[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011105490A1 - 炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体 - Google Patents

炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体 Download PDF

Info

Publication number
WO2011105490A1
WO2011105490A1 PCT/JP2011/054150 JP2011054150W WO2011105490A1 WO 2011105490 A1 WO2011105490 A1 WO 2011105490A1 JP 2011054150 W JP2011054150 W JP 2011054150W WO 2011105490 A1 WO2011105490 A1 WO 2011105490A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
sintered body
graphite
sliding
carbide particles
Prior art date
Application number
PCT/JP2011/054150
Other languages
English (en)
French (fr)
Inventor
真美 鈴木
美恵子 八嶋
石峯 裕作
和洋 石川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012501846A priority Critical patent/JP5597693B2/ja
Priority to CN201180010704.1A priority patent/CN102770394B/zh
Priority to US13/581,171 priority patent/US9388083B2/en
Priority to EP11747450.2A priority patent/EP2540688B1/en
Publication of WO2011105490A1 publication Critical patent/WO2011105490A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/56Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic carbides, e.g. silicon carbide (SiC)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing

Definitions

  • the present invention relates to a silicon carbide sintered body, a sliding part using the same, and a protective body.
  • Silicon carbide-based sintered bodies are suitably used for sliding parts because they have high hardness and high corrosion resistance, and have a low coefficient of friction during sliding and excellent smoothness.
  • Patent Document 1 proposes a silicon carbide sintered body composed of at least one silicon carbide crystal phase of an ⁇ phase or ⁇ phase and a YAG crystal phase, and the balance being inevitable impurities.
  • a silicon carbide sintered body in which the average crystal particle diameter of silicon carbide in the sintered body is 3 ⁇ m or less and the average crystal particle diameter of YAG crystals is 1 ⁇ m or less is described as a preferred example. ing.
  • the silicon carbide sintered body proposed in Patent Document 1 is substantially dense without pores and excellent in strength and hardness, a low-strength YAG crystal phase is also included in the grain boundary phase. If the silicon carbide sintered body is subjected to a thermal shock applied to the sliding surface when used as a sliding part, cracks are likely to occur and the cracks are likely to propagate through the grain boundary phase, and the It could not withstand enough use. Recently, the use of a silicon carbide sintered body as a protective body has been studied, and a silicon carbide sintered body in which cracks do not easily progress is desired.
  • the present invention has been devised to solve the above-described problems, and even if a fine crack is generated due to a thermal shock or a mechanical shock that is received over a long period of time, the development of the crack can be suppressed. It is an object of the present invention to provide a silicon carbide sintered body that can be produced, a sliding component using the same, and a protective body.
  • the silicon carbide based sintered body of the present invention is a silicon carbide based sintered body mainly composed of silicon carbide particles and having a relative density of 95% or more, and has an area of 170 ⁇ m on the observation surface of the silicon carbide based sintered body. Two or more coarse granular silicon carbide particles are present in the range of 6 to 15 area%.
  • the sliding component of the present invention is characterized by polishing the surface of the silicon carbide sintered body of the present invention having the above-described configuration.
  • the protective body of the present invention is characterized by using the silicon carbide sintered body of the present invention having the above-described configuration.
  • the silicon carbide-based sintered body of the present invention is mainly composed of silicon carbide particles and has a relative density of 95% or more.
  • Coarse granular silicon carbide particles having a particle size of 170 ⁇ m 2 or more exist in an area of 6 to 15 area%, so that even if fine cracks are generated due to thermal shock or mechanical shock, the coarse granular silicon carbide particles cause the cracks to progress. Since it can suppress, it can be set as the silicon carbide sintered body excellent in thermal shock resistance with mechanical characteristics, such as intensity
  • the sliding component of the present invention since the surface of the silicon carbide sintered body of the present invention is polished, by the effect of suppressing the progress of cracks when a fine crack is generated by thermal shock, Along with excellent mechanical properties such as strength and rigidity, and excellent thermal shock resistance, it can withstand long-term use as a sliding component.
  • the silicon carbide sintered body of the present invention since the silicon carbide sintered body of the present invention is used, the effect of suppressing the progress of cracks when a fine crack is generated by mechanical impact, the strength, rigidity Therefore, it can be suitably used as a protective body.
  • (A), (b) is a microscope picture in the observation surface of the silicon carbide sintered body of this embodiment. It is a schematic diagram which shows an example of the crystal structure of a graphite.
  • An example of the mechanical seal provided with the sliding component of this embodiment is shown, (a) is a partial cross-sectional view, and (b) is a perspective view of the mechanical seal ring shown in (a).
  • An example of the forceset valve provided with the sliding component of this embodiment is shown, (a) is a perspective view of a state where the fluid passage is opened, and (b) is a perspective view of a state where the fluid passage is closed.
  • the rolling bearing which is an example of the rolling support apparatus provided with the sliding component of this embodiment is shown, (a) is sectional drawing, (b) is a perspective view which shows the holder of the rolling bearing shown to (a). is there.
  • FIGS. 1A and 1B are micrographs on the observation surface of the silicon carbide based sintered body of the present embodiment.
  • the silicon carbide-based sintered body of the present embodiment is a silicon carbide-based sintered body having silicon carbide particles as a main component and a relative density of 95% or more.
  • the area is This is a silicon carbide based sintered body in which coarse granular silicon carbide particles 1b of 170 ⁇ m 2 or more exist in an area of 6 to 15 area%.
  • coarse granular silicon carbide particles 1b having an area of 170 ⁇ m 2 or more and fine granular silicon carbide particles 1a having a crystal grain size of 8 ⁇ m or less.
  • silicon carbide particles having a crystal grain size of more than 8 ⁇ m and an area of less than 170 ⁇ m 2 may exist.
  • the silicon carbide based sintered body of the present embodiment has fine silicon carbide particles 1a having a crystal grain size of 8 ⁇ m or less as a matrix and a relative density of 95% or more.
  • the presence of 6 to 15 area% of coarse granular silicon carbide particles 1b having an area of 170 ⁇ m 2 or more allows the coarse granular silicon carbide particles 1b to be used even if fine cracks occur due to thermal shock or mechanical shock. Since the progress of cracks can be suppressed, the mechanical properties such as strength and rigidity are excellent, and the thermal shock resistance is also excellent.
  • the apparent density of the silicon carbide sintered body is obtained in accordance with JIS R 1634-1998, and this apparent density is calculated as the theoretical density of the silicon carbide sintered body. It can be obtained by dividing by.
  • the theoretical density of the silicon carbide sintered body is determined by ICP (Inductively Coupled Plasma) emission spectroscopy or fluorescent X-ray analysis for each content of h constituting the silicon carbide sintered body. Component identification is performed by X-ray diffraction using CuK ⁇ rays.
  • the identified component is SiC or B 4 C
  • the content of Si and B determined by ICP emission spectroscopy or fluorescent X-ray analysis It is converted into SiC or B 4 C using the value of the amount.
  • the amount of carbon (excluding free carbon) in the silicon carbide sintered body is obtained by carbon analysis. The value obtained by subtracting the amount of carbon necessary for the Si or B carbide conversion from the amount of carbon in the silicon carbide sintered body obtained here may be used as the graphite content.
  • the components constituting the silicon carbide sintered body are, for example, silicon carbide and graphite, and the contents thereof are a mass% and b mass%, respectively, the theoretical densities of silicon carbide and graphite
  • the silicon carbide sintered material is calculated using the formula (1).
  • the theoretical density (TD) of the body was 3.08 g / cm 3
  • the apparent density of the silicon carbide sintered body determined in accordance with JIS R 1634-1998 was calculated as the theoretical density (TD) of 3.08.
  • the relative density can be determined by dividing by g / cm 3 .
  • the surface of the silicon carbide sintered body is ground using a cup-type grindstone made of diamond, and subsequently, a lap made of tin is used. Polishing is performed with diamond abrasive grains having a particle size of 1 to 3 ⁇ m until the arithmetic average height Ra specified by JIS B 0601-2001 (ISO 4287-1997) is 0.01 ⁇ m or less.
  • the silicon carbide sintered body is immersed in a heated and melted solution of sodium hydroxide and potassium nitrate in a mass ratio of 1: 1 for 20 seconds, and the polished surface is etched.
  • this etched surface is observed with an optical microscope at a magnification of 500 times, and a surface on which silicon carbide particles of various sizes are observed on average is defined as an observation surface in the present embodiment.
  • the surface on which silicon carbide particles of various sizes are observed on average is a region where the area of one particle exceeding 15000 ⁇ m 2 that is not observed in other regions, or the area is 170 ⁇ m. Rather than deliberately selecting a region free of two or more particles, it refers to a place where the coarse silicon carbide particles 1b and the fine silicon carbide particles 1a are present on average by observing a wide area of the etched surface. .
  • the area ratio (area%) of the coarse-grained silicon carbide particles 1b on the observation surface is determined by using image analysis software “A Image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) using an image obtained by photographing the observation surface. This is done by applying a method called particle analysis.
  • the threshold value which is an index indicating the density of an image
  • the threshold value is set to 150
  • the total area of the extracted coarse granular silicon carbide particles 1b having an extracted area of 170 ⁇ m 2 or more is the area of the observation surface, for example, 0.054 mm 2 (lateral direction (The length of 0.27 mm and the length in the vertical direction is 0.2 mm)
  • the value expressed as a percentage is the area ratio of the coarse silicon carbide particles 1b.
  • the main configuration means that the cumulative area of silicon carbide particles is 80 area% or more when the area of the observation surface is 100 area%.
  • the particles observed on the observation surface are silicon carbide particles by confirming the respective distributions of Si and C using a wavelength dispersion X-ray microanalyzer device (JXA-8600M type, manufactured by JEOL Ltd.) When the Si and C distributions are overlapped, they can be confirmed by their overlapping.
  • 1A and 1B are partially enlarged photographs of images obtained by photographing the observation surface.
  • the coarse granular silicon carbide particles 1b have an average aspect ratio (major axis / minor axis) of 1 or more and 2 or less.
  • the average value of the aspect ratio of the coarse granular silicon carbide particles 1b is within this range, the crack progresses when a fine crack is generated by thermal shock or mechanical shock, as compared with the aspect ratio outside this range. Due to the suppression effect, a silicon carbide sintered body having further excellent mechanical properties such as strength and rigidity is obtained.
  • the major axis is the length of the longest portion of coarse granular silicon carbide particles 1b on the observation surface, and the minor axis is the length of the longest portion perpendicular to the major axis.
  • the average aspect ratio of coarse granular silicon carbide particles 1b can be obtained as follows. Coarse granular silicon carbide particles 1b having an area of 170 ⁇ m 2 or more extracted by particle analysis of image analysis software “A image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) have a long diameter according to JIS R 1670-2006. And measure the minor axis. Then, the average value may be calculated after the aspect ratio of each coarse granular silicon carbide particle 1b is obtained by dividing the value of the major axis by the value of the minor axis.
  • the average crystal grain size of the silicon carbide particles is 2 ⁇ m or more and 6 ⁇ m or less. As described above, if the average crystal grain size of the silicon carbide particles is 2 ⁇ m or more and 6 ⁇ m or less, the coarse sintered silicon carbide particles 1b can be formed, but a dense sintered body can be obtained. Thus, a silicon carbide sintered body having excellent thermal conductivity can be obtained.
  • the average crystal grain size of the silicon carbide particles may be calculated using the same image as that used when obtaining the area ratio and aspect ratio of the coarse silicon carbide particles 1b. Specifically, with respect to an arbitrary point in the image, six straight lines each having a length of, for example, 168 ⁇ m are drawn at 30 ° intervals, and crystals existing on the six straight lines are drawn. It can be obtained by dividing the number by the total length of these straight lines.
  • the thermal conductivity is confirmed by the thermal conductivity (W / (m ⁇ K)) measured according to JIS R 1601-2008 (ISO 14704-2000 (MOD)).
  • coarse granular silicon carbide particles 1b contain calcium. Since calcium has a linear expansion coefficient different from that of silicon carbide forming coarse granular silicon carbide particles 1b, when coarse granular silicon carbide particles 1b contain calcium, coarse granular silicon carbide particles 1b have a difference due to the difference in linear expansion coefficient. Residual stress is generated inside. And since the compressive stress has arisen in the grain boundary of the coarse granular silicon carbide particle 1b and the adjacent fine granular silicon carbide particle 1a etc.
  • the fracture toughness may be measured in accordance with a precracking fracture test method (SEPB method) defined in JIS R 1607-2010 (ISO 15732-2003 (MOD)).
  • the content of calcium should be 0.1% by mass or less with respect to 100% by mass of the silicon carbide sintered body.
  • the calcium content may be determined using ICP emission spectroscopy.
  • the coarse granular silicon carbide particles 1b contain calcium is confirmed by using a wavelength dispersive X-ray microanalyzer (JXA-8600M type manufactured by JEOL Ltd.) to confirm the calcium distribution. This can be confirmed by the presence or absence of calcium at the location corresponding to the silicon carbide particles 1b.
  • JXA-8600M type manufactured by JEOL Ltd. a wavelength dispersive X-ray microanalyzer
  • the silicon carbide sintered body of the present embodiment has an oxygen content of 1.5% by mass or less.
  • the oxygen content is 1.5% by mass or less, the formation of an amorphous phase in the grain boundary phase is reduced if the silicon carbide sintered body is formed by liquid phase sintering. Can be increased.
  • the oxygen content may be obtained by an oxygen analysis method.
  • the silicon carbide based sintered body of the present embodiment contains graphite, and the content of this graphite is preferably 10% by mass or less.
  • Graphite has a lower hardness than silicon carbide and easily wears out, but it has a high lubricating action, so it can maintain good sliding characteristics.
  • wear can be suppressed and good sliding characteristics can be maintained due to the high lubricating action of graphite. it can.
  • what is necessary is just to perform with the method shown when calculating
  • the graphite contained in the silicon carbide based sintered body of the present embodiment has an average crystal grain size of 4 ⁇ m or more and 43 ⁇ m or less.
  • the average crystal grain size of graphite is 4 ⁇ m or more and 43 ⁇ m or less, wear can be suppressed and high sealing performance can be maintained, and grain growth of silicon carbide crystal particles can be promoted during the sintering process. Thus, a denser silicon carbide sintered body can be obtained.
  • graphite preferably has an average crystal grain size of 12 ⁇ m to 30 ⁇ m.
  • about the average crystal grain size of graphite about 10 pieces of graphite are extracted using the same image as when obtaining the area ratio and aspect ratio of coarse granular silicon carbide particles 1b, and in accordance with JIS R 1670-2006.
  • the major axis and the minor axis are measured, the arithmetic mean is regarded as the crystal grain size of each graphite, and the average of the values excluding the maximum and minimum values of these crystal grain sizes is regarded as the average crystal grain size of graphite. do it.
  • FIG. 2 is a schematic diagram showing an example of the crystal structure of graphite.
  • the crystal structure of graphite is a structure in which the carbon layer surface shows an orderly orientation as shown in FIG. 2, the pores in the crystal grains of graphite are reduced, so that the compressive strength of the silicon carbide based sintered body is increased. can do.
  • the graphite has a half-value width of a diffraction peak from the (002) plane measured by the X-ray diffraction method of 0.3 ° or less (excluding 0 °).
  • the crystal structure of graphite can be made into a dense structure, so that mechanical properties such as compressive strength, such as bending strength, static elastic modulus and hardness are increased. can do.
  • the crystal structure of graphite is preferably a hexagonal crystal structure called 2H graphite.
  • the sliding component of the present embodiment is formed by polishing the surface of the silicon carbide sintered body of the present embodiment, the effect of suppressing the progress of cracks when a fine crack is generated by thermal shock, Along with excellent mechanical properties such as strength and rigidity, and excellent thermal shock resistance, it can withstand long-term use as a sliding component.
  • FIG. 3A is a partial cross-sectional view showing an example of a mechanical seal in which the sliding component of this embodiment is applied to a mechanical seal ring
  • FIG. 3B is a perspective view of the mechanical seal ring shown in FIG.
  • This mechanical seal has a mechanical seal ring 5 which exerts a sealing action by sliding a sliding surface 15b of a movable member 5b which is an annular body having a convex portion on a sliding surface 15a of a fixed member 5a which is an annular body. It is an apparatus provided with.
  • the mechanical seal ring 5 is attached between a rotating shaft 6 that transmits a driving force by a driving mechanism (not shown) and a casing 7 that rotatably supports the rotating shaft 6, and includes a fixed member 5a and a movable member 5b.
  • the mutual sliding surfaces 15a and 15b are installed so as to form a vertical surface with respect to the rotating shaft 6.
  • the movable member 5b is buffered by the packing 8, and a coil spring 9 is installed on the side of the packing 8 facing the movable member 5b so as to wind the rotating shaft 6.
  • a coil spring 9 is installed on the side of the packing 8 facing the movable member 5b so as to wind the rotating shaft 6.
  • the fixed member 5a that is in contact with the movable member 5b through the sliding surface 15b and the sliding surface 15a is supported by a shock absorbing rubber 12, and the shock absorbing rubber 12 is placed inside the casing 7 that is an outer frame of the mechanical seal. It is attached and supports the fixing member 5a.
  • the buffer rubber 12 and the packing 8 also have a function of absorbing vibration generated by the rotation of the rotating shaft 6.
  • the fluid 14 penetrates to the inside surrounded by the casing 7 of the mechanical seal, but the sealing action by the O-ring 13 provided between the packing 8 and the rotating shaft 6 and the sliding of the mechanical seal ring 5 are performed.
  • the fluid 14 is prevented from leaking from the mechanical seal to the outside by the sealing action of the surfaces 15a and 15b.
  • a part of the fluid 14 enters between the sliding surfaces 15a and 15b of the mechanical seal ring 5 and acts as a lubricating liquid.
  • the fixed member 5a is a flat ring-shaped body
  • the movable member 5b is a ring-shaped body having a convex portion.
  • the fixed member 5a is a ring-shaped body having a convex portion.
  • the movable member 5b can be a flat annular body.
  • the mechanical seal ring 5 is composed of a fixed member 5a and a movable member 5b that slide with the sliding surfaces 15a and 15b coming into contact with each other via a lubricant.
  • the fixed member 5a and the movable member 5b are slid. At least one of these preferably uses a sliding component made of the silicon carbide sintered body of the present embodiment.
  • the mechanical seal provided with the mechanical seal ring 5 made of the sliding parts of the present embodiment has a low replacement frequency and can be used continuously for a long period of time, the operation efficiency is high. Easy maintenance.
  • FIG. 4A and 4B show an example of a forceset valve provided with the sliding component of the present embodiment, in which FIG. 4A is a perspective view with the fluid passage opened, and FIG. 4B is a perspective view with the fluid passage closed.
  • FIG. 4A is a perspective view with the fluid passage opened
  • FIG. 4B is a perspective view with the fluid passage closed.
  • the facet valve 16 includes a substrate-like fixed valve body 17 and a rotary valve body 18 that slide against each other with the sliding surfaces 17a and 18a in contact with each other via a lubricating liquid.
  • the fixed valve body 17 is fixed to a resin case (not shown), and the movable valve body 18 is configured to move on the fixed valve body 17 inside the resin case.
  • Fluid passages 17b and 18b are formed in the thickness direction in the fixed valve body 17 and the movable valve body 18, respectively, and both fluid passages 17b and 18b are connected on the sliding surfaces 17a and 18a.
  • a lever 19 is fixed to the movable valve body 18, and the movable valve body 18 is moved by moving the lever 19 in the vertical direction or the rotational direction.
  • the fixed valve body 17 corresponds to a fixed member
  • the movable valve body 18 corresponds to a movable member.
  • fluid such as water and hot water sequentially flows from the direction of the white arrow to the fluid passages 17b and 18b and is connected to the force valve 16.
  • the fluid is discharged from the faucet (not shown).
  • the fluid inserted between the sliding surfaces 17a and 18a together with the silicon grease previously applied to one of the sliding surfaces 17a and 18a serves as a lubricating liquid and acts to maintain the sliding characteristics.
  • the lever 19 can move the movable valve body 18 in either the vertical direction to close the fluid passages 17b, 18b, thereby stopping the discharge of fluid from the faucet. be able to. Moreover, since the area of the end surface to which the fluid passages 17b and 18b are connected is adjusted by moving the movable valve body 18 in the rotation direction, the flow rate of the fluid discharged from the faucet can be adjusted.
  • At least one of the fixed valve body 17 and the movable valve body 18 uses a sliding component made of the silicon carbide sintered body of this embodiment.
  • the sliding part made of the silicon carbide sintered body of the present embodiment for at least one of the fixed valve body 17 and the movable valve body 18, in addition to excellent wear resistance, finer by long-term use. Even if cracks occur, the progress of cracks is suppressed by coarse granular silicon carbide particles 1b, so that good sliding characteristics can be maintained.
  • the frequency of parts replacement is low, it can be used continuously over a long period of time.
  • FIG. 5 shows a rolling bearing which is an example of a rolling support device provided with the sliding component of the present embodiment, (a) is a cross-sectional view, and (b) shows a cage of the rolling bearing shown in (a). It is a perspective view shown.
  • the rolling bearing 20 in the example shown in FIG. 5A includes a first member (outer ring) 21 and a second member (inner ring) 22 provided with raceway surfaces 21a and 22a arranged to face each other. And a plurality of rolling elements 23 that are rotatably arranged between the raceway surfaces 21a and 22a. When the rolling elements 23 roll, one of the first member 21 and the second member 22 is in relation to the other. It is configured to move relative to each other.
  • a counter bore 22b is formed on one side of the rolling element 23 on the raceway surface of the second member 22 so as to be inclined from the raceway surface 22a of the second member 22.
  • the counter bore 22b is for facilitating the attachment of the rolling element 23 between the first member 21 and the second member 22.
  • the cage 24 shown in FIG. 5 (b) has an annular shape, and holds the rolling elements 23 by pockets 24a arranged at equal intervals in the circumferential direction.
  • the first member 21 or the second member 22 and the rolling element 23 correspond to a fixed member and a movable member, respectively, and the first member 21, the second member 22 and At least one of the rolling elements 23 preferably uses a sliding component made of the silicon carbide sintered body of this embodiment.
  • the sliding component made of the silicon carbide sintered body of this embodiment as at least one of the first member 21, the second member 22, and the rolling element 23, even if a fine crack is generated due to thermal shock, it is rough. Since the progress of cracks is suppressed by the granular silicon carbide particles 1b, good sliding characteristics can be maintained. In addition, since the frequency of parts replacement is low, it can be used continuously over a long period of time.
  • the arithmetic average height (Ra) is preferably 0.6 ⁇ m or less.
  • the surface of the rolling element 23 preferably has an arithmetic average height (Ra) of 0.01 ⁇ m or less.
  • the cage 24 is mainly composed of polyetheretherketone (PEEK), polyamideimide alloy (PAI) or thermoplastic polyimide (TPI), and includes aluminum borate whisker, potassium titanate whisker, barium titanate whisker, and titanium oxide. It is preferable to include fibrous fillers such as whiskers, carbon whiskers, graphite whiskers, silicon carbide whiskers, silicon nitride whiskers, and aluminum oxide whiskers. By including such a fibrous filler, the cage 24 can increase its mechanical strength, wear resistance and dimensional stability.
  • PEEK polyetheretherketone
  • PAI polyamideimide alloy
  • TPI thermoplastic polyimide
  • fibrous fillers such as whiskers, carbon whiskers, graphite whiskers, silicon carbide whiskers, silicon nitride whiskers, and aluminum oxide whiskers.
  • the surface of the silicon carbide sintered body is polished more than the inside of the silicon carbide sintered body. It is preferable that a large amount of graphite is present on the sliding surface. Thereby, the sliding characteristics can be further enhanced by the lubricating action of graphite while maintaining the mechanical characteristics.
  • the inside of the silicon carbide sintered body is the center of the thickness of the silicon carbide sintered body, and is formed by polishing the inside of the silicon carbide sintered body and the surface of the silicon carbide sintered body.
  • the difference in the graphite content from the sliding surface is preferably 2% by mass or more.
  • the protective body of the present embodiment uses the silicon carbide sintered body of the present embodiment, so that the strength and rigidity of the protective body can be reduced due to the effect of suppressing the progress of cracks when a fine crack is generated by mechanical impact. Therefore, it can be suitably used as a protective body.
  • This protective body is, for example, a substrate having a vertical and horizontal length of 40 mm or more and 60 mm or less and a thickness of 6 mm or more and 12 mm or less, and is mounted on an automobile, a train, a helicopter, a jet plane, etc. It is.
  • the protective body of the present embodiment has a dynamic elastic modulus of 426 GPa or more.
  • the dynamic elastic modulus is 426 GPa or more, the ability to deform the flying object that applies an impact to the protective body is increased, and therefore the impact of the flying object can be instantaneously dispersed.
  • the dynamic elastic modulus may be obtained in accordance with an ultrasonic pulse method based on JIS R 1602-1995, and the dynamic elastic modulus is more preferably 430 GPa or more.
  • the silicon carbide based sintered body of the present embodiment first, coarse granular powder and fine granular powder are prepared as silicon carbide powder, and water and, if necessary, a dispersant are added by a ball mill or a bead mill. Grind and mix for ⁇ 60 hours to make slurry.
  • the ranges of the particle sizes of the fine and coarse granular powders after pulverization and mixing are 0.4 ⁇ m or more and 4 ⁇ m or less, and 11 ⁇ m or more and 34 ⁇ m or less.
  • the obtained slurry is made of graphite powder, a dispersant for dispersing the graphite powder (hereinafter referred to as a dispersant for graphite), boron carbide powder and amorphous carbon powder or phenol resin.
  • a dispersant for graphite a dispersant for graphite
  • boron carbide powder a dispersant for graphite
  • amorphous carbon powder or phenol resin a sintering aid and a binder
  • granules whose main component is silicon carbide are obtained by spray drying.
  • fine granular powder is 6 mass% or more and 15 mass% or less, for example, coarse granular powder is 85 mass% or more and 94 mass% or less.
  • coarse granular powder is 85 mass% or more and 94 mass% or less.
  • the coarse granular powder whose average value of the aspect ratio is 1 or more and 1.6 or less in advance. May be used.
  • the addition amount of graphite powder and the addition amount of amorphous carbon powder as a sintering aid It is sufficient that the sum of 1 ⁇ 2 and 10% is 10% by mass or less with respect to 100% by mass of the silicon carbide powder.
  • graphite powder having an average particle size of 8 ⁇ m or more and 48 ⁇ m or less may be used.
  • a graphite dispersant by using a graphite dispersant, it can be adsorbed to a hydrophobic graphite powder and wetted and permeated into a slurry using water as a solvent, and acts to suppress aggregation of graphite. Homogeneous granules containing graphite can be obtained.
  • an anionic surfactant such as carboxylate such as sodium polycarboxylate, sulfonate, sulfate ester salt and phosphate ester salt.
  • the anionic surfactant which is a graphite dispersant
  • the graphite powder When the anionic surfactant, which is a graphite dispersant, is adsorbed to the graphite powder, the graphite powder easily wets and penetrates into the slurry, and the repulsion of the graphite powder is caused by the charge repulsion of the hydrophilic group of the anionic surfactant. Since aggregation is suppressed, the graphite powder can be sufficiently dispersed without agglomerating in the slurry.
  • the carbon that is a component of the sintering aid is free carbon and is present in at least one of the open pores and the grain boundary phase on the sliding surface of the sliding component, and when the sliding component slides, The free carbon easily flows out on the sliding surface that comes into contact with the free carbon and is contained in the lubricating liquid.
  • the sliding characteristics of the sliding component can be improved.
  • the granules are filled into a predetermined mold and pressed and molded from the thickness direction at a pressure appropriately selected in the range of 49 to 147 MPa to obtain molded bodies that are precursors of the fixed member and the movable member, respectively.
  • Each of the obtained molded bodies is degreased in a nitrogen atmosphere at a temperature of 450 to 650 ° C. and a holding time of 2 to 10 hours to obtain a degreased body.
  • the degreased body is placed in a firing furnace, and held at a maximum temperature of 1800 to 2200 ° C. and a holding time of 3 to 6 hours in a reduced-pressure atmosphere of an inert gas.
  • a sintered body can be obtained.
  • it does not specifically limit about an inert gas Since acquisition and handling are easy, it is suitable to use argon gas.
  • the average crystal grain size of the silicon carbide particles in the silicon carbide sintered body can be adjusted by setting the maximum temperature so as to be 2 ⁇ m or more and 6 ⁇ m or less. Further, when the silicon carbide sintered body is used as a sliding part, there is more graphite on the sliding surface obtained by polishing the surface of the silicon carbide sintered body than inside the silicon carbide sintered body.
  • the reduced pressure atmosphere of the inert gas may be changed to a vacuum atmosphere, and the holding may be performed by holding at the same temperature as the above temperature and at the same holding time as the holding time.
  • the obtained silicon carbide sintered body of the present embodiment may be subjected to processing such as grinding or polishing on each main surface as necessary.
  • processing such as grinding or polishing on each main surface as necessary.
  • the surface may be polished with a tin lapping machine so that the arithmetic average height (Ra) is 0.98 ⁇ m or less.
  • Ra arithmetic average height
  • the arithmetic average height (Ra) may be measured in accordance with JIS B 0601-2001 (ISO 4287-1997), and the measurement length and the cut-off value are 5 mm and 0.8 mm, respectively. If the surface roughness meter is used, for example, a stylus having a stylus tip radius of 2 ⁇ m is applied to the sliding surface of the sliding component, and the scanning speed of the stylus is 0.5 mm / second. That's fine.
  • the silicon carbide sintered body of the present embodiment obtained by the manufacturing method described above is a silicon carbide sintered body mainly composed of silicon carbide particles and having a relative density of 95% or more. Coarse granular silicon carbide particles with an area of 170 ⁇ m 2 or more on the surface of the body are present in an area of 6 to 15 area%, even if fine cracks are generated due to thermal shock or mechanical shock. Since the progress of cracks is suppressed by the silicon carbide particles, a silicon carbide sintered body having excellent thermal shock resistance as well as mechanical properties such as strength and rigidity is obtained.
  • the sliding component obtained by polishing the surface of the silicon carbide based sintered body of the present embodiment can maintain good sliding characteristics over a long period of time, and therefore can be suitably used for a mechanical seal ring. Moreover, it can be used suitably also for sliding parts, such as a forceset valve and a rolling support apparatus. Moreover, it can be used suitably also as a protective body.
  • a silicon carbide powder fine and coarse powders, water, and a dispersant for dispersing these silicon carbide powders were added, placed in a ball mill, and pulverized and mixed for 48 hours to obtain a slurry.
  • boron carbide powder and amorphous carbon powder carbon black and binder as a sintering aid were added and pulverized and mixed, and then spray-dried so that the main component was silicon carbide.
  • Granules having a particle size of 80 ⁇ m were obtained.
  • some samples were further mixed with graphite powder and sodium polycarboxylate as a graphite dispersant, and then spray-dried in the same manner to contain the main component.
  • Granules of silicon carbide having an average particle size of 80 ⁇ m were obtained.
  • the mass ratios of the fine powder and coarse powder of the silicon carbide powder as the main component are as shown in Table 1, and the respective particle sizes after pulverization and mixing are 0.4 ⁇ m or more and 4 ⁇ m or less, 11 ⁇ m or more and 34 ⁇ m or less. Met. Further, the average value of the aspect ratio of the coarse granular powder, the addition amount of the sintering aid, the average particle size and the addition amount of the graphite powder were as shown in Table 1, respectively.
  • the respective particle sizes after pulverization and mixing of the fine granular powder and coarse granular powder and the average particle diameter of the graphite powder were determined in accordance with JIS R 1629-1997. Moreover, about the sample which added the graphite powder, 4 mass parts of addition amount of sodium polycarboxylate was added with respect to 100 mass parts of graphite powder as a dispersing agent for graphite.
  • the obtained granule is filled into a mold and molded by applying a pressure of 98 MPa from the thickness direction, and the obtained molded body is heated in a nitrogen atmosphere for 20 hours and held at 600 ° C. for 5 hours. Then, it was naturally cooled and degreased to obtain a degreased body. Next, the degreased body was fired in a reduced pressure atmosphere of argon gas at the firing temperature shown in Table 1 for 5 hours to obtain a silicon carbide based sintered body.
  • the four-point bending strength, dynamic elastic modulus, and critical temperature difference were each measured according to JIS R. It was measured according to 1601-2008 (ISO 14704-2000 (MOD)), ultrasonic pulse method based on JIS R 1602-1995, and precision method based on JIS R 1648-2002. These measured values are shown in Table 2.
  • the defatted body is fired in a reduced pressure atmosphere of argon gas at the firing temperature shown in Table 1 for 5 hours, thereby firing the silicon carbide-based fired body which is a ring-shaped body having a plate-like annular body and convex portions.
  • a ligature was obtained.
  • each silicon carbide sintered body was ground with a surface grinder, and polished with an alumina lapping machine using diamond abrasive grains having an average particle diameter of 3 ⁇ m.
  • the arithmetic average height (Ra) is polished with a tin lapping machine so that the arithmetic average height (Ra) is 0.98 ⁇ m or less to form a sliding surface.
  • the fixing members 5a having a thickness of 3 mm and a thickness of 25 mm and 16 mm, respectively, were obtained.
  • a movable member 5b having a convex portion and having an outer diameter and an inner diameter of 25 mm and 16 mm, respectively, and a thickness of 7 mm was obtained.
  • the fixing member 5a prepared using the granules of No. 12 and the sample No.
  • the following sliding test was conducted using the movable member 5b produced using the granules 1 to 23. Specifically, the sliding surfaces 15a and 15b of the fixed member 5a and the movable member 5b were brought into contact with each other and slid under the following sliding conditions.
  • ⁇ Sliding conditions> ⁇ Relative speed: 8m / sec ⁇ Surface pressure: 400kPa Lubricating liquid: water
  • the relative speed is the rotational speed of the movable member 5b with respect to the fixed member 5a at a position (hereinafter referred to as position P) that is 11.25 mm away from the center of the rotating shaft toward the outer peripheral side.
  • the surface pressure is a pressure per unit area of the movable member 5b with respect to the fixed member 5a, and a predetermined pressure F for bringing the fixed member 5a and the movable member 5b into contact with each other is a sliding surface 15b of the movable member 5b.
  • the area was calculated by measuring the outer diameter and the inner diameter of the convex portion of the movable member 5b with a gauge using an optical microscope equipped with a gauge for measuring dimensions at a magnification of 50 times. .
  • the thickness of the movable member 5b was measured with the dial cage before starting sliding and 150 hours after starting sliding, and the difference in thickness was defined as the wear depth.
  • Table 2 shows the coefficient of friction and the wear depth.
  • JIS B 0601-2001 is used with diamond abrasive grains having a particle diameter of 1 to 3 ⁇ m using a lapping machine made of tin. Polishing was performed until the arithmetic average height (Ra) specified by (ISO 4287-1997) was 0.01 ⁇ m or less.
  • Ra arithmetic average height
  • the silicon carbide sintered body was immersed in a heated and melted solution of sodium hydroxide and potassium nitrate in a mass ratio of 1: 1 for 20 seconds, and the polished surface was etched.
  • the major axis value is divided by the minor axis value.
  • the average value was calculated. Table 2 shows the average values of the area ratio and aspect ratio of coarse granular silicon carbide particles 1b.
  • the graphite contained in the movable member 5b was identified by the X-ray diffraction method using CuK ⁇ rays.
  • the amount of carbon in the silicon carbide sintered body was determined by carbon analysis, and the content of Si and B was determined by ICP emission spectroscopic analysis. Then, using the value of the content of Si and B in terms of SiC and B 4 C is a carbide, graphite by subtracting the amount of carbon needed for this carbide conversion of carbon content in the silicon carbide sintered body It was set as content.
  • sample No. No. 1 has a low firing temperature and a relative density of less than 95%, so the wear depth is large and it is easy to wear, so it cannot withstand long-term use as a sliding part.
  • Sample No. In No. 2 since coarse silicon carbide particles 1b do not exist in an area of 6 area% or more, it was found that the value of the critical temperature difference is small and the progress of cracks caused by thermal shock cannot be sufficiently suppressed.
  • Sample No. In No. 23 since the coarse-grained silicon carbide particles 1b were present exceeding 15 area%, the values of the four-point bending strength and the dynamic elastic modulus were low.
  • Sample No. Nos. 3 to 22 have a relative density of 95% or more, and there are 6 to 15 area% of coarse granular silicon carbide particles having an area of 170 ⁇ m 2 or more on the observation surface. Since the value of the elastic modulus is large and the value of the critical temperature difference indicating thermal shock resistance is large, even if fine cracks are generated due to thermal shock or mechanical shock, the progress of cracks is suppressed by the coarse granular silicon carbide particles 1b. It can be said that this is a silicon carbide-based sintered body capable of forming.
  • sample Nos. Differing only in the average aspect ratio of the coarse granular powder.
  • sample no. In Nos. 18 and 19, since the average aspect ratio of coarse-grained silicon carbide particles 1b is 1 or more and 2 or less, Sample No. It was found that the 4-point bending strength and the dynamic elastic modulus were larger than 20, and the mechanical properties were excellent.
  • Sample No. 9 to 17 contain graphite, so the friction coefficient is low and it can be seen that graphite has a high lubricating action, but the result of wear depth indicates that the graphite content is 10% by mass or less. Can be said to be suitable.
  • the silicon carbide based sintered body of the present embodiment can suppress the progress of cracks with coarse granular silicon carbide particles even if fine cracks are generated due to thermal shock or mechanical shock. It was found that it has excellent thermal shock resistance as well as mechanical properties such as rigidity. Therefore, the sliding component formed by polishing the surface of the silicon carbide sintered body of the present embodiment can maintain good sliding characteristics over a long period of time, and therefore can be suitably used for a mechanical seal ring. I understood. Moreover, it turned out that it can be used suitably also for sliding parts, such as a faucet valve and a rolling support apparatus. Moreover, it turned out that it can be used suitably also as a protective body.
  • Example 1 As in Example 1, a fine powder and coarse granular powder were used as silicon carbide powder, the mass ratio was 90:10, water and a dispersant for dispersing these silicon carbide powders were added, and a ball mill was added. The mixture was pulverized and mixed at different times for pulverization and mixing to obtain a slurry. Then, after adding boron carbide powder, carbon black which is an amorphous carbon powder, and a binder, mixing, and then spray drying, granules whose main component is silicon carbide and whose average particle size is 80 ⁇ m Got. As addition amounts, silicon carbide powder was 99.1% by mass, boron carbide was 0.4% by mass, and carbon black was 0.5% by mass. Next, by using the obtained granules, a silicon nitride sintered body was obtained by the same production method as in Example 1. The maximum temperature was the temperature shown in Table 3.
  • the thermal conductivity and the four-point bending strength are measured according to JIS R 1611-2010 (ISO 18755-2005 (MOD)) and JIS R 1601-2008 (ISO 14704-2000 (MOD)).
  • each sample was subjected to processing such as polishing and etching in the same manner as in Example 1, and the observation surface was imaged with an optical microscope at a magnification of 500 times, with an arbitrary point in the image as the center, Each straight line having a length of 168 ⁇ m was drawn at 30 ° intervals, and the number of crystals existing on the six straight lines was divided by the total length of these straight lines.
  • Table 3 shows the measured values of the average crystal grain size, thermal conductivity, and 4-point bending strength of the silicon carbide particles.
  • sample No. Nos. 25 to 28 have large values of thermal conductivity and 4-point bending strength, and the average crystal grain size of silicon carbide particles is 2 ⁇ m or more and 6 ⁇ m or less. It turned out to be a ligation.
  • Sample No. of Example 2 A silicon carbide sintered body was obtained by the same production method as that for producing 28. Sample No. For 31 and 32, calcium was added when boron carbide or the like was added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Mechanical Sealing (AREA)

Abstract

 【課題】 長期間にわたって使用を続けているうちに、熱衝撃または機械的な衝撃により微細なクラックが生じたとしてもクラックの進展を抑制することのできる炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体を提供する。 【解決手段】 炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子1bが6面積%以上15面積%以下存在する炭化珪素質焼結体である。強度,剛性等の機械的特性に優れるとともに、熱衝撃または機械的な衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展を抑制することができる。

Description

炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体
 本発明は、炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体に関するものである。
 炭化珪素質焼結体は、高硬度で高耐食性を有し、摺動時の摩擦係数が小さく平滑性も優れていることから摺動部品に好適に用いられている。
 例えば、特許文献1では、α相またはβ相の少なくとも1種以上の炭化珪素結晶相とYAG結晶相とからなり、残部が不可避不純物からなる炭化珪素焼結体が提案されており、YAG結晶相が0.2~20重量%であるとともに、焼結体中の炭化珪素の平均結晶粒子径が3μm以下、YAG結晶の平均結晶粒子径が1μm以下である炭化珪素焼結体が好適な例として記載されている。
特開2003-95744号公報
 しかしながら、特許文献1で提案された炭化珪素焼結体は、実質的に気孔がなく緻密で、強度および硬度に優れているものの、強度の低いYAG結晶相が粒界相にも含まれている可能性が高く、摺動部品として用いたときの摺動面にかかる熱衝撃がこのような炭化珪素焼結体に与えられるとクラックを生じ、粒界相を通じてクラックが進展しやすく、長期間にわたる使用に十分に耐え得るものではなかった。また、今般、炭化珪素質焼結体を防護体に用いることが検討されており、クラックの進展しにくい炭化珪素質焼結体が望まれている。
 本発明は、上記課題を解決すべく案出されたものであり、長期間にわたる使用によって受ける熱衝撃または機械的な衝撃により微細なクラックが生じたとしても、そのクラックの進展を抑制することができる炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体を提供することを目的とするものである。
 本発明の炭化珪素質焼結体は、炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、該炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子が6面積%以上15面積%以下存在することを特徴とするものである。
 また、本発明の摺動部品は、上記構成の本発明の炭化珪素質焼結体の表面を研磨してなることを特徴とするものである。
 また、本発明の防護体は、上記構成の本発明の炭化珪素質焼結体を用いたことを特徴とするものである。
 本発明の炭化珪素質焼結体によれば、炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、該炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子が6面積%以上15面積%以下存在することから、熱衝撃または機械的な衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子によってクラックの進展を抑制することができるので、強度,剛性等の機械的特性とともに、耐熱衝撃性に優れた炭化珪素質焼結体とすることができる。
 また、本発明の摺動部品によれば、本発明の炭化珪素質焼結体の表面を研磨してなることから、熱衝撃により微細なクラックが生じたときのクラックの進展の抑制効果によって、強度,剛性等の優れた機械的特性とともに、耐熱衝撃性に優れているので、摺動部品として長期間の使用に耐えることができる。
 また、本発明の防護体によれば、本発明の炭化珪素質焼結体を用いたことから、機械的な衝撃により微細なクラックが生じたときのクラックの進展の抑制効果により、強度,剛性等の優れた機械的特性を有しているので、防護体として好適に用いることができる。
(a),(b)は、本実施形態の炭化珪素質焼結体の観察面における顕微鏡写真である。 グラファイトの結晶構造の一例を示す模式図である。 本実施形態の摺動部品を備えたメカニカルシールの一例を示す、(a)は部分断面図であり、(b)は(a)に示すメカニカルシールリングの斜視図である。 本実施形態の摺動部品を備えたフォーセットバルブの一例を示す、(a)は流体通路を開いた状態の斜視図、(b)は流体通路を閉じた状態の斜視図である。 本実施形態の摺動部品を備えた転がり支持装置の一例である転がり軸受を示す、(a)は断面図であり、(b)は(a)に示す転がり軸受の保持器を示す斜視図である。
 以下、本実施形態の炭化珪素質焼結体の一例について説明する。
 図1(a),(b)は、は、本実施形態の炭化珪素質焼結体の観察面における顕微鏡写真である。
 本実施形態の炭化珪素質焼結体は、炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、この炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子1bが6面積%以上15面積%以下存在する炭化珪素質焼結体である。図1に示すように、本実施形態の炭化珪素質焼結体の観察面には、面積が170μm以上の粗粒状炭化珪素粒子1bと、結晶粒径が8μm以下の微粒状炭化珪素粒子1aとが存在する。なお、結晶粒径が8μmを超えて面積が170μm未満の炭化珪素粒子が存在してもよいことはいうまでもない。
 そして、本実施形態の炭化珪素質焼結体は、結晶粒径が8μm以下の微粒状炭化珪素粒子1aをマトリックスとし、相対密度が95%以上であり、炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子1bが6面積%以上15面積%以下存在することにより、熱衝撃または機械的な衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展を抑制することができるので、強度,剛性等の機械的特性に優れているとともに、耐熱衝撃性に優れている。
 ここで、炭化珪素質焼結体の相対密度は、JIS R 1634-1998に準拠して炭化珪素質焼結体の見掛密度を求め、この見掛密度を炭化珪素質焼結体の理論密度で除すことで求めればよい。なお、炭化珪素質焼結体の理論密度については、炭化珪素質焼結体を構成するhのそれぞれの含有量をICP(Inductively Coupled Plasma)発光分光分析法または蛍光X線分析法により求め、各成分の同定はCuKα線を用いたX線回折法によって行ない、例えば同定された成分がSiCやBCであれば、ICP発光分光分析法または蛍光X線分析法により求めたSiおよびBの含有量の値を用いてSiCやBCに換算する。また、X線回折法による成分の同定において、炭化珪素質焼結体にグラファイトが含まれていたときには、炭素分析法により、炭化珪素質焼結体中の炭素量(遊離炭素を除く)を求め、ここで得られた炭化珪素質焼結体中の炭素量から、SiやBの炭化物換算に必要とした炭素量を差し引いた値をグラファイトの含有量とすればよい。
 そして、炭化珪素質焼結体を構成する成分が、例えば、炭化珪素およびグラファイトであって、その含有量がそれぞれa質量%,b質量%であるとすると、炭化珪素およびグラファイトのそれぞれの理論密度の値(炭化珪素=3.21g/cm,グラファイト=2.26g/cm)を用いて、以下の式(1)により炭化珪素質焼結体の理論密度(T.D)を求めることができる。
T.D=1/(0.01×(a/3.21+b/2.26))・・・(1)
 例えば、炭化珪素質焼結体を構成する成分の含有量が、炭化珪素が90質量%であり、グラファイトが10質量%であるときには、式(1)を用いて計算すると、炭化珪素質焼結体の理論密度(T.D)は、3.08g/cmとなり、JIS R 1634-1998に準拠して求めた炭化珪素質焼結体の見掛密度を、この理論密度(T.D)3.08g/cmで除すことにより相対密度を求めることができる。
 また、本実施形態の炭化珪素質焼結体における観察面を得るには、まず、炭化珪素質焼結体の表面をダイヤモンドからなるカップ型砥石を用いて研削した後、引き続き、錫からなるラップ盤を用いて、粒径が1~3μmのダイヤモンド砥粒により、JIS B 0601-2001(ISO 4287-1997)で規定される算術平均高さRaが0.01μm以下になるまで研磨する。次に、水酸化ナトリウムおよび硝酸カリウムが1:1の質量比からなる加熱溶融された溶液に炭化珪素質焼結体を20秒浸し、研磨された面をエッチングする。
 そして、このエッチングされた面を500倍の倍率で光学顕微鏡を用いて観察し、様々な大きさの炭化珪素粒子が平均的に観察される面を本実施形態における観察面とする。なお、様々な大きさの炭化珪素粒子が平均的に観察される面とは、他の領域では観察されないような1個の粒子の面積が15000μmを超える粒子が存在する領域や、面積が170μm以上の粒子がない領域を故意に選ぶのではなく、エッチングされた面の広域を観察して、粗粒状炭化珪素粒子1bや微粒状炭化珪素粒子1aが平均的に存在する箇所のことを指す。
 そして、観察面における粗粒状炭化珪素粒子1bの面積比率(面積%)は、観察面を撮影した画像を用いて、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)の粒子解析という手法を適用して行なう。設定としては、画像の濃淡を示す指標であるしきい値を150とし、抽出された面積が170μm以上の粗粒状炭化珪素粒子1bの合計面積を観察面の面積、例えば0.054mm(横方向の長さが0.27mm,縦方向の長さが0.2mm)で除して百分率で表わした値が粗粒状炭化珪素粒子1bの面積比率である。また、本実施形態の炭化珪素質焼結体において、主構成とは、観察面の面積を100面積%としたとき、炭化珪素粒子の累積面積が80面積%以上のことを指す。なお、観察面において観察される粒子が炭化珪素粒子であることは、波長分散型X線マイクロアナライザー装置(日本電子製 JXA-8600M型)を用いて、SiおよびCのそれぞれの分布を確認し、SiおよびCの分布を重ねたとき、これらが重複していることで確認することができる。また、図1(a),(b)は、観察面を撮影した画像の部分拡大写真である。
 また、本実施形態の炭化珪素質焼結体によれば、粗粒状炭化珪素粒子1bは、アスペクト比(長径/短径)の平均値が1以上2以下であることが好適である。この粗粒状炭化珪素粒子1bのアスペクト比の平均値がこの範囲にあるときには、アスペクト比がこの範囲以外のものよりも、熱衝撃または機械的な衝撃により微細なクラックが生じたときのクラックの進展の抑制効果により、強度,剛性等の機械的特性がさらに優れた炭化珪素質焼結体となる。なお、長径とは、観察面における粗粒状炭化珪素粒子1bの最も長い部分の長さであり、短径とは、長径に垂直方向で最も長い部分の長さである。
 この粗粒状炭化珪素粒子1bのアスペクト比の平均値は以下のようにして求めることができる。画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)の粒子解析により抽出された面積が170μm以上の粗粒状炭化珪素粒子1bについて、JIS R 1670-2006に準拠して長径および短径を測定する。そして、この長径の値を短径の値で除することにより、それぞれの粗粒状炭化珪素粒子1bのアスペクト比を求めた後、平均値を算出すればよい。
 また、本実施形態の炭化珪素質焼結体は、炭化珪素粒子の平均結晶粒径が2μm以上6μm以下であることが好適である。このように、炭化珪素粒子の平均結晶粒径が2μm以上6μm以下であれば、粗粒状炭化珪素粒子1bが存在するものの緻密な焼結体とすることができるので、機械的特性を向上させることができるとともに熱伝導性に優れた炭化珪素質焼結体とすることができる。
 ここで、炭化珪素粒子の平均結晶粒径は、粗粒状炭化珪素粒子1bの面積比率やアスペクト比を求めるときに用いた画像と同じ画像を用いて算出すればよい。具体的には、この画像内で任意の点を中心として、1本当たりの長さが、例えば、168μmである直線を30°間隔で6本引き、この6本の直線上に存在する結晶の個数をこれら直線の合計長さで除すことで求めることができる。また、熱伝導性については、JIS R 1601-2008(ISO 14704-2000(MOD))に準拠して測定した熱伝導率(W/(m・K))で確認する。
 また、本実施形態の炭化珪素質焼結体は、粗粒状炭化珪素粒子1bがカルシウムを含んでいることが好適である。カルシウムは、粗粒状炭化珪素粒子1bを形成する炭化珪素と線膨張係数が異なることから、粗粒状炭化珪素粒子1bがカルシウムを含んでいるときには、線膨張係数の差によって粗粒状炭化珪素粒子1bの内部には残留応力が生じる。そして、この残留応力によって粗粒状炭化珪素粒子1bと隣接する微粒状炭化珪素粒子1a等との粒界には圧縮応力が生じているため、微細なクラックが生じたとしても、炭化珪素粒子間にかかる応力によってクラックの進展をさらに抑制することができ、この抑制効果は、破壊靭性(KIC)で確認することができる。なお、破壊靱性については、JIS R 1607-2010(ISO 15732-2003(MOD))で規定される予き裂導入破壊試験法(SEPB法)に準拠して測定すればよい。
 なお、カルシウムは、含有量によっては炭化珪素質焼結体の緻密化に影響を与えるおそれがあるので、炭化珪素質焼結体100質量%に対して、0.1質量%以下の含有量であることが好適であり、このカルシウムの含有量は、ICP発光分光分析法を用いて求めればよい。
 そして、粗粒状炭化珪素粒子1bにカルシウムが含まれているか否かについては、波長分散型X線マイクロアナライザー装置(日本電子製 JXA-8600M型)を用いて、カルシウムの分布を確認し、粗粒状炭化珪素粒子1bに相当する箇所におけるカルシウムの存在の有無で確認することができる。
 また、本実施形態の炭化珪素質焼結体は、酸素の含有量が1.5質量%以下であることが好適である。酸素の含有量が1.5質量%以下であるときには、炭化珪素質焼結体が液相焼結によって形成されていると、粒界相における非晶質相の生成が低減されるので、熱伝導性を高めることができる。酸素の含有量については、酸素分析法により求めればよい。
 また、本実施形態の炭化珪素質焼結体は、グラファイトを含み、このグラファイトの含有量は10質量%以下であることが好適である。グラファイトは、炭化珪素よりも硬度が低く、磨耗しやすいものの、潤滑作用が高いので、良好な摺動特性を維持することができる。このグラファイトの含有量が10質量%以下であるときには、磨耗が抑制されるとともに、グラファイトが有する高い潤滑作用により良好な摺動特性を維持することができるので、摺動部品に好適に用いることができる。なお、グラファイトの同定および含有量の求め方については、理論密度を求める際に示した方法で行なえばよい。
 また、本実施形態の炭化珪素質焼結体に含まれるグラファイトは、平均結晶粒径が4μm以上43μm以下であることが好適である。グラファイトの平均結晶粒径が4μm以上43μm以下であるときには、磨耗が抑制されて高いシール性を維持することができるとともに、焼結過程における炭化珪素の結晶粒子の粒成長を促進することができるので、より緻密な炭化珪素質焼結体とすることができる。
 特に、グラファイトは、平均結晶粒径が12μm以上30μm以下であることが好適である。グラファイトの平均結晶粒径については、粗粒状炭化珪素粒子1bの面積比率やアスペクト比を求めるときと同じ画像を用いて、10個前後のグラファイトを抽出して、JIS R 1670-2006に準拠して長径および短径を測定し、その相加平均を個々のグラファイトの結晶粒径とみなし、これらの結晶粒径の値の最大値および最小値を除いた値の平均をグラファイトの平均結晶粒径とすればよい。
 図2は、グラファイトの結晶構造の一例を示す模式図である。グラファイトの結晶構造が、図2に示すように、その炭素層面が整然とした配向を示す構造である場合、グラファイトの結晶粒子内の気孔が減少するため、炭化珪素質焼結体の圧縮強度を高くすることができる。
 本実施形態の炭化珪素質焼結体では、グラファイトはX線回折法を用いた測定による(002)面からの回折ピークの半値幅を0.3°以下(0°を除く)とすることが好適であり、半値幅をこの範囲にすることでグラファイトの結晶構造は緻密質な構造とすることができるので、圧縮強度をはじめとする機械的特性、例えば曲げ強度,静的弾性率および硬度等を高くすることができる。特に、グラファイトの結晶構造は、2Hグラファイトと呼ばれる六方晶系の結晶構造であることが好適である。
 また、本実施形態の摺動部品は、本実施形態の炭化珪素質焼結体の表面を研磨してなることから、熱衝撃により微細なクラックが生じたときのクラックの進展の抑制効果によって、強度,剛性等の優れた機械的特性とともに、耐熱衝撃性に優れているので、摺動部品として長期間の使用に耐えることができる。
 図3(a)は、本実施形態の摺動部品をメカニカルシールリングに適用したメカニカルシールの一例を示す部分断面図であり、(b)は(a)に示すメカニカルシールリングの斜視図である。このメカニカルシールは、環状体である固定部材5aの摺動面15a上で、凸状部を有する環状体である可動部材5bの摺動面15bを摺動させてシール作用を及ぼすメカニカルシールリング5を備えた装置である。
 メカニカルシールリング5は、駆動機構(図示しない)による駆動力を伝達させる回転軸6と、この回転軸6を回転可動に支承するケーシング7との間に取り付けられ、固定部材5aと可動部材5bとの互いの摺動面15a,15bが回転軸6に対して垂直面を形成するように設置されている。
 そして、可動部材5bはパッキング8によって緩衝的に支持され、このパッキング8の可動部材5bと相対する側には回転軸6を巻回するようにコイルスプリング9が設置される。このコイルスプリング9の弾発力(予め設定されたコイルスプリング9の力)により、パッキング8を押圧することによって、可動部材5bの摺動面15bが固定部材5aの摺動面15aに押圧されて摺動するようにしてある。また、コイルスプリング9がパッキング8を押圧する側と相対する側には、カラー10がセットスクリュー11により回転軸6に固定され、コイルスプリング9のストッパーとして設置されている。
 一方、可動部材5bの摺動面15bと摺動面15aとを介して接する固定部材5aは緩衝ゴム12によって支持されており、緩衝ゴム12はこのメカニカルシールの外枠となるケーシング7の内側に取り付けられて固定部材5aを支持するようにしてある。緩衝ゴム12およびパッキング8は、回転軸6の回転で発生する振動を吸収する機能も有する。そして、回転軸6が回転するとカラー10がともに回転し、コイルスプリング9の弾発力によって押圧されるパッキング8と、このパッキング8によって支持されている回転部材5bの摺動面15bとが押圧されながら回転することによって、固定部材5aの摺動面15aとの間でシール作用が働くようにしてある。
 このとき流体14は、メカニカルシールのケーシング7で囲まれた内部にまで浸入するが、パッキング8と回転軸6との間に設けられたOリング13によるシール作用と、メカニカルシールリング5の摺動面15a,15bのシール作用によって、流体14がメカニカルシールから外部に漏洩することが抑制されている。なお、流体14の一部は、メカニカルシールリング5の摺動面15a,15bの間に入り込み潤滑液として作用する。
 図3に示すメカニカルシールでは、固定部材5aを平板状の環状体とし、可動部材5bを凸状部を有する環状体としたが、これとは逆に固定部材5aを凸状部を有する環状体とし、可動部材5bを平板状の環状体とすることもできる。
 メカニカルシールリング5は、潤滑液を介して互いの摺動面15a,15bを当接させて摺動する固定部材5aと可動部材5bとからなり、本実施形態において、固定部材5aおよび可動部材5bの少なくとも一方は、本実施形態の炭化珪素質焼結体からなる摺動部品を用いていることが好ましい。本実施形態の炭化珪素質焼結体からなる摺動部品を固定部材5aおよび可動部材5bの少なくとも一方に用いることによって、熱衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展が抑制されるため、良好な摺動特性を維持することができる。
 また、このように本実施形態の摺動部品からなるメカニカルシールリング5を備えたメカニカルシールは、摺動部品の交換頻度が少なく、長期間継続して使うことができるため、稼働効率が高く、維持管理が容易である。
 図4は、本実施形態の摺動部品を備えたフォーセットバルブの一例を示す、(a)は流体通路を開いた状態の斜視図であり、(b)は流体通路を閉じた状態の斜視図である。
 フォーセットバルブ16は、潤滑液を介して互いの摺動面17a,18aを当接し摺動させる基板状の固定弁体17と回転弁体18とを備えている。固定弁体17は、樹脂ケース(図示しない)に固定され、可動弁体18は樹脂ケースの内部で固定弁体17上を可動するように構成されている。固定弁体17,可動弁体18内にはそれぞれ厚み方向に流体通路17b,18bが形成され、双方の流体通路17b,18bは、摺動面17a,18a上で連結している。また、可動弁体18にはレバー19が固定され、このレバー19を上下方向あるいは回転方向に動かすことにより可動弁体18は可動する。そして、このフォーセットバルブでは、固定弁体17が固定部材に、可動弁体18が可動部材にそれぞれ該当する。
 そして、図4(a)に示すように、流体通路17b,18bが開いた状態では、白抜き矢印方向から水,湯水等の流体が流体通路17b,18bに順次流れ、フォーセットバルブ16に接続された蛇口(図示しない)から流体が吐出する。このとき、いずれかの摺動面17a,18aに予め塗布されていたシリコングリスとともに摺動面17a,18a間に挿入した流体が潤滑液となって、摺動特性を維持するように作用する。
 他方、図4(b)に示すように、レバー19で可動弁体18を上下方向のいずれかに動かすことによって流体通路17b,18b間を閉ざすことができ、蛇口からの流体の吐出を制止することができる。また、可動弁体18を回転方向に動かすことによって流体通路17b,18bが連結する端面の面積が調整されるので、蛇口から吐出する流体の流量を調整することができる。
 本実施形態において、固定弁体17および可動弁体18の少なくとも一方は、本実施形態の炭化珪素質焼結体からなる摺動部品を用いていることが好ましい。本実施形態の炭化珪素質焼結体からなる摺動部品を固定弁体17および可動弁体18の少なくとも一方に用いることによって、優れた耐磨耗性に加えて、長期間の使用により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展が抑制されているので、良好な摺動特性を維持することができる。また、部品の交換頻度が少なくて済むため、長期間にわたって継続して使うことができる。
 図5は、本実施形態の摺動部品を備えた転がり支持装置の一例である転がり軸受を示す、(a)は断面図であり、(b)は(a)に示す転がり軸受の保持器を示す斜視図である。
 図5(a)に示す例の転がり軸受20は、互いに対向配置される軌道面21a,22aを備えた第1部材(外輪)21および第2部材(内輪)22と、両部材21,22の軌道面21a,22a間に転動自在に配設された複数個の転動体23とを備え、転動体23が転動することにより第1部材21および第2部材22の一方が他方に対して相対移動するように構成されている。
 なお、第2部材22の軌道面における、転動体23の一方側には、第2部材22の軌道面22aから傾斜状にカウンタボア22bが形成されている。このカウンタボア22bは、第1部材21および第2部材22間への転動体23の取り付けを容易にするためのものである。また、図5(b)に示す保持器24は、形状が環状体であって、その円周方向に等間隔に配設されたポケット24aによって、転動体23を保持するものである。
 図5に示す例の転がり支持装置(転がり軸受)20において、第1部材21または第2部材22および転動体23がそれぞれ固定部材,可動部材に該当し、第1部材21,第2部材22および転動体23の少なくともいずれかは、本実施形態の炭化珪素質焼結体からなる摺動部品を用いていることが好ましい。本実施形態の炭化珪素質焼結体からなる摺動部品を第1部材21,第2部材22および転動体23の少なくともいずれかに用いることによって、熱衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展が抑制されているので、良好な摺動特性を維持することができる。また、部品の交換頻度が少なくて済むため、長期間にわたって継続して使うことができる。
 特に、軌道面21a,22aは平滑であると、転動体23の寿命を延ばすことができるため、その算術平均高さ(Ra)は0.6μm以下であることが好適である。一方、転動体23の表面は、その算術平均高さ(Ra)が、0.01μm以下であることが好適である。
 また、保持器24は、ポリエーテルエーテルケトン(PEEK),ポリアミドイミドアロイ(PAI)または熱可塑性ポリイミド(TPI)を主成分とし、ホウ酸アルミニウムウィスカー,チタン酸カリウムウィスカー,チタン酸バリウムウィスカー,酸化チタンウィスカー,カーボンウィスカー,グラファイトウィスカー,炭化珪素ウィスカー,窒化珪素ウィスカー,酸化アルミニウムウィスカー等の繊維状充填材を含むことが好適である。このような繊維状充填剤を含むことにより、保持器24は、その機械的強度、耐磨耗性および寸法安定性を高くすることができる。
 また、本実施形態の摺動部品となる炭化珪素質焼結体において、グラファイトが含まれているときには、炭化珪素質焼結体の内部よりも炭化珪素質焼結体の表面を研磨してなる摺動面にグラファイトが多く存在していることが好適である。これにより、機械的特性を維持しながらもグラファイトの有する潤滑作用によって、摺動特性をより高くすることができる。なお、炭化珪素質焼結体の内部とは、炭化珪素質焼結体の厚みの中央のことであり、炭化珪素質焼結体の内部と炭化珪素質焼結体の表面を研磨してなる摺動面とのグラファイトの含有量の差は2質量%以上であることが好適である。
 また、本実施形態の防護体は、本実施形態の炭化珪素質焼結体を用いたことにより、機械的な衝撃により微細なクラックが生じたときのクラックの進展の抑制効果により、強度,剛性等の優れた機械的特性を有しているので、防護体として好適に用いることができる。この防護体は、例えば、縦および横の各長さがいずれも40mm以上60mm以下で、厚さが6mm以上12mm以下である基板状であり、自動車,電車,ヘリコプターおよびジェット機等に装着されるものである。
 ここで、本実施形態の防護体は、動的弾性率が426GPa以上であることが好適である。動的弾性率が426GPa以上であると、防護体に衝撃を加える飛翔体を変形させる能力が高くなるので、飛翔体の衝撃を瞬時に分散させることができる。動的弾性率は、JIS R 1602-1995に基づく超音波パルス法に準拠して求めればよく、この動的弾性率は430GPa以上であることがさらに好適である。
 次に、本実施形態の炭化珪素質焼結体の製造方法について説明する。
 本実施形態の炭化珪素質焼結体を得るには、まず、炭化珪素粉末として、粗粒状粉末および微粒状粉末を準備し、水と、必要に応じて分散剤とを、ボールミルまたはビーズミルにより40~60時間粉砕混合してスラリーとする。ここで、粉砕混合した後の微粒状粉末および粗粒状粉末のそれぞれの粒径の範囲は0.4μm以上4μm以下,11μm以上34μm以下である。次に、得られたスラリーに、グラファイト粉末と、このグラファイト粉末を分散させる分散剤(以下、グラファイト用分散剤と称す。)と、炭化硼素粉末および非晶質状の炭素粉末またはフェノール樹脂からなる焼結助剤と、バインダとを添加して混合した後、噴霧乾燥することで主成分が炭化珪素からなる顆粒を得る。
 なお、微粒状粉末と粗粒状粉末との質量比率としては、例えば、微粒状粉末が6質量%以上15質量%以下であり、粗粒状粉末が85質量%以上94質量%以下である。また、炭化珪素質焼結体における粗粒状炭化珪素粒子1bのアスペクト比の平均値が1以上2以下となるようにするには、予めアスペクト比の平均値が1以上1.6以下である粗粒状粉末を用いればよい。
 また、炭化珪素質焼結体中のグラファイトの含有量が10質量%以下となるようにするには、グラファイト粉末の添加量と、焼結助剤である非晶質状の炭素粉末の添加量の1/2との合計が炭化珪素粉末100質量%に対して、10質量%以下になるようにすればよい。また、炭化珪素質焼結体中のグラファイトの平均結晶粒径が4μm以上43μm以下にするには、平均粒径が8μm以上48μm以下のグラファイト粉末を用いればよい。
 また、グラファイト用分散剤を用いることにより、疎水性であるグラファイト粉末に吸着して水を溶媒とするスラリー中に湿潤、浸透させることができるとともに、グラファイトの凝集を抑制するように作用するので、グラファイトを内包した均質な顆粒を得ることができる。このグラファイト用分散剤としては、例えばポリカルボン酸ナトリウム等のカルボン酸塩,スルホン酸塩,硫酸エステル塩およびリン酸エステル塩等のアニオン界面活性剤を用いることが好ましい。グラファイト用分散剤であるアニオン界面活性剤がグラファイト粉末に吸着することにより、グラファイト粉末はスラリー中に容易に湿潤して浸透し、アニオン界面活性剤が有する親水基の電荷反発により、グラファイト粉末の再凝集が抑制されるため、グラファイト粉末がスラリー中で凝集することなく十分に分散することができる。
 また、焼結助剤の成分である炭素は、遊離炭素となって摺動部品の摺動面における開気孔内および粒界相内の少なくともいずれかに存在し、摺動部品が摺動すると、遊離炭素は当接する摺動面上に容易に流出して、潤滑液に含まれるようになる。遊離炭素が潤滑液に含まれることにより、摺動部品の摺動特性を向上させることができる。
 次に、顆粒を所定の成形型に充填し、49~147MPaの範囲で適宜選択される圧力で厚み方向から加圧、成形して固定部材および可動部材のそれぞれ前駆体である成形体を得る。そして、得られたそれぞれの成形体を窒素雰囲気中、温度を450~650℃、保持時間を2~10時間として脱脂して、脱脂体を得る。次に、この脱脂体を焼成炉に入れ、不活性ガスの減圧雰囲気中、最高温度を1800~2200℃、保持時間を3~6時間として保持し、焼成することにより本実施形態の炭化珪素質焼結体を得ることができる。なお、不活性ガスについては特に限定されるものではないが、入手や取り扱いが容易であることから、アルゴンガスを用いることが好適である。
 また、炭化珪素質焼結体における炭化珪素粒子の平均結晶粒径を2μm以上6μm以下となるようにするには、最高温度の設定によって調整可能である。また、炭化珪素質焼結体を摺動部品として用いるときには、炭化珪素質焼結体の内部よりも炭化珪素質焼結体の表面を研磨した摺動面にグラファイトが多く存在していることが好ましく、そのためには、不活性ガスの減圧雰囲気を真空雰囲気に替えて、上記温度と同じ温度、上記保持時間と同じ保持時間で保持して焼成すればよい。
 なお、得られた本実施形態の炭化珪素質焼結体は、必要に応じてその各主面に研削や研磨等の加工を施してもよい。例えば、両頭研削盤や平面研削盤等で主面を研削し、平均粒径が3μmのダイヤモンド砥粒を用いてアルミナ製のラップ盤で研磨した後、平均粒径が1μmのダイヤモンド砥粒を用いて錫製のラップ盤で算術平均高さ(Ra)が0.98μm以下となるように研磨して摺動面としてもよい。なお、算術平均高さ(Ra)を0.98μm以下とするのは、シール性を維持するためである。このように、本実施形態の炭化珪素質焼結体の表面を研磨することにより、摺動特性に優れた摺動部品とすることができる。
 ここで、算術平均高さ(Ra)は、JIS B 0601-2001(ISO 4287-1997)に準拠して測定すればよく、測定長さおよびカットオフ値をそれぞれ5mmおよび0.8mmとし、触針式の表面粗さ計を用いて測定する場合であれば、例えば、摺動部品の摺動面に、触針先端半径が2μmの触針を当て、触針の走査速度は0.5mm/秒とすればよい。
 上述した製造方法によって得られた本実施形態の炭化珪素質焼結体は、炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、この炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子が6面積%以上15面積%以下存在することにり、熱衝撃または機械的な衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子によってクラックの進展が抑制されるため、強度,剛性等の機械的特性とともに、耐熱衝撃性に優れた炭化珪素質焼結体となる。また、本実施形態の炭化珪素質焼結体の表面を研磨してなる摺動部品は、良好な摺動特性を長期間にわたって維持することができるので、メカニカルシールリングに好適に用いることができる。また、フォーセットバルブおよび転がり支持装置等の摺動部品にも好適に用いることができる。また、防護体としても好適に用いることができる。
 以下、本実施形態の例を具体的に説明するが、本発明は以下の実施例により限定されるものではない。
 まず、炭化珪素粉末として微粒状粉末および粗粒状粉末と、水と、これらの炭化珪素粉末を分散させる分散剤とを添加してボールミルに入れて48時間粉砕混合してスラリーとした。このスラリーに、焼結助剤として炭化硼素粉末および非晶質状の炭素粉末であるカーボンブラックおよびバインダを添加して粉砕混合した後、噴霧乾燥することにより主成分が炭化珪素であって、平均粒径が80μmである顆粒を得た。なお、一部の試料には、焼結助剤およびバインダに加え、さらにグラファイト粉末およびグラファイト用分散剤としてポリカルボン酸ナトリウムを添加、混合した後、同様にして、噴霧乾燥することにより主成分が炭化珪素であって、平均粒径が80μmである顆粒を得た。
 なお、主成分である炭化珪素粉末の微粒状粉末および粗粒状粉末のそれぞれの質量比率は表1に示す通りであり、粉砕混合後のそれぞれの粒径は0.4μm以上4μm以下,11μm以上34μm以下であった。また、粗粒状粉末のアスペクト比の平均値、焼結助剤の添加量、グラファイト粉末の平均粒径および添加量は、それぞれ表1に示す通りとした。
 ここで、微粒状粉末および粗粒状粉末の粉砕混合後のそれぞれの粒径およびグラファイト粉末の平均粒径は、JIS R 1629-1997に準拠して求めた。また、グラファイト粉末を添加した試料については、グラファイト用分散材として、ポリカルボン酸ナトリウムの添加量をグラファイト粉末100質量部に対して4質量部添加した。
 そして、得られた顆粒を成形型に充填し、厚み方向から98MPaの圧力を加えて成形し、得られた成形体を窒素雰囲気中にて、20時間で昇温して600℃で5時間保持した後、自然冷却して脱脂し、脱脂体とした。次に、脱脂体をアルゴンガスの減圧雰囲気中、表1に示す焼成温度にて5時間保持して焼成することにより、炭化珪素質焼結体を得た。
Figure JPOXMLDOC01-appb-T000001
 そして、得られた炭化珪素質焼結体を用いて、熱衝撃または機械的な衝撃によるクラックの進展の抑制効果の評価として、4点曲げ強度,動的弾性率および臨界温度差をそれぞれJIS R 1601-2008(ISO 14704-2000(MOD)),JIS R 1602-1995に基づく超音波パルス法,JIS R 1648-2002に基づく精密法に準拠して測定した。これらの測定値を表2に示す。
 また、試料No.12の炭化珪素質焼結体の作製に用いた顆粒の残部を用いて、平板状の環状体を得ることのできる成形型に充填した。また、試料No.1~23の炭化珪素質焼結体の作製に用いた顆粒の残部を用いて、凸状部を有する環状体を得ることのできる成形型に充填した。そして、それぞれ厚み方向から98MPaの圧力を加えて成形した。得られたそれぞれの成形体を窒素雰囲気中、20時間で昇温し、600℃で5時間保持した後、自然冷却して脱脂し、脱脂体とした。
 次に、脱脂体をアルゴンガスの減圧雰囲気中、表1に示す焼成温度にて5時間保持して焼成することにより、平板状の環状体および凸状部を有する環状体である炭化珪素質焼結体を得た。
 そして、各炭化珪素質焼結体の表面を平面研削盤にて研削し、平均粒径3μmのダイヤモンド砥粒を用いて、アルミナ製のラップ盤にて研磨した。最後に、平均粒径3μmのダイヤモンド砥粒を用いて、錫製のラップ盤にて算術平均高さ(Ra)が0.98μm以下となるように研磨して摺動面とし、外径および内径がそれぞれ25mm,16mmであって、厚みが3mmである固定部材5aを得た。また、同様の作製方法で、凸状部を有する、外径および内径がそれぞれ25mm,16mmであって、厚みが7mmである可動部材5bを得た。
 そして、可動部材5bの見掛密度をJIS R 1634-1998に準拠して測定した。また、可動部材5bの理論密度を上述した求め方に基づいて、式(1)を用いて計算し(理論密度 炭化珪素=3.21g/cm,グラファイト=2.26g/cm,炭化硼素=2.51g/cm)、見掛密度を理論密度で除すことにより、相対密度を求めた。その値を表2に示す。
 そして、試料No.12の顆粒を用いて作製した固定部材5aと、試料No.1~23の顆粒を用いて作製した可動部材5bとを用いて以下に示す摺動試験を行なった。具体的には、固定部材5aおよび可動部材5bの各摺動面15a,15bを当接させ、以下の摺動条件で摺動させた。
<摺動条件>
・相対速度:8m/秒
・面圧  :400kPa
・潤滑液 :水
 なお、相対速度は回転軸の中心を基準として外周側に向かい、11.25mm離れた位置(以下、位置Pという。)における固定部材5aに対する可動部材5bの回転速度である。面圧は、固定部材5aに対する可動部材5bの単位面積当たりの圧力であり、固定部材5aと可動部材5bとを当接させるのに予め設定された加圧力Fを可動部材5bの摺動面15bの面積で除すことで求められ、面積は、寸法測定用のゲージを備えた光学顕微鏡を用い、倍率を50倍として可動部材5bの凸状部の外径および内径をゲージで測定し算出した。
 摩擦係数μについては、トルクメーターを用いて摺動中の可動部材5bの位置Pにおける回転トルクTを測定し、この回転トルクTを、摺動面15bの面積に面圧を乗ずることで得られる加圧力Fおよび回転軸の中心から位置Pまでの距離11.25mmで除した値とした。すなわち、摩擦係数μはμ=T/(11.25×F)として求めた。
 また、磨耗深さについては、可動部材5bの厚みを、摺動を開始する前および摺動を開始してから150時間後にダイヤルケージで測定し、その厚みの差を磨耗深さとした。摩擦係数および磨耗深さを表2に示す。
 そして、可動部材5bを厚み方向からダイヤモンドからなるカップ型砥石を用いて研削した後、引き続き、錫からなるラップ盤を用いて、粒径が1~3μmのダイヤモンド砥粒により、JIS B 0601-2001(ISO 4287-1997)で規定される算術平均高さ(Ra)が0.01μm以下になるまで研磨した。次に、水酸化ナトリウムおよび硝酸カリウムが1:1の質量比からなる加熱溶融された溶液に炭化珪素質焼結体を20秒浸し、研磨された面をエッチングした。そして、観察面を撮影した画像を用いて、面積が170μm以上の粗粒状炭化珪素粒子1bの面積比率を求めた。具体的には、画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)の粒子解析という手法を適用して行なった。設定としては、画像の濃淡を示す指標であるしきい値を150とし、抽出された面積が170μm以上の粗粒状炭化珪素粒子1bの合計面積を観察面の面積0.054mm(ここで、観察面の横方向の長さは0.27mm,縦方向の長さは0.2mm)で除して百分率で表わした。
 また、この抽出された面積が170μm以上の粗粒状炭化珪素粒子1bの長径および短径をJIS R 1670-2006に準拠して測定し、この長径の値を短径の値で除することにより、それぞれの粗粒状炭化珪素粒子1bのアスペクト比を求めた後、平均値を算出した。粗粒状炭化珪素粒子1bの面積比率およびアスペクト比の平均値を表2に示す。
 また、可動部材5bに含まれるグラファイトは、CuKα線を用いたX線回折法によって同定した。また、含有量については、まず、炭素分析法により、炭化珪素質焼結体中の炭素量(遊離炭素を除く)を、ICP発光分光分析法によりSiおよびBの含有量を求めた。そして、SiおよびBの含有量の値を用いて炭化物であるSiCおよびBCに換算し、この炭化物換算に必要とした炭素量を炭化珪素質焼結体中の炭素量から差し引いてグラファイトの含有量とした。
 また、グラファイトの平均結晶粒径については、粗粒状炭化珪素粒子1bの面積比率やアスペクト比を求めたときと同じ画像を用いて、10個のグラファイトを抽出して、JIS R 1670-2006に準拠して長径および短径を測定し、その相加平均を個々のグラファイトの結晶粒径とみなし、これらの結晶粒径の値の最大値および最小値を除いた値の平均をグラファイトの平均結晶粒径とした。グラファイトの含有量および平均結晶粒径を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試料No.1は、焼成温度が低く、相対密度が95%未満であることから、磨耗深さの値が大きく磨耗しやすいため、摺動部品として長期間の使用に耐え得るものではなかった。また、試料No.2は、粗粒状炭化珪素粒子1bが6面積%以上存在しないことから、臨界温度差の値が小さく、熱衝撃により生じたクラックの進展を十分に抑制できないことがわかった。また、試料No.23は、粗粒状炭化珪素粒子1bが15面積%を超えて存在していることから、4点曲げ強度および動的弾性率の値が低かった。
 一方、試料No.3~22は、相対密度が95%以上であり、観察面において、面積が170μm以上の粗粒状炭化珪素粒子が6面積%以上15面積%以下存在することから、4点曲げ強度および動的弾性率の値が大きく、耐熱衝撃性を示す臨界温度差の値が大きいので、熱衝撃や機械的衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子1bによってクラックの進展を抑制することができる炭化珪素質焼結体であるといえる。
 また、粗粒状粉末のアスペクト比の平均値のみが異なる試料No.18,19,20を比べると、試料No.18,19は、粗粒状炭化珪素粒子1bのアスペクト比の平均値が1以上2以下であることから、アスペクト比の平均値が2より大きい試料No.20よりも4点曲げ強度および動的弾性率の値が大きく、機械的特性に優れていることがわかった。
 また、試料No.9~17は、グラファイトを含むものであるため、摩擦係数が低く、グラファイトが高い潤滑作用を有していることがわかるものの、磨耗深さの結果から、グラファイトの含有量は10質量%以下であることが好適であるといえる。
 また、グラファイトの含有量が同じである試料No.10~15を比べると、試料No.11~14は、グラファイトの平均結晶粒径が4μm以上43μm以下であることから、炭化珪素の結晶粒子の粒成長が焼結過程において促進されているため、相対密度が高く、緻密な炭化珪素質焼結体とできていることがわかった。また、磨耗深さの値が小さく磨耗が抑制されていることから、シール性の低下を少なくすることができることがわかった。
 このように、本実施形態の炭化珪素質焼結体は、熱衝撃や機械的な衝撃により微細なクラックが生じたとしても粗粒状炭化珪素粒子によってクラックの進展が抑制することができることから、強度,剛性等の機械的特性とともに耐熱衝撃性に優れていることがわかった。そのため、本実施形態の炭化珪素質焼結体の表面を研磨してなる摺動部品は、良好な摺動特性を長期間にわたって維持することができるので、メカニカルシールリングに好適に用いることができることがわかった。また、フォーセットバルブおよび転がり支持装置等の摺動部にも好適に用いることができることがわかった。また、防護体としても好適に用いることができることがわかった。
 実施例1と同様に、炭化珪素粉末として、微粒状粉末および粗粒状粉末を用いて、質量比率を90:10とし、水と、これらの炭化珪素粉末を分散させる分散剤とを添加してボールミルに入れて粉砕混合時間を異ならせて粉砕混合してスラリーとした。そして、炭化硼素粉末と非晶質状の炭素粉末であるカーボンブラックとバインダとを添加して混合した後、噴霧乾燥することにより主成分が炭化珪素であって、平均粒径が80μmである顆粒を得た。なお、添加量としては、炭化珪素粉末が99.1質量%であり、炭化硼素が0.4質量%であり、カーボンブラックを0.5質量%とした。次に、得られた顆粒を用いて、実施例1と同様の作製方法で窒化珪素質焼結体を得た。なお、最高温度については表3に示す温度とした。
 そして、熱伝導率および4点曲げ強度を、それぞれJIS R 1611-2010(ISO
 18755-2005(MOD)),JIS R 1601-2008(ISO 14704-2000(MOD))に準拠して測定した。
 また、実施例1と同様に各試料の表面を研磨やエッチング等の処理を施し、観察面を500倍の倍率で光学顕微鏡により撮影した画像を用いて、画像内の任意の点を中心として、1本当たりの長さが168μmの直線を30°間隔で6本引き、この6本の直線上に存在する結晶の個数をこれら直線の合計長さで除すことで求めた。炭化珪素粒子の平均結晶粒径,熱伝導率および4点曲げ強度の各測定値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料No.25~28は、熱伝導率および4点曲げ強度の値が大きく、炭化珪素粒子の平均結晶粒径が2μm以上6μm以下であることにより、熱伝導性および機械的特性に優れた炭化珪素質焼結体となることがわかった。
 実施例2の試料No.28を作製したときと同様の作製方法により、炭化珪素質焼結体を得た。なお、試料No.31,32については炭化硼素等の添加時にカルシウムを添加した。
 そして、得られた試料について、ICP(Inductively Coupled Plasma)発光分光分析法により、カルシウムの含有量を求めた。また、波長分散型X線マイクロアナライザー装置(日本電子製 JXA-8600M型)を用いて、カルシウムの分布を確認し、粗粒状炭化珪素粒子1bに相当する箇所におけるカルシウムの存在の有無を確認した。また、JIS R 1607-2010(ISO 15732-2003(MOD))で規定される予き裂導入破壊試験法(SEPB法)に準拠して破壊靭性を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、粗粒状炭化珪素粒子にカルシウムを含んでいることにより、破壊靭性が向上できることがわかった。
 1a:微粒状炭化珪素粒子
 1b:粗粒状炭化珪素粒子
 5:メカニカルシールリング
 5a:固定リング
 5b:回転リング
 16:フォーセットバルブ
 17:固定弁体
 18:可動弁体
 20:転がり軸受
 21:第1部材(外輪)
 22:第2部材(内輪)
 23:転動体

Claims (8)

  1. 炭化珪素粒子を主構成とし、相対密度が95%以上の炭化珪素質焼結体であり、該炭化珪素質焼結体の観察面において、面積が170μm以上の粗粒状炭化珪素粒子が6面積%以上15面積%以下存在することを特徴とする炭化珪素質焼結体。
  2. 前記粗粒状炭化珪素粒子は、アスペクト比(長径/短径)の平均値が1以上2以下であることを特徴とする請求項1に記載の炭化珪素質焼結体。
  3. 前記炭化珪素粒子は、平均結晶粒径が2μm以上6μm以下であることを特徴とする請求項1または請求項2に記載の炭化珪素質焼結体。
  4. 前記粗粒状炭化珪素粒子は、カルシウムを含んでいることを特徴とする請求項1乃至請求項3のいずれかに記載の炭化珪素質焼結体。
  5. グラファイトを含み、該グラファイトの含有量が10質量%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の炭化珪素質焼結体。
  6. 前記グラファイトは、平均結晶粒径が4μm以上43μm以下であることを特徴とする請求項5に記載の炭化珪素質焼結体。
  7. 請求項1乃至請求項6のいずれかに記載の炭化珪素質焼結体の表面を研磨してなることを特徴とする摺動部品。
  8. 請求項1乃至請求項6のいずれかに記載の炭化珪素質焼結体を用いたことを特徴とする防護体。
PCT/JP2011/054150 2010-02-24 2011-02-24 炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体 WO2011105490A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012501846A JP5597693B2 (ja) 2010-02-24 2011-02-24 炭化珪素質焼結体およびこれを用いた摺動部品ならびに対飛翔体用防護体
CN201180010704.1A CN102770394B (zh) 2010-02-24 2011-02-24 碳化硅质烧结体及使用其的滑动部件以及防护体
US13/581,171 US9388083B2 (en) 2010-02-24 2011-02-24 Silicon carbide sintered body and sliding component using the same, and protective body
EP11747450.2A EP2540688B1 (en) 2010-02-24 2011-02-24 Silicon carbide sintered body and sliding component using the same, and protective body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-038947 2010-02-24
JP2010038947 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105490A1 true WO2011105490A1 (ja) 2011-09-01

Family

ID=44506891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054150 WO2011105490A1 (ja) 2010-02-24 2011-02-24 炭化珪素質焼結体およびこれを用いた摺動部品ならびに防護体

Country Status (5)

Country Link
US (1) US9388083B2 (ja)
EP (1) EP2540688B1 (ja)
JP (1) JP5597693B2 (ja)
CN (1) CN102770394B (ja)
WO (1) WO2011105490A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126191A (ja) * 2012-12-27 2014-07-07 Kyocera Corp 回転継手
JP2016204221A (ja) * 2015-04-24 2016-12-08 京セラ株式会社 炭化珪素質焼結体およびこれを用いた摺動部材、ならびにフォーセットバルブ
JP2017515057A (ja) * 2014-03-21 2017-06-08 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト グラフェン含有スライドリング

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125288B1 (en) * 2014-03-25 2019-02-27 KYOCERA Corporation Passage member and semiconductor module
WO2017131159A1 (ja) * 2016-01-27 2017-08-03 住友大阪セメント株式会社 セラミックス材料、静電チャック装置
CN106402391A (zh) * 2016-11-07 2017-02-15 宁波欧翔精细陶瓷技术有限公司 一种机械密封用碳化硅烧结材料以及使用该材料的机械密封装置
JP7025969B2 (ja) * 2018-03-26 2022-02-25 日本碍子株式会社 多孔質材料、セル構造体および多孔質材料の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212667A (ja) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 半導体用部材の製造方法
JP2002326873A (ja) * 2001-03-08 2002-11-12 Wacker Chemie Gmbh セラミック複合材料、その製造方法および使用
JP2003077964A (ja) * 2001-08-31 2003-03-14 Ibiden Co Ltd ウエハプローバ用チャックトップ
JP2003095744A (ja) 2001-09-21 2003-04-03 Nippon Tungsten Co Ltd 炭化珪素焼結体及びそれを用いた半導体製造用部材、磁気ヘッド製造用部材、耐摩耗摺動部材およびその製造方法
WO2005026074A1 (ja) * 2003-09-12 2005-03-24 Ibiden Co., Ltd. セラミック焼結体およびセラミックフィルタ
JP2006278495A (ja) * 2005-03-28 2006-10-12 Fdk Corp 熱衝撃耐性フェライトコアの製造方法
JP2007321797A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 摺動部材およびこれを用いたメカニカルシールリング
WO2009016861A1 (ja) * 2007-07-30 2009-02-05 Kyocera Corporation 防護用部材およびこれを用いた防護体
JP2010006642A (ja) * 2008-06-27 2010-01-14 Kyocera Corp 摺動部材、弁体およびフォーセットバルブ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142359B2 (ja) 1992-03-23 2001-03-07 日本碍子株式会社 プレス成形方法
EP2138474B1 (en) 2008-06-23 2018-08-08 Imerys Kiln Furniture Hungary Ltd. Sic material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212667A (ja) * 1985-07-09 1987-01-21 東芝セラミツクス株式会社 半導体用部材の製造方法
JP2002326873A (ja) * 2001-03-08 2002-11-12 Wacker Chemie Gmbh セラミック複合材料、その製造方法および使用
JP2003077964A (ja) * 2001-08-31 2003-03-14 Ibiden Co Ltd ウエハプローバ用チャックトップ
JP2003095744A (ja) 2001-09-21 2003-04-03 Nippon Tungsten Co Ltd 炭化珪素焼結体及びそれを用いた半導体製造用部材、磁気ヘッド製造用部材、耐摩耗摺動部材およびその製造方法
WO2005026074A1 (ja) * 2003-09-12 2005-03-24 Ibiden Co., Ltd. セラミック焼結体およびセラミックフィルタ
JP2006278495A (ja) * 2005-03-28 2006-10-12 Fdk Corp 熱衝撃耐性フェライトコアの製造方法
JP2007321797A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 摺動部材およびこれを用いたメカニカルシールリング
WO2009016861A1 (ja) * 2007-07-30 2009-02-05 Kyocera Corporation 防護用部材およびこれを用いた防護体
JP2010006642A (ja) * 2008-06-27 2010-01-14 Kyocera Corp 摺動部材、弁体およびフォーセットバルブ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126191A (ja) * 2012-12-27 2014-07-07 Kyocera Corp 回転継手
JP2017515057A (ja) * 2014-03-21 2017-06-08 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト グラフェン含有スライドリング
JP2016204221A (ja) * 2015-04-24 2016-12-08 京セラ株式会社 炭化珪素質焼結体およびこれを用いた摺動部材、ならびにフォーセットバルブ

Also Published As

Publication number Publication date
EP2540688B1 (en) 2019-03-20
EP2540688A1 (en) 2013-01-02
US20120321853A1 (en) 2012-12-20
EP2540688A4 (en) 2013-10-30
CN102770394A (zh) 2012-11-07
JPWO2011105490A1 (ja) 2013-06-20
US9388083B2 (en) 2016-07-12
JP5597693B2 (ja) 2014-10-01
CN102770394B (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5597693B2 (ja) 炭化珪素質焼結体およびこれを用いた摺動部品ならびに対飛翔体用防護体
JP4854482B2 (ja) 炭化硼素質焼結体およびその製造方法
US8207077B2 (en) Abrasion-resistant sintered body, sliding member, and pump
JP5289464B2 (ja) 摺動部品およびこれを備えたメカニカルシール,フォーセットバルブならびに転がり支持装置
JP5314425B2 (ja) 摺動部材とその製造方法
KR101217580B1 (ko) 슬라이딩 부재, 메커니컬 시일 링, 메커니컬 시일 및 포셋 밸브
JP5404495B2 (ja) 耐磨耗性部材およびこれを用いた転がり支持装置
JP4741421B2 (ja) 摺動部材およびこれを用いたメカニカルシールリング
WO2015099148A1 (ja) 耐磨耗性部材およびこれを備える転がり支持装置ならびに軸封装置
JP2006036624A (ja) 摺動部材用多孔質セラミックスとその製造方法及びこれを用いたメカニカルシールリング
Gutierrez-Mora et al. Influence of microstructure and crystallographic phases on the tribological properties of SiC obtained by spark plasma sintering
JP2007223890A (ja) 炭化けい素質焼結体とこれを用いた摺動部材およびメカニカルシールリング、並びにメカニカルシール
JP2007084368A (ja) セラミックス摺動部材とその製造方法およびこれを用いたメカニカルシールリング用部材並びにメカニカルシールリング
JP2018070413A (ja) 摺動部品およびフォーセットバルブ
WO2023054611A1 (ja) セラミックボール用素材およびセラミックボール及びその製造方法
CN111356668A (zh) 氧化铝烧结体的前体、氧化铝烧结体的制造方法、磨粒的制造方法和氧化铝烧结体
JP2007230788A (ja) 窒化珪素質焼結体
JP6282943B2 (ja) 窒化珪素質焼結体およびこれを備える耐衝撃磨耗性部材
CN115485253B (zh) 耐磨损性构件以及使用了该耐磨损性构件的龙头阀、活塞-工作缸单元
Bączek Technological properties of metallic-diamond tools manufactured by SPS process
Son et al. Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC
JP2020099981A (ja) 砥粒を含む研削砥石の研削性の評価方法
JP2016050137A (ja) 窒化珪素質焼結体およびこれを備える耐磨耗性部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010704.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501846

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13581171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011747450

Country of ref document: EP