[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011114372A1 - 移動通信システム、基地局、セルカバレッジ制御方法 - Google Patents

移動通信システム、基地局、セルカバレッジ制御方法 Download PDF

Info

Publication number
WO2011114372A1
WO2011114372A1 PCT/JP2010/001904 JP2010001904W WO2011114372A1 WO 2011114372 A1 WO2011114372 A1 WO 2011114372A1 JP 2010001904 W JP2010001904 W JP 2010001904W WO 2011114372 A1 WO2011114372 A1 WO 2011114372A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell coverage
power value
base station
received power
enb
Prior art date
Application number
PCT/JP2010/001904
Other languages
English (en)
French (fr)
Inventor
小池一司
中原徹
小川浩二
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201080065447.7A priority Critical patent/CN102812741B/zh
Priority to JP2012505305A priority patent/JP5423873B2/ja
Priority to PCT/JP2010/001904 priority patent/WO2011114372A1/ja
Priority to EP10847794.4A priority patent/EP2549790B1/en
Priority to KR1020127024267A priority patent/KR101418663B1/ko
Publication of WO2011114372A1 publication Critical patent/WO2011114372A1/ja
Priority to US13/608,006 priority patent/US8879400B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a technique for controlling cell coverage of a base station in a mobile communication system.
  • a telecommunications carrier that provides a service in advance determines cell coverage, that is, a service area for a mobile station for each radio base station (hereinafter simply referred to as “base station”), so that the cell coverage can be obtained.
  • the parameters are set for the base station. This parameter is, for example, transmission power for each cell of the base station, antenna height, directivity direction, tilt angle, and the like.
  • the communication carrier measures the cell coverage of the base station by measuring the received power of the radio wave from the base station with a radio wave measuring device or the like.
  • the cell coverage (measurement cell coverage) as the measurement result is compared with the initially planned target cell coverage (target cell coverage), and the above parameters are changed regularly or irregularly as necessary. Is called.
  • the parameters of each cell that improve the reception quality in the problem area are calculated for all the cells in the problem area specified in the optimization target area.
  • the calculation of this parameter is performed based on the station information retrieved from the station information recording database and the position coordinates of each measurement point in the problem area recorded in the measurement data recording database.
  • a mobile communication system a base station, and a cell coverage that can operate the mobile communication system so as to maintain the cell coverage at a target value in a timely manner without bothering people. It is an object to provide a control method.
  • a mobile communication system including a base station and a mobile station is provided.
  • a mobile station reports its own location information and the received power value of a reference signal from the base station to the base station.
  • the base station obtains a measurement cell coverage that is a measurement result of the cell coverage based on the position information and the received power value from the mobile station, and reduces the error between the measurement cell coverage and the target cell coverage.
  • Control at least one of a plurality of parameters including transmission power and antenna tilt angle.
  • a transmitter for transmitting a reference signal to the mobile station A receiving unit that acquires position information of the mobile station and a received power value of the reference signal in the mobile station from the base station; A cell coverage measurement unit that obtains a measurement cell coverage that is a measurement result of the cell coverage based on the position information from the mobile station and the received power value; A cell coverage control unit that controls at least one of a plurality of parameters including transmission power to the mobile station and an antenna tilt angle so that an error between the measurement cell coverage and the target cell coverage is reduced; A base station is provided.
  • a cell coverage control method in which the base station controls its own cell coverage.
  • This cell coverage control method is The mobile station reports to the base station the location information of the local station and the received power value of the reference signal from the base station;
  • the base station obtains a measured cell coverage which is a measurement result of the cell coverage based on the position information from the mobile station and the received power value;
  • the base station controlling at least one of a plurality of parameters including transmission power to the mobile station and an antenna tilt angle so that an error between the measurement cell coverage and the target cell coverage is reduced; including.
  • the disclosed mobile communication system base station, and cell coverage control method, it is possible to operate the mobile communication system so as to maintain the cell coverage almost at the target value in a timely manner without bothering people.
  • the flowchart for demonstrating the process between eNB and UE of 2nd Embodiment The flowchart for demonstrating the process of eNB of 2nd Embodiment.
  • the flowchart which shows the process between eNB and UE performed according to the cell coverage control method of 4th Embodiment.
  • the flowchart which shows the process between each eNB and each UE performed according to the cell coverage control method of 5th Embodiment.
  • the flowchart which shows the process between each eNB, each UE, and EMS performed according to the cell coverage control method of 6th Embodiment.
  • the mobile communication system of each embodiment is a cellular system, and includes a base station assigned to each cell and a mobile station that receives a wireless communication service from the base station.
  • cell coverage serving as an index of a wireless communication service area for a mobile station by a base station is represented by a circle or a rectangle for ease of display and understanding.
  • the cell coverage control method of the present embodiment can be applied to cell coverage assuming any form of region.
  • the base station is abbreviated as eNB (evolved Node B) and the mobile station is abbreviated as UE (User Equipment).
  • a target service area for a mobile station of an eNB that is, a target cell coverage is defined in advance.
  • parameters are initially set for the eNB so that the target cell coverage can be obtained. Examples of this parameter include transmission power for each UE of the eNB, antenna height provided in the eNB, directivity direction, tilt angle, and the like.
  • a control system (not shown) is mounted to control the antenna height, directivity direction, tilt angle, and the like.
  • This control system includes an actuator and the like for adjusting the height direction of the antenna, the directivity direction of the antenna, and the tilt angle direction of the antenna based on the control command.
  • the eNB of the present embodiment acquires information on the location of each UE (hereinafter referred to as “location information”) from each UE.
  • location information information on the location of each UE
  • the eNB of the present embodiment transmits a reference signal such as a pilot to each UE at a predetermined power level.
  • Each UE measures the received power value of the reference signal and reports it to the eNB.
  • the eNB measures cell coverage based on the received power value reported from each UE.
  • Various methods can be used for measuring the cell coverage based on the received power value.
  • cell coverage is measured based on information on different positions (two positions) in a cell of a specific UE and a received power value of a reference signal of the UE at the positions of the two UEs. If the position of the two points and the fluctuation of the received power value at the two points are known, the edge of the cell can be calculated based on trigonometry. That is, cell coverage can be measured.
  • the signal attenuation level of the signal between the eNB and the UE (“path loss”) based on the transmission power value and the received power value reported from the UE. Can also be measured.
  • the UE can measure the path loss based on the received power value of the reference signal if the transmission power value of the reference signal in the eNB for the own station is known or notified from the eNB.
  • cell coverage can be measured in a predetermined area unit based on a predetermined threshold of signal attenuation for performing radio communication between the eNB and the UE. With this cell coverage measurement method, it is possible to specify not only the cell edge but also a local insensitive area in the cell.
  • the measured cell coverage is referred to as measured cell coverage.
  • This measured cell coverage is compared with the target cell coverage of the mobile communication system (for example, the target cell coverage set at the beginning of system operation). Then, the eNB controls at least one of the plurality of parameters described above so that an error between the measurement cell coverage and the target cell coverage is reduced.
  • FIG. 1 and FIG. 2 show an example of a state where the measured cell coverage and the target cell coverage are separated (state before execution of the cell coverage control method of the present embodiment).
  • the measurement cell coverage is narrower than the target cell coverage in all directions.
  • the UE 100 can communicate with the eNB, but the UE 101 cannot communicate with the eNB.
  • the measurement cell coverage is narrower than the target cell coverage in a specific direction, and as an example, the UE 100 can communicate with the eNB, but the UE 101 cannot communicate with the eNB.
  • the eNB of the present embodiment compares the measured cell coverage with the target cell coverage, and when the measured cell coverage is omnidirectional and narrower than the target cell coverage as shown in FIG. Increase transmission power with. As a result, the error between the measurement cell coverage and the target cell coverage is reduced.
  • the eNB of the present embodiment compares the measured cell coverage with the target cell coverage, and when the measured cell coverage is narrower than the target cell coverage in a specific direction as shown in FIG. Increase the direction transmit power. For example, when the cell has a three-sector configuration, the transmission power in the direction corresponding to a predetermined sector (sector ST1 in FIG. 2) is increased. Further, the tilt angle of the antenna with respect to a specific sector may be controlled. As a result, the error between the measurement cell coverage and the target cell coverage is reduced.
  • a reference signal such as a pilot is transmitted from the eNB to each UE at a predetermined power level (step S10).
  • the UE receives the reference signal transmitted in step S10 and measures the received power value (step S12). Further, the UE acquires the position information of the own station by using predetermined position acquisition means such as GPS (Global Positioning System), for example (step S14).
  • predetermined position acquisition means such as GPS (Global Positioning System), for example (step S14).
  • the received power value and position information obtained in step S12 and step S14 are then reported to the eNB (step S16).
  • the eNB receives the report from each eUE in step S16, measures the cell coverage by the cell coverage measurement method described above, and obtains measured cell coverage (step S18). At this time, the received power values and position information of a plurality of samples at different positions can be acquired from the same UE according to the cell coverage measurement method. Next, the eNB compares the measured cell coverage obtained in step S18 with the target cell coverage defined in advance, and the transmission power, antenna height, directivity direction, and Control at least one of a plurality of parameters including a tilt angle and the like. Here, it is preferable that the parameter to be controlled is selected so that the error between the measurement cell coverage and the target cell coverage is minimized.
  • the above steps S10 to S20 are sequentially performed. Therefore, even if the measurement cell coverage may deviate from the target cell coverage due to changes in the radio environment, feedback is performed so that the above parameters in the eNB become appropriate values in a short period of time.
  • the eNB transmits the reference signal to the UE, and the position information reported from each UE and the received power value of the reference signal To obtain measurement cell coverage. And eNB controls the parameter with respect to UE so that the error of measurement cell coverage and target cell coverage may become small. At this time, power measurement using a special radio wave measuring device or the like is not required. Therefore, it is possible to maintain the cell coverage almost at the target value in a timely manner without bothering people.
  • the cell coverage is measured at the timing when the inter-eNB handover is performed on the UE.
  • the distance from the eNB to the cell edge (first distance from the eNB serving as a reference for cell coverage) is calculated based on the position information from the UE and the received power value of the reference signal.
  • the circular measurement cell coverage centering on eNB which makes the distance from this eNB a radius is assumed.
  • the cell coverage is not an accurate circle, but this assumption makes it easy to control the transmission power (described later).
  • the mobile communication system of the present embodiment belongs to, for example, LTE (Long Term Evolution) E-UTRAN (Evolved Universal Terrestrial Radio Access Network) which is a next-generation high-speed mobile communication standard.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • FIG. 4 shows an outline of the LTE configuration.
  • eNB1 and eNB2 are connected by an X2 interface.
  • Each eNB is connected to an upper MME (Mobility Management Entity) by an S1 interface.
  • the MME is connected to a host sGW (serving gateway) and P-GW (PDN (Packet Data Network) Gateway) via an S11 interface.
  • PDN Packet Data Network
  • the process when the inter-eNB handover is performed from the eNB 1 to the eNB 2 for the UE is roughly as follows.
  • eNB1 is the source eNB and eNB2 is the target eNB.
  • the eNB 1 determines to execute the handover.
  • a handover request message (HANDOVER REQUEST) from eNB1 to eNB2
  • a handover confirmation message (HANDOVER REQUEST ACKNOWLEDGE) in response to the request from eNB2 to eNB1 are performed via the X2 interface.
  • a handover instruction message (RRC CONNECTION RECONFIGURATION) is transmitted from the eNB 1 to the UE.
  • the UE Upon receiving the handover instruction message, the UE completes a predetermined process with the eNB 2 that is the target eNB, and the handover completion message (RRC CONNECTION RECONFIGURATION COMPLETE).
  • eNB2 which is the target eNB, accesses the upper MME and requests switching of the downlink path.
  • predetermined processing is performed between the MME and its upper sGW and P-GW, and switching of the downstream path is confirmed between them.
  • FIG. 5 shows a state when the UE is handed over from eNB1 to eNB2.
  • the UE is present at the position P1 when the handover is started, and is present at the position P2 when the handover is completed.
  • the cell coverage of eNB2 which is target eNB is measured by the method mentioned later.
  • the UE of this embodiment includes a radio interface unit (RF / IF) 11, a signal processing unit 12, a received power measurement unit 13, a connection control unit 14, and a location information acquisition unit 15.
  • RF / IF radio interface unit
  • signal processing unit 12 a received power measurement unit 13
  • connection control unit 14 a location information acquisition unit 15.
  • the radio interface unit 11 includes an antenna, a receiver, and a transmitter for establishing radio communication with the eNB.
  • the receiver converts (down-converts) the radio signal received by the antenna into a digital baseband signal (hereinafter, received signal).
  • the transmitter up-converts the transmission signal generated by the signal processing unit 12 from a baseband frequency to a radio frequency.
  • the signal processing unit 12 separates the reception signal into a data signal, a control signal, and a reference signal (for example, a pilot), and generates a transmission signal by multiplexing the data signal, the control signal, and the reference signal.
  • the reception power measurement unit 13 measures the reception power value of the reference signal in the reception signal separated by the signal processing unit 12 and notifies the connection control unit 14 of the reception power value.
  • the received power value measured by the received power measuring unit 13 is fed back to the eNB and used for cell coverage measurement at the eNB.
  • the location information acquisition unit 15 acquires location information of the local station and notifies the connection control unit 14 of the location information.
  • the position acquisition method in the position information acquisition unit 15 can take various methods.
  • the position information acquisition unit 15 can adopt a GPS positioning system that receives a GPS signal from a GPS (Global Positioning System) satellite (not shown) and sequentially calculates the position data of the own station.
  • This GPS positioning method is a method of calculating a position based on the principle of triangulation from the arrival times of signals received from four or more GPS satellites.
  • the position information acquisition unit 15 can employ any position acquisition method in addition to the GPS positioning method. For example, although the accuracy is inferior to that of the GPS positioning method, a method of calculating the position based on the principle of the triangulation method from the delay time of the synchronization signal received from the eNB of three or more stations may be used.
  • the connection control unit 14 performs processing associated with handover processing between eNBs. For example, such processing includes measurement of radio quality for a measurement report (RRC MEASUREMENT REPORT) in handover processing, signal processing and message generation and analysis related to a predetermined handover performed with the eNB.
  • the connection control unit 14 includes the received power value measured by the received power measurement unit 13 and the location information acquired by the location information acquisition unit 15 in a specific handover message for the eNB. .
  • the eNB of this embodiment includes a radio interface unit (RF / IF) 21 as a transmission unit and a reception unit, a signal processing unit 22, a connection control unit 23, a cell coverage measurement unit 24, and cell coverage control.
  • RF / IF radio interface unit
  • the signal processing unit 22 a connection control unit 23
  • a cell coverage measurement unit 24 a cell coverage measurement unit 24, and cell coverage control.
  • Unit 25 an external interface unit (external IF) 26.
  • the radio interface unit 21 includes an antenna, a receiver, and a transmitter for establishing radio communication with the UE.
  • the receiver converts (down-converts) the radio signal received by the antenna into a digital baseband signal (hereinafter, received signal).
  • the transmitter up-converts the transmission signal generated by the signal processing unit 22 from the baseband frequency to the radio frequency.
  • the signal processing unit 22 separates the reception signal into a data signal, a control signal, and a reference signal (for example, a pilot), and generates a transmission signal by multiplexing the data signal, the control signal, and the reference signal.
  • the connection control unit 23 performs processing associated with handover processing between eNBs. For example, such processing is related to a predetermined handover performed with the UE or with the target eNB (when the local station is the source eNB) or with the source eNB (when the local station is the target eNB). Message generation and analysis. Further, the connection control unit 23 is configured to be connectable to a higher-order entity (for example, MME) through the external interface unit 26. Of course, the handover process in the connection control unit 23 is managed for each UE.
  • a higher-order entity for example, MME
  • the cell coverage measurement unit 24 measures the radius of the cell coverage based on the location information of the UE and the received power value of the reference signal at the UE included in the specific handover message from the UE.
  • the cell coverage radius is measured between the received power value reported to the eNB at the start of handover, the received power value reported to the eNB at the completion of handover, and the UE position at the start of handover and the UE position at completion. Is calculated by the method described later.
  • region of a cell coverage can be estimated by measuring the radius of a cell coverage, the measurement of the radius of a cell coverage is equivalent to measuring a cell coverage.
  • the cell coverage control unit 25 includes a radio interface unit so that an error between the radius of the cell coverage (first distance) obtained by the cell coverage measurement unit 24 and the radius of the target cell coverage (predetermined target distance) is reduced.
  • the transmission power of 21 transmitters is controlled. That is, when the radius of the cell coverage obtained by the cell coverage measurement unit 24 is smaller than that of the target cell coverage, the transmission power is increased by increasing the amplification factor of the transmitter. On the contrary, when the radius of the cell coverage obtained by the cell coverage measurement unit 24 is larger than that of the target cell coverage, the transmission power is lowered by reducing the amplification factor of the transmitter.
  • FIG. 7 is a diagram illustrating a relationship between the distance of the UE from the handover target eNB and the received power value reported from the UE.
  • the calculation of the cell coverage radius is performed in the cell coverage measurement unit 24 of the eNB.
  • the eNB receives position information and a received power value report from UEs to be handed over from other neighboring eNBs at timings when the handover is started and when the handover is completed.
  • the position of the cell edge is measured according to the principle of trigonometry.
  • the radius of the cell coverage is equal to the distance from the eNB to the cell edge.
  • the distance between two points that is, the position of the UE at the start of the handover and the position of the UE at the completion of the handover is accurately calculated according to the Huveni's formula. It is preferable to calculate.
  • the latitude and longitude of the UE position (first position) at the start of handover are ⁇ 1 and ⁇ 1, respectively
  • the latitude and longitude of the UE position (second position) at the time of handover completion are ⁇ 2 and ⁇ 2, respectively.
  • the cell coverage measurement unit 24 sets the distance between the two points, the received power value at the start of the handover (first received power value) to ⁇ 1, and the received power value at the completion of the handover (second received power value) to ⁇ 2. Then, based on the obtained distance D between the two points, the UE signal attenuation rate C is calculated according to the following equation 2.
  • C ( ⁇ 2- ⁇ 1) / D (Expression 2)
  • Equation 3 D2 + ⁇ 1 / C (Formula 3)
  • FIG. 8 is a flowchart illustrating processing between the eNB and the UE according to the present embodiment.
  • the process when a handover is performed from eNB1 to eNB2 is as follows.
  • the UE Prior to the radio quality measurement report (RRC MEASUREMENT REPORT), the UE acquires location information and a received power value (step S30).
  • the radio quality measurement report (RRC MEASUREMENT REPORT) from the UE to the eNB 1 includes the position information and the received power value obtained in step S30 (step S32).
  • a handover request message (HANDOVER REQUEST) is transmitted to eNB2 via the X2 interface (step S34).
  • the handover request message includes the location information obtained from the UE and the received power value.
  • the eNB 2 that is the measurement target of the cell coverage radius obtains the UE location information and the received power value at the start of the handover.
  • eNB2 transmits a handover confirmation message (HANDOVER REQUEST ACKNOWLEDGE) to eNB1 (step S36). Thereafter, a handover instruction message (RRC CONNECTION RECONFIGURATION) is transmitted from the eNB 1 to the UE (step S38).
  • RRC CONNECTION RECONFIGURATION Upon receiving the handover instruction message, the UE completes a predetermined process with the eNB 2 and completes the handover completion message (RRC CONNECTION RECONFIGURATION Prior to COMPLETE), position information and a received power value are acquired (step S40).
  • a handover completion message (RRC CONNECTION RECONFIGURATION from UE to eNB2) COMPLETE) includes the position information and received power value obtained in step S40 (step S42).
  • the eNB 2 that is the measurement target of the cell coverage radius obtains the UE location information and the received power value when the handover is completed.
  • step S50 The processing performed in the eNB based on the location information and received power value reported to the eNB at the start of handover and the location information and received power value reported to the eNB when the handover is completed will be described with reference to FIG. .
  • the eNB sends a handover complete message (RRC CONNECTION RECONFIGURATION When COMPLETE) is received (step S50), the processing after step S52 is performed.
  • the eNB Since the eNB knows the position of the UE at the start of the handover and the position of the UE at the completion of the handover, the eNB calculates the distance D between them according to the Huveni's formula shown in Formula 1 (step S52).
  • the eNB knows the received power value of the UE at the start of the handover and the received power value of the UE at the completion of the handover, and the distance between the two points (the distance between the position at the start of the handover and the position at the completion) is step S52.
  • the eNB calculates the attenuation rate C of the received power value according to the above equation 2 (step S54).
  • the eNB calculates the radius SR1 of the measurement cell coverage according to the above equation 3 (step S56).
  • the eNB preferably obtains the shortest distance from the eNB to the cell edge based on a plurality of pieces of position information and received power values at the timing of handover of a plurality of subordinate UEs. By performing control based on the shortest distance, the cell coverage after the control surely includes the target cell coverage.
  • the eNB compares the calculated radius SR1 with the radius SR of the target cell coverage, and if SR1 is not included in the allowable range SR ⁇ ⁇ SR1 ⁇ SR + ⁇ ( ⁇ : threshold) defined by SR, transmission is performed. Adjust the power value. That is, when SR1 ⁇ SR- ⁇ (YES in step S58), the eNB means that the measured cell coverage is excessively narrower than the target cell coverage, and therefore performs control to increase transmission power (step S60). ). Also, when SR1> SR + ⁇ (YES in step S62), the eNB performs control to reduce transmission power because it means that the measured cell coverage is excessively wider than the target cell coverage (step S64).
  • the amount of increase or decrease in the transmission power in step S60 and step S64 is determined according to the difference between the calculated radius SR1 and the radius SR of the target cell coverage. For example, when the calculated radius SR1 is smaller than the radius SR of the target cell coverage and the difference between them is ⁇ SR, the amount of increase in transmission power when ⁇ SR is large is larger than that when ⁇ SR is small. Become.
  • the cell coverage is measured at the timing when the inter-eNB handover is performed on the UE.
  • eNB measures the radius of cell coverage in order to obtain measurement cell coverage.
  • the eNB compares the measured cell coverage radius with the target cell coverage radius, and the transmission power for the UE is controlled according to the comparison result.
  • the cell boundary measurement can be obtained with high accuracy since the inter-eNB handover to the UE is performed. Therefore, transmission power control for reducing an error between the measurement cell coverage and the target cell coverage can be performed with high accuracy.
  • the distance from the eNB to the cell edge is calculated based on the position information from the UE and the received power value.
  • the circular measurement cell coverage centering on eNB which makes the distance from this eNB a radius is assumed.
  • the eNB determines that the UE is located near the cell edge based on the report of the received power value from the UE, the position from the UE The radius of cell coverage is calculated based on the information and the received power value. The determination of whether or not the UE is located near the cell edge is based on whether or not the received power value reported from the UE is equal to or less than a predetermined threshold. Also in the mobile communication system of the present embodiment, the cell coverage radius is measured as in the second embodiment. A method for measuring (calculating) this radius will be described later. The eNB compares the measured cell coverage radius with the target cell coverage radius, and the transmission power for the UE is controlled according to the comparison result. FIG. 10 shows an outline of this control.
  • FIG. 10 shows cell coverage before control
  • the eNB receives position information and a received power value report from the UE.
  • the distance from the eNB to the cell edge that is, the radius of the cell coverage (SR1 in FIG. 10A) is calculated.
  • This radius SR1 is the radius of the measurement cell coverage.
  • control for increasing the transmission power from the eNB is performed.
  • FIG. 10B the cell coverage of the eNB is expanded as a whole.
  • the eNB preferably obtains the shortest distance from the eNB to the cell edge based on position information and received power values from a plurality of UEs under its control. By performing control based on the shortest distance, the cell coverage after the control surely includes the target cell coverage. Note that, in the mobile communication system of the present embodiment, the eNB and the UE have the same configuration as that shown in FIG. 6, for example.
  • FIG. 11 is a diagram illustrating the relationship between the distance from the eNB of a UE located near the cell edge and the received power value reported from the UE. The calculation of the radius of the cell coverage is performed in the cell coverage measurement unit 24 (see FIG. 6) of the eNB.
  • ENB receives a report of location information (fourth location) and received power value (fourth received power value) from the UE that is determined to be located near the cell edge.
  • this received power value is ⁇ 1.
  • a predetermined received power value is known as a received power value when the UE is located at the same position as the own station in the eNB.
  • this known received power value is ⁇ 2.
  • This known received power value is not limited to the received power value when the UE is located at the same position as the own station.
  • the position (third position) and the received power value (third received power value) with reference to the eNB may be known. For example, a position based on the eNB and a received power value of the reference signal of the UE at the position may be measured in advance, and the measured value may be held in the eNB.
  • ENB measures the cell edge as the boundary of the cell coverage specifying the latitude and longitude according to the principle of trigonometry as in the case of the second embodiment.
  • the distance D between the two points is a distance between the eNB and the UE determined to be located in the vicinity of the cell edge.
  • the radius SR1 of the measurement cell coverage is calculated according to the above equations (1) to (3).
  • FIG. 12 is a flowchart illustrating processing between the eNB and the UE according to the present embodiment.
  • the UE acquires the received power value of the reference signal from the eNB (step S70). Further, the UE acquires position information when the acquired received power value is equal to or less than a predetermined threshold (step S72). This predetermined threshold is set in order to determine whether or not the UE is located near the cell edge.
  • the UE includes the position information and the received power value obtained in steps S70 and S72 in the radio quality measurement report (RRC MEASUREMENT REPORT) to the eNB 1 (step S74).
  • the eNB the position information and the received power value of the UE located in the vicinity of the cell edge are obtained.
  • processing performed in the eNB will be described with reference to FIG. 13 based on the location information and received power value of the UE located in the vicinity of the cell edge, and the known location information and received power value based on the eNB. To do. In the following, it is assumed that the position information and received power value known by the eNB are the position information of the own station and the received power value at that position. This eNB process is performed after step S74 in FIG. 12 (step S80 in FIG. 13).
  • the eNB calculates a distance D between the position of the UE located in the vicinity of the cell edge and the position of the own station according to the Huveni's calculation formula shown in Expression 1 (step S82).
  • the eNB calculates the attenuation rate C of the received power value according to the above equation 2 based on the received power value of the UE located in the vicinity of the cell edge and the known received power value (step S84). Further, the eNB calculates the radius SR1 of the measurement cell coverage according to the above equation 3 (step S86).
  • the eNB compares the calculated radius SR1 with the radius SR of the target cell coverage, and if SR1 is not included in the allowable range SR ⁇ ⁇ SR1 ⁇ SR + ⁇ ( ⁇ : threshold) defined by SR.
  • the transmission power value is adjusted. That is, when SR1 ⁇ SR- ⁇ (YES in step S88), the eNB means that the measured cell coverage is excessively narrower than the target cell coverage, and therefore performs control to increase transmission power (step S90). ). Also, when SR1> SR + ⁇ (YES in step S92), the eNB performs control to reduce transmission power because it means that the measured cell coverage is excessively wider than the target cell coverage (step S94).
  • the amount of increase or decrease of the transmission power in step S90 and step S94 is determined according to the difference between the calculated radius SR1 and the radius SR of the target cell coverage. For example, when the calculated radius SR1 is smaller than the radius SR of the target cell coverage and the difference between them is ⁇ SR, the amount of increase in transmission power when ⁇ SR is large is larger than that when ⁇ SR is small. Become.
  • the mobile communication system of the present embodiment it is performed when it is determined that the UE is located in the vicinity of the cell edge based on the report of the received power value from the UE.
  • eNB measures the radius of cell coverage in order to obtain measurement cell coverage. The eNB compares the measured cell coverage radius with the target cell coverage radius, and the transmission power for the UE is controlled according to the comparison result.
  • the UE measures the signal attenuation from the eNB, that is, the path loss, based on the transmission power value of the reference signal from the eNB and the reception power value of the reference signal.
  • the path loss is, for example, the difference between the transmission power value of the reference signal from the eNB and the reception power value of the reference signal at the UE.
  • the greater the path loss the greater the degree of signal attenuation from the eNB to the UE, which means that wireless communication between the two becomes difficult.
  • the transmission power value of the reference signal from the eNB may be notified to the UE by including it in the downlink control signal from the eNB to the UE, or may be held by the UE as a known value. Good.
  • the path loss measured by the UE is reported together with the location information from each UE in the cell to the eNB.
  • the cell coverage area is specified by collecting location information of each UE when the measured path loss is equal to or less than a predetermined threshold.
  • FIG. 14 is a diagram for explaining the outline of the cell coverage control described above.
  • a rectangular or square cell coverage centered on eNB 1 is assumed as an example.
  • the target cell coverage of the eNB 1 is an area surrounded by a dotted line.
  • region enclosed with the continuous line is the measurement cell coverage obtained by collecting the positional information on each UE when the path loss measured by UE is below a predetermined threshold value.
  • the target cell coverage an area that does not overlap with the measurement cell coverage is a poor sensitivity area.
  • the eNB 1 when the eNB 1 identifies a poor sensitivity area, the eNB 1 performs control to reduce the poor sensitivity area.
  • the transmission power of eNB 1 may be increased to reduce the insensitive area, or the insensitive area may be reduced by adjusting the antenna tilt angle of eNB 1. Good.
  • the tilt angle of the antenna of eNB1 the measurement cell coverage is entirely shifted so that the measurement cell coverage matches the target cell coverage.
  • Which of a plurality of parameters including transmission power and antenna tilt angle is to be controlled is determined based on the result of specifying the insensitive area.
  • transmission power can be selected as a control target.
  • the tilt angle of the antenna can be selected as a control target. In the latter case, only a specific sector may be controlled.
  • a control system (not shown) is mounted to control the height of the antenna, the directivity direction, the tilt angle, and the like.
  • This control system includes an actuator and the like for adjusting the height direction of the antenna, the directivity direction of the antenna, and the tilt angle direction of the antenna based on the control command.
  • FIG. 15 is a flowchart showing processing between the eNB and the UE, which is performed according to the cell coverage control method of the present embodiment.
  • the eNB transmits a reference signal having a predetermined power level to the UE (step S98).
  • the UE acquires the received power value of the reference signal from the eNB.
  • the transmission power value of the reference signal of the eNB is known by the UE.
  • the UE measures the path loss based on the transmission power value of the reference signal of the eNB and the received power value of the reference signal at its own station (step S100).
  • the UE acquires location information (step S102).
  • the position information includes latitude and longitude values in a predetermined area unit (region unit).
  • the UE includes the path loss and the position information obtained in steps S100 and S102 in the radio quality measurement report (RRCRRMEASUREMENT REPORT) to the eNB1 (step S104).
  • the eNB has obtained the UE location information and the received power value.
  • the eNB performs the processing of Steps S100 to S104 for each of a plurality of UEs that are performing radio communication with the local station, thereby associating and recording position information and path loss in units of predetermined areas (Step S106). ).
  • mapping data is created based on a sufficient number of table data in which position information and path loss are associated with each other to specify a cell coverage area (step S108).
  • This mapping data is, for example, data obtained by plotting path loss values in a two-dimensional map of latitude and longitude. A plurality of path loss values at the same position are subjected to statistical processing such as averaging.
  • an area where the path loss is equal to or greater than a predetermined threshold has a high signal attenuation level from the eNB to the UE and is identified as a poor sensitivity area (step S110).
  • region where a path loss is less than a predetermined threshold value has a small attenuation of the signal from eNB to UE, and is specified as an area with good sensitivity.
  • the measurement cell coverage is obtained by specifying the poor sensitivity area and the high sensitivity area.
  • control is performed so that the error between the measured cell coverage and the target cell coverage is reduced (step S112). Specifically, control is performed on at least one of a plurality of parameters of transmission power, antenna height, directivity direction, and tilt angle so as to eliminate the sensitivity insensitive area.
  • each UE measures the path loss between the eNB and the UE, and the eNB associates the location information of each UE with the path loss, thereby measuring cells in a predetermined area unit. Identify coverage areas. As a result, a poor sensitivity area as an error between the measurement cell coverage and the target cell coverage is specified. Then, the eNB controls at least one of a plurality of parameters such as transmission power, antenna height, directivity direction, and tilt angle, thereby reducing the specified insensitive area. That is, since not only a cell edge but also a local insensitive area in the cell is specified, an optimal control target can be selected from a plurality of parameters.
  • a mobile communication system according to a fifth embodiment will be described.
  • (5-1) Overview of Control In the fourth embodiment, a poor sensitivity area in a single eNB is specified, but the poor sensitivity area may be covered by an adjacent eNB. In this case, if a plurality of eNBs belonging to a certain service area independently perform control to reduce the sensitivity insensitive area, it is considered that the control result becomes excessive as a whole. For example, it is not preferable from the viewpoint of power consumption and / or radio resources that the plurality of eNBs belonging to a certain service area perform control to increase the transmission power and the cell coverage of each eNB is excessively overlapped.
  • information collected from the UE by a plurality of eNBs belonging to a certain service area is aggregated into a single eNB within the service area. Then, the single eNB determines the control content of each eNB in the service area.
  • FIG. 16 is a diagram for explaining the outline of the cell coverage control described above.
  • a rectangular or square cell coverage centering on the eNB is assumed as an example.
  • FIG. 16 illustrates a case where a plurality of eNB1, eNB2, and eNB3 exist within a certain service area, for example.
  • the area surrounded by the dotted line at the center of each eNB is the target cell coverage of each eNB.
  • a region surrounded by a solid line at the center of each eNB is measured cell coverage obtained by collecting position information of each UE when the path loss measured by the UE is equal to or less than a predetermined threshold.
  • a predetermined threshold Of the target cell coverage, an area that does not overlap with the measurement cell coverage is a poor sensitivity area.
  • each eNB collects position information and path loss from the UE is the same as in the fourth embodiment, but table data in which the position information and path loss of each eNB are associated is collected in the master eNB.
  • the slave eNB is an eNB that provides table data to the master eNB.
  • eNB3 is a master eNB
  • eNB1 and eNB2 are slave eNBs.
  • a predetermined control protocol such as X2AP (X2 Application Protocol) in LTE is used.
  • FIG. 17 is a flowchart showing processing between each eNB and each UE performed according to the cell coverage control method of the present embodiment.
  • UE1, UE2, and UE3 are communicating with eNB1, eNB2, and eNB3, respectively, as shown in FIG.
  • UE1, UE2, and UE3 measure path loss based on reference signals from eNB1, eNB2, and eNB3, respectively, and acquire location information. Same as S98 to S102. Thereafter, the UE1, UE2, and UE3 include path loss and location information in the radio quality measurement reports (RRC MEASUREMENT REPORT) to the eNB1, eNB2, and eNB3, respectively (steps S120a, S120b, and S120c). Each eNB sequentially records path loss and position information from each UE (steps S122a, S122b, and S122c).
  • the slave eNB converts the table data into the master eNB (eNB3) (steps S126a and S126b). This transmission is performed, for example, by including table data in a new X2AP message.
  • the eNB 3 receives the table data, the eNB 3 creates mapping data and identifies a poor sensitivity area (step S128). In the mapping data, an area where the path loss is equal to or greater than a predetermined threshold has a large signal attenuation level from the eNB to the UE, and is specified as a poor sensitivity area.
  • eNB3 sets an area where the path loss is equal to or greater than a predetermined threshold in all eNBs as a poor sensitivity area. Further, in the table data created by any eNB, an area where the path loss is less than the predetermined threshold is covered by at least a single eNB in the service area, and thus is identified as a good sensitivity area. .
  • the measurement cell coverage is obtained in the eNB 3 by specifying the poor sensitivity area and the good sensitivity area. Further, control is performed so that the error between the measured cell coverage and the target cell coverage is reduced (step S130). At this time, if it is determined that it is preferable to perform control by eNB1 and / or eNB2, which are slave eNBs, according to the position of the poor sensitivity area, a predetermined control protocol such as X2AP from eNB3 to eNB1 and / or eNB2 Is used to send a control instruction (steps S132a and S132b). As a result, at least one of the eNBs 1 to 3 is controlled with respect to at least one of a plurality of parameters of transmission power, antenna height, directivity direction, and tilt angle so that the sensitivity insensitive area is eliminated.
  • a predetermined control protocol such as X2AP from eNB3 to eNB1 and / or eNB2
  • the master eNB controls each eNB so that the area where the path loss is equal to or greater than a predetermined threshold in all the eNBs in the service area is a poor sensitivity area and the control target areas do not overlap in each eNB. I do. Therefore, it is avoided that the cell coverage control result becomes excessive as a whole in a certain service area.
  • the mobile communication system of the sixth embodiment is configured for the purpose of preventing excessive cell coverage control in a plurality of eNBs belonging to a certain service area, as in the fifth embodiment.
  • an entity that aggregates information of a plurality of eNBs in a certain service area and determines control contents in each eNB such as an EMS (Element Management System)
  • the EMS is a monitoring control device that monitors a plurality of eNBs.
  • FIG. 18 is a diagram for explaining the outline of the control described above.
  • FIG. 18 differs from FIG. 16 in that each eNB in the service area is connected to the EMS.
  • the point that each eNB collects position information and path loss from the UE is the same as in the fourth and fifth embodiments, but table data including the position information and path loss of each eNB is collected in the EMS.
  • the EMS determines the control content of each eNB based on the aggregated table data.
  • FIG. 19 is a flowchart showing processing between each eNB, each UE, and EMS performed according to the cell coverage control method of the present embodiment.
  • UE1, UE2, and UE3 are communicating with eNB1, eNB2, and eNB3, respectively, as shown in FIG.
  • UE1, UE2, and UE3 measure path loss based on reference signals from eNB1, eNB2, and eNB3, respectively, and acquire location information. Same as S98 to S102. Thereafter, the UE1, UE2, and UE3 include path loss and location information in the radio quality measurement reports (RRC MEASUREMENT REPORT) to the eNB1, eNB2, and eNB3, respectively (steps S140a, S140b, and S140c). Each eNB sequentially records the path loss and position information from each UE and transfers them to the EMS (steps S142a, S142b, and S142c).
  • RRC MEASUREMENT REPORT radio quality measurement reports
  • the EMS When sufficient location information and path loss are collected to identify the cell coverage area, the EMS creates mapping data and identifies the poor sensitivity area (step S144).
  • the mapping data an area where the path loss is equal to or greater than a predetermined threshold has a large signal attenuation level from the eNB to the UE, and is specified as a poor sensitivity area.
  • EMS sets a region where the path loss is equal to or greater than a predetermined threshold in all eNBs as a poor sensitivity area. Further, in the table data created by any eNB, an area where the path loss is less than the predetermined threshold is covered by at least a single eNB in the service area, and thus is identified as a good sensitivity area. .
  • the measurement cell coverage is obtained in the eNB 3 by specifying the poor sensitivity area and the good sensitivity area. Further, control details are determined so that errors between EMS and measurement cell coverage and target cell coverage are reduced, and a control instruction is sent to each eNB (step S146). As a result, at least one of the eNBs 1 to 3 is controlled with respect to at least one of a plurality of parameters of transmission power, antenna height, directivity direction, and tilt angle so that the insensitive area is eliminated ( Steps S148a, S148b, S148c).
  • the cell coverage control result becomes excessive as a whole within a certain service area.
  • UE mobile station
  • DESCRIPTION OF SYMBOLS 11 ... Radio

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Abstract

 人手を煩わせることなく適時にセルカバレッジをほぼ目標値に維持するように移動通信システムを運用することを可能とする、移動通信システム、基地局、セルカバレッジ制御方法、が提供される。この移動通信システムにおいて、移動局は、基地局に対して、自局の位置情報と基地局からの基準信号の受信電力値を報告する。基地局は、移動局からの位置情報と受信電力値に基づいて、セルカバレッジの測定結果である測定セルカバレッジを得るとともに、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御する。

Description

移動通信システム、基地局、セルカバレッジ制御方法
 本発明は、移動通信システムにおいて基地局のセルカバレッジを制御する技術に関する。
 従来、移動通信システムでは、予めサービスを提供する通信事業者がセルカバレッジ、すなわち無線基地局(以下、単に「基地局」)毎の移動局に対するサービスエリアを決定し、そのセルカバレッジが得られるように基地局に対してパラメータを設定している。このパラメータは例えば、基地局の各セルに対する送信電力、アンテナの高さ、指向方向、及びチルト角度等である。所定の上記パラメータを設定してシステムの運用を開始した場合、システムの運用条件の変更、無線環境の変化(例えば、新規の建造物によるパスロス(path loss)の変化)によって当初予定していたセルカバレッジが後発的に得られなくなることがある。そこで通信事業者は、システムのユーザに対する通信サービスの品質を維持するため、基地局からの電波の受信電力を電波測定装置等で測定ことにより、基地局のセルカバレッジを測定している。その測定結果としてのセルカバレッジ(測定セルカバレッジ)と、当初予定していた目標とするセルカバレッジ(目標セルカバレッジ)とが比較され、必要に応じて上記パラメータの変更が定期的又は不定期に行われる。
 例えば、従来の上記パラメータの設定方法に関して、以下のものが知られている。この従来の設定方法によれば、最適化対象エリア内において特定された問題エリア内の全てのセルについて、問題エリアにおける受信品質を向上させる各セルのパラメータが計算される。このパラメータの計算は、局情報記録データベースから検索した局情報と測定データ記録データベースに記録された問題エリアの各測定点の位置座標とに基づいて行われる。
特開2009-81486号公報
 しかしながら、測定セルカバレッジを得るための、定期的又は不定期での電波測定装置等を使用した受信電力の測定には、時間も人手も掛かる。そのため、短時間毎に上記パラメータを更新することは困難であるが、移動通信システム内の無線環境の変化は常に生じうる。よって、上記パラメータの更新が適時に行われず、測定セルカバレッジと目標セルカバレッジが乖離する、すなわち、サービス外のエリアが多く生ずるという虞がある。
 よって、発明の1つの側面では、人手を煩わせることなく適時にセルカバレッジをほぼ目標値に維持するように移動通信システムを運用することができるようにした、移動通信システム、基地局、セルカバレッジ制御方法、を提供することを目的とする。
 基地局と移動局を含む移動通信システムが提供される。
 この移動通信システムにおいて、移動局は、基地局に対して、自局の位置情報と基地局からの基準信号の受信電力値を報告する。基地局は、移動局からの位置情報と受信電力値に基づいて、セルカバレッジの測定結果である測定セルカバレッジを得るとともに、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御する。
 移動局に対して基準信号を送信する送信部;
 移動局の位置情報と、基準信号の移動局における受信電力値とを、基地局から取得する受信部;
 移動局からの位置情報と受信電力値とに基づいて、セルカバレッジの測定結果である測定セルカバレッジを得るセルカバレッジ測定部;
 測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御するセルカバレッジ制御部;
 を備えた、基地局が提供される。
 基地局と移動局を含む移動通信システムにおいて、基地局が自局のセルカバレッジを制御するセルカバレッジ制御方法が提供される。
 このセルカバレッジ制御方法は、
 移動局が、基地局に対して、自局の位置情報と基地局からの基準信号の受信電力値を報告すること;
 基地局が、移動局からの位置情報と受信電力値に基づいて、セルカバレッジの測定結果である測定セルカバレッジを取得すること;
 基地局が、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御すること;
 を含む。
 開示の移動通信システム、基地局、セルカバレッジ制御方法によれば、人手を煩わせることなく適時にセルカバレッジをほぼ目標値に維持するように移動通信システムを運用することができる。
第1実施形態のセルカバレッジ制御方法の実行前のセルの状態の一例を示す図。 第1実施形態のセルカバレッジ制御方法の実行前のセルの状態の他の一例を示す図。 第1実施形態のセルカバレッジ制御方法の一例を説明するフローチャート。 第2実施形態の無線ネットワーク構成の概略を示す図。 第2実施形態のUEについてeNB間ハンドオーバするときの状態を示す図。 第2実施形態のUE及びeNBの構成を示すブロック図。 第2実施形態において、ハンドオーバのターゲットeNBからのUEの距離と、そのUEから報告される受信電力値との関係を示した図。 第2実施形態のeNBとUEの間の処理を説明するためのフローチャート。 第2実施形態のeNBの処理を説明するためのフローチャート。 第3実施形態の制御の概要を説明するための図。 第3実施形態においてセルエッジ近傍に位置するUEのeNBからの距離と、そのUEから報告される受信電力値との関係を示した図。 第3実施形態のeNBとUEの間の処理を説明するためのフローチャート。 第3実施形態のeNBの処理を説明するためのフローチャート。 第4実施形態のセルカバレッジ制御の概要を説明するための図。 第4実施形態のセルカバレッジ制御方法に従って行われる、eNBとUEの間の処理を示すフローチャート。 第5実施形態のセルカバレッジ制御の概要を説明するための図。 第5実施形態のセルカバレッジ制御方法に従って行われる、各eNBと各UEの間の処理を示すフローチャート。 第6実施形態のセルカバレッジ制御の概要を説明するための図。 第6実施形態のセルカバレッジ制御方法に従って行われる、各eNB、各UE、及びEMSの間の処理を示すフローチャート。
 以下、移動通信システム、及びセルカバレッジ制御方法の複数の実施形態について説明する。各実施形態の移動通信システムはセルラシステムであり、各セルに割り当てられた基地局と、その基地局により無線通信のサービスを受ける移動局とを含む。以下の説明及び添付の図面において、基地局による移動局に対する無線通信のサービスエリアの指標となるセルカバレッジは、表示及び理解の容易性のために円形又は矩形で表記する。しかしながら、本実施形態のセルカバレッジ制御方法が、いかなる形態の領域を想定したセルカバレッジにも適用しうることは、本明細書を見た当業者により正しく理解される。
 なお、以下の説明では、基地局をeNB(evolved Node B)、移動局をUE(User Equipment)として略記する。
 (1)第1実施形態
 以下、第1実施形態の移動通信システムについて説明する。
 この移動通信システム(以下、適宜単に「システム」と略記する。)において、eNBの移動局に対する目標のサービスエリア、すなわち目標セルカバレッジが予め規定される。そして、システムの運用に当たって、当初は目標セルカバレッジが得られるようにeNBに対してパラメータが設定される。このパラメータとして例えば、eNBの各UEに対する送信電力、eNBに備わるアンテナの高さ、指向方向、及びチルト角度等が挙げられる。
 本実施形態のeNBでは、アンテナの高さ、指向方向、及びチルト角度等を制御するため制御システム(図示せず)が実装される。この制御システムには、制御指令に基づいて、アンテナの高さ方向、アンテナの指向方向、及びアンテナのチルト角度方向を調節するためのアクチュエータ等が含まれる。
 本実施形態のeNBは、各UEから、各UEの位置に関する情報(以下、「位置情報」という。)を取得する。また、本実施形態のeNBは、パイロット等の基準信号を所定の電力レベルで各UEに対して送信する。各UEでは基準信号の受信電力値を測定してeNBへ報告する。eNBは、各UEから報告される受信電力値に基づいてセルカバレッジを測定する。受信電力値に基づくセルカバレッジの測定は様々な方法を採ることができる。
 例えば、特定のUEのセル内の異なる位置(2点の位置)の情報と、その2点の位置におけるそのUEの基準信号の受信電力値とに基づいて、セルカバレッジが測定される。2点の位置と、その2点の位置における受信電力値の変動とが分かれば、三角法に基づいてセルのエッジが算出できる。すなわち、セルカバレッジを測定することができる。
 また、eNBは、UEに対する基準信号の送信電力値が既知であるため、この送信電力値とUEから報告される受信電力値に基づいて、eNBとUEの間の信号の信号減衰度(「パスロス」ともいう。)を測定することができる。UEも、自局に対するeNBにおける基準信号の送信電力値が既知であるか、又はeNBから通知されれば、基準信号の受信電力値に基づいてパスロスを測定することができる。この信号減衰度をUEの位置情報と関連付ければ、eNBとUEの間で無線通信を行うための信号減衰度の所定の閾値に基づいて、セルカバレッジを所定の領域単位で測定できる。このセルカバレッジ測定方法であれば、セルエッジのみならずセル内の局所的な感度不良エリアも特定することができる。
 以下の説明では、測定されたセルカバレッジを測定セルカバレッジという。
 この測定セルカバレッジは、移動通信システムの目標セルカバレッジ(例えば、システムの運用当初に設定された目標のセルカバレッジ)と比較される。そしてeNBは、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、上述した複数のパラメータの少なくとも1つを制御する。
 図1及び図2に、測定セルカバレッジと目標セルカバレッジとが乖離した状態(本実施形態のセルカバレッジ制御方法の実行前の状態)の例を示す。図1では、測定セルカバレッジが全方位で目標セルカバレッジに対して狭くなっており、一例としてUE100はeNBと通信可能であるが、UE101はeNBと通信不可能である状態を示している。図2では、測定セルカバレッジは特定の方向において目標セルカバレッジに対して狭くなっており、一例としてUE100はeNBと通信可能であるが、UE101はeNBと通信不可能である状態を示している。
 本実施形態のeNBは、測定セルカバレッジと目標セルカバレッジを比較し、図1に示したように、全方位で測定セルカバレッジが全方位で目標セルカバレッジに対して狭いことが分かると、全方位で送信電力を増加させる。その結果、測定セルカバレッジと目標セルカバレッジの誤差が少なくなる。
 一方、本実施形態のeNBは、測定セルカバレッジと目標セルカバレッジを比較し、図2に示したように、測定セルカバレッジが特定の方向において目標セルカバレッジに対して狭い場合には、例えば特定の方向の送信電力を増加させる。例えばセルが3セクタ構成となっている場合には、所定のセクタ(図2では、セクタST1)に対応する方向の送信電力が増加させられる。また、特定のセクタに対するアンテナのチルト角度を制御するようにしてもよい。その結果、測定セルカバレッジと目標セルカバレッジの誤差が少なくなる。
 本実施形態のセルカバレッジ制御方法の一例について、図3を参照して説明する。
 図3を参照すると先ず、eNBから、パイロット等の基準信号を所定の電力レベルで各UEに対して送信する(ステップS10)。UEは、ステップS10で送信された基準信号を受信して、その受信電力値を測定する(ステップS12)。さらにUEは、例えばGPS(Global Positioning System)等の所定の位置取得手段により、自局の位置情報を取得する(ステップS14)。ステップS12及びステップS14で得られた受信電力値と位置情報は、その後eNBへ報告される(ステップS16)。
 eNBでは、ステップS16の各eUEからの報告を受けて、前述したセルカバレッジ測定方法によりセルカバレッジを測定して測定セルカバレッジを得る(ステップS18)。このときセルカバレッジ測定方法に応じて、同一のUEから異なる位置における、複数サンプルの受信電力値と位置情報を取得しうる。
 次にeNBは、ステップS18で得られた測定セルカバレッジと、予め規定される目標セルカバレッジとを比較して、両者の誤差が少なくなるように、送信電力、アンテナの高さ、指向方向、及びチルト角度等を含む複数のパラメータの少なくとも1つを制御する。ここで、制御対象のパラメータは、測定セルカバレッジと目標セルカバレッジの誤差が最も少なくするものが選択されることが好ましい。
 以上のステップS10~S20の処理は逐次行われる。そのため、無線環境の変化によって、目標セルカバレッジに対して測定セルカバレッジが乖離することがあっても、短期間でeNBにおける上記パラメータが適切な値となるようにフィードバックされる。
 以上説明したように、本実施形態の移動通信システム、セルカバレッジ制御方法によれば、eNBはUEに対して基準信号を送信し、各UEから報告される位置情報と基準信号の受信電力値とに基づいて、測定セルカバレッジを得る。そして、eNBは、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、UEに対するパラメータを制御する。このとき、特別な電波測定装置等を用いた電力測定を要しない。よって、人手を煩わせることなく適時にセルカバレッジをほぼ目標値に維持できる。
 (2)第2実施形態
 以下、第2実施形態の移動通信システムについて説明する。
 第2実施形態の移動通信システムにおいて、セルカバレッジの測定は、UEに対するeNB間ハンドオーバが行われるタイミングでなされる。なお、本実施形態では、UEからの位置情報と基準信号の受信電力値とに基づいて、eNBからセルエッジまでの距離(セルカバレッジの基準となるeNBからの第1距離)を算出する。そして、このeNBからの距離を半径とする、eNBを中心とした円形の測定セルカバレッジを想定する。実際には、セルカバレッジは正確な円形とはならないが、このように想定することで、送信電力に対する制御(後述する)を容易なものとしている。
 (2-1)eNB間のハンドオーバ
 本実施形態の移動通信システムは、例えば次世代の高速移動体通信規格であるLTE(Long Term Evolution)のE-UTRAN(Evolved Universal Terrestrial Radio Access Network)に属する。LTEでは、各eNBがコアネットワークに直接接続された構成となっている。図4に、LTEの構成の概略を示す。図において、eNB1,eNB2はX2インタフェースにより接続される。各eNBは、上位のMME(Mobility Management Entity)とS1インタフェースにより接続される。MMEは、上位のsGW(serving Gateway),P-GW(PDN(Packet Data Network) Gateway)とS11インタフェースにより接続される。
 図4において、UEに対するeNB1からeNB2へeNB間ハンドオーバが行われるときの処理は概略、以下のとおりである。ここでは、eNB1がソースeNB、eNB2がターゲットeNBである。
 UEでの無線品質の測定報告(RRC MEASUREMENT REPORT)を受けてeNB1がハンドオーバを実行することを決定する。そしてX2インタフェースを介して、eNB1からeNB2へのハンドオーバ要求メッセージ(HANDOVER REQUEST)、及びeNB2からeNB1への当該要求に対するハンドオーバ確認メッセージ(HANDOVER REQUEST ACKNOWLEDGE)の授受が行われる。eNB間のメッセージ授受が完了すると、eNB1からUEに対してハンドオーバ指示メッセージ(RRC CONNECTION RECONFIGURATION)が送信される。ハンドオーバ指示メッセージを受けてUEは、ターゲットeNBであるeNB2との間の所定の処理が完了すると、eNB2に対してハンドオーバ完了メッセージ(RRC CONNECTION RECONFIGURATION
COMPLETE)を送信する。
 なお、ターゲットeNBであるeNB2は上位のMMEへアクセスし、下りのパスの切替を要求する。このメッセージに応じて、MMEとその上位のsGW,P-GWの間で所定の処理が行われ、両者の間で下りのパスの切替が確認される。
 図5に、UEがeNB1からeNB2へハンドオーバするときの状態を示す。図5において、UEは、ハンドオーバ開始時に位置P1に存在し、ハンドオーバ完了時に位置P2に存在していることを示している。このとき、後述する方法により、ターゲットeNBであるeNB2のセルカバレッジが測定される。
 (2-2)UE、eNBの構成
 本実施形態の移動通信システムにおけるUE及びeNBの構成について、図6を参照して説明する。
 図6に示すように、本実施形態のUEは、無線インタフェース部(RF/IF)11、信号処理部12、受信電力測定部13、接続制御部14、及び位置情報取得部15を備える。
 図6に示すUEにおいて、無線インタフェース部11は、eNBとの間で無線通信を確立するためのアンテナ、受信機及び送信機を含む。受信機は、アンテナで受信した無線信号をデジタルベースバンド信号(以下、受信信号)に変換(ダウンコンバート)する。送信機は、信号処理部12で生成された送信信号を、ベースバンド周波数から無線周波数へアップコンバートする。
 信号処理部12は、受信信号をデータ信号、制御信号、及び基準信号(例えばパイロット)に分離するとともに、データ信号、制御信号、及び基準信号を多重化して送信信号を生成する。
 受信電力測定部13は、信号処理部12により分離された受信信号中の基準信号の受信電力値を測定し、この受信電力値を接続制御部14へ通知する。受信電力測定部13で測定される受信電力値はeNBへフィードバックされ、eNBでのセルカバレッジの測定のために利用される。
 位置情報取得部15は、自局の位置情報を取得して、接続制御部14へ通知する。
 位置情報取得部15における位置取得方法は様々な方法を採ることができる。例えば、位置情報取得部15は、図示しないGPS(Global Positioning System)衛星からのGPS信号を受信して自局の位置データを逐次算出するGPS測位方式を採ることができる。このGPS測位方式は、4機以上のGPS衛星から受信した信号の到着時間から三角測量法の原理によって位置を算出する方法である。位置情報取得部15は、GPS測位方式のほか、いかなる位置取得方法を採ることができる。例えば、GPS測位方式よりも精度は劣るが、3局以上のeNBから受信した同期信号の遅延時間から三角測量法の原理によって位置を算出する方法を利用してもよい。
 接続制御部14は、eNB間のハンドオーバ処理に伴う処理を行う。例えば、そのような処理は、ハンドオーバ処理における測定報告(RRC MEASUREMENT REPORT)のための無線品質の測定、eNBとの間で行われる所定のハンドオーバに関連した信号処理及びメッセージの生成及び解析を含む。ここで、接続制御部14は、受信電力測定部13で測定された受信電力値と、位置情報取得部15で取得された位置情報とを、eNBに対する特定のハンドオーバのメッセージに含ませるようにする。
 図6に示すように、本実施形態のeNBは、送信部及び受信部としての無線インタフェース部(RF/IF)21、信号処理部22、接続制御部23、セルカバレッジ測定部24、セルカバレッジ制御部25、及び外部インタフェース部(外部IF)26を備える。
 図6に示すeNBにおいて、無線インタフェース部21は、UEとの間で無線通信を確立するためのアンテナ、受信機及び送信機を含む。受信機は、アンテナで受信した無線信号をデジタルベースバンド信号(以下、受信信号)に変換(ダウンコンバート)する。送信機は、信号処理部22で生成された送信信号を、ベースバンド周波数から無線周波数へアップコンバートする。
 信号処理部22は、受信信号をデータ信号、制御信号、及び基準信号(例えばパイロット)に分離するとともに、データ信号、制御信号、及び基準信号を多重化して送信信号を生成する。
 接続制御部23は、eNB間のハンドオーバ処理に伴う処理を行う。例えば、そのような処理は、UEとの間、又はターゲットeNB(自局がソースeNBである場合)若しくはソースeNB(自局がターゲットeNBである場合)との間で行われる所定のハンドオーバに関連したメッセージの生成及び解析を含む。また、接続制御部23は、外部インタフェース部26を介して上位のエンティティ(例えばMME)等と接続可能に構成される。なお、当然であるが、接続制御部23におけるハンドオーバ処理はUE毎に管理される。
 セルカバレッジ測定部24は、UEからの特定のハンドオーバのメッセージに含まれている、UEの位置情報とUEでの基準信号の受信電力値とに基づいて、セルカバレッジの半径を測定する。セルカバレッジの半径の測定は、ハンドオーバ開始時にeNBへ報告される受信電力値と、ハンドオーバ完了時にeNBへ報告される受信電力値と、ハンドオーバ開始時のUEの位置と完了時のUEの位置の間の距離により、後述する方法で算出される。なお、セルカバレッジの半径を測定することにより概ねセルカバレッジの全体の領域を推定することができるため、セルカバレッジの半径の測定は、セルカバレッジを測定することと等価である。
 セルカバレッジ制御部25は、セルカバレッジ測定部24で得られたセルカバレッジの半径(第1距離)と、目標セルカバレッジの半径(所定の目標距離)との誤差が少なくなるように、無線インタフェース部21の送信機の送信電力を制御する。すなわち、セルカバレッジ測定部24で得られたセルカバレッジの半径が目標セルカバレッジのそれよりも小さい場合には、送信機の増幅率を増加させて送信電力を上げる。逆に、セルカバレッジ測定部24で得られたセルカバレッジの半径が目標セルカバレッジのそれよりも大きい場合には、送信機の増幅率を低下させて送信電力を下げる。
 (2-3)セルカバレッジの半径の算出方法
 本実施形態のeNBにおいて、セルカバレッジの半径の算出方法について、図7を参照して説明する。図7は、ハンドオーバのターゲットeNBからのUEの距離と、そのUEから報告される受信電力値との関係を示した図である。このセルカバレッジの半径の算出は、eNBのセルカバレッジ測定部24において行われる。
 eNBは、他の周辺のeNBからのハンドオーバの対象となるUEから、ハンドオーバ開始時及びハンドオーバ完了時の各タイミングで位置情報と受信電力値の報告を受ける。eNBでは、ハンドオーバ開始時及びハンドオーバ完了時の各タイミングでの位置が分かっているため、三角法の原理に従って、セルエッジの位置が測定される。セルカバレッジの半径は、eNBとセルエッジまでの距離に等しい。
 この算出方法では、三角法の原理を適用するに当たって、2点間、すなわち、ハンドオーバ開始時のUEの位置と、ハンドオーバ完了時のUEの位置との間の距離は、ヒュベニの計算式に従って正確に算出することが好ましい。
 ここで、ハンドオーバ開始時のUEの位置(第1位置)の緯度、経度をそれぞれλ1,φ1とし、ハンドオーバ完了時のUEの位置(第2位置)の緯度、経度をそれぞれλ2,φ2とする。そして2点間の平均緯度をPとし、2点間の緯度差、経度差をそれぞれdλ,dφとし、子午線曲率半径をM、卯酉線曲率半径をNとすると、2点間の距離Dは、ヒュベニの計算式によれば以下の式1で表すことができる。
 D=sqrt((M*dλ)*(M*dλ)+(N*cos(P)*dφ)*(N*cos(P)*dφ))・・・(式1)
 ここで、
 P=((λ1+λ2)*π/180)/2
 dλ=(λ1-λ2)*π/180
 dφ=(φ1-φ2)*π/180
 M=6334834/sqrt((1-0.006674*sin(P)*sin(P))^3)
 N=6377397/sqrt(1-0.006674*sin(P)*sin(P))
である。
 また、セルカバレッジ測定部24は、この2点間の距離及び、ハンドオーバ開始時の受信電力値(第1受信電力値)をδ1、ハンドオーバ完了時の受信電力値(第2受信電力値)をδ2とすると、求めた2点間の距離Dに基づいて、以下の式2に従ってUEの信号の減衰率Cを算出する。
 C=(δ2-δ1)/D・・・(式2)
 ここで、ハンドオーバのターゲットeNBからハンドオーバ開始時のUEまでの距離をD2とし、SR1を測定セルカバレッジの半径とすると、三角法の原理により、δ1/(SR1-D2)=Cが成り立つ。よって、以下の式3により、測定セルカバレッジの半径を算出することができる。なお、式3で用いるD2は上記ヒュベニの計算式で算出できる。
 SR1=D2+δ1/C・・・(式3)
 (2-4)セルカバレッジ制御方法
 本実施形態の移動通信システムで行われるセルカバレッジ制御方法について説明する。先ず、ハンドオーバのタイミングで行われる、本実施形態のeNBとUEの間の処理について、図8を参照して説明する。図8は、本実施形態のeNBとUEの間の処理を示すフローチャートである。
 図8において、eNB1からeNB2へハンドオーバが行われるとき(図5参照)の処理は、以下のとおりである。
 UEでは、無線品質の測定報告(RRC MEASUREMENT REPORT)に先立って、位置情報と受信電力値を取得する(ステップS30)。そして、UEからeNB1への無線品質の測定報告(RRC MEASUREMENT REPORT)には、ステップS30で得られた位置情報と受信電力値を含ませるようにする(ステップS32)。
 無線品質の測定報告に応じてeNB1がハンドオーバを実行することを決定すると、X2インタフェースを介して、eNB2に対してハンドオーバ要求メッセージ(HANDOVER REQUEST)を送信する(ステップS34)。このとき、このハンドオーバ要求メッセージには、UEから得られた位置情報と受信電力値が含ませるようにする。以上の処理によって、セルカバレッジの半径の測定対象であるeNB2では、ハンドオーバ開始時のUEの位置情報と受信電力値が得られることになる。
 eNB2では、ステップS34のハンドオーバ要求メッセージに応じて、eNB1に対してハンドオーバ確認メッセージ(HANDOVER REQUEST ACKNOWLEDGE)を送信する(ステップS36)。その後、eNB1からUEに対してハンドオーバ指示メッセージ(RRC CONNECTION RECONFIGURATION)が送信される(ステップS38)。ハンドオーバ指示メッセージを受けてUEは、eNB2との間の所定の処理が完了すると、ハンドオーバ完了メッセージ(RRC CONNECTION RECONFIGURATION
COMPLETE)に先立って、位置情報と受信電力値を取得する(ステップS40)。そして、UEからeNB2へのハンドオーバ完了メッセージ(RRC CONNECTION RECONFIGURATION
COMPLETE)には、ステップS40で得られた位置情報と受信電力値を含ませるようにする(ステップS42)。以上の処理によって、セルカバレッジの半径の測定対象であるeNB2では、ハンドオーバ完了時のUEの位置情報と受信電力値が得られることになる。
 ハンドオーバ開始時にeNBへ報告される位置情報及び受信電力値と、ハンドオーバ完了時にeNBへ報告される位置情報及び受信電力値とに基づいて、eNB内でなされる処理について図9を参照して説明する。ここでは、eNBが、ハンドオーバ完了メッセージ(RRC CONNECTION RECONFIGURATION
COMPLETE)を受信した場合に(ステップS50)、ステップS52以降の処理が行われる。
 eNBは、ハンドオーバ開始時のUEの位置と、ハンドオーバ完了時のUEの位置とが分かっているので、両者の距離Dを式1に示したヒュベニの計算式に従って算出する(ステップS52)。eNBは、ハンドオーバ開始時のUEの受信電力値と、ハンドオーバ完了時のUEの受信電力値とが分かっており、2点間(ハンドオーバ開始時の位置と完了時の位置との距離)をステップS52で算出済みである。よってeNBは、上記式2に従って、受信電力値の減衰率Cを算出する(ステップS54)。さらにeNBは、上記式3に従って、測定セルカバレッジの半径SR1を算出する(ステップS56)。
 なお、eNBは配下の複数のUEのハンドオーバのタイミングで複数の位置情報と受信電力値に基づいてeNBからセルエッジまでの最短距離を得ることが好ましい。この最短距離に基づいて制御を行うことで制御後のセルカバレッジが目標セルカバレッジを確実に包含するようになる。
 eNBは、算出された半径SR1と目標セルカバレッジの半径SRとを比較し、SR1がSRによって規定される許容範囲SR-α≦SR1≦SR+α(α:閾値)に含まれない場合には、送信電力値の調整を行う。すなわち、eNBは、SR1<SR-αである場合には(ステップS58のYES)、測定セルカバレッジが目標セルカバレッジよりも過度に狭いことを意味するため、送信電力を上げる制御を行う(ステップS60)。また、eNBは、SR1>SR+αである場合には(ステップS62のYES)、測定セルカバレッジが目標セルカバレッジよりも過度に広いことを意味するため、送信電力を下げる制御を行う(ステップS64)。ステップS60及びステップS64における送信電力の増加又は減少の量は、算出された半径SR1と目標セルカバレッジの半径SRの差分に応じて決定される。例えば、算出された半径SR1が目標セルカバレッジの半径SRよりも小さい場合に、両者の差をΔSRとすると、ΔSRが大きいときの送信電力の増加量は、ΔSRが小さいときのそれよりも、大きくなる。
 以上説明したように、本実施形態の移動通信システムでは、セルカバレッジの測定は、UEに対するeNB間ハンドオーバが行われるタイミングでなされる。そして、eNBは、測定セルカバレッジを得るために、セルカバレッジの半径が測定される。eNBは、測定されたセルカバレッジの半径と目標セルカバレッジの半径が比較し、その比較結果に応じてUEに対する送信電力が制御される。本実施形態の移動通信システムによれば、UEに対するeNB間ハンドオーバが行われるタイミングでなされるため、セルの境界の測定が高い精度で得られる。よって、測定セルカバレッジと目標セルカバレッジの誤差を少なくするための送信電力の制御を精度良く行うことができる。
 (3)第3実施形態
 以下、第3実施形態の移動通信システムについて説明する。
 本実施形態では第2実施形態同様に、UEからの位置情報と受信電力値に基づいて、eNBからセルエッジまでの距離(セルカバレッジの基準となるeNBからの第1距離)を算出する。そして、このeNBからの距離を半径とする、eNBを中心とした円形の測定セルカバレッジを想定する。
 (3-1)制御の概要
 第2実施形態と異なり本実施形態では、eNBが、UEからの受信電力値の報告に基づいてUEがセルエッジ近傍に位置すると判断した場合に、そのUEからの位置情報と受信電力値を基にセルカバレッジの半径を算出する。UEがセルエッジ近傍に位置するか否かの判断は、UEから報告される受信電力値が所定の閾値以下であるか否かに基づく。本実施形態の移動通信システムにおいても、第2実施形態のものと同様、セルカバレッジの半径が測定される。この半径の測定(算出)方法は後述する。eNBは、測定されたセルカバレッジの半径と目標セルカバレッジの半径が比較し、その比較結果に応じてUEに対する送信電力が制御される。この制御の概要について示したのが図10である。
 図10において、(a)は制御前のセルカバレッジ、(b)は制御後のセルカバレッジ、をそれぞれ示している。図10(a)において、eNBは、UEから位置情報と受信電力値の報告を受ける。このUEがセルエッジ近傍に位置すると判断されると、eNBからセルエッジまでの距離、すなわちセルカバレッジの半径(図10(a)のSR1)が算出される。この半径SR1が測定セルカバレッジの半径である。測定セルカバレッジの半径SR1が目標セルカバレッジの半径SR以下であるときには、eNBからの送信電力を増加させる制御が行われる。その結果、図10(b)に示すように、eNBのセルカバレッジが全体的に拡大する。ここで、eNBは配下の複数のUEからの位置情報と受信電力値に基づいてeNBからセルエッジまでの最短距離を得ることが好ましい。この最短距離に基づいて制御を行うことで制御後のセルカバレッジが目標セルカバレッジを確実に包含するようになる。
 なお、本実施形態の移動通信システムにおいて、eNB及びUEは、例えば図6に示した構成と同様の構成を備える。
 (3-2)セルカバレッジの半径の算出方法
 本実施形態のeNBにおいて、セルカバレッジの半径の算出方法について、図11を参照して説明する。図11は、セルエッジ近傍に位置するUEのeNBからの距離と、そのUEから報告される受信電力値との関係を示した図である。このセルカバレッジの半径の算出は、eNBのセルカバレッジ測定部24(図6参照)において行われる。
 eNBは、セルエッジ近傍に位置すると判断されたUEからの位置情報(第4位置)と受信電力値(第4受信電力値)の報告を受ける。図11では、この受信電力値をδ1としている。また、eNBにおいて、仮にUEが自局と同位置に位置するとした場合の受信電力値としての、所定の受信電力値が既知であるとする。図11では、この既知の受信電力値をδ2としている。この既知の受信電力値は、仮にUEが自局と同位置に位置するとした場合の受信電力値に限られない。eNBを基準とした位置(第3位置)と受信電力値(第3受信電力値)が既知であればよい。例えば、eNBを基準とした位置と、その位置におけるUEの基準信号の受信電力値とを予め測定しておき、その測定値をeNBで保持しておけばよい。
 eNBは、第2実施形態の場合と同様に、三角法の原理に従って、緯度及び経度を特定した、セルカバレッジの境界としてのセルエッジを測定する。ここでは、2点間の距離Dは、eNBと、セルエッジ近傍に位置すると判断されたUEとの間の距離である。第2実施形態と同様に、上記式(1)~(3)に従って、測定セルカバレッジの半径SR1が算出される。
 (3-3)セルカバレッジ制御方法
 本実施形態の移動通信システムで行われるセルカバレッジ制御方法について説明する。先ず、本実施形態のeNBとUEの間の処理について、図12を参照して説明する。図12は、本実施形態のeNBとUEの間の処理を示すフローチャートである。
 先ずUEは、eNBからの基準信号の受信電力値を取得する(ステップS70)。さらにUEは、その取得した受信電力値が所定の閾値以下である場合に位置情報を取得する(ステップS72)。この所定の閾値は、UEがセルエッジ近傍に位置するか否かの判断を行うために設定される。その後、UEは、eNB1への無線品質の測定報告(RRC MEASUREMENT REPORT)に、ステップS70及びS72で得られた位置情報と受信電力値を含ませるようにする(ステップS74)。これにより、eNBで、セルエッジ近傍に位置するUEの位置情報と受信電力値が得られたことになる。
 次に、セルエッジ近傍に位置するUEの位置情報と受信電力値と、eNBを基準とした既知の位置情報と受信電力値とに基づいて、eNB内でなされる処理について図13を参照して説明する。以下では、eNBで既知の位置情報と受信電力値は、自局の位置情報とその位置における受信電力値であるとする。このeNBの処理は、図12のステップS74(図13では、ステップS80)以降で行われる。
 ステップS80の後にeNBは、セルエッジ近傍に位置するUEの位置と、自局の位置との間の距離Dを式1に示したヒュベニの計算式に従って算出する(ステップS82)。次にeNBは、セルエッジ近傍に位置するUEの受信電力値と、既知の受信電力値とに基づき、上記式2に従って受信電力値の減衰率Cを算出する(ステップS84)。さらにeNBは、上記式3に従って測定セルカバレッジの半径SR1を算出する(ステップS86)。
 次にeNBは、算出された半径SR1と目標セルカバレッジの半径SRとを比較し、SR1がSRによって規定される許容範囲SR-α≦SR1≦SR+α(α:閾値)に含まれない場合には、送信電力値の調整を行う。すなわち、eNBは、SR1<SR-αである場合には(ステップS88のYES)、測定セルカバレッジが目標セルカバレッジよりも過度に狭いことを意味するため、送信電力を上げる制御を行う(ステップS90)。また、eNBは、SR1>SR+αである場合には(ステップS92のYES)、測定セルカバレッジが目標セルカバレッジよりも過度に広いことを意味するため、送信電力を下げる制御を行う(ステップS94)。ステップS90及びステップS94における送信電力の増加又は減少の量は、算出された半径SR1と目標セルカバレッジの半径SRの差分に応じて決定される。例えば、算出された半径SR1が目標セルカバレッジの半径SRよりも小さい場合に、両者の差をΔSRとすると、ΔSRが大きいときの送信電力の増加量は、ΔSRが小さいときのそれよりも、大きくなる。
 以上説明したように、本実施形態の移動通信システムでは、UEからの受信電力値の報告に基づいてUEがセルエッジ近傍に位置すると判断されたときになされる。そして、eNBは、測定セルカバレッジを得るために、セルカバレッジの半径が測定される。eNBは、測定されたセルカバレッジの半径と目標セルカバレッジの半径が比較し、その比較結果に応じてUEに対する送信電力が制御される。
 (4)第4実施形態
 以下、第4実施形態の移動通信システムについて説明する。
 (4-1)制御の概要
 本実施形態では、セルエッジのみならずセル内の局所的な感度不良エリアも特定することができるようにセルカバレッジを測定が行われる。そのために、UEでは、eNBからの基準信号の送信電力値と、その基準信号の受信電力値とに基づいて、eNBからの信号減衰度、すなわちパスロスを測定する。パスロスは例えば、eNBからの基準信号の送信電力値と、その基準信号のUEでの受信電力値との差分である。パスロスが大きいほどeNBからUEへの信号の減衰度が大きく、両者の無線通信が困難になることを意味する。また、eNBからの基準信号の送信電力値は、eNBからUEへの下りの制御信号の中に含めることでUEへ通知してもよいし、既知の値としてUEにて保持するようにしてもよい。
 UEで測定されたパスロスは、セル内の各UEからeNBへ位置情報とともに報告される。こeNBでは、測定されたパスロスが所定の閾値以下であるときの各UEの位置情報を集めることで、セルカバレッジの領域を特定する。位置情報とパスロスを多くのUEから集めることで、セルエッジのみならずセル内の局所的な感度不良エリアも特定することができる。そのため、本実施形態の移動通信システムでは、制御対象のパラメータとして送信電力だけでなく、アンテナの高さ、指向方向、及びチルト角度等を選択してセル内の局所的な感度不良エリアを低減する制御を行うことができる。
 図14は、上述したセルカバレッジ制御の概要を説明するための図である。
 図14では、一例としてeNB1を中心とした矩形又は正方形のセルカバレッジを想定する。このeNB1の目標セルカバレッジが点線で囲んだ領域である。また、実線で囲んだ領域は、UEで測定されたパスロスが所定の閾値以下であるときの各UEの位置情報を集めることで得られた、測定セルカバレッジである。目標セルカバレッジの内、測定セルカバレッジと重複しない領域が感度不良エリアである。本実施形態において、eNB1は感度不良エリアを特定すると、この感度不良エリアを低減する制御を行う。図14に示した例では、例えばeNB1の送信電力を増加させて感度不良エリアを低減するようにしてもよいし、eNB1のアンテナのチルト角度を調整して感度不良エリアを低減するようにしてもよい。eNB1のアンテナのチルト角度を調整することで、測定セルカバレッジが目標セルカバレッジに一致するように、測定セルカバレッジが全体的にシフトすることになる。
 送信電力、アンテナのチルト角度を含む複数のパラメータのいずれを制御対象とするかについては、感度不良エリアを特定した結果に基づいて決定される。一例としては、感度不良エリアが全方向でセルエッジ近傍に存在する場合には送信電力が制御対象として選択されうる。他の例としては、感度不良エリアが局所的又は特定の方向に存在する場合には、アンテナのチルト角度が制御対象として選択されうる。後者の場合には、特定のセクタのみを制御対象としてもよい。
 なお、本実施形態のeNBでは、アンテナの高さ、指向方向、及びチルト角度等を制御するため制御システム(図示せず)が実装される。この制御システムには、制御指令に基づいて、アンテナの高さ方向、アンテナの指向方向、及びアンテナのチルト角度方向を調節するためのアクチュエータ等が含まれる。
 (4-2)セルカバレッジ制御方法
 本実施形態の移動通信システムで行われるセルカバレッジ制御方法について説明する。図15は、本実施形態のセルカバレッジ制御方法に従って行われる、eNBとUEの間の処理を示すフローチャートである。
 図15において、先ずeNBはUEに対して所定の電力レベルの基準信号を送信する(ステップS98)。UEは、eNBからの基準信号の受信電力値を取得する。ここで、eNBの基準信号の送信電力値がUEで既知であるとする。UEは、eNBの基準信号の送信電力値とその基準信号の自局における受信電力値とに基づいて、パスロスを測定する(ステップS100)。さらに、UEは、位置情報を取得する(ステップS102)。この位置情報には例えば、所定のエリア単位(領域単位)の緯度及び経度の値が含まれる。その後、UEは、eNB1への無線品質の測定報告(RRC MEASUREMENT REPORT)に、ステップS100及びS102で得られたパスロスと位置情報を含ませるようにする(ステップS104)。これにより、eNBはUEの位置情報と受信電力値が得られたことになる。
 eNBは、自局と無線通信を行っている複数のUEの各々に対してステップS100~S104の処理を行うことで、所定のエリア単位の位置情報とパスロスを関連付けて記録していく(ステップS106)。そして、セルカバレッジの領域を特定するのに十分な数の、位置情報とパスロスが関連付けられたテーブルデータに基づいて、マッピングデータを作成する(ステップS108)。このマッピングデータは例えば、緯度及び経度の2次元の地図の中にパスロスの値をプロットしたデータである。同一の位置における複数のパスロスの値は平均化等の統計処理がなされる。マッピングデータにおいて、パスロスが所定の閾値以上である領域は、eNBからUEへの信号の減衰度が大きく、感度不良エリアとして特定される(ステップS110)。また、パスロスが所定の閾値未満である領域は、eNBからUEへの信号の減衰が小さく、感度良好エリアとして特定される。この感度不良エリアと感度良好エリアの特定により、測定セルカバレッジが得られたことになる。さらに、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように制御が行われる(ステップS112)。具体的には、感度不良エリアが解消されるように、送信電力、アンテナの高さ、指向方向、及びチルト角度の複数のパラメータの少なくとも1つに対して制御が行われる。
 以上説明したように、本実施形態の移動通信システムでは、各UEはeNBとUEの間のパスロスを測定し、eNBは各UEの位置情報とパスロスを関連付けることで、所定のエリア単位で測定セルカバレッジの領域を特定する。その結果、前記測定セルカバレッジと目標セルカバレッジの誤差としての感度不良エリアが特定される。そしてeNBは、送信電力、アンテナの高さ、指向方向、及びチルト角度の複数のパラメータの少なくとも1つに対して制御することで、特定された感度不良エリアを低減する。すなわち、セルエッジのみならずセル内の局所的な感度不良エリアも特定することになるため、複数のパラメータから最適な制御対象を選択することができる。
 (5)第5実施形態
 以下、第5実施形態の移動通信システムについて説明する。
 (5-1)制御の概要
 第4実施形態では、単一のeNBにおける感度不良エリアを特定したが、その感度不良エリアが隣接するeNBによってカバーされている場合もある。その場合に、一定のサービスエリアに属する複数のeNBがそれぞれ独自に感度不良エリアを低減する制御を行ってしまうと、全体として制御結果が過剰になることが考えられる。例えば、一定のサービスエリアに属する複数のeNBがすべて送信電力を増加させる制御を行うことで各eNBのセルカバレッジが過剰に重複することは、消費電力及び/又は無線リソースの観点から好ましくない。そこで、本実施形態の移動通信システムでは、一定のサービスエリアに属する複数のeNBでUEから収集した情報をそのサービスエリア内の単一のeNBに集約する。そして、その単一のeNBがサービスエリア内の各eNBの制御内容を決定するようにする。
 図16は、上述したセルカバレッジ制御の概要を説明するための図である。
 図16では図14と同様に、一例としてeNBを中心とした矩形又は正方形のセルカバレッジを想定する。図16では、例えば一定のサービスエリア内に複数のeNB1、eNB2、eNB3が存在する場合を示している。各eNB中心にして点線で囲んだ領域は、各eNBの目標セルカバレッジである。各eNB中心にして実線で囲んだ領域は、UEで測定されたパスロスが所定の閾値以下であるときの各UEの位置情報を集めることで得られた、測定セルカバレッジである。目標セルカバレッジの内、測定セルカバレッジと重複しない領域が感度不良エリアである。本実施形態では、各eNBがUEから位置情報とパスロスを収集する点は第4実施形態と同じであるが、各eNBの位置情報とパスロスを関連付けたテーブルデータが、マスタeNBに集約される。本実施形態において、スレーブeNBは、マスタeNBに対してテーブルデータを提供するeNBである。図16では例えば、eNB3がマスタeNBであり、eNB1及びeNB2がスレーブeNBである。マスタeNBとスレーブeNBの間の通信は、例えばLTEにおけるX2AP (X2 Application Protocol)等の所定の制御プロトコルが利用される。
 (5-2)セルカバレッジ制御方法
 本実施形態の移動通信システムで行われるセルカバレッジ制御方法について説明する。図17は、本実施形態のセルカバレッジ制御方法に従って行われる、各eNBと各UEの間の処理を示すフローチャートである。なお、図17では、図16にも示したように、UE1、UE2及びUE3はそれぞれ、eNB1、eNB2及びeNB3と通信を行っているものとする。
 図17のフローチャートには記載されていないが、UE1、UE2及びUE3がそれぞれ、eNB1、eNB2及びeNB3からの基準信号に基づいてパスロスを測定するとともに、位置情報を取得する点は、図15のステップS98~S102と同じである。その後、UE1、UE2及びUE3はそれぞれ、eNB1、eNB2及びeNB3への無線品質の測定報告(RRC MEASUREMENT REPORT)に、パスロスと位置情報を含ませるようにする(ステップS120a、S120b、S120c)。各eNBでは、各UEからのパスロスと位置情報を逐次記録していく(ステップS122a、S122b、S122c)。
 セルカバレッジの領域を特定するのに十分な数の、位置情報とパスロスが関連付けられたテーブルデータを作成すると(ステップS124a、S124b、S124c)、スレーブeNB(eNB1、eNB2)はテーブルデータをマスタeNB(eNB3)へ送信する(ステップS126a、S126b)。この送信は例えば、X2APの新規メッセージにテーブルデータを含ませることで行われる。テーブルデータを受けてeNB3は、マッピングデータを作成し、感度不良エリアを特定する(ステップS128)。マッピングデータにおいて、パスロスが所定の閾値以上である領域は、eNBからUEへの信号の減衰度が大きく、感度不良エリアとして特定される。
 ここで、eNB3は、eNB1、eNB2及び自局のテーブルデータを集約した結果、すべてのeNBにおいてパスロスが所定の閾値以上である領域を感度不良エリアとする。また、いずれかのeNBで作成されたテーブルデータにおいて、パスロスが所定の閾値未満である領域は、サービスエリア内の少なくとも単一のeNBでカバーされることになるため、感度良好エリアとして特定される。
 この感度不良エリアと感度良好エリアの特定により、eNB3において測定セルカバレッジが得られたことになる。さらに、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように制御が行われる(ステップS130)。このとき、感度不良エリアの位置に応じて、スレーブeNBであるeNB1及び/又はeNB2で制御を行うことが好ましいと判断すれば、eNB3からeNB1及び/又はeNB2に対し、X2AP等の所定の制御プロトコルを利用して制御指示が送られる(ステップS132a、S132b)。その結果、eNB1~3の少なくともいずれかにおいて、感度不良エリアが解消されるように、送信電力、アンテナの高さ、指向方向、及びチルト角度の複数のパラメータの少なくとも1つに対する制御が行われる。
 以上説明したように、本実施形態の移動通信システムでは、一定のサービスエリアに属する複数のeNBの内、マスタeNBにUEの位置情報とパスロスの情報を集約し、マスタeNBおいて制御内容を決定する。このとき、マスタeNBは、サービスエリア内のすべてのeNBにおいてパスロスが所定の閾値以上である領域を感度不良エリアとするとともに、各eNBで制御対象エリアが重複しないように各eNBに対して制御指示を行う。よって、一定のサービスエリア内で全体としてセルカバレッジの制御結果が過剰になることが回避される。
 (6)第6実施形態
 以下、第6実施形態の移動通信システムについて説明する。
 (6-1)制御の概要
 第6実施形態の移動通信システムは、第5実施形態と同じく、一定のサービスエリアに属する複数のeNBにおいて、セルカバレッジの制御が過剰とならないようにする目的で構成されている。具体的には、一定のサービスエリア内の複数のeNBの情報を集約するとともに、各eNBにおける制御内容を決定するエンティティ、例えばEMS(Element Management System)等が設けられる。EMSは複数のeNBを監視する監視制御装置である。
 図18は、上述した制御の概要を説明するための図である。
 図18が図16と異なるのは、サービスエリア内の各eNBがEMSと接続されている点である。本実施形態では、各eNBがUEから位置情報とパスロスを収集する点は第4及び第5実施形態と同じであるが、各eNBの位置情報とパスロスを含むテーブルデータがEMSに集約される。EMSは集約したテーブルデータを基に各eNBの制御内容を決定する。
 (5-2)セルカバレッジ制御方法
 次に、本実施形態の移動通信システムで行われるセルカバレッジ制御方法について説明する。図19は、本実施形態のセルカバレッジ制御方法に従って行われる、各eNB、各UE、及びEMSの間の処理を示すフローチャートである。なお、図19では、図18にも示したように、UE1、UE2及びUE3はそれぞれ、eNB1、eNB2及びeNB3と通信を行っているものとする。
 図19のフローチャートには記載されていないが、UE1、UE2及びUE3がそれぞれ、eNB1、eNB2及びeNB3からの基準信号に基づいてパスロスを測定するとともに、位置情報を取得する点は、図15のステップS98~S102と同じである。その後、UE1、UE2及びUE3はそれぞれ、eNB1、eNB2及びeNB3への無線品質の測定報告(RRC MEASUREMENT REPORT)に、パスロスと位置情報を含ませるようにする(ステップS140a、S140b、S140c)。各eNBでは、各UEからのパスロスと位置情報を逐次記録するとともにEMSへ転送する(ステップS142a、S142b、S142c)。
 セルカバレッジの領域を特定するのに十分な数の、位置情報とパスロスが収集されると、EMSは、マッピングデータを作成し、感度不良エリアを特定する(ステップS144)。マッピングデータにおいて、パスロスが所定の閾値以上である領域は、eNBからUEへの信号の減衰度が大きく、感度不良エリアとして特定される。
 ここで、EMSは、eNB1、eNB2及びeNB3のテーブルデータを集約した結果、すべてのeNBにおいてパスロスが所定の閾値以上である領域を感度不良エリアとする。また、いずれかのeNBで作成されたテーブルデータにおいて、パスロスが所定の閾値未満である領域は、サービスエリア内の少なくとも単一のeNBでカバーされることになるため、感度良好エリアとして特定される。
 この感度不良エリアと感度良好エリアの特定により、eNB3において測定セルカバレッジが得られたことになる。さらにEMS、測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように制御内容を決定し、各eNBへ制御指示を送る(ステップS146)。その結果、eNB1~3の少なくともいずれかにおいて、感度不良エリアが解消されるように、送信電力、アンテナの高さ、指向方向、及びチルト角度の複数のパラメータの少なくとも1つに対する制御が行われる(ステップS148a、S148b、S148c)。
 本実施形態の移動通信システムにおいても第5実施形態と同様に、一定のサービスエリア内で全体としてセルカバレッジの制御結果が過剰になることが回避される。
 以上、本発明の実施形態について詳細に説明したが、本発明の通信装置、パケット同期方法は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 UE(移動局)
 11…無線インタフェース部、12…信号処理部、13…受信電力測定部、14…接続制御部、15…位置情報取得部
 eNB(基地局)
 21…無線インタフェース部、22…信号処理部、23…接続制御部、24…セルカバレッジ測定部、25…セルカバレッジ制御部、26…外部インタフェース部
 

Claims (18)

  1.  基地局と移動局を含む移動通信システムであって、
     移動局は、基地局に対して自局の位置情報と基地局からの基準信号の受信電力値を報告し、
     基地局は、移動局からの前記位置情報と前記受信電力値に基づいてセルカバレッジの測定結果である測定セルカバレッジを得るとともに、前記測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御する、
     移動通信システム。
  2.  基地局は、移動局からの前記位置情報と前記受信電力値に基づいてセルカバレッジの基準となる基地局からの第1距離を推定するとともに、前記第1距離と所定の目標距離の誤差が少なくなるように移動局に対する送信電力を制御する、
     請求項1に記載された移動通信システム。
  3.  基地局は、移動局のハンドオーバ開始時における第1位置と基準信号の第1受信電力値、及び前記移動局のハンドオーバ完了時における第2位置と基準信号の第2受信電力値に基づいて、前記第1距離を推定する、
     請求項2に記載された移動通信システム。
  4.  基地局は、既知の第3位置と既知の第3受信電力値及びセルエッジ近傍に位置すると判断された移動局の第4位置と基準信号の第4受信電力値に基づいて、前記第1距離を推定する、
     請求項2に記載された移動通信システム。
  5.  基地局は、複数の移動局からの前記位置情報と前記受信電力値に基づいて得られた複数の第1距離の中から最短の第1距離を選択する、
     請求項2~4のいずれかに記載された移動通信システム。
  6.  基地局は、前記基準信号の送信電力値と移動局における前記基準信号の受信電力値とから得られる信号減衰度を移動局の位置と関連付けることで、前記測定セルカバレッジの領域を所定の領域単位で特定する、
     請求項1に記載された移動通信システム。
  7.  移動局に対して基準信号を送信する送信部と、
     移動局の位置情報と、前記基準信号の移動局における受信電力値とを、基地局から取得する受信部と、
     移動局からの前記位置情報と前記受信電力値とに基づいて、セルカバレッジの測定結果である測定セルカバレッジを得るセルカバレッジ測定部と、
     前記測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御するセルカバレッジ制御部と、
     を備えた、基地局。
  8.  前記セルカバレッジ測定部は、移動局からの前記位置情報と前記受信電力値に基づいて、セルカバレッジの基準となる基地局からの第1距離を推定し、
     前記セルカバレッジ制御部は、前記第1距離と所定の目標距離の誤差が少なくなるように、移動局に対する送信電力を制御する、
     請求項7に記載された基地局。
  9.  前記セルカバレッジ測定部は、移動局のハンドオーバ開始時における第1位置と基準信号の第1受信電力値、及び前記移動局のハンドオーバ完了時における第2位置と基準信号の第2受信電力値に基づいて、前記第1距離を推定する、
     請求項8に記載された基地局。
  10.  前記セルカバレッジ測定部は、既知の第3位置と既知の第3受信電力値、及びセルエッジ近傍に位置すると判断された移動局の第4位置と基準信号の第4受信電力値、前記第1距離を推定する、
     請求項8に記載された基地局。
  11.  前記セルカバレッジ測定部は、複数の移動局からの前記位置情報と前記受信電力値に基づいて得られた複数の第1距離の中から最短の第1距離を選択する、
     請求項8~10のいずれかに記載された基地局。
  12.  前記セルカバレッジ測定部は、前記基準信号の送信電力値と移動局における前記基準信号の受信電力値とから得られる信号減衰度を移動局の位置と関連付けることで、前記測定セルカバレッジの領域を所定の領域単位で特定する、
     請求項7に記載された基地局。
  13.  基地局と移動局を含む移動通信システムにおいて、基地局が自局のセルカバレッジを制御するセルカバレッジ制御方法であって、
     移動局が、基地局に対して自局の位置情報と基地局からの基準信号の受信電力値を報告し、
     基地局が、移動局からの前記位置情報と前記受信電力値に基づいてセルカバレッジの測定結果である測定セルカバレッジを取得し、
     基地局が、前記測定セルカバレッジと目標セルカバレッジの誤差が少なくなるように、移動局に対する送信電力、アンテナのチルト角度を含む複数のパラメータの少なくとも1つを制御する、
     セルカバレッジ制御方法。
  14.  基地局が測定セルカバレッジを取得することは、
     基地局が、移動局からの前記位置情報と前記受信電力値に基づいてセルカバレッジの基準となる基地局からの第1距離を推定すること、を含み、
     基地局が制御することは、
     前記第1距離と所定の目標距離の誤差が少なくなるように移動局に対する送信電力を制御すること、を含む、
     請求項13に記載されたセルカバレッジ制御方法。
  15.  基地局が測定セルカバレッジを取得することは、
     移動局のハンドオーバ開始時における第1位置と基準信号の第1受信電力値、及び前記移動局のハンドオーバ完了時における第2位置と基準信号の第2受信電力値に基づいて、前記第1距離を推定すること、を含む、
     請求項14に記載されたセルカバレッジ制御方法。
  16.  基地局が測定セルカバレッジを取得することは、
     基地局が、既知の第3位置と既知の第3受信電力値、及びセルエッジ近傍に位置すると判断された移動局の第4位置と基準信号の第4受信電力値に基づいて、前記第1距離を推定すること、を含む、
     請求項14に記載されたセルカバレッジ制御方法。
  17.  基地局が、複数の移動局からの前記位置情報と前記受信電力値に基づいて得られた複数の第1距離の中から最短の第1距離を選択すること、をさらに含む、
     請求項14~16のいずれかに記載されたセルカバレッジ制御方法。
  18.  基地局が測定セルカバレッジを取得することは、
     基地局が、前記基準信号の送信電力値と移動局における前記基準信号の受信電力値とから得られる信号減衰度を移動局の位置と関連付けることで、前記測定セルカバレッジの領域を所定の領域単位で特定すること、を含む、
     請求項13に記載されたセルカバレッジ制御方法。
     
PCT/JP2010/001904 2010-03-17 2010-03-17 移動通信システム、基地局、セルカバレッジ制御方法 WO2011114372A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080065447.7A CN102812741B (zh) 2010-03-17 2010-03-17 移动通信系统、基站、小区覆盖范围控制方法
JP2012505305A JP5423873B2 (ja) 2010-03-17 2010-03-17 移動通信システム、基地局、セルカバレッジ制御方法
PCT/JP2010/001904 WO2011114372A1 (ja) 2010-03-17 2010-03-17 移動通信システム、基地局、セルカバレッジ制御方法
EP10847794.4A EP2549790B1 (en) 2010-03-17 2010-03-17 Base station and cell coverage control method
KR1020127024267A KR101418663B1 (ko) 2010-03-17 2010-03-17 이동 통신 시스템, 기지국, 셀 커버리지 제어 방법
US13/608,006 US8879400B2 (en) 2010-03-17 2012-09-10 Mobile communication system, base station, cell coverage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001904 WO2011114372A1 (ja) 2010-03-17 2010-03-17 移動通信システム、基地局、セルカバレッジ制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/608,006 Continuation US8879400B2 (en) 2010-03-17 2012-09-10 Mobile communication system, base station, cell coverage control method

Publications (1)

Publication Number Publication Date
WO2011114372A1 true WO2011114372A1 (ja) 2011-09-22

Family

ID=44648511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001904 WO2011114372A1 (ja) 2010-03-17 2010-03-17 移動通信システム、基地局、セルカバレッジ制御方法

Country Status (6)

Country Link
US (1) US8879400B2 (ja)
EP (1) EP2549790B1 (ja)
JP (1) JP5423873B2 (ja)
KR (1) KR101418663B1 (ja)
CN (1) CN102812741B (ja)
WO (1) WO2011114372A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047895A1 (zh) * 2012-09-28 2014-04-03 华为技术有限公司 一种基站侦测终端的方法及基站、网络实体
JP2014082750A (ja) * 2012-09-27 2014-05-08 Softbank Mobile Corp 送信出力制御装置、送信出力制御方法及び送信出力制御プログラム
WO2014136739A1 (ja) * 2013-03-04 2014-09-12 日本電気株式会社 無線通信システム、制御装置、制御方法及びプログラム
WO2014162722A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線パラメータ制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
WO2014162725A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線ネットワーク制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
WO2014207934A1 (ja) * 2013-06-28 2014-12-31 富士通株式会社 制御装置及び制御方法
JP2016046750A (ja) * 2014-08-26 2016-04-04 富士通株式会社 制御装置、送信電力制御方法、及び、無線通信システム
WO2016139880A1 (ja) * 2015-03-02 2016-09-09 日本電気株式会社 無線基地局、コアネットワーク装置、無線通信システム、無線通信方法
CN106171016A (zh) * 2015-01-30 2016-11-30 华为技术有限公司 一种功率控制方法及设备
JP2017085524A (ja) * 2015-10-30 2017-05-18 Kddi株式会社 基地局装置、指向方向制御方法およびプログラム
JP2021145174A (ja) * 2020-03-10 2021-09-24 ソフトバンク株式会社 基地局、通信システム、基地局の制御方法及びプログラム
JP7570201B2 (ja) 2020-09-14 2024-10-21 楽天モバイル株式会社 制御装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465245B1 (ko) * 2012-11-12 2014-11-26 주식회사 케이티 신호 처리 시스템, 디지털 신호 처리 장치 및 그 시스템에서의 송신 전력 제어 방법
HUE042958T2 (hu) 2013-05-09 2019-07-29 Intel Ip Corp Kis Adat (Small Data) kommunikáció
WO2015012900A1 (en) * 2013-07-26 2015-01-29 Intel IP Corporation Signaling interference information for user equipment assistance
US9277509B1 (en) * 2013-09-12 2016-03-01 Sprint Communications Company L.P. Dynamic power boosting based on contiguous and non-contiguous coverage
US20150172988A1 (en) * 2013-12-18 2015-06-18 Telefonaktiebolaget L M Erisson (Publ) Reduced wireless communication handover command size during handover execution
KR101517725B1 (ko) * 2014-03-12 2015-05-04 주식회사 엘지유플러스 주파수간 핸드오버의 ca 커버리지 최적화를 위한 안테나 점검장치 및 그 점검방법
WO2015197537A1 (en) * 2014-06-23 2015-12-30 Telefonaktiebolaget L M Ericsson (Publ) Technique for sharing frequencies
CN105451249B (zh) * 2014-09-01 2020-02-14 华为技术有限公司 一种无线网络演进的方法和数据中心
WO2016038770A1 (ja) * 2014-09-12 2016-03-17 日本電気株式会社 無線カバレッジ制御方法、無線通信システム、無線基地局、ネットワーク管理装置およびプログラムを格納した非一時的なコンピュータ可読媒体
US10382979B2 (en) 2014-12-09 2019-08-13 Futurewei Technologies, Inc. Self-learning, adaptive approach for intelligent analytics-assisted self-organizing-networks (SONs)
US20160165472A1 (en) * 2014-12-09 2016-06-09 Futurewei Technologies, Inc. Analytics assisted self-organizing-network (SON) for coverage capacity optimization (CCO)
US10327159B2 (en) 2014-12-09 2019-06-18 Futurewei Technologies, Inc. Autonomous, closed-loop and adaptive simulated annealing based machine learning approach for intelligent analytics-assisted self-organizing-networks (SONs)
WO2016180490A1 (en) * 2015-05-13 2016-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control
CN105072640B (zh) * 2015-07-02 2018-09-25 中国联合网络通信集团有限公司 确定天馈参数的方法及装置
CN105050106B (zh) 2015-08-24 2019-12-10 中磊电子(苏州)有限公司 一种测量控制方法及应用其的基站
JP6425139B2 (ja) * 2015-08-31 2018-11-21 パナソニックIpマネジメント株式会社 基地局装置および制御方法
CN105208570B (zh) 2015-09-09 2020-02-07 中磊电子(苏州)有限公司 小型基站及其运作方法
CN108307453A (zh) * 2016-08-22 2018-07-20 中兴通讯股份有限公司 一种移动性管理方法、网络侧设备、车联网终端及系统
US11223963B2 (en) 2016-10-28 2022-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for managing antenna tilt
CN109803273B (zh) * 2017-11-17 2022-06-14 中国移动通信集团山西有限公司 天馈系统调整方法、装置、电子设备及存储介质
US11115951B2 (en) 2019-07-12 2021-09-07 Qualcomm Incorporated Virtual boundary marking techniques in beamformed wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008498A (ja) * 2001-06-26 2003-01-10 Nec Corp サービスエリア試験システム
JP2003204296A (ja) * 2002-01-08 2003-07-18 Ntt Comware Corp 移動体通信網における電波状況測定システム、及び電波状況測定方法
JP2008172380A (ja) * 2007-01-09 2008-07-24 Ntt Docomo Inc 移動通信システムで使用される基地局装置、ユーザ装置及び方法
JP2009081486A (ja) 2007-09-25 2009-04-16 Couei Corp セル設計最適化プログラム、記録媒体およびセル設計最適化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023900A (en) * 1989-12-07 1991-06-11 Tayloe Daniel R Cellular radiotelephone diagnostic system
US6496700B1 (en) * 1996-04-04 2002-12-17 At&T Wireless Services, Inc. Method for determining organization parameters in a wireless communication system
JP2002198900A (ja) * 2000-12-27 2002-07-12 Fujitsu Ltd 下り送信電力制御方法、移動通信システム、基地局、移動局、交換局側装置
US6708036B2 (en) * 2001-06-19 2004-03-16 Telcordia Technologies, Inc. Methods and systems for adjusting sectors across coverage cells
US8165607B2 (en) * 2001-09-10 2012-04-24 Csr Technology Inc. System and method for estimating cell center position for cell ID based positioning
US20060121855A1 (en) * 2004-12-07 2006-06-08 Motorola, Inc. System and method for adjusting a range of access for a cell
CN101690293B (zh) * 2007-04-27 2012-08-22 株式会社Ntt都科摩 基于指定基站的区域形成方法、移动台以及基站
JP2009290494A (ja) * 2008-05-28 2009-12-10 Kyocera Corp 無線通信システム、基地局、シミュレータ、およびアンテナ制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008498A (ja) * 2001-06-26 2003-01-10 Nec Corp サービスエリア試験システム
JP2003204296A (ja) * 2002-01-08 2003-07-18 Ntt Comware Corp 移動体通信網における電波状況測定システム、及び電波状況測定方法
JP2008172380A (ja) * 2007-01-09 2008-07-24 Ntt Docomo Inc 移動通信システムで使用される基地局装置、ユーザ装置及び方法
JP2009081486A (ja) 2007-09-25 2009-04-16 Couei Corp セル設計最適化プログラム、記録媒体およびセル設計最適化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2549790A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082750A (ja) * 2012-09-27 2014-05-08 Softbank Mobile Corp 送信出力制御装置、送信出力制御方法及び送信出力制御プログラム
CN103843399A (zh) * 2012-09-28 2014-06-04 华为技术有限公司 一种基站侦测终端的方法及基站、网络实体
WO2014047895A1 (zh) * 2012-09-28 2014-04-03 华为技术有限公司 一种基站侦测终端的方法及基站、网络实体
US9936463B2 (en) 2012-09-28 2018-04-03 Huawei Technologies Co., Ltd. Method for detecting a terminal by a base station, base station, and network entity
CN103843399B (zh) * 2012-09-28 2017-11-24 华为技术有限公司 一种基站侦测终端的方法及基站、网络实体
WO2014136739A1 (ja) * 2013-03-04 2014-09-12 日本電気株式会社 無線通信システム、制御装置、制御方法及びプログラム
JPWO2014162722A1 (ja) * 2013-04-01 2017-02-16 日本電気株式会社 無線パラメータ制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
WO2014162722A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線パラメータ制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
WO2014162725A1 (ja) * 2013-04-01 2014-10-09 日本電気株式会社 無線ネットワーク制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
US10034189B2 (en) 2013-04-01 2018-07-24 Nec Corporation Method and system for controlling radio parameter, network operation management apparatus, and radio station
WO2014207934A1 (ja) * 2013-06-28 2014-12-31 富士通株式会社 制御装置及び制御方法
JPWO2014207934A1 (ja) * 2013-06-28 2017-02-23 富士通株式会社 制御装置及び制御方法
JP2016046750A (ja) * 2014-08-26 2016-04-04 富士通株式会社 制御装置、送信電力制御方法、及び、無線通信システム
JP2018507631A (ja) * 2015-01-30 2018-03-15 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 電力制御方法及びデバイス
CN106171016A (zh) * 2015-01-30 2016-11-30 华为技术有限公司 一种功率控制方法及设备
CN106171016B (zh) * 2015-01-30 2019-08-20 华为技术有限公司 一种功率控制方法及设备
CN107409366A (zh) * 2015-03-02 2017-11-28 日本电气株式会社 无线基站、核心网络装置、无线通信系统及无线通信方法
JPWO2016139880A1 (ja) * 2015-03-02 2017-11-30 日本電気株式会社 無線基地局、コアネットワーク装置、無線通信システム、無線通信方法
GB2549687A (en) * 2015-03-02 2017-10-25 Nec Corp Wireless base station, core network device, wireless communication system and wireless communication method
WO2016139880A1 (ja) * 2015-03-02 2016-09-09 日本電気株式会社 無線基地局、コアネットワーク装置、無線通信システム、無線通信方法
US10194323B2 (en) 2015-03-02 2019-01-29 Nec Corporation Wireless base station, core network device, wireless communication system, and wireless communication method
JP2017085524A (ja) * 2015-10-30 2017-05-18 Kddi株式会社 基地局装置、指向方向制御方法およびプログラム
JP2021145174A (ja) * 2020-03-10 2021-09-24 ソフトバンク株式会社 基地局、通信システム、基地局の制御方法及びプログラム
JP7094315B2 (ja) 2020-03-10 2022-07-01 ソフトバンク株式会社 基地局、通信システム、基地局の制御方法及びプログラム
JP7570201B2 (ja) 2020-09-14 2024-10-21 楽天モバイル株式会社 制御装置

Also Published As

Publication number Publication date
EP2549790A4 (en) 2015-03-04
CN102812741A (zh) 2012-12-05
KR101418663B1 (ko) 2014-07-31
EP2549790A1 (en) 2013-01-23
JP5423873B2 (ja) 2014-02-19
KR20120118506A (ko) 2012-10-26
US20120327909A1 (en) 2012-12-27
CN102812741B (zh) 2015-10-14
EP2549790B1 (en) 2016-06-29
US8879400B2 (en) 2014-11-04
JPWO2011114372A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5423873B2 (ja) 移動通信システム、基地局、セルカバレッジ制御方法
EP3687199B1 (en) Apparatus and method in wireless communication system and computer readable storage medium
EP3675552A1 (en) Device, method, and computer readable storage medium in wireless communication system
CN103139905B (zh) 对用户设备进行定位的方法和装置
EP3345425B1 (en) Radio network nodes and methods for enabling mobility between said nodes
CN113079546B (zh) 一种低轨卫星间切换方法和装置
US9775121B1 (en) Dynamic control of reference-signal transmission power based on reference signal coverage quality at or near half-way point between base stations
EP2790445B1 (en) Wireless base station, wireless communication system, transmitting power control method, and wireless terminal
US20230055988A1 (en) Power Efficient Non-Terrestrial Network Connection Establishment
WO2011129231A1 (ja) 無線通信システム、無線基地局、及び通信パラメータ再設定方法
TW201215182A (en) Methods of determining coverage areas
US9148793B2 (en) Radio communication system, radio base station, and communication control method
WO2014012255A1 (zh) 一种确定切换小区的方法以及基站
US8428641B2 (en) Transmission power control method, mobile communication system and radio base station
WO2024087612A1 (zh) 用于定位的方法及装置
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
CN115087097B (zh) 终端的定位方法、系统、处理设备及存储介质
EP2595436B1 (en) A method and a network node for localization of a user equipment
JP7391179B2 (ja) 通信制御方法及びユーザ装置
JP2019047310A (ja) 第1の基地局
JP5466083B2 (ja) 移動局、無線通信システム、移動局のパラメータ値送信方法及び無線通信システムにおける基地局のパラメータ値設定方法
JP7436915B2 (ja) 無線通信システム、ネットワーク制御装置、ネットワーク制御方法及びプログラム
TW202316887A (zh) 功率控制方法及系統
JP5619311B2 (ja) 移動局、無線通信システム、移動局のパラメータ値送信方法及び無線通信システムにおける基地局のパラメータ値設定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065447.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505305

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010847794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127024267

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE