be clearly obtained.
- the division ratio of the light toward the second optical fiber F2 The amount can be set to 50% of the amount of incident light, and the amount of light directed to the third optical fiber F3 can be set to 50% of the amount of incident light.
- the light that is split by the fiber coupler 213 and travels through the second optical fiber F ⁇ b> 2 is then guided to the rotary joint 214 and enters the fifth optical fiber F ⁇ b> 5 that is coupled to the rotary joint 214.
- the rotary joint 214 is driven by the first actuator 215 under the control of the controller 281 to rotate the fifth optical fiber F5, the sixth optical fiber F6, and the first probe body 331 around the center axis of the fiber.
- the light traveling through the fifth optical fiber F5 passes through the probe attached portion 142 and the probe attaching portion 141, passes through the sixth optical fiber F6 disposed in the longitudinal direction in the internal space of the sheath 150, and passes through the sixth light.
- the light enters the first probe body 331 that is joined and arranged in a state of being aligned with the fiber F6.
- the first probe body 331 irradiates incident light at a right angle.
- the light irradiated from the 1st probe main body 331 is inject
- the controller 281 to operate the first actuator 215 and rotate the rotary joint 214, the light emitted from the side surface of the first OCT probe 101 is rotated on the tissue circumference in the root canal.
- the light that is split by the fiber coupler 213 and travels through the third optical fiber F3 is converted into a parallel light flux through the lens 218, and then reflected by the roof mirror 219.
- the reflected light from the roof mirror 219 is guided to the fiber coupler 213 by returning through the same optical path as the incident light path.
- the third optical fiber F3 has a total length corresponding to the optical path length from the fiber coupler 213 to the tip of the fifth optical fiber F5.
- the Dach mirror 219 is translated along the central axis of the third optical fiber F3 (in other words, the optical axis of the lens 218) by the second actuator 282 under the control of the controller 281.
- the optical path length between the roof mirror 219 and the end face F3a of the optical fiber F3 is adjusted.
- Both the reflected light from the root canal tissue and the reflected light from the roof mirror 219 are received by the light detection unit 216 via the fiber coupler 213.
- the roof mirror 219 is moved by a small distance so that the optical path length from the distal end face F3a of the third optical fiber F3 to the roof mirror 219 matches the optical path length from the distal end face of the sixth optical fiber F6 to the root canal tissue. .
- the two types of reflected light cause interference.
- the photodetector 216 transmits a signal corresponding to the interference pattern detected by receiving the above-described two types of reflected / scattered light to the signal processing unit 123.
- the signal processing unit 123 generates an image signal related to the root canal tissue based on the signal corresponding to the received interference pattern, and the generated image signal is output to the image display unit 125.
- the image display unit 125 displays an image corresponding to the image signal.
- FIG. 24 is a cross-sectional view of the first OCT probe 101 on a plane including the central axis of the sixth optical fiber F6.
- the first OCT probe 101 has a tube-shaped sheath 150 having flexibility, and a transmission region 155 having light transmittance is provided at the distal end portion of the sheath 150.
- a sixth optical fiber F6 and a first probe body 331 are provided as light guiding means.
- the first probe main body 331 is connected and disposed in a state of being aligned with the end surface of the sixth optical fiber F6.
- the first probe main body 331 includes a prism 135, a GRIN lens (refractive index tilt lens) 136, and a connection light guide 137 that connects the GRIN lens 136 and the optical fiber F6 in order from the distal end side.
- the prism 135 is arranged so that the emission angle of the light guided by the sixth optical fiber F6 is a right angle.
- the light deflected at right angles by the first probe main body 331 is irradiated to the root canal tissue Rc existing outside from the transmission region 155, and the first probe main body 331 is disposed on the outer periphery of the first probe main body 331.
- a metal coat 138 is provided so as not to be damaged by contact with.
- a probe attachment portion 141 that can be attached to the probe attachment portion 142 is provided at the proximal end side of the first OCT probe 101.
- FIGS. 25A and 25B are cross-sectional views of the second OCT probe 102 on a plane including the central axis of the sixth optical fiber F6.
- FIG. 25A shows the case of irradiation in the probe tip direction
- FIG. 25B shows the case of changing the angle in the injection direction.
- the second probe main body 332 formed in the second OCT probe 102 includes a micromirror 166, a prism 135, a GRIN lens 136, and a connection light guide 137.
- the arrangement of the prism 135 is the same as that of the first OCT probe 101 described above, but the light deflected by the prism 135 is deflected again and travels straight to the distal end side of the second OCT probe 102, It differs from the first OCT probe 101 in that the micromirror 166 is arranged to irradiate the root canal tissue Rc.
- the micromirror 166 is configured to be rotatable by a predetermined angle around the rotation shaft 161 by the electric power supplied from the power line 162.
- Other configurations are the same as those of the first OCT probe 101 and the first probe body 331 described above.
- the second OCT probe 102 that emits light toward the tip side may employ a configuration in which the first OCT probe 101 does not include the prism 135. As shown in FIG. 26, nothing may be provided at the tip of the GRIN lens 136, or a protective glass for protecting the tip of the GRIN lens 136 may be provided.
- FIG. 27 is a cross-sectional view of the third OCT probe 103 on a plane including the central axis of the sixth optical fiber F6.
- the prism 135 is irradiated with light from the first probe main body 331 so that the emission angle of the light guided by the sixth optical fiber F6 is irradiated.
- the irradiation angle is 60 degrees, for example.
- Other configurations are the same as those of the first OCT probe 101 described above.
- FIG. 28 is an explanatory diagram when a tomographic image of the upper portion of the root canal 500 is acquired using the first OCT probe 101.
- the root canal 500 has a main root canal 510 having a hollow shape and a side branch 520 that is a portion branched finely from the main root canal 510.
- the upper part of dentin 543 is covered with enamel 542 and the lower part is fixed with cementum 540, periodontal ligament 549 and alveolar bone 541.
- Below the apical portion 530 of the root canal 500 is the apical lesion 560.
- the apical lesion is also referred to as apical lesion or apical periodontitis, and is a collective term for lesions that occur near the tip of the tooth root (for example, a periodontal granuloma, a root cyst, etc.).
- the controller 281 is operated to turn on the light source 110 so that near-infrared light reaches the fiber coupler 213 and is divided into light passing through the second optical fiber F2 and light passing through the third optical fiber F3.
- the light traveling through the second optical fiber F2 enters the fifth optical fiber F5, then passes through the sixth optical fiber F6, and enters the first probe body 331.
- Light is emitted from the first probe main body 331 at a right angle, collected on the root canal tissue, and swept by the first probe main body 331 again.
- the light traveling through the third optical fiber F3 is reflected by the roof mirror 219, and the reflected light is guided to the fiber coupler 213 again.
- Both the reflected light from the root canal tissue and the reflected light from the roof mirror 219 are received by the light detection unit 216 via the fiber coupler 213. Then, the controller 281 moves the roof mirror 219 by a small distance so that the optical path length from the distal end face F3a of the third optical fiber F3 to the roof mirror 219 is changed from the distal end face of the sixth optical fiber F6 to the optical path length between tissues in the root canal. By making them coincide, interference is generated from two kinds of reflected light.
- the movement of the first OCT probe 101 can be moved up and down while rotating the first probe main body 331 with the sheath 150 fixed, and the sheath 150 can be moved up and down together with the first probe main body 331, for example. Is possible. In this way, a tomographic image of the upper part of the root canal 500 is acquired.
- FIG. 29 is an explanatory diagram when a tomographic image of the apical portion of the root canal 500 is acquired using the second OCT probe 102.
- the controller 281 is operated in the same manner as the operation of the first OCT probe 101, and as shown in FIG. 29, the light is externally irradiated toward the tip of the probe and collected in the root canal tissue existing outside the probe. Illuminate to obtain a tomographic image of the apex.
- FIG. 30 is an explanatory diagram when a tomographic image of an intermediate region of the side wall of the root canal 500 is acquired using the third OCT probe 103.
- the controller 281 is operated in the same manner as the operation of the first OCT probe 101, and as shown in FIG. 30, the light is externally irradiated at a predetermined angle and collected on the root canal tissue existing outside the probe. Then, a tomographic image of the intermediate region in the root canal is acquired.
- the sheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 331.
- a matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 331 connection loss of light can be prevented, and clear imaging of the root canal tissue Rc is possible.
- matching oil for refractive index adjustment that fills the space between the sheath 150 and the root canal tissue Rc is disposed around the sheath 150.
- the refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150.
- FIG. 31 is a cross-sectional view of the third OCT probe 103a on the plane including the central axis of the sixth optical fiber F6.
- the prism 135 is arranged to be irradiated at an irradiation angle of 30 degrees. Then, by combining with the third OCT probe 103 irradiated at an irradiation angle of 60 degrees shown in FIG. 27, an image of the intermediate region in the root canal can be acquired more accurately.
- FIG. 32A and FIG. 32B are explanatory views of a fourth OCT probe according to another embodiment that is movable so that the tip faces in different directions.
- 32A shows the fourth probe body when not bent
- FIG. 32B shows the fourth probe body when bent.
- the fourth probe body is connected in order from the distal end side to the prism 135, the GRIN lens (refractive index gradient lens) 136, and the seventh optical fiber F7 that can be bent with flexibility.
- a light guide portion 137 is also be configured so that the tip of the probe main body can move in different directions within the sheath 150.
- FIG. 32A and FIG. 32B are explanatory views of a fourth OCT probe according to another embodiment that is movable so that the tip faces in different directions.
- 32A shows the fourth probe body when not bent
- FIG. 32B shows the fourth probe body when bent.
- the fourth probe body is connected in order from the distal end side to the prism 135, the GRIN lens (refractive index gradient lens)
- Wire attachment portions 174 and 174 are provided at both ends of the GRIN lens 136, and wire attachment portions 172 and 172 are also provided at both ends of the connection light guide portion 137. Between these wire attachment portions, A set of wires 173 are each attached. In the state of FIG. 32A, the emission angle of the light guided by the sixth optical fiber F6 and the seventh optical fiber F7 is a right angle.
- the fourth probe main body moves so as to face the direction of the reduced one wire 173 side.
- the emission angles of the light guided by the sixth optical fiber F6 and the seventh optical fiber F7 are emitted not at a right angle but at an angle ⁇ obliquely forward.
- the light emission angle can be adjusted by a simple method of adjusting the length of the wire provided in the probe body without changing the shape of the prism 135.
- a wide range of tissue images in the root canal can be acquired by combining the first OCT probe 101, the second OCT probe 102, and the third OCT probe 103.
- root canal treatment can be performed easily and accurately, and it is possible to detect root fractures, so the benefits obtained by the present invention are immeasurable.
- the swept source OCT (SS-OCT) is used in the Fourier domain OCT (FD-OCT).
- FD-OCT Fourier domain OCT
- the present invention is not limited to this method.
- the format proposed in OCT (SD-OCT) may be used, and the OCT apparatus may be in the format proposed in time domain OCT (TD-OCT).
- the present invention can be used for drawing a tissue image in the root canal, and can accurately and easily grasp the structures of complex apical parts, apical periodontal tissues, and side branches.
- objective image inspections such as the presence or absence of fractures, cracks, deformed excessively stenosed root canals, and remnants are possible, making it possible to diagnose and diagnose dental diseases that were extremely difficult with conventional dental imaging equipment. Make it possible. Therefore, it can be used in the field of examination and diagnosis of dental diseases.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Physical Education & Sports Medicine (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Endoscopes (AREA)
Abstract
Provided is an OCT device capable of accurate diagnosis of proximal and occlusal caries and capable of the inside drawing of tooth root canal without performing an excess root canal enlargement. An OCT probe (140) is inserted into an embrasure and an image of a proximal surface is captured by at least one of rotating and moving forward and backward the OCT probe (140). An image of an occlusal surface is captured by using a horizontally moving means (220) for horizontally moving the OCT probe (140) and a vertically moving means (230) for vertically moving the OCT probe (140). An inside image of tooth root canal is captured by selectively and compatibly using a first OCT probe (101) for irradiating light at a right angle, a second OCT probe (102) for irradiating light toward the tip of a probe, or a third OCT probe for emitting light, the angle of which is equal to an angle between the angle of the first OCT probe and the angle of the second OCT probe.
Description
本発明は、根管内の断層画像を取得する時に使用される歯科用光干渉断層診断(OpticalCoherence Tomography:OCT)装置に関する。より詳細には、歯牙根尖部、根尖性歯周組織部、及び側枝の断層画像を取得してそれらの組織画像の描出を可能にすると共に、これまでの歯科用画像診断機器では極めて撮影が困難であった残髄、歯髄根管病巣、破折、及び亀裂等の歯牙疾患の診査診断を可能とする歯科用OCT装置に関する。また、歯牙隣接面及び歯牙咬合面を撮影する歯科用OCT装置に関する。
The present invention relates to a dental optical coherence tomography (OCT) apparatus used when acquiring a tomographic image in a root canal. More specifically, the tomographic images of the tooth apex, apical periodontal tissue, and side branches can be acquired and the tissue images can be drawn, and the conventional dental diagnostic imaging equipment is extremely photographed. The present invention relates to a dental OCT apparatus that enables diagnosis and diagnosis of dental diseases such as remnants, pulpal root canals, fractures, and cracks. Moreover, it is related with the dental OCT apparatus which image | photographs a tooth adjacent surface and a tooth occlusion surface.
う蝕は抜歯の原因の約4割を占めている疾患である。う蝕が歯牙の内部に深達するに従い、歯髄に炎症が発生し、歯髄炎を誘発する。歯髄炎は例えば急性歯髄炎と慢性歯髄炎とに分類され、急性歯髄炎の初期症状では、炎症部位に象牙芽細胞の変成萎縮、充血、漿液の滲出等が生じる。う触の進行が早い乳歯及び若年者の場合は、急性化膿性歯髄炎が起こるのとほぼ前後して象牙質が破壊され、開放性全部性化膿性歯髄炎が起こり、歯髄壊死を起こす。歯髄炎にかかった場合、治療をしないで放置しておくと歯根膜をはじめとする歯周組織乃至骨膜、顎骨等に炎症や感染が進行することもある。
Caries are a disease that accounts for about 40% of the causes of tooth extraction. As the caries deepen into the tooth, inflammation occurs in the pulp, causing pulpitis. Pulpitis is classified into, for example, acute pulpitis and chronic pulpitis, and in the initial symptoms of acute pulpitis, odontoblasts undergo degenerative atrophy, hyperemia, serous exudation, etc. at the site of inflammation. For deciduous teeth and young people who have a fast progress of touching, the dentin is destroyed almost before and after acute purulent pulpitis, and open total purulent pulpitis occurs, resulting in pulp necrosis. In the case of pulpitis, if left untreated, inflammation or infection may develop in the periodontal tissue including the periodontal ligament, periosteum, and jawbone.
細菌感染が根部歯髄まで波及し、不可逆的な全部性歯髄炎に陥った場合は、通常、抜髄処置が行われるが、歯髄除去後は、血管による歯(象牙質・歯髄)の物質代謝が絶たれるため象牙質が脆弱化し破折乃至亀裂の罹患率が上昇する。また、痛みを伝達する歯髄の変性により神経が無くなるので、再びう蝕に罹患した場合に自覚症状が得られず、早期発見が困難となる。
If a bacterial infection spreads to the root pulp and irreversible total pulpitis, a pulpectomy is usually performed, but after removal of the pulp, the metabolism of the teeth (dentin / dental pulp) by the blood vessels is lost. As a result, the dentin becomes brittle and the incidence of fractures or cracks increases. In addition, since nerves are lost due to the degeneration of dental pulp that transmits pain, subjective symptoms cannot be obtained when suffering from dental caries again, making early detection difficult.
う蝕原因菌群が歯髄内に侵入すると、感染した歯髄は歯内で壊死をおこし、菌体は顎骨内に侵入し根尖性歯周炎をきたす。根尖性歯周炎の治療には、(1)リーマー又はファイル等を用いた機械的清掃、(2)次亜塩素酸又は過酸化水素水等による化学的殺菌洗浄、(3)ヨード、水酸化カルシウム、抗生剤及びホルムアルデヒド製剤等による局所的調薬等の歯内療法が施行されるが、再発症例は少なくない。
When the caries-causing bacteria group enters the dental pulp, the infected pulp undergoes necrosis within the tooth, and the bacterial body enters the jawbone and causes apical periodontitis. For the treatment of apical periodontitis, (1) mechanical cleaning using a reamer or file, (2) chemical sterilization cleaning with hypochlorous acid or hydrogen peroxide, etc. (3) iodine, water Endodontic treatment such as local preparation with calcium oxide, antibiotics and formaldehyde is performed, but there are many cases of recurrence.
根尖性歯周炎は歯髄炎に比較して慢性的な期間が長く疼痛症状は緩やかで、根尖性歯周膿瘍→肉芽腫→のう胞と時間をかけて顎骨を大きく破壊する事も多く、周囲歯牙の逆行性感染等重症化してから発見される症例も存在し、歯牙を失う大きな原因となる。
Periapical periodontitis has a long period of time compared to pulpitis and the pain symptoms are mild, and it often destroys the jawbone over time with apical periodontal abscess → granulomas → cyst, There are cases that are discovered after becoming serious, such as retrograde infection of surrounding teeth, which is a major cause of tooth loss.
顎骨内に形成された感染病巣は慢性時も持続的に全身血管内への菌体の侵入がおこり、感染性心内膜炎症、心筋梗塞、及び脳梗塞等を引き起こす。
Infected lesions formed in the jawbone continuously infiltrate the whole body blood vessels even when chronic, causing infective endocarditis, myocardial infarction, cerebral infarction, and the like.
一方、歯牙根尖部の解剖学的形態は、歯根体部に比較して、側枝及び網状根尖を有する場合が多い。側枝及び網状根尖の構造は微細かつ複雑であり、更にこれらの複雑構造は個々人において種々相違するため、側枝及び網状根尖の生体内での評価は極めて困難である。加えて加齢とともに狭窄した髄腔内では過剰的乃至奇形的に存在する過剰狭窄根管の発見も極めて困難であり、これらは、歯内療法の治療成績を下げる。
On the other hand, the anatomical form of the tooth apex often has side branches and a net-like apex compared to the root body. Since the structures of the side branches and the reticulated apex are fine and complex, and these complex structures vary from person to person, it is extremely difficult to evaluate the side branch and the reticulated apex in vivo. In addition, it is extremely difficult to find an excessively stenotic root canal that is present in the medullary canal that is narrowed with age, which reduces the outcome of endodontic therapy.
根管治療はリーマー及びファイル等を用い、ブラインド状態で手探りにて行われており、実際に根管内部の状態や根管壁、根尖部の病変を直接確認する方法はない。
Root canal treatment is performed blindly using a reamer and a file, and there is no method for directly confirming the condition inside the root canal or the root canal wall or root apex.
歯髄炎や根尖性歯周炎の初発治療時には確実な歯内療法の施術が必要不可欠であり、それを確実にする術前の診査、初期病変、側枝、及び網状根尖を生体内で検出する方法や機器開発が模索されている。加えて、破折、亀裂、奇形的過剰狭窄根管、残髄の有無等の客観的画像検査方法は必要不可欠であるにもかかわらず、これらの検査方法は未だ存在しない。
During initial treatment of pulpitis and apical periodontitis, reliable endodontic treatment is indispensable, and preoperative examinations, initial lesions, side branches, and reticulated apex are detected in vivo to ensure it. The development of methods and equipment is being sought. In addition, although objective image inspection methods such as fractures, cracks, deformed excessively stenosed root canals, and the presence or absence of remnants are indispensable, these inspection methods do not yet exist.
歯科臨床における硬組織検査法は、歯科用X線写真検査、パノラマレントゲン検査、及び歯科用CT等があげられるが、いずれも解像度が低く歯牙根尖部の解剖学的形態の正確な描出、初期の根尖性歯周炎の描出、歯根破折の検出等は極めて困難である。
Hard tissue examination methods in dental clinics include dental X-ray photography, panoramic X-ray examination, and dental CT, etc., all of which have low resolution and accurate depiction of tooth apex anatomy. It is extremely difficult to depict apical periodontitis, detect fractures of roots, etc.
一方、OCTは、生体組織の表層から内部までの断層画像を高速にかつ高解像度に取得できる最先端技術であり、眼科領域をはじめ非侵襲イメージングとして注目されている。
On the other hand, OCT is a state-of-the-art technology that can acquire tomographic images from the surface layer to the inside of a living tissue at high speed and with high resolution, and has attracted attention as non-invasive imaging including ophthalmology.
例えば、非特許文献1には、心臓血管用OCT(Light-Lab(登録商標))を用い、歯根体部の根管内OCTイメージングが記載されている。また、例えば特許文献1には、光源から発した低コヒーレンス光を用いて口腔内の観察対象の断層画像を取得するOCTプローブが記載されている。
For example, Non-Patent Document 1 describes intra-root OCT imaging of the root of the tooth root using OCT for cardiovascular (Light-Lab (registered trademark)). For example, Patent Document 1 describes an OCT probe that acquires a tomographic image of an observation object in the oral cavity using low-coherence light emitted from a light source.
しかし、非特許文献1のOCTプローブは、光の射出角度が光ファイバに対して90度となっており、更にOCTプローブの直径が根管直径より太いため、上部歯髄腔と根管体部の描出のみ可能で、歯牙根尖部と根尖性歯周組織部の描出には、歯牙を貫通した過度の根管拡大が必要になり、根管拡大を行わずに歯牙根尖部及び根尖性歯周組織部の描出は不可能である。また、特許文献1のOCTプローブも、光の射出角度が光ファイバに対して90度となっており、このOCTプローブを根管内イメージングに適用したとしても、上部歯髄腔と根管体部の描出は可能であるが、歯牙根尖部及び根尖性歯周組織部の描出は不可能である。
However, in the OCT probe of Non-Patent Document 1, the light emission angle is 90 degrees with respect to the optical fiber, and the diameter of the OCT probe is larger than the root canal diameter. It is possible to depict only the tooth apex and apical periodontal tissue, and excessive root canal enlargement that penetrates the tooth is necessary, and the root apex and root apex without root canal enlargement. It is impossible to visualize the periodontal tissue. The OCT probe of Patent Document 1 also has a light emission angle of 90 degrees with respect to the optical fiber. Even if this OCT probe is applied to intra-root canal imaging, the upper pulp cavity and the root canal body part Although it is possible to depict the tooth apex and the apical periodontal tissue, it is impossible.
次に、う触の好発部位は、大別して3つ存在し、一つ目は歯牙咬合面であり、二つめは歯頚部であり、三つ目は、歯と歯が隣り合って接している面である歯牙隣接面である。
Next, there are three major parts of touching, the first is the occlusal surface of the tooth, the second is the cervical part, and the third is the tooth and teeth adjacent to each other. It is a tooth adjacent surface that is a surface that is present.
う蝕原因菌、食物残渣はプラークとなって歯に付着する。プラークの付着は、歯肉縁や、歯科修復材料と歯との境界部分のみならず、臼歯の歯牙咬合面において顕著であり、この歯牙咬合面におけるプラークの付着が歯牙咬合面う触の主原因である。
Caries-causing bacteria and food residues adhere to teeth as plaques. Plaque adheres not only to the gingival margin and the boundary between the dental restorative material and the tooth, but also to the tooth occlusal surface of the molar tooth. Plaque attachment on the tooth occlusal surface is the main cause of contact with the tooth occlusal surface. is there.
従来、歯科の歯牙咬合面診断において、X線撮影装置、口腔内カメラ、歯科用カメラ、X線CT、MRI等が検査及び診査に使用されている。このうち、X線撮影装置で得られる像は透過像であり、被計測体の内部構造を3次元的に知ることは困難であるうえに、X線は人体に為害性があり、被爆線量・撮影回数に制限がある。口腔内カメラは、口腔内組織の表面のみを撮像するので、歯等の内部情報が得られない。X線CTは、X線撮影装置と同様人体に有害である上に、分解能が悪い。MRIは、分解能が悪く、装置が大型かつ高価である。
Conventionally, in dental occlusal surface diagnosis, an X-ray imaging apparatus, an intraoral camera, a dental camera, X-ray CT, MRI, and the like are used for inspection and examination. Among these, the image obtained by the X-ray imaging apparatus is a transmission image, and it is difficult to know the internal structure of the measurement object three-dimensionally, and X-rays are harmful to the human body. There is a limit to the number of shots. Since the intraoral camera images only the surface of the intraoral tissue, internal information such as teeth cannot be obtained. X-ray CT is harmful to the human body as well as an X-ray imaging apparatus and has a poor resolution. MRI has poor resolution and a large and expensive apparatus.
そこで、上述したように、近年、OCT(Opticalcoherence tomography)装置が、人体に無害で、被計測体の3次元情報が高分解能で得られるため、角膜や網膜の断層計測等の眼科領域で利用されており、歯科分野においてもOCT装置を応用した発明がなされている。
Therefore, as described above, in recent years, an OCT (Optical Coherence Tomography) apparatus is harmless to the human body and can obtain three-dimensional information of a measurement object with high resolution. In the field of dentistry, an invention using an OCT apparatus has been made.
例えば特許文献2及び特許文献3には、被検体の歯部に照射するための低コヒーレント光の発生手段と、該低コヒーレント光を信号光として前記歯部の選定された所定領域を走査する手段と、前記走査領域内の所定深部からの反射光と参照光との干渉によって走査領域の光断層画像を取得するOCT手段とを備える歯科診断OCT装置が記載されており、低コヒーレント光を被検体の歯部に照射する手段として、アームの先端に取り付けられたハンドピース型のOCTプローブが記載されている。これらの技術により、歯牙・歯周組織の唇側面及び頬側面に関しての撮影並びに直線的に到達できる口腔軟組織の撮影は可能である。
For example, in Patent Document 2 and Patent Document 3, low-coherent light generating means for irradiating a tooth part of a subject, and means for scanning a predetermined region of the tooth part using the low-coherent light as signal light And OCT means for acquiring an optical tomographic image of a scanning region by interference between reflected light from a predetermined depth in the scanning region and reference light, and describes a low-coherent light as a subject. As a means for irradiating the tooth part, a handpiece type OCT probe attached to the tip of an arm is described. With these techniques, it is possible to photograph the labial and cheek lateral surfaces of the teeth and periodontal tissues and the oral soft tissues that can reach linearly.
しかし、下顎前歯切縁から上顎前歯切縁までの距離である人の最大開口量は、成人で35~40mm程度が限界であり、特に女性の平均最大開口量は、男性のそれよりも約7mm程度少ない。そのため、上述の歯科診断OCT装置では、歯列の解剖学的な形態より舌側傾斜を認める歯牙咬合面の正確な撮影は困難である。
However, the maximum opening of a person, which is the distance from the mandibular anterior tooth incision to the maxillary anterior incision, is limited to about 35 to 40 mm for adults. Especially, the average maximum opening for women is about 7 mm than that for men. There are few. Therefore, in the above-described dental diagnosis OCT apparatus, it is difficult to accurately photograph the occlusal surface where the lingual inclination is recognized from the anatomical form of the dentition.
次に、歯牙隣接面は非常に狭いため、他の歯面と比較して清掃性及び自浄性が低く、不潔域となりやすい部位であり、そのためう触好発部位とされている。
Next, since the tooth adjacent surface is very narrow, it is a site that is less cleanable and self-cleaning than other tooth surfaces, and easily becomes an unclean area, and is therefore considered a touch-prone site.
歯牙隣接面う触は、初期病変において患者自身の自覚症状が乏しく、また、狭い部分に発生するため、観察が極めて困難であり、う触好発部位にもかかわらず、早期発見が難しく重症化になりやすい。
The contact of the adjacent tooth surface is difficult to observe because the patient's own subjective symptoms are scarce in the initial lesion, and it occurs in a narrow part. It is easy to become.
従来の歯牙隣接面う触の診察では、歯間離開器という器具を用いて隣り合う歯を少し開いて視診を行うことがある。しかしながら、病理学的に初期う触病変が発生していても、視診では表面上にう触変化が見られない場合があるため、歯牙隣接面う触の発見は困難である。
In the conventional examination of touching the adjacent tooth surface, an adjacent tooth may be slightly opened using an instrument called an interdental opener for visual inspection. However, even if pathologically initial caudal lesions have occurred, it is difficult to find a crust change on the surface by visual inspection, and therefore, it is difficult to find a crust on the adjacent tooth surface.
そこで、歯牙内部のう触の検出を可能とするべく、デンタルX線写真診査法や、小さいX線フィルムに翼をつけそれを咬んで固定してX線を照射する咬翼型X線写真診査法による歯牙隣接面のX線撮影が行われる。
Therefore, in order to enable detection of tooth internal touch, a dental X-ray examination or a wing-type X-ray examination in which a small X-ray film is attached with a wing and then bitten and fixed to emit X-rays. X-ray imaging of the tooth adjacent surface by the method is performed.
例えば特許文献4には、前歯の咬翼撮像を撮影するための良好な位置決めを可能とするX線写真撮影用ホルダが記載されている。また、特許文献5には、ほぼ長方形の開口を形成する照準板を有し、患者の口内側で歯の歯科用咬翼X線写真を撮るための受容体位置決め器具が記載されている。また、特許文献6には、対象物のコントラストを改善し、かつ粒状性を悪化させない画像処理を行い、歯科用デジタルX線画像の鮮明度を向上させ、隣接面カリエスのX線写真画像を鮮明にするX線画像の取得方法が記載されている。
For example, Patent Document 4 describes an X-ray photography holder that enables good positioning for photographing an anterior bite wing. Patent Document 5 describes a receptor positioning device that has a sighting plate that forms a substantially rectangular opening and that is used to take dental dental wing X-rays of a tooth inside a patient's mouth. In Patent Document 6, image processing that improves the contrast of an object and does not deteriorate the graininess is performed, the sharpness of a dental digital X-ray image is improved, and the X-ray photograph image of the adjacent caries is sharpened. An X-ray image acquisition method is described.
しかしながら、X線写真診査法では歯質ミネラルの約70%が消失しなければコントラスト差が発生しないため、これらのX線写真診査法では、正確な歯牙隣接面う触の診察が困難であり、特に初期病変における早期発見が難しい。
However, in X-ray photography, since contrast difference does not occur unless about 70% of the dental minerals disappear, it is difficult to accurately examine the contact of the adjacent tooth surface with these X-ray photography. Especially early detection of early lesions is difficult.
本発明はかかる問題点に鑑みてなされたものであって、正確な歯牙咬合面の撮影を可能とし、歯牙咬合面う触の的確な診察を可能とする歯科用OCT装置を提供することを目的とする。
The present invention has been made in view of such problems, and an object of the present invention is to provide a dental OCT apparatus that enables accurate imaging of the occlusal surface of the tooth and enables accurate examination of the occlusal surface of the tooth. And
また、正確な歯牙隣接面う触の診察を可能とし、特に初期病変における早期発見を可能とする歯科用OCT装置を提供することを目的とする。
It is another object of the present invention to provide a dental OCT apparatus that makes it possible to accurately check the touch of the adjacent tooth surface, and in particular, enables early detection of early lesions.
また、過度の根管拡大を行うことなく、歯牙根尖部、根尖性歯周組織部、及び側枝の描出を可能とする歯科用OCT装置を提供することを目的とする。
It is another object of the present invention to provide a dental OCT apparatus that can depict a tooth apex, apical periodontal tissue, and a side branch without excessive root canal enlargement.
上記目的を達成するため、この発明の歯科用OCT装置は、光を発する光源と、少なくとも先端側領域が透過性を有する可撓性を有するシース、及び、前記シース内に配置されるプローブ本体、を有するOCTプローブと、一端が前記光源に接続され他端が前記プローブ本体に接続された導光手段と、口腔内の観察対象の画像を表示する画像表示部と、を備え、前記プローブ本体は、前記光源から導光手段を経て導かれた光を前記観察対象に射出してその反射光を前記導光手段に掃引し、この反射光に基づく画像を前記画像表示部に表示することを特徴とする。
In order to achieve the above object, a dental OCT apparatus according to the present invention includes a light source that emits light, a flexible sheath in which at least the distal end side region is transparent, and a probe main body disposed in the sheath, An OCT probe, one end of which is connected to the light source and the other end of which is connected to the probe body, and an image display unit that displays an image of an observation target in the oral cavity. The light guided from the light source through the light guiding unit is emitted to the observation target, the reflected light is swept to the light guiding unit, and an image based on the reflected light is displayed on the image display unit. And
前記OCTプローブは、前記導光手段からの入射光を直角に向きを変えて観察対象に射出する第1OCTプローブと、前記入射光を直進させて観察対象に射出する第2OCTプローブと、前記入射光を、前記第1OCTプローブによる射出角度と前記第2OCTプローブによる射出角度との間の射出角度で観察対象に射出する第3OCTプローブと、の3タイプからなり、これら第1OCTプローブ、第2OCTプローブ、又は第3OCTプローブを互換使用するように構成されているから、過度の根管拡大を行うことなく、歯牙根尖部、根尖性歯周組織部、及び側枝の描出を可能とする。
The OCT probe includes a first OCT probe that changes the direction of incident light from the light guide unit to a viewing object while changing the direction to a right angle, a second OCT probe that emits the incident light to the observation object, and the incident light. Of the first OCT probe and the second OCT probe, and a third OCT probe that emits to the observation object at an emission angle between the emission angle by the second OCT probe and the first OCT probe, the second OCT probe, or Since the third OCT probe is configured to be used interchangeably, the root apex, the apical periodontal tissue, and the side branch can be depicted without excessive root canal enlargement.
また、前記OCTプローブは、該プローブ本体を回転駆動させる回転手段と、該プローブ本体を前記シース内にて前後に移動させる移動手段とを有し、歯間鼓形空隙の上部又は下部に前記OCTプローブを挿入し、該OCTプローブを挿入した歯間鼓形空隙内にて前記シースを固定させ、前記回転手段による前記プローブ本体の回転、及び、固定した前記シース内にて前記移動手段による該プローブ本体の前後移動、のうち少なくとも何れか一方を行うことにより歯牙隣接面の画像をOCTプローブで撮影するから、正確な歯牙隣接面う触の撮影を可能とする。
The OCT probe has a rotating means for rotating the probe main body and a moving means for moving the probe main body back and forth within the sheath, and the OCT probe is located above or below the interdental space. A probe is inserted, the sheath is fixed in the interdental space where the OCT probe is inserted, the probe body is rotated by the rotating means, and the probe is moved by the moving means in the fixed sheath. Since the image of the tooth adjacent surface is imaged with the OCT probe by performing at least one of the main body back and forth movement, it is possible to accurately capture the tooth adjacent surface touch.
また、前記プローブ本体を回転駆動させる回転手段と、前記プローブ本体を前記シース内にて前後に移動させる前後移動手段と、前記OCTプローブを水平に移動させる水平移動手段と、前記OCTプローブを垂直に移動させる垂直移動手段と、を備えているから、正確な歯牙咬合面の撮影を可能とする。
Further, a rotating means for rotating the probe body, a forward / backward moving means for moving the probe body back and forth within the sheath, a horizontal moving means for moving the OCT probe horizontally, and the OCT probe vertically Since it is provided with a vertical moving means for moving, it is possible to accurately photograph the tooth occlusal surface.
本発明によれば、第1OCTプローブから根管上部の画像を取得し、第2OCTプローブから歯牙根尖部等の画像を取得し、第3OCTプローブから根管の側壁の画像を取得できるので、過度の根管拡大を行うことなく、歯牙根尖部、根尖性歯周組織部、及び側枝の描出が可能となる。そのため、歯髄炎や根尖性歯周炎の初発治療時の診査等を精密に行うことができ、更に、実際に根管内部の状態、根管壁及び根尖部の病変を直接確認することにより簡易かつ正確に根管治療を行うことができる。加えて、破折、亀裂、奇形的過剰狭窄根管、及び残髄の有無等の客観的画像検査を可能とし、これまでの歯科用画像診断機器では極めて困難であった歯牙疾患の診査診断を可能とする。
According to the present invention, it is possible to acquire an image of the upper root canal from the first OCT probe, acquire an image of the tooth apex and the like from the second OCT probe, and acquire an image of the side wall of the root canal from the third OCT probe. The root apex of the tooth, the apical periodontal tissue, and the side branch can be drawn without performing root canal enlargement. Therefore, it is possible to conduct a precise examination at the first treatment of pulpitis and apical periodontitis, and to directly confirm the actual condition inside the root canal and root canal wall and apical lesions. Therefore, root canal treatment can be performed easily and accurately. In addition, objective image inspections such as the presence or absence of fractures, cracks, deformed excessively stenosed root canals, and remnants are possible, making it possible to diagnose and diagnose dental diseases that were extremely difficult with conventional dental imaging equipment. Make it possible.
また、本発明によれば、歯間鼓形空隙にOCTプローブを挿入し、回転及び前後移動のうち少なくとも何れか一方を行うことにより、種々の方向からの歯牙隣接面の画像を得ることができ、また、回転させると共に前後移動させるから、歯牙隣接面全体に光を直接照射させることができるため、正確な歯牙隣接面う触の撮影が可能となり、特に初期病変における早期発見が可能となる。
Further, according to the present invention, an image of the adjacent tooth surface from various directions can be obtained by inserting an OCT probe into the interdental space and performing at least one of rotation and forward / backward movement. In addition, since it is rotated and moved back and forth, the entire tooth adjacent surface can be directly irradiated with light, so that it is possible to accurately photograph the touch of the tooth adjacent surface, and particularly early detection of an initial lesion is possible.
また、本発明によれば、歯牙咬合面の近傍にOCTプローブを挿入し、プローブ本体の回転及び前後移動のうち少なくとも何れか一方を行うと共に、歯牙咬合面の表面形態に応じてOCT撮影を行うから、例えば最大開口量の少ない女性であっても歯牙咬合面の正確な撮影が可能となる。また、シースを歯牙咬合面の起伏形態に沿って配置することにより、歯牙咬合面の表面形態に沿った精密なスキャンニングを可能とし、歯牙咬合面う触の正確な検出が可能となる。
Further, according to the present invention, an OCT probe is inserted in the vicinity of the tooth occlusion surface, and at least one of rotation and back-and-forth movement of the probe body is performed, and OCT imaging is performed according to the surface form of the tooth occlusion surface. Therefore, for example, even a woman with a small maximum opening can accurately photograph a tooth occlusal surface. Further, by disposing the sheath along the undulating form of the tooth occlusal surface, it is possible to perform precise scanning along the surface form of the tooth occlusal surface and to accurately detect the tooth occlusal surface touch.
(実施形態1A)
以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 (Embodiment 1A)
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 (Embodiment 1A)
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
本実施形態に係る歯科用OCT装置900は、歯間鼓形空隙にOCTプローブ140を挿入し、回転及び前後移動のうち少なくとも何れか一方を行うことにより、歯牙隣接面を撮影する。
The dental OCT apparatus 900 according to the present embodiment photographs the adjacent tooth surface by inserting the OCT probe 140 into the interdental space and performing at least one of rotation and back-and-forth movement.
OCT装置は、生体内組織をマイクロオーダで極めて高解像度に測定可能な装置である。また、OCTでは、体表面下にまで到達しうる近赤外線の光源を使用することで、被写体の表面部だけではなく深部までの測定が可能である。近赤外線は、レントゲン線(X線)のような生体に為害性がある放射線ではないため、厳密に非侵襲な被写体の検査を行うことができる。
The OCT device is a device that can measure in vivo tissue with a very high resolution in the micro order. In OCT, by using a near-infrared light source that can reach below the body surface, it is possible to measure not only the surface portion of the subject but also the deep portion. Near-infrared rays are not radiation that is harmful to the living body, such as X-rays (X-rays), so that it is possible to strictly inspect a non-invasive subject.
図1は、本実施形態に係る歯科用OCT装置900の全体構成を示すブロック図である。歯科用OCT装置900には、波長走査型光源として一定の周波数範囲の光信号を発振する近赤外光の光源110が用いられる。波長走査型OCTであるため、2次元データ収集速度が著しく速い。光源110の波長は、例えば、700nm~2500nmであり、生体内へ浸入する近赤外光の波長に相当する。光源110の出力は、導光手段としての光ファイバ111に与えられる。光ファイバ111の中間部分には、他の光ファイバ112を接近させて干渉させる結合部113が設けられる。
FIG. 1 is a block diagram showing the overall configuration of a dental OCT apparatus 900 according to this embodiment. The dental OCT apparatus 900 uses a near-infrared light source 110 that oscillates an optical signal in a certain frequency range as a wavelength scanning light source. Since it is a wavelength scanning type OCT, the two-dimensional data collection speed is remarkably fast. The wavelength of the light source 110 is, for example, 700 nm to 2500 nm, and corresponds to the wavelength of near infrared light that enters the living body. The output of the light source 110 is given to an optical fiber 111 as a light guiding means. In the middle portion of the optical fiber 111, a coupling portion 113 is provided for causing another optical fiber 112 to approach and interfere.
導光手段としての光ファイバ112の一端にはOCTプローブ140が設けられる。OCTプローブ140は、シース150及びそのシース150内に配置されるプローブ本体131を有する。シース150は、少なくとも先端側領域が透過性を有しており、可撓性を有する材質にて形成される。プローブ本体131は、光ファイバ112から導かれる光を観察対象200である歯牙隣接面に射出し、その反射光を光ファイバ112に掃引し、この反射光に基づく画像を後述する画像表示部125に表示する。
An OCT probe 140 is provided at one end of the optical fiber 112 as a light guiding means. The OCT probe 140 includes a sheath 150 and a probe main body 131 disposed in the sheath 150. The sheath 150 is permeable at least in the distal end region and is formed of a flexible material. The probe body 131 emits light guided from the optical fiber 112 to the tooth adjacent surface that is the observation target 200, sweeps the reflected light to the optical fiber 112, and displays an image based on the reflected light on an image display unit 125 described later. indicate.
光ファイバ111の他端には、コリメートレンズ117を介して参照ミラー118が光軸に垂直に設けられている。ここで、結合部113から参照ミラー118までの光学距離L1と、結合部113から観察対象200の測定部位である表面までの光学距離L2と、を等しくしておく。光ファイバ112の他端には、レンズ120を介して光検出器121が接続される。参照ミラー118では、観察対象200から戻る後方散乱光と干渉し干渉光が作られる。光検出器121は、例えば、受光素子やCCD(ChargeCoupledDevice)イメージセンサから構成され、参照ミラー118からの反射光と測定部位で反射された光の干渉光を受光することによって、ビート信号を電気信号として得る。ここで、光ファイバ111、光ファイバ112、結合部113、コリメートレンズ117、参照ミラー118、及び、レンズ120は、干渉光学系を構成している。
At the other end of the optical fiber 111, a reference mirror 118 is provided perpendicularly to the optical axis via a collimating lens 117. Here, the optical distance L1 from the coupling portion 113 to the reference mirror 118 and the optical distance L2 from the coupling portion 113 to the surface that is the measurement site of the observation target 200 are set equal. A photodetector 121 is connected to the other end of the optical fiber 112 via a lens 120. The reference mirror 118 interferes with the backscattered light returning from the observation target 200 and generates interference light. The light detector 121 is composed of, for example, a light receiving element or a CCD (Charge Coupled Device) image sensor, and receives the interference light between the reflected light from the reference mirror 118 and the light reflected from the measurement site, thereby converting the beat signal into an electrical signal. Get as. Here, the optical fiber 111, the optical fiber 112, the coupling portion 113, the collimator lens 117, the reference mirror 118, and the lens 120 constitute an interference optical system.
光検出器121の出力は、増幅器122を介して信号処理部123に入力される。信号処理部123は、干渉光学系から得られる受光信号をフーリエ変換することによって、断層画像信号を得る。また、信号処理部123からの出力は、画像処理部124に与えられる。画像処理部124は、信号処理部123からの出力に基づいて、観察対象200の2次元乃至3次元画像を生成する。そして、こうして生成された表示画像は、画像表示部125によって表示される。
The output of the photodetector 121 is input to the signal processing unit 123 via the amplifier 122. The signal processing unit 123 obtains a tomographic image signal by performing a Fourier transform on the received light signal obtained from the interference optical system. The output from the signal processing unit 123 is given to the image processing unit 124. The image processing unit 124 generates a two-dimensional or three-dimensional image of the observation target 200 based on the output from the signal processing unit 123. The display image generated in this way is displayed by the image display unit 125.
図2は、OCTプローブ140を説明する説明図である。図2に示すように、OCTプローブ140は、シース150及びそのシース150内に配置されるプローブ本体131を有する。プローブ本体131は、光ファイバ112の先端側端面に軸合わせをした状態で接続されている。プローブ本体131は、先端側から順に、プリズム135と、GRINレンズ(屈折率傾斜レンズ)136と、GRINレンズ136と光ファイバ112とを接続する接続導光部137とを有する。プリズム135は、例えば直角プリズムであり、光ファイバ112により導かれた光の射出角度が直角となるように配置されている。プリズム135によって直角に偏向された光は、シース150を透過して外部に存在する観察対象200に照射される。
FIG. 2 is an explanatory diagram for explaining the OCT probe 140. As shown in FIG. 2, the OCT probe 140 includes a sheath 150 and a probe main body 131 disposed in the sheath 150. The probe main body 131 is connected to the end face of the optical fiber 112 in an axially aligned state. The probe main body 131 includes a prism 135, a GRIN lens (refractive index inclined lens) 136, and a connection light guide unit 137 that connects the GRIN lens 136 and the optical fiber 112 in order from the distal end side. The prism 135 is, for example, a right-angle prism, and is arranged so that the emission angle of the light guided by the optical fiber 112 is a right angle. The light deflected at a right angle by the prism 135 passes through the sheath 150 and irradiates the observation target 200 existing outside.
OCTプローブ140には、プローブ本体131の基端側の端部に、回転手段160が設けられる。回転手段160はモータを備えたアクチュエータを有し、プローブ本体131はそのモータの回転軸に接続される。プローブ本体131は、アクチュエータに着脱自在に構成され、回転手段160のアクチュエータにて回転駆動される。回転手段160は図示しないコントローラにて駆動させることができる。なお、回転手段160は、プローブ本体131の基端側の端部に設ける構成に限定されず、例えば、OCTプローブ140の基端側の端部に設けて、該回転手段160から先端側に延出する光ファイバ及びプローブ本体131を回転させる構成とすることも可能である。
The OCT probe 140 is provided with a rotating means 160 at the end on the proximal end side of the probe main body 131. The rotating means 160 has an actuator provided with a motor, and the probe main body 131 is connected to the rotating shaft of the motor. The probe main body 131 is configured to be detachable from the actuator, and is rotated by the actuator of the rotating means 160. The rotating means 160 can be driven by a controller (not shown). The rotating means 160 is not limited to the configuration provided at the proximal end of the probe main body 131. For example, the rotating means 160 is provided at the proximal end of the OCT probe 140 and extends from the rotating means 160 to the distal end. It is also possible to adopt a configuration in which the outgoing optical fiber and the probe main body 131 are rotated.
また、OCTプローブ140には、シース150の内部にその長手方向に沿って設けられるガイドレール171bと、スライダ171aとを有する移動手段171が設けられる。スライダ171aは、プローブ本体131とガイドレール171bとの間に設けられ、プローブ本体131を支えるとともに、ガイドレール171bに沿って前後に移動可能である。スライダ171aが前後に移動することで、プローブ本体131をシース150内にて前後に移動させることができる。スライダ171aは、例えばスライダシリンダ等により前後に移動させることができ、図示しないコントローラにて駆動させることができる。なお、スライダの代わりに、プローブ本体131を支えるとともに、ガイドレール171bに沿って前後に移動可能なローラを設けることも可能であり、ローラが前後に移動することで、プローブ本体131をシース150内にて前後に移動させることができる。
Also, the OCT probe 140 is provided with a moving means 171 having a guide rail 171b provided along the longitudinal direction inside the sheath 150 and a slider 171a. The slider 171a is provided between the probe main body 131 and the guide rail 171b, supports the probe main body 131, and is movable back and forth along the guide rail 171b. The probe main body 131 can be moved back and forth within the sheath 150 by moving the slider 171a back and forth. The slider 171a can be moved back and forth by a slider cylinder, for example, and can be driven by a controller (not shown). Instead of the slider, it is also possible to provide a roller that supports the probe main body 131 and is movable back and forth along the guide rail 171b. The probe main body 131 is moved in the sheath 150 by moving the roller back and forth. Can be moved back and forth.
次に、上述の構成の歯科用OCT装置900を使用する歯牙隣接面の撮影態様について、説明する。
Next, an imaging aspect of a tooth adjacent surface using the dental OCT apparatus 900 having the above-described configuration will be described.
図3A及び図3Bは、歯牙隣接面う触を説明する説明図である。そのうち図3Aは歯牙隣接面う触の写真図であり、図3Bは歯牙隣接面う触の模式図である。図3A及び図3Bに示すように、歯と歯の間は、食片圧入(foodimpaction)を来さない50~80μm程度の間隔が適正であり、歯牙隣接面間は非常に狭く、歯牙隣接面う触の発見は困難である。
FIG. 3A and FIG. 3B are explanatory diagrams for explaining the touch of the adjacent tooth surface. Of these, FIG. 3A is a photographic view of the tooth adjacent surface contact, and FIG. 3B is a schematic view of the tooth adjacent surface contact. As shown in FIGS. 3A and 3B, an interval of about 50 to 80 μm, which does not cause food impaction, is appropriate between teeth, and the interval between adjacent teeth is very narrow. It is difficult to find the touch.
図4A及び図4Bは、歯牙隣接面う触を頬側面側からOCT撮影する比較例としての写真図である。そのうち図4Aは頬側面観の写真図であり、図4Bは頬側面からのOCT写真図である。図4Aにて示す実線を通過するように、頬側面からOCT撮影をすると、図4Bに示される断層写真図が得られる。図4Bにて点線内に示されるように、僅かにう触異常が示される程度である。
FIG. 4A and FIG. 4B are photographic diagrams as comparative examples in which OCT imaging is performed from the side of the buccal side of the tooth contact surface. 4A is a photograph of the buccal side view, and FIG. 4B is an OCT photograph from the buccal side. When OCT imaging is performed from the side of the cheek so as to pass through the solid line shown in FIG. 4A, the tomographic image shown in FIG. 4B is obtained. As shown in the dotted line in FIG. 4B, a slight touch abnormality is shown.
また、図5A及び図5Bは、歯牙隣接面う触を咬合面側からOCT撮影する比較例としての写真図である。そのうち図5Aは咬合面観の写真図であり、図5Bは咬合面からのOCT写真図である。図5Aにて示す実線を通過するように、咬合面からOCT撮影をすると、図5Bに示される断層写真図が得られる。図5Bにて点線内に示されるように、僅かにう触異常が示される程度である。
FIGS. 5A and 5B are photographic views as comparative examples in which OCT imaging is performed from the occlusal surface side of the tooth adjacent surface. 5A is a photograph of the occlusal view, and FIG. 5B is an OCT photograph from the occlusal surface. When OCT imaging is performed from the occlusal surface so as to pass through the solid line shown in FIG. 5A, a tomographic image shown in FIG. 5B is obtained. As shown in the dotted line in FIG. 5B, a slight touch abnormality is shown.
また、図6A及び図6Bは、歯牙隣接面う触を舌側面側からOCT撮影する比較例としての写真図である。そのうち図6Aは舌側面観の写真図であり、図6Bは舌側面からのOCT写真図である。図6Aにて示す実線を通過するように、舌側面からOCT撮影をすると、図6Bに示される断層写真図が得られる。図6Bにて点線内に示されるように、舌側面からのOCT撮影ではう触異常所見はほとんど解らない。
FIGS. 6A and 6B are photographic views as comparative examples in which OCT imaging is performed from the side of the lingual surface of the tooth adjacent surface. 6A is a photograph of the lingual side view, and FIG. 6B is an OCT photograph from the lingual side. When OCT imaging is performed from the side of the tongue so as to pass the solid line shown in FIG. 6A, a tomographic image shown in FIG. 6B is obtained. As shown in the dotted line in FIG. 6B, the abnormal touch findings are hardly understood in the OCT imaging from the side of the tongue.
次に、図7A、図7B及び図7Cは、本実施形態に係る歯牙隣接面の撮影方法を説明する説明図である。そのうち図7Aは頬側面からの説明図であり、図7Bは舌側面からの説明図であり、図7Cは咬合面からの説明図である。図7A、図7B及び図7Cに示されるように、歯間鼓形空隙の上部又は下部にOCTプローブ140を挿入し、該OCTプローブ140を挿入した歯間鼓形空隙内にてシース150を固定させる。シース150は可撓性を有しているため、歯間鼓形空隙にOCTプローブ140を挿入しやすく、かつ歯間鼓形空隙近傍の歯周組織を傷つけにくい。そして、回転手段160によりプローブ本体131を回転させながら、歯牙隣接面の画像をOCTプローブ140で撮影する。又は、固定させたシース150内にて移動手段171によりプローブ本体131を前方又は後方に移動させて歯牙隣接面の画像をOCTプローブ140で撮影する。又は、回転手段160によりプローブ本体131を回転させながら、固定させたシース150内にて移動手段171によりプローブ本体131を前方又は後方に移動させて歯牙隣接面の画像をOCTプローブ140で撮影する。
Next, FIG. 7A, FIG. 7B and FIG. 7C are explanatory views for explaining a method for photographing a tooth adjacent surface according to the present embodiment. 7A is an explanatory view from the cheek side, FIG. 7B is an explanatory view from the tongue side, and FIG. 7C is an explanatory view from the occlusal surface. As shown in FIGS. 7A, 7B, and 7C, the OCT probe 140 is inserted into the upper part or the lower part of the interdental hour space, and the sheath 150 is fixed in the interdental hour space where the OCT probe 140 is inserted. Let Since the sheath 150 is flexible, it is easy to insert the OCT probe 140 into the interdental space and it is difficult to damage periodontal tissue in the vicinity of the interdental space. Then, while rotating the probe main body 131 by the rotating means 160, an image of the tooth adjacent surface is taken by the OCT probe 140. Alternatively, the probe body 131 is moved forward or backward by the moving means 171 in the fixed sheath 150 and an image of the tooth adjacent surface is taken by the OCT probe 140. Alternatively, the probe body 131 is moved forward or backward by the moving means 171 in the fixed sheath 150 while the probe body 131 is rotated by the rotating means 160, and an image of the tooth adjacent surface is taken by the OCT probe 140.
プローブ本体131の回転は360度の回転であるが、これに限定されることはなく、例えば歯間鼓形空隙の上部にOCTプローブ140を挿入する場合にあっては、下方180度の回転とすることも可能であり、また例えば歯間鼓形空隙の下部にOCTプローブ140を挿入する場合にあっては、上方180度の回転とすることも可能である。
The rotation of the probe body 131 is 360 degrees, but is not limited to this. For example, when the OCT probe 140 is inserted into the upper part of the interdental space, the rotation is 180 degrees downward. For example, when the OCT probe 140 is inserted in the lower part of the interdental space, it can be rotated 180 degrees upward.
なお、シース150を歯間鼓形空隙内に固定させずに、プローブ本体131をシース150と共に前方又は後方に移動させて歯牙隣接面の画像をOCTプローブ140で撮影することも可能である。係る場合は、プローブ本体131をシース内150にて前後に移動させる移動手段171を設けずに、シース150を移動させるシース移動手段を設ける。また、シース150を外側シースと内側シースとから形成される二重構成にして、歯間鼓形空隙内にて該外側シースを固定させ、プローブ本体131を内側シースと共に前方又は後方に移動させて歯牙隣接面の画像を撮影することも可能である。
In addition, without fixing the sheath 150 in the interdental space, the probe main body 131 can be moved forward or backward together with the sheath 150 and an image of the tooth adjacent surface can be taken with the OCT probe 140. In such a case, a sheath moving means for moving the sheath 150 is provided without providing the moving means 171 for moving the probe main body 131 back and forth within the sheath 150. In addition, the sheath 150 has a double structure formed by an outer sheath and an inner sheath, the outer sheath is fixed in the interdental space, and the probe body 131 is moved forward or backward together with the inner sheath. It is also possible to take an image of the tooth adjacent surface.
図8A及び図8Bは、本実施形態に係る歯牙隣接面の撮影を説明する写真図である。そのうち図8Aは入射方向を説明する写真図であり、図8Bは各々の入射方向に対応する断面の位置を説明する写真図である。歯間鼓形空隙の上部にOCTプローブ140を挿入し、シース150を固定させ、図8Aに矢印Rにて示すようにプローブ本体131を回転させながら、歯牙隣接面の画像を撮影する。係る場合の断面の位置は、図8BにRにて示される。また、歯間鼓形空隙の上部にOCTプローブ140を挿入し、シース150を固定させ、図8Aに矢印S1、S2、S3、及びS4にて示すようにシース150内にてプローブ本体131を前方又は後方に移動させて歯牙隣接面の画像を撮影する。係る場合の断面の位置は、図8Bに各々S1、S2、S3、及びS4にて示される。
FIG. 8A and FIG. 8B are photographic views for explaining photographing of a tooth adjacent surface according to the present embodiment. 8A is a photographic view for explaining the incident direction, and FIG. 8B is a photographic view for explaining the position of the cross section corresponding to each incident direction. The OCT probe 140 is inserted into the upper part of the interdental space, the sheath 150 is fixed, and an image of the adjacent tooth surface is taken while the probe body 131 is rotated as indicated by an arrow R in FIG. 8A. The position of the cross section in such a case is indicated by R in FIG. 8B. Further, the OCT probe 140 is inserted into the upper part of the interdental space, and the sheath 150 is fixed. As shown by arrows S 1 , S 2 , S 3 , and S 4 in FIG. The main body 131 is moved forward or backward to take an image of the tooth adjacent surface. The position of the cross section in such a case is indicated by S 1 , S 2 , S 3 , and S 4 in FIG. 8B, respectively.
図9は、本実施形態に係る歯牙隣接面の撮影にて、プローブ本体131を回転させて得られた断層写真図である。図9に示すように、図8BにRにて示される断面の断層写真では、う触の進行を明瞭に確認することができる。また、図10A、図10B、図10C及び図10Dは、本実施形態に係る歯牙隣接面の撮影にて、プローブ本体131を前方又は後方に移動させて得られた断層写真図である。図10A、図10B、図10C及び図10Dに示すように、図8Bに各々S1、S2、S3、及びS4にて示される断面の断層写真では、う触の進行を明瞭に確認することができる。
FIG. 9 is a tomographic image obtained by rotating the probe main body 131 in the imaging of the tooth adjacent surface according to the present embodiment. As shown in FIG. 9, the progress of the touch can be clearly confirmed in the tomographic photograph of the cross section indicated by R in FIG. 8B. 10A, 10B, 10C, and 10D are tomographic photographs obtained by moving the probe main body 131 forward or backward in imaging of a tooth adjacent surface according to the present embodiment. As shown in FIG. 10A, FIG. 10B, FIG. 10C, and FIG. 10D, the tomographic images of the cross sections indicated by S 1 , S 2 , S 3 , and S 4 in FIG. can do.
このように、歯間鼓形空隙にOCTプローブ140を挿入し、回転及び前後移動のうち少なくとも何れか一方を行うことにより、種々の方向からの歯牙隣接面の画像を得ることができ、また、回転させると共に前後移動させるから、歯牙隣接面全体に光を直接照射させることができるため、極めて正確な歯牙隣接面う触の撮影が可能となる。また、本発明によれば、歯牙隣接面のみならず歯牙隣接面の近傍の歯周組織についても正確でクリアな撮影が可能となる。歯周組織には、歯肉、歯槽骨、セメント質、結合線維、及び歯根膜が包含される。
In this way, by inserting the OCT probe 140 into the interdental space and performing at least one of rotation and back-and-forth movement, images of adjacent teeth from various directions can be obtained, Since it is rotated and moved back and forth, the entire tooth adjacent surface can be directly irradiated with light, so that it is possible to photograph a very accurate contact with the tooth adjacent surface. Further, according to the present invention, accurate and clear imaging can be performed not only on the tooth adjacent surface but also on the periodontal tissue in the vicinity of the tooth adjacent surface. Periodontal tissue includes gingiva, alveolar bone, cementum, connective fibers, and periodontal ligament.
なお、上述の実施形態では、歯牙隣接面の撮影において、プローブ本体131の回転は回転手段160により行ったが、このような実施形態に限定されるわけではなく、プローブ本体131の回転は人の手による操作も可能である。また、プローブ本体131の前後移動は移動手段171により行ったが、このような実施形態に限定されるわけではなく、プローブ本体131の前後移動は人の手による操作も可能である。
In the above-described embodiment, the rotation of the probe main body 131 is performed by the rotating means 160 in the imaging of the tooth adjacent surface. However, the rotation is not limited to such an embodiment, and the rotation of the probe main body 131 is not performed by humans. Manual operation is also possible. The probe body 131 is moved back and forth by the moving means 171. However, the probe body 131 is not limited to such an embodiment, and the probe body 131 can be moved back and forth by a human hand.
(実施形態1B)
上述の実施形態では、プローブ本体131は、光ファイバからの入射光を直角に向きを変えて射出するものであった(第1プローブ本体)。しかし、本発明の範囲はこのような実施形態に限定されるものではない。図11A及び図11Bは、直角とは異なる方向に入射光の向きを変える実施形態1Bに係るOCTプローブを説明する図である。そのうち図11Aは、入射光を光ファイバに対し鋭角に向きを変えて射出する第2プローブ本体132の説明図であり、図11Bは、入射光を光ファイバに対し鈍角に向きを変えて射出する第3プローブ本体133の説明図である。 (Embodiment 1B)
In the above-described embodiment, the probemain body 131 emits incident light from the optical fiber while changing the direction to a right angle (first probe main body). However, the scope of the present invention is not limited to such an embodiment. 11A and 11B are diagrams illustrating the OCT probe according to Embodiment 1B in which the direction of incident light is changed in a direction different from a right angle. FIG. 11A is an explanatory diagram of the second probe main body 132 that emits incident light at an acute angle with respect to the optical fiber, and FIG. 11B emits incident light at an obtuse angle with respect to the optical fiber. It is explanatory drawing of the 3rd probe main body.
上述の実施形態では、プローブ本体131は、光ファイバからの入射光を直角に向きを変えて射出するものであった(第1プローブ本体)。しかし、本発明の範囲はこのような実施形態に限定されるものではない。図11A及び図11Bは、直角とは異なる方向に入射光の向きを変える実施形態1Bに係るOCTプローブを説明する図である。そのうち図11Aは、入射光を光ファイバに対し鋭角に向きを変えて射出する第2プローブ本体132の説明図であり、図11Bは、入射光を光ファイバに対し鈍角に向きを変えて射出する第3プローブ本体133の説明図である。 (Embodiment 1B)
In the above-described embodiment, the probe
図11Aに示すように、第2プローブ本体では、プリズム235が、光ファイバ112により導かれた光の射出角度が鋭角に照射されるように構成されており、本実施形態ではその照射角度θは例えば60度である。その他の構成は、上記の第1プローブ本体131と同様である。また、図11Bに示すように、第3プローブ本体では、プリズム335が、光ファイバ112により導かれた光の射出角度が鈍角に照射されるように構成されており、本実施形態ではその照射角度θは例えば130度である。その他の構成は、上記の第1プローブ本体131と同様である。
As shown in FIG. 11A, in the second probe body, the prism 235 is configured so that the emission angle of the light guided by the optical fiber 112 is irradiated at an acute angle. In this embodiment, the irradiation angle θ is For example, it is 60 degrees. Other configurations are the same as those of the first probe main body 131 described above. As shown in FIG. 11B, in the third probe body, the prism 335 is configured so that the emission angle of the light guided by the optical fiber 112 is irradiated at an obtuse angle. For example, θ is 130 degrees. Other configurations are the same as those of the first probe main body 131 described above.
図12A及び図12Bは、実施形態1Bに係るOCTプローブの使用態様を説明する図である。そのうち図12Aは第2プローブ本体を使用するOCTプローブの使用態様であり、図12Bは第3プローブ本体を使用するOCTプローブの使用態様である。実施形態1Bでは、プローブ本体は、第1プローブ本体131、第2プローブ本体132、又は第3プローブ本体133の3タイプからなり、これら第1プローブ本体131、第2プローブ本体132、又は第3プローブ本体133を互換使用する。即ち、通常の使用態様では、第1プローブ本体131を使用する。そして、図12Aに示されるように、歯間鼓形空隙の奥側にOCTプローブ140を挿入し、その奥側から歯牙隣接面を撮影する場合は、第2プローブ本体132を使用する。また、図12Bに示されるように、歯間鼓形空隙の下部が狭いため、OCTプローブ140を挿入しにくい場合は、第3プローブ本体133を使用する。これにより、歯間鼓形空隙の下部が狭く、OCTプローブ140が挿入しにくい場合でも、的確に歯牙隣接面を撮影することが可能になる。
FIG. 12A and FIG. 12B are diagrams for explaining how to use the OCT probe according to Embodiment 1B. Of these, FIG. 12A shows how the OCT probe uses the second probe body, and FIG. 12B shows how the OCT probe uses the third probe body. In the embodiment 1B, the probe main body includes three types of the first probe main body 131, the second probe main body 132, or the third probe main body 133, and the first probe main body 131, the second probe main body 132, or the third probe main body. The main body 133 is used interchangeably. That is, in the normal usage mode, the first probe body 131 is used. And as FIG. 12A shows, when inserting the OCT probe 140 in the back | inner side of an interdental hourglass-shaped space | gap, and image | photographs a tooth adjacent surface from the back | inner side, the 2nd probe main body 132 is used. In addition, as shown in FIG. 12B, the third probe body 133 is used when it is difficult to insert the OCT probe 140 because the lower part of the interdental drum-shaped gap is narrow. Thereby, even when the lower part of the interdental space is narrow and it is difficult to insert the OCT probe 140, it is possible to accurately photograph the adjacent tooth surface.
(実施形態1C)
上述の実施形態1Aにおいて、シース150とプローブ本体131との間の空間が空気である場合、プリズム135→空気の際と、空気→シース150の際とで、各々の接続部の屈折率の差に起因する光の接続損失が発生する場合がある。そこで、本実施形態では、シース150内に、シース150とプローブ本体131との間の空間を充填する屈折率調整用のマッチングオイルを有する。マッチングオイルの屈折率はプリズム135の屈折率に同一又は近いものを使用しても良いし、また、シース150の屈折率に同一又は近いものを使用しても良い。また、プリズム135の屈折率とシース150の屈折率とが同一又は近い場合は、その屈折率のものを使用することが可能である。 (Embodiment 1C)
In the above-described embodiment 1A, when the space between thesheath 150 and the probe main body 131 is air, the difference in the refractive index of each connecting portion between the prism 135 → air and the air → sheath 150. In some cases, optical connection loss due to the occurrence of the loss occurs. In view of this, in this embodiment, the sheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131. The refractive index of the matching oil may be the same as or close to the refractive index of the prism 135, or the same or close to the refractive index of the sheath 150 may be used. In addition, when the refractive index of the prism 135 and the refractive index of the sheath 150 are the same or close to each other, it is possible to use the refractive index.
上述の実施形態1Aにおいて、シース150とプローブ本体131との間の空間が空気である場合、プリズム135→空気の際と、空気→シース150の際とで、各々の接続部の屈折率の差に起因する光の接続損失が発生する場合がある。そこで、本実施形態では、シース150内に、シース150とプローブ本体131との間の空間を充填する屈折率調整用のマッチングオイルを有する。マッチングオイルの屈折率はプリズム135の屈折率に同一又は近いものを使用しても良いし、また、シース150の屈折率に同一又は近いものを使用しても良い。また、プリズム135の屈折率とシース150の屈折率とが同一又は近い場合は、その屈折率のものを使用することが可能である。 (Embodiment 1C)
In the above-described embodiment 1A, when the space between the
シース150内に充填されるマッチングオイルは、OCTプローブ131の回転及び前後移動を円滑に担保する程度の粘性を有するものが好ましい。シース150とプローブ本体131との間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな歯牙隣接面の撮影が可能となる。
It is preferable that the matching oil filled in the sheath 150 has a viscosity enough to ensure the rotation and back-and-forth movement of the OCT probe 131 smoothly. By using the matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131, it is possible to prevent light connection loss and to photograph a clear tooth adjacent surface.
(実施形態1D)
上述の実施形態1Aにおいて、シース150と観察対象200との間の空間が空気である場合、シース150→空気の際と、空気→観察対象200の際とで、各々の接続部の屈折率の差に起因する光の接続損失が発生する場合がある。そこで、本実施形態では、シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。 Embodiment 1D
In the above-described embodiment 1A, when the space between thesheath 150 and the observation target 200 is air, the refractive index of each connection portion is different between the sheath 150 → air and the air → observation target 200. In some cases, optical connection loss due to the difference may occur. Therefore, in the present embodiment, matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200 is disposed around the sheath 150. The refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150.
上述の実施形態1Aにおいて、シース150と観察対象200との間の空間が空気である場合、シース150→空気の際と、空気→観察対象200の際とで、各々の接続部の屈折率の差に起因する光の接続損失が発生する場合がある。そこで、本実施形態では、シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。 Embodiment 1D
In the above-described embodiment 1A, when the space between the
シース150の周囲に配置されるマッチングオイルは、歯間鼓形空隙に一定時間停滞する程度の粘性を有するものが好ましく、また、歯科鼓形空隙に接触するため、生体為害性を有しないことが必要である。シース150の周囲に配置されるマッチングオイルの種類としては、特に限定されるものではないが、例えば植物性オイル等を使用することが可能である。シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな歯牙隣接面の撮影が可能となる。
The matching oil disposed around the sheath 150 is preferably viscous so that it stays in the interdental hour space for a certain period of time, and because it contacts the dental hour space, it may not have any biological harm. is necessary. The type of matching oil disposed around the sheath 150 is not particularly limited, and for example, vegetable oil or the like can be used. By using a matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200, it is possible to prevent loss of light connection and to capture a clear tooth adjacent surface.
また、中腔部310を有すると共に、膨張すると歯間鼓形空隙に密着する形状の膨張体300を用いることも可能である。図13は、歯間鼓形空隙に密着する形状の膨張体300を使用して、歯牙隣接面を撮影する説明図である。図13に示すように、膨張体300の中腔部310内にOCTプローブ140を挿入し、膨張体300の内部に、屈折率の差による光の減衰を防止する減衰防止媒体を注入することにより、膨張体300を歯間鼓形空隙に密着させて歯牙隣接面の画像をOCTプローブ140で撮影する。減衰防止媒体は、膨張体300の内部に充填されるため、生体為害性の有無を問わないし、また粘度も問わない。減衰防止媒体は、特に限定されるものではないが、例えば、水、生理食塩水、植物性オイル等を使用することが可能である。これにより、シース150と観察対象200との間の空間にある空気に起因する光の接続損失を防止することができ、クリアな歯牙隣接面の撮影が可能となる。
It is also possible to use the expansion body 300 having the cavity portion 310 and having a shape that closely contacts the interdental space when expanded. FIG. 13 is an explanatory view of photographing a tooth adjacent surface using an expanding body 300 having a shape closely contacting with an interdental space. As shown in FIG. 13, an OCT probe 140 is inserted into the inner cavity 310 of the expansion body 300, and an anti-attenuation medium that prevents light attenuation due to a difference in refractive index is injected into the expansion body 300. Then, the expansion body 300 is brought into close contact with the interdental space, and an image of the adjacent tooth surface is taken with the OCT probe 140. Since the anti-attenuation medium is filled in the expansion body 300, it does not matter whether there is any biological harm or no viscosity. The anti-attenuation medium is not particularly limited. For example, water, physiological saline, vegetable oil, or the like can be used. Thereby, the connection loss of the light resulting from the air in the space between the sheath 150 and the observation target 200 can be prevented, and clear imaging of the adjacent tooth surface becomes possible.
図14は、膨張体300の断面の一具体例を示す説明図である。図14に示すように、膨張体300は、膨張した場合の断面が、内側に凹む滑らかな凹曲線にて形成されることが好ましい。歯間鼓形空隙は、外側に突出する滑らかな凸曲線にて形成されるており、このような断面形状を有することにより、膨張体300が膨張すると歯間鼓形空隙に密着しやすい形状となる。
FIG. 14 is an explanatory view showing a specific example of a cross section of the expansion body 300. As shown in FIG. 14, it is preferable that the expanded body 300 is formed with a smooth concave curve in which the cross section when expanded is recessed inward. The interdental space is formed by a smooth convex curve that protrudes to the outside. By having such a cross-sectional shape, the interdental space has a shape that can easily adhere to the interdental space when the expansion body 300 expands. Become.
(実施形態1E)
上述の実施形態1Aでは、プローブ本体131をシース150内にて前後に移動させる移動手段171は、スライダ171aと、シース150の内部に設けられるガイドレール171bとを有して構成された。しかしながら、プローブ本体131をシース150内にて前後に移動させる移動手段は、このような実施形態に限定されない。 (Embodiment 1E)
In the embodiment 1A described above, the moving means 171 for moving the probemain body 131 back and forth within the sheath 150 includes the slider 171a and the guide rail 171b provided inside the sheath 150. However, the moving means for moving the probe main body 131 back and forth within the sheath 150 is not limited to such an embodiment.
上述の実施形態1Aでは、プローブ本体131をシース150内にて前後に移動させる移動手段171は、スライダ171aと、シース150の内部に設けられるガイドレール171bとを有して構成された。しかしながら、プローブ本体131をシース150内にて前後に移動させる移動手段は、このような実施形態に限定されない。 (Embodiment 1E)
In the embodiment 1A described above, the moving means 171 for moving the probe
図15は、別実施形態に係る移動手段を有するOCTプローブを説明する説明図である。図15に示すように、プローブ本体131の基端側の端部には、複数段ロッドから構成される伸縮自在の移動手段179が設けられる。この移動手段179が伸びることにより、シース150内にてプローブ本体131が先端側に移動し、移動手段179が縮むことにより、シース150内にてプローブ本体131が基端側に移動する。移動手段179は、図15に示すようにプローブ本体131の基端側の端部に位置する回転手段160に取り付けられても良いし、また直接的にプローブ本体131の基端側の端部に取り付けることも可能である。なお、移動手段179を伸縮自在の複数段ロッド構造と構成せずに、紐状部材から構成して該紐状部材をリール等により巻き取る構成とすることも可能である。なお、179はプローブ回転の中心に存在する事も可能となる。係る構成によれば、シース150内にてプローブ本体131を先端側に移動させることはできないが、簡易な構成によりシース150内にてプローブ本体131を基端側に移動させることが可能となる。
FIG. 15 is an explanatory diagram for explaining an OCT probe having moving means according to another embodiment. As shown in FIG. 15, the end of the probe main body 131 on the proximal end side is provided with a telescopic moving means 179 composed of a multistage rod. When the moving means 179 extends, the probe main body 131 moves to the distal end side in the sheath 150, and when the moving means 179 contracts, the probe main body 131 moves to the proximal end side in the sheath 150. The moving means 179 may be attached to the rotating means 160 located at the proximal end of the probe main body 131 as shown in FIG. 15, or directly to the proximal end of the probe main body 131. It is also possible to attach. The moving means 179 may be formed of a string-like member without being configured as an expandable / contractible multi-stage rod structure, and the string-like member may be wound up by a reel or the like. Note that 179 can exist at the center of probe rotation. According to such a configuration, the probe main body 131 cannot be moved to the distal end side within the sheath 150, but the probe main body 131 can be moved to the proximal end side within the sheath 150 with a simple configuration.
(実施形態2A)
本実施形態に係る歯科用OCT装置900は、歯牙咬合面近傍にOCTプローブ140を挿入し、回転及び前後移動のうち少なくとも何れか一方を行い、歯牙咬合面の表面形態に応じてOCT撮影する。 (Embodiment 2A)
Thedental OCT apparatus 900 according to the present embodiment inserts an OCT probe 140 in the vicinity of the tooth occlusion surface, performs at least one of rotation and forward / backward movement, and performs OCT imaging according to the surface form of the tooth occlusion surface.
本実施形態に係る歯科用OCT装置900は、歯牙咬合面近傍にOCTプローブ140を挿入し、回転及び前後移動のうち少なくとも何れか一方を行い、歯牙咬合面の表面形態に応じてOCT撮影する。 (Embodiment 2A)
The
本実施形態に係る歯科用OCT装置900の全体構成は、図1に示したように、実施形態1Aと同様である。観察対象200は歯牙咬合面である。また、OCTプローブ140の構成は、図2に示したように、実施形態1Aと同様である。プローブ本体131の厚みは、口腔内に挿入可能な大きさであれば特に限定されるものではないが、例えば0.4~0.8mmである。
The overall configuration of the dental OCT apparatus 900 according to this embodiment is the same as that of Embodiment 1A as shown in FIG. The observation target 200 is a tooth occlusal surface. The configuration of the OCT probe 140 is the same as that of the embodiment 1A as shown in FIG. The thickness of the probe main body 131 is not particularly limited as long as it is a size that can be inserted into the oral cavity, but is 0.4 to 0.8 mm, for example.
図16は、OCTプローブ140を水平に移動させる水平移動手段220、及び、OCTプローブ140を垂直に移動させる垂直移動手段230を説明する説明図である。図の複雑さ回避のために図16において、移動手段171は省略している。図16に示されるように、シース150の両外側にはサポートレール210が敷設されており、サポートレール210はOCTプローブ140を支える。水平移動手段220は、サポートレール210の基端部を支持し、そのサポートレール210を左右(図16においてy軸方向)又は前後(図16においてx軸方向)に自在に移動させることが可能である。即ち、OCTプローブ140を左右に移動させる場合はサポートレール210を左右に移動させ、OCTプローブ140を前後に移動させる場合はサポートレール210を前方に進出させる又は後方に後退させる。これによりOCTプローブ140を水平自在に移動させる。また、垂直移動手段230は、水平移動手段220を垂直(上下)に移動させることが可能であり、OCTプローブ140を垂直(上下)自在に移動させる(図16においてz軸方向)。なお、本実施形態では、垂直移動手段230は水平移動手段220を垂直に移動させるものであったが、このような実施形態に限定されることはなく、例えば水平移動手段220は垂直移動手段230を水平に移動させる構成を採用することも可能である。
FIG. 16 is an explanatory diagram for explaining the horizontal moving means 220 for moving the OCT probe 140 horizontally and the vertical moving means 230 for moving the OCT probe 140 vertically. In order to avoid the complexity of the figure, the moving means 171 is omitted in FIG. As shown in FIG. 16, support rails 210 are laid on both outer sides of the sheath 150, and the support rails 210 support the OCT probe 140. The horizontal moving means 220 supports the base end portion of the support rail 210 and can freely move the support rail 210 left and right (in the y-axis direction in FIG. 16) or front and rear (in the x-axis direction in FIG. 16). is there. That is, when the OCT probe 140 is moved left and right, the support rail 210 is moved left and right, and when the OCT probe 140 is moved back and forth, the support rail 210 is moved forward or moved backward. As a result, the OCT probe 140 is moved horizontally. Further, the vertical moving unit 230 can move the horizontal moving unit 220 vertically (up and down), and moves the OCT probe 140 vertically (up and down) freely (in the z-axis direction in FIG. 16). In the present embodiment, the vertical moving unit 230 moves the horizontal moving unit 220 vertically. However, the present invention is not limited to such an embodiment. For example, the horizontal moving unit 220 is the vertical moving unit 230. It is also possible to adopt a configuration in which the is moved horizontally.
次に、上述の構成の歯科用OCT装置900を使用する歯牙咬合面の撮影態様について、説明する。
Next, an imaging aspect of the occlusal surface using the dental OCT apparatus 900 having the above-described configuration will be described.
図17A及び図17Bは、臼歯の歯牙咬合面の表面形態を説明する説明図であり、そのうち図17Aは上顎第一小臼歯の歯牙咬合面の表面形態であり、図17Bは上顎第一大臼歯の歯牙咬合面の表面形態である。図17A及び図17Bにおいて、611は頬側面隆線、612は頬側面、613は中心咬合面隆線、614は隅角、615は近心咬合面副隆線、616は近心辺縁隆線、617は咬合面、618は舌側咬頭、619は舌側面、620は遠心辺縁隆線、621は遠心咬合面副隆線、623は切縁、624は頬側咬頭、625は近心頬側咬頭、626は咬合面副隆線、627は近心舌側咬頭、628は遠心舌側咬頭、629は遠心頬側咬頭である。図17A及び図17Bに示すように、歯牙咬合面とは、上下顎臼歯部の咬頭の間にある相対向する陥凹している面のことであり、隆線、裂溝、及び窩等で構成され複雑な形態を有しており、上下の歯を咬合させることによって咀嚼機能を実現する。歯牙咬合面の凹凸は食物を噛み砕く機能を担保し、スピルウェイは噛み砕かれた食物を更に細かく磨り潰す機能を担保する。なお、前歯部では歯牙咬合面は形成されずに、切縁部が形成される。
17A and 17B are explanatory views for explaining the surface form of the occlusal surface of the molar tooth, in which FIG. 17A is the surface form of the occlusal surface of the upper first premolar, and FIG. 17B is the upper first molar tooth. It is the surface form of the tooth occlusal surface. 17A and 17B, 611 is a buccal lateral ridge, 612 is a buccal lateral surface, 613 is a central occlusal ridge, 614 is a corner angle, 615 is a mesial occlusal surface ridge, and 616 is a mesial marginal ridge. , 617 occlusal surface, 618 lingual cusp, 619 lingual side, 620 distal marginal ridge, 621 distal occlusal ridge, 623 incision, 624 buccal cusp, and 625 mesial cheek A side cusp, 626 is an occlusal collateral ridge, 627 is a mesial lingual cusp, 628 is a distal lingual cusp, and 629 is a distal buccal cusp. As shown in FIGS. 17A and 17B, the tooth occlusal surface is a concave surface facing each other between the cusps of the upper and lower molars, and is a ridge, fissure, fossa or the like. It is configured and has a complex form, and realizes a masticatory function by engaging upper and lower teeth. The unevenness of the tooth occlusal surface ensures the function of chewing food, and the spillway assures the function of finely grinding the chewed food. In addition, a tooth occlusal surface is not formed in an anterior tooth part, but a cutting edge part is formed.
図18A及び図18Bは、ハンドピース型OCTプローブを使用して歯牙咬合面をOCT撮影する比較例としての写真図である。そのうち図18Aは下顎大臼歯の歯牙咬合面のOCT撮影であり、図18Bは上顎大臼歯の歯牙咬合面のOCT撮影である。図18A及び図18Bに示すように、人の最大開口量は成人で35~40mm程度が限界であるため、ハンドピース型OCTプローブを使用してのOCT撮影では、歯牙咬合面に対して光を垂直に入射させることは極めて困難である。そして、OCT撮影では、光の入射角の僅かな相違により屈折現象・散乱現象に差異が生じるため、歯牙咬合面に対し光を垂直に入射できない撮影法では、画像描出能に差異が生じて正確な歯牙咬合面の撮影が困難である。
FIG. 18A and FIG. 18B are photographic diagrams as comparative examples in which the occlusal surface of the tooth is OCT imaged using a handpiece type OCT probe. 18A is an OCT image of the occlusal surface of the lower molar, and FIG. 18B is an OCT image of the occlusal surface of the upper molar. As shown in FIGS. 18A and 18B, the maximum human opening is limited to about 35 to 40 mm for adults. Therefore, in OCT imaging using a handpiece type OCT probe, light is applied to the tooth occlusal surface. It is extremely difficult to make the light incident vertically. In OCT imaging, differences in the refraction and scattering phenomena occur due to slight differences in the incident angle of light. Therefore, in imaging methods in which light cannot be incident perpendicularly to the tooth occlusal surface, there is a difference in image rendering ability and accuracy. It is difficult to photograph the occlusal surface of the teeth.
次に、図19A及び図19Bは、本実施形態に係る歯牙咬合面の撮影方法である。そのうち図19AはOCTプローブ140の水平移動を説明する図であり、図19BはOCTプローブ140の垂直移動を説明する図である。図の複雑さ回避のために図19A及び図19Bにおいて、シース150、回転手段160及び移動手段171の記載は省略している。歯牙咬合面の近傍にOCTプローブ140を配置させる。シース150は可撓性を有しているため歯周組織を傷つけにくい。そして、回転手段160によりプローブ本体131を回転させながら、シース150内にて移動手段171によりプローブ本体131を前方又は後方に移動させる。プローブ本体131の回転範囲角度は、プローブ本体131の回転により歯牙咬合面の形態をカバーできる回転範囲角度であることが必要であり、特に限定されるものではないが、例えば30°~90°である。なお、前後に移動させずにプローブ本体131を回転させてOCTプローブ140で撮影する、又は、回転させずにプローブ本体131を前後に移動させてOCTプローブ140で撮影することも可能である。そして、図19Aに示されるように、水平移動手段220にてOCTプローブ140を水平(前後・左右)に移動させて、水平位置についての歯牙咬合面の形態に応じたOCT撮影を行う。また、図19Bに示されるように、垂直移動手段230にてOCTプローブ140を垂直(上下)に移動させ、観察対象200との距離を一定に保ち、感度及び解像度良く歯牙咬合面の形態に応じたOCT撮影を行う。
Next, FIG. 19A and FIG. 19B are a method for photographing a tooth occlusal surface according to this embodiment. 19A is a view for explaining horizontal movement of the OCT probe 140, and FIG. 19B is a view for explaining vertical movement of the OCT probe 140. In order to avoid the complexity of the drawing, the description of the sheath 150, the rotating means 160, and the moving means 171 is omitted in FIGS. 19A and 19B. The OCT probe 140 is placed in the vicinity of the tooth occlusion surface. Since the sheath 150 is flexible, it is difficult to damage the periodontal tissue. Then, while rotating the probe main body 131 by the rotating means 160, the probe main body 131 is moved forward or backward by the moving means 171 in the sheath 150. The rotation range angle of the probe main body 131 needs to be a rotation range angle that can cover the form of the tooth occlusal surface by the rotation of the probe main body 131 and is not particularly limited, but is, for example, 30 ° to 90 °. is there. It is also possible to rotate the probe main body 131 without moving back and forth and photograph with the OCT probe 140, or move the probe main body 131 back and forth without rotating and photograph with the OCT probe 140. Then, as shown in FIG. 19A, the OCT probe 140 is moved horizontally (front and rear, left and right) by the horizontal moving means 220, and OCT imaging according to the form of the tooth occlusal surface at the horizontal position is performed. Further, as shown in FIG. 19B, the OCT probe 140 is moved vertically (up and down) by the vertical moving means 230, the distance from the observation target 200 is kept constant, and the shape of the tooth occlusal surface is improved with high sensitivity and resolution. Perform OCT imaging.
このように、歯牙咬合面の近傍にOCTプローブを挿入し、プローブ本体の回転及び前後移動のうち少なくとも何れか一方を行うと共に、歯牙咬合面の表面形態に応じてOCT撮影を行うから、極めて正確な歯牙咬合面の撮影が可能となる。更に、本発明によれば、歯牙咬合面のみならず歯牙・歯周組織の舌側面や舌側傾斜を認める歯牙切縁部についても正確でクリアな撮影が可能となる。
In this way, the OCT probe is inserted in the vicinity of the tooth occlusal surface, and at least one of rotation and forward / backward movement of the probe body is performed, and OCT imaging is performed according to the surface form of the tooth occlusal surface. It is possible to shoot a proper tooth occlusal surface. Furthermore, according to the present invention, accurate and clear imaging can be performed not only on the occlusal surface of the tooth but also on the tongue side surface and the lingual side of the tooth / periodontal tissue and the lingual side of the tooth.
なお、プローブ本体131をシース150と共に前方又は後方に移動させて歯牙咬合面の画像をOCTプローブ140で撮影することも可能である。係る場合は、プローブ本体131をシース内150にて前後に移動させる移動手段171を設ける必要はない。また、シース150を外側シースと内側シースとから形成される二重構成にして、歯牙咬合面近傍にて該外側シースを固定させ、プローブ本体131を内側シースと共に前方又は後方に移動させて歯牙咬合面の画像を撮影することも可能である。
Note that the OCT probe 140 can also take an image of the tooth occlusal surface by moving the probe body 131 forward or backward together with the sheath 150. In such a case, it is not necessary to provide moving means 171 for moving the probe main body 131 back and forth within the sheath 150. Further, the sheath 150 has a double structure formed by an outer sheath and an inner sheath, the outer sheath is fixed in the vicinity of the tooth occlusion surface, and the probe body 131 is moved forward or backward together with the inner sheath to occlude the tooth. It is also possible to take an image of the surface.
また、上述の実施形態では、歯牙咬合面の撮影において、プローブ本体131の回転は回転手段160により行ったが、このような実施形態に限定されるわけではなく、プローブ本体131の回転は人の手による操作も可能である。また、プローブ本体131の前後移動は移動手段171により行ったが、このような実施形態に限定されるわけではなく、プローブ本体131の前後移動は人の手による操作も可能である。同様に、OCTプローブ140の水平移動及び垂直移動についても人の手による操作が可能である。
In the above-described embodiment, the rotation of the probe main body 131 is performed by the rotating means 160 in photographing the occlusal surface of the tooth. However, the rotation of the probe main body 131 is not limited to such an embodiment. Manual operation is also possible. The probe body 131 is moved back and forth by the moving means 171. However, the probe body 131 is not limited to such an embodiment, and the probe body 131 can be moved back and forth by a human hand. Similarly, the horizontal and vertical movements of the OCT probe 140 can be operated by human hands.
(実施形態2B)
実施形態2Bでは、シース151は歯牙咬合面の起伏形態に沿って変形させて設けられる。図20は、歯牙咬合面の起伏形態に沿って設けられるシース151を説明する説明図である。図20に示されるように、歯牙咬合面は、隆起部及び中央にある溝底部を有する複雑形状であるが、この歯牙咬合面から一定距離間隔にてシース151が配置される。歯牙咬合面とシース151との距離は、特に限定されるものではないが、例えば0~10mmであることが可能であり、シース151を歯牙咬合面に接触させて歯牙咬合面とシース151との距離を0mmにすれば、シース151を歯牙咬合面に密着させて固定支持させることができる。シース151は可撓性を有すると共に塑性変形する材質で構成され、シース151を観察対象200となる歯牙咬合面に押しつけることにより、歯牙咬合面の起伏形態に沿ったシース151を簡単に成形することができる。シース151を支えるサポートレール210は図示されていないが、例えばシース151の形態に沿って敷設されることが可能であり、水平移動手段220はサポートレール210の基端部を支持してOCTプローブ140を水平自在に移動させ、また、垂直移動手段230は水平移動手段220を垂直に移動させてOCTプローブ140を垂直自在に移動させる。なお、水平移動手段220及び垂直移動手段230を設けずに、歯牙咬合面の起伏形態に沿って設けられたシース151のみを設け、そのシース151の中にてプローブ本体131を回転させながら前後移動させて歯牙咬合面を撮影することも可能である。 (Embodiment 2B)
In the embodiment 2B, thesheath 151 is provided by being deformed along the undulation form of the tooth occlusal surface. FIG. 20 is an explanatory diagram for explaining a sheath 151 provided along the undulation form of the tooth occlusal surface. As shown in FIG. 20, the tooth occlusion surface has a complicated shape having a raised portion and a groove bottom portion at the center, and the sheath 151 is arranged at a constant distance from the tooth occlusion surface. The distance between the tooth occlusal surface and the sheath 151 is not particularly limited, and can be, for example, 0 to 10 mm. When the distance is set to 0 mm, the sheath 151 can be fixedly supported while being in close contact with the tooth occlusal surface. The sheath 151 is made of a material that is flexible and plastically deformed. By pressing the sheath 151 against the tooth occlusal surface to be observed 200, the sheath 151 along the undulation form of the tooth occlusion surface can be easily formed. Can do. Although the support rail 210 that supports the sheath 151 is not shown, it can be laid along the form of the sheath 151, for example, and the horizontal moving means 220 supports the proximal end of the support rail 210 and supports the OCT probe 140. The vertical moving means 230 moves the OCT probe 140 vertically freely by moving the horizontal moving means 220 vertically. In addition, without providing the horizontal moving means 220 and the vertical moving means 230, only the sheath 151 provided along the undulating form of the tooth occlusal surface is provided, and the probe main body 131 is rotated in the sheath 151 to move back and forth. It is also possible to photograph the tooth occlusion surface.
実施形態2Bでは、シース151は歯牙咬合面の起伏形態に沿って変形させて設けられる。図20は、歯牙咬合面の起伏形態に沿って設けられるシース151を説明する説明図である。図20に示されるように、歯牙咬合面は、隆起部及び中央にある溝底部を有する複雑形状であるが、この歯牙咬合面から一定距離間隔にてシース151が配置される。歯牙咬合面とシース151との距離は、特に限定されるものではないが、例えば0~10mmであることが可能であり、シース151を歯牙咬合面に接触させて歯牙咬合面とシース151との距離を0mmにすれば、シース151を歯牙咬合面に密着させて固定支持させることができる。シース151は可撓性を有すると共に塑性変形する材質で構成され、シース151を観察対象200となる歯牙咬合面に押しつけることにより、歯牙咬合面の起伏形態に沿ったシース151を簡単に成形することができる。シース151を支えるサポートレール210は図示されていないが、例えばシース151の形態に沿って敷設されることが可能であり、水平移動手段220はサポートレール210の基端部を支持してOCTプローブ140を水平自在に移動させ、また、垂直移動手段230は水平移動手段220を垂直に移動させてOCTプローブ140を垂直自在に移動させる。なお、水平移動手段220及び垂直移動手段230を設けずに、歯牙咬合面の起伏形態に沿って設けられたシース151のみを設け、そのシース151の中にてプローブ本体131を回転させながら前後移動させて歯牙咬合面を撮影することも可能である。 (Embodiment 2B)
In the embodiment 2B, the
歯牙咬合面の起伏形態に沿って設けられるシース151を用いることにより、観察対象200となる歯牙咬合面とプローブ本体131との距離を精密に一定間隔に保つことが可能となり、更に解像度を向上させた撮影が可能となる。
By using the sheath 151 provided along the undulation form of the tooth occlusal surface, the distance between the tooth occlusal surface to be observed 200 and the probe main body 131 can be accurately maintained at a constant interval, and the resolution can be further improved. Shooting is possible.
(実施形態2C)
本実施形態では、実施形態1Bに示したように、入射光を光ファイバに対し鋭角に向きを変えて射出する第2プローブ本体132と、入射光を光ファイバに対し鈍角に向きを変えて射出する第3プローブ本体133と、を用いる。 (Embodiment 2C)
In the present embodiment, as shown in Embodiment 1B, the second probemain body 132 that emits incident light with an acute angle changed with respect to the optical fiber, and the incident light emitted with an obtuse angle changed with respect to the optical fiber. And a third probe body 133 to be used.
本実施形態では、実施形態1Bに示したように、入射光を光ファイバに対し鋭角に向きを変えて射出する第2プローブ本体132と、入射光を光ファイバに対し鈍角に向きを変えて射出する第3プローブ本体133と、を用いる。 (Embodiment 2C)
In the present embodiment, as shown in Embodiment 1B, the second probe
図21A及び図21Bは、実施形態2Cに係るOCTプローブの使用態様を説明する図である。そのうち図21Aは第2プローブ本体132を使用するOCTプローブの使用態様であり、図21Bは第3プローブ本体133を使用するOCTプローブの使用態様である。実施形態2Cでは、プローブ本体は、第1プローブ本体131、第2プローブ本体132、又は第3プローブ本体133の3タイプからなり、これら第1プローブ本体131、第2プローブ本体132、又は第3プローブ本体133を互換使用する。即ち、通常の使用態様では、第1プローブ本体131を使用する。そして、図21Aに示されるように、歯牙咬合面の上にOCTプローブ140を挿入し、先端側から基端側へ斜め後方に歯牙咬合面を撮影する場合は、第2プローブ本体132を使用する。また、図21Bに示されるように、基端側から先端側へ斜め前方に歯牙咬合面を撮影する場合は、第3プローブ本体133を使用する。これにより、複雑形態の歯牙咬合面であっても歯牙咬合面に対して垂直に撮影することが可能になり、屈折現象・散乱現象による解像度の差異を最小限に抑えることが可能となる。
FIG. 21A and FIG. 21B are diagrams for explaining how to use the OCT probe according to Embodiment 2C. 21A shows how the OCT probe uses the second probe body 132, and FIG. 21B shows how the OCT probe uses the third probe body 133. In the embodiment 2C, the probe main body includes three types of the first probe main body 131, the second probe main body 132, or the third probe main body 133, and the first probe main body 131, the second probe main body 132, or the third probe main body. The main body 133 is used interchangeably. That is, in the normal usage mode, the first probe body 131 is used. Then, as shown in FIG. 21A, when the OCT probe 140 is inserted on the tooth occlusion surface and the tooth occlusion surface is imaged obliquely rearward from the distal end side to the proximal end side, the second probe main body 132 is used. . In addition, as shown in FIG. 21B, the third probe main body 133 is used when photographing the occlusal surface obliquely forward from the proximal end side to the distal end side. As a result, even complex tooth occlusal surfaces can be imaged perpendicularly to the tooth occlusal surface, and resolution differences due to refraction and scattering phenomena can be minimized.
(実施形態2D)
本実施形態では、上述の実施形態1Cと同様に、シース150内に、シース150とプローブ本体131との間の空間を充填する屈折率調整用のマッチングオイルを有する。 (Embodiment 2D)
In the present embodiment, similar to the above-described embodiment 1C, thesheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 131.
本実施形態では、上述の実施形態1Cと同様に、シース150内に、シース150とプローブ本体131との間の空間を充填する屈折率調整用のマッチングオイルを有する。 (Embodiment 2D)
In the present embodiment, similar to the above-described embodiment 1C, the
(実施形態2E)
本実施形態では、シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。 (Embodiment 2E)
In the present embodiment, matching oil for adjusting the refractive index that fills the space between thesheath 150 and the observation target 200 is disposed around the sheath 150. The refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150.
本実施形態では、シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。 (Embodiment 2E)
In the present embodiment, matching oil for adjusting the refractive index that fills the space between the
シース150の周囲に配置されるマッチングオイルは、歯牙咬合面に接して一定時間停滞する程度の粘性を有するものが好ましい。歯牙咬合面に接してとは、下顎大臼歯の歯牙咬合面の場合はその歯牙咬合面の直上であり、上顎大臼歯の歯牙咬合面の場合はその歯牙咬合面の直下である。また、シース150の周囲に配置されるマッチングオイルは、歯牙咬合面に接触するため、生体為害性を有しないことが必要である。シース150の周囲に配置されるマッチングオイルの種類としては、特に限定されるものではないが、例えば植物性オイル等を使用することが可能である。シース150と観察対象200との間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな歯牙咬合面の撮影が可能となる。
It is preferable that the matching oil disposed around the sheath 150 has a viscosity that is in contact with the tooth occlusal surface and stagnates for a certain period of time. In contact with the tooth occlusal surface, in the case of the tooth occlusal surface of the lower molar, it is immediately above the tooth occlusal surface, and in the case of the tooth occlusal surface of the upper molar, directly under the tooth occlusal surface. Moreover, since the matching oil arrange | positioned around the sheath 150 contacts a tooth occlusal surface, it is necessary to have no biological harm. The type of matching oil disposed around the sheath 150 is not particularly limited, and for example, vegetable oil or the like can be used. By using the matching oil for adjusting the refractive index that fills the space between the sheath 150 and the observation target 200, it is possible to prevent loss of light connection and to photograph a clear tooth occlusal surface.
図22は、歯牙咬合面に接して設置される器部301の説明図である。図22に示されるように、歯牙咬合面に接して設置される器部301を設け、その器部301に屈折率の差による光の減衰を防止する減衰防止媒体を充填しても良い。器部301の側面にはOCTプローブ140を挿入可能な挿入孔311が形成される。OCTプローブ140は器部301の挿入孔311に挿入される。減衰防止媒体は、生体為害性を有しないものであれば特に限定されるものではないが、例えば、水、生理食塩水、植物性オイル等を使用することが可能である。これにより、シース150と観察対象200との間の空間にある空気に起因する光の接続損失を防止することができ、クリアな歯牙咬合面の撮影が可能となる。
FIG. 22 is an explanatory diagram of the vessel portion 301 installed in contact with the tooth occlusal surface. As shown in FIG. 22, a container 301 installed in contact with the tooth occlusal surface may be provided, and the container 301 may be filled with an anti-attenuation medium that prevents light attenuation due to a difference in refractive index. An insertion hole 311 into which the OCT probe 140 can be inserted is formed on the side surface of the vessel portion 301. The OCT probe 140 is inserted into the insertion hole 311 of the vessel part 301. The anti-attenuation medium is not particularly limited as long as it has no biological harm, but for example, water, physiological saline, vegetable oil, or the like can be used. Thereby, the connection loss of the light resulting from the air in the space between the sheath 150 and the observation object 200 can be prevented, and a clear image of the occlusal surface can be obtained.
挿入孔311は、OCTプローブ140が垂直移動及び水平移動できる程度の大きさを有している。そのため、OCTプローブ140が垂直移動及び水平移動することにより、挿入孔311から器部301に充填された減衰防止媒体が少量流出することがあるが、かかる流出による不利益を防止するためには、器部301の挿入孔311が口腔外に位置する程度の形状の大きさに設定する。これにより、仮に挿入孔311から減衰防止媒体が少量流出したとしても口腔外への流出であるので、患者に不快感を与える可能性はない。
The insertion hole 311 has a size that allows the OCT probe 140 to move vertically and horizontally. Therefore, when the OCT probe 140 moves vertically and horizontally, a small amount of the anti-attenuation medium filled in the vessel portion 301 may flow out from the insertion hole 311. In order to prevent a disadvantage caused by such outflow, The size of the shape is set such that the insertion hole 311 of the vessel part 301 is located outside the oral cavity. As a result, even if a small amount of the anti-attenuation medium flows out from the insertion hole 311, since it flows out of the oral cavity, there is no possibility of giving discomfort to the patient.
(実施形態2F)
また、上述の実施形態1Eに示したように、プローブ本体131をシース150内にて前後に移動させる移動手段179を設けることも可能である。 (Embodiment 2F)
Further, as shown in the above-described embodiment 1E, it is also possible to provide movingmeans 179 for moving the probe main body 131 back and forth within the sheath 150.
また、上述の実施形態1Eに示したように、プローブ本体131をシース150内にて前後に移動させる移動手段179を設けることも可能である。 (Embodiment 2F)
Further, as shown in the above-described embodiment 1E, it is also possible to provide moving
(実施形態3A)
図23は、本実施形態の歯科用OCT装置900の全体的な構造を示すブロック図である。OCTメイン装置800内においては、電気信号の経路を一点鎖線で示す。本実施形態に係る歯科用OCT装置900は、後述するように、OCTプローブを、光の射出角度が直角となるように外部照射する第1OCTプローブ101と、光をプローブ先端方向へ外部照射する第2OCTプローブ102と、第1OCTプローブ101の照射角度と第2OCTプローブ102の照射角度との間の照射角度で外部照射する第3OCTプローブ103とを有して構成する。そして、これらを根管内組織の描出対象位置に応じて、互換的に選択使用する。図23においては第1OCTプローブ101を利用するものとする。 (Embodiment 3A)
FIG. 23 is a block diagram showing the overall structure of thedental OCT apparatus 900 of this embodiment. In the OCT main apparatus 800, the path of the electric signal is indicated by a one-dot chain line. As will be described later, the dental OCT apparatus 900 according to this embodiment includes a first OCT probe 101 that externally irradiates the OCT probe so that the light emission angle becomes a right angle, and a first OCT probe 101 that externally irradiates light toward the probe tip. A 2OCT probe 102 and a third OCT probe 103 that performs external irradiation at an irradiation angle between the irradiation angle of the first OCT probe 101 and the irradiation angle of the second OCT probe 102 are configured. These are selected and used interchangeably according to the rendering target position of the tissue in the root canal. In FIG. 23, the first OCT probe 101 is used.
図23は、本実施形態の歯科用OCT装置900の全体的な構造を示すブロック図である。OCTメイン装置800内においては、電気信号の経路を一点鎖線で示す。本実施形態に係る歯科用OCT装置900は、後述するように、OCTプローブを、光の射出角度が直角となるように外部照射する第1OCTプローブ101と、光をプローブ先端方向へ外部照射する第2OCTプローブ102と、第1OCTプローブ101の照射角度と第2OCTプローブ102の照射角度との間の照射角度で外部照射する第3OCTプローブ103とを有して構成する。そして、これらを根管内組織の描出対象位置に応じて、互換的に選択使用する。図23においては第1OCTプローブ101を利用するものとする。 (Embodiment 3A)
FIG. 23 is a block diagram showing the overall structure of the
図23に示すように歯科用OCT装置900は、第1OCTプローブ101と、OCTメイン装置800と、画像表示部125とを有し、第1OCTプローブ101を利用して観察対象である口腔内検査体の生体組織に関する断層画像を取得する。なお、以下の説明においては、光路上、OCTプローブ101の光源に近づく方向を基端側、該光源から遠ざかる方向を先端側と定義する。
As shown in FIG. 23, the dental OCT apparatus 900 includes a first OCT probe 101, an OCT main apparatus 800, and an image display unit 125, and an intraoral examination body that is an observation target using the first OCT probe 101. A tomographic image relating to a living tissue is acquired. In the following description, the direction approaching the light source of the OCT probe 101 on the optical path is defined as the proximal end side, and the direction away from the light source is defined as the distal end side.
OCTメイン装置800は、光源110、ファイバカプラ213、コントローラ281、ロータリージョイント214、第1アクチュエータ215、光検出部216、信号処理部123、レンズ218、ダハミラー219、第2アクチュエータ282、導光手段としての第1から第4光ファイバF1~F4を有し、第1光ファイバF1は光源110とファイバカプラ213とを接続し、第2光ファイバF2はファイバカプラ213とロータリージョイント214とを接続し、第3光ファイバF3はファイバカプラ213からダハミラー219まで導出しており、第4光ファイバF4はファイバカプラ213と光検出部216とを接続している。なお、本実施形態の光ファイバはいずれもシングルモード光ファイバを想定する。
The OCT main device 800 includes a light source 110, a fiber coupler 213, a controller 281, a rotary joint 214, a first actuator 215, a light detection unit 216, a signal processing unit 123, a lens 218, a roof mirror 219, a second actuator 282, and a light guiding unit. First to fourth optical fibers F1 to F4, the first optical fiber F1 connects the light source 110 and the fiber coupler 213, the second optical fiber F2 connects the fiber coupler 213 and the rotary joint 214, The third optical fiber F3 is led out from the fiber coupler 213 to the roof mirror 219, and the fourth optical fiber F4 connects the fiber coupler 213 and the light detection unit 216. Note that the optical fiber of this embodiment is assumed to be a single mode optical fiber.
コントローラ281は、OCTメイン装置800全体を制御し、具体的には光源110をオン・オフし、第1アクチュエータ215及び第2アクチュエータ282を制御させ、信号処理部123を制御する。光源110は、近赤外光源であり、OCTを可能とする波長走査型レーザー光源である。波長走査型OCTであるため、2次元データ収集速度を著しく高速にする事も可能となる。
The controller 281 controls the OCT main apparatus 800 as a whole, specifically turns on and off the light source 110, controls the first actuator 215 and the second actuator 282, and controls the signal processing unit 123. The light source 110 is a near-infrared light source and is a wavelength scanning laser light source that enables OCT. Since it is a wavelength scanning OCT, the two-dimensional data collection speed can be remarkably increased.
ロータリージョイント214には、導光手段としての第5光ファイバF5が結合されており、その第5光ファイバF5の端部には、OCTプローブを取り付けるためのプローブ被取付部142が設けられる。ロータリージョイント214は、第5光ファイバF5及び第6光ファイバF6を回転させる。
The rotary joint 214 is coupled with a fifth optical fiber F5 as a light guide, and a probe attached portion 142 for attaching an OCT probe is provided at the end of the fifth optical fiber F5. The rotary joint 214 rotates the fifth optical fiber F5 and the sixth optical fiber F6.
歯科用OCT装置900を使用した場合、以下のようにして断層像が取得される。まず、光源110から近赤外光が照射され、照射されたその近赤外光は、第1光ファイバF1内を通り、ファイバカプラ213に進行する。ファイバカプラ213により、第1光ファイバF1を介して入射する近赤外光は、第2光ファイバF2を通る光と、第3光ファイバF3を通る光とに分割される。
When the dental OCT apparatus 900 is used, a tomographic image is acquired as follows. First, near-infrared light is irradiated from the light source 110, and the irradiated near-infrared light travels through the first optical fiber F1 and travels to the fiber coupler 213. Near-infrared light incident through the first optical fiber F1 is split by the fiber coupler 213 into light passing through the second optical fiber F2 and light passing through the third optical fiber F3.
ファイバカプラ213の分割率は、特に限定されるものではなく、根管内組織の断層画像を鮮明に取得できるように適宜設定することが可能であり、例えば、第2光ファイバF2に向かう光の量を入射光量の50%、第3光ファイバF3に向かう光の量を入射光量の50%と設定できる。
The division ratio of the fiber coupler 213 is not particularly limited, and can be set as appropriate so that a tomographic image of the root canal tissue can be clearly obtained. For example, the division ratio of the light toward the second optical fiber F2 The amount can be set to 50% of the amount of incident light, and the amount of light directed to the third optical fiber F3 can be set to 50% of the amount of incident light.
ファイバカプラ213で分割されて第2光ファイバF2を進行する光は、次にロータリージョイント214に導かれ、ロータリージョイント214に結合されている第5光ファイバF5に入射する。ロータリージョイント214は、コントローラ281の制御下、第1アクチュエータ215によって駆動され、第5光ファイバF5、第6光ファイバF6及び第1プローブ本体331をファイバの中心軸回りに回転させる。
The light that is split by the fiber coupler 213 and travels through the second optical fiber F <b> 2 is then guided to the rotary joint 214 and enters the fifth optical fiber F <b> 5 that is coupled to the rotary joint 214. The rotary joint 214 is driven by the first actuator 215 under the control of the controller 281 to rotate the fifth optical fiber F5, the sixth optical fiber F6, and the first probe body 331 around the center axis of the fiber.
第5光ファイバF5内を進む光は、プローブ被取付部142及びプローブ取付部141を通過し、シース150の内部空間に長手方向に配設される第6光ファイバF6を通過し、第6光ファイバF6に軸合わせした状態で接合して配設される第1プローブ本体331に入射する。第1プローブ本体331は、入射する光を直角に照射する。そして第1プローブ本体331から照射された光は、第1OCTプローブ101の側面から射出され、プローブ外部に存在する根管内組織Rcに集光する。そしてコントローラ281を操作し、第1アクチュエータ215を作動させてロータリージョイント214を回転させることにより、第1OCTプローブ101の側面から射出される光を根管内組織周上に回転させる。
The light traveling through the fifth optical fiber F5 passes through the probe attached portion 142 and the probe attaching portion 141, passes through the sixth optical fiber F6 disposed in the longitudinal direction in the internal space of the sheath 150, and passes through the sixth light. The light enters the first probe body 331 that is joined and arranged in a state of being aligned with the fiber F6. The first probe body 331 irradiates incident light at a right angle. And the light irradiated from the 1st probe main body 331 is inject | emitted from the side surface of the 1st OCT probe 101, and condenses on the root canal tissue Rc which exists outside a probe. Then, by operating the controller 281 to operate the first actuator 215 and rotate the rotary joint 214, the light emitted from the side surface of the first OCT probe 101 is rotated on the tissue circumference in the root canal.
一方、ファイバカプラ213で分割されて第3光ファイバF3を進行する光は、レンズ218を介して、平行光束に変換された後、ダハミラー219にて反射される。ダハミラー219からの反射光は、入射時の光路と同一光路を戻ることにより、ファイバカプラ213に導かれる。
On the other hand, the light that is split by the fiber coupler 213 and travels through the third optical fiber F3 is converted into a parallel light flux through the lens 218, and then reflected by the roof mirror 219. The reflected light from the roof mirror 219 is guided to the fiber coupler 213 by returning through the same optical path as the incident light path.
第3光ファイバF3は、ファイバカプラ213から第5光ファイバF5の先端までの光路長に対応する全長を有する。ダハミラー219は、コントローラ281の制御の下で、第2アクチュエータ282によって、第3光ファイバF3の中心軸(換言すれば、レンズ218の光軸)に沿って平行移動するので、コントローラ281により第3光ファイバF3の先端側端面F3aからダハミラー219間の光路長を調整する。
The third optical fiber F3 has a total length corresponding to the optical path length from the fiber coupler 213 to the tip of the fifth optical fiber F5. The Dach mirror 219 is translated along the central axis of the third optical fiber F3 (in other words, the optical axis of the lens 218) by the second actuator 282 under the control of the controller 281. The optical path length between the roof mirror 219 and the end face F3a of the optical fiber F3 is adjusted.
根管内組織からの反射光及びダハミラー219からの反射光は、共にファイバカプラ213を介して光検出部216により受光される。ここで、ダハミラー219を微少距離移動させ、第3光ファイバF3の先端側端面F3aからダハミラー219までの光路長を第6光ファイバF6の先端側端面から根管内組織間の光路長に一致させる。これにより、二種類の反射光は干渉を発生させる。
Both the reflected light from the root canal tissue and the reflected light from the roof mirror 219 are received by the light detection unit 216 via the fiber coupler 213. Here, the roof mirror 219 is moved by a small distance so that the optical path length from the distal end face F3a of the third optical fiber F3 to the roof mirror 219 matches the optical path length from the distal end face of the sixth optical fiber F6 to the root canal tissue. . As a result, the two types of reflected light cause interference.
光検出器216は、上記の二種類の反射・散乱光を受光することにより検出した干渉パターンに対応する信号を信号処理部123に送信する。信号処理部123は、受信した干渉パターンに対応する信号に基づいて、根管内組織に関する画像信号を生成し、生成された画像信号は画像表示部125に出力される。画像表示部125はその画像信号に対応する画像を表示する。
The photodetector 216 transmits a signal corresponding to the interference pattern detected by receiving the above-described two types of reflected / scattered light to the signal processing unit 123. The signal processing unit 123 generates an image signal related to the root canal tissue based on the signal corresponding to the received interference pattern, and the generated image signal is output to the image display unit 125. The image display unit 125 displays an image corresponding to the image signal.
次に、OCTプローブの構成について説明する。図24は、第1OCTプローブ101の第6光ファイバF6の中心軸を含む面での断面図である。図24に示すように、第1OCTプローブ101は、可撓性を有するチューブ管状のシース150を有しており、シース150の先端部には、光透過性を有する透過領域155が設けられている。シース150内には、導光手段としての第6光ファイバF6及び第1プローブ本体331が設けられる。
Next, the configuration of the OCT probe will be described. FIG. 24 is a cross-sectional view of the first OCT probe 101 on a plane including the central axis of the sixth optical fiber F6. As shown in FIG. 24, the first OCT probe 101 has a tube-shaped sheath 150 having flexibility, and a transmission region 155 having light transmittance is provided at the distal end portion of the sheath 150. . In the sheath 150, a sixth optical fiber F6 and a first probe body 331 are provided as light guiding means.
第1プローブ本体331は、第6光ファイバF6の先端側端面に軸合わせをした状態で接続されて配設されている。第1プローブ本体331は、先端側から順に、直角のプリズム135と、GRINレンズ(屈折率傾斜レンズ)136と、GRINレンズ136と光ファイバF6とを接続する接続導光部137とを有する。図24に示すように、プリズム135は、第6光ファイバF6により導かれた光の射出角度が直角となるように配置されている。
The first probe main body 331 is connected and disposed in a state of being aligned with the end surface of the sixth optical fiber F6. The first probe main body 331 includes a prism 135, a GRIN lens (refractive index tilt lens) 136, and a connection light guide 137 that connects the GRIN lens 136 and the optical fiber F6 in order from the distal end side. As shown in FIG. 24, the prism 135 is arranged so that the emission angle of the light guided by the sixth optical fiber F6 is a right angle.
第1プローブ本体331によって直角に偏向された光は、透過領域155から外部に存在する根管内組織Rcに照射され、第1プローブ本体331外周には、第1プローブ本体331がシース150の内壁に接触することで損傷しないように、例えば金属コート138が施されている。
The light deflected at right angles by the first probe main body 331 is irradiated to the root canal tissue Rc existing outside from the transmission region 155, and the first probe main body 331 is disposed on the outer periphery of the first probe main body 331. For example, a metal coat 138 is provided so as not to be damaged by contact with.
第1OCTプローブ101の基端側の端部には、プローブ被取付部142に取り付けできるプローブ取付部141が設けられている。
A probe attachment portion 141 that can be attached to the probe attachment portion 142 is provided at the proximal end side of the first OCT probe 101.
次に、図25A及び図25Bは、第2OCTプローブ102の第6光ファイバF6の中心軸を含む面での断面図である。そのうち図25Aはプローブ先端方向へ照射する場合であり、図25Bは射出方向の角度を変更する場合である。図25Aに示すように、第2OCTプローブ102に形成される第2プローブ本体332は、マイクロミラー166と、プリズム135と、GRINレンズ136と、接続導光部137とを有する。即ち、第2プローブ本体332は、プリズム135の配置は上述の第1OCTプローブ101と同じであるが、プリズム135で偏向された光を再び偏向させて、第2OCTプローブ102の先端側に直進させ、根管内組織Rcに照射するようにマイクロミラー166が配置されている点において、第1OCTプローブ101と異なる。マイクロミラー166は、電力ライン162から供給される電力により回転軸161を中心に所定角度だけ回動可能に構成されている。その他の構成は、上記の第1OCTプローブ101及び第1プローブ本体331と同様である。
Next, FIGS. 25A and 25B are cross-sectional views of the second OCT probe 102 on a plane including the central axis of the sixth optical fiber F6. Of these, FIG. 25A shows the case of irradiation in the probe tip direction, and FIG. 25B shows the case of changing the angle in the injection direction. As shown in FIG. 25A, the second probe main body 332 formed in the second OCT probe 102 includes a micromirror 166, a prism 135, a GRIN lens 136, and a connection light guide 137. That is, in the second probe main body 332, the arrangement of the prism 135 is the same as that of the first OCT probe 101 described above, but the light deflected by the prism 135 is deflected again and travels straight to the distal end side of the second OCT probe 102, It differs from the first OCT probe 101 in that the micromirror 166 is arranged to irradiate the root canal tissue Rc. The micromirror 166 is configured to be rotatable by a predetermined angle around the rotation shaft 161 by the electric power supplied from the power line 162. Other configurations are the same as those of the first OCT probe 101 and the first probe body 331 described above.
図25Bに示すように、マイクロミラー166を回動させることにより、斜め方向の角度にてプローブ先端方向へ照射させてプローブ先端方向の画像走査が可能となる。なお、マイクロミラー166を回動させてプローブ先端方向の画像走査を行う場合、第2プローブ本体332を回転させ、マイクロミラー166の回転動作と第2プローブ本体332の回動動作との同期をとることにより、プローブ先端方向の画像走査を行うことも可能である。
As shown in FIG. 25B, by rotating the micromirror 166, it is possible to perform image scanning in the probe tip direction by irradiating the probe tip direction at an oblique angle. When image scanning in the probe tip direction is performed by rotating the micromirror 166, the second probe main body 332 is rotated, and the rotation operation of the micromirror 166 and the rotation operation of the second probe main body 332 are synchronized. Thus, it is also possible to perform image scanning in the probe tip direction.
なお、光を先端側に射出する第2OCTプローブ102は、図26に示すように、第1OCTプローブ101においてプリズム135を有しない構成を採用することも可能である。図26に示されるように、GRINレンズ136の先端には何も設けない構成でも良いし、またGRINレンズ136の先端を保護する保護ガラスを設けることも可能である。
Note that, as shown in FIG. 26, the second OCT probe 102 that emits light toward the tip side may employ a configuration in which the first OCT probe 101 does not include the prism 135. As shown in FIG. 26, nothing may be provided at the tip of the GRIN lens 136, or a protective glass for protecting the tip of the GRIN lens 136 may be provided.
次に、図27は、第3OCTプローブ103の第6光ファイバF6の中心軸を含む面での断面図である。図27に示すように、第3OCTプローブ103に形成される第3プローブ本体333では、プリズム135は、第6光ファイバF6により導かれた光の射出角度が、第1プローブ本体331から光が照射される照射角度と、第2プローブ本体332から光が照射される照射角度との間の照射角度で根管内組織Rcに照射されるように配置されて構成されており、本実施形態ではその照射角度は例えば60度である。その他の構成は、上記の第1OCTプローブ101と同様である。
Next, FIG. 27 is a cross-sectional view of the third OCT probe 103 on a plane including the central axis of the sixth optical fiber F6. As shown in FIG. 27, in the third probe main body 333 formed in the third OCT probe 103, the prism 135 is irradiated with light from the first probe main body 331 so that the emission angle of the light guided by the sixth optical fiber F6 is irradiated. Is arranged so as to irradiate the root canal tissue Rc at an irradiation angle between the irradiation angle to be irradiated and the irradiation angle at which light is irradiated from the second probe main body 332. In the present embodiment, The irradiation angle is 60 degrees, for example. Other configurations are the same as those of the first OCT probe 101 described above.
次に、図28~図30を使用して根管内の観察対象の画像を取得する要領について説明する。図28は、第1OCTプローブ101を使用して根管500の上部の断層画像を取得する場合の説明図である。
Next, the procedure for acquiring the image of the observation object in the root canal will be described with reference to FIGS. FIG. 28 is an explanatory diagram when a tomographic image of the upper portion of the root canal 500 is acquired using the first OCT probe 101.
根管500は、図28に示すように、中腔形状の主根管510と、主根管510から細かく枝分かれしている部位である側枝520とを有する。象牙質543の上部はエナメル質542にて覆われており、下部はセメント質540、歯根膜549及び歯槽骨541にて固定される。根管500の根尖部530の下には、根尖病巣560がある。根尖病巣とは、根尖病変又は根尖性歯周炎ともいい、歯の歯根の先端付近にできる病気(例えば、歯根肉芽腫、歯根嚢胞等)の病巣総称である。
As shown in FIG. 28, the root canal 500 has a main root canal 510 having a hollow shape and a side branch 520 that is a portion branched finely from the main root canal 510. The upper part of dentin 543 is covered with enamel 542 and the lower part is fixed with cementum 540, periodontal ligament 549 and alveolar bone 541. Below the apical portion 530 of the root canal 500 is the apical lesion 560. The apical lesion is also referred to as apical lesion or apical periodontitis, and is a collective term for lesions that occur near the tip of the tooth root (for example, a periodontal granuloma, a root cyst, etc.).
コントローラ281を操作して、光源110をオン状態にして近赤外光をファイバカプラ213まで到達させ、第2光ファイバF2を通る光と第3光ファイバF3を通る光とに分割する。第2光ファイバF2を進む光は、第5光ファイバF5に入射し、次に第6光ファイバF6を通過し、第1プローブ本体331に入射する。第1プローブ本体331からは光が直角に照射され、根管内組織に集光して、再度、第1プローブ本体331に掃引される。
The controller 281 is operated to turn on the light source 110 so that near-infrared light reaches the fiber coupler 213 and is divided into light passing through the second optical fiber F2 and light passing through the third optical fiber F3. The light traveling through the second optical fiber F2 enters the fifth optical fiber F5, then passes through the sixth optical fiber F6, and enters the first probe body 331. Light is emitted from the first probe main body 331 at a right angle, collected on the root canal tissue, and swept by the first probe main body 331 again.
一方、第3光ファイバF3を進む光は、ダハミラー219にて反射され、その反射光は、再度ファイバカプラ213に導かれる。
On the other hand, the light traveling through the third optical fiber F3 is reflected by the roof mirror 219, and the reflected light is guided to the fiber coupler 213 again.
根管内組織からの反射光及びダハミラー219からの反射光は、共にファイバカプラ213を介して光検出部216により受光される。そしてコントローラ281によりダハミラー219を微少距離移動させ、第3光ファイバF3の先端側端面F3aからダハミラー219までの光路長を、第6光ファイバF6の先端側端面から根管内組織間の光路長に一致させて、二種類の反射光から干渉を発生させる。第1OCTプローブ101の動きは、例えば、シース150を固定させて第1プローブ本体331を回転させながら上下移動させることも可能であり、また、第1プローブ本体331と共にシース150を上下移動させることも可能である。このようにして根管500の上部の断層画像を取得する。
Both the reflected light from the root canal tissue and the reflected light from the roof mirror 219 are received by the light detection unit 216 via the fiber coupler 213. Then, the controller 281 moves the roof mirror 219 by a small distance so that the optical path length from the distal end face F3a of the third optical fiber F3 to the roof mirror 219 is changed from the distal end face of the sixth optical fiber F6 to the optical path length between tissues in the root canal. By making them coincide, interference is generated from two kinds of reflected light. The movement of the first OCT probe 101 can be moved up and down while rotating the first probe main body 331 with the sheath 150 fixed, and the sheath 150 can be moved up and down together with the first probe main body 331, for example. Is possible. In this way, a tomographic image of the upper part of the root canal 500 is acquired.
次に、根管500の根尖部の画像を取得する場合は、第1OCTプローブ101を取り外して第2OCTプローブ102を取り付ける。第2OCTプローブ102の取り付けは、例えば、シース150はそのままで第1プローブ本体331を取り外して第2プローブ本体332を取り付ける。図29は、第2OCTプローブ102を使用して根管500の根尖部の断層画像を取得する場合の説明図である。上記したように第1OCTプローブ101の操作と同様にして、コントローラ281を操作して、図29に示すように、光をプローブ先端方向へ外部照射し、プローブ外部に存在する根管内組織に集光して、根尖部の断層画像を取得する。
Next, when acquiring an image of the apical portion of the root canal 500, the first OCT probe 101 is removed and the second OCT probe 102 is attached. The second OCT probe 102 is attached, for example, by removing the first probe main body 331 and attaching the second probe main body 332 while keeping the sheath 150 intact. FIG. 29 is an explanatory diagram when a tomographic image of the apical portion of the root canal 500 is acquired using the second OCT probe 102. As described above, the controller 281 is operated in the same manner as the operation of the first OCT probe 101, and as shown in FIG. 29, the light is externally irradiated toward the tip of the probe and collected in the root canal tissue existing outside the probe. Illuminate to obtain a tomographic image of the apex.
次に、根管500の根尖部と上部との間の中間領域の根管側壁の画像を取得する場合は、第3OCTプローブ103を取り付ける。第3OCTプローブ103の取り付けは、例えば、シース150はそのままで第2プローブ本体332を取り外して第3プローブ本体333を取り付ける。図30は、第3OCTプローブ103を使用して根管500の側壁の中間領域の断層画像を取得する場合の説明図である。上記したように第1OCTプローブ101の操作と同様にして、コントローラ281を操作して、図30に示すように、光を所定角度で外部照射し、プローブ外部に存在する根管内組織に集光して、根管内の中間領域の断層画像を取得する。
Next, when acquiring an image of the root canal side wall in the intermediate region between the root apex and the upper part of the root canal 500, the third OCT probe 103 is attached. The third OCT probe 103 is attached, for example, by removing the second probe main body 332 and attaching the third probe main body 333 while keeping the sheath 150 as it is. FIG. 30 is an explanatory diagram when a tomographic image of an intermediate region of the side wall of the root canal 500 is acquired using the third OCT probe 103. As described above, the controller 281 is operated in the same manner as the operation of the first OCT probe 101, and as shown in FIG. 30, the light is externally irradiated at a predetermined angle and collected on the root canal tissue existing outside the probe. Then, a tomographic image of the intermediate region in the root canal is acquired.
(実施形態3B)
本実施形態では、上述の実施形態1Cと同様に、シース150内に、シース150とプローブ本体331との間の空間を充填する屈折率調整用のマッチングオイルを有する。シース150とプローブ本体331との間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな根管内組織Rcの撮影が可能となる。 (Embodiment 3B)
In the present embodiment, similar to the above-described embodiment 1C, thesheath 150 has matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 331. By using a matching oil for adjusting the refractive index that fills the space between the sheath 150 and the probe main body 331, connection loss of light can be prevented, and clear imaging of the root canal tissue Rc is possible. Become.
本実施形態では、上述の実施形態1Cと同様に、シース150内に、シース150とプローブ本体331との間の空間を充填する屈折率調整用のマッチングオイルを有する。シース150とプローブ本体331との間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな根管内組織Rcの撮影が可能となる。 (Embodiment 3B)
In the present embodiment, similar to the above-described embodiment 1C, the
(実施形態3C)
本実施形態では、シース150と根管内組織Rcとの間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。シース150と根管内組織Rcとの間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな根管内組織Rcの撮影が可能となる。 (Embodiment 3C)
In the present embodiment, matching oil for refractive index adjustment that fills the space between thesheath 150 and the root canal tissue Rc is disposed around the sheath 150. The refractive index of the matching oil can be the same as or close to the refractive index of the sheath 150. By using a matching oil for refractive index adjustment that fills the space between the sheath 150 and the root canal tissue Rc, loss of light connection can be prevented, and clear imaging of the root canal tissue Rc can be performed. It becomes possible.
本実施形態では、シース150と根管内組織Rcとの間の空間を充填する屈折率調整用のマッチングオイルを、シース150の周囲に配置する。マッチングオイルの屈折率はシース150の屈折率に同一又は近いものを使用することが可能である。シース150と根管内組織Rcとの間の空間を充填する屈折率調整用のマッチングオイルを使用することにより、光の接続損失を防止することができ、クリアな根管内組織Rcの撮影が可能となる。 (Embodiment 3C)
In the present embodiment, matching oil for refractive index adjustment that fills the space between the
(実施形態3D)
上述の実施形態では第3OCTプローブは一種類のみ設けていたが、本発明は上述の実施形態に限定されるものではなく、例えば第3OCTプローブを複数設けることも可能である。図31は、第3OCTプローブ103aの第6光ファイバF6の中心軸を含む面での断面図である。図31に示すように、第3OCTプローブ103aに形成される第3プローブ本体333では、プリズム135は照射角度30度で照射されるように配置されている。そして、図27に示した照射角度60度で照射される第3OCTプローブ103と組み合わせることで、より正確に根管内の中間領域の画像を取得することが可能となる。 (Embodiment 3D)
In the above-described embodiment, only one type of third OCT probe is provided. However, the present invention is not limited to the above-described embodiment. For example, a plurality of third OCT probes can be provided. FIG. 31 is a cross-sectional view of thethird OCT probe 103a on the plane including the central axis of the sixth optical fiber F6. As shown in FIG. 31, in the third probe main body 333 formed on the third OCT probe 103a, the prism 135 is arranged to be irradiated at an irradiation angle of 30 degrees. Then, by combining with the third OCT probe 103 irradiated at an irradiation angle of 60 degrees shown in FIG. 27, an image of the intermediate region in the root canal can be acquired more accurately.
上述の実施形態では第3OCTプローブは一種類のみ設けていたが、本発明は上述の実施形態に限定されるものではなく、例えば第3OCTプローブを複数設けることも可能である。図31は、第3OCTプローブ103aの第6光ファイバF6の中心軸を含む面での断面図である。図31に示すように、第3OCTプローブ103aに形成される第3プローブ本体333では、プリズム135は照射角度30度で照射されるように配置されている。そして、図27に示した照射角度60度で照射される第3OCTプローブ103と組み合わせることで、より正確に根管内の中間領域の画像を取得することが可能となる。 (Embodiment 3D)
In the above-described embodiment, only one type of third OCT probe is provided. However, the present invention is not limited to the above-described embodiment. For example, a plurality of third OCT probes can be provided. FIG. 31 is a cross-sectional view of the
(実施形態3E)
また、本発明は、シース150内部にてプローブ本体の先端が異なる方向を向くように可動するように構成することも可能である。図32A及び図32Bは、先端が異なる方向を向くように可動する別実施形態に係る第4OCTプローブの説明図である。そのうち図32Aは曲げていない場合の第4プローブ本体であり、図32Bは曲げている場合の第4プローブ本体である。図32Aに示すように、第4プローブ本体は、先端側から順に、プリズム135と、GRINレンズ(屈折率傾斜レンズ)136と、柔軟性を有して曲折可能な第7光ファイバF7と、接続導光部137とを有する。GRINレンズ136の両端部にはワイヤ取付部174,174が設けられ、また、接続導光部137の両端部にもワイヤ取付部172,172が設けられており、これらのワイヤ取付部の間に一組のワイヤ173が各々取り付けられている。図32Aの状態では、第6光ファイバF6及び第7光ファイバF7により導かれた光の射出角度は、直角となる。 (Embodiment 3E)
Further, the present invention can also be configured so that the tip of the probe main body can move in different directions within thesheath 150. FIG. 32A and FIG. 32B are explanatory views of a fourth OCT probe according to another embodiment that is movable so that the tip faces in different directions. 32A shows the fourth probe body when not bent, and FIG. 32B shows the fourth probe body when bent. As shown in FIG. 32A, the fourth probe body is connected in order from the distal end side to the prism 135, the GRIN lens (refractive index gradient lens) 136, and the seventh optical fiber F7 that can be bent with flexibility. And a light guide portion 137. Wire attachment portions 174 and 174 are provided at both ends of the GRIN lens 136, and wire attachment portions 172 and 172 are also provided at both ends of the connection light guide portion 137. Between these wire attachment portions, A set of wires 173 are each attached. In the state of FIG. 32A, the emission angle of the light guided by the sixth optical fiber F6 and the seventh optical fiber F7 is a right angle.
また、本発明は、シース150内部にてプローブ本体の先端が異なる方向を向くように可動するように構成することも可能である。図32A及び図32Bは、先端が異なる方向を向くように可動する別実施形態に係る第4OCTプローブの説明図である。そのうち図32Aは曲げていない場合の第4プローブ本体であり、図32Bは曲げている場合の第4プローブ本体である。図32Aに示すように、第4プローブ本体は、先端側から順に、プリズム135と、GRINレンズ(屈折率傾斜レンズ)136と、柔軟性を有して曲折可能な第7光ファイバF7と、接続導光部137とを有する。GRINレンズ136の両端部にはワイヤ取付部174,174が設けられ、また、接続導光部137の両端部にもワイヤ取付部172,172が設けられており、これらのワイヤ取付部の間に一組のワイヤ173が各々取り付けられている。図32Aの状態では、第6光ファイバF6及び第7光ファイバF7により導かれた光の射出角度は、直角となる。 (Embodiment 3E)
Further, the present invention can also be configured so that the tip of the probe main body can move in different directions within the
そして、図32Bに示すように、一方のワイヤ173を縮小させると第4プローブ本体は該縮小させた一方のワイヤ173側の方向を向くように可動する。図32Bの状態では、第6光ファイバF6及び第7光ファイバF7により導かれた光の射出角度は直角ではなく斜め前方の角度θにて出射される。本実施形態に係る構成によればプリズム135の形状を変更させることなく、プローブ本体に設けられたワイヤの長さを調整する簡易な手法により光の射出角度を調整することができる。
Then, as shown in FIG. 32B, when one of the wires 173 is reduced, the fourth probe main body moves so as to face the direction of the reduced one wire 173 side. In the state of FIG. 32B, the emission angles of the light guided by the sixth optical fiber F6 and the seventh optical fiber F7 are emitted not at a right angle but at an angle θ obliquely forward. According to the configuration of the present embodiment, the light emission angle can be adjusted by a simple method of adjusting the length of the wire provided in the probe body without changing the shape of the prism 135.
以上、上述したように本実施形態に係る歯科用OCT装置によれば、第1OCTプローブ101、第2OCTプローブ102、及び第3OCTプローブ103を組み合わせて、根管内組織画像を幅広く取得することができ、根管上部のみならず、中間領域の根管側壁並びに根尖部及び根尖性歯周組織部の描出が可能となる。そのため、従来のようにファイルやリーマーをブラインド状態で操ることなしに、実際に、根管内部の状態、具体的には歯牙根尖部、歯根膜、セメント質、歯槽骨、根管壁及び根尖部の状態を直接確認することにより簡易かつ正確に根管治療を行うことができ、また、歯根破折の検出も可能であるため、本発明により得られる利益は計り知れない。
As described above, according to the dental OCT apparatus according to this embodiment as described above, a wide range of tissue images in the root canal can be acquired by combining the first OCT probe 101, the second OCT probe 102, and the third OCT probe 103. In addition to the upper part of the root canal, it is possible to depict the root canal side wall, the apical part, and the apical periodontal tissue part in the intermediate region. Therefore, without operating the file or reamer in a blind state as in the past, the actual condition inside the root canal, specifically the tooth apex, periodontal ligament, cementum, alveolar bone, root canal wall and root By directly confirming the state of the apex, root canal treatment can be performed easily and accurately, and it is possible to detect root fractures, so the benefits obtained by the present invention are immeasurable.
なお、上述の実施形態では、フーリエ・ドメインOCT(FD-OCT)のうち、スウェプト・ソースOCT(SS-OCT)を用いているがこの方式に限定されるわけではなく、OCT装置をスペクトル・ドメインOCT(SD-OCT)で提案されている形式とすることもでき、また、OCT装置をタイム・ドメインOCT(TD-OCT)で提案されている形式とすることもできる。
In the above-described embodiment, the swept source OCT (SS-OCT) is used in the Fourier domain OCT (FD-OCT). However, the present invention is not limited to this method. The format proposed in OCT (SD-OCT) may be used, and the OCT apparatus may be in the format proposed in time domain OCT (TD-OCT).
歯牙隣接面う触及び歯牙咬合面う触の早期発見が可能となるので、歯科診断及び歯科治療の分野にて有益に利用できる。また、本発明は、根管内の組織画像の描出に利用でき、複雑な根尖部、根尖性歯周組織、及び側枝の構造を正確かつ簡易に把握できる。加えて、破折、亀裂、奇形的過剰狭窄根管、及び残髄の有無等の客観的画像検査を可能とし、これまでの歯科用画像診断機器では極めて困難であった歯牙疾患の診査診断を可能とする。そのため、歯牙疾患の診査及び診断の分野にて利用できる。
Since early detection of tooth contact and tooth occlusion contact is possible, it can be used beneficially in the fields of dental diagnosis and treatment. In addition, the present invention can be used for drawing a tissue image in the root canal, and can accurately and easily grasp the structures of complex apical parts, apical periodontal tissues, and side branches. In addition, objective image inspections such as the presence or absence of fractures, cracks, deformed excessively stenosed root canals, and remnants are possible, making it possible to diagnose and diagnose dental diseases that were extremely difficult with conventional dental imaging equipment. Make it possible. Therefore, it can be used in the field of examination and diagnosis of dental diseases.
101:第1OCTプローブ(OCTプローブ)
102:第2OCTプローブ(OCTプローブ)
103:第3OCTプローブ(OCTプローブ)
110:光源
111,112:光ファイバ
113:結合部
117:コリメートレンズ
118:参照ミラー
120:レンズ
121:光検出器
122:増幅器
123:信号処理部
124:画像処理部
125:画像表示部
131:プローブ本体(第1プローブ本体)
132:第2プローブ本体
133:第3プローブ本体
135:プリズム
136:GRINレンズ
137:接続導光部
140:OCTプローブ
150,151:シース
160:回転手段
171:移動手段
171a:スライダ
171b:ガイドレール
200:観察対象
210:サポートレール
220:水平移動手段
230:垂直移動手段
300:膨張体
301:器部
310:中腔部
311:挿入孔
331:第1プローブ本体(プローブ本体)
332:第2プローブ本体(プローブ本体)
333:第3プローブ本体(プローブ本体)
500:根管
800:OCTメイン装置
900:歯科用OCT装置 101: First OCT probe (OCT probe)
102: Second OCT probe (OCT probe)
103: Third OCT probe (OCT probe)
110:Light source 111, 112: Optical fiber 113: Coupling unit 117: Collimating lens 118: Reference mirror 120: Lens 121: Photo detector 122: Amplifier 123: Signal processing unit 124: Image processing unit 125: Image display unit 131: Probe Body (first probe body)
132: Second probe main body 133: Third probe main body 135: Prism 136: GRIN lens 137: Connection light guide 140:OCT probe 150, 151: Sheath 160: Rotating means 171: Moving means 171a: Slider 171b: Guide rail 200 : Observation object 210: Support rail 220: Horizontal movement means 230: Vertical movement means 300: Expansion body 301: Container part 310: Internal cavity part 311: Insertion hole 331: First probe main body (probe main body)
332: second probe body (probe body)
333: Third probe body (probe body)
500: Root canal 800: OCT main device 900: Dental OCT device
102:第2OCTプローブ(OCTプローブ)
103:第3OCTプローブ(OCTプローブ)
110:光源
111,112:光ファイバ
113:結合部
117:コリメートレンズ
118:参照ミラー
120:レンズ
121:光検出器
122:増幅器
123:信号処理部
124:画像処理部
125:画像表示部
131:プローブ本体(第1プローブ本体)
132:第2プローブ本体
133:第3プローブ本体
135:プリズム
136:GRINレンズ
137:接続導光部
140:OCTプローブ
150,151:シース
160:回転手段
171:移動手段
171a:スライダ
171b:ガイドレール
200:観察対象
210:サポートレール
220:水平移動手段
230:垂直移動手段
300:膨張体
301:器部
310:中腔部
311:挿入孔
331:第1プローブ本体(プローブ本体)
332:第2プローブ本体(プローブ本体)
333:第3プローブ本体(プローブ本体)
500:根管
800:OCTメイン装置
900:歯科用OCT装置 101: First OCT probe (OCT probe)
102: Second OCT probe (OCT probe)
103: Third OCT probe (OCT probe)
110:
132: Second probe main body 133: Third probe main body 135: Prism 136: GRIN lens 137: Connection light guide 140:
332: second probe body (probe body)
333: Third probe body (probe body)
500: Root canal 800: OCT main device 900: Dental OCT device
Claims (12)
- 光を発する光源と、
少なくとも先端側領域が透過性を有する可撓性を有するシース、及び、前記シース内に配置されるプローブ本体、を有するOCTプローブと、
一端が前記光源に接続され他端が前記プローブ本体に接続された導光手段と、
口腔内の観察対象の画像を表示する画像表示部と、を備え、
前記プローブ本体は、前記光源から導光手段を経て導かれた光を前記観察対象に射出してその反射光を前記導光手段に掃引し、この反射光に基づく画像を前記画像表示部に表示する歯科用OCT装置。 A light source that emits light;
An OCT probe having a flexible sheath having at least a distal side region permeable, and a probe body disposed in the sheath;
A light guide means having one end connected to the light source and the other end connected to the probe body;
An image display unit for displaying an image of an observation target in the oral cavity,
The probe main body emits light guided from the light source through the light guide unit to the observation target, sweeps the reflected light to the light guide unit, and displays an image based on the reflected light on the image display unit. Dental OCT device. - 前記OCTプローブは、前記導光手段からの入射光を直角に向きを変えて観察対象に射出する第1OCTプローブと、
前記入射光を直進させて観察対象に射出する第2OCTプローブと、
前記入射光を、前記第1OCTプローブによる射出角度と前記第2OCTプローブによる射出角度との間の射出角度で観察対象に射出する第3OCTプローブと、の3タイプからなり、
これら第1OCTプローブ、第2OCTプローブ、又は第3OCTプローブを互換使用するように構成されている請求項1記載の歯科用OCT装置。 The OCT probe includes a first OCT probe that changes the direction of incident light from the light guide unit to a target to be observed by changing the direction to a right angle;
A second OCT probe that linearly emits the incident light and emits it to an observation target;
The incident light is composed of three types: a third OCT probe that emits light to an observation object at an emission angle between an emission angle of the first OCT probe and an emission angle of the second OCT probe,
The dental OCT apparatus according to claim 1, wherein the first OCT probe, the second OCT probe, or the third OCT probe is configured to be used interchangeably. - 前記口腔内の観察対象が、根管内の歯牙根尖部、根尖性歯周組織部、又は側枝であることを特徴とする請求項2記載の歯科用OCT装置。 The dental OCT apparatus according to claim 2, wherein the observation object in the oral cavity is a tooth apex, an apical periodontal tissue, or a side branch in a root canal.
- 前記口腔内の観察対象が、残髄、歯髄根管病巣、破折、亀裂、又は奇形的過剰狭窄根管であることを特徴とする請求項2記載の歯科用OCT装置。 The dental OCT apparatus according to claim 2, wherein the object to be observed in the oral cavity is a remnant pulp, a pulpal root canal, a fracture, a crack, or a deformed excessively narrowed root canal.
- 前記シース内に、該シースと前記プローブ本体との間の空間を充填するマッチングオイルを有することを特徴とする請求項1記載の歯科用OCT装置。 The dental OCT apparatus according to claim 1, further comprising a matching oil that fills a space between the sheath and the probe body in the sheath.
- 前記観察対象と前記シースとの間の空間を充填するマッチングオイルを有することを特徴とする請求項1記載の歯科用OCT装置。 The dental OCT apparatus according to claim 1, further comprising a matching oil that fills a space between the observation target and the sheath.
- 前記観察対象は歯牙隣接面であり、
前記OCTプローブは、該プローブ本体を回転駆動させる回転手段と、該プローブ本体を前記シース内にて前後に移動させる移動手段とを有し、
歯間鼓形空隙の上部又は下部に前記OCTプローブを挿入し、該OCTプローブを挿入した歯間鼓形空隙内にて前記シースを固定させ、前記回転手段による前記プローブ本体の回転、及び、固定した前記シース内にて前記移動手段による該プローブ本体の前後移動、のうち少なくとも何れか一方を行うことにより歯牙隣接面の画像をOCTプローブで撮影することを特徴とする請求項1記載の歯科用OCT装置。 The observation object is a tooth adjacent surface,
The OCT probe has rotating means for rotationally driving the probe main body, and moving means for moving the probe main body back and forth within the sheath,
The OCT probe is inserted into the upper part or the lower part of the interdental space, the sheath is fixed in the interdental space where the OCT probe is inserted, and the probe body is rotated and fixed by the rotating means. The dental adjacent surface according to claim 1, wherein an image of a tooth adjacent surface is taken with an OCT probe by performing at least one of the back and forth movement of the probe body by the moving means in the sheath. OCT device. - 中腔部を有すると共に、膨張すると歯間鼓形空隙に密着する形状の膨張体を有し、
前記OCTプローブは前記膨張体の中腔部内に挿入され、
前記膨張体の内部に、屈折率の差による光の減衰を防止する減衰防止媒体を注入することにより、前記膨張体を歯間鼓形空隙に密着させて歯牙隣接面の画像をOCTプローブで撮影することを特徴とする請求項7記載の歯科用OCT装置。 Having an inflatable body having a cavity portion and in close contact with the interdental space when inflated;
The OCT probe is inserted into the lumen of the inflatable body;
An anti-attenuation medium for preventing light attenuation due to a difference in refractive index is injected into the expansion body, thereby bringing the expansion body into close contact with the interdental space and taking an image of a tooth adjacent surface with an OCT probe. The dental OCT apparatus according to claim 7. - 前記観察対象は歯牙咬合面であり、
前記プローブ本体を回転駆動させる回転手段と、
前記プローブ本体を前記シース内にて前後に移動させる前後移動手段と、
前記OCTプローブを水平に移動させる水平移動手段と、
前記OCTプローブを垂直に移動させる垂直移動手段と、を備えていることを特徴とする請求項1記載の歯科用OCT装置。 The observation object is a tooth occlusal surface,
Rotating means for rotationally driving the probe body;
Back and forth moving means for moving the probe body back and forth within the sheath;
Horizontal moving means for moving the OCT probe horizontally;
The dental OCT apparatus according to claim 1, further comprising a vertical moving unit that vertically moves the OCT probe. - 前記歯牙咬合面の近傍に配置されるシースは、該歯牙咬合面の起伏形態に沿って変形させて設けられることを特徴とする請求項9記載の歯科用OCT装置。 The dental OCT apparatus according to claim 9, wherein the sheath disposed in the vicinity of the tooth occlusal surface is provided by being deformed along the undulation form of the tooth occlusal surface.
- 前記プローブ本体は、前記導光手段からの入射光を直角に向きを変えて観察対象に射出する第1プローブ本体と、
前記入射光を前記導光手段に対し鋭角に向きを変えて観察対象に射出する第2プローブ本体と、
前記入射光を前記導光手段に対し鈍角に向きを変えて観察対象に射出する第3プローブ本体との3タイプからなり、
これら第1プローブ本体、第2プローブ本体、又は第3プローブ本体を互換使用するように構成されていることを特徴とする請求項7又は9記載の歯科用OCT装置。 The probe main body is a first probe main body that emits incident light from the light guiding means at a right angle to the observation target;
A second probe body that changes the direction of the incident light at an acute angle with respect to the light guide means and emits the incident light to an observation target;
The incident light consists of three types: a third probe body that changes the direction to an obtuse angle with respect to the light guide means and emits the incident light to an observation target;
The dental OCT apparatus according to claim 7 or 9, wherein the first probe main body, the second probe main body, or the third probe main body is configured to be used interchangeably. - 歯牙咬合面に接して設置され、屈折率の差による光の減衰を防止する減衰防止媒体が充填される器部を有し、
前記器部の側面には前記OCTプローブを挿入可能とする挿入孔を有し、
前記OCTプローブは前記器部の前記挿入孔に挿入され、
前記器部の内部に、前記減衰防止媒体を注入して歯牙咬合面の画像をOCTプローブで撮影することを特徴とする請求項9記載の歯科用OCT装置。 It is placed in contact with the tooth occlusal surface, and has a vessel portion filled with an anti-attenuation medium that prevents attenuation of light due to a difference in refractive index,
The side of the vessel has an insertion hole into which the OCT probe can be inserted,
The OCT probe is inserted into the insertion hole of the vessel part,
The dental OCT apparatus according to claim 9, wherein an image of a tooth occlusal surface is taken with an OCT probe by injecting the anti-attenuation medium into the vessel portion.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-059799 | 2010-03-16 | ||
JP2010059801A JP5678286B2 (en) | 2010-03-16 | 2010-03-16 | OCT device for photographing adjacent tooth surface |
JP2010059799A JP5696318B2 (en) | 2010-03-16 | 2010-03-16 | Dental OCT device |
JP2010-059801 | 2010-03-16 | ||
JP2010-090838 | 2010-04-09 | ||
JP2010090838A JP2011217973A (en) | 2010-04-09 | 2010-04-09 | Method for imaging tooth occlusion face and oct device for imaging tooth occlusion face |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011114718A1 true WO2011114718A1 (en) | 2011-09-22 |
Family
ID=44648830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/001518 WO2011114718A1 (en) | 2010-03-16 | 2011-03-15 | Dental oct device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011114718A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104780822A (en) * | 2012-07-19 | 2015-07-15 | 独立行政法人国立长寿医疗研究中心 | Measurement/display method and measurement/display device for dental plaque, gum and alveolar bone |
WO2015120348A1 (en) * | 2014-02-06 | 2015-08-13 | Dentsply International Inc. | Inspection of dental roots and the endodontic cavity space therein |
WO2019055569A1 (en) * | 2017-09-12 | 2019-03-21 | Sonendo, Inc. | Optical systems and methods for examining a tooth |
US10617498B2 (en) | 2006-04-20 | 2020-04-14 | Sonendo, Inc. | Apparatus and methods for treating root canals of teeth |
US10631962B2 (en) | 2012-04-13 | 2020-04-28 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and gingival pockets |
US10702355B2 (en) | 2010-10-21 | 2020-07-07 | Sonendo, Inc. | Apparatus, methods, and compositions for endodontic treatments |
US10722325B2 (en) | 2013-05-01 | 2020-07-28 | Sonendo, Inc. | Apparatus and methods for treating teeth |
US10835355B2 (en) | 2006-04-20 | 2020-11-17 | Sonendo, Inc. | Apparatus and methods for treating root canals of teeth |
US11103333B2 (en) | 2012-12-20 | 2021-08-31 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and root canals |
US11160645B2 (en) | 2009-11-13 | 2021-11-02 | Sonendo, Inc. | Liquid jet apparatus and methods for dental treatments |
US11173019B2 (en) | 2012-03-22 | 2021-11-16 | Sonendo, Inc. | Apparatus and methods for cleaning teeth |
US11213375B2 (en) | 2012-12-20 | 2022-01-04 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and root canals |
US11350993B2 (en) | 2006-08-24 | 2022-06-07 | Pipstek, Llc | Dental and medical treatments and procedures |
US11701202B2 (en) | 2013-06-26 | 2023-07-18 | Sonendo, Inc. | Apparatus and methods for filling teeth and root canals |
USD997355S1 (en) | 2020-10-07 | 2023-08-29 | Sonendo, Inc. | Dental treatment instrument |
WO2023225833A1 (en) * | 2022-05-24 | 2023-11-30 | Shenzhen Genorivision Technology Co., Ltd. | Imaging systems using light guides |
US12114924B2 (en) | 2006-08-24 | 2024-10-15 | Pipstek, Llc | Treatment system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01293840A (en) * | 1988-05-23 | 1989-11-27 | Sumitomo Electric Ind Ltd | Root canal endoscope |
JPH10108828A (en) * | 1996-10-07 | 1998-04-28 | Olympus Optical Co Ltd | Endoscope device |
JPH1156786A (en) * | 1997-08-28 | 1999-03-02 | Olympus Optical Co Ltd | Photoscan probe device |
JP2004344262A (en) * | 2003-05-20 | 2004-12-09 | J Morita Tokyo Mfg Corp | Probe for dental optical diagnostic equipment |
JP2009518139A (en) * | 2005-12-08 | 2009-05-07 | ピーター・エス・ラブリー | Infrared dental imaging |
-
2011
- 2011-03-15 WO PCT/JP2011/001518 patent/WO2011114718A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01293840A (en) * | 1988-05-23 | 1989-11-27 | Sumitomo Electric Ind Ltd | Root canal endoscope |
JPH10108828A (en) * | 1996-10-07 | 1998-04-28 | Olympus Optical Co Ltd | Endoscope device |
JPH1156786A (en) * | 1997-08-28 | 1999-03-02 | Olympus Optical Co Ltd | Photoscan probe device |
JP2004344262A (en) * | 2003-05-20 | 2004-12-09 | J Morita Tokyo Mfg Corp | Probe for dental optical diagnostic equipment |
JP2009518139A (en) * | 2005-12-08 | 2009-05-07 | ピーター・エス・ラブリー | Infrared dental imaging |
Non-Patent Citations (2)
Title |
---|
HAGAY SHEMESH ET AL.: "The ability of optical coherence tomography to characterize the root canal walls", JOURNAL OF ENDODONTICS, vol. 33, no. 11, November 2007 (2007-11-01), pages 1369 - 1373 * |
MEU ARIYOSHI ET AL.: "OCT o Mochiita Rinsetsumen Ushoku Model no Hi Shinshu Danso Gazo Shinsa", JAPANESE SOCIETY OF CONSERVATIVE DENTISTRY 2009 NENDO SHUKI GAKUJUTSU TAIKAI (DAI 131 KAI) PROGRAM OYOBI KOEN SHOROKUSHU, 29 October 2009 (2009-10-29), pages 25 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10835355B2 (en) | 2006-04-20 | 2020-11-17 | Sonendo, Inc. | Apparatus and methods for treating root canals of teeth |
US11918432B2 (en) | 2006-04-20 | 2024-03-05 | Sonendo, Inc. | Apparatus and methods for treating root canals of teeth |
US10617498B2 (en) | 2006-04-20 | 2020-04-14 | Sonendo, Inc. | Apparatus and methods for treating root canals of teeth |
US12114924B2 (en) | 2006-08-24 | 2024-10-15 | Pipstek, Llc | Treatment system and method |
US11684421B2 (en) | 2006-08-24 | 2023-06-27 | Pipstek, Llc | Dental and medical treatments and procedures |
US11426239B2 (en) | 2006-08-24 | 2022-08-30 | Pipstek, Llc | Dental and medical treatments and procedures |
US11350993B2 (en) | 2006-08-24 | 2022-06-07 | Pipstek, Llc | Dental and medical treatments and procedures |
US11160645B2 (en) | 2009-11-13 | 2021-11-02 | Sonendo, Inc. | Liquid jet apparatus and methods for dental treatments |
US10806543B2 (en) | 2010-10-21 | 2020-10-20 | Sonendo, Inc. | Apparatus, methods, and compositions for endodontic treatments |
US10702355B2 (en) | 2010-10-21 | 2020-07-07 | Sonendo, Inc. | Apparatus, methods, and compositions for endodontic treatments |
US11173019B2 (en) | 2012-03-22 | 2021-11-16 | Sonendo, Inc. | Apparatus and methods for cleaning teeth |
US10631962B2 (en) | 2012-04-13 | 2020-04-28 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and gingival pockets |
US11284978B2 (en) | 2012-04-13 | 2022-03-29 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and gingival pockets |
CN104780822A (en) * | 2012-07-19 | 2015-07-15 | 独立行政法人国立长寿医疗研究中心 | Measurement/display method and measurement/display device for dental plaque, gum and alveolar bone |
US10251558B2 (en) | 2012-07-19 | 2019-04-09 | National Center For Geriatrics And Gerontology | Method and apparatus for measuring and displaying dental plaque, gingiva, and alveolar bone |
US9445724B2 (en) | 2012-07-19 | 2016-09-20 | National Center For Geriatrics And Gerontology | Method and apparatus for measuring and displaying dental plaque |
US11213375B2 (en) | 2012-12-20 | 2022-01-04 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and root canals |
US11103333B2 (en) | 2012-12-20 | 2021-08-31 | Sonendo, Inc. | Apparatus and methods for cleaning teeth and root canals |
US10722325B2 (en) | 2013-05-01 | 2020-07-28 | Sonendo, Inc. | Apparatus and methods for treating teeth |
US11701202B2 (en) | 2013-06-26 | 2023-07-18 | Sonendo, Inc. | Apparatus and methods for filling teeth and root canals |
WO2015120348A1 (en) * | 2014-02-06 | 2015-08-13 | Dentsply International Inc. | Inspection of dental roots and the endodontic cavity space therein |
WO2019055569A1 (en) * | 2017-09-12 | 2019-03-21 | Sonendo, Inc. | Optical systems and methods for examining a tooth |
USD997355S1 (en) | 2020-10-07 | 2023-08-29 | Sonendo, Inc. | Dental treatment instrument |
WO2023225833A1 (en) * | 2022-05-24 | 2023-11-30 | Shenzhen Genorivision Technology Co., Ltd. | Imaging systems using light guides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011114718A1 (en) | Dental oct device | |
Staninec et al. | In vivo near‐IR imaging of approximal dental decay at 1,310 nm | |
Shemesh et al. | The ability of optical coherence tomography to characterize the root canal walls | |
JP6177777B2 (en) | Measurement display method and measurement display device for dental plaque, gingiva and alveolar bone | |
Abdelaziz et al. | DIAGNOcam-a Near Infrared Digital Imaging Transillumination (NIDIT) technology. | |
JP4338142B2 (en) | Dental optical tomographic image display system | |
Brandenburg et al. | Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT) | |
Kim et al. | Improved accuracy in periodontal pocket depth measurement using optical coherence tomography | |
Pietrzycka et al. | Clinical aspects of pulp stones: A case report series | |
US11925308B2 (en) | Ionizing radiation-free dental imaging by near-infrared fluorescence, and related systems | |
WO2010104198A1 (en) | Dental cutter | |
Solanki et al. | Advanced diagnostic aids in dental caries–a review | |
JP5678286B2 (en) | OCT device for photographing adjacent tooth surface | |
Cheng et al. | Robotic and microrobotic tools for dental therapy | |
Yang et al. | Limitations and Management of dynamic Navigation System for locating calcified canals failure | |
Son et al. | Dental diagnosis for inlay restoration using an intraoral optical coherence tomography system: A case report | |
JP5696318B2 (en) | Dental OCT device | |
JP2009006155A (en) | Dental optical diagnostic apparatus | |
JP2011217973A (en) | Method for imaging tooth occlusion face and oct device for imaging tooth occlusion face | |
Pirani et al. | Use of dynamic navigation for a minimal invasive finding of root canals: A technical note | |
Shakibaie et al. | Optical diagnostics to improve periodontal diagnosis and treatment | |
Togoe et al. | Modern approaches of analysis and treatment of endodontic lesions using the endoscope and the optical coherence tomography | |
Fouad | Digital Applications in Endodontics | |
Packyanathan et al. | Methods of Identification of Accessory Canals-A Review. | |
Bala et al. | Diş Çürüğünün Teşhisi ve Bu Amaçla Kullanılan Güncel Yöntemler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11755909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11755909 Country of ref document: EP Kind code of ref document: A1 |