[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011108705A1 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
WO2011108705A1
WO2011108705A1 PCT/JP2011/055074 JP2011055074W WO2011108705A1 WO 2011108705 A1 WO2011108705 A1 WO 2011108705A1 JP 2011055074 W JP2011055074 W JP 2011055074W WO 2011108705 A1 WO2011108705 A1 WO 2011108705A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
photosensitive resin
carbon atoms
general formula
Prior art date
Application number
PCT/JP2011/055074
Other languages
French (fr)
Japanese (ja)
Inventor
憲司 原
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201180004535.0A priority Critical patent/CN102597879A/en
Publication of WO2011108705A1 publication Critical patent/WO2011108705A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • the present invention relates to a photosensitive resin composition using a polysiloxane compound, and further relates to a negative photoresist (in particular, a permanent resist) using the photosensitive resin composition.
  • the gate insulating film of the organic thin film transistor is generally manufactured by depositing a highly insulating inorganic material such as silicon carbide, silicon nitride, aluminum oxide, tantalum oxide, titanium oxide or the like by the CVD method.
  • a highly insulating inorganic material such as silicon carbide, silicon nitride, aluminum oxide, tantalum oxide, titanium oxide or the like.
  • a fine display device In the case of electronic paper and the like, a fine display device is required, and in the gate insulating film of the organic thin film transistor used therein, the formation of a fine pattern is required.
  • a method of forming a fine pattern is photolithography, and a photosensitive resin composition capable of forming a gate insulating film by photolithography contains a condensate of an alkoxysilane and a photoacid generator or a base generator.
  • Photosensitive resin compositions see, for example, Patent Documents 1 to 3 are known. However, in such a photosensitive resin composition, current leakage may occur due to the remaining photoacid generator or base generator and their decomposition products.
  • a photosensitive resin composition containing a polysiloxane compound having an epoxy group and a photoacid generator is known as a photosensitive resin composition capable of photolithography and obtaining an insulating film having high insulation properties.
  • the insulating film obtained from such a photosensitive resin composition has a problem that carriers formed in the semiconductor layer are trapped by the hydroxyl groups generated by ring opening of epoxy and the charge mobility is lowered.
  • the object of the present invention is to form a fine pattern by photolithography, to form an insulating film without heat treatment exceeding 200 ° C., and to trap carriers when used as a gate insulating film of an organic thin film transistor. It is an object of the present invention to provide a photosensitive resin composition free from the problem of a decrease in charge mobility.
  • the present inventors arrived at the present invention as a result of earnest research in view of the above. That is, the present invention provides a photosensitive resin composition containing a polysiloxane compound having units represented by the following general formulas (1) to (4), and a photo radical generator.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • the effects of the present invention are not only high transparency, but also photosensitivity that can provide an insulating layer excellent in heat resistance and solvent resistance that can withstand the temperature at the time of substrate manufacture, and further, resistance to aging change as a permanent resist.
  • Resin composition in particular, a negative photosensitive resin composition
  • a negative photoresist in particular, a permanent resist
  • FIG. 1 is a schematic cross-sectional view of a bottom gate / top contact type organic thin film transistor in which a thin film obtained from the photosensitive resin composition of Examples 1 and 2 and Comparative Examples 1 and 2 is a gate insulating film.
  • R 1 represents a hydrogen atom or a methyl group, and a methyl group is preferable because of good storage stability.
  • R 2 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and propylene is most preferred.
  • Examples of the substituted alkyl group which may be possessed in R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and as the alkyl group having 1 to 4 carbon atoms, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary Butyl, t-butyl and the like.
  • a hydrogen atom is preferable because industrial availability is easy and heat resistance is good.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms.
  • alkyl having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, t-butyl, pentyl, isopentyl, neopentyl, 2-pentyl, t-pentyl, hexyl, 2-hexyl and the like
  • examples of the cycloalkyl group having 5 or 6 carbon atoms include cyclopentyl, cyclohexyl, methylcyclopentyl, cyclopentylmethyl and the like. From the viewpoint of good heat resistance, R 4 is preferably ethyl and methyl, more preferably methyl.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl and t-butyl.
  • R 5 a hydrogen atom is preferable because industrial availability is easy and heat resistance is good.
  • the content of the unit represented by the general formula (1) is preferably 0.1 to 5 mmol / g, more preferably 0.5 to 3 mmol / g, and 1 Most preferably, it is -2.5 mmol / g.
  • the content of the unit represented by the general formula (2) is preferably 0.01 to 0.8 with respect to the total of the number of units represented by the general formulas (1) to (4). More preferably, it is 03 to 0.5, and most preferably 0.05 to 0.3.
  • the content of the unit represented by the general formula (3) is preferably 0.03 to 0.8 with respect to the total of the number of units represented by the general formulas (1) to (4).
  • the content of the unit represented by the general formula (4) is preferably 0.01 to 0.6 with respect to the total of the number of units represented by the general formulas (1) to (4). It is more preferably 03 to 0.4, and most preferably 0.05 to 0.25.
  • the ratio of the sum of the number of units represented by the general formula (2) to the number of units represented by the general formula (4) with respect to the number of units represented by the general formula (3) is Although it changes with uses for which a photosensitive resin composition is used, when using as a negative resist, 0.3-5.0 are preferable, 0.5-3 are more preferable, and 1.5-2.5. Is most preferred. Moreover, when using the photosensitive resin composition of this invention as transparent materials, such as a lens and an optical waveguide, 0.3-7.0 are preferable, 0.3-5 are still more preferable, 0.3-3 Is most preferred.
  • the polysiloxane compound of the present invention preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 50,000, and most preferably 3,000 to 20,000.
  • the mass average molecular weight refers to a mass average molecular weight in terms of polystyrene when GPC analysis is performed using tetrahydrofuran (hereinafter referred to as THF) as a solvent.
  • the polysiloxane compound of the present invention may have a silanol group (SiOH group) remaining in the production process, but the presence of the silanol group reduces the storage stability of the photosensitive resin composition of the present invention.
  • the content of silanol groups in the polysiloxane compound of the present invention is preferably 1.0 mmol / g or less, more preferably 0.1 mmol / g or less.
  • the silanol group used the near-infrared spectrophotometer (refer Unexamined-Japanese-Patent 2001-208683, Unexamined-Japanese-Patent 2003-35667 etc.), and 29 Si-NMR (refer Unexamined-Japanese-Patent 2007-217249 etc.). It can be quantified by instrumental analysis.
  • the silanol group can be reduced by a halosilane compound or a hydrolyzable ester as described later.
  • the polysiloxane compound of the present invention preferably further has a unit represented by the following general formula (5) because adhesion is improved.
  • E represents a group having an epoxy group
  • examples of the group having an epoxy group include groups represented by the following general formulas (6) to (8), and the adhesion is improved
  • Groups having the following general formulas (7) and (8) are preferable, and groups having the following general formula (7) are more preferable, because the effect is large.
  • R 6 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group, and m represents a number of 0 or 1).
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group
  • n is 0 or 1
  • R 9 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group
  • R 6 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group.
  • alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and ethylene is most preferred.
  • Examples of the substituted alkyl group which may be possessed in R 6 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred. m is preferably a number of 1 because m represents a number of 0 or 1 and the availability of raw materials is easy.
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group.
  • alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and ethylene is most preferred.
  • Examples of the substituted alkyl group which may be possessed in R 8 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred. n is preferably a number of 1 because n represents a number of 0 or 1 and the availability of raw materials is easy.
  • the content of the unit represented by the general formula (5) is an epoxy equivalent It is preferably 2000 to 50000, and more preferably 3000 to 20000.
  • the polysiloxane compound of the present invention can be obtained by a hydrolysis condensation reaction of an alkoxysilane compound or a halosilane compound represented by the following general formulas (1a) to (4a), so-called sol-gel reaction.
  • R 1 and R 2 are as defined in the general formula (1), and X 1 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  • R 3 has the same meaning as in the above general formula (2), and X 2 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  • R 4 has the same meaning as in the above general formula (3), and X 3 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  • R 5 has the same meaning as in the above general formula (4), and X 4 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  • alkoxysilane compound represented by the general formula (1a) examples include (acryloxymethyl) trimethoxysilane, (2-acryloxypropyl) trimethoxysilane, and (3-acryloxypropyl) trimethoxysilane.
  • (3-acryloxypropyl) triethoxysilane (methacryloxymethyl) trimethoxysilane, (2-methacryloxypropyl) trimethoxysilane, (3-methacryloxypropyl) trimethoxysilane, (3- Methacryloxypropyl) triethoxysilane is mentioned, and as the halosilane compound represented by the above general formula (1a), for example, 3-acryloxypropyl) trichlorosilane, (3-methacryloxypropyl) trichlorosilane and the like can be mentioned .
  • alkoxysilane compound or halosilane compound represented by the above general formula (1a) 3-methacryloxypropyl) trimethoxysilane, and (3-meth Roxypropyl) triethoxysilane is preferred, and (3-methacryloxypropyl) trimethoxysilane is more preferred.
  • alkoxysilane compound represented by the above general formula (2a) examples include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 4-methylphenyltrimethoxysilane, 4-methylphenyltriethoxysilane.
  • Sisilane, 4-methylphenyltriisopropoxysilane and the like can be mentioned, and examples of the halosilane compound represented by the general formula (2a) include phenyltrichlorosilane, 4-methylphenyltrichlorosilane and the like.
  • phenyltrimethoxysilane and phenyltriethoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
  • the alkoxysilane compound represented by the above general formula (3a) includes, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, diethylphenyldimethoxysilane, diethyldiethoxysilane, and diethyldiethoxysilane.
  • Isopropoxysilane, dipropyldimethoxysilane, dipropyldietoxysilane, dipropyldiisopropoxysilane and the like can be mentioned, and as the halosilane compound represented by the general formula (3a), for example, dimethyldichlorosilane, diethyl Dichlorosilane, dipropyl dichlorosilane and the like can be mentioned.
  • the alkoxysilane compound or the halosilane compound represented by the above general formula (2a) dimethyldimethoxysilane and dimethyldietoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
  • alkoxysilane compound represented by the above general formula (4a) examples include diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiisopropoxysilane, bis (4-methylphenyl) dimethoxysilane, bis (4) And the like.
  • halosilane compound represented by the general formula (4a) examples include diphenyldichlorosilane, bis (4-methylphenyl) dietoxysilane, bis (4-methylphenyl) diisopropoxysilane and the like. And phenyl) dichlorosilane and the like.
  • diphenyldimethoxysilane and diphenyldietoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
  • the alkoxysilane compounds or halosilane compounds represented by the general formulas (1a) to (4a) are hydrolyzed and condensed, it is preferable to react in a solvent using a catalyst such as an acid or a base.
  • a catalyst such as an acid or a base.
  • the solvent which can be used for the reaction include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, toluene, xylene, cyclohexane and the like, and one of these is used It is also possible to use a mixture of two or more. In order to use a solvent other than water, it is preferable to carry out the reaction by adding an appropriate amount of water in order to accelerate the hydrolytic condensation reaction.
  • an alkoxysilane compound or a halosilane compound In the hydrolysis condensation reaction of an alkoxysilane compound or a halosilane compound, an alkoxysilyl group or a halosilyl group is hydrolyzed by water to form a silanol group, and the generated silanol groups are condensed, or the silanol group and an alkoxyl group or a chlorosilane group are condensed. As a result, a siloxane group (SiOSi group) is formed.
  • inorganic acids such as hydrochloric acid, phosphoric acid and sulfuric acid; formic acid, acetic acid, oxalic acid, citric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, monoisopropyl phosphate
  • Organic acids such as; inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia etc .; amine compounds (organic bases) such as trimethylamine, triethylamine, monoethanolamine, diethanolamine etc .; Or two or more kinds in combination.
  • the temperature of the hydrolytic condensation reaction varies depending on the type of solvent, type and amount of catalyst, etc., but it is preferably 0 to 80 ° C., more preferably 5 to 50 ° C., and most preferably 8 to 30 ° C.
  • the respective alkoxysilane compounds or halosilane compounds may be separately reacted or mixed and then reacted.
  • the reaction may be carried out after mixing since reaction can be stably performed with little variation in the reaction products.
  • the polysiloxane compound of the present invention further has a unit represented by the general formula (5)
  • the alkoxysilane compound or the halosilane compound represented by the general formulas (1a) to (4a) in addition to the alkoxysilane compound or the halosilane compound represented by the general formulas (1a) to (4a), the following general formula
  • the alkoxysilane compound or the halosilane compound represented by (5a) may be hydrolyzed and condensed.
  • E is as defined in the above general formula (5), and X 5 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  • alkoxysilane compound or halosilane compound represented by the general formula (5a) examples include 3,4-epoxybutyltrimethoxysilane, 2-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-glycidoxy-1-methylethyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy Silane, 3,4-epoxycyclohexyltrimethoxysilane, 3,4-epoxycyclohexyltriethoxysilane, 2- (3,4-epoxy-4-methylcyclohexyl) propyltrimethoxysilane and the like can be mentioned.
  • the photosensitive resin composition of the present invention is obtained because the silanol group remains and the silanol group is present. It is preferable to seal the silanol group because the storage stability of When a silanol group is sealed, a method of trimethylsilylating with trimethylchlorosilane, hexamethyldisilazane, a method of alkoxylating with a hydrolysable ester compound such as ortho formate ester, ortho acetate ester, tetraalkoxymethane, carbonate ester, etc. It can be mentioned.
  • a photo radical generator is a compound capable of initiating radical polymerization by energy beam irradiation, and examples of energy beam include ultraviolet light, electron beam, X-ray, radiation, high frequency and the like.
  • energy beam include ultraviolet light, electron beam, X-ray, radiation, high frequency and the like.
  • photo radical generators include acetophenone photo radical generators, benzyl photo radical generators, benzophenone photo radical generators, thioxanthone photo radical generators, and acyl phosphine oxide photo radical generators.
  • the photo radical generator may be used alone or in combination of two or more.
  • acetophenone photoradical generator examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methylpropiophenone, and the like.
  • -Hydroxymethyl-2-methylpropiophenone 2,2-dimethoxy-1,2-diphenylethane-1-one, p-dimethylaminoacetophenone, p-tert-butyl dichloroacetophenone, p-tert-butyl trichloroacetophenone, p-Azidobenzalacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1,2-benzyl-2-dimethylamino-1- (4 -Morpholino phenyl)-pig 1, benzoin, benzoin methyl ether, benzoin ethy
  • benzyl-based photoradical generator examples include diphenyl diketone (also referred to as benzyl), bis (4-methoxyphenyl) diketone (also referred to as anisyl), and the like.
  • benzophenone-based photoradical generator examples include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide. Etc.
  • thioxanthone photoradical generator examples include thioxanthone, 2-methyl thioxanthone, 2-ethyl thioxanthone, 2-chloro thioxanthone, 2-isopropyl thioxanthone, and 2,4-diethyl thioxanthone.
  • acyl phosphine oxide photoradical generator examples include 2-methylbenzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl phenyl phosphine acid methyl ester
  • Monoacyl phosphine oxide based photo radical generators such as: bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, bis (2,6-dimethoxy)
  • Examples include bisacylphosphine oxide photoradical generators such as benzoyl) -2,4,4-trimethylpentylphosphine oxide.
  • the photosensitive resin composition of the present invention is cured and used as a gate insulating film for an organic thin film transistor, as the photo radical generator, a high charge mobility can be obtained, so an acylphosphine oxide type photo radical generator Monoacyl phosphine oxide photo radical generators are more preferred, and 2,4,6-trimethyl benzoyl diphenyl phosphine oxide is most preferred.
  • acyl phosphine oxide type photo radical generating agent it is preferable that at least 1 type is an acyl phosphine oxide type photo radical generating agent.
  • the photosensitive resin composition of the present invention when the photosensitive resin composition of the present invention is cured and used as a transparent material for lenses, waveguides, etc., a cured product having high transparency can be obtained as the photoradical generator, and thus an acetophenone-based material.
  • Photoradical generators and acylphosphine oxide photoradical generators are preferred, acetophenone photoradical generators are more preferred, and 1-hydroxycyclohexyl phenyl ketone is most preferred.
  • at least one is preferably an acetophenone photoradical generator.
  • the content of the photoradical generator in the photosensitive resin composition of the present invention is the kind of the photoradical generator, the content of the radically polymerizable group in the photosensitive resin composition of the present invention, and the type of active energy ray Although it changes with strength etc., it is preferable that it is 0.1-10 mass parts with respect to 100 mass parts of polysiloxane compounds of this invention, It is still more preferable that it is 0.2-7 mass parts, 0.3- Most preferably, it is 5 parts by mass. If the content of the photo radical generating agent is less than 0.1 parts by mass, curing may be insufficient, and if it exceeds 10 parts by mass, not only the increasing effect corresponding to the compounding amount can not be obtained, but rather Heat resistance, transparency, etc. may be adversely affected.
  • the photosensitive resin composition of the present invention may further contain an organic solvent.
  • an organic solvent for example, aromatic hydrocarbon compounds such as benzene, xylene, toluene, ethylbenzene, styrene, trimethylbenzene, diethylbenzene, tetrahydronaphthalene; pentane, isopentane, hexane, isohexane, heptane, isoheptane, octane, isooctane Saturated hydrocarbon compounds such as nonane, isononane, decane, isodecane, isododecane, cyclohexane, methylcyclohexane, mentane, decahydronaphthalene; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether
  • the content of the organic solvent is preferably 5 to 200 parts by mass with respect to 100 parts by mass of the polysiloxane compound of the present invention And 10 to 100 parts by mass.
  • the photosensitive resin composition of the present invention may further contain, if necessary, a photosensitizer, a plasticizer, a thixotropy-imparting agent, a photoacid generator, a thermal acid generator, a dispersant, and an antifoamer, in addition to the organic solvent.
  • a photosensitizer e.g., a sensitizer, a plasticizer, a thixotropy-imparting agent, a photoacid generator, a thermal acid generator, a dispersant, and an antifoamer, in addition to the organic solvent.
  • optional components such as pigments and dyes can be blended.
  • the total content of these optional components is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the polysiloxane compound of the present invention.
  • the photosensitive resin composition of the present invention is cured by irradiating an active energy ray after forming a layer of the photosensitive resin composition of the present invention on an object such as a substrate.
  • the method of forming the layer of the photosensitive resin composition of the present invention is not particularly limited, and, for example, dip coating, flow coating, brush coating, spray coating, extrusion coating, spin coating, roll coating Bar coating or the like can be used, and a patterned film can be formed by a method such as screen coating or roll transfer. It does not specifically limit as a target object in which the layer of the photosensitive resin composition of this invention is formed, A silicon substrate, a glass substrate, a metal plate, a plastics board etc. are used according to a use.
  • the thickness of the layer of the photosensitive resin composition of the present invention formed on the object varies depending on the application, but 10 nm to 10 ⁇ m when used as an insulating film of a semiconductor element or a gate insulating film of an organic thin film transistor In the case of using as a core portion of 1 to 200 ⁇ m is a standard.
  • heat treatment pre-baking may be performed for the purpose of removing the organic solvent in the layer after forming the layer of the photosensitive resin composition of the present invention
  • the conditions of the heat treatment are appropriately selected depending on the boiling point and vapor pressure of the used organic solvent, the thickness of the layer of the photosensitive resin composition of the present invention, and the heat resistant temperature of the object on which the layer is formed.
  • a heat treatment of 30 seconds to 10 minutes at ⁇ 140 ° C. is a standard.
  • an ultra-high pressure mercury lamp Deep UV lamp, high pressure mercury lamp, low pressure mercury lamp, metal halide lamp, excimer laser, etc.
  • It is suitably selected according to the photosensitive wavelength of the sensitizer.
  • the irradiation energy of the active energy ray is appropriately selected according to the thickness of the layer of the photosensitive resin composition and the type and amount of use of the photoradical generator.
  • the layer of the photosensitive resin composition is cured by irradiation with an active energy ray, but heat treatment (sometimes referred to as post-baking) is performed to improve the adhesion between the layer of the cured product and an object such as a substrate.
  • heat treatment is preferably performed at a temperature of 60 to 200 ° C. for 1 minute to 2 hours in an inert gas atmosphere such as nitrogen, helium, argon or the like.
  • the coating film obtained from the photosensitive resin composition of the present invention can be used for photolithography, and can be used as a negative photoresist (particularly, a permanent resist).
  • the photosensitive resin composition of the present invention is used as a negative photoresist
  • the photosensitive resin composition of the present invention is applied to a substrate or the like to form a coating film, which is exposed to active energy rays.
  • the coating film of the base resin composition is coated with a photo mask and selectively irradiated with active energy rays, and then the light-shielded portion (uncured portion) is dissolved and dispersed in an organic solvent, developer, etc. By developing), a patterned cured film can be formed.
  • Examples of the organic solvent which dissolves and disperses the light-shielded part are alkaline aqueous solution, acidic aqueous solution, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethanol, isopropanol, n-propanol, benzene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Ethyl acetate, butyl acetate, toluene, o-xylene, m-xylene, p-xylene, 1,3,5-trimethylbenzene, 1,3,4-trimethylbenzene and the like can be mentioned.
  • the cured film obtained by the photosensitive resin composition of the present invention is excellent in transparency, insulation, high refractive index, heat resistance, weather resistance, chemical resistance, etc. It is useful as an optical lens and an insulating film of a semiconductor device. In particular, when used as a gate insulating film of a transistor, there is little problem that carriers are trapped and charge mobility is reduced, and it is extremely useful as a gate insulating film of an organic thin film transistor.
  • Preparation Examples B to I Preparation of Polysiloxane Compounds B to I In Production Example A, except that the alkoxysilane compound shown in Table 1 was used, the same procedure as in Production Example A was performed, and polysiloxane compounds B to I shown in Table 1 were synthesized.
  • the numerical values in the table represent the reaction molar ratio of the alkoxysilane compound.
  • polysiloxane compounds A to E are the polysiloxane compounds of the present invention
  • polysiloxane compounds F to I are comparative polysiloxane compounds.
  • Table 2 shows the analysis results of mass average molecular weight and silanol group content.
  • Photo radical generator 1 bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide
  • photo radical generator 2 bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide
  • photo radical generator 2 1-hydroxycyclohexyl phenyl ketone
  • photo radical generator 2 [4- (2-chloro-4-benzoylphenylthio) phenylbis (4-chlorophenyl) sulfonium hexafluoroantimonate] as a photoacid generator, platinum as a hydrosilylation catalyst
  • Photosensitive resin compositions or thermosetting resin compositions of Examples 1 to 7 and Comparative Examples 1 to 5 were prepared with the composition of Table 3 using divinyl tetramethyldisiloxane complex and butyl acetate as a solvent .
  • the organic thin-film transistor as shown in FIG. 1 is produced as follows. did. Chromium (Cr) was vapor-deposited on the glass substrate 6 to form a lead electrode having a width of 2 mm and a thickness of about 100 nm.
  • the photosensitive resin compositions of Examples 1 and 2 and Comparative Example 1 and the thermosetting resin composition of Comparative Example 2 are spin-coated thereon to a film thickness of about 1 ⁇ m and air-dried.
  • the high-pressure mercury lamp was irradiated at 5000 mJ / cm 2
  • the gate insulating film 5 was formed by curing by heating at 150 ° C. for 2 hours under a nitrogen atmosphere.
  • a solution of poly- (3-hexyl) thiophene in xylene was spin-coated on the gate insulating film 5 so that the film thickness after drying was 30 nm, and air-dried to form an organic semiconductor film 1.
  • Annealing treatment was performed at 150 ° C. for 30 minutes in a nitrogen atmosphere to activate poly- (3-hexyl) thiophene.
  • Gold is vapor-deposited on the organic semiconductor film 1 to form a source electrode 2 and a drain electrode 3 with a channel width of 2 mm, a thickness of about 30 nm and a channel length of 100 ⁇ m. 12 bottom gate and top contact type organic thin film transistors were manufactured for each of and.
  • the transport characteristics of the organic thin film transistors of Examples 1 and 2 and Comparative Examples 1 and 2 were measured using a semiconductor parameter analyzer (manufactured by Keithley, product name SCS 4200) to calculate charge mobility ⁇ .
  • the charge mobility ⁇ is defined by the following equation, and specifically, the graph in the saturation region when the square of the absolute value of the drain current I D is plotted on the vertical axis and the gate voltage V G is plotted on the horizontal axis.
  • the charge mobility ⁇ was determined based on the slope.
  • the measurement was performed under a nitrogen gas atmosphere and in a light shielding state.
  • the charge mobility ⁇ was an average of the organic thin film transistors whose transport characteristics could be measured, and the number of the organic thin film transistors whose transport characteristics could not be measured due to current leakage was regarded as the number of defective products.
  • the results are shown in Table 4.
  • ⁇ Heat colorability evaluation of photosensitive resin composition The photosensitive resin compositions of Examples 3 to 7 and Comparative Examples 1 and 3 are applied by spin coating on a 2.5 cm square glass substrate so that the film thickness after drying is about 500 ⁇ m. The solvent was allowed to evaporate. The test piece was heat treated at 120 ° C. for 30 minutes. A photomask with a line width of 1 mm was placed on the top of the heat-treated glass substrate, and ultraviolet light was applied at 100 mJ / cm 2 with a high-pressure mercury lamp. Next, the test piece was immersed in a beaker containing ethyl acetate to dissolve and remove the uncured portion, and the air-dried one was used as a test piece for evaluation of heat colorability.
  • the test pieces are all colorless and transparent, and the refractive index of the cured product at a wavelength of 837 nm is as shown in Table 6.
  • the test piece was put in a thermostat at 150 ° C., taken out after 15 days, the coloration of the cured product was visually observed, and the heat colorability was evaluated according to the following evaluation criteria. The results are shown in Table 5.
  • ⁇ Evaluation criteria> ⁇ : No coloring is observed, and heat coloring is low.
  • Slightly colored and slightly heat-colored.
  • Clearly colored and heat coloring is high.
  • a gate insulating film obtained by curing the photosensitive resin composition of the present invention.
  • a gate insulating film obtained by curing a photosensitive resin composition containing a polysiloxane compound having an epoxy group and a photoacid generator, a polysiloxane compound having a vinyl group, SiH
  • the gate insulating film obtained by curing a thermosetting resin composition containing a polysiloxane compound having a hydroxyl group and a hydrosilylation catalyst (platinum catalyst)
  • platinum catalyst platinum catalyst
  • the photosensitive resin composition of the present invention can be used as a negative photoresist, and the cured product has a high refractive index and is thermally colored even at high temperatures. Is low (Examples 3 to 7).
  • the cured products (Comparative Examples 1 and 3 to 5) obtained by curing a photosensitive resin composition having a different composition from the photosensitive resin composition of the present invention, the heat colorability is high. This shows that when the photosensitive resin composition of the present invention is used for a transparent high refractive index material such as a lens, an optical waveguide, etc., it can be used without losing transparency even at high temperatures. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Silicon Polymers (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is a photosensitive resin composition—that can form a minute pattern by means of photolithography, can form a insulating film without heat treatment above 200°C, and has no problems of carrier being trapped and charge mobility decreasing when used as a gate insulating film of an organic thin-film transistor—containing a photo-radical generating agent and a polysiloxane compound having units represented by the belowmentioned general formulae (1-4). (In formula 1, R1 represents a hydrogen atom or a methyl group, and R2 represents an alkylene group having a carbon number of 1-5 that may have a substituent alkyl group. In formula 2, R3 represents a hydrogen atom or an alkyl group having a carbon number of 1-4. In formula 3, R4 represents an alkyl group having a carbon number of 1-6 or a cycloalkyl group having a carbon number of 5-6. In formula 4, R5 represents a hydrogen atom or an alkyl group having a carbon number of 1-4.)

Description

感光性樹脂組成物Photosensitive resin composition
 本発明は、ポリシロキサン化合物を用いた感光性樹脂組成物に関し、更にこの感光性樹脂組成物を用いたネガ型フォトレジスト(特に永久レジスト)に関する。 The present invention relates to a photosensitive resin composition using a polysiloxane compound, and further relates to a negative photoresist (in particular, a permanent resist) using the photosensitive resin composition.
 近年、液晶表示装置、EL表示装置等の表示装置に関する研究が盛んに行われており、低消費電力で駆動可能な表示装置の一つとして電子ペーパーが注目されている。電子ペーパーは、紙のように厚さが薄く作ることが可能であり、低消費電力化や電源を切っても画像を保持できるという利点を有しており、電子書籍やポスターへの利用が期待されている。電子ペーパーの表示基板にプラスチックフィルムを使用し、表示装置の駆動部に有機薄膜トランジスタを使用すれば、柔軟で屈曲しても品質を損なわずに表示でき、応用範囲も広がり、普及が進むものと考えられている。 In recent years, researches on display devices such as liquid crystal display devices and EL display devices have been actively conducted, and electronic paper has attracted attention as one of display devices that can be driven with low power consumption. Electronic paper can be made as thin as paper, and has the advantage of being able to hold images even with low power consumption and with the power turned off, and is expected to be used for electronic books and posters It is done. If plastic film is used for the display substrate of electronic paper and organic thin film transistor is used for the drive part of the display device, it is flexible and it can be displayed without loss of quality even if it is bent. It is done.
 有機薄膜トランジスタのゲート絶縁膜は、一般に、炭化珪素、窒化珪素、酸化アルミニウム、酸化タンタル、酸化チタン等の絶縁性の高い無機系の材料を、CVD法により成膜して製造するが、CVD法は大掛かりな真空系装置を必要とすることから、製造コストの面で問題がある。また、これらの無機系の材料は硬質で剛直であり、プラスチックフィルム等のフレキシブルな基板に適用した場合には、屈曲により破損する恐れがある。 The gate insulating film of the organic thin film transistor is generally manufactured by depositing a highly insulating inorganic material such as silicon carbide, silicon nitride, aluminum oxide, tantalum oxide, titanium oxide or the like by the CVD method. There is a problem in the manufacturing cost because a large vacuum system is required. Moreover, these inorganic materials are hard and rigid, and when applied to a flexible substrate such as a plastic film, there is a risk of breakage due to bending.
 これに対し、有機系の材料は、有機溶媒に可溶なものが多いことから塗布法や印刷法により、安価に大量の製造が可能であり、また屈曲性やプラスチックフィルムへの密着性に優れることから、有機薄膜トランジスタのゲート絶縁膜用の有機絶縁材料の検討が盛んに行われている。 On the other hand, since many organic materials are soluble in organic solvents, they can be mass-produced inexpensively by coating and printing methods, and are excellent in flexibility and adhesion to plastic films. Therefore, studies on organic insulating materials for gate insulating films of organic thin film transistors are actively conducted.
 電子ペーパー等では微細な表示装置が必要であり、そこで用いられる有機薄膜トランジスタのゲート絶縁膜では微細なパターンの形成が求められる。微細なパターンの形成方法としては、フォトリソグラフィがあり、フォトリソグラフィによるゲート絶縁膜の形成が可能な感光性樹脂組成物としては、アルコキシシランの縮合物と光酸発生剤又は塩基発生剤とを含有する感光性樹脂組成物(例えば、特許文献1~3を参照)が知られている。
 しかしながら、このような感光性樹脂組成物では、残存する光酸発生剤又は塩基発生剤及びそれらの分解物により電流リークが発生する場合がある。また感光性樹脂組成物を、アルコキシシリル基の架橋により硬化させるためには、200~500℃程度に熱処理する必要がある。このため、ポリカーボネート、ポリエチレンテレフタレート等のプラスチックフィルムを基板とすることができなかった。フォトリソグラフィが可能であり、絶縁性が高い絶縁膜が得られる感光性樹脂組成物としては、エポキシ基を有するポリシロキサン化合物と光酸発生剤とを含有する感光性樹脂組成物が知られているが、このような感光性樹脂組成物から得られる絶縁膜は、エポキシの開環により生成する水酸基により半導体層に形成されるキャリヤーがトラップされて電荷移動度が低下するという問題があった。
In the case of electronic paper and the like, a fine display device is required, and in the gate insulating film of the organic thin film transistor used therein, the formation of a fine pattern is required. A method of forming a fine pattern is photolithography, and a photosensitive resin composition capable of forming a gate insulating film by photolithography contains a condensate of an alkoxysilane and a photoacid generator or a base generator. Photosensitive resin compositions (see, for example, Patent Documents 1 to 3) are known.
However, in such a photosensitive resin composition, current leakage may occur due to the remaining photoacid generator or base generator and their decomposition products. Further, in order to cure the photosensitive resin composition by crosslinking of the alkoxysilyl group, it is necessary to heat-treat about 200 to 500.degree. For this reason, plastic films, such as a polycarbonate and a polyethylene terephthalate, were not able to be used as a board | substrate. A photosensitive resin composition containing a polysiloxane compound having an epoxy group and a photoacid generator is known as a photosensitive resin composition capable of photolithography and obtaining an insulating film having high insulation properties. However, the insulating film obtained from such a photosensitive resin composition has a problem that carriers formed in the semiconductor layer are trapped by the hydroxyl groups generated by ring opening of epoxy and the charge mobility is lowered.
特開平6-148895号公報Unexamined-Japanese-Patent No. 6-148895 特開2007-43055号公報JP 2007-43055 A 特開2007-316531号公報JP 2007-316531 A
 したがって、本発明の目的は、フォトリソグラフィにより微細なパターンが形成でき、200℃を超える熱処理を行なわずに絶縁膜が形成でき、しかも有機薄膜トランジスタのゲート絶縁膜として使用した場合にキャリヤーがトラップされて電荷移動度が低下するという問題のない感光性樹脂組成物を提供することにある。 Therefore, the object of the present invention is to form a fine pattern by photolithography, to form an insulating film without heat treatment exceeding 200 ° C., and to trap carriers when used as a gate insulating film of an organic thin film transistor. It is an object of the present invention to provide a photosensitive resin composition free from the problem of a decrease in charge mobility.
 本発明者は上記に鑑み鋭意研究の結果、本発明に到達した。即ち、本発明は、下記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物、及び光ラジカル発生剤を含有する感光性樹脂組成物を提供するものである。
Figure JPOXMLDOC01-appb-C000010
(式中、R1は水素原子又はメチル基を表わし、R2は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。)
Figure JPOXMLDOC01-appb-C000011
(式中、R3は水素原子又は炭素数1~4のアルキル基を表わす。)
Figure JPOXMLDOC01-appb-C000012
(式中、R4は炭素数1~6のアルキル基又は炭素数5若しくは6のシクロアルキル基を表わす。)
Figure JPOXMLDOC01-appb-C000013
(式中、R5は水素原子又は炭素数1~4のアルキル基を表わす。)
The present inventors arrived at the present invention as a result of earnest research in view of the above. That is, the present invention provides a photosensitive resin composition containing a polysiloxane compound having units represented by the following general formulas (1) to (4), and a photo radical generator.
Figure JPOXMLDOC01-appb-C000010
(Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group)
Figure JPOXMLDOC01-appb-C000011
(Wherein, R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
Figure JPOXMLDOC01-appb-C000012
(Wherein, R 4 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms)
Figure JPOXMLDOC01-appb-C000013
(Wherein, R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
 本発明の効果は、透明性が高いだけでなく、基板製作時の温度に耐えられる耐熱性及び耐溶剤性、更には永久レジストとしての耐経時変化性に優れた絶縁層を与えることの出来る感光性樹脂組成物(特にネガ型感光性樹脂組成物)、この感光性樹脂組成物を用いたネガ型フォトレジスト(特に永久レジスト)を提供したことにある。 The effects of the present invention are not only high transparency, but also photosensitivity that can provide an insulating layer excellent in heat resistance and solvent resistance that can withstand the temperature at the time of substrate manufacture, and further, resistance to aging change as a permanent resist. Resin composition (in particular, a negative photosensitive resin composition), and a negative photoresist (in particular, a permanent resist) using the photosensitive resin composition.
図1は、実施例1及び2並びに比較例1及び2の感光性樹脂組成物から得られた薄膜をゲート絶縁膜とするボトムゲート・トップコンタクト型の有機薄膜トランジスタの概略断面図である。FIG. 1 is a schematic cross-sectional view of a bottom gate / top contact type organic thin film transistor in which a thin film obtained from the photosensitive resin composition of Examples 1 and 2 and Comparative Examples 1 and 2 is a gate insulating film.
 以下、本発明について、好ましい実施形態に基づき詳細に説明する。
 先ず、前記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物(以下、本発明のポリシロキサン化合物という場合がある)について説明する。
Hereinafter, the present invention will be described in detail based on preferred embodiments.
First, a polysiloxane compound having units represented by the general formulas (1) to (4) (hereinafter sometimes referred to as the polysiloxane compound of the present invention) will be described.
 前記一般式(1)において、R1は水素原子又はメチル基を表わし、保存安定性が良好であることから、メチル基が好ましい。R2は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。炭素数1~5のアルキレン基としては、メチレン、エチレン、プロピレン、ブチレン及びペンテンが挙げられ、耐熱性からは炭素数が少ないことが好ましいが、工業的な入手の容易さから、エチレン、プロピレン及びブチレンが好ましく、エチレン及びプロピレンが更に好ましく、プロピレンが最も好ましい。R2において有していてもよい置換アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル等が挙げられるが、耐熱性からは、置換アルキル基を有しないことが好ましい。 In the above general formula (1), R 1 represents a hydrogen atom or a methyl group, and a methyl group is preferable because of good storage stability. R 2 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group. Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and propylene is most preferred. Examples of the substituted alkyl group which may be possessed in R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred.
 前記一般式(2)において、R3は水素原子又は炭素数1~4のアルキル基を表わし、炭素数1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、t-ブチル等が挙げられる。R3としては、工業的な入手が容易であり、耐熱性が良好であることから、水素原子が好ましい。 In the above general formula (2), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and as the alkyl group having 1 to 4 carbon atoms, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary Butyl, t-butyl and the like. As R 3 , a hydrogen atom is preferable because industrial availability is easy and heat resistance is good.
 前記一般式(3)において、R4は炭素数1~6のアルキル基又は炭素数5若しくは6のシクロアルキル基を表わす。炭素数1~6のアルキルとしては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、t-ブチル、ペンチル、イソペンチル、ネオペンチル、2-ペンチル、t-ペンチル、ヘキシル、2-ヘキシル等が挙げられ、炭素数5若しくは6のシクロアルキル基としては、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロペンチルメチル等が挙げられる。R4としては、耐熱性が良好であることから、エチル及びメチルが好ましく、メチルが更に好ましい。 In the above general formula (3), R 4 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms. Examples of the alkyl having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, t-butyl, pentyl, isopentyl, neopentyl, 2-pentyl, t-pentyl, hexyl, 2-hexyl and the like And examples of the cycloalkyl group having 5 or 6 carbon atoms include cyclopentyl, cyclohexyl, methylcyclopentyl, cyclopentylmethyl and the like. From the viewpoint of good heat resistance, R 4 is preferably ethyl and methyl, more preferably methyl.
 前記一般式(4)において、R5は水素原子又は炭素数1~4のアルキル基を表わす。炭素数1~4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、t-ブチル等が挙げられる。R5としては、工業的な入手が容易であり、耐熱性が良好であることから、水素原子が好ましい。 In the above general formula (4), R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl and t-butyl. As R 5 , a hydrogen atom is preferable because industrial availability is easy and heat resistance is good.
 本発明のポリシロキサン化合物において、前記一般式(1)で表わされるユニットの含量は、0.1~5mmol/gであることが好ましく、0.5~3mmol/gであることが更に好ましく、1~2.5mmol/gであることが最も好ましい。前記一般式(2)で表わされるユニットの含量は、前記一般式(1)~(4)で表わされるユニットの数の合計に対して0.01~0.8であることが好ましく、0.03~0.5であることが更に好ましく、0.05~0.3であることが最も好ましい。前記一般式(3)で表わされるユニットの含量は、前記一般式(1)~(4)で表わされるユニットの数の合計に対して0.03~0.8であることが好ましく、0.07~0.7であることが更に好ましく、0.15~0.6であることが最も好ましい。前記一般式(4)で表わされるユニットの含量は、前記一般式(1)~(4)で表わされるユニットの数の合計に対して0.01~0.6であることが好ましく、0.03~0.4であることが更に好ましく、0.05~0.25であることが最も好ましい。 In the polysiloxane compound of the present invention, the content of the unit represented by the general formula (1) is preferably 0.1 to 5 mmol / g, more preferably 0.5 to 3 mmol / g, and 1 Most preferably, it is -2.5 mmol / g. The content of the unit represented by the general formula (2) is preferably 0.01 to 0.8 with respect to the total of the number of units represented by the general formulas (1) to (4). More preferably, it is 03 to 0.5, and most preferably 0.05 to 0.3. The content of the unit represented by the general formula (3) is preferably 0.03 to 0.8 with respect to the total of the number of units represented by the general formulas (1) to (4). More preferably, it is 07 to 0.7, and most preferably 0.15 to 0.6. The content of the unit represented by the general formula (4) is preferably 0.01 to 0.6 with respect to the total of the number of units represented by the general formulas (1) to (4). It is more preferably 03 to 0.4, and most preferably 0.05 to 0.25.
 また、前記一般式(3)で表わされるユニットの数に対する、前記一般式(2)で表わされるユニットの数と前記一般式(4)で表わされるユニットの数の合計の比は、本発明の感光性樹脂組成物が用いられる用途により異なるが、ネガ型フォトレジストとして使用する場合には、0.3~5.0が好ましく、0.5~3が更に好ましく、1.5~2.5が最も好ましい。また、本発明の感光性樹脂組成物をレンズ、光導波路等の透明材料として使用する場合には、0.3~7.0が好ましく、0.3~5が更に好ましく、0.3~3が最も好ましい。 The ratio of the sum of the number of units represented by the general formula (2) to the number of units represented by the general formula (4) with respect to the number of units represented by the general formula (3) is Although it changes with uses for which a photosensitive resin composition is used, when using as a negative resist, 0.3-5.0 are preferable, 0.5-3 are more preferable, and 1.5-2.5. Is most preferred. Moreover, when using the photosensitive resin composition of this invention as transparent materials, such as a lens and an optical waveguide, 0.3-7.0 are preferable, 0.3-5 are still more preferable, 0.3-3 Is most preferred.
 本発明のポリシロキサン化合物の分子量があまりに小さい場合には、本発明の感光性樹脂組成物の塗布性や成膜性が不十分となり、分子量があまりに大きい場合には、ハンドリング性が低下することから、本発明のポリシロキサン化合物は、質量平均分子量で1000~100000であることが好ましく、2000~50000であることが更に好ましく、3000~20000であることが最も好ましい。なお、本発明において、質量平均分子量とは、テトラヒドロフラン(以下、THFという)を溶媒としてGPC分析を行った場合のポリスチレン換算の質量平均分子量をいう。 When the molecular weight of the polysiloxane compound of the present invention is too small, the coatability and film forming property of the photosensitive resin composition of the present invention become insufficient, and when the molecular weight is too large, the handling property decreases. The polysiloxane compound of the present invention preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 2,000 to 50,000, and most preferably 3,000 to 20,000. In the present invention, the mass average molecular weight refers to a mass average molecular weight in terms of polystyrene when GPC analysis is performed using tetrahydrofuran (hereinafter referred to as THF) as a solvent.
 本発明のポリシロキサン化合物は、その製法上、シラノール基(SiOH基)が残る場合があるが、シラノール基が存在することにより、本発明の感光性樹脂組成物の保存安定性が低下することから、本発明のポリシロキサン化合物中のシラノール基の含量は1.0mmol/g以下であることが好ましく、0.1mmol/g以下であることが更に好ましい。なお、シラノール基は、近赤外線分光光度計(特開2001-208683号公報、特開2003-35667号公報等を参照)や29Si-NMR(特開2007-217249公報等を参照)を使用した機器分析により定量することができる。シラノール基は、後述するようにハロシラン化合物や加水分解性エステルにより減少させることができる。 The polysiloxane compound of the present invention may have a silanol group (SiOH group) remaining in the production process, but the presence of the silanol group reduces the storage stability of the photosensitive resin composition of the present invention. The content of silanol groups in the polysiloxane compound of the present invention is preferably 1.0 mmol / g or less, more preferably 0.1 mmol / g or less. In addition, the silanol group used the near-infrared spectrophotometer (refer Unexamined-Japanese-Patent 2001-208683, Unexamined-Japanese-Patent 2003-35667 etc.), and 29 Si-NMR (refer Unexamined-Japanese-Patent 2007-217249 etc.). It can be quantified by instrumental analysis. The silanol group can be reduced by a halosilane compound or a hydrolyzable ester as described later.
 本発明のポリシロキサン化合物は、密着性が向上することから、更に下記一般式(5)で表わされるユニットを有することが好ましい。 The polysiloxane compound of the present invention preferably further has a unit represented by the following general formula (5) because adhesion is improved.
Figure JPOXMLDOC01-appb-C000014
(式中、Eはエポキシ基を有する基を表わす。)
Figure JPOXMLDOC01-appb-C000014
(Wherein, E represents a group having an epoxy group)
 前記一般式(5)において、Eはエポキシ基を有する基を表わし、エポキシ基を有する基としては、例えば、下記一般式(6)~(8)で表わされる基が挙げられ、密着性の向上効果が大きいことから、下記一般式(7)及び(8)で表わされる基が好ましく、下記一般式(7)で表わされる基が更に好ましい。 In the general formula (5), E represents a group having an epoxy group, and examples of the group having an epoxy group include groups represented by the following general formulas (6) to (8), and the adhesion is improved Groups having the following general formulas (7) and (8) are preferable, and groups having the following general formula (7) are more preferable, because the effect is large.
Figure JPOXMLDOC01-appb-C000015
(式中、R6は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わし、mは0又は1の数を表わす。)
Figure JPOXMLDOC01-appb-C000015
(Wherein, R 6 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group, and m represents a number of 0 or 1).
Figure JPOXMLDOC01-appb-C000016
(式中、R7は水素原子又はメチル基を表わし、R8は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わし、nは0又は1の数わす。)
Figure JPOXMLDOC01-appb-C000016
(Wherein, R 7 represents a hydrogen atom or a methyl group, R 8 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group, and n is 0 or 1).
Figure JPOXMLDOC01-appb-C000017
(式中、R9は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。)
Figure JPOXMLDOC01-appb-C000017
(Wherein, R 9 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group)
 前記一般式(6)において、R6は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。炭素数1~5のアルキレン基としては、メチレン、エチレン、プロピレン、ブチレン及びペンテンが挙げられ、耐熱性からは炭素数が少ないことが好ましいが、工業的な入手の容易さから、エチレン、プロピレン及びブチレンが好ましく、エチレン及びプロピレンが更に好ましく、エチレンが最も好ましい。R6において有していてもよい置換アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル等が挙げられるが、耐熱性からは、置換アルキル基を有しないことが好ましい。mは0又は1の数を表わし、原料の入手が容易であることから、mは1の数が好ましい。 In the above general formula (6), R 6 represents an alkylene group of 1 to 5 carbon atoms which may have a substituted alkyl group. Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and ethylene is most preferred. Examples of the substituted alkyl group which may be possessed in R 6 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred. m is preferably a number of 1 because m represents a number of 0 or 1 and the availability of raw materials is easy.
 前記一般式(7)において、R7は水素原子又はメチル基を表わし、R8は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。炭素数1~5のアルキレン基としては、メチレン、エチレン、プロピレン、ブチレン及びペンテンが挙げられ、耐熱性からは炭素数が少ないことが好ましいが、工業的な入手の容易さから、エチレン、プロピレン及びブチレンが好ましく、エチレン及びプロピレンが更に好ましく、エチレンが最も好ましい。R8において有していてもよい置換アルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル等が挙げられるが、耐熱性からは、置換アルキル基を有しないことが好ましい。nは0又は1の数を表わし、原料の入手が容易であることから、nは1の数が好ましい。 In the above general formula (7), R 7 represents a hydrogen atom or a methyl group, and R 8 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group. Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, butylene and pentene. From the viewpoint of heat resistance, it is preferable that the number of carbon atoms is small. However, ethylene, propylene and Butylene is preferred, ethylene and propylene are more preferred, and ethylene is most preferred. Examples of the substituted alkyl group which may be possessed in R 8 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and the like, but from the viewpoint of heat resistance, it does not have a substituted alkyl group. Is preferred. n is preferably a number of 1 because n represents a number of 0 or 1 and the availability of raw materials is easy.
 本発明のポリシロキサン化合物が更に、前記一般式(5)で表わされるユニットを有する場合、前記一般式(5)で表わされるユニットの含量があまりに少ない場合には、密着性の向上効果が少なく、またあまりに多い場合には、本発明の感光性樹脂組成物を硬化させた硬化物の表面にタックが出る場合があることから、前記一般式(5)で表わされるユニットの含量は、エポキシ当量で2000~50000であることが好ましく、3000~20000であることが好ましい。 When the polysiloxane compound of the present invention further has a unit represented by the general formula (5), the effect of improving the adhesion is small when the content of the unit represented by the general formula (5) is too small, Moreover, since the tack may appear on the surface of a cured product obtained by curing the photosensitive resin composition of the present invention when the content is too large, the content of the unit represented by the general formula (5) is an epoxy equivalent It is preferably 2000 to 50000, and more preferably 3000 to 20000.
 本発明のポリシロキサン化合物は、下記一般式(1a)~(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物の加水分解縮合反応、いわゆるゾルゲル反応により得ることができる。 The polysiloxane compound of the present invention can be obtained by a hydrolysis condensation reaction of an alkoxysilane compound or a halosilane compound represented by the following general formulas (1a) to (4a), so-called sol-gel reaction.
Figure JPOXMLDOC01-appb-C000018
(式中、R1及びR2は前記一般式(1)と同義であり、X1はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
Figure JPOXMLDOC01-appb-C000018
(Wherein, R 1 and R 2 are as defined in the general formula (1), and X 1 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
Figure JPOXMLDOC01-appb-C000019
(式中、R3は前記一般式(2)と同義であり、X2はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
Figure JPOXMLDOC01-appb-C000019
(Wherein, R 3 has the same meaning as in the above general formula (2), and X 2 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
Figure JPOXMLDOC01-appb-C000020
(式中、R4は前記一般式(3)と同義であり、X3はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
Figure JPOXMLDOC01-appb-C000020
(Wherein, R 4 has the same meaning as in the above general formula (3), and X 3 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
Figure JPOXMLDOC01-appb-C000021
(式中、R5は前記一般式(4)と同義であり、X4はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
Figure JPOXMLDOC01-appb-C000021
(Wherein, R 5 has the same meaning as in the above general formula (4), and X 4 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
 前記一般式(1a)で表わされるアルコキシシラン化合物としては、例えば、(アクリロキシメチル)トリメトシキシシラン、(2-アクリロキシプロピル)トリメトシキシシラン、(3-アクリロキシプロピル)トリメトシキシシラン、(3-アクリロキシプロピル)トリエトシキシシラン、(メタクリロキシメチル)トリメトシキシシラン、(2-メタクリロキシプロピル)トリメトシキシシラン、(3-メタクリロキシプロピル)トリメトシキシシラン、(3-メタクリロキシプロピル)トリエトシキシシランが挙げられ、前記一般式(1a)で表わされるハロシラン化合物としては、例えば、3-アクリロキシプロピル)トリクロロシラン、(3-メタクリロキシプロピル)トリクロロシラン等が挙げられる。前記一般式(1a)で表わされるアルコキシシラン化合物又はハロシラン化合物としては、反応性が良好で反応の制御が容易であることから、(3-メタクリロキシプロピル)トリメトシキシシラン、及び(3-メタクリロキシプロピル)トリエトシキシシランが好ましく、(3-メタクリロキシプロピル)トリメトシキシシランが更に好ましい。 Examples of the alkoxysilane compound represented by the general formula (1a) include (acryloxymethyl) trimethoxysilane, (2-acryloxypropyl) trimethoxysilane, and (3-acryloxypropyl) trimethoxysilane. , (3-acryloxypropyl) triethoxysilane, (methacryloxymethyl) trimethoxysilane, (2-methacryloxypropyl) trimethoxysilane, (3-methacryloxypropyl) trimethoxysilane, (3- Methacryloxypropyl) triethoxysilane is mentioned, and as the halosilane compound represented by the above general formula (1a), for example, 3-acryloxypropyl) trichlorosilane, (3-methacryloxypropyl) trichlorosilane and the like can be mentioned . As the alkoxysilane compound or halosilane compound represented by the above general formula (1a), (3-methacryloxypropyl) trimethoxysilane, and (3-meth Roxypropyl) triethoxysilane is preferred, and (3-methacryloxypropyl) trimethoxysilane is more preferred.
 前記一般式(2a)で表わされるアルコキシシラン化合物としては、例えば、フェニルトリメトシキシシラン、フェニルトリエトシキシシラン、フェニルトリイソプロポキシシラン、4-メチルフェニルトリメトシキシシラン、4-メチルフェニルトリエトシキシシラン、4-メチルフェニルトリイソプロポキシシラン等が挙げられ、前記一般式(2a)で表わされるハロシラン化合物としては、例えば、フェニルトリクロロシラン、4-メチルフェニルトリクロロシラン等が挙げられる。前記一般式(2a)で表わされるアルコキシシラン化合物又はハロシラン化合物としては、反応性が良好で反応の制御が容易であることから、フェニルトリメトシキシシラン、及びフェニルトリエトシキシシランが好ましく、フェニルトリメトシキシシランが更に好ましい。 Examples of the alkoxysilane compound represented by the above general formula (2a) include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriisopropoxysilane, 4-methylphenyltrimethoxysilane, 4-methylphenyltriethoxysilane. Sisilane, 4-methylphenyltriisopropoxysilane and the like can be mentioned, and examples of the halosilane compound represented by the general formula (2a) include phenyltrichlorosilane, 4-methylphenyltrichlorosilane and the like. As the alkoxysilane compound or the halosilane compound represented by the above general formula (2a), phenyltrimethoxysilane and phenyltriethoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
 前記一般式(3a)で表わされるアルコキシシラン化合物としては、例えば、ジメチルジメトシキシシラン、ジメチルジエトシキシシラン、ジメチルジイソプロポキシシラン、ジエチルフェニルジメトシキシシラン、ジエチルジエトシキシシラン、ジエチルジイソプロポキシシラン、ジプロピルジメトシキシシラン、ジプロピルジエトシキシシラン、ジプロピルジイソプロポキシシラン等が挙げられ、前記一般式(3a)で表わされるハロシラン化合物としては、例えば、ジメチルジクロロシラン、ジエチルジクロロシラン、ジプロピルジクロロシラン等が挙げられる。前記一般式(2a)で表わされるアルコキシシラン化合物又はハロシラン化合物としては、反応性が良好で反応の制御が容易であることから、ジメチルジメトシキシシラン、及びジメチルジエトシキシシランが好ましく、ジメチルジメトシキシシランが更に好ましい。 The alkoxysilane compound represented by the above general formula (3a) includes, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, diethylphenyldimethoxysilane, diethyldiethoxysilane, and diethyldiethoxysilane. Isopropoxysilane, dipropyldimethoxysilane, dipropyldietoxysilane, dipropyldiisopropoxysilane and the like can be mentioned, and as the halosilane compound represented by the general formula (3a), for example, dimethyldichlorosilane, diethyl Dichlorosilane, dipropyl dichlorosilane and the like can be mentioned. As the alkoxysilane compound or the halosilane compound represented by the above general formula (2a), dimethyldimethoxysilane and dimethyldietoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
 前記一般式(4a)で表わされるアルコキシシラン化合物としては、例えば、ジフェニルジメトシキシシラン、ジフェニルジエトシキシシラン、ジフェニルジイソプロポキシシラン、ビス(4-メチルフェニル)ジメトシキシシラン、ビス(4-メチルフェニル)ジエトシキシシラン、ビス(4-メチルフェニル)ジイソプロポキシシラン等が挙げられ、前記一般式(4a)で表わされるハロシラン化合物としては、例えば、ジフェニルジクロロシラン、ビス(4-メチルフェニル)ジクロロシラン等が挙げられる。前記一般式(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物としては、反応性が良好で反応の制御が容易であることから、ジフェニルジメトシキシシラン、及びジフェニルジエトシキシシランが好ましく、ジフェニルジメトシキシシランが更に好ましい。 Examples of the alkoxysilane compound represented by the above general formula (4a) include diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiisopropoxysilane, bis (4-methylphenyl) dimethoxysilane, bis (4) And the like. Examples of the halosilane compound represented by the general formula (4a) include diphenyldichlorosilane, bis (4-methylphenyl) dietoxysilane, bis (4-methylphenyl) diisopropoxysilane and the like. And phenyl) dichlorosilane and the like. As the alkoxysilane compound or the halosilane compound represented by the above general formula (4a), diphenyldimethoxysilane and diphenyldietoxysilane are preferable because of their good reactivity and easy control of the reaction. More preferred is tosixisilane.
 前記一般式(1a)~(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物を加水分解縮合する場合、溶媒中で、酸又は塩基等の触媒を使用して反応することが好ましい。反応に使用できる溶媒としては、水、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、トルエン、キシレン、シクロヘキサン等が挙げられ、これらの一種を用いることも二種以上を混合して用いることも出来る。水以外の溶媒を使用するためには、加水分解縮合反応を促進するために適量の水を添加して反応を行うことが好ましい。 When the alkoxysilane compounds or halosilane compounds represented by the general formulas (1a) to (4a) are hydrolyzed and condensed, it is preferable to react in a solvent using a catalyst such as an acid or a base. Examples of the solvent which can be used for the reaction include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, toluene, xylene, cyclohexane and the like, and one of these is used It is also possible to use a mixture of two or more. In order to use a solvent other than water, it is preferable to carry out the reaction by adding an appropriate amount of water in order to accelerate the hydrolytic condensation reaction.
 アルコキシシラン化合物やハロシラン化合物の加水分解縮合反応では、アルコキシシリル基やハロシリル基が水によって加水分解しシラノール基が生成し、この生成したシラノール基同士、又はシラノール基とアルコキシル基若しくはクロロシラン基とが縮合してシロキサン基(SiOSi基)が生成する。 In the hydrolysis condensation reaction of an alkoxysilane compound or a halosilane compound, an alkoxysilyl group or a halosilyl group is hydrolyzed by water to form a silanol group, and the generated silanol groups are condensed, or the silanol group and an alkoxyl group or a chlorosilane group are condensed. As a result, a siloxane group (SiOSi group) is formed.
 前記の加水分解縮合反応の触媒としては、塩酸、リン酸、硫酸等の無機酸類;ギ酸、酢酸、シュウ酸、クエン酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン等のアミン化合物(有機塩基)類等が挙げられ、これらの一種を用いることも、二種以上を併用することも出来る。加水分解縮合反応の温度は、溶媒の種類、触媒の種類及び量等により変わるが、0~80℃が好ましく、5~50℃が更に好ましく、8~30℃が最も好ましい。 As the catalyst for the above-mentioned hydrolytic condensation reaction, inorganic acids such as hydrochloric acid, phosphoric acid and sulfuric acid; formic acid, acetic acid, oxalic acid, citric acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, monoisopropyl phosphate Organic acids such as; inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia etc .; amine compounds (organic bases) such as trimethylamine, triethylamine, monoethanolamine, diethanolamine etc .; Or two or more kinds in combination. The temperature of the hydrolytic condensation reaction varies depending on the type of solvent, type and amount of catalyst, etc., but it is preferably 0 to 80 ° C., more preferably 5 to 50 ° C., and most preferably 8 to 30 ° C.
 前記一般式(1a)~(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物を加水分解縮合する場合、それぞれのアルコキシシラン化合物又はハロシラン化合物を別々に反応させてもよいし、混合してから反応させてもよいが、反応物のバラツキが少なく安定して生産できることから、混合してから反応することが好ましい。 When the alkoxysilane compounds or halosilane compounds represented by the general formulas (1a) to (4a) are hydrolyzed and condensed, the respective alkoxysilane compounds or halosilane compounds may be separately reacted or mixed and then reacted. The reaction may be carried out after mixing since reaction can be stably performed with little variation in the reaction products.
 本発明のポリシロキサン化合物が更に、前記一般式(5)で表わされるユニットを有する場合は、前記一般式(1a)~(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物に加えて、下記一般式(5a)で表わされるアルコキシシラン化合物又はハロシラン化合物を加水分解縮合すればよい。 When the polysiloxane compound of the present invention further has a unit represented by the general formula (5), in addition to the alkoxysilane compound or the halosilane compound represented by the general formulas (1a) to (4a), the following general formula The alkoxysilane compound or the halosilane compound represented by (5a) may be hydrolyzed and condensed.
Figure JPOXMLDOC01-appb-C000022
(式中、Eは上記一般式(5)と同義であり、X5はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
Figure JPOXMLDOC01-appb-C000022
(Wherein, E is as defined in the above general formula (5), and X 5 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
 前記一般式(5a)で表わされるアルコキシシラン化合物又はハロシラン化合物としては、例えば、3,4-エポキシブチルトリメトキシシラン、2-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-グリシドキシ-1-メチルエチルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3,4-エポキシシクロヘキシルトリメトキシシラン、3,4-エポキシシクロヘキシルトリエトキシシラン、2-(3,4-エポキシ-4-メチルシクロヘキシル)プロピルトリメトキシシラン等が挙げられる。 Examples of the alkoxysilane compound or halosilane compound represented by the general formula (5a) include 3,4-epoxybutyltrimethoxysilane, 2-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2-glycidoxy-1-methylethyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy Silane, 3,4-epoxycyclohexyltrimethoxysilane, 3,4-epoxycyclohexyltriethoxysilane, 2- (3,4-epoxy-4-methylcyclohexyl) propyltrimethoxysilane and the like can be mentioned.
 本発明のポリシロキサン化合物を、アルコキシシラン化合物又はハロシラン化合物の加水分解縮合反応により得る場合には、製法上、シラノール基が残り、そのシラノール基が存在することにより、本発明の感光性樹脂組成物の保存安定性が低下することから、シラノール基を封止することが好ましい。シラノール基を封止する場合は、トリメチルクロロシラン、ヘキサメチルジシラザンによりトリメチルシリル化する方法、オルト蟻酸エステル、オルト酢酸エステル、テトラアルコキシメタン、炭酸エステル等の加水分解性エステル化合物によりアルコキシル化する方法等が挙げられる。 In the case where the polysiloxane compound of the present invention is obtained by the hydrolysis condensation reaction of an alkoxysilane compound or a halosilane compound, the photosensitive resin composition of the present invention is obtained because the silanol group remains and the silanol group is present. It is preferable to seal the silanol group because the storage stability of When a silanol group is sealed, a method of trimethylsilylating with trimethylchlorosilane, hexamethyldisilazane, a method of alkoxylating with a hydrolysable ester compound such as ortho formate ester, ortho acetate ester, tetraalkoxymethane, carbonate ester, etc. It can be mentioned.
 次に、光ラジカル発生剤について説明する。本発明において光ラジカル発生剤とは、エネルギー線照射によりラジカル重合を開始させることが可能な化合物をいい、エネルギー線としては、紫外線、電子線、X線、放射線、高周波等が挙げられる。光ラジカル発生剤としては、アセトフェノン系光ラジカル発生剤、ベンジル系光ラジカル発生剤、ベンゾフェノン系光ラジカル発生剤、チオキサントン系光ラジカル発生剤、アシルホスフィンオキサイド系光ラジカル発生剤等が挙げられる。光ラジカル発生剤は、1種のみを用いてもよく、2種以上を併用してもよい。 Next, the photoradical generator is described. In the present invention, a photo radical generator is a compound capable of initiating radical polymerization by energy beam irradiation, and examples of energy beam include ultraviolet light, electron beam, X-ray, radiation, high frequency and the like. Examples of photo radical generators include acetophenone photo radical generators, benzyl photo radical generators, benzophenone photo radical generators, thioxanthone photo radical generators, and acyl phosphine oxide photo radical generators. The photo radical generator may be used alone or in combination of two or more.
 前記アセトフェノン系光ラジカル発生剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシメチル-2-メチルプロピオフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、p-ジメチルアミノアセトフェノン、p-ターシャリブチルジクロロアセトフェノン、p-ターシャリブチルトリクロロアセトフェノン、p-アジドベンザルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、2-ヒドロキシ-2-メチル-1-[4-ビニル-(1-メチルビニル)フェニル]プロパノンのオリゴマー等が挙げられる。 Examples of the acetophenone photoradical generator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methylpropiophenone, and the like. -Hydroxymethyl-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, p-dimethylaminoacetophenone, p-tert-butyl dichloroacetophenone, p-tert-butyl trichloroacetophenone, p-Azidobenzalacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1,2-benzyl-2-dimethylamino-1- (4 -Morpholino phenyl)-pig 1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether, 2-hydroxy-2-methyl-1- [4-vinyl- (1-methylvinyl) phenyl Examples of propanone oligomers and the like can be mentioned.
 前記ベンジル系光ラジカル発生剤としては、例えば、ジフェニルジケトン(ベンジルともいう)、ビス(4-メトキシフェニル)ジケトン(アニシルともいう)等が挙げられる。 Examples of the benzyl-based photoradical generator include diphenyl diketone (also referred to as benzyl), bis (4-methoxyphenyl) diketone (also referred to as anisyl), and the like.
 前記ベンゾフェノン系光ラジカル発生剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ミヒラーケトン、4,4’-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルスルフィド等が挙げられる。 Examples of the benzophenone-based photoradical generator include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide. Etc.
 前記チオキサントン系光ラジカル発生剤としては、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジエチルチオオキサントン等が挙げられる。 Examples of the thioxanthone photoradical generator include thioxanthone, 2-methyl thioxanthone, 2-ethyl thioxanthone, 2-chloro thioxanthone, 2-isopropyl thioxanthone, and 2,4-diethyl thioxanthone.
 前記アシルホスフィンオキサイド系光ラジカル発生剤としては、例えば、2-メチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル等のモノアシルフォスフィンオキサイド系光ラジカル発生剤;ビス(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド系光ラジカル発生剤があげられる。 Examples of the acyl phosphine oxide photoradical generator include 2-methylbenzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,4,6-trimethyl benzoyl phenyl phosphine acid methyl ester Monoacyl phosphine oxide based photo radical generators such as: bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, bis (2,6-dimethoxy) Examples include bisacylphosphine oxide photoradical generators such as benzoyl) -2,4,4-trimethylpentylphosphine oxide.
 本発明の感光性樹脂組成物を硬化させて有機薄膜トランジスタ用ゲート絶縁膜として用いる場合には、前記光ラジカル発生剤としては、高い電荷移動度が得られることから、アシルホスフィンオキサイド系光ラジカル発生剤が好ましく、モノアシルフォスフィンオキサイド系光ラジカル発生剤が更に好ましく、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドが最も好ましい。2種以上の光ラジカル発生剤を併用する場合には、少なくとも1種がアシルホスフィンオキサイド系光ラジカル発生剤であることが好ましい。 When the photosensitive resin composition of the present invention is cured and used as a gate insulating film for an organic thin film transistor, as the photo radical generator, a high charge mobility can be obtained, so an acylphosphine oxide type photo radical generator Monoacyl phosphine oxide photo radical generators are more preferred, and 2,4,6-trimethyl benzoyl diphenyl phosphine oxide is most preferred. When using 2 or more types of photo radical generating agent together, it is preferable that at least 1 type is an acyl phosphine oxide type photo radical generating agent.
 また、本発明の感光性樹脂組成物を硬化させてレンズ、導波路等の透明材料として用いる場合には、前記光ラジカル発生剤としては、透明性の高い硬化物が得られることから、アセトフェノン系光ラジカル発生剤、及びアシルホスフィンオキサイド系光ラジカル発生剤が好ましく、アセトフェノン系光ラジカル発生剤が更に好ましく、1-ヒドロキシシクロヘキシルフェニルケトンが最も好ましい。2種以上の光ラジカル発生剤を併用する場合には、少なくとも1種がアセトフェノン系光ラジカル発生剤であることが好ましい。 In addition, when the photosensitive resin composition of the present invention is cured and used as a transparent material for lenses, waveguides, etc., a cured product having high transparency can be obtained as the photoradical generator, and thus an acetophenone-based material. Photoradical generators and acylphosphine oxide photoradical generators are preferred, acetophenone photoradical generators are more preferred, and 1-hydroxycyclohexyl phenyl ketone is most preferred. When two or more photoradical generators are used in combination, at least one is preferably an acetophenone photoradical generator.
 本発明の感光性樹脂組成物中の光ラジカル発生剤の含有量は、光ラジカル発生剤の種類、本発明の感光性樹脂組成物中のラジカル重合性基の含有量、活性エネルギー線の種類と強度等により変わるが、本発明のポリシロキサン化合物100質量部に対して、0.1~10質量部であることが好ましく、0.2~7質量部であることが更に好ましく、0.3~5質量部であることが最も好ましい。前記光ラジカル発生剤の含有量が0.1質量部未満であると、硬化が不十分となる場合があり、10質量部を超えると、配合量に見合う増量効果が得られないばかりか、却って耐熱性、透明性等に悪影響を及ぼす場合がある。 The content of the photoradical generator in the photosensitive resin composition of the present invention is the kind of the photoradical generator, the content of the radically polymerizable group in the photosensitive resin composition of the present invention, and the type of active energy ray Although it changes with strength etc., it is preferable that it is 0.1-10 mass parts with respect to 100 mass parts of polysiloxane compounds of this invention, It is still more preferable that it is 0.2-7 mass parts, 0.3- Most preferably, it is 5 parts by mass. If the content of the photo radical generating agent is less than 0.1 parts by mass, curing may be insufficient, and if it exceeds 10 parts by mass, not only the increasing effect corresponding to the compounding amount can not be obtained, but rather Heat resistance, transparency, etc. may be adversely affected.
 本発明の感光性樹脂組成物は、更に、有機溶剤を含有してもよい。このような有機溶剤としては、例えば、ベンゼン、キシレン、トルエン、エチルベンゼン、スチレン、トリメチルベンゼン、ジエチルベンゼン、テトラヒドロナフタレン等の芳香族炭化水素化合物;ペンタン、イソペンタン、ヘキサン、イソヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン、イソドデカン、シクロヘキサン、メチルシクロヘキサン、メンタン、デカヒドロナフタレン等の飽和炭化水素化合物;ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、ジプロピルケトン、メチルアミルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル、酢酸プロピル、酢酸シクロヘキシル等のエステル系溶媒;プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶媒等が挙げられる。これらの溶剤は、単独あるいは2種類以上を組み合わせて用いることができる。 The photosensitive resin composition of the present invention may further contain an organic solvent. As such an organic solvent, for example, aromatic hydrocarbon compounds such as benzene, xylene, toluene, ethylbenzene, styrene, trimethylbenzene, diethylbenzene, tetrahydronaphthalene; pentane, isopentane, hexane, isohexane, heptane, isoheptane, octane, isooctane Saturated hydrocarbon compounds such as nonane, isononane, decane, isodecane, isododecane, cyclohexane, methylcyclohexane, mentane, decahydronaphthalene; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, Ether solvents such as 1,4-dioxane; acetone, methyl ethyl ketone, Ketone solvents such as isobutyl ketone, diethyl ketone, dipropyl ketone, methyl amyl ketone and cyclohexanone; ester solvents such as ethyl acetate, methyl acetate, butyl acetate, propyl acetate and cyclohexyl acetate; propylene glycol monomethyl ether acetate, ethylene glycol Examples thereof include glycol ester solvents such as monoethyl ether acetate, dipropylene glycol methyl ether acetate, and diethylene glycol monoethyl ether acetate. These solvents can be used alone or in combination of two or more.
 本発明の感光性樹脂組成物を塗布法や印刷法により使用する場合、上記有機溶剤の含有量は、本発明のポリシロキサン化合物100質量部に対して、5~200質量部であることが好ましく、10~100質量部であることが更に好ましい。 When the photosensitive resin composition of the present invention is used by a coating method or printing method, the content of the organic solvent is preferably 5 to 200 parts by mass with respect to 100 parts by mass of the polysiloxane compound of the present invention And 10 to 100 parts by mass.
 本発明の感光性樹脂組成物は、前記有機溶剤のほか、必要に応じて、光増感剤、可塑剤、チクソ性付与剤、光酸発生剤、熱酸発生剤、分散剤、消泡剤、顔料、染料等の任意成分を配合することができる。これらの任意成分の配合量は、本発明のポリシロキサン化合物100質量部に対して、合計で0.001~1質量部であることが好ましい。 The photosensitive resin composition of the present invention may further contain, if necessary, a photosensitizer, a plasticizer, a thixotropy-imparting agent, a photoacid generator, a thermal acid generator, a dispersant, and an antifoamer, in addition to the organic solvent. And optional components such as pigments and dyes can be blended. The total content of these optional components is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the polysiloxane compound of the present invention.
 本発明の感光性樹脂組成物は、基板等の対象物上に本発明の感光性樹脂組成物の層を形成した後に、活性エネルギー線を照射することにより硬化する。本発明の感光性樹脂組成物の層を形成する方法は、特に限定されず、例えば、浸漬塗工、フロー塗工、刷毛塗工、スプレー塗工、押出塗工、スピン塗工、ロール塗工、バー塗工等を使用することができ、スクリーン塗工やロール転写等の方法によればパターニングされた膜形成することができる。本発明の感光性樹脂組成物の層が形成される対象物としては、特に限定されず、用途に応じて、シリコン基板、ガラス基板、金属板、プラスチックス板等が用いられる。対象物上に形成される本発明の感光性樹脂組成物の層の厚さは、用途によって異なるが、半導体素子の絶縁膜や有機薄膜トランジスタのゲート絶縁膜として使用する場合は10nm~10μm、光導波路のコア部分として使用する場合は1~200μmが目安となる。 The photosensitive resin composition of the present invention is cured by irradiating an active energy ray after forming a layer of the photosensitive resin composition of the present invention on an object such as a substrate. The method of forming the layer of the photosensitive resin composition of the present invention is not particularly limited, and, for example, dip coating, flow coating, brush coating, spray coating, extrusion coating, spin coating, roll coating Bar coating or the like can be used, and a patterned film can be formed by a method such as screen coating or roll transfer. It does not specifically limit as a target object in which the layer of the photosensitive resin composition of this invention is formed, A silicon substrate, a glass substrate, a metal plate, a plastics board etc. are used according to a use. The thickness of the layer of the photosensitive resin composition of the present invention formed on the object varies depending on the application, but 10 nm to 10 μm when used as an insulating film of a semiconductor element or a gate insulating film of an organic thin film transistor In the case of using as a core portion of 1 to 200 μm is a standard.
 本発明の感光性樹脂組成物が有機溶剤を含有する場合は、本発明の感光性樹脂組成物の層を形成した後に、層中の有機溶剤を除去する目的で加熱処理(プリベークという場合がある)を行う。加熱処理の条件は、使用した有機溶剤の沸点や蒸気圧、本発明の感光性樹脂組成物の層の厚さ、層を形成した対象物の耐熱温度に応じて、適宜選択されるが、60~140℃で30秒~10分の加熱処理が目安となる。 When the photosensitive resin composition of the present invention contains an organic solvent, heat treatment (pre-baking may be performed for the purpose of removing the organic solvent in the layer after forming the layer of the photosensitive resin composition of the present invention )I do. The conditions of the heat treatment are appropriately selected depending on the boiling point and vapor pressure of the used organic solvent, the thickness of the layer of the photosensitive resin composition of the present invention, and the heat resistant temperature of the object on which the layer is formed. A heat treatment of 30 seconds to 10 minutes at ̃140 ° C. is a standard.
 感光性樹脂組成物の層に活性エネルギー線を照射する光源としては、超高圧水銀灯、DeepUVランプ、高圧水銀灯、低圧水銀灯、メタルハライドランプ、エキシマレーザー等が挙げられ、これらの光源は、光ラジカル発生剤や増感剤の感光波長に応じて適宜選択される。活性エネルギー線の照射エネルギーは、感光性樹脂組成物の層の厚さや光ラジカル発生剤の種類や使用量により適宜選択される。 As a light source which irradiates an active energy ray to the layer of the photosensitive resin composition, an ultra-high pressure mercury lamp, Deep UV lamp, high pressure mercury lamp, low pressure mercury lamp, metal halide lamp, excimer laser, etc. may be mentioned. It is suitably selected according to the photosensitive wavelength of the sensitizer. The irradiation energy of the active energy ray is appropriately selected according to the thickness of the layer of the photosensitive resin composition and the type and amount of use of the photoradical generator.
 活性エネルギー線を照射することにより感光性樹脂組成物の層が硬化するが、硬化物の層と基板等の対象物との密着性を向上させるために加熱処理(ポストベークという場合がある)をしてもよい。このような加熱処理は、好ましくは、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下に、60~200℃の温度で1分~2時間行うことが好ましい。 The layer of the photosensitive resin composition is cured by irradiation with an active energy ray, but heat treatment (sometimes referred to as post-baking) is performed to improve the adhesion between the layer of the cured product and an object such as a substrate. You may Such heat treatment is preferably performed at a temperature of 60 to 200 ° C. for 1 minute to 2 hours in an inert gas atmosphere such as nitrogen, helium, argon or the like.
 本発明の感光性樹脂組成物から得られる塗膜はフォトリソグラフィが可能であり、ネガ型フォトレジスト(特に永久レジスト)として使用することができる。本発明の感光性樹脂組成物をネガ型フォトレジストとして使用する場合は、本発明の感光性樹脂組成物を基板等に塗布して形成された塗膜に活性エネルギー線を照射する場合に、感光性樹脂組成物の塗膜をフォトマスクで被覆して活性エネルギー線を選択的に照射した後、遮光した部分(未硬化部分)を有機溶媒や現像液等に溶解・分散させて除去すること(現像という場合がある)により、パターニングされた硬化膜を形成することができる。遮光した部分を溶解・分散させる有機溶媒としは、例えば、アルカリ性水溶液、酸性水溶液、アセトン、メチルエチルケトン、メチルイソブチルケトン、エタノール、イソプロパノール、n―プロパノール、ベンゼン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル、トルエン、o―キシレン、m-キシレン、p-キシレン、1,3,5-トリメチルベンゼン、1,3,4-トリメチルベンゼン等を挙げることができる。 The coating film obtained from the photosensitive resin composition of the present invention can be used for photolithography, and can be used as a negative photoresist (particularly, a permanent resist). When the photosensitive resin composition of the present invention is used as a negative photoresist, the photosensitive resin composition of the present invention is applied to a substrate or the like to form a coating film, which is exposed to active energy rays. The coating film of the base resin composition is coated with a photo mask and selectively irradiated with active energy rays, and then the light-shielded portion (uncured portion) is dissolved and dispersed in an organic solvent, developer, etc. By developing), a patterned cured film can be formed. Examples of the organic solvent which dissolves and disperses the light-shielded part are alkaline aqueous solution, acidic aqueous solution, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethanol, isopropanol, n-propanol, benzene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Ethyl acetate, butyl acetate, toluene, o-xylene, m-xylene, p-xylene, 1,3,5-trimethylbenzene, 1,3,4-trimethylbenzene and the like can be mentioned.
 本発明の感光性樹脂組成物により得られる硬化膜は、透明性、絶縁性、高屈折率、耐熱性、耐候性、耐薬品性等に優れることから、LED等の封止材料、光導波路、光学レンズ、半導体装置の絶縁膜として有用である。特に、トランジスタのゲート絶縁膜として使用した場合にキャリヤーがトラップされて電荷移動度が低下するという問題が少なく、有機薄膜トランジスタのゲート絶縁膜として極めて有用である。 The cured film obtained by the photosensitive resin composition of the present invention is excellent in transparency, insulation, high refractive index, heat resistance, weather resistance, chemical resistance, etc. It is useful as an optical lens and an insulating film of a semiconductor device. In particular, when used as a gate insulating film of a transistor, there is little problem that carriers are trapped and charge mobility is reduced, and it is extremely useful as a gate insulating film of an organic thin film transistor.
 以下に実施例及び比較例を挙げて、本発明を更に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be further described with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto.
〔製造例A:ポリシロキサン化合物Aの製造〕
 撹拌器、温度計及び還流器を有する反応容器に、3-メタクリロキシプロピルトリメトキシシラン124.2g(0.5モル)、フェニルトリメトキシシラン39.7g(0.2モル)、ジメチルジメトキシシラン132.2g(1.1モル)、ジフェニルジメトキシシラン75.3g(0.2モル)及び溶剤として1-ブタノール300gを仕込んだ。撹拌し、70℃まで加熱した後、0.12%リン酸水溶液100部を滴下し、更に80℃で1時間反応した。次いで水酸化ナトリウム水溶液を添加して反応液を中和後、80℃で1時間反応した。トルエン300gを添加した後、撹拌を停止して分離した水含有層を除去した。トルエン層を水1000gで3回水洗した後、窒素気流下、40℃で減圧して溶媒を留去した。これに、オルトギ酸トリエチル300gを添加し、130℃で1時間処理した後、窒素気流下、80℃で減圧して未反応オルトギ酸トリエチル等の揮発性成分を留去し、本発明のポリシロキサン化合物Aを得た。GPCによる分析の結果、質量平均分子量は7500であり、1H-NMRによる分析の結果、シラノール基は検出されなかった。
Preparation Example A Preparation of Polysiloxane Compound A
In a reaction vessel having a stirrer, a thermometer and a refluxer, 124.2 g (0.5 mol) of 3-methacryloxypropyltrimethoxysilane, 39.7 g (0.2 mol) of phenyltrimethoxysilane, dimethyldimethoxysilane 132 2 g (1.1 mol), 75.3 g (0.2 mol) of diphenyldimethoxysilane and 300 g of 1-butanol as a solvent were charged. After stirring and heating to 70 ° C., 100 parts of a 0.12% aqueous phosphoric acid solution was dropped, and the reaction was further performed at 80 ° C. for 1 hour. Then, an aqueous solution of sodium hydroxide was added to neutralize the reaction liquid, and then reacted at 80 ° C. for 1 hour. After adding 300 g of toluene, the stirring was stopped and the separated water-containing layer was removed. The toluene layer was washed three times with 1000 g of water, and then the solvent was distilled off under reduced pressure at 40 ° C. in a nitrogen stream. To this, 300 g of triethyl orthoformate is added, and the mixture is treated at 130 ° C. for 1 hour, then the pressure is reduced at 80 ° C. under nitrogen stream to distill off volatile components such as unreacted triethyl orthoformate. Compound A was obtained. As a result of analysis by GPC, the mass average molecular weight was 7500, and as a result of analysis by 1 H-NMR, no silanol group was detected.
〔製造例B~I:ポリシロキサン化合物B~Iの製造〕
 製造例Aにおいて、表1に示すアルコキシシラン化合物を用いる以外は製造例Aと同様の操作を行い、表1に示すポリシロキサン化合物B~Iを合成した。表中の数値は、アルコキシシラン化合物の反応モル比を表わす。表1のポリシロキサン化合物のうち、ポリシロキサン化合物A~Eは本発明のポリシロキサン化合物であり、ポリシロキサン化合物F~Iは比較のポリシロキサン化合物である。また、表2に、質量平均分子量及びシラノール基含量の分析結果を示す。
Preparation Examples B to I: Preparation of Polysiloxane Compounds B to I
In Production Example A, except that the alkoxysilane compound shown in Table 1 was used, the same procedure as in Production Example A was performed, and polysiloxane compounds B to I shown in Table 1 were synthesized. The numerical values in the table represent the reaction molar ratio of the alkoxysilane compound. Among the polysiloxane compounds in Table 1, polysiloxane compounds A to E are the polysiloxane compounds of the present invention, and polysiloxane compounds F to I are comparative polysiloxane compounds. Table 2 shows the analysis results of mass average molecular weight and silanol group content.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
〔実施例1~7及び比較例1~5〕
 ポリシロキサン化合物A~I、下記のアクリレートA及びB、光ラジカル発生剤としてビス(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド(以下、光ラジカル発生剤1とする)、1-ヒドロキシシクロヘキシルフェニルケトン(以下、光ラジカル発生剤2とする)、光酸発生剤として[4-(2-クロロ-4-ベンゾイルフェニルチオ)フェニルビス(4-クロロフェニル)スルホニウムヘキサフルオロアンチモネート]、ヒドロシリル化触媒として白金-ジビニルテトラメチルジシロキサン錯体、及び溶剤として酢酸ブチルを用い、表3の組成にて、実施例1~7及び比較例1~5の感光性樹脂組成物又は熱硬化性樹脂組成物を調製した。
[Examples 1 to 7 and Comparative Examples 1 to 5]
Polysiloxane compounds A to I, acrylates A and B described below, bis (2,6-dimethoxybenzoyl) phenyl phosphine oxide (hereinafter referred to as photo radical generator 1) as a photo radical generator, 1-hydroxycyclohexyl phenyl ketone (Hereinafter referred to as photo radical generator 2), [4- (2-chloro-4-benzoylphenylthio) phenylbis (4-chlorophenyl) sulfonium hexafluoroantimonate] as a photoacid generator, platinum as a hydrosilylation catalyst Photosensitive resin compositions or thermosetting resin compositions of Examples 1 to 7 and Comparative Examples 1 to 5 were prepared with the composition of Table 3 using divinyl tetramethyldisiloxane complex and butyl acetate as a solvent .
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
<感光性樹脂組成物のゲート絶縁膜としての評価>
 前記実施例及び比較例で得られた感光性樹脂組成物又は熱硬化性樹脂組成物のゲート絶縁膜としての特性を評価するために、図1に示すような有機薄膜トランジスタを次のようにして作製した。
 ガラス基板6上に、クロム(Cr)を蒸着させ、幅2mm、厚さ約100nmの引き出し電極を形成しゲート電極4とした。この上に、実施例1、2及び比較例1の感光性樹脂組成物、並びに比較例2の熱硬化性樹脂組成物を膜厚が約1μmになるようにスピンコートし、風乾した後、実施例1及び2並びに比較例1では高圧水銀灯を5000mJ/cm2照射することにより、比較例2では窒素雰囲気下150℃で2時間加熱することにより硬化させてゲート絶縁膜5を形成した。ゲート絶縁膜5上に、ポリ-(3-ヘキシル)チオフェンのキシレン溶液を乾燥後の膜厚が30nmになるようにスピンコートし、風乾して有機半導体膜1を形成した。ポリ-(3-ヘキシル)チオフェンを活性化させるために窒素雰囲気下、150℃で30分アニール処理を行った。有機半導体膜1上に、金(Au)を蒸着させ、チャンネル幅2mm、厚さ約30nmでチャンネル長100μmのソース電極2とドレイン電極3を形成させることにより、実施例1及び2並びに比較例1及び2について、それぞれ12個のボトムゲート・トップコンタクト型の有機薄膜トランジスタを作製した。
<Evaluation of photosensitive resin composition as gate insulating film>
In order to evaluate the characteristics as a gate insulating film of the photosensitive resin composition or thermosetting resin composition obtained by the said Example and comparative example, the organic thin-film transistor as shown in FIG. 1 is produced as follows. did.
Chromium (Cr) was vapor-deposited on the glass substrate 6 to form a lead electrode having a width of 2 mm and a thickness of about 100 nm. The photosensitive resin compositions of Examples 1 and 2 and Comparative Example 1 and the thermosetting resin composition of Comparative Example 2 are spin-coated thereon to a film thickness of about 1 μm and air-dried. In Examples 1 and 2 and Comparative Example 1, the high-pressure mercury lamp was irradiated at 5000 mJ / cm 2 , and in Comparative Example 2, the gate insulating film 5 was formed by curing by heating at 150 ° C. for 2 hours under a nitrogen atmosphere. A solution of poly- (3-hexyl) thiophene in xylene was spin-coated on the gate insulating film 5 so that the film thickness after drying was 30 nm, and air-dried to form an organic semiconductor film 1. Annealing treatment was performed at 150 ° C. for 30 minutes in a nitrogen atmosphere to activate poly- (3-hexyl) thiophene. Gold (Au) is vapor-deposited on the organic semiconductor film 1 to form a source electrode 2 and a drain electrode 3 with a channel width of 2 mm, a thickness of about 30 nm and a channel length of 100 μm. 12 bottom gate and top contact type organic thin film transistors were manufactured for each of and.
 実施例1及び2並びに比較例1及び2の有機薄膜トランジスタについて、半導体パラメーターアナライザー(Keithley社製、製品名SCS4200)を用いて輸送特性を測定し、電荷移動度μを算出した。尚、電荷移動度μは下記の式で定義され、具体的には、ドレイン電流IDの絶対値の平方根を縦軸に、ゲート電圧VGを横軸にプロットしたときの飽和領域におけるグラフの傾きをもとに電荷移動度μを求めた。測定は、窒素ガス雰囲気下、遮光状態で行った。電荷移動度μは、輸送特性が測定ができた有機薄膜トランジスタの平均とし、電流リークにより輸送特性が測定できなかった有機薄膜トランジスタの数を不良品数とした。結果を表4に示す。 The transport characteristics of the organic thin film transistors of Examples 1 and 2 and Comparative Examples 1 and 2 were measured using a semiconductor parameter analyzer (manufactured by Keithley, product name SCS 4200) to calculate charge mobility μ. The charge mobility μ is defined by the following equation, and specifically, the graph in the saturation region when the square of the absolute value of the drain current I D is plotted on the vertical axis and the gate voltage V G is plotted on the horizontal axis. The charge mobility μ was determined based on the slope. The measurement was performed under a nitrogen gas atmosphere and in a light shielding state. The charge mobility μ was an average of the organic thin film transistors whose transport characteristics could be measured, and the number of the organic thin film transistors whose transport characteristics could not be measured due to current leakage was regarded as the number of defective products. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
<感光性樹脂組成物の熱着色性評価>
 2.5cm四方のガラス基板上に、実施例3~7並びに比較例1及び3~5の感光性樹脂性組成物を、乾燥後の膜厚が約500μmになるようにスピンコートにより塗布し、溶剤を揮発させた。この試験片を120℃で30分間加熱処理した。加熱処理後のガラス基板上部に線幅1mmが描かれたフォトマスクを設置し、高圧水銀灯により紫外線を100mJ/cm2で照射した。次に、この試験片を酢酸エチルを入れたビーカーに浸漬し、未硬化部分を溶解除去し、風乾したものを加熱着色性評価用の試験片として用いた。試験片はいずれも無色透明であり、硬化物の波長837nmにおける屈折率は表6に示すとおりである。この試験片を150℃の恒温槽に入れ、15日経過後に取り出し、硬化物の着色を目視し下記の評価基準で熱着色性を評価した。結果を表5に示す。
<評価基準>
◎:着色が見られず、熱着色性が低い。
○:わずかに着色しており熱着色性がやや高い。
△:明らかに着色しており熱着色性が高い。
×:硬化物を通して文字の線が判別できないほど着色しており熱着色性が非常に高い。
<Heat colorability evaluation of photosensitive resin composition>
The photosensitive resin compositions of Examples 3 to 7 and Comparative Examples 1 and 3 are applied by spin coating on a 2.5 cm square glass substrate so that the film thickness after drying is about 500 μm. The solvent was allowed to evaporate. The test piece was heat treated at 120 ° C. for 30 minutes. A photomask with a line width of 1 mm was placed on the top of the heat-treated glass substrate, and ultraviolet light was applied at 100 mJ / cm 2 with a high-pressure mercury lamp. Next, the test piece was immersed in a beaker containing ethyl acetate to dissolve and remove the uncured portion, and the air-dried one was used as a test piece for evaluation of heat colorability. The test pieces are all colorless and transparent, and the refractive index of the cured product at a wavelength of 837 nm is as shown in Table 6. The test piece was put in a thermostat at 150 ° C., taken out after 15 days, the coloration of the cured product was visually observed, and the heat colorability was evaluated according to the following evaluation criteria. The results are shown in Table 5.
<Evaluation criteria>
◎: No coloring is observed, and heat coloring is low.
○: Slightly colored and slightly heat-colored.
Δ: Clearly colored and heat coloring is high.
X: It is colored so that the line | wire of a character can not be distinguished through hardened | cured material, and heat | fever coloring property is very high.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表4の結果が示すように、本発明の感光性樹脂組成物を硬化させて得られるゲート絶縁膜では、高い電荷移動度が得られる。これに対し、エポキシ基を有するポリシロキサン化合物と光酸発生剤とを含有する感光性樹脂組成物を硬化させて得られるゲート絶縁膜(比較例1)及び、ビニル基を有するポリシロキサン化合物、SiH基を有するポリシロキサン化合物及びヒドロシリル化触媒(白金触媒)を含有する熱硬化性樹脂組成物を硬化させて得られるゲート絶縁膜(比較例2)では、低い電荷移動度しか得られず、特に後者では不良品率が高いという問題がある。 As the results in Table 4 indicate, high charge mobility can be obtained in the gate insulating film obtained by curing the photosensitive resin composition of the present invention. On the other hand, a gate insulating film (comparative example 1) obtained by curing a photosensitive resin composition containing a polysiloxane compound having an epoxy group and a photoacid generator, a polysiloxane compound having a vinyl group, SiH In the gate insulating film (comparative example 2) obtained by curing a thermosetting resin composition containing a polysiloxane compound having a hydroxyl group and a hydrosilylation catalyst (platinum catalyst), only a low charge mobility can be obtained, especially the latter The problem is that the defective product rate is high.
 また、表5の結果が示すように、本発明の感光性樹脂組成物は、ネガ型フォトレジストとして使用することが可能であり、その硬化物は、屈折率が高く、高温においても熱着色性が低い(実施例3~7)。これに対し、本願発明の感光性樹脂組成物とは組成が異なる感光性樹脂組成物を硬化させて得られる硬化物(比較例1及び3~5)では、熱着色性が高い。
 これは、本発明の感光性樹脂組成物を、透明な高屈折率材料、例えばレンズ、光導波路等に使用した場合に、高温でも透明性を失わずに使用可能であることを示すものである。
In addition, as the results in Table 5 show, the photosensitive resin composition of the present invention can be used as a negative photoresist, and the cured product has a high refractive index and is thermally colored even at high temperatures. Is low (Examples 3 to 7). On the other hand, in the cured products (Comparative Examples 1 and 3 to 5) obtained by curing a photosensitive resin composition having a different composition from the photosensitive resin composition of the present invention, the heat colorability is high.
This shows that when the photosensitive resin composition of the present invention is used for a transparent high refractive index material such as a lens, an optical waveguide, etc., it can be used without losing transparency even at high temperatures. .
1 有機半導体膜(層)
2 ソース電極
3 ドレイン電極
4 ゲート電極
5 絶縁層(ゲート絶縁膜)
6 支持体(基板)
1 Organic semiconductor film (layer)
2 source electrode 3 drain electrode 4 gate electrode 5 insulating layer (gate insulating film)
6 Support (substrate)

Claims (4)

  1.  下記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物及び光ラジカル発生剤を含有する感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又はメチル基を表わし、R2は置換アルキル基を有していてもよい炭素数1~5のアルキレン基を表わす。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は水素原子又は炭素数1~4のアルキル基を表わす。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R4は炭素数1~6のアルキル基又は炭素数5若しくは6のシクロアルキル基を表わす。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R5は水素原子又は炭素数1~4のアルキル基を表わす。)
    A photosensitive resin composition comprising a polysiloxane compound having units represented by the following general formulas (1) to (4) and a photo radical generator.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkylene group having 1 to 5 carbon atoms which may have a substituted alkyl group)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, R 4 represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
  2.  前記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物が、更に下記一般式(5)で表わされるユニットを有するポリシロキサン化合物である、請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Eはエポキシ基を有する基を表わす。)
    The photosensitive resin composition according to claim 1, wherein the polysiloxane compound having a unit represented by the general formulas (1) to (4) is a polysiloxane compound further having a unit represented by the following general formula (5). object.
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, E represents a group having an epoxy group)
  3.  前記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物が、下記一般式(1a)~(4a)で表わされるアルコキシシラン化合物又はハロシラン化合物を加水分解縮合して得られたポリシロキサン化合物である、請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R1及びR2は前記一般式(1)と同義であり、X1はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R3は前記一般式(2)と同義であり、X2はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R4は前記一般式(3)と同義であり、X3はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R5は前記一般式(4)と同義であり、X4はハロゲン原子又は炭素数1~4のアルコキシル基を表わす。)
    Polysiloxanes obtained by hydrolytic condensation of alkoxysilane compounds or halosilane compounds represented by the following general formulas (1a) to (4a): polysiloxane compounds having units represented by the general formulas (1) to (4) The photosensitive resin composition according to claim 1, which is a siloxane compound.
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, R 1 and R 2 are as defined in the general formula (1), and X 1 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
    Figure JPOXMLDOC01-appb-C000007
    (Wherein, R 3 has the same meaning as in the above general formula (2), and X 2 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
    Figure JPOXMLDOC01-appb-C000008
    (Wherein, R 4 has the same meaning as in the above general formula (3), and X 3 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
    Figure JPOXMLDOC01-appb-C000009
    (Wherein, R 5 has the same meaning as in the above general formula (4), and X 4 represents a halogen atom or an alkoxyl group having 1 to 4 carbon atoms).
  4.  前記一般式(1)~(4)で表わされるユニットを有するポリシロキサン化合物100質量部に対して、前記光ラジカル発生剤を0.1~10質量部含有する、請求項1~3の何れか1項に記載の感光性樹脂組成物。 The photoradical generator is contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polysiloxane compound having a unit represented by the general formulas (1) to (4). The photosensitive resin composition according to item 1.
PCT/JP2011/055074 2010-03-05 2011-03-04 Photosensitive resin composition WO2011108705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180004535.0A CN102597879A (en) 2010-03-05 2011-03-04 Photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-049437 2010-03-05
JP2010049437A JP2011186069A (en) 2010-03-05 2010-03-05 Photosensitive resin composition

Publications (1)

Publication Number Publication Date
WO2011108705A1 true WO2011108705A1 (en) 2011-09-09

Family

ID=44542349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055074 WO2011108705A1 (en) 2010-03-05 2011-03-04 Photosensitive resin composition

Country Status (5)

Country Link
JP (1) JP2011186069A (en)
KR (1) KR20110101073A (en)
CN (1) CN102597879A (en)
TW (1) TW201140243A (en)
WO (1) WO2011108705A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082467A (en) * 2012-09-27 2014-05-08 Dic Corp Insulative material, dielectric film, and transistor arranged by use thereof
JP2015049492A (en) * 2013-09-04 2015-03-16 Jsr株式会社 Gate insulation film, radiation-sensitive resin composition, cured film, method of forming gate insulation film, semiconductor element and display device
JP2016086086A (en) * 2014-10-27 2016-05-19 住友化学株式会社 Seal-material composition and optical semiconductor element
JP2021521472A (en) * 2018-04-24 2021-08-26 ダウ シリコーンズ コーポレーション Silicone capable of forming a positive optical pattern

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140323677A1 (en) * 2011-09-01 2014-10-30 Toagosei Co., Ltd. Thermal-shock-resistant cured product and method for producing same
JP2013092633A (en) * 2011-10-25 2013-05-16 Adeka Corp Positive photosensitive composition
JP5989417B2 (en) * 2012-06-20 2016-09-07 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Ultraviolet curable silicone resin composition and image display device using the same
JP6221279B2 (en) * 2013-03-18 2017-11-01 富士通株式会社 Method for producing resist composition and pattern forming method
KR102232349B1 (en) * 2013-05-31 2021-03-26 롬엔드하스전자재료코리아유한회사 Negative-type photosensitive resin composition having high thermoresistance and hardened overcoat layer prepared therefrom
EP3382745A1 (en) * 2013-06-07 2018-10-03 FUJIFILM Corporation Composition for forming gate insulating film, organic thin film transistor, electronic paper, and display device
US9431619B2 (en) 2013-09-27 2016-08-30 Samsung Electronics Co., Ltd. Composition for insulator, insulator, and thin film transistor
JP6167017B2 (en) * 2013-10-31 2017-07-19 富士フイルム株式会社 Laminate, organic semiconductor manufacturing kit and organic semiconductor manufacturing resist composition
US10522771B2 (en) 2014-12-01 2019-12-31 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor
KR102407114B1 (en) 2015-05-29 2022-06-08 삼성전자주식회사 Insulating ink and insulator and thin film transistor and electronic device
TWI597574B (en) * 2015-08-19 2017-09-01 奇美實業股份有限公司 Photosensitive resin composition and application thereof
KR102380151B1 (en) 2015-08-31 2022-03-28 삼성전자주식회사 Thin film transistor, and electronic device including same
CN108780844B (en) 2016-03-16 2022-04-29 富士胶片株式会社 Organic semiconductor composition, method for manufacturing organic thin film transistor, and organic thin film transistor
WO2017170279A1 (en) 2016-04-01 2017-10-05 富士フイルム株式会社 Organic semiconductor element, polymer, organic semiconductor composition and organic semiconductor film
JP6574052B2 (en) 2016-04-01 2019-09-11 富士フイルム株式会社 Organic semiconductor device, polymer, organic semiconductor composition, and organic semiconductor film
JP6676181B2 (en) 2016-09-29 2020-04-08 富士フイルム株式会社 Microcrystalline organic semiconductor film, organic semiconductor transistor, and method of manufacturing organic semiconductor transistor
WO2018061821A1 (en) 2016-09-29 2018-04-05 富士フイルム株式会社 Composition for forming organic semiconductor film, organic semiconductor film and method for producing same, and organic semiconductor element
EP3605630B1 (en) 2017-03-31 2020-12-23 FUJIFILM Corporation Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using for use therein
WO2018181056A1 (en) 2017-03-31 2018-10-04 富士フイルム株式会社 Organic semiconductor element, organic semiconductor composition, organic semiconductor film production method, organic semiconductor film, and compound and polymer used therefor
JP6814448B2 (en) 2017-03-31 2021-01-20 富士フイルム株式会社 Organic semiconductor devices, organic semiconductor compositions, methods for producing organic semiconductor films, organic semiconductor films, and compounds and polymers used for these.
KR102688715B1 (en) * 2017-08-24 2024-07-29 다우 글로벌 테크놀로지스 엘엘씨 Methods for fabricating optical waveguides
WO2019065561A1 (en) * 2017-09-29 2019-04-04 東レ株式会社 Field effect-transistor, method for manufacturing same, wireless communication device using same, and product tag
CN109541889B (en) 2018-12-19 2020-06-26 江苏艾森半导体材料股份有限公司 Negative photoresist for semiconductor packaging process
WO2022202499A1 (en) * 2021-03-26 2022-09-29 ダウ・東レ株式会社 Ultraviolet-curable composition and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134085A (en) * 1977-07-18 1978-11-22 Dainippon Printing Co Ltd Photopolymerizable composition
JP2010039056A (en) * 2008-08-01 2010-02-18 Sekisui Chem Co Ltd Photosensitive composition and method of manufacturing pattern film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134085A (en) * 1977-07-18 1978-11-22 Dainippon Printing Co Ltd Photopolymerizable composition
JP2010039056A (en) * 2008-08-01 2010-02-18 Sekisui Chem Co Ltd Photosensitive composition and method of manufacturing pattern film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082467A (en) * 2012-09-27 2014-05-08 Dic Corp Insulative material, dielectric film, and transistor arranged by use thereof
JP2015049492A (en) * 2013-09-04 2015-03-16 Jsr株式会社 Gate insulation film, radiation-sensitive resin composition, cured film, method of forming gate insulation film, semiconductor element and display device
JP2016086086A (en) * 2014-10-27 2016-05-19 住友化学株式会社 Seal-material composition and optical semiconductor element
JP2021521472A (en) * 2018-04-24 2021-08-26 ダウ シリコーンズ コーポレーション Silicone capable of forming a positive optical pattern
JP7307090B2 (en) 2018-04-24 2023-07-11 ダウ シリコーンズ コーポレーション Silicone capable of forming positive photopatterns

Also Published As

Publication number Publication date
TW201140243A (en) 2011-11-16
CN102597879A (en) 2012-07-18
JP2011186069A (en) 2011-09-22
KR20110101073A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2011108705A1 (en) Photosensitive resin composition
US20220010172A1 (en) Siloxane polymer compositions and their use
KR101805191B1 (en) Silphenylene containing photocurable composition, pattern forming method using the same and optical semiconductor element obtained by said method
JP5534246B2 (en) Resist underlayer film forming composition for nanoimprint
KR101287089B1 (en) Siloxane polymer composition, cured film and method for forming the cured film
CN102803274B (en) Silane coupling agent, negative light-sensitive resin combination, cured film and touch panel component
KR102157030B1 (en) Negative-type photosensitive siloxane composition
CN105629663B (en) Photosensitive resin composition
KR101589165B1 (en) Silane composition and cured film thereof, and method for forming negative resist pattern using same
US20210395461A1 (en) Resin composition, photosensitive resin composition, cured film, method for manufacturing cured film, patterned cured film, method for producing patterned cured film
CN105652593B (en) Photosensitive resin composition and cured film prepared therefrom
KR101799361B1 (en) Photosensitive resin composition
KR20200060466A (en) Positive photosensitive siloxane composition and cured film using same
KR102493962B1 (en) Photosensitive resin composition and cured film prepared therefrom
JP6883946B2 (en) Laminated body, its manufacturing method, and substrate bonding method
JP2020075992A (en) Composition for film formation, glass substrate coated with the composition for film formation, and touch panel using the glass substrate
TWI609927B (en) Curable resin composition comprising organopolysiloxane
JP2016130809A (en) Radiation-sensitive composition for forming cured film, cured film, display element, and method for forming cured film
KR20070091628A (en) Porous silica particle and method for producing same
JP2019189803A (en) Manufacturing method of amic acid group-containing polysiloxane, organopolysiloxane, amic acid group-containing organic resin composition, cured film, semiconductor device, and manufacturing method of electronic component
KR20180037888A (en) Photosensitive resin composition and cured film prepared therefrom
JP2014066809A (en) Photosensitive resin composition
JP6048066B2 (en) Polysiloxane containing biphenyl skeleton and composition for film formation
JP6799372B2 (en) Negative photosensitive composition
KR20140058847A (en) Organic-inorganic hybrid siloxane-based polymer and positive-type photosensitive resin composition comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004535.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750814

Country of ref document: EP

Kind code of ref document: A1