[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011108560A1 - Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method - Google Patents

Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method Download PDF

Info

Publication number
WO2011108560A1
WO2011108560A1 PCT/JP2011/054683 JP2011054683W WO2011108560A1 WO 2011108560 A1 WO2011108560 A1 WO 2011108560A1 JP 2011054683 W JP2011054683 W JP 2011054683W WO 2011108560 A1 WO2011108560 A1 WO 2011108560A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
light guide
light
gimbal assembly
head gimbal
Prior art date
Application number
PCT/JP2011/054683
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 田邉
徳男 千葉
学 大海
雅一 平田
陽子 篠原
良和 田中
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to JP2012503198A priority Critical patent/JP5864408B2/en
Publication of WO2011108560A1 publication Critical patent/WO2011108560A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4833Structure of the arm assembly, e.g. load beams, flexures, parts of the arm adapted for controlling vertical force on the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to a head gimbal assembly, a head gimbal assembly inspection method, and a head gimbal assembly manufacturing method for recording and reproducing various types of information on a recording medium using spot light that has collected light.
  • a recording medium such as a hard disk (hereinafter referred to as a disk) in a computer device has been demanded to have a higher density in response to a need to record and reproduce a larger capacity and higher density information. For this reason, in order to minimize the influence of adjacent magnetic domains and thermal fluctuation, a disk having a strong holding force has begun to be adopted. Therefore, it has been difficult to record information on the disc.
  • This information recording / reproducing apparatus scans a slider provided with a near-field optical head on a disk and arranges the slider at a desired position on the disk. Thereafter, information can be recorded on the disk by cooperating the near-field light emitted from the near-field light head and the recording magnetic field generated from the slider.
  • a configuration is known in which the near-field light head is disposed on the front end surface (outflow end) side of the slider in order to make the distance between the disk surface and the near-field light head closer.
  • the hybrid magnetic recording / reproducing apparatus it is desirable for the hybrid magnetic recording / reproducing apparatus to apply a near-field light spot to a minute magnetic domain on the disk with sufficient light intensity. Therefore, it is necessary to check whether or not the head gimbal assembly is configured such that near-field light is emitted with sufficient light intensity.
  • a scanning near-field light microscope can scan near-field light to be measured with a probe tip made of an optical fiber and measure the light intensity of the near-field light and its spatial distribution.
  • the scanning thermal microscope scans the near-field light to be measured using a probe processed for heat measurement and measures the thermoelectromotive force, thereby providing the thermal energy of the near-field light and its spatial distribution. Can be measured.
  • these methods are disadvantageous in that the apparatus used for the measurement is expensive and the measurement takes time. Therefore, when these methods are adopted in the manufacturing process of the near-field optical head, it is considered that the manufacturing cost is remarkably increased.
  • assembling as a head gimbal assembly requires a certain amount of time and effort, but before assembling as a head gimbal assembly, if it is not confirmed whether each component constituting the head gimbal assembly is properly configured In the downstream process stage, good or bad is judged by a method such as recording / reproduction inspection. Therefore, what has become defective is discarded in a downstream process in which the head gimbal assembly is assembled. For such a head gimbal assembly, the effort and time taken to assemble it is wasted.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a head gimbal assembly, a head gimbal assembly inspection method, and a head gimbal assembly manufacturing method that can be efficiently manufactured. It is to provide.
  • a head gimbal assembly according to the present invention is a head gimbal assembly for recording information on a recording medium.
  • the head gimbal assembly floats on the recording medium and moves relative to the slider, and the slider is opposite to the surface facing the recording medium.
  • a slider light guide function unit having a light guide function is provided separately from the optical waveguide used for recording information on the recording medium, so that light is input to the slider light guide function unit. It can be easily confirmed whether or not the near-field light is generated with sufficient intensity.
  • the slider light guide function unit is used to determine whether or not the optical waveguide is a non-defective product using the light guide function of the slider light guide function unit. It is characterized by.
  • a non-defective inspection of the optical waveguide which has been difficult by providing a slider light guide function part for indirectly determining whether or not the optical waveguide is non-defective, is provided. It can be done easily. Furthermore, since the defect of the optical waveguide can be found before assembling the head gimbal assembly, the waste process of assembling the head gimbal assembly using the slider with the defective optical waveguide, and the good product assembled to them It is possible to eliminate waste of other parts, and to reduce manufacturing costs.
  • the head gimbal assembly according to the present invention is characterized in that the slider light guide function section is provided on the same straight line as the optical waveguide in the track width direction of the recording medium.
  • the position of the slider light guide function section can be specified by providing the slider light guide function section on the same straight line as the optical waveguide, the position of the optical waveguide is easily specified. be able to.
  • the head gimbal assembly according to the present invention includes two or more slider light guide function portions.
  • the position of the optical waveguide is determined as one point. Can be determined. Therefore, the position of the optical waveguide can be easily specified.
  • the head gimbal assembly according to the present invention is characterized in that each of the slider light guide function portions is provided on both sides of the optical waveguide.
  • the position of the slider light guide function unit can be specified by providing the optical waveguide between the slider light guide function units, the position of the optical waveguide can be specified easily.
  • the head gimbal assembly according to the present invention is characterized in that the slider light guide functional part is made of the same material as the optical waveguide.
  • the slider light guide function part and the optical waveguide are made of the same material, light passing through each of the slider light guide function part and the optical waveguide behaves in the same manner. Therefore, it is possible to know the behavior of light passing through the optical waveguide indirectly by passing light through the slider light guide function unit.
  • the head gimbal assembly according to the present invention is characterized in that the slider light guide function part is composed of a core and a clad.
  • the slider light guide function part is composed of the core and the clad, so that light can be guided with high efficiency.
  • the head gimbal assembly according to the present invention is such that the core shape on the side where the optical element of the slider light guide function unit is provided is equal to or larger than the light spot at the emission end of the optical element. It is a feature.
  • the core shape on the side where the optical element of the slider light guide function unit is provided has a size larger than the light spot at the light emitting end of the optical element, so that the light from the optical element is transmitted. Since it becomes easy to inject into a slider light guide function part, the light radiate
  • the slider light guide function unit has substantially the same cross-sectional area from the surface on which the optical element of the slider is provided to the surface of the slider facing the recording medium. It is characterized by being configured.
  • the slider light guide function unit does not have a light collecting function, the spot of light incident from the optical element is emitted from the slider light guide function unit while maintaining almost the same size as the incident light. Come on. Therefore, the light emitted from the slider light guide function unit can be easily found.
  • the slider light guide function unit is used to align the optical element and the optical waveguide using the light guide function of the slider light guide function unit. It is a feature.
  • the optical element and the optical waveguide are aligned with high accuracy and easily. be able to.
  • the head gimbal assembly according to the present invention is characterized in that the optical waveguide is provided with a near-field light generating portion for generating near-field light used for recording information on a recording medium at the tip portion.
  • the non-defective product inspection and alignment of the optical waveguide can be easily performed even if the optical waveguide includes the near-field light generating portion.
  • a head gimbal assembly inspection method is a method for inspecting a head gimbal assembly for recording information on a recording medium, the head gimbal assembly facing a slider floating on the recording medium and the recording medium of the slider.
  • the head gimbal assembly inspection method it is easy to inspect the optical waveguide, which is difficult by inspecting the non-defective product of the optical waveguide indirectly by using the light emitted from the slider light guide function unit. Can be done. Furthermore, a defective head gimbal assembly that occurs due to a defect of only the optical waveguide after assembling the head gimbal assembly by performing an inspection to determine whether the optical waveguide is a good product before fixing the slider and the optical element. In addition, the useless process of assembling the head gimbal assembly using the defective optical waveguide can be omitted, and the manufacturing cost can be reduced.
  • the head gimbal assembly inspection method measures the intensity of light emitted from the slider light guide function unit, and determines that the optical waveguide is a non-defective product if the intensity satisfies a reference value. It is characterized by including a process.
  • the non-defective inspection of the optical waveguide which has been difficult, is easily performed by performing the non-defective inspection of the optical waveguide using the intensity of the light emitted from the slider light guide function unit. can do.
  • a method for manufacturing a head gimbal assembly according to the present invention is a method for manufacturing a head gimbal assembly for recording information on a recording medium.
  • the head gimbal assembly is opposed to a slider floating on the recording medium and the recording medium of the slider.
  • the optical waveguide used to record information on the recording medium and the slider are formed from the surface on which the optical element of the slider is provided to the surface facing the recording medium of the slider.
  • a slider light guide function unit and before fixing the slider and the optical element, the surface of the slider opposite to the surface facing the recording medium and the optical
  • the light emitted from the optical element is incident on the slider light guide function unit while facing the light emitting surface of the child, and near-field light is generated using the light emitted from the slider light guide function unit.
  • the method includes the step of aligning the optical element and the slider.
  • the optical element and the slider are easily aligned by using the light emitted from the slider light guide function unit, thereby easily aligning the optical element and the slider with high accuracy. Can be done.
  • the head gimbal assembly manufacturing method maximizes the light intensity after adjusting the relative position between the optical element and the slider while measuring the intensity of the light emitted from the slider light guide function unit.
  • a relative position coordinate between the optical element and the slider is specified, and the alignment between the optical element and the slider is performed using the position coordinate.
  • the emitted light from the optical element is determined by identifying and aligning the coordinates of the optical element and the slider having the maximum intensity of the light emitted from the slider light guide function unit. Is not an ideal circular spot, and the positional relationship tolerance between the optical element and the slider satisfies the alignment accuracy because the light does not efficiently enter the slider light guide function part. Even when there is not, highly accurate alignment can be performed easily.
  • the slider light guide function unit is provided on both sides of the optical waveguide, and the light emitted from each of the slider light guide function units in a state where the optical element and the slider are separated from each other.
  • the positioning of the optical element and the slider is determined when the amount satisfies the reference amount.
  • the position can be determined by allowing the light emitted from the optical element to enter the slider light guide function unit at a time, thereby reducing the number of alignment steps and providing a highly accurate position. Matching can be performed easily.
  • the head gimbal assembly manufacturing method according to the present invention is characterized in that an adhesive for fixing the slider and the optical element is applied before the optical element and the slider are opposed to each other.
  • the head gimbal assembly manufacturing method before making the optical element and the slider face each other, by applying an adhesive for fixing the slider and the optical element, even when the alignment is made after making the face face each other, Misalignment that may occur when the adhesive is applied after alignment is prevented.
  • the head gimbal assembly manufacturing method according to the present invention is characterized in that the optical element and the slider are aligned while contacting the optical element and the slider.
  • the optical element and the slider are aligned while contacting the optical element and the slider so that the optical axis of the light emitted from the optical element is changed to the optical element and the slider. Even when the position is bent with respect to the adjustment axis for relatively adjusting the position, the light emitted from the optical element can be made incident with high efficiency.
  • the head gimbal assembly manufacturing method according to the present invention is characterized in that the slider light guide function part and the optical waveguide are formed in the same process.
  • the slider light guide function part and the optical waveguide can be formed in the same process, so that the relative position of the slider light guide function part and the optical waveguide can be more accurately formed.
  • the light emitted from the optical element is incident on the slider light guide function part, and then the optical element and the slider are aligned using the light emitted from the slider light guide function part, the light from the optical element is more It can efficiently enter the optical waveguide.
  • a slider light guide function unit having a light guide function is provided separately from an optical waveguide used for recording information on a recording medium, so that light is input to the slider light guide function unit. It can be easily confirmed whether or not the near-field light is generated with sufficient intensity.
  • the head gimbal assembly inspection method of the present invention it is difficult to inspect the optical waveguide, which is difficult by inspecting the non-defective product of the optical waveguide indirectly using the light emitted from the slider light guide function unit. Can be easily performed.
  • the head gimbal assembly since it is possible to determine whether or not the optical waveguide is a good product before fixing the slider and the optical element, the head gimbal assembly may be lost or defective due to a defective optical waveguide after the head gimbal assembly is assembled. The useless process of assembling the head gimbal assembly using a certain optical waveguide can be omitted, and the manufacturing cost can be reduced.
  • the present invention is more preferably used for a head gimbal assembly using near-field light.
  • FIG. 1 is a configuration diagram showing an embodiment of an information recording / reproducing apparatus.
  • FIG. 2 is an enlarged perspective view of the head gimbal assembly from the direction in which the slider is provided on the upper side.
  • FIG. 3 is an enlarged cross-sectional view of the tip portion of the head gimbal assembly.
  • FIG. 4A is an exploded perspective view showing the slider and the light guide, and
  • FIG. 4B is a view when the light is put into the slider in the non-defective product inspection process when assembling the light guide and the slider. It is the figure which expanded and showed the situation.
  • FIG. 5 is a flowchart showing a slider forming method.
  • FIG. 6 is a process diagram showing step by step the process of forming the optical waveguide layer on the slider substrate.
  • FIG. 6 is a process diagram showing step by step the process of forming the optical waveguide layer on the slider substrate.
  • FIG. 7 is a flowchart showing a method for assembling the slider and the light guide.
  • FIG. 8 is a configuration diagram of an apparatus having a light guide unit and a slider when performing inspection of an optical waveguide.
  • FIG. 9 is a diagram showing the optical waveguide inspection method step by step.
  • FIG. 10 is an exploded perspective view showing the slider and the light guide in the second embodiment.
  • FIG. 11 is an enlarged perspective view of the slider in the third embodiment.
  • FIG. 12 is an enlarged perspective view of the slider in the fourth embodiment.
  • FIG. 13 is a process diagram showing step by step the process of forming the optical waveguide layer on the slider substrate.
  • FIG. 14 is a flowchart showing a method of assembling the slider and the light guide.
  • FIG. 15 is a configuration diagram of an apparatus having a light guide unit and a slider when position adjustment is performed.
  • FIG. 16 is a diagram showing the method of adjusting the position of the slider and the light guide unit step by step.
  • FIG. 17 is a flowchart illustrating a method of assembling the slider and the light guide unit in the fifth embodiment.
  • FIG. 18 is a view showing stepwise the method of adjusting the position of the slider and the light guide unit in the sixth embodiment.
  • FIG. 19 is an enlarged perspective view of the slider in the seventh embodiment.
  • FIG. 20 is a view showing stepwise the method of adjusting the position of the slider and the light guide unit in the seventh embodiment.
  • FIG. 21 is a graph showing the state of FIG. 20B with the X coordinate on the horizontal axis, the light intensity on the vertical axis, and the center of the optical waveguide as the origin of the X coordinate.
  • FIG. 1 is a block diagram showing an embodiment of an information recording / reproducing apparatus 1 according to the present invention.
  • the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disc (recording medium) D having a vertical recording layer by a vertical recording method.
  • the information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11, and a suspension 3 that is supported on the distal end side of the carriage 11 and formed on the distal end side of the suspension 3.
  • a configured head gimbal assembly (HGA) 12 an actuator 6 that scans and moves the head gimbal assembly 12 in the XY directions parallel to the surface of the disk D, and a spindle motor 7 that rotates the disk D in a predetermined direction.
  • a control unit 5 that is connected to the laser light source 20 via the wiring 4 and supplies a current modulated in accordance with information to the slider 2, and a housing (not shown) that houses these components therein.
  • the housing has a box-like shape having a top opening made of a metal material such as aluminum, and has a bottom portion 9 having a quadrangular shape when viewed from above, and a peripheral wall standing vertically to the bottom portion 9 at the periphery of the bottom portion 9. It consists of And the recessed part which accommodates each component mentioned above etc. is formed in the inner side enclosed by the surrounding wall.
  • the peripheral wall surrounding the periphery of the housing is omitted for easy understanding.
  • a lid (not shown) is detachably fixed to the housing so as to close the opening of the housing.
  • the spindle motor 7 described above is attached to substantially the center of the bottom portion 9, and the disk D is detachably fixed by fitting the center hole into the spindle motor 7.
  • the actuator 6 described above is attached to the outside of the disk D, that is, the corner of the bottom 9.
  • a carriage 11 is attached to the actuator 6 so as to be rotatable about the pivot shaft 10 in the XY directions.
  • the carriage 11 includes an arm portion 14 extending along the surface of the disk D from the base end portion toward the tip portion, and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. These are integrally formed by machining or the like.
  • the base 15 is supported so as to be rotatable around the pivot shaft 10. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
  • the arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14. That is, the arm portion 14 and the disk D are arranged so as to alternate with each other, and the arm portion 14 can be moved in a direction parallel to the surface of the disk D (XY direction) by driving the actuator 6.
  • the carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
  • FIG. 2 is an enlarged perspective view of the head gimbal assembly 12 from the direction in which the slider 2 is provided on the upper side.
  • the head gimbal assembly 12 supplies a light guide 32 for guiding a light beam from the laser light source 20 to the slider 2 and a current for operating a recording element 42 and a reproducing element 41 described later provided in the slider 2.
  • An electrical wiring 31 is connected adjacent to the slider 2.
  • a suspension 3 for fixing the light guide 32, the electric wiring 31, and the slider 2 is provided.
  • the suspension 3 includes a base plate 22 formed in a substantially square shape when viewed from above, a load beam 24 having a substantially triangular shape in plan view and a flexure 25 connected to the tip side of the base plate 22 via a hinge plate 23.
  • the base plate 22 is made of a thin metal material such as stainless steel, and an opening 22a penetrating in the thickness direction is formed on the base end side.
  • the base plate 22 is fixed to the tip of the arm portion 14 (see FIG. 1) through the opening 22a.
  • a sheet-like hinge plate 23 made of a metal material such as stainless steel is disposed on the upper surface of the base plate 22.
  • the hinge plate 23 is a flat plate formed over the entire upper surface of the base plate 22.
  • a load beam 24 is connected to the tip portion of the hinge plate 23.
  • the load beam 24 is made of a thin metal material such as stainless steel like the base plate 22, and the base end thereof is connected to the hinge plate 23 with a gap between the base plate 22 and the tip end of the base plate 22. .
  • the suspension 3 bends about between the base plate 22 and the load beam 24 and is easily bent in the Z direction perpendicular to the surface of the disk D.
  • the flexure 25 is a sheet-like material in which the support 18 and the gimbal 17 are integrally formed of a metal material such as stainless steel, and is configured to be able to bend and deform in the thickness direction by being formed into a sheet shape.
  • the flexure 25 is fixed to the distal end side of the load beam 24 and is configured to follow the deformation of the suspension 3 when the suspension 3 is deformed.
  • a protrusion 19 (see FIG. 3) is formed at the tip of the load beam 24 so as to protrude toward the approximate center of the flexure 25 and the slider 2.
  • the tip of the projection 19 is rounded.
  • the protrusion 19 comes into point contact with the tip surface (upper surface) of the flexure 25 when the slider 2 floats to the load beam 24 side by the wind pressure received from the disk D. That is, the protrusion 19 supports the slider 2 via the flexure 25 and the light guide 32 and applies a load to the slider 2 toward the surface of the disk D (in the Z direction). Yes.
  • FIG. 3 is an enlarged cross-sectional view of the tip end portion of the head gimbal assembly 12.
  • the slider 2 is shown in the direction provided on the lower side.
  • the slider 2 is supported by the gimbal 17 with the light guide portion 32 interposed therebetween.
  • the load beam 24 is provided on the upper side of the gimbal 17 with the protrusion 19 as a contact.
  • the slider 2 is composed of a substrate 61 made of Altic or the like, and a reproducing element 41, a recording element 42, and an optical waveguide layer 33 that are sequentially provided on the tip side of the head gimbal assembly 12 with respect to the substrate 61.
  • the bottom surface of the slider 2 is an air bearing surface 2 a that faces the surface of the disk D.
  • the air bearing surface 2a is a surface that generates a pressure for ascending from the viscosity of the air flow generated by the rotating disk D, and is called ABS (Air Bearing Surface).
  • the slider 2 is provided so as to face the disk D (see FIG. 1), and the method for supporting the slider 2 is not limited to the above.
  • the slider 2 may be directly supported by the load beam 24.
  • the slider 2 receives an appropriate pressure in the Z direction and is easily bent. Field light or a magnetic field can be reliably irradiated by the disk D.
  • the light guide 32 is formed at a 45 ° tip and has a mirror function.
  • the light propagating through the light guide portion 32 is diffracted by the tip portion 32 a having the mirror function and is incident on the optical waveguide layer 33.
  • the light incident on the optical waveguide layer 33 propagates toward the lower side of the slider 2 and is emitted as near-field light by the near-field light generating element 34 provided at the tip of the optical waveguide layer 33.
  • FIG. 4A is an exploded perspective view showing the slider 2 and the light guide 32.
  • FIG. 4B is an enlarged view showing a situation when light is put into the slider 2 in the non-defective product inspection process when the light guide unit 32 and the slider 2 are assembled.
  • the reproducing element 41 and the recording element 42 are omitted and not shown.
  • the optical waveguide layer 33 provided at the tip of the slider 2 is provided with at least two elements having a function of propagating light in parallel with the element stacking surface of the slider 2.
  • One is provided with an optical waveguide 40 having a condensing function, and the tip of the optical waveguide 40 is a near-field light generating element 34.
  • the optical waveguide 40 is made of SiO 2 and has a function of propagating light by providing regions having different refractive index differences in the SiO 2 .
  • a light guide function unit 43 having a larger opening than the optical waveguide 40 is provided.
  • the opening of the light guide function unit 43 is formed larger than the opening of the optical waveguide 40 at both the incident end and the exit end.
  • each of the light guide function units 43 is a line segment orthogonal to the longitudinal direction of the optical waveguide 40 and is provided on a line segment passing through the optical waveguide 40.
  • the spot of the light L 1-2 emitted from the light guide function unit 43 is the optical waveguide 40.
  • the light guide function unit 43 is formed of the same material as that of the optical waveguide 40, and propagates light with the same light efficiency as the optical waveguide 40 by forming a refractive index difference similar to that of the optical waveguide 40. It has a function.
  • the light guide function unit 43 is formed in the same manner as the optical waveguide 40, the light emitted from the light incident on the light guide function unit 43 is measured before the light guide unit 32 is fixed. Indirectly, it can be confirmed in advance whether the function of propagating the light of the optical waveguide 40 is effectively formed. Accordingly, it is possible to reduce a useless process of assembling the head gimbal assembly 12 using a defective slider and waste of components constituting the head gimbal assembly 12 assembled to the defective slider, thereby reducing manufacturing costs. .
  • the spindle motor 7 is driven to rotate the disk D in a predetermined direction.
  • the actuator 6 is operated to rotate the carriage 11 about the pivot shaft 10 as a rotation center, and the head gimbal assembly 12 is scanned in the XY directions via the carriage 11.
  • the slider 2 can be arranged at a desired position on the disk D.
  • the slider 2 is supported by the suspension 3 and pressed against the disk D with a predetermined force.
  • the flying surface 2a faces the disk D, the slider 2 receives a force that rises under the influence of wind pressure generated by the rotating disk D.
  • the slider 2 Due to the balance between the two forces, the slider 2 is in a state of being floated away from the disk D.
  • the slider 2 provided in the flexure 25 is rotated about the X axis and the Y axis about the protrusion 19. To be twisted.
  • displacement in the Z direction (displacement in a direction substantially perpendicular to the surface of the disk D) due to the undulation of the disk D can be absorbed, and the posture of the slider 2 is stabilized.
  • control unit 5 activates the laser light source 20 and supplies a current modulated according to the information to the slider 2 to activate the recording element 42.
  • the light beam emitted from the laser light source 20 travels toward the front end (outflow end) in the light guide 32 and is bent in the vertical direction toward the disk D at the front end of the light guide 32.
  • the bent light beam is incident on the near-field light generating element 34 from the side where the light guide unit 32 of the slider 2 is provided, and is generated as near-field light through the near-field light generating element 34. Then, the disk D is locally heated by the near-field light, and the coercive force temporarily decreases.
  • a current is supplied to the slider 2 by the control unit 5 (see FIG. 1), a recording magnetic field in the direction perpendicular to the disk D can be generated by the recording element 42 inside the slider 2.
  • the reproducing element 41 when reproducing the information recorded on the disk D, the reproducing element 41 receives the magnetic field leaking from the disk D, and the electric resistance changes according to the magnitude. Therefore, the voltage of the reproducing element 41 changes.
  • the control unit 5 (see FIG. 1) can detect a change in the magnetic field leaking from the disk D as a change in voltage. And the control part 5 can reproduce
  • FIG. 5 is a flowchart showing a method for forming the slider 2 of the present invention.
  • the optical waveguide layer 33 is formed including the near-field light generating element 34 (S-0) on the slider substrate 60 on which the reproducing element 41 and the recording element 42 are formed (S-2).
  • the substrate thus formed is cut out (S-3). Polishing is performed on the surfaces of the cut-out substrate on which the optical waveguide layer 33 is laminated and the light entrance end and light exit end of the optical waveguide 40 perpendicular to the surface (S-4). Polishing is performed with attention to the following two points.
  • FIG. 6 is a process diagram showing the process of forming the optical waveguide layer 33 on the slider substrate 60 step by step.
  • a slider substrate 60 in which a reproducing element 41 and a recording element 42 are sequentially laminated on a substrate 61 made of AlTiC (AL 2 O 3 —TiC) or the like is prepared (a).
  • a clad layer 36 is formed thereon (b).
  • the clad layer 36 is formed of a SiO 2 film having a thickness of about 2 ⁇ m.
  • the optical waveguide core 40c and the light guide function part core 43c are formed (c).
  • the core is formed by doping SiO 2 with a gas such as Ge.
  • the optical waveguide core 40c and the light guide functional unit core 43c are doped with gas under the same conditions.
  • the light guide function unit core 43c is formed at the same time as the optical waveguide core 40c is formed or immediately before and after.
  • the clad layer 37 is further laminated on the optical waveguide core 40c and the light guide function part core 43c, and the step of forming the optical waveguide layer 33 on the slider substrate 60 is completed (d).
  • the clad layer 37 to be laminated is laminated so as to cover about 2 ⁇ m in the laminating direction from the laminated surface at the higher position of the optical waveguide core 40c or the light guide function part core 43c.
  • FIG. 7 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32.
  • the slider 2 and the light guide unit 32 are arranged to face each other (A-1).
  • the position of the non-defective slider 2 and the light guide 32 is adjusted (A-3).
  • the slider 2 and the light guide portion 32 are fixed (A-4), and the slider 2 and the light guide portion 32 are fixed. Complete the assembly.
  • FIG. 8 shows the configuration of the apparatus having the light guide portion 32 and the slider 2 when performing the inspection.
  • the light guide 32 faces the surface of the slider 2 opposite to the air bearing surface 2a, and a photodetector 50 for detecting a light spot is disposed on the air bearing surface 2a side of the slider 2.
  • the light detected by the photodetector 50 is analyzed by the optical profiler 51.
  • the optical profiler 51 outputs the light intensity of the light spot and determines whether or not the light reference value is satisfied.
  • the XY adjuster 52 has a function of adjusting the light guide unit 32 in the XY directions.
  • FIG. 9 is a diagram showing the inspection method step by step.
  • the light guide 32 is brought into contact with the slider 2 (a).
  • the light guide unit 32 is a non-defective product that outputs light that satisfies a standard.
  • Light is emitted from the light guide unit 32 that is brought into contact with the light guide unit 32, the light guide unit 32 is adjusted so as to enter one of the light guide function units 43 of the slider 2, and is emitted from the light guide function unit 43.
  • the adjustment of the light guide 32 is stopped at the position where the intensity of the detected light is maximized (b).
  • the detected light intensity satisfies the reference value p, it is judged that the refractive index difference between the core and the clad of the light guide function unit 43 and the incident end face and the outgoing end face due to polishing are appropriately processed. It is indirectly determined that the formed optical waveguide 40 is also appropriately processed (c). Thereby, it is possible to easily inspect the optical waveguide 40, which is difficult because only minute near-field light is generated from the tip.
  • FIG. 10 is an exploded perspective view showing the slider 2 and the light guide 32 in the present embodiment.
  • the opening of the light guide function unit 44 in the present embodiment is an opening S 2 that is larger than the spot size S 1 of the light emitted from the light guide unit 32 on the exit surface of the light guide unit 32.
  • FIG. 11 is an enlarged perspective view of the slider 2 in the present embodiment.
  • the light guide function unit 45 in the present embodiment is formed in a columnar shape having the same cross-sectional area S from the surface on which the light guide unit 32 is provided to the air bearing surface 2a side. Thereby, since the spot size of the light incident from the light guide part 32 is emitted with substantially the same size, the light emitted from the light guide function part 44 can be easily found.
  • the present embodiment is different from the first embodiment with respect to the tip portion of the slider 2 and the manufacturing method, and is otherwise substantially the same as the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 12 is an enlarged perspective view of the slider 2 in the present embodiment.
  • the light guide function units 46 and 47 in the present embodiment are arranged in two, one on each side of the optical waveguide 40, keeping the same distance d from the optical waveguide 40. Three of the optical waveguide 40 and the light guide function parts 46 and 47 are arranged in parallel with the surface on which the optical waveguide layer 33 is laminated.
  • the material of the light guide function parts 46 and 47 may not be the same material as the optical waveguide 40, and may be, for example, an air layer as long as it has a function of guiding light.
  • FIG. 13 is a process diagram showing the process of forming the optical waveguide layer 33 on the slider substrate 60 step by step.
  • a slider substrate 60 is prepared in which a reproducing element 41 and a recording element 42 are sequentially laminated on a substrate made of AlTiC (AL 2 O 3 —TiC) (a).
  • a clad layer 36 is formed thereon (b).
  • the optical waveguide core 40c and the light guide function part cores 46c and 47c are formed (c).
  • the optical waveguide core 40c is formed by doping SiO 2 with a gas such as Ge.
  • the optical waveguide core 40c and the light guide function cores 46c and 47c do not have to be the same material, for example, the Ge gas doping rate may be changed. Alternatively, a gas other than Ge gas may be doped.
  • the light guide function cores 46c and 47c are formed at the same time as or immediately before and after the optical waveguide core 40c is formed, and the distance d between the optical waveguide core 40c and the light guide function cores 46c and 47c is 1 ⁇ m or less. Form with high accuracy. Moreover, it forms so that it may arrange in parallel with a lamination surface. Finally, the optical waveguide core 40c and the light guide function part cores 46c and 47c are formed, and the cladding layer 37 is further laminated to complete the step of forming the optical waveguide layer 33 on the slider substrate 60 (d).
  • FIG. 14 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32.
  • the slider 2 and the light guide unit 32 are arranged to face each other (A-1).
  • the position of the slider 2 and the light guide 32 is adjusted (A-2).
  • A-3 the slider 2 and the light guide portion 32 are fixed. Complete the assembly.
  • FIG. 15 shows the configuration of the apparatus having the light guide section 32 and the slider 2 when performing position adjustment.
  • the light guide unit 32 faces the surface of the slider 2 opposite to the air bearing surface 2a, and a photodetector 53 that detects a light spot is disposed on the air bearing surface 2a side of the slider 2.
  • the light detected by the photodetector 53 is analyzed by the optical profiler 54.
  • the optical profiler 54 can output the light intensity of the light spot detected by the light detector 53 and its XY coordinates.
  • the XY adjuster 55 can be moved to a plane perpendicular to the optical axis of the light emitted from the light guide unit 32.
  • the coordinate axes of the XY coordinates recognized by the photodetector 53, the optical profiler 54, and the XY adjuster 55 are the same.
  • FIG. 16 is a diagram showing stepwise the method of adjusting the position of the slider 2 and the light guide unit 32.
  • the figures ((a), (b), (c), (d)) without prime shown in the left column are views of the slider 2 and the light guide section 32 as seen from the cross section.
  • the primed figures ((a ′), (b ′), (c′ ⁇ 1), (c′-2), (d)) shown in the right column are XY coordinates recognized by the XY adjuster 55.
  • FIG. 6 is a diagram schematically showing coordinates indicated by the XY adjuster 55.
  • the slider 2 and the light guide unit 32 are arranged to face each other (a, a ′).
  • the light emitted from the light guide unit 32 enters the light guide function unit 46.
  • the coordinates (X 1 , Y 1 ) at which the intensity of the incident light is maximized are recorded (b, b ′).
  • the light emitted from the light guide unit 32 is incident on the other light guide function unit 47 (c).
  • the XY adjuster 55 is moved from the light guide function unit 46 to the light guide function unit 47 side by a distance 2d, and further searched by moving the light guide function unit 46 by a minute angle (c′-1).
  • coordinates (X 2 , Y 2 ) at which the intensity of light incident on the light guide function unit 47 is maximized are recorded (c′-2).
  • the XY adjuster 55 is introduced by d (or Equation 1) onto the coordinates (X 1 , Y 1 ) of the light guide function unit 46 and the coordinates (X 2 , Y 2 ) of the light guide function unit 47.
  • the optical function unit 46 is shifted, the light guide unit 32 can be arranged so that light is efficiently incident on the optical waveguide 40 (d, d ′).
  • the position adjustment of the slider 2 and the light guide unit 32 is completed. Thereby, the super-precision position adjustment of the light guide part 32 and the slider 2 can be performed easily.
  • the present embodiment is different from the first embodiment in the manufacturing method of the slider 2 and the light guide section 32, and is otherwise substantially the same as the first embodiment.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 17 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32 in the present embodiment.
  • a UV curable adhesive is applied in advance to the surface of either the slider 2 or the light guide 32, or both, where the slider 2 and the light guide 32 face each other (A-1).
  • it may not necessarily be a UV curable adhesive, and it may be cured when left in the air for a long time.
  • the slider 2 and the light guide portion 32 are opposed to each other (A-2).
  • the positions of the slider 2 and the light guide unit 32 are adjusted (A-3).
  • the present embodiment is different from the fourth embodiment in the manufacturing method of the slider 2 and the light guide portion 32, and is otherwise substantially the same as the fourth embodiment.
  • the same components as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 18 is a diagram showing step by step the method for adjusting the position of the slider 2 and the light guide unit 32 in this embodiment, as in FIG.
  • the adjustment method is substantially the same as the method shown in the fourth embodiment along FIG.
  • the light guide 32 and the slider 2 are adjusted in a state where the light guide 32 is in contact with the slider 2.
  • the light guide 32 is kept in contact with the slider 2 so that the spread angle of the light emitted from the light guide 32 is large. Even when the optical axis is slightly bent with respect to the optical waveguide 40, the position adjustment of the slider 2 and the light guide portion 32 can be performed accurately.
  • the present embodiment is different from the fourth embodiment in the structure of the tip portion of the slider 2 and the manufacturing method of the slider 2 and the light guide section 32, and is otherwise substantially the same as the fourth embodiment.
  • the same components as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 19 is an enlarged perspective view of the slider 2 in the present embodiment.
  • the light guide function parts 48 and 49 are arranged with a small distance ⁇ d from the optical waveguide 40. Thereby, when light is incident on the optical waveguide 40 at a distance from the incident surface of the optical waveguide 40, the leaked light can be received.
  • FIG. 20 is a diagram showing stepwise the method of adjusting the position of the slider 2 and the light guide unit 32 in the present embodiment.
  • the light guide unit 32 and the slider 2 are opposed to each other with a distance h, and the position of the light guide unit 32 is adjusted while viewing the intensity of light emitted from the light guide function units 48 and 49 (a).
  • the position of the light guide unit 32 is fixed at a position where the peak values p 48 and p 49 of the light intensity emitted from the light guide function units 48 and 49 both satisfy the reference value p 1 (b). ).
  • the light guide 32 and the slider 2 are brought into contact with each other without moving the XY coordinates of the light guide 32 and fixed (c).
  • FIG. 21 is a graph of the state at (b) in FIG. 20 with the X coordinate on the horizontal axis and the light intensity on the vertical axis, with the center of the optical waveguide 40 being the origin of the X coordinate.
  • ⁇ d, h, and p 1 are optimized and the light guide 32 and the slider 2 are fixed when p 48 , p 49 ⁇ p 1 , the peak intensity of the emitted light from the light guide 32 is almost certain. Since the light is incident into the optical waveguide 40, highly accurate position adjustment is possible, and the highly efficient head gimbal assembly 12 can be realized.
  • the present invention it can be efficiently manufactured. Specifically, according to the head gimbal assembly according to the present invention, by providing a slider light guide function part having a light guide function, light is put into the slider light guide function part, so that non-defective inspection of the optical waveguide and optical The element and the optical waveguide can be easily aligned.
  • the method for manufacturing the head gimbal assembly it is possible to easily inspect the optical waveguide, which has been difficult, by performing the non-defective inspection of the optical waveguide indirectly using the light emitted from the slider light guide function unit. Can be done. Furthermore, a defective head gimbal assembly that occurs due to a defect in only the optical waveguide after assembling the head gimbal assembly by performing an inspection to determine whether the optical waveguide is a non-defective product before fixing the slider and the optical element. In addition, the useless process of assembling the head gimbal assembly using the defective optical waveguide can be omitted, and the manufacturing cost can be reduced.
  • D disc (recording medium) DESCRIPTION OF SYMBOLS 1 Information recording / reproducing apparatus 2 Slider 2a Air bearing surface 3 Suspension 4 Wiring 5 Control part 6 Actuator 7 Spindle motor 9 Housing bottom part 10 Pivot shaft 11 Carriage 12 Head gimbal assembly 14 Arm part 15 Base part 17 Gimbal 18 Support body 19 Protrusion part 20 Laser light source 22 base plate 22a opening 23 hinge plate 24 load beam 25 flexure 31 electrical wiring 32 light guide 33 optical waveguide layer 36, 37 cladding layer 34 near-field light generating element 40 optical waveguide 40c optical waveguide core 41 reproducing element 42 recording element 43, 44 , 45, 46, 47, 48, 48 Light guide function unit 43c, 46c, 47c Light guide function unit core 50, 53 Photo detector 51, 54 Optical profiler 52, 55 XY adjuster 60 Slider substrate 61 Substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Optical Head (AREA)

Abstract

A head gimbal assembly for recording information on a recording medium by near-field light is provided with a slider, an optical element which supplies the light to the slider, an optical waveguide which guides the light from the optical element to the side facing the recording medium, and a slider light guiding function part which is formed to extend from a surface provided with the optical element to a surface facing the recording medium of the slider. Also provided are a head gimbal assembly inspection method comprising the step for causing the light from the optical element to enter the slider light guiding function part and determining, using the light emitted from the slider light guiding function part, whether the optical waveguide is nondefective or not, and a head gimbal assembly manufacturing method comprising the step for aligning the optical element and the slider using the light emitted from the slider light guiding function part.

Description

ヘッドジンバルアセンブリ、ヘッドジンバルアセンブリ検査方法及びヘッドジンバルアセンブリ製造方法Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method
 本発明は、光を集光したスポット光を利用して記録媒体に各種の情報を記録再生するヘッドジンバルアセンブリ、ヘッドジンバルアセンブリ検査方法及びヘッドジンバルアセンブリ製造方法に関するものである。 The present invention relates to a head gimbal assembly, a head gimbal assembly inspection method, and a head gimbal assembly manufacturing method for recording and reproducing various types of information on a recording medium using spot light that has collected light.
 近年、コンピュータ機器におけるハードディスク等の記録媒体(以下、ディスクという)は、より大容量且つ高密度情報の記録再生を行いたい等のニーズを受けて、更なる高密度化が求められている。そのため、隣り合う磁区同士の影響や、熱揺らぎを最小限に抑えるために、保持力の強いものがディスクとして採用され始めている。そのため、ディスクに情報を記録することが困難になっていた。 In recent years, a recording medium such as a hard disk (hereinafter referred to as a disk) in a computer device has been demanded to have a higher density in response to a need to record and reproduce a larger capacity and higher density information. For this reason, in order to minimize the influence of adjacent magnetic domains and thermal fluctuation, a disk having a strong holding force has begun to be adopted. Therefore, it has been difficult to record information on the disc.
 そこで、上述した不具合を解消するために、近接場光を利用して磁区を局所的に加熱して一時的に保持力を低下させ、その間にディスクへの書き込みを行うハイブリッド磁気記録方式の情報記録再生装置が提案されている。特に、近接場光を利用する場合には、従来の光学系において限界とされていた光の波長以下となる領域を加熱することが可能となる。よって、従来の磁気記録再生装置を超える記録ビットの高密度化を図ることができる。 Therefore, in order to eliminate the above-mentioned problems, information recording of a hybrid magnetic recording system in which the magnetic domain is locally heated using near-field light to temporarily reduce the holding force and during which writing to the disk is performed. A playback device has been proposed. In particular, when using near-field light, it is possible to heat a region that is equal to or less than the wavelength of light, which is a limit in conventional optical systems. Therefore, it is possible to achieve a higher recording bit density than the conventional magnetic recording / reproducing apparatus.
 上述したハイブリッド磁気記録方式による情報記録再生装置としては、各種のものが提案されているが、その1つとして、特許文献1に示すようなレーザからの光をスライダ上に設けられた近接場光ヘッドに供給し、微小開口から十分エネルギーの大きな近接場光を生成し、超高分解能の再生記録、高速記録再生、高SN比化を図ることができる情報記録再生装置が知られている。 Various types of information recording / reproducing apparatuses based on the hybrid magnetic recording system described above have been proposed. As one of the information recording / reproducing apparatuses, near-field light provided on a slider as shown in Patent Document 1 is used. 2. Description of the Related Art An information recording / reproducing apparatus that is supplied to a head and generates near-field light with sufficiently large energy from a minute aperture to achieve ultrahigh resolution reproduction / recording, high-speed recording / reproduction, and high SN ratio is known.
 この情報記録再生装置は、近接場光ヘッドを備えたスライダをディスク上でスキャンさせ、スライダをディスク上の所望する位置に配置する。その後、近接場光ヘッドから放射された近接場光とスライダから発生する記録磁界とを協働させることで、ディスクに情報を記録することができる。またその中でも、ディスク面と近接場光ヘッドとの間の距離をより近接させるために、近接場光ヘッドをスライダの先端面(流出端)側に配置するような構成が知られている。 This information recording / reproducing apparatus scans a slider provided with a near-field optical head on a disk and arranges the slider at a desired position on the disk. Thereafter, information can be recorded on the disk by cooperating the near-field light emitted from the near-field light head and the recording magnetic field generated from the slider. Among them, a configuration is known in which the near-field light head is disposed on the front end surface (outflow end) side of the slider in order to make the distance between the disk surface and the near-field light head closer.
特開2009-301597号公報JP 2009-301597 A
 ところで、ハイブリッド磁気記録再生装置は、近接場光のスポットをディスク上の微小な磁区に十分な光強度で当てることが望ましい。そこで、近接場光が十分な光強度をもって放射されるようにヘッドジンバルアセンブリが構成されているか否かを確かめることが必要になる。 By the way, it is desirable for the hybrid magnetic recording / reproducing apparatus to apply a near-field light spot to a minute magnetic domain on the disk with sufficient light intensity. Therefore, it is necessary to check whether or not the head gimbal assembly is configured such that near-field light is emitted with sufficient light intensity.
 近接場光が適切に発生しているかどうかを測定する方法としては、走査型近接場光顕微鏡や走査型熱顕微鏡を用いる方法が知られている。走査型近接場光顕微鏡は、測定対象となる近接場光を光ファイバでできたプローブ先端で走査し、近接場光の光強度やその空間分布を測定することができる。また、走査型熱顕微鏡は、測定対象となる近接場光を熱測定用に加工されたプローブを用いて走査し、熱起電力を測定することで、近接場光のもつ熱エネルギーやその空間分布を測定することができる。しかし、これらの方法は、測定に用いる装置が高額である上、測定に時間がかかることが欠点である。そのため、近接場光ヘッドの製造工程でこれらの方法を採用する場合、製造コストを著しく増加させると考えられる。 As a method for measuring whether or not near-field light is appropriately generated, a method using a scanning near-field light microscope or a scanning thermal microscope is known. A scanning near-field light microscope can scan near-field light to be measured with a probe tip made of an optical fiber and measure the light intensity of the near-field light and its spatial distribution. The scanning thermal microscope scans the near-field light to be measured using a probe processed for heat measurement and measures the thermoelectromotive force, thereby providing the thermal energy of the near-field light and its spatial distribution. Can be measured. However, these methods are disadvantageous in that the apparatus used for the measurement is expensive and the measurement takes time. Therefore, when these methods are adopted in the manufacturing process of the near-field optical head, it is considered that the manufacturing cost is remarkably increased.
 一方で、ヘッドジンバルアセンブリとして組み上げるには、それなりの手間や時間を要するが、ヘッドジンバルアセンブリとして組み上げる前にヘッドジンバルアセンブリを構成する各部材が適切に構成されているか否かを確認しない場合には、下流工程の段階において、記録再生検査などの方法で、良、不良の判断がなされる。ゆえに、不良となったものについては、ヘッドジンバルアセンブリが組み上げられた下流工程において廃棄されることになる。このようなヘッドジンバルアセンブリについては、それを組み上げるために割かれた手間や時間が無駄となってしまう。 On the other hand, assembling as a head gimbal assembly requires a certain amount of time and effort, but before assembling as a head gimbal assembly, if it is not confirmed whether each component constituting the head gimbal assembly is properly configured In the downstream process stage, good or bad is judged by a method such as recording / reproduction inspection. Therefore, what has become defective is discarded in a downstream process in which the head gimbal assembly is assembled. For such a head gimbal assembly, the effort and time taken to assemble it is wasted.
 そこで、本発明はこのような事情に考慮してなされたもので、その目的は、効率的に製造することができるヘッドジンバルアセンブリ、ヘッドジンバルアセンブリ検査方法及びヘッドジンバルアセンブリ製造方法を提供することを提供することにある。 Accordingly, the present invention has been made in view of such circumstances, and an object thereof is to provide a head gimbal assembly, a head gimbal assembly inspection method, and a head gimbal assembly manufacturing method that can be efficiently manufactured. It is to provide.
 本発明は、上記目的を達成するために、以下の手段を提供する。
 本発明に係るヘッドジンバルアセンブリは、記録媒体に情報を記録するヘッドジンバルアセンブリであって、記録媒体の上を浮上して相対移動するスライダと、スライダの記録媒体に対向する面とは反対側の面に備えられており、スライダへ光を供給する光学素子と、スライダに備えられており、光学素子からの光を光学素子が備えられる側からスライダの記録媒体に対向する側まで導波し、前記記録媒体への情報記録に用いる光導波路と、スライダに備えられており、スライダの光学素子が備えられる面から、スライダの記録媒体に対向する面に亘って形成されたスライダ導光機能部と、を備えることを特徴とするものである。
In order to achieve the above object, the present invention provides the following means.
A head gimbal assembly according to the present invention is a head gimbal assembly for recording information on a recording medium. The head gimbal assembly floats on the recording medium and moves relative to the slider, and the slider is opposite to the surface facing the recording medium. An optical element that is provided on the surface and supplies light to the slider, and is provided on the slider, and guides the light from the optical element from the side where the optical element is provided to the side facing the recording medium of the slider, An optical waveguide used for recording information on the recording medium, and a slider light guide function unit provided on the slider, formed from the surface on which the optical element of the slider is provided to the surface of the slider facing the recording medium; Are provided.
 本発明に係るヘッドジンバルアセンブリにおいては、記録媒体への情報記録に用いられる光導波路とは別に、導光機能をもつスライダ導光機能部を備えることにより、そのスライダ導光機能部に光を入れ、近接場光が十分な強度をもって発生するか否かを容易に確かめることができる。 In the head gimbal assembly according to the present invention, a slider light guide function unit having a light guide function is provided separately from the optical waveguide used for recording information on the recording medium, so that light is input to the slider light guide function unit. It can be easily confirmed whether or not the near-field light is generated with sufficient intensity.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、スライダ導光機能部が有する導光機能を利用して光導波路が良品であるか否かを判断するために用いられるものであることを特徴とするものである。 In the head gimbal assembly according to the present invention, the slider light guide function unit is used to determine whether or not the optical waveguide is a non-defective product using the light guide function of the slider light guide function unit. It is characterized by.
 本発明に係るヘッドジンバルアセンブリにおいては、光導波路が良品であるか否かを間接的に判断するためのスライダ導光機能部が設けられていることで、困難であった光導波路の良品検査を容易に行うことができる。またさらに、ヘッドジンバルアセンブリを組み上げる前に光導波路の不良を見つけることができるため、不良である光導波路の備えられたスライダを使用してヘッドジンバルアセンブリを組み立てる無駄な工程や、それらに組み付けられる良品な他部品の無駄を省くことができ、製造コストを低減させることができる。 In the head gimbal assembly according to the present invention, a non-defective inspection of the optical waveguide, which has been difficult by providing a slider light guide function part for indirectly determining whether or not the optical waveguide is non-defective, is provided. It can be done easily. Furthermore, since the defect of the optical waveguide can be found before assembling the head gimbal assembly, the waste process of assembling the head gimbal assembly using the slider with the defective optical waveguide, and the good product assembled to them It is possible to eliminate waste of other parts, and to reduce manufacturing costs.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、記録媒体のトラック幅方向において光導波路と同一直線上に設けられていることを特徴とするものである。 The head gimbal assembly according to the present invention is characterized in that the slider light guide function section is provided on the same straight line as the optical waveguide in the track width direction of the recording medium.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部が光導波路と同一直線上に設けられていることにより、スライダ導光機能部の位置が特定できれば、光導波路の位置を容易に特定することができる。 In the head gimbal assembly according to the present invention, if the position of the slider light guide function section can be specified by providing the slider light guide function section on the same straight line as the optical waveguide, the position of the optical waveguide is easily specified. be able to.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、2つ以上備えられていることを特徴とするものである。 The head gimbal assembly according to the present invention includes two or more slider light guide function portions.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部が2つ以上備えられていることにより、2つ以上のスライダ導光機能部の位置を特定することができれば、光導波路の位置を一点に決定することができる。そのため、光導波路の位置を容易に特定することができる。 In the head gimbal assembly according to the present invention, if two or more slider light guide function parts can be specified by providing two or more slider light guide function parts, the position of the optical waveguide is determined as one point. Can be determined. Therefore, the position of the optical waveguide can be easily specified.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部のそれぞれは、光導波路を挟んで両側に備えられていることを特徴とするものである。 The head gimbal assembly according to the present invention is characterized in that each of the slider light guide function portions is provided on both sides of the optical waveguide.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部の間に光導波路を備えることにより、スライダ導光機能部の位置が特定できれば、光導波路の位置を容易に特定することができる。 In the head gimbal assembly according to the present invention, if the position of the slider light guide function unit can be specified by providing the optical waveguide between the slider light guide function units, the position of the optical waveguide can be specified easily.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、光導波路と同一の材料により構成されていることを特徴とするものである。 The head gimbal assembly according to the present invention is characterized in that the slider light guide functional part is made of the same material as the optical waveguide.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部と光導波路が同一材料でできていることにより、スライダ導光機能部と光導波路内のそれぞれを通る光が同様の振る舞いをする。そのため、スライダ導光機能部に光を通すことにより、間接的に光導波路内を通る光の振る舞いを知ることができる。 In the head gimbal assembly according to the present invention, since the slider light guide function part and the optical waveguide are made of the same material, light passing through each of the slider light guide function part and the optical waveguide behaves in the same manner. Therefore, it is possible to know the behavior of light passing through the optical waveguide indirectly by passing light through the slider light guide function unit.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、コアとクラッドから構成されていることを特徴とするものである。 The head gimbal assembly according to the present invention is characterized in that the slider light guide function part is composed of a core and a clad.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部がコアとクラッドから構成されていることにより、光を高効率で導光することができる。
本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部の光学素子が備えられる側のコア形状は、光学素子の出射端における光のスポットと同等であるかもしくはそれ以上の大きさであることを特徴とするものである。
In the head gimbal assembly according to the present invention, the slider light guide function part is composed of the core and the clad, so that light can be guided with high efficiency.
The head gimbal assembly according to the present invention is such that the core shape on the side where the optical element of the slider light guide function unit is provided is equal to or larger than the light spot at the emission end of the optical element. It is a feature.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部の光学素子が備えられる側のコア形状が光学素子の出射端における光のスポット以上の大きさをもつことにより、光学素子からの光がスライダ導光機能部へ入射し易くなるため、スライダ導光機能部から出射した光を容易に見つけることができる。 In the head gimbal assembly according to the present invention, the core shape on the side where the optical element of the slider light guide function unit is provided has a size larger than the light spot at the light emitting end of the optical element, so that the light from the optical element is transmitted. Since it becomes easy to inject into a slider light guide function part, the light radiate | emitted from the slider light guide function part can be found easily.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、スライダの光学素子が備えられる面から、スライダの記録媒体に対向する面に亘って、スライダ導光機能部の断面積がほぼ同じであるように構成されていることを特徴とするものである。 In the head gimbal assembly according to the present invention, the slider light guide function unit has substantially the same cross-sectional area from the surface on which the optical element of the slider is provided to the surface of the slider facing the recording medium. It is characterized by being configured.
 本発明に係るヘッドジンバルアセンブリにおいては、スライダ導光機能部が集光機能を持たないことにより、光学素子から入射した光のスポットは入射時とほぼ同じ大きさのままスライダ導光機能部から出射してくる。そのため、スライダ導光機能部から出射した光を容易に見つけることができる。 In the head gimbal assembly according to the present invention, since the slider light guide function unit does not have a light collecting function, the spot of light incident from the optical element is emitted from the slider light guide function unit while maintaining almost the same size as the incident light. Come on. Therefore, the light emitted from the slider light guide function unit can be easily found.
 本発明に係るヘッドジンバルアセンブリは、スライダ導光機能部は、スライダ導光機能部が有する導光機能を利用して光学素子と光導波路との位置合わせを行うために用いられるものであることを特徴とするものである。 In the head gimbal assembly according to the present invention, the slider light guide function unit is used to align the optical element and the optical waveguide using the light guide function of the slider light guide function unit. It is a feature.
 本発明に係るヘッドジンバルアセンブリにおいては、光学素子と光導波路との位置合わせを行うためのスライダ導光機能部を設けることにより、光学素子と光導波路との位置合わせを高精度にかつ容易に行うことができる。 In the head gimbal assembly according to the present invention, by providing a slider light guide function unit for aligning the optical element and the optical waveguide, the optical element and the optical waveguide are aligned with high accuracy and easily. be able to.
 本発明に係るヘッドジンバルアセンブリには、光導波路は該先端部分に、記録媒体への情報記録に用いる近接場光を発生させる近接場光発生部を備えていることを特徴とするものである。 The head gimbal assembly according to the present invention is characterized in that the optical waveguide is provided with a near-field light generating portion for generating near-field light used for recording information on a recording medium at the tip portion.
 本発明に係るヘッドジンバルアセンブリにおいては、光導波路が近接場光発生部を備えていたとしても、光導波路の良品検査や位置合わせを容易に行うことができる。 In the head gimbal assembly according to the present invention, the non-defective product inspection and alignment of the optical waveguide can be easily performed even if the optical waveguide includes the near-field light generating portion.
 本発明に係るヘッドジンバルアセンブリ検査方法は、記録媒体に情報を記録するヘッドジンバルアセンブリを検査する方法であって、ヘッドジンバルアセンブリは、記録媒体の上を浮上するスライダと、スライダの記録媒体に対向する面とは反対側の面に備えられており、前記スライダへ光を供給する光学素子と、スライダに備えられており、光学素子からの光を光学素子が備えられる側からスライダの記録媒体に対向する側まで導波する機能を有し、記録媒体への情報記録に用いる光導波路コアと光導波路クラッドとから成る光導波路と、スライダに備えられており、スライダの光学素子が備えられる面から、スライダの記録媒体に対向する面に亘って形成されるスライダ導光機能部とを備え、スライダ導光機能部は、スライダ導光機能部コアとスライダ導光機能部クラッドとから構成され、スライダ導光機能部コアとスライダ導光機能部クラッドとの屈折率差が光導波路コアと光導波路クラッドとの屈折率差と略同一に形成されているものであり、スライダと光学素子とを固着する前に、スライダの記録媒体と対向する面とは反対側の面と光学素子の光を出射する面とを対向させた状態で、光学素子から出射した光をスライダ導光機能部に入射し、スライダ導光機能部から出射した光を利用して、光導波路が良品であるか否かを判断する工程を含むことを特徴とするものである。 A head gimbal assembly inspection method according to the present invention is a method for inspecting a head gimbal assembly for recording information on a recording medium, the head gimbal assembly facing a slider floating on the recording medium and the recording medium of the slider. An optical element that supplies light to the slider, and is provided on the slider. Light from the optical element is applied to the recording medium of the slider from the side on which the optical element is provided. It has a function of guiding to the opposite side, and is provided in the slider and the optical waveguide composed of the optical waveguide core and the optical waveguide clad used for recording information on the recording medium. From the surface on which the optical element of the slider is provided A slider light guide function unit formed over a surface of the slider facing the recording medium, and the slider light guide function unit has a slider light guide function. Consists of a core and a slider light guide functional part cladding, and the refractive index difference between the slider light guide functional part core and the slider light guide functional part cladding is formed substantially the same as the refractive index difference between the optical waveguide core and the optical waveguide clad. Before fixing the slider and the optical element, the optical element in a state where the surface opposite to the surface facing the recording medium of the slider and the surface that emits light of the optical element are opposed to each other. The method includes a step of determining whether or not the optical waveguide is non-defective by using the light emitted from the slider light guide function unit and using the light emitted from the slider light guide function unit. is there.
 本発明に係るヘッドジンバルアセンブリ検査方法においては、スライダ導光機能部から出射する光を利用して、間接的に、光導波路の良品検査を行うことにより、困難であった光導波路の検査を容易に行うことができる。またさらに、スライダと光学素子を固着する前に光導波路が良品であるか否かを判断する検査を行うことで、ヘッドジンバルアセンブリを組み立てた後に光導波路のみの不良により発生する不良なヘッドジンバルアセンブリや、不良である光導波路を使用してヘッドジンバルアセンブリを組み立てる無駄な工程を省くことができ、製造コストを低減させることができる。 In the head gimbal assembly inspection method according to the present invention, it is easy to inspect the optical waveguide, which is difficult by inspecting the non-defective product of the optical waveguide indirectly by using the light emitted from the slider light guide function unit. Can be done. Furthermore, a defective head gimbal assembly that occurs due to a defect of only the optical waveguide after assembling the head gimbal assembly by performing an inspection to determine whether the optical waveguide is a good product before fixing the slider and the optical element. In addition, the useless process of assembling the head gimbal assembly using the defective optical waveguide can be omitted, and the manufacturing cost can be reduced.
 本発明に係るヘッドジンバルアセンブリ検査方法は、スライダ導光機能部から出射した光の強度を測定し、該強度が基準値を満たしていれば光導波路が良品であると判断する、光導波路の検査工程を含むことを特徴とするものである。 The head gimbal assembly inspection method according to the present invention measures the intensity of light emitted from the slider light guide function unit, and determines that the optical waveguide is a non-defective product if the intensity satisfies a reference value. It is characterized by including a process.
 本発明に係るヘッドジンバルアセンブリ検査方法においては、スライダ導光機能部から出射した光の強度を利用して光導波路の良品検査を行うことにより、困難であった光導波路の良品検査を容易に実施することができる。 In the head gimbal assembly inspection method according to the present invention, the non-defective inspection of the optical waveguide, which has been difficult, is easily performed by performing the non-defective inspection of the optical waveguide using the intensity of the light emitted from the slider light guide function unit. can do.
 本発明に係るヘッドジンバルアセンブリの製造方法は、記録媒体に情報を記録するヘッドジンバルアセンブリを製造するものであり、ヘッドジンバルアセンブリは、記録媒体の上を浮上するスライダと、スライダの記録媒体に対向する面とは反対側の面に備えられており、スライダへ光を供給する光学素子と、スライダに備えられており、光学素子からの光を光学素子が備えられる側からスライダの記録媒体に対向する側まで導波し、記録媒体への情報記録に用いる光導波路と、スライダに備えられており、スライダの光学素子が備えられる面から、スライダの記録媒体に対向する面に亘って形成されたスライダ導光機能部と、を備えており、スライダと光学素子とを固着する前に、スライダの記録媒体と対向する面とは反対側の面と光学素子の光を出射する面とを対向させた状態で、光学素子から出射した光をスライダ導光機能部に入射し、スライダ導光機能部から出射した光を利用して、近接場光が発生するように光学素子とスライダとの位置合わせを行う工程を含むことを特徴とする。 A method for manufacturing a head gimbal assembly according to the present invention is a method for manufacturing a head gimbal assembly for recording information on a recording medium. The head gimbal assembly is opposed to a slider floating on the recording medium and the recording medium of the slider. An optical element that supplies light to the slider, and is provided on the slider so that the light from the optical element faces the recording medium of the slider from the side on which the optical element is provided. The optical waveguide used to record information on the recording medium and the slider are formed from the surface on which the optical element of the slider is provided to the surface facing the recording medium of the slider. A slider light guide function unit, and before fixing the slider and the optical element, the surface of the slider opposite to the surface facing the recording medium and the optical The light emitted from the optical element is incident on the slider light guide function unit while facing the light emitting surface of the child, and near-field light is generated using the light emitted from the slider light guide function unit. Thus, the method includes the step of aligning the optical element and the slider.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、スライダ導光機能部から出射する光を利用して、光学素子とスライダの位置合わせを行うことにより、光学素子とスライダの高精度な位置合わせを容易に行うことができる。 In the head gimbal assembly manufacturing method according to the present invention, the optical element and the slider are easily aligned by using the light emitted from the slider light guide function unit, thereby easily aligning the optical element and the slider with high accuracy. Can be done.
 本発明に係るヘッドジンバルアセンブリ製造方法は、スライダ導光機能部から出射した光の強度を測定しながら、光学素子とスライダとの相対的な位置を調整したうえで、光の強度が最大となる光学素子とスライダとの相対的な位置座標を特定し、該位置座標を用いて光学素子とスライダとの位置合わせを行うことを特徴とするものである。 The head gimbal assembly manufacturing method according to the present invention maximizes the light intensity after adjusting the relative position between the optical element and the slider while measuring the intensity of the light emitted from the slider light guide function unit. A relative position coordinate between the optical element and the slider is specified, and the alignment between the optical element and the slider is performed using the position coordinate.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、スライダ導光機能部から出射した光の最大強度となる光学素子とスライダとの座標を特定して位置合わせを行うことにより、光学素子からの出射光が理想的な円形スポットになっていなかった場合や、光学素子とスライダとの位置関係の公差が、導光部からスライダ導光機能部に光が効率よく入射されないことから位置合わせの精度を満たさない場合においても、高精度な位置合わせを容易に行うことができる。 In the method for manufacturing the head gimbal assembly according to the present invention, the emitted light from the optical element is determined by identifying and aligning the coordinates of the optical element and the slider having the maximum intensity of the light emitted from the slider light guide function unit. Is not an ideal circular spot, and the positional relationship tolerance between the optical element and the slider satisfies the alignment accuracy because the light does not efficiently enter the slider light guide function part. Even when there is not, highly accurate alignment can be performed easily.
 本発明に係るヘッドジンバルアセンブリ製造方法は、スライダ導光機能部が、光導波路を挟んで両側に備えられており、光学素子とスライダを離した状態でスライダ導光機能部のそれぞれから出射した光の量が基準量を満たしているときに、光学素子とスライダとの位置決めを決定することを特徴とするものである。 In the head gimbal assembly manufacturing method according to the present invention, the slider light guide function unit is provided on both sides of the optical waveguide, and the light emitted from each of the slider light guide function units in a state where the optical element and the slider are separated from each other. The positioning of the optical element and the slider is determined when the amount satisfies the reference amount.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、光学素子からの出射光をスライダ導光機能部に一度に入射させて位置を決定することができることにより、位置合わせの段階を少なく、高精度の位置合わせを容易に行うことができる。 In the method for manufacturing the head gimbal assembly according to the present invention, the position can be determined by allowing the light emitted from the optical element to enter the slider light guide function unit at a time, thereby reducing the number of alignment steps and providing a highly accurate position. Matching can be performed easily.
 本発明に係るヘッドジンバルアセンブリ製造方法は、光学素子とスライダとを対向させる前に、スライダと光学素子とを固着するための接着剤を塗布することを特徴とするものである。 The head gimbal assembly manufacturing method according to the present invention is characterized in that an adhesive for fixing the slider and the optical element is applied before the optical element and the slider are opposed to each other.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、光学素子とスライダを対向させる前に、スライダと光学素子を固着するための接着剤を塗布することにより、対向させた後に位置合わせをした場合でも、位置合わせの後に接着剤を塗布する際に起こりうる位置ずれを防ぐことができる。 In the head gimbal assembly manufacturing method according to the present invention, before making the optical element and the slider face each other, by applying an adhesive for fixing the slider and the optical element, even when the alignment is made after making the face face each other, Misalignment that may occur when the adhesive is applied after alignment is prevented.
 本発明に係るヘッドジンバルアセンブリ製造方法は、光学素子とスライダとを接面しながら、光学素子とスライダとの位置合わせを行うことを特徴とするものである。 The head gimbal assembly manufacturing method according to the present invention is characterized in that the optical element and the slider are aligned while contacting the optical element and the slider.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、光学素子とスライダとを接面しながら光学素子とスライダの位置合わせを行うことにより、光学素子から出射される光の光軸が、光学素子とスライダとの位置を相対的に調整する調整軸に対して曲がっていた場合でも、光学素子からの出射光を高効率で入射させることができる。 In the head gimbal assembly manufacturing method according to the present invention, the optical element and the slider are aligned while contacting the optical element and the slider so that the optical axis of the light emitted from the optical element is changed to the optical element and the slider. Even when the position is bent with respect to the adjustment axis for relatively adjusting the position, the light emitted from the optical element can be made incident with high efficiency.
 本発明に係るヘッドジンバルアセンブリ製造方法は、スライダ導光機能部及び光導波路を同工程で形成することを特徴とするものである。 The head gimbal assembly manufacturing method according to the present invention is characterized in that the slider light guide function part and the optical waveguide are formed in the same process.
 本発明に係るヘッドジンバルアセンブリ製造方法においては、スライダ導光機能部及び光導波路を同工程で形成することにより、スライダ導光機能部と光導波路の相対位置をより正確に形成することができるため、光学素子から出射する光をスライダ導光機能部へ入射させ、次いでスライダ導光機能部から出射した光を利用して光学素子とスライダの位置合わせを行う場合に、光学素子からの光をより効率よく光導波路へ入射することができる。 In the head gimbal assembly manufacturing method according to the present invention, the slider light guide function part and the optical waveguide can be formed in the same process, so that the relative position of the slider light guide function part and the optical waveguide can be more accurately formed. When the light emitted from the optical element is incident on the slider light guide function part, and then the optical element and the slider are aligned using the light emitted from the slider light guide function part, the light from the optical element is more It can efficiently enter the optical waveguide.
 本発明によるヘッドジンバルアセンブリによれば、記録媒体への情報記録に用いられる光導波路とは別に、導光機能をもつスライダ導光機能部を備えることにより、そのスライダ導光機能部に光を入れ、近接場光が十分な強度をもって発生するか否かを容易に確かめることができる。 According to the head gimbal assembly of the present invention, a slider light guide function unit having a light guide function is provided separately from an optical waveguide used for recording information on a recording medium, so that light is input to the slider light guide function unit. It can be easily confirmed whether or not the near-field light is generated with sufficient intensity.
 また本発明によるヘッドジンバルアセンブリの検査方法によれば、スライダ導光機能部から出射する光を利用して、間接的に、光導波路の良品検査を行うことにより、困難であった光導波路の検査を容易に行うことができる。また、スライダと光学素子を固着する前に光導波路が良品であるか否かを判断することができるので、ヘッドジンバルアセンブリを組み立てた後の光導波路の不良によるヘッドジンバルアセンブリの損失や、不良である光導波路を使用してのヘッドジンバルアセンブリ組み立てという無駄な工程を省くことができ、製造コストを低減させることができる。 According to the head gimbal assembly inspection method of the present invention, it is difficult to inspect the optical waveguide, which is difficult by inspecting the non-defective product of the optical waveguide indirectly using the light emitted from the slider light guide function unit. Can be easily performed. In addition, since it is possible to determine whether or not the optical waveguide is a good product before fixing the slider and the optical element, the head gimbal assembly may be lost or defective due to a defective optical waveguide after the head gimbal assembly is assembled. The useless process of assembling the head gimbal assembly using a certain optical waveguide can be omitted, and the manufacturing cost can be reduced.
 ここで、本発明は、近接場光を用いたヘッドジンバルアセンブリに用いることがより望ましい。 Here, the present invention is more preferably used for a head gimbal assembly using near-field light.
図1は、情報記録再生装置の一実施形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of an information recording / reproducing apparatus. 図2は、スライダが上側に備えられる方向から、ヘッドジンバルアセンブリを拡大して示した斜視図である。FIG. 2 is an enlarged perspective view of the head gimbal assembly from the direction in which the slider is provided on the upper side. 図3は、ヘッドジンバルアセンブリの先端部分を拡大して示した断面図である。FIG. 3 is an enlarged cross-sectional view of the tip portion of the head gimbal assembly. 図4(a)はスライダと導光部を分解して示した斜視図であり、図4(b)は導光部とスライダを組み立てる際の良品検査工程において、スライダに光を入れた時の状況を拡大して示した図である。FIG. 4A is an exploded perspective view showing the slider and the light guide, and FIG. 4B is a view when the light is put into the slider in the non-defective product inspection process when assembling the light guide and the slider. It is the figure which expanded and showed the situation. 図5は、スライダの形成方法を示すフローチャートである。FIG. 5 is a flowchart showing a slider forming method. 図6は、スライダ基板に光導波路層を形成する工程を段階的に示した工程図である。FIG. 6 is a process diagram showing step by step the process of forming the optical waveguide layer on the slider substrate. 図7は、スライダと導光部を組み立てる方法を示したフローチャートである。FIG. 7 is a flowchart showing a method for assembling the slider and the light guide. 図8は、光導波路の検査を実施する際の導光部とスライダを有する装置の構成図である。FIG. 8 is a configuration diagram of an apparatus having a light guide unit and a slider when performing inspection of an optical waveguide. 図9は、光導波路の検査方法を段階的に示した図である。FIG. 9 is a diagram showing the optical waveguide inspection method step by step. 図10は、第2実施形態におけるスライダと導光部を分解して示した斜視図である。FIG. 10 is an exploded perspective view showing the slider and the light guide in the second embodiment. 図11は、第3実施形態におけるスライダを拡大して示した斜視図である。FIG. 11 is an enlarged perspective view of the slider in the third embodiment. 図12は、第4実施形態におけるスライダを拡大して示した斜視図である。FIG. 12 is an enlarged perspective view of the slider in the fourth embodiment. 図13は、スライダ基板に光導波路層を形成する工程を段階的に示した工程図である。FIG. 13 is a process diagram showing step by step the process of forming the optical waveguide layer on the slider substrate. 図14は、スライダと導光部を組み立てる方法を示したフローチャートである。FIG. 14 is a flowchart showing a method of assembling the slider and the light guide. 図15は、位置調整を実施する際の導光部とスライダを有する装置の構成図である。FIG. 15 is a configuration diagram of an apparatus having a light guide unit and a slider when position adjustment is performed. 図16は、スライダと導光部の位置調整の方法を段階的に示した図である。FIG. 16 is a diagram showing the method of adjusting the position of the slider and the light guide unit step by step. 図17は、第5実施形態におけるスライダと導光部を組み立てる方法を示したフローチャートである。FIG. 17 is a flowchart illustrating a method of assembling the slider and the light guide unit in the fifth embodiment. 図18は、第6実施形態におけるスライダと導光部の位置調整の方法を段階的に示した図である。FIG. 18 is a view showing stepwise the method of adjusting the position of the slider and the light guide unit in the sixth embodiment. 図19は、第7実施形態におけるスライダを拡大して示した斜視図である。FIG. 19 is an enlarged perspective view of the slider in the seventh embodiment. 図20は、第7実施形態におけるスライダと導光部の位置調整の方法を段階的に示した図である。FIG. 20 is a view showing stepwise the method of adjusting the position of the slider and the light guide unit in the seventh embodiment. 図21は、横軸にX座標、縦軸に光強度をとり、光導波路の中心をX座標の原点として図20(b)の時の状態示したグラフである。FIG. 21 is a graph showing the state of FIG. 20B with the X coordinate on the horizontal axis, the light intensity on the vertical axis, and the center of the optical waveguide as the origin of the X coordinate.
(第1実施形態)
 以下、本発明に係る第1実施形態の構造と製造方法を、図1から図9を参照して説明する。
(First embodiment)
The structure and manufacturing method of the first embodiment according to the present invention will be described below with reference to FIGS.
 図1は、本発明に係る情報記録再生装置1の一実施形態を示す構成図である。なお、本実施形態の情報記録再生装置1は、垂直記録層を有するディスク(記録媒体)Dに対して、垂直記録方式で書き込みを行う装置である。情報記録再生装置1は、キャリッジ11と、キャリッジ11の基端側から光束を供給するレーザ光源20と、キャリッジ11の先端側に支持され、サスペンション3とサスペンション3の先端に形成されたスライダ2から構成されるヘッドジンバルアセンブリ(HGA)12と、ヘッドジンバルアセンブリ12をディスクDの表面に平行なXY方向に向けてスキャン移動させるアクチュエータ6と、ディスクDを所定の方向に向けて回転させるスピンドルモータ7と、配線4を介してレーザ光源20に接続されており、情報に応じて変調した電流をスライダ2に対して供給する制御部5と、これら各構成品を内部に収容するハウジング(不図示)とを備えている。 FIG. 1 is a block diagram showing an embodiment of an information recording / reproducing apparatus 1 according to the present invention. Note that the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disc (recording medium) D having a vertical recording layer by a vertical recording method. The information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11, and a suspension 3 that is supported on the distal end side of the carriage 11 and formed on the distal end side of the suspension 3. A configured head gimbal assembly (HGA) 12, an actuator 6 that scans and moves the head gimbal assembly 12 in the XY directions parallel to the surface of the disk D, and a spindle motor 7 that rotates the disk D in a predetermined direction. And a control unit 5 that is connected to the laser light source 20 via the wiring 4 and supplies a current modulated in accordance with information to the slider 2, and a housing (not shown) that houses these components therein. And.
 ハウジングは、アルミニウム等の金属材料からなる上部開口部を有する箱型形状のものであり、上面視四角形状の底部9と、底部9の周縁において底部9に対して鉛直方向に立設する周壁とで構成されている。そして、周壁に囲まれた内側には、上述した各構成品等を収容する凹部が形成される。なお、図1においては、説明を分かりやすくするため、ハウジングの周囲を取り囲む周壁を省略する。また、このハウジングには、ハウジングの開口を塞ぐように図示しない蓋が着脱可能に固定されるようになっている。底部9の略中心には、上述したスピンドルモータ7が取り付けられており、該スピンドルモータ7に中心孔を嵌め込むことでディスクDが着脱自在に固定される。 The housing has a box-like shape having a top opening made of a metal material such as aluminum, and has a bottom portion 9 having a quadrangular shape when viewed from above, and a peripheral wall standing vertically to the bottom portion 9 at the periphery of the bottom portion 9. It consists of And the recessed part which accommodates each component mentioned above etc. is formed in the inner side enclosed by the surrounding wall. In FIG. 1, the peripheral wall surrounding the periphery of the housing is omitted for easy understanding. Further, a lid (not shown) is detachably fixed to the housing so as to close the opening of the housing. The spindle motor 7 described above is attached to substantially the center of the bottom portion 9, and the disk D is detachably fixed by fitting the center hole into the spindle motor 7.
 ディスクDの外側、つまり底部9の隅角部には、上述したアクチュエータ6が取り付けられている。このアクチュエータ6には、ピボット軸10を中心にXY方向に対して回動可能なキャリッジ11が取り付けられている。このキャリッジ11は、基端部から先端部に向けてディスクDの表面に沿って延設されたアーム部14と、基端部を介してアーム部14を片持ち状に支持する基部15とが、削り出し加工等により一体形成されたものである。基部15は、ピボット軸10まわりを回動可能に支持されている。つまり、基部15はピボット軸10を介してアクチュエータ6に連結されており、このピボット軸10がキャリッジ11の回転中心となっている。 The actuator 6 described above is attached to the outside of the disk D, that is, the corner of the bottom 9. A carriage 11 is attached to the actuator 6 so as to be rotatable about the pivot shaft 10 in the XY directions. The carriage 11 includes an arm portion 14 extending along the surface of the disk D from the base end portion toward the tip portion, and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. These are integrally formed by machining or the like. The base 15 is supported so as to be rotatable around the pivot shaft 10. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
 アーム部14は、基端部から先端部に向かうにつれ先細るテーパ形状に形成されており、各アーム部14間に、ディスクDが挟み込まれるように配置されている。つまり、アーム部14とディスクDとが、互い違いになるように配されており、アクチュエータ6の駆動によってアーム部14がディスクDの表面に平行な方向(XY方向)に移動可能とされている。なお、キャリッジ11及びヘッドジンバルアセンブリ12は、ディスクDの回転停止時にアクチュエータ6の駆動によって、ディスクD上から退避するようになっている。 The arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14. That is, the arm portion 14 and the disk D are arranged so as to alternate with each other, and the arm portion 14 can be moved in a direction parallel to the surface of the disk D (XY direction) by driving the actuator 6. The carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
 図2は、スライダ2が上側に備えられる方向から、ヘッドジンバルアセンブリ12を拡大して示した斜視図である。ヘッドジンバルアセンブリ12は、上述したレーザ光源20からスライダ2まで光束を導くための導光部32と、スライダ2に備えられる後述する記録素子42や再生素子41などを動作させるための電流を供給する電気配線31が、スライダ2に隣接して接続されている。さらにこれらの導光部32、電気配線31及びスライダ2を固定させるサスペンション3が備えられている。 FIG. 2 is an enlarged perspective view of the head gimbal assembly 12 from the direction in which the slider 2 is provided on the upper side. The head gimbal assembly 12 supplies a light guide 32 for guiding a light beam from the laser light source 20 to the slider 2 and a current for operating a recording element 42 and a reproducing element 41 described later provided in the slider 2. An electrical wiring 31 is connected adjacent to the slider 2. Furthermore, a suspension 3 for fixing the light guide 32, the electric wiring 31, and the slider 2 is provided.
 サスペンション3は、上面視略四角状に形成されたベースプレート22と、ベースプレート22の先端側にヒンジ板23を介して連結された平面視略三角状のロードビーム24とフレクシャ25で構成されている。 The suspension 3 includes a base plate 22 formed in a substantially square shape when viewed from above, a load beam 24 having a substantially triangular shape in plan view and a flexure 25 connected to the tip side of the base plate 22 via a hinge plate 23.
 ベースプレート22は、ステンレス等の厚みの薄い金属材料によって構成されており、基端側には厚さ方向に貫通する開口22aが形成されている。そして、この開口22aを介してベースプレート22がアーム部14(図1参照)の先端に固定されるようになっている。ベースプレート22の上面には、ステンレス等の金属材料により構成されたシート状のヒンジ板23が配置されている。 The base plate 22 is made of a thin metal material such as stainless steel, and an opening 22a penetrating in the thickness direction is formed on the base end side. The base plate 22 is fixed to the tip of the arm portion 14 (see FIG. 1) through the opening 22a. A sheet-like hinge plate 23 made of a metal material such as stainless steel is disposed on the upper surface of the base plate 22.
 このヒンジ板23は、ベースプレート22の上面の全面に亘って形成された平板状のものである。ヒンジ板23の先端部分にロードビーム24が連結されている。ロードビーム24は、ベースプレート22と同様にステンレス等の厚みの薄い金属材料によって構成されており、その基端がベースプレート22の先端との間に間隙を有した状態でヒンジ板23に連結されている。これにより、サスペンション3はベースプレート22とロードビーム24との間を中心に屈曲して、ディスクDの表面に垂直なZ方向に向けて撓み易くなっている。 The hinge plate 23 is a flat plate formed over the entire upper surface of the base plate 22. A load beam 24 is connected to the tip portion of the hinge plate 23. The load beam 24 is made of a thin metal material such as stainless steel like the base plate 22, and the base end thereof is connected to the hinge plate 23 with a gap between the base plate 22 and the tip end of the base plate 22. . As a result, the suspension 3 bends about between the base plate 22 and the load beam 24 and is easily bent in the Z direction perpendicular to the surface of the disk D.
 フレクシャ25は、ステンレス等の金属材料により支持体18とジンバル17が一体に構成されたシート状のものであり、シート状に形成されることで厚さ方向に撓み変形可能に構成されている。また、フレクシャ25は、ロードビーム24の先端側に固定されており、サスペンション3が変形した際にサスペンション3の変形に追従するように構成されている。 The flexure 25 is a sheet-like material in which the support 18 and the gimbal 17 are integrally formed of a metal material such as stainless steel, and is configured to be able to bend and deform in the thickness direction by being formed into a sheet shape. The flexure 25 is fixed to the distal end side of the load beam 24 and is configured to follow the deformation of the suspension 3 when the suspension 3 is deformed.
 また、ロードビーム24の先端には、フレクシャ25及びスライダ2の略中心に向かって突出する、突起部19(図3参照)が形成されている。この突起部19の先端は、丸みを帯びた状態となっている。そして突起部19は、スライダ2がディスクDから受ける風圧によりロードビーム24側に浮上したときに、フレクシャ25の先端表面(上面)に点接触するようになっている。つまり、突起部19は、フレクシャ25と導光部32を介して、スライダ2を支持するとともに、ディスクDの表面に向けて(Z方向に向けて)スライダ2に荷重を付与するようになっている。 Further, a protrusion 19 (see FIG. 3) is formed at the tip of the load beam 24 so as to protrude toward the approximate center of the flexure 25 and the slider 2. The tip of the projection 19 is rounded. The protrusion 19 comes into point contact with the tip surface (upper surface) of the flexure 25 when the slider 2 floats to the load beam 24 side by the wind pressure received from the disk D. That is, the protrusion 19 supports the slider 2 via the flexure 25 and the light guide 32 and applies a load to the slider 2 toward the surface of the disk D (in the Z direction). Yes.
 図3は、ヘッドジンバルアセンブリ12の先端部分を拡大して示した断面図である。スライダ2は下側に備えられる方向に示してある。スライダ2は、導光部32を挟んで、ジンバル17に支持されている。ロードビーム24は、突起部19を接点としてジンバル17の上側に備えられている。 FIG. 3 is an enlarged cross-sectional view of the tip end portion of the head gimbal assembly 12. The slider 2 is shown in the direction provided on the lower side. The slider 2 is supported by the gimbal 17 with the light guide portion 32 interposed therebetween. The load beam 24 is provided on the upper side of the gimbal 17 with the protrusion 19 as a contact.
 スライダ2は、アルチックなどでできた基板61と基板61よりもヘッドジンバルアセンブリ12の先端側に順に備えられる再生素子41、記録素子42、光導波路層33から構成されている。スライダ2の底面は、ディスクDの表面に対向する浮上面2aとなっている。この浮上面2aは、回転するディスクDによって生じた空気流の粘性から、浮上するための圧力を発生させる面であり、ABS(Air Bearing Surface)と呼ばれている。 The slider 2 is composed of a substrate 61 made of Altic or the like, and a reproducing element 41, a recording element 42, and an optical waveguide layer 33 that are sequentially provided on the tip side of the head gimbal assembly 12 with respect to the substrate 61. The bottom surface of the slider 2 is an air bearing surface 2 a that faces the surface of the disk D. The air bearing surface 2a is a surface that generates a pressure for ascending from the viscosity of the air flow generated by the rotating disk D, and is called ABS (Air Bearing Surface).
 ここで、スライダ2はディスクD(図1参照)に対向するように設けられていればよく、スライダ2の支持方法は上記に示す限りではない。例えば、ロードビーム24に直接スライダ2が支持されていてもよい。ただし、突起部19とジンバル17を介してスライダ2が支持されていると、スライダ2はZ方向に適切な圧力を受け、撓み易くなるため、ディスクDの面ブレに対応することができ、近接場光や磁界をディスクDにより確実に照射することができる。 Here, it is sufficient that the slider 2 is provided so as to face the disk D (see FIG. 1), and the method for supporting the slider 2 is not limited to the above. For example, the slider 2 may be directly supported by the load beam 24. However, if the slider 2 is supported via the protrusion 19 and the gimbal 17, the slider 2 receives an appropriate pressure in the Z direction and is easily bent. Field light or a magnetic field can be reliably irradiated by the disk D.
 導光部32は、先端が45°に形成され、ミラー機能を有している。導光部32を伝播してきた光は、このミラー機能を有した先端部32aで回折され、光導波路層33へ入射される。光導波路層33に入射した光は、スライダ2の下側に向かって伝播し、光導波路層33の先端に設けられた近接場光発生素子34により、近接場光として出射される。 The light guide 32 is formed at a 45 ° tip and has a mirror function. The light propagating through the light guide portion 32 is diffracted by the tip portion 32 a having the mirror function and is incident on the optical waveguide layer 33. The light incident on the optical waveguide layer 33 propagates toward the lower side of the slider 2 and is emitted as near-field light by the near-field light generating element 34 provided at the tip of the optical waveguide layer 33.
 図4(a)は、スライダ2と導光部32を分解して示した斜視図である。図4(b)は、導光部32とスライダ2を組み立てる際の良品検査工程において、スライダ2に光を入れた時の状況を拡大して示した図である。再生素子41や記録素子42は省略しており、図示していない。スライダ2の先端に設けられている光導波路層33には、光を伝播する機能を有する素子が、スライダ2の素子積層面に平行に、少なくとも2つ備えられている。一つは、集光機能を有する光導波路40が備えられており、光導波路40の先端は近接場光発生素子34となっている。光導波路40は、SiO2でできており、このSiO2内に屈折率差の異なる領域を設けることにより、光を伝播する機能が備えられている。その他は、光導波路40よりも開口の大きい導光機能部43が備えられている。導光機能部43の開口は入射端および出射端共に、光導波路40の開口よりも大きく形成されている。
 なお、本実施形態では導光機能部43のそれぞれは、光導波路40の長手方向に対して直交する線分であり光導波路40を通る線分の上に備えられている。
FIG. 4A is an exploded perspective view showing the slider 2 and the light guide 32. FIG. 4B is an enlarged view showing a situation when light is put into the slider 2 in the non-defective product inspection process when the light guide unit 32 and the slider 2 are assembled. The reproducing element 41 and the recording element 42 are omitted and not shown. The optical waveguide layer 33 provided at the tip of the slider 2 is provided with at least two elements having a function of propagating light in parallel with the element stacking surface of the slider 2. One is provided with an optical waveguide 40 having a condensing function, and the tip of the optical waveguide 40 is a near-field light generating element 34. The optical waveguide 40 is made of SiO 2 and has a function of propagating light by providing regions having different refractive index differences in the SiO 2 . In other respects, a light guide function unit 43 having a larger opening than the optical waveguide 40 is provided. The opening of the light guide function unit 43 is formed larger than the opening of the optical waveguide 40 at both the incident end and the exit end.
In the present embodiment, each of the light guide function units 43 is a line segment orthogonal to the longitudinal direction of the optical waveguide 40 and is provided on a line segment passing through the optical waveguide 40.
 これにより図4(b)に示すように、導光機能部43に光L1-1を入射した場合、導光機能部43から出射されてくる光L1-2のスポットは、光導波路40の先端の近接場光発生素子34から出射される近接場光L2-2と比べて十分大きく、容易に見つけることができる。また、この導光機能部43は、光導波路40と同じ材料で形成されており、光導波路40と同様の屈折率差を形成することで、光導波路40と同等の光効率で光を伝播する機能を有する。この導光機能部43が、光導波路40と同じように形成されていることにより、導光部32を固着する前に、導光機能部43に入射させた光の出射光を測定することで、間接的に、光導波路40の光を伝播する機能が有効に形成されているかを予め確かめることができる。これにより、不良なスライダを用いてヘッドジンバルアセンブリ12を組み上げる無駄な工程や、不良なスライダに組み付けたヘッドジンバルアセンブリ12を構成する部品の無駄を減らすことができ、製造コストを削減することができる。 As a result, as shown in FIG. 4B, when the light L 1-1 is incident on the light guide function unit 43, the spot of the light L 1-2 emitted from the light guide function unit 43 is the optical waveguide 40. Compared with the near-field light L 2-2 emitted from the near-field light generating element 34 at the tip, it is sufficiently large and can be easily found. The light guide function unit 43 is formed of the same material as that of the optical waveguide 40, and propagates light with the same light efficiency as the optical waveguide 40 by forming a refractive index difference similar to that of the optical waveguide 40. It has a function. Since the light guide function unit 43 is formed in the same manner as the optical waveguide 40, the light emitted from the light incident on the light guide function unit 43 is measured before the light guide unit 32 is fixed. Indirectly, it can be confirmed in advance whether the function of propagating the light of the optical waveguide 40 is effectively formed. Accordingly, it is possible to reduce a useless process of assembling the head gimbal assembly 12 using a defective slider and waste of components constituting the head gimbal assembly 12 assembled to the defective slider, thereby reducing manufacturing costs. .
 次に、図1から図4に示したように組み立てられたヘッドジンバルアセンブリ12により、ディスクDに各種の情報を記録再生する手順について以下に説明する。 Next, a procedure for recording and reproducing various information on the disk D by the head gimbal assembly 12 assembled as shown in FIGS. 1 to 4 will be described below.
 まず、図1に示すように、スピンドルモータ7を駆動させてディスクDを所定方向に回転させる。次いで、アクチュエータ6を作動させて、ピボット軸10を回転中心としてキャリッジ11を回動させ、キャリッジ11を介してヘッドジンバルアセンブリ12をXY方向にスキャンさせる。これにより、ディスクD上の所望する位置にスライダ2を配置させることができる。この際、スライダ2は、サスペンション3によって支持されていると共に所定の力でディスクD側に押さえ付けられている。また、これと同時にスライダ2は、浮上面2a(図3参照)がディスクDに対向しているので、回転するディスクDによって生じる風圧の影響を受けて浮上する力を受けている。この両者の力のバランスによって、スライダ2はディスクD上から離間した位置に浮上している状態となっている。また、ディスクDの凹凸やうねり等により、スライダ2にXY方向に向かう風圧が加わったときに、フレクシャ25に備えられたスライダ2は、突起部19を中心としてX軸及びY軸の2軸回りに捩じれるようになっている。これにより、ディスクDのうねりによるZ方向の変位(ディスクDの表面に略直交する方向への変位)を吸収することができ、スライダ2の姿勢が安定するようになっている。 First, as shown in FIG. 1, the spindle motor 7 is driven to rotate the disk D in a predetermined direction. Next, the actuator 6 is operated to rotate the carriage 11 about the pivot shaft 10 as a rotation center, and the head gimbal assembly 12 is scanned in the XY directions via the carriage 11. Thereby, the slider 2 can be arranged at a desired position on the disk D. At this time, the slider 2 is supported by the suspension 3 and pressed against the disk D with a predetermined force. At the same time, since the flying surface 2a (see FIG. 3) faces the disk D, the slider 2 receives a force that rises under the influence of wind pressure generated by the rotating disk D. Due to the balance between the two forces, the slider 2 is in a state of being floated away from the disk D. In addition, when wind pressure in the XY direction is applied to the slider 2 due to unevenness or undulation of the disk D, the slider 2 provided in the flexure 25 is rotated about the X axis and the Y axis about the protrusion 19. To be twisted. As a result, displacement in the Z direction (displacement in a direction substantially perpendicular to the surface of the disk D) due to the undulation of the disk D can be absorbed, and the posture of the slider 2 is stabilized.
 ここで、情報の記録を行う場合、制御部5はレーザ光源20を作動させるとともに、情報に応じて変調した電流をスライダ2に供給し、記録素子42を作動させる。 Here, when recording information, the control unit 5 activates the laser light source 20 and supplies a current modulated according to the information to the slider 2 to activate the recording element 42.
 レーザ光源20から出射された光束は、導光部32内を先端(流出端)側に向かって進み、導光部32の先端でディスクDに向かって垂直方向に曲げられる。曲げられた光束は、スライダ2の導光部32が備えられる側から近接場光発生素子34に入射され、近接場光発生素子34を介することにより、近接場光として発生される。すると、ディスクDは、この近接場光によって局所的に加熱されて一時的に保磁力が低下する。一方、制御部5(図1参照)によってスライダ2に電流が供給されると、スライダ2内部の記録素子42により、ディスクDに対して垂直方向の記録磁界を発生させることができる。その結果、近接場光と記録素子42で発生した記録磁界とを協働させたハイブリッド磁気記録方式により情報の記録を行うことができる。さらに、垂直記録方式で記録を行うので、熱揺らぎ現象等の影響を受け難く、安定した記録を行うことができる。よって、書き込みの信頼性を高めることができる。 The light beam emitted from the laser light source 20 travels toward the front end (outflow end) in the light guide 32 and is bent in the vertical direction toward the disk D at the front end of the light guide 32. The bent light beam is incident on the near-field light generating element 34 from the side where the light guide unit 32 of the slider 2 is provided, and is generated as near-field light through the near-field light generating element 34. Then, the disk D is locally heated by the near-field light, and the coercive force temporarily decreases. On the other hand, when a current is supplied to the slider 2 by the control unit 5 (see FIG. 1), a recording magnetic field in the direction perpendicular to the disk D can be generated by the recording element 42 inside the slider 2. As a result, information can be recorded by a hybrid magnetic recording system in which near-field light and the recording magnetic field generated by the recording element 42 cooperate. Furthermore, since the recording is performed by the vertical recording method, it is difficult to be affected by the thermal fluctuation phenomenon and the like, and stable recording can be performed. Therefore, writing reliability can be improved.
 次に、ディスクDに記録された情報を再生する場合には、再生素子41が、ディスクDから漏れ出ている磁界を受けて、その大きさに応じて電気抵抗が変化する。よって、再生素子41の電圧が変化する。これにより制御部5(図1参照)は、ディスクDから漏れ出た磁界の変化を電圧の変化として検出することができる。そして制御部5は、この電圧の変化から信号の再生を行うことで、情報の再生を行うことができる。 Next, when reproducing the information recorded on the disk D, the reproducing element 41 receives the magnetic field leaking from the disk D, and the electric resistance changes according to the magnitude. Therefore, the voltage of the reproducing element 41 changes. As a result, the control unit 5 (see FIG. 1) can detect a change in the magnetic field leaking from the disk D as a change in voltage. And the control part 5 can reproduce | regenerate information by reproducing | regenerating a signal from the change of this voltage.
 このように、スライダ2を利用してディスクDに対して各種の情報を記録再生することができる。   In this way, various information can be recorded / reproduced with respect to the disk D using the slider 2.
 次に、本実施形態のスライダ2の製造方法を説明する。
 図5は、本発明のスライダ2の形成方法を示すフローチャートである。最初に、再生素子41と記録素子42の形成されたスライダ基板60の上に(S-0)近接場光発生素子34を含め、光導波路層33を形成する(S-2)。このように形成された基板を切り出す(S-3)。切り出した基板の光導波路層33を積層した面とは垂直面の光導波路40の光入射端および光出射端となる面をポリッシングする(S-4)。このポリッシングの際には以下の二点に注意してポリッシングを行う。一点は、光導波路40の光入出射端に光が入射および出射する際に、光散乱などが発生し光効率が低下しないように行う。もう一点は、再生素子41や記録素子42が適切な高さに形成されるように行う。また、以上の二点が同時に満たされるように光導波路40と記録素子42は形成されている。次に、スライダ2の浮上面2a側の端面に保護膜を形成する(S-5)。その後に、同面に浮上制御の役割を担うレールを形成する(S-6)。
Next, the manufacturing method of the slider 2 of this embodiment is demonstrated.
FIG. 5 is a flowchart showing a method for forming the slider 2 of the present invention. First, the optical waveguide layer 33 is formed including the near-field light generating element 34 (S-0) on the slider substrate 60 on which the reproducing element 41 and the recording element 42 are formed (S-2). The substrate thus formed is cut out (S-3). Polishing is performed on the surfaces of the cut-out substrate on which the optical waveguide layer 33 is laminated and the light entrance end and light exit end of the optical waveguide 40 perpendicular to the surface (S-4). Polishing is performed with attention to the following two points. One point is that when light enters and exits the light incident / exit end of the optical waveguide 40, light scattering or the like occurs and the light efficiency does not decrease. Another point is that the reproducing element 41 and the recording element 42 are formed at an appropriate height. Further, the optical waveguide 40 and the recording element 42 are formed so that the above two points are simultaneously satisfied. Next, a protective film is formed on the end surface of the slider 2 on the air bearing surface 2a side (S-5). After that, a rail that plays the role of flying control is formed on the same surface (S-6).
 ここで、特にスライダ基板60に光導波路層33を形成する工程を詳しく説明する。
 図6は、スライダ基板60に光導波路層33を形成する工程を段階的に示した工程図である。最初に、アルチック(AL23-TiC)などでできた基板61上に、再生素子41と記録素子42が順に積層されたスライダ基板60を用意する(a)。次に、その上にクラッド層36を形成する(b)。クラッド層36は、厚さが2μm程度のSiO2膜などで形成される。次に、光導波路コア40cと導光機能部コア43cを形成する(c)。コアは、SiO2にGeなどのガスをドープしたもので形成される。光導波路コア40cと導光機能部コア43cは同条件でガスがドープされる。また、導光機能部コア43cは、光導波路コア40cが形成されると同時、または直前直後に形成する。最後に、光導波路コア40cと導光機能部コア43cが形成された上に、さらにクラッド層37を積層し、スライダ基板60に光導波路層33を形成する工程を完了する(d)。最後に積層するクラッド層37は、光導波路コア40cもしくは導光機能部コア43cのいずれか高い位置にある積層面から積層方向に2μm程度覆うことができるように積層する。
Here, the process of forming the optical waveguide layer 33 on the slider substrate 60 will be described in detail.
FIG. 6 is a process diagram showing the process of forming the optical waveguide layer 33 on the slider substrate 60 step by step. First, a slider substrate 60 in which a reproducing element 41 and a recording element 42 are sequentially laminated on a substrate 61 made of AlTiC (AL 2 O 3 —TiC) or the like is prepared (a). Next, a clad layer 36 is formed thereon (b). The clad layer 36 is formed of a SiO 2 film having a thickness of about 2 μm. Next, the optical waveguide core 40c and the light guide function part core 43c are formed (c). The core is formed by doping SiO 2 with a gas such as Ge. The optical waveguide core 40c and the light guide functional unit core 43c are doped with gas under the same conditions. The light guide function unit core 43c is formed at the same time as the optical waveguide core 40c is formed or immediately before and after. Finally, the clad layer 37 is further laminated on the optical waveguide core 40c and the light guide function part core 43c, and the step of forming the optical waveguide layer 33 on the slider substrate 60 is completed (d). Finally, the clad layer 37 to be laminated is laminated so as to cover about 2 μm in the laminating direction from the laminated surface at the higher position of the optical waveguide core 40c or the light guide function part core 43c.
 次に、本実施形態のスライダ2と導光部32の組み立て方法を説明する。
 図7は、スライダ2と導光部32を組み立てる方法を示したフローチャートである。最初に、スライダ2と導光部32を対向して配置する(A-1)。次に、光導波路40が適切に形成されているかを検査し、この検査により適切に形成されている光導波路40を備えたスライダ2のみを使用する(A-2)。良品のスライダ2と導光部32を位置調整する(A-3)。導光部32から出射される光がスライダ2の光導波路40に効率よく入射されるように調整したら、スライダ2と導光部32を固着し(A-4)、スライダ2と導光部32の組み立てを完了する。
Next, a method for assembling the slider 2 and the light guide unit 32 of this embodiment will be described.
FIG. 7 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32. First, the slider 2 and the light guide unit 32 are arranged to face each other (A-1). Next, it is inspected whether the optical waveguide 40 is properly formed, and only the slider 2 having the optical waveguide 40 appropriately formed by this inspection is used (A-2). The position of the non-defective slider 2 and the light guide 32 is adjusted (A-3). When adjustment is made so that the light emitted from the light guide portion 32 is efficiently incident on the optical waveguide 40 of the slider 2, the slider 2 and the light guide portion 32 are fixed (A-4), and the slider 2 and the light guide portion 32 are fixed. Complete the assembly.
 ここで、スライダ2の光導波路40が適切に形成されているかを検査する手段と方法を詳しく説明する。 Here, a means and method for inspecting whether the optical waveguide 40 of the slider 2 is appropriately formed will be described in detail.
 図8は、検査を実施する際の導光部32とスライダ2を有する装置の構成である。導光部32はスライダ2の浮上面2aとは反対側の面に対向しており、スライダ2の浮上面2a側には、光スポットを検出する光検出器50を配置する。光検出器50で検出した光は、光プロファイラ51により解析する。光プロファイラ51は、光スポットの光強度を出力するとともに、光基準値を満たすか否かを判別する。XY調整器52は、導光部32をXY方向に調整する機能を有する。 FIG. 8 shows the configuration of the apparatus having the light guide portion 32 and the slider 2 when performing the inspection. The light guide 32 faces the surface of the slider 2 opposite to the air bearing surface 2a, and a photodetector 50 for detecting a light spot is disposed on the air bearing surface 2a side of the slider 2. The light detected by the photodetector 50 is analyzed by the optical profiler 51. The optical profiler 51 outputs the light intensity of the light spot and determines whether or not the light reference value is satisfied. The XY adjuster 52 has a function of adjusting the light guide unit 32 in the XY directions.
 図9は、検査方法を段階的に示した図である。最初に、導光部32をスライダ2に接面させる(a)。導光部32は、基準を満たした光を出力する良品である。接面させた導光部32から光を出射し、スライダ2の導光機能部43のいずれかに入るように導光部32を調整し、導光機能部43から出射され、光検出器によって検出される光の強度が最大になる位置で導光部32の調整を停止する(b)。検出された光強度が基準値pを満たしていれば、導光機能部43のコアとクラッドの屈折率差やポリッシングによる入射端面および出射端面は適切に加工できていると判断され、同工程により形成された光導波路40もまた適切に加工できていると間接的に判断される(c)。これにより、先端からは微小な近接場光しか発生されないために困難であった光導波路40の検査を容易に行うことができる。 FIG. 9 is a diagram showing the inspection method step by step. First, the light guide 32 is brought into contact with the slider 2 (a). The light guide unit 32 is a non-defective product that outputs light that satisfies a standard. Light is emitted from the light guide unit 32 that is brought into contact with the light guide unit 32, the light guide unit 32 is adjusted so as to enter one of the light guide function units 43 of the slider 2, and is emitted from the light guide function unit 43. The adjustment of the light guide 32 is stopped at the position where the intensity of the detected light is maximized (b). If the detected light intensity satisfies the reference value p, it is judged that the refractive index difference between the core and the clad of the light guide function unit 43 and the incident end face and the outgoing end face due to polishing are appropriately processed. It is indirectly determined that the formed optical waveguide 40 is also appropriately processed (c). Thereby, it is possible to easily inspect the optical waveguide 40, which is difficult because only minute near-field light is generated from the tip.
(第2実施形態)
 次に、図10に基づいて本実施形態について説明する。本実施形態は、スライダ2の先端部分について、第1実施形態と相異しており、それ以外は第1実施形態とほぼ同様である。なお、以下の説明では、上述した第1実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Second Embodiment)
Next, the present embodiment will be described based on FIG. This embodiment is different from the first embodiment with respect to the tip portion of the slider 2, and the rest is substantially the same as the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 図10は、本実施形態におけるスライダ2と導光部32を分解して示した斜視図である。本実施形態における導光機能部44の開口は、導光部32から出射される光の、導光部32の出射面におけるスポットサイズS1よりも大きい開口S2となっている。これにより、導光部32から出射される光を利用して光導波路40の良品検査を行う際に、導光部32からの光をほぼ全て導光機能部44へ入射することができるため、導光機能部44から出射される光をより強くすることができ、導光機能部44の出射光を容易に見つけることができると共に、導光機能部44から出射される光のプロファイルを行う際に、より正確なプロファイルを行うことができる。 FIG. 10 is an exploded perspective view showing the slider 2 and the light guide 32 in the present embodiment. The opening of the light guide function unit 44 in the present embodiment is an opening S 2 that is larger than the spot size S 1 of the light emitted from the light guide unit 32 on the exit surface of the light guide unit 32. Thereby, when performing non-defective inspection of the optical waveguide 40 using the light emitted from the light guide unit 32, almost all the light from the light guide unit 32 can be incident on the light guide function unit 44. When the light emitted from the light guide function unit 44 can be made stronger, the light emitted from the light guide function unit 44 can be easily found, and the light emitted from the light guide function unit 44 is profiled In addition, a more accurate profile can be performed.
(第3実施形態)
 次に、図11に基づいて本実施形態について説明する。本実施形態は、スライダ2の先端部分について、第1実施形態と相異しており、それ以外は第1実施形態とほぼ同様である。なお、以下の説明では、上述した第1実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Third embodiment)
Next, the present embodiment will be described based on FIG. This embodiment is different from the first embodiment with respect to the tip portion of the slider 2, and the rest is substantially the same as the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 図11は、本実施形態におけるスライダ2を拡大して示した斜視図である。本実施形態における導光機能部45は、導光部32が備えられる面から浮上面2a側に亘って、断面積が同じSである柱状に形成されている。これにより、導光部32から入射された光のスポットサイズは、ほぼ同サイズで出射されるため、導光機能部44からの出射光を容易に見つけることができる。 FIG. 11 is an enlarged perspective view of the slider 2 in the present embodiment. The light guide function unit 45 in the present embodiment is formed in a columnar shape having the same cross-sectional area S from the surface on which the light guide unit 32 is provided to the air bearing surface 2a side. Thereby, since the spot size of the light incident from the light guide part 32 is emitted with substantially the same size, the light emitted from the light guide function part 44 can be easily found.
(第4実施形態)
 次に、図12から図16に基づいて本実施形態について説明する。本実施形態は、スライダ2の先端部分と製造方法について、第1実施形態と相異しており、それ以外は第1実施形態とほぼ同様である。なお、以下の説明では、上述した第1実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Fourth embodiment)
Next, the present embodiment will be described with reference to FIGS. The present embodiment is different from the first embodiment with respect to the tip portion of the slider 2 and the manufacturing method, and is otherwise substantially the same as the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 まず、本実施形態におけるスライダ2の先端部分の構造を説明する。
 図12は、本実施形態におけるスライダ2を拡大して示した斜視図である。本実施形態における導光機能部46と47は、光導波路40の両側に1つずつ、光導波路40から等距離dを保って合計2つ配置されている。光導波路40および導光機能部46と47の3つは、光導波路層33が積層される面と平行に並んで配置されている。また、導光機能部46と47の材料は、光導波路40と同材料でなくてもよく、光を導光する機能をもつ材料であれば、例えば空気層となっていてもよい。
First, the structure of the tip portion of the slider 2 in this embodiment will be described.
FIG. 12 is an enlarged perspective view of the slider 2 in the present embodiment. The light guide function units 46 and 47 in the present embodiment are arranged in two, one on each side of the optical waveguide 40, keeping the same distance d from the optical waveguide 40. Three of the optical waveguide 40 and the light guide function parts 46 and 47 are arranged in parallel with the surface on which the optical waveguide layer 33 is laminated. Moreover, the material of the light guide function parts 46 and 47 may not be the same material as the optical waveguide 40, and may be, for example, an air layer as long as it has a function of guiding light.
 次に、本実施形態におけるスライダ2の製造方法を説明する。
 図13は、スライダ基板60に光導波路層33を形成する工程を段階的に示した工程図である。最初に、アルチック(AL23-TiC)などでできた基板上に、再生素子41と記録素子42が順に積層されたスライダ基板60を用意する(a)。次に、その上にクラッド層36を形成する(b)。次に、光導波路コア40cと導光機能部コア46cと47cを形成する(c)。光導波路コア40cは、SiO2にGeなどのガスをドープしたもので形成される。光導波路コア40cと導光機能部コア46cおよび47cは同じ材料でなくてもよいので、例えばGeガスのドープ率を変えてもよい。もしくは、Geガスでないガスをドープしてもよい。導光機能部コア46cと47cは、光導波路コア40cが形成されると同時、または直前直後に形成し、光導波路コア40cと導光機能部コア46cと47cの各々の距離dを1μm以下の高精度で形成する。また、積層面と平行に配置するように形成する。最後に、光導波路コア40cと導光機能部コア46cおよび47cが形成される上に、さらにクラッド層37を積層し、スライダ基板60に光導波路層33を形成する工程を完了する(d)。
Next, the manufacturing method of the slider 2 in this embodiment is demonstrated.
FIG. 13 is a process diagram showing the process of forming the optical waveguide layer 33 on the slider substrate 60 step by step. First, a slider substrate 60 is prepared in which a reproducing element 41 and a recording element 42 are sequentially laminated on a substrate made of AlTiC (AL 2 O 3 —TiC) (a). Next, a clad layer 36 is formed thereon (b). Next, the optical waveguide core 40c and the light guide function part cores 46c and 47c are formed (c). The optical waveguide core 40c is formed by doping SiO 2 with a gas such as Ge. Since the optical waveguide core 40c and the light guide function cores 46c and 47c do not have to be the same material, for example, the Ge gas doping rate may be changed. Alternatively, a gas other than Ge gas may be doped. The light guide function cores 46c and 47c are formed at the same time as or immediately before and after the optical waveguide core 40c is formed, and the distance d between the optical waveguide core 40c and the light guide function cores 46c and 47c is 1 μm or less. Form with high accuracy. Moreover, it forms so that it may arrange in parallel with a lamination surface. Finally, the optical waveguide core 40c and the light guide function part cores 46c and 47c are formed, and the cladding layer 37 is further laminated to complete the step of forming the optical waveguide layer 33 on the slider substrate 60 (d).
 次に、本実施形態におけるスライダ2と導光部32の組み立て方法を説明する。
 図14は、スライダ2と導光部32を組み立てる方法を示したフローチャートである。最初に、スライダ2と導光部32を対向して配置する(A-1)。次に、スライダ2と導光部32を位置調整する(A-2)。導光部32から出射される光がスライダ2の光導波路40に効率よく入射されるように調整したら、スライダ2と導光部32を固着し(A-3)、スライダ2と導光部32の組み立てを完了する。
Next, a method for assembling the slider 2 and the light guide unit 32 in this embodiment will be described.
FIG. 14 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32. First, the slider 2 and the light guide unit 32 are arranged to face each other (A-1). Next, the position of the slider 2 and the light guide 32 is adjusted (A-2). When adjustment is made so that the light emitted from the light guide portion 32 is efficiently incident on the optical waveguide 40 of the slider 2, the slider 2 and the light guide portion 32 are fixed (A-3), and the slider 2 and the light guide portion 32 are fixed. Complete the assembly.
 ここで、スライダ2と導光部32の位置調整の方法を詳しく説明する。
 図15は、位置調整を実施する際の導光部32とスライダ2を有する装置の構成である。導光部32はスライダ2の浮上面2aとは反対側の面に対向しており、スライダ2の浮上面2a側には、光スポットを検出する光検出器53を配置する。光検出器53で検出した光は、光プロファイラ54により解析する。光プロファイラ54は、光検出器53で検出した光スポットの光強度とそのXY座標を出力することができる。XY調整器55は、導光部32を出射する光の光軸に対して垂直な平面に動かすことができる。光検出器53と光プロファイラ54とXY調整器55の認識するXY座標の座標軸は同じになっている。
Here, a method of adjusting the position of the slider 2 and the light guide unit 32 will be described in detail.
FIG. 15 shows the configuration of the apparatus having the light guide section 32 and the slider 2 when performing position adjustment. The light guide unit 32 faces the surface of the slider 2 opposite to the air bearing surface 2a, and a photodetector 53 that detects a light spot is disposed on the air bearing surface 2a side of the slider 2. The light detected by the photodetector 53 is analyzed by the optical profiler 54. The optical profiler 54 can output the light intensity of the light spot detected by the light detector 53 and its XY coordinates. The XY adjuster 55 can be moved to a plane perpendicular to the optical axis of the light emitted from the light guide unit 32. The coordinate axes of the XY coordinates recognized by the photodetector 53, the optical profiler 54, and the XY adjuster 55 are the same.
 図16は、スライダ2と導光部32の位置調整の方法を段階的に示した図である。左列に示したプライムなしの図((a),(b),(c),(d))は、スライダ2と導光部32を断面から見た図である。また、右列に示したプライムつきの図((a‘),(b’),(c'-1),(c'-2), (d))は、XY調整器55の認識するXY座標とXY調整器55の指し示す座標を模式的に示した図である。最初に、スライダ2と導光部32を対向して配置する(a,a')。次に、導光部32から出射する光を導光機能部46に入射させる。入射した光の強度が最大になる座標(X1,Y1)を記録する(b,b')。次に、導光部32から出射する光を他方の導光機能部47に入射させる(c)。 その際、XY調整器55を導光機能部46から距離2dだけ導光機能部47側に移動させ、さらに導光機能部46を軸に微小角だけ動かして探す(c'-1)。次いで、導光機能部47に入射した光の強度が最大になる座標(X2,Y2)を記録する(c'-2)。最後に、導光機能部46の座標(X1,Y1)と導光機能部47の座標(X2,Y2)線分上にXY調整器55をd(もしくは、数1)だけ導光機能部46方向にずらすと、光導波路40に光が効率よく入射されるように導光部32が配置することができる(d,d')。以上で、スライダ2と導光部32の位置調整を完了する。これにより、導光部32とスライダ2の超高精度な位置調整を容易に行うことができる。
(|X1-X22+|Y1-Y221/2/2 (数1)
FIG. 16 is a diagram showing stepwise the method of adjusting the position of the slider 2 and the light guide unit 32. The figures ((a), (b), (c), (d)) without prime shown in the left column are views of the slider 2 and the light guide section 32 as seen from the cross section. The primed figures ((a ′), (b ′), (c′−1), (c′-2), (d)) shown in the right column are XY coordinates recognized by the XY adjuster 55. FIG. 6 is a diagram schematically showing coordinates indicated by the XY adjuster 55. First, the slider 2 and the light guide unit 32 are arranged to face each other (a, a ′). Next, the light emitted from the light guide unit 32 enters the light guide function unit 46. The coordinates (X 1 , Y 1 ) at which the intensity of the incident light is maximized are recorded (b, b ′). Next, the light emitted from the light guide unit 32 is incident on the other light guide function unit 47 (c). At that time, the XY adjuster 55 is moved from the light guide function unit 46 to the light guide function unit 47 side by a distance 2d, and further searched by moving the light guide function unit 46 by a minute angle (c′-1). Next, coordinates (X 2 , Y 2 ) at which the intensity of light incident on the light guide function unit 47 is maximized are recorded (c′-2). Finally, the XY adjuster 55 is introduced by d (or Equation 1) onto the coordinates (X 1 , Y 1 ) of the light guide function unit 46 and the coordinates (X 2 , Y 2 ) of the light guide function unit 47. When the optical function unit 46 is shifted, the light guide unit 32 can be arranged so that light is efficiently incident on the optical waveguide 40 (d, d ′). Thus, the position adjustment of the slider 2 and the light guide unit 32 is completed. Thereby, the super-precision position adjustment of the light guide part 32 and the slider 2 can be performed easily.
(| X 1 −X 2 | 2 + | Y 1 −Y 2 | 2 ) 1/2 / 2 (Equation 1)
(第5実施形態)
 次に、図17に基づいて本実施形態について説明する。本実施形態は、スライダ2と導光部32の製造方法について、第1実施形態と相異しており、それ以外は第1実施形態とほぼ同様である。なお、以下の説明では、上述した第1実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Fifth embodiment)
Next, the present embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in the manufacturing method of the slider 2 and the light guide section 32, and is otherwise substantially the same as the first embodiment. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 図17は、本実施形態におけるスライダ2と導光部32を組み立てる方法を示したフローチャートである。最初にスライダ2もしくは導光部32のどちらかもしくは両方の、スライダ2と導光部32が対向する面に、UV硬化接着剤を予め塗布しておく(A-1)。ただし、必ずしもUV硬化接着剤でなくてもよく、長時間空気中に放置すると硬化するようなものでもよい。次に、スライダ2と導光部32を対向させる(A-2)。次に、スライダ2と導光部32の位置調整を行う(A-3)。スライダ2と導光部32の位置が完全に定まったら、UVを照射し、接着剤を硬化させ、スライダ2と導光部32を固着させる(A-4)。以上のように、スライダ2と導光部32を組み立てることにより、スライダ2と導光部32が位置調整してから接着剤を塗布する際に発生する位置ずれを防ぐことができ、精度よくスライダ2と導光部32を固定することができる。 FIG. 17 is a flowchart showing a method of assembling the slider 2 and the light guide unit 32 in the present embodiment. First, a UV curable adhesive is applied in advance to the surface of either the slider 2 or the light guide 32, or both, where the slider 2 and the light guide 32 face each other (A-1). However, it may not necessarily be a UV curable adhesive, and it may be cured when left in the air for a long time. Next, the slider 2 and the light guide portion 32 are opposed to each other (A-2). Next, the positions of the slider 2 and the light guide unit 32 are adjusted (A-3). When the positions of the slider 2 and the light guide portion 32 are completely determined, UV is irradiated, the adhesive is cured, and the slider 2 and the light guide portion 32 are fixed (A-4). As described above, by assembling the slider 2 and the light guide portion 32, it is possible to prevent the positional deviation that occurs when the adhesive is applied after the slider 2 and the light guide portion 32 are adjusted in position, and the slider is accurately provided. 2 and the light guide 32 can be fixed.
(第6実施形態)
 次に、図18に基づいて本実施形態について説明する。本実施形態は、スライダ2と導光部32の製造方法について、第4実施形態と相異しており、それ以外は第4実施形態とほぼ同様である。なお、以下の説明では、上述した第4実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Sixth embodiment)
Next, the present embodiment will be described based on FIG. The present embodiment is different from the fourth embodiment in the manufacturing method of the slider 2 and the light guide portion 32, and is otherwise substantially the same as the fourth embodiment. In the following description, the same components as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図18は、図16と同様、本実施形態におけるスライダ2と導光部32の位置調整の方法を段階的に示した図である。調整方法は図16に沿って第4実施形態で示した方法とほぼ同様である。ただし、導光部32をスライダ2に接面した状態で、導光部32とスライダ2の調整を行う点が異なる。このように、導光部32とスライダ2の調整を行う段階で、導光部32をスライダ2に接面した状態にしておくことにより、導光部32から出射される光の広がり角が大きい場合や光軸が光導波路40に対して多少曲がっている場合であっても、スライダ2と導光部32の位置調整を正確に行うことができる。 FIG. 18 is a diagram showing step by step the method for adjusting the position of the slider 2 and the light guide unit 32 in this embodiment, as in FIG. The adjustment method is substantially the same as the method shown in the fourth embodiment along FIG. However, the light guide 32 and the slider 2 are adjusted in a state where the light guide 32 is in contact with the slider 2. As described above, when the light guide 32 and the slider 2 are adjusted, the light guide 32 is kept in contact with the slider 2 so that the spread angle of the light emitted from the light guide 32 is large. Even when the optical axis is slightly bent with respect to the optical waveguide 40, the position adjustment of the slider 2 and the light guide portion 32 can be performed accurately.
(第7実施形態)
 次に、図19から図21に基づいて本実施形態について説明する。本実施形態は、スライダ2の先端部分の構造とスライダ2と導光部32の製造方法について、第4実施形態と相異しており、それ以外は第4実施形態とほぼ同様である。なお、以下の説明では、上述した第4実施形態と同様の構成については同様の符号を付し、説明は省略する。
(Seventh embodiment)
Next, the present embodiment will be described with reference to FIGS. The present embodiment is different from the fourth embodiment in the structure of the tip portion of the slider 2 and the manufacturing method of the slider 2 and the light guide section 32, and is otherwise substantially the same as the fourth embodiment. In the following description, the same components as those in the above-described fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 まず、本実施形態におけるスライダ2の先端部分の構造を説明する。
 図19は、本実施形態におけるスライダ2を拡大して示した斜視図である。導光機能部48と49は、光導波路40から微小距離Δdを保って配置されている。これにより、光導波路40へ、光導波路40の入射面から少し離して光を入射した場合に、その漏れ光を受光することができる。
First, the structure of the tip portion of the slider 2 in this embodiment will be described.
FIG. 19 is an enlarged perspective view of the slider 2 in the present embodiment. The light guide function parts 48 and 49 are arranged with a small distance Δd from the optical waveguide 40. Thereby, when light is incident on the optical waveguide 40 at a distance from the incident surface of the optical waveguide 40, the leaked light can be received.
 次に、本実施形態におけるスライダ2と導光部32の組み立て方法を説明する。
 図20は、本実施形態におけるスライダ2と導光部32の位置調整の方法を段階的に示した図である。
Next, a method for assembling the slider 2 and the light guide unit 32 in this embodiment will be described.
FIG. 20 is a diagram showing stepwise the method of adjusting the position of the slider 2 and the light guide unit 32 in the present embodiment.
 最初に、導光部32とスライダ2を距離h離して対向させ、導光機能部48と49から出射してきた光の強度を見ながら導光部32の位置を調整する(a)。次に、導光機能部48と49から出射してきたそれぞれの光強度のピーク値p48とp49が、共に基準値p1を満たした位置で、導光部32の位置を固定する(b)。最後に、導光部32とスライダ2を、導光部32のXY座標を動かさずに接面させ、固着する(c)。 First, the light guide unit 32 and the slider 2 are opposed to each other with a distance h, and the position of the light guide unit 32 is adjusted while viewing the intensity of light emitted from the light guide function units 48 and 49 (a). Next, the position of the light guide unit 32 is fixed at a position where the peak values p 48 and p 49 of the light intensity emitted from the light guide function units 48 and 49 both satisfy the reference value p 1 (b). ). Finally, the light guide 32 and the slider 2 are brought into contact with each other without moving the XY coordinates of the light guide 32 and fixed (c).
 図21は、横軸にX座標、縦軸に光強度をとり、光導波路40の中心をX座標の原点として図20の(b)の時の状態をグラフ化したものである。Δd、hおよびp1を最適化した上で、p48,p49≧p1となるとき導光部32とスライダ2を固定した場合、導光部32の出射光のピーク強度はほぼ確実に光導波路40内に入射されるため、高精度の位置調整が可能であり、高効率のヘッドジンバルアセンブリ12を実現することができる。 FIG. 21 is a graph of the state at (b) in FIG. 20 with the X coordinate on the horizontal axis and the light intensity on the vertical axis, with the center of the optical waveguide 40 being the origin of the X coordinate. When Δd, h, and p 1 are optimized and the light guide 32 and the slider 2 are fixed when p 48 , p 49 ≧ p 1 , the peak intensity of the emitted light from the light guide 32 is almost certain. Since the light is incident into the optical waveguide 40, highly accurate position adjustment is possible, and the highly efficient head gimbal assembly 12 can be realized.
 本発明によれば、効率的に製造することができる。具体的には、本発明によるヘッドジンバルアセンブリによれば、導光機能をもつスライダ導光機能部を備えることにより、そのスライダ導光機能部に光を入れることで、光導波路の良品検査や光学素子と光導波路の位置合わせを容易に行うことができる。 According to the present invention, it can be efficiently manufactured. Specifically, according to the head gimbal assembly according to the present invention, by providing a slider light guide function part having a light guide function, light is put into the slider light guide function part, so that non-defective inspection of the optical waveguide and optical The element and the optical waveguide can be easily aligned.
 また本発明によるヘッドジンバルアセンブリの製造方法によれば、スライダ導光機能部から出射する光を利用して間接的に光導波路の良品検査を行うことにより、困難であった光導波路の検査を容易に行うことができる。またさらに、スライダと光学素子を固着する前に光導波路が良品であるか否かを判断する検査を行うことで、ヘッドジンバルアセンブリを組み立てた後に光導波路のみの不良により発生する不良なヘッドジンバルアセンブリや、不良である光導波路を使用してヘッドジンバルアセンブリを組み立てる無駄な工程を省くことができ、製造コストを低減させることができる。 Further, according to the method for manufacturing the head gimbal assembly according to the present invention, it is possible to easily inspect the optical waveguide, which has been difficult, by performing the non-defective inspection of the optical waveguide indirectly using the light emitted from the slider light guide function unit. Can be done. Furthermore, a defective head gimbal assembly that occurs due to a defect in only the optical waveguide after assembling the head gimbal assembly by performing an inspection to determine whether the optical waveguide is a non-defective product before fixing the slider and the optical element. In addition, the useless process of assembling the head gimbal assembly using the defective optical waveguide can be omitted, and the manufacturing cost can be reduced.
D ディスク(記録媒体)
1 情報記録再生装置
2 スライダ
2a 浮上面
3 サスペンション
4 配線
5 制御部
6 アクチュエータ
7 スピンドルモータ
9 ハウジング底部
10 ピボット軸
11 キャリッジ
12 ヘッドジンバルアセンブリ
14 アーム部
15 基部
17 ジンバル
18 支持体
19 突起部
20 レーザ光源
22 ベースプレート
22a 開口
23 ヒンジ板
24 ロードビーム
25 フレクシャ
31 電気配線
32 導光部
33 光導波路層
36,37 クラッド層
34 近接場光発生素子
40 光導波路
40c 光導波路コア
41 再生素子
42 記録素子
43,44,45,46,47,48,48 導光機能部
43c,46c,47c 導光機能部コア
50,53 光検出器
51,54 光プロファイラ
52,55 XY調整器
60 スライダ基板
61 基板
D disc (recording medium)
DESCRIPTION OF SYMBOLS 1 Information recording / reproducing apparatus 2 Slider 2a Air bearing surface 3 Suspension 4 Wiring 5 Control part 6 Actuator 7 Spindle motor 9 Housing bottom part 10 Pivot shaft 11 Carriage 12 Head gimbal assembly 14 Arm part 15 Base part 17 Gimbal 18 Support body 19 Protrusion part 20 Laser light source 22 base plate 22a opening 23 hinge plate 24 load beam 25 flexure 31 electrical wiring 32 light guide 33 optical waveguide layer 36, 37 cladding layer 34 near-field light generating element 40 optical waveguide 40c optical waveguide core 41 reproducing element 42 recording element 43, 44 , 45, 46, 47, 48, 48 Light guide function unit 43c, 46c, 47c Light guide function unit core 50, 53 Photo detector 51, 54 Optical profiler 52, 55 XY adjuster 60 Slider substrate 61 Substrate

Claims (19)

  1.  記録媒体に情報を記録するヘッドジンバルアセンブリであって、
     前記記録媒体の上を浮上するスライダと、
     前記スライダの前記記録媒体に対向する面とは反対側の面に備えられており、前記スライダへ光を供給する光学素子と、
     前記スライダに備えられており、前記光学素子からの光を前記光学素子が備えられる側から前記スライダの前記記録媒体に対向する側まで導波し、前記記録媒体への情報記録に用いる光導波路と、
     前記スライダに備えられており、前記スライダの前記光学素子が備えられる面から、前記スライダの前記記録媒体に対向する面に亘って形成されたスライダ導光機能部と、
     を備えることを特徴とするヘッドジンバルアセンブリ。
    A head gimbal assembly for recording information on a recording medium,
    A slider floating above the recording medium;
    An optical element that is provided on a surface of the slider opposite to the surface facing the recording medium, and that supplies light to the slider;
    An optical waveguide that is provided in the slider, guides light from the optical element from a side where the optical element is provided to a side of the slider facing the recording medium, and is used for recording information on the recording medium; ,
    A slider light-guiding function unit provided on the slider and formed from a surface of the slider on which the optical element is provided to a surface of the slider facing the recording medium;
    A head gimbal assembly comprising:
  2.  前記スライダ導光機能部は、前記スライダ導光機能部が有する導光機能を利用して前記光導波路が良品であるか否かを判断するために用いられるものであることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 The slider light guide function unit is used to determine whether or not the optical waveguide is a good product by using a light guide function of the slider light guide function unit. 2. The head gimbal assembly according to 1.
  3.  前記スライダ導光機能部は、前記記録媒体のトラック幅方向において前記光導波路と同一直線上に設けられていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 2. The head gimbal assembly according to claim 1, wherein the slider light guide function part is provided on the same straight line as the optical waveguide in the track width direction of the recording medium.
  4.  前記スライダ導光機能部は、2つ以上備えられていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 2. The head gimbal assembly according to claim 1, wherein two or more slider light guide function units are provided.
  5.  前記スライダ導光機能部のそれぞれは、前記光導波路を挟んで両側に備えられていることを特徴とする請求項4に記載のヘッドジンバルアセンブリ。 5. The head gimbal assembly according to claim 4, wherein each of the slider light guide function parts is provided on both sides of the optical waveguide.
  6.  前記スライダ導光機能部は、前記光導波路と同一の材料により構成されていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 2. The head gimbal assembly according to claim 1, wherein the slider light guide function part is made of the same material as the optical waveguide.
  7.  前記スライダ導光機能部は、コアとクラッドから構成されていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 2. The head gimbal assembly according to claim 1, wherein the slider light guide function unit includes a core and a clad.
  8.  前記コアの形状は、前記光学素子の出射端における光のスポットと同等であるかもしくはそれ以上の大きさであることを特徴とする請求項7に記載のヘッドジンバルアセンブリ。 The head gimbal assembly according to claim 7, wherein the shape of the core is equal to or larger than a light spot at an emission end of the optical element.
  9.  前記スライダ導光機能部は、前記スライダの前記光学素子が備えられる面から、前記スライダの前記記録媒体に対向する面に亘って、前記スライダ導光機能部の断面積がほぼ同じであるように構成されていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 The slider light guide function unit has substantially the same cross-sectional area from the surface of the slider where the optical element is provided to the surface of the slider facing the recording medium. The head gimbal assembly according to claim 1, wherein the head gimbal assembly is configured.
  10.  前記スライダ導光機能部は、前記スライダ導光機能部が有する導光機能を利用して前記光学素子と前記光導波路との位置合わせを行うために用いられるものであることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 The slider light guide function unit is used for aligning the optical element and the optical waveguide using a light guide function of the slider light guide function unit. 2. The head gimbal assembly according to 1.
  11.  前記光導波路は、近接場光を発生させる近接場光発生部を備えていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。 2. The head gimbal assembly according to claim 1, wherein the optical waveguide includes a near-field light generating unit that generates near-field light.
  12.  記録媒体に情報を記録するヘッドジンバルアセンブリを検査するヘッドジンバルアセンブリ検査方法であって、
     前記ヘッドジンバルアセンブリは、
     前記記録媒体の上を浮上するスライダと、
     前記スライダの前記記録媒体に対向する面とは反対側の面に備えられており、前記スライダへ光を供給する光学素子と、
     前記スライダに備えられており、前記光学素子からの光を前記光学素子が備えられる側から前記スライダの前記記録媒体に対向する側まで導波する機能を有し、前記記録媒体への情報記録に用いる光導波路コアと光導波路クラッドとから成る光導波路と、
     前記スライダに備えられており、前記スライダの前記光学素子が備えられる面から、前記スライダの前記記録媒体に対向する面に亘って形成されるスライダ導光機能部と
     を備え、
     前記スライダ導光機能部は、スライダ導光機能部コアとスライダ導光機能部クラッドとから構成され、該スライダ導光機能部コアと該スライダ導光機能部クラッドとの屈折率差が前記光導波路コアと前記光導波路クラッドとの屈折率差と略同一に形成されているものであり、
     前記スライダと前記光学素子とを固着する前に、前記スライダの前記記録媒体と対向する面とは反対側の面と前記光学素子の光を出射する面とを対向させた状態で、前記光学素子から出射した光を前記スライダ導光機能部に入射し、前記スライダ導光機能部から出射した光を利用して、前記光導波路が良品であるか否かを判断する工程を含むことを特徴とするヘッドジンバルアセンブリ検査方法。
    A head gimbal assembly inspection method for inspecting a head gimbal assembly for recording information on a recording medium,
    The head gimbal assembly is
    A slider floating above the recording medium;
    An optical element that is provided on a surface of the slider opposite to the surface facing the recording medium, and that supplies light to the slider;
    The slider is provided, and has a function of guiding light from the optical element from a side where the optical element is provided to a side of the slider facing the recording medium, for recording information on the recording medium. An optical waveguide comprising an optical waveguide core and an optical waveguide clad used;
    A slider light-guiding function unit that is provided on the slider and formed from a surface of the slider on which the optical element is provided to a surface of the slider that faces the recording medium;
    The slider light guide function unit includes a slider light guide function unit core and a slider light guide function unit clad, and a difference in refractive index between the slider light guide function unit core and the slider light guide function unit cladding is determined by the optical waveguide. It is formed substantially the same as the refractive index difference between the core and the optical waveguide cladding,
    Before fixing the slider and the optical element, the optical element in a state where the surface of the slider opposite to the surface facing the recording medium is opposed to the light emitting surface of the optical element. And a step of determining whether or not the optical waveguide is a non-defective product by using the light emitted from the slider light guide function unit and the light emitted from the slider light guide function unit. Head gimbal assembly inspection method.
  13.  前記スライダ導光機能部から出射した光の強度を測定し、該強度が基準値を満たしていれば前記光導波路が良品であると判断する工程を含むことを特徴とする請求項12に記載のヘッドジンバルアセンブリ検査方法。 13. The method according to claim 12, further comprising a step of measuring the intensity of light emitted from the slider light guide function unit and determining that the optical waveguide is a good product if the intensity satisfies a reference value. Head gimbal assembly inspection method.
  14.  記録媒体に情報を記録するヘッドジンバルアセンブリを製造するヘッドジンバルアセンブリ製造方法であって、
     前記ヘッドジンバルアセンブリは、
     前記記録媒体の上を浮上するスライダと、
     前記スライダの前記記録媒体に対向する面とは反対側の面に備えられており、前記スライダへ光を供給する光学素子と、
     前記スライダに備えられており、前記光学素子からの光を前記光学素子が備えられる側から前記スライダの前記記録媒体に対向する側まで導波し、前記記録媒体への情報記録に用いる光導波路と、
     前記スライダに備えられており、前記スライダの前記光学素子が備えられる面から、前記スライダの前記記録媒体に対向する面に亘って形成されたスライダ導光機能部と
     を備えており、
     前記スライダと前記光学素子とを固着する前に、前記スライダの前記記録媒体と対向する面とは反対側の面と前記光学素子の光を出射する面とを対向させた状態で、前記光学素子から出射した光を前記スライダ導光機能部に入射し、前記スライダ導光機能部から出射した光を利用して、近接場光が発生するように前記光学素子と前記スライダとの位置合わせを行う工程を含むことを特徴とするヘッドジンバルアセンブリ製造方法。
    A head gimbal assembly manufacturing method for manufacturing a head gimbal assembly for recording information on a recording medium,
    The head gimbal assembly is
    A slider floating above the recording medium;
    An optical element that is provided on a surface of the slider opposite to the surface facing the recording medium, and that supplies light to the slider;
    An optical waveguide that is provided in the slider, guides light from the optical element from a side where the optical element is provided to a side of the slider facing the recording medium, and is used for recording information on the recording medium; ,
    A slider light-guiding function part formed from the surface of the slider on which the optical element is provided to the surface of the slider facing the recording medium,
    Before fixing the slider and the optical element, the optical element in a state where the surface of the slider opposite to the surface facing the recording medium is opposed to the light emitting surface of the optical element. The light emitted from the slider enters the slider light guide function unit, and the light emitted from the slider light guide function unit is used to align the optical element and the slider so that near-field light is generated. A method for manufacturing a head gimbal assembly comprising the steps of:
  15.  前記スライダ導光機能部から出射した光の強度を測定しながら、
    前記光学素子と前記スライダとの相対的な位置を調整したうえで、
    前記強度が最大となる前記光学素子と前記スライダとの相対的な位置座標を特定し、
    該位置座標を用いて前記光学素子と前記スライダとの位置合わせを行うことを特徴とする請求項14に記載のヘッドジンバルアセンブリ製造方法。
    While measuring the intensity of light emitted from the slider light guide function unit,
    After adjusting the relative position of the optical element and the slider,
    Specify the relative position coordinates of the optical element and the slider where the intensity is maximum,
    15. The head gimbal assembly manufacturing method according to claim 14, wherein the optical element and the slider are aligned using the position coordinates.
  16.  前記スライダ導光機能部は前記光導波路を挟んで両側に備えられており、
    前記光学素子と前記スライダとを離した状態で、
    前記光学素子から出射した光を一度に全ての前記スライダ導光機能部へ入射させ、
    前記スライダ導光機能部それぞれから出射した光の全ての前記強度が、基準値を満たしているときに前記光学素子と前記スライダとの位置決めを決定することを特徴とする請求項14に記載のヘッドジンバルアセンブリ製造方法。
    The slider light guide function part is provided on both sides of the optical waveguide,
    With the optical element and the slider separated,
    The light emitted from the optical element is incident on all the slider light guide function parts at once,
    The head according to claim 14, wherein positioning of the optical element and the slider is determined when all the intensities of light emitted from the slider light guide function parts satisfy a reference value. Gimbal assembly manufacturing method.
  17.  前記光学素子と前記スライダとを対向させる前に、前記スライダと前記光学素子とを固着するための接着剤を塗布することを特徴とする請求項14に記載のヘッドジンバルアセンブリ製造方法。 The head gimbal assembly manufacturing method according to claim 14, wherein an adhesive for fixing the slider and the optical element is applied before the optical element and the slider are opposed to each other.
  18.  前記光学素子と前記スライダとを接面しながら、前記光学素子と前記スライダとの位置合わせを行うことを特徴とする請求項14に記載のヘッドジンバルアセンブリ製造方法。 The head gimbal assembly manufacturing method according to claim 14, wherein the optical element and the slider are aligned while contacting the optical element and the slider.
  19.  前記スライダ導光機能部及び前記光導波路を同工程で形成することを特徴とする請求項14に記載のヘッドジンバルアセンブリ製造方法。 15. The method of manufacturing a head gimbal assembly according to claim 14, wherein the slider light guide function part and the optical waveguide are formed in the same process.
PCT/JP2011/054683 2010-03-05 2011-03-02 Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method WO2011108560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012503198A JP5864408B2 (en) 2010-03-05 2011-03-02 Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010049879 2010-03-05
JP2010-049879 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108560A1 true WO2011108560A1 (en) 2011-09-09

Family

ID=44542209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054683 WO2011108560A1 (en) 2010-03-05 2011-03-02 Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method

Country Status (2)

Country Link
JP (1) JP5864408B2 (en)
WO (1) WO2011108560A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202025A (en) * 2004-01-14 2005-07-28 Ricoh Co Ltd Method of connecting optical components, optical interconnection system and optical-fiber-wiring module
JP2008059645A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Recording head
WO2010016262A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Thermally assisted magnetic head and method for assembling thermally assisted magnetic head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059696A (en) * 2006-08-31 2008-03-13 Tdk Corp Heat assisted magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202025A (en) * 2004-01-14 2005-07-28 Ricoh Co Ltd Method of connecting optical components, optical interconnection system and optical-fiber-wiring module
JP2008059645A (en) * 2006-08-30 2008-03-13 Hitachi Ltd Recording head
WO2010016262A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Thermally assisted magnetic head and method for assembling thermally assisted magnetic head

Also Published As

Publication number Publication date
JP5864408B2 (en) 2016-02-17
JPWO2011108560A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP4673328B2 (en) Thermally assisted magnetic recording head and magnetic recording apparatus
JP4293235B2 (en) Head stack assembly and information recording apparatus
US7930817B2 (en) Method of manufacturing a thermally assisted magnetic head
JP5201571B2 (en) Recording head and information recording / reproducing apparatus
US20120127838A1 (en) Thermally-assisted magnetic recording head
JP5028526B2 (en) Thermally assisted magnetic head and method of assembling the thermally assisted magnetic head
JP5441184B2 (en) Head gimbal assembly and information recording / reproducing apparatus including the same
US8379502B2 (en) Recording head, method of manufacturing recording head, and information recording and playback apparatus
US8542559B2 (en) Thermally-assisted magnetic recording head having photoelectric wiring lines integrally formed on waveguide
JP5864408B2 (en) Head gimbal assembly, head gimbal assembly inspection method, and head gimbal assembly manufacturing method
KR20090031277A (en) Light-assisted magnetic head apparatus, light-assisted magnetic recording apparatus, and light-assisted magnetic recording method
JP5592155B2 (en) Head gimbal assembly and information recording / reproducing apparatus
JP5943417B2 (en) Near-field light generating element, near-field light head, and information recording / reproducing apparatus
JP5415887B2 (en) Head gimbal assembly
JP5833944B2 (en) Substrate, slider, near-field optical head, substrate inspection method, and substrate manufacturing method
JP4947794B2 (en) Information recording / reproducing device
JP5553302B2 (en) Near-field optical head manufacturing method, near-field optical head, and information recording / reproducing apparatus
JP5200273B2 (en) Head gimbal assembly and information recording / reproducing apparatus including the same
JP5462122B2 (en) Head gimbal assembly, information recording / reproducing apparatus, head gimbal assembly manufacturing method, and head gimbal assembly manufacturing apparatus
JP5780630B2 (en) Recording head and information recording / reproducing apparatus
JP5550049B2 (en) Recording head and information recording / reproducing apparatus
JP5804718B2 (en) Recording head and information recording / reproducing apparatus
WO2008062677A1 (en) Recording head and information recording/reproducing device
JP2010218674A (en) Head gimbal assembly
JP2000242988A (en) Method for alignment of magnetic head and optical head and apparatus for alignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503198

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750669

Country of ref document: EP

Kind code of ref document: A1