[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011104931A1 - 異常診断装置および異常診断方法 - Google Patents

異常診断装置および異常診断方法 Download PDF

Info

Publication number
WO2011104931A1
WO2011104931A1 PCT/JP2010/068873 JP2010068873W WO2011104931A1 WO 2011104931 A1 WO2011104931 A1 WO 2011104931A1 JP 2010068873 W JP2010068873 W JP 2010068873W WO 2011104931 A1 WO2011104931 A1 WO 2011104931A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
output
sunshine
string
power
Prior art date
Application number
PCT/JP2010/068873
Other languages
English (en)
French (fr)
Inventor
長谷川 義朗
佐藤 誠
酢山 明弘
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010042897A external-priority patent/JP5214650B2/ja
Priority claimed from JP2010100113A external-priority patent/JP5472913B2/ja
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP10846594.9A priority Critical patent/EP2541611B1/en
Priority to CN201080055255.8A priority patent/CN102640297B/zh
Priority to AU2010346725A priority patent/AU2010346725B2/en
Publication of WO2011104931A1 publication Critical patent/WO2011104931A1/ja
Priority to US13/594,340 priority patent/US9209743B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an abnormality diagnosis device and an abnormality diagnosis method.
  • the solar power generation system includes a string in which a plurality of power generation modules are connected in series, and is configured to sense a power generation output (power value or current value) in units of strings.
  • the power generation output of each power generation module decreases gradually even under the same sunshine conditions due to deterioration over time.
  • the power generation output may be abruptly reduced due to manufacturing quality problems or physical damage.
  • a power generation module in which an abnormality such as a problem in manufacturing quality or physical damage has occurred has an output close to zero. Therefore, if left untreated, it does not contribute to power generation.
  • an abnormality diagnosis device is required to repair and replace such a power generation module whose power generation output has sharply decreased at an early stage.
  • a sensor such as an ammeter
  • a string including an abnormal module is detected by comparing the power generation output for each string.
  • the average value of the power generation output of each string is calculated. For example, a string that is 20% lower than the average value is regarded as abnormal.
  • JP 2005-340464 A Japanese Patent No. 2874156
  • FIG. 7B It is a figure which shows an example of the parameter used by FIG. 7D.
  • FIG. 7D It is a flowchart which shows operation
  • amendment part It is a figure which shows an example of the 1st process of the correction process of a sunshine condition space correction
  • FIG. 9C It is a figure which shows an example which visualized the correction process result shown to FIG. 9C. It is a flowchart which shows operation
  • FIG. 22B It is a figure which shows an example of the sunlight value calculated for every electric power generation module. It is the figure which showed the sunshine value shown in FIG. 21 with the texture. It is a figure which shows an example of the parameter used by FIG. 22B. It is a flowchart for demonstrating an example of operation
  • FIG. 26A It is the figure which showed the sunshine situation shown in FIG. 25 with the texture. It is a figure which shows an example of the parameter used by FIG. 26A. It is a flowchart for demonstrating an example of the method of diagnosing the electric power generation module in which abnormality has generate
  • the abnormality monitoring system 100 includes a power generation module 101, a measurement device 103, a control device 104, and an abnormality diagnosis device 105.
  • the power generation module 101 is a power generation panel that generates power by receiving light such as sunlight, and a plurality of power generation modules 101 are connected in series to form one string 102. In the example of FIG. 1, five power generation modules 101 are connected in series to form one string 102, and a plurality of strings 102 are installed.
  • the measuring device 103 is connected to each string 102 and measures the output current or output voltage of the string 102.
  • the control device 104 controls the release voltage and the like of the plurality of strings 102.
  • the abnormality diagnosis device 105 receives the measurement values of the plurality of strings 102 measured from the respective measurement devices 103, and determines the string 102 or the power generation module 101 having an abnormality based on the measurement values. Note that the abnormality diagnosis device 105 is not directly connected to the measurement device 103, but a server (not shown) is connected to the measurement device 103 to accumulate output values from the measurement devices 103. May determine by receiving data from the server.
  • the abnormality diagnosis apparatus 105 includes a module position data storage unit 201, an output power data storage unit 202, an output characteristic model storage unit 203, a sunshine situation estimation unit 204, a module sunshine situation storage unit 205, and a sunshine situation space correction unit. 206, and an output power abnormality determination unit 207.
  • the module position data storage unit 201 stores the position data where each power generation module is installed as module position data.
  • the module position data will be described later with reference to FIG.
  • the output power data storage unit 202 stores the power value measured for a certain period in association with each string 102 as output power data.
  • the output power data may be a current value or a voltage value.
  • the output characteristic model storage unit 203 stores, for each power generation module 101, an output characteristic model capable of predicting output power from the sunshine situation that affects power generation such as the amount of sunlight and temperature.
  • the output characteristic model may be any model as long as the expected output power indicating the predicted value of the output power assumed by the power generation module 101 can be calculated according to the sunshine situation.
  • a model for calculating the expected output power for example, a neural network or a linear regression model may be used.
  • the output characteristic model stored in the output characteristic model storage unit 203 will be described later with reference to FIG.
  • the sunshine situation estimation unit 204 receives the output power data from the output power data storage unit 202 and the output characteristic model from the output characteristic model storage unit 203, and estimates the value of the sunshine situation closest to the output power data as the sunshine situation estimated value. To do. Specifically, the amount of sunshine when the output power data is applied to the output characteristic model is calculated for each power generation module 101 as a sunshine situation estimated value.
  • the module sunshine situation storage unit 205 receives the sunshine situation estimated value from the sunshine situation estimation unit 204 and stores it. Further, the module sunshine situation storage unit 205 receives and stores a corrected sunshine situation estimated value indicating a sunshine situation estimated value corrected from the sunshine situation space correcting unit 206 described later.
  • the sunshine situation space correction unit 206 receives the module position data from the module position data storage unit 201 and the sunshine situation estimated value from the module sunshine situation storage unit 205, respectively. And the sunshine condition space correction
  • the output power abnormality determination unit 207 receives the output power data from the output power data storage unit 202, the output characteristic model from the output characteristic model storage unit 203, and the updated sunshine situation estimated value from the module sunshine situation storage unit 205. Then, the output power abnormality determination unit 207 compares the expected output power (specifically, the sum of the expected output power of the power generation module 101 in the string 102) calculated by the output characteristic model with the actual output power data. Then, the power generation module 101 whose output is reduced and is estimated to be abnormal is determined.
  • the abnormality includes a state where the power generation cannot be generated due to a complete failure and a state where the power generation amount is significantly lower than the power generation amount normally assumed. For example, when only about 50% of output power can be obtained from the normally assumed power generation amount, it is assumed that the power generation module is abnormal.
  • the operation of the output power abnormality determination unit 207 will be described later with reference to FIGS. 10 and 11.
  • step S301 module position data is read into the module position data storage unit 201, and an output characteristic model is read into the output characteristic model storage unit 203. Further, the measuring apparatus 103 measures the output power for each string 102 at regular intervals and stores it in the output power data storage unit 202. Note that the module position data and the output characteristic model are read by the external reading means when the apparatus is first started or periodically and stored in the module position data storage unit 201 and the output characteristic model storage unit 203, respectively. Also good.
  • step S302 the sunshine situation estimation unit 204 estimates the sunshine situation for each power generation module 101 from the output power data, and calculates the estimated sunshine situation value.
  • step S303 the sunshine situation space correction unit 206 spatially corrects the sunshine situation for each power generation module 101 with reference to the module position data.
  • step S304 the output power abnormality determination unit 207 determines whether there is an abnormality in the power generation module 101 using the corrected sunshine situation estimated value for each power generation module 101.
  • the string 102 is formed with five horizontal rows of the power generation modules 101 as one set. Furthermore, the strings 102 are arranged in 6 rows and 3 rows, and a total of 18 strings (90 power generation modules 101) are installed. Each power generation module 101 is given IDs up to 1, 2,. Each string 102 is given a group ID. For example, the group ID of the strings 102 formed by the power generation modules 101 having IDs 1 to 5 is A. Hereinafter, the string 102 having the group ID A is also referred to as a string A.
  • 18 strings are taken as an example, but the present invention is not limited to this, and any number and any arrangement may be used.
  • the ID, group ID, X coordinate, and Y coordinate of the power generation module 101 shown in FIG. 4A are stored as module position data 401.
  • the X coordinate and the Y coordinate position coordinates on an artificial grid may be used as in the module position data 401, or more detailed latitude and longitude values may be used.
  • FIG. 5A shows the output power data in a state where the shadow 102 by the cloud 501 is applied to the string 102 arranged as shown in FIG. 4A.
  • the shadow 502 by the cloud 501 is applied in the vicinity of the strings A, B, C, G, H, and I, and the ID (identification number) of the power generation module 101 is 35 and 74 (hereinafter referred to as the power generation module 35, power generation). Assume that there is an abnormality in the power generation module of module 74).
  • FIG. 5B is a table showing output power data for each string 102 stored in the output power data storage unit 202 in the situation shown in FIG. 5A.
  • the output power sampled within the same time for each group ID is stored in the table.
  • the output power data may be an average over time or a total sum. Referring to the table shown in FIG. 5B, it can be seen that the power generation module 101 in the portion where the shade 502 is applied has lower output power than the power generation module 101 in the portion where there is no shade 502.
  • FIG. 6A shows the value of the scale parameter r for each power generation module.
  • FIG. 6B is an example of an output characteristic model using the scale parameter r for each power generation module, and is a graph showing how the output power changes with respect to the amount of sunlight.
  • the output characteristic model 601 shows output characteristics when r is 1.0, and this is a basic model.
  • the output characteristic model 602 shows output characteristics when r is less than 1.0.
  • the expected output power can be determined by this output characteristic model.
  • FIG. 6 uses a univariate model, for example, a bivariate model added with temperature may be used.
  • FIG. 7A shows output characteristics using the scale parameter r of FIG. 6A.
  • a basic model of the output characteristic model in FIG. 7A is expressed by Expression (1).
  • W 200 * S (1)
  • W is the output power
  • S is the estimated sunshine situation value.
  • the output characteristic model can be expressed by Expression (2).
  • W (i) 200 * r (i) * S (i) (2)
  • the output characteristic model 701 in FIG. 7A shows the output characteristic of the power generation module 74, and the output characteristic model 702 shows the output characteristic of the power generation module 90.
  • FIG. 7B shows a result of calculating the estimated sunshine situation values shown above for each string 102.
  • Blocks 703 and 704 indicate power generation modules “74” and “90”, respectively. Since the estimated sunshine situation value of each power generation module 101 knows only the output power for each string 102, the estimated sunshine situation value of the power generation module 101 in the string 102 is estimated to be uniform.
  • FIG. 7C is a diagram in which the result of FIG. 7B is visually expressed by hatching according to the estimated sunshine situation value
  • FIG. 7D is a table showing the type of hatched line corresponding to the estimated sunshine situation value. According to FIG. 7C, it can be seen that the estimated sunshine situation value of the string O is lower than that of the surrounding strings.
  • step S ⁇ b> 801 spatial smoothing is performed on the string 102 in which sunshine varies.
  • the estimated sunshine situation of the string 102 of interest (hereinafter referred to as the string of interest) and the distances from the power generation modules 101 forming the string of interest 102 to the power generation modules 101 forming the strings 102 other than the string of interest 102
  • Spatial smoothing processing is performed using the sunshine condition estimation values of strings 102 (hereinafter referred to as adjacent strings) adjacent to both sides of the string of interest 102 including the power generation module 101 having the smallest difference and the shortest distance.
  • the surface in the longitudinal direction represents the surface on the long side if the string is rectangular, and the surface on the side where the valleys and valleys follow if the string is corrugated. Specifically, in FIG.
  • FIG. 9A shows the estimated sunshine situation values for each string 102 for which processing in step S801 has been completed. The same spatial smoothing is performed not only when the V-shaped sunshine varies, but also when there is a variation in the V-shaped sunshine, which is a state where only the sunshine of the center string 102 of the three adjacent strings 102 is high. .
  • step S ⁇ b> 802 if the estimated sunshine situation value of the string of interest 102 is within the range of sunshine situation estimates of the strings 102 on both sides adjacent to the surface in the short direction of the string of interest 102, Redistribution of estimated sunshine situation values is performed within the string of interest 102 so that the sum does not change. This is because it is estimated that the estimated sunshine situation values of the power generation modules in the string 102 are uniform, so the sunshine situation of the power generation modules 101 in the string of interest 102 is maintained while maintaining the sum of the estimated sunshine situation values of the string of interest 102. This is because the spatial continuity with respect to sunshine can be reproduced by providing a slope to the estimated value.
  • the string G901 (right adjacent to the string A) is adjacent to the string A most closely in the string G901 in accordance with the sunshine situation estimated value 0.198 of the string A adjacent to the connection direction of the power generation module perpendicularly.
  • the estimated sunlight condition value of the power generation module “31” is set to 0.198.
  • the sunshine situation estimated value 1.000 of the string M the sunshine situation estimated value of the power generation module “35” closest to the string M in the string G901 is set to 1.000.
  • the sunshine conditions of the remaining power generation modules “32”, “33”, and “34” are not changed.
  • FIG. 9B shows a result of performing a slope calculation on the estimated sunshine condition of the power generation module in the string with respect to the estimated sunshine condition of FIG. 9A.
  • step S803 spatial smoothing is performed for each power generation module, and finally a corrected sunshine situation estimated value is obtained as an updated sunshine situation estimated value.
  • spatial smoothing process in step S803 spatial averaging, spatial median, smoothing by Markov random field, or the like may be applied.
  • FIG. 9C shows the result of applying spatial smoothing and performing spatial smoothing for each power generation module.
  • the corrected sunshine situation estimated value of each power generation module is obtained by taking the average value of the eight power generation modules adjacent to the power generation module and its own estimated value.
  • FIG. 9D is a diagram in which the result of FIG. 9C is represented by hatching according to the corrected sunshine situation estimated value in accordance with the notation of FIG. 7D.
  • the continuity of the spatial sunshine situation is improved when compared with the estimated sunshine situation value before the spatial correction shown in FIG. 7C.
  • the correction processing in steps S801 and S802 may be applied to the adjacent strings in any way.
  • the correction process of step S802 may be applied to adjacent strings on the top, bottom, left and right of the string of interest without performing the correction process of step S801.
  • the correction processing in step S801 may be performed using a plurality of strings that are further outside on both sides.
  • step S1002 an output difference that is the difference between the output power and the expected output power is calculated for each string. In addition, since the output power is obtained only for each string, the output power and the expected output power are compared by adding the expected output power for each power generation module in units of strings.
  • step S1003 for each string, it is determined whether the expected output power is smaller than the output power and the output difference is smaller than the threshold value. If there is no string in which the expected output power is smaller than the output power and the output difference is smaller than the threshold, the abnormality determination process is terminated. If there are one or more strings in which the expected output power is smaller than the output power and the output difference is smaller than the threshold, the process advances to step S1004 as abnormal string candidates.
  • step S1004 it is determined whether or not to reduce the abnormal string candidates by referring to the output difference between the strings adjacent to the longitudinal surface of the string. Specifically, when the output difference between adjacent strings is large, these consecutive strings are deleted from the candidates. This is because it is unlikely that a failure will occur in two adjacent strings. If there are strings to be deleted from the abnormal string candidates, these strings are deleted from the candidates, and the remaining strings are set as abnormal string candidates, and the process advances to step S1005. If there is no string to be deleted from the abnormal string candidates, the process directly proceeds to step S1005. Further, when there is no candidate string as a result of deleting the abnormal string candidates, the abnormality determination process is terminated.
  • step S1005 the output difference is compared with the expected output power for each power generation module to identify the position of the abnormal module.
  • FIG. 11A is a table in which output power, expected output power, and output difference for each string are stored in association with each other
  • FIG. 11B shows expected output power for each power generation module
  • FIG. 11C is calculated from the output characteristic model. This is an example of the expected output power.
  • the power generation module “74” is shown. Specifically, the expected output power of the power generation module “74” is expressed by Expression (7).
  • strings C, D, G, and O having an output difference smaller than ⁇ 50 are extracted as abnormal string 1101 candidates in the example of FIG.
  • the consecutive strings C and D are deleted from the candidates for the abnormal string 1101, and finally the abnormal string 1101 is determined as the strings G and O.
  • an abnormal power generation module position in the abnormal string 1101 is determined.
  • the output difference is ⁇ 93, and assuming that the two power generation modules do not fail at the same time, this output difference does not occur because the power generation module whose expected output power is 93 or less has failed. Therefore, the power generation modules 31 and 32 are excluded from the candidates, and any one of the power generation modules “33”, “34”, and “35” is an abnormal power generation module.
  • the output difference is ⁇ 194, and all the power generation modules “86” to “90” of the string O may be abnormal.
  • FIG. 12 An example of the result display of the abnormality determination process that is finally output is shown in FIG.
  • two abnormal strings are detected, and it is determined that one of the power generation modules on the right side from the center is abnormal.
  • the user may be able to visually recognize the position of the abnormal power generation module, or the abnormal power generation module may be indicated to the user by a numerical value.
  • the abnormality determination process described above may be comprehensively determined using a plurality of determination results. In such a case, further improvement in accuracy can be expected with respect to specifying the position of the power generation module having an abnormality.
  • FIG. 13 and FIG. 14 show the results of performing the abnormality determination process using the output power data measured for a long time.
  • the variation in sunshine is considered to be a band shape, but in this embodiment, if the variation in sunshine is continuous, the shape is not a problem.
  • FIG. 14 shows a case where a storage unit for estimating the module sunshine situation is prepared and output power data is stored in time series for each corresponding time. As described above, when the temporal and spatial correction is performed by adding the temporal correction, it is possible to grasp the sunshine with higher accuracy and to accurately determine the abnormality.
  • FIG. 15 schematically shows the solar power generation system and the abnormality diagnosis apparatus according to the second embodiment.
  • the solar power generation system includes a plurality of power generation panels 1505 connected to a remote diagnosis server 1507 via a network 1506.
  • the power generation panel 1505 includes a plurality of strings 1502, a measuring device 1503 that measures the output voltage and output current of each string, and communication for transmitting the output voltage and output current measured by the measuring device 1503 to the remote diagnosis server 1507.
  • the string 1502 includes a plurality of power generation modules 1501 connected in series.
  • communication devices 1504 of six power generation panels 1505 are connected to a network 1506.
  • the remote diagnosis server 1507 is supplied with the output voltage value and output current value of each string 1502 of the five power generation panels 1505.
  • the remote server 1507 is equipped with the abnormality diagnosis apparatus 105 shown in FIG.
  • each configuration may be realized by hardware, may be realized by software, or may be realized by a combination of hardware and software.
  • FIG. 16 shows an example of power generation module position data stored in the module position data storage unit 201.
  • position data where each power generation module 1501 is installed is stored as module position data.
  • power generation panels 1505 including 15 power generation modules 1501 arranged in a matrix of 3 rows and 5 columns are arranged at six locations.
  • Each power generation module 1501 is assigned an identification number (ID) 1 to 90.
  • the string 1502 includes five power generation modules 1501 connected in series.
  • Each string 1502 is given a group identification character.
  • the power generation module 1501 with an identification number of 1 to 5 constitutes a string 1502 with a group identification character A.
  • the module position data storage unit 201 stores the identification number of the power generation module 1501, the group identification character of the string 1502, the identification number of the power generation panel 1505, and the position coordinates (X coordinate, Y coordinate) of the power generation module 1501. Accumulated.
  • the position coordinates (X coordinate, Y coordinate) of the power generation module 1501 may be position coordinates on an artificial grid, or may be latitude and longitude.
  • the position coordinates may be coordinates having a resolution capable of specifying the position of the power generation module 1501.
  • the power generation output data storage unit 202 accumulates the output voltage value and the output current value measured by the measuring device 1503. In the present embodiment, the power generation output data storage unit 202 stores the actual output value for each string 1502 over a certain period as power generation output data.
  • the abnormality diagnosis apparatus is configured to be able to present the output voltage value and the output current value measured by the measurement apparatus 1503 to the user by using a monitor of the remote diagnosis server 1507 or a display unit connected to the outside.
  • FIG. 18 shows an example of power generation output data in the solar power generation system shown in FIG. Further, in the power generation output data shown in FIG. 18, for example, a cloud shadow is applied to the strings 1502 of the identification characters A, B, C, G, H, and I of the six power generation panels 1505 (identification numbers 1 to 6). Obtained in the situation.
  • the power generation output data in FIG. 18 is an integrated value of the output power value calculated from the output voltage and output current measured within a certain time.
  • the power generation output data may be an average value of output power values within a fixed time or an integrated value.
  • FIG. 19 shows an example of the sunshine situation when the power generation output data shown in FIG. 18 is obtained.
  • the six power generation panels 1505 are installed at a distance from each other. Since the power generation panel 1505 with the identification number 1 is located in the shadow of the cloud 1900, the daily illuminance is low. Moreover, since part of the power generation panel 1505 with the identification number 3 is also located in the shadow of the cloud 1900, the daily illuminance is low. In such a sunshine situation, the output power of the strings 1502 of the identification characters A, B, C, G, H, and I tends to be lower than that of the other strings 1502.
  • the output characteristic model storage unit 203 stores, for each power generation module 1501, an output characteristic model that can predict the power generation output from the sunshine situation that affects the power generation such as daily illuminance and temperature.
  • the output characteristic model only needs to be a model that can calculate the power generation output prediction value with the sunshine condition as an input.
  • a neural network or a linear regression model may be used.
  • Fig. 6B shows an example of the output characteristic model.
  • output characteristics are defined by the basic model 601 and the scale parameter r for each module.
  • the basic model 601 is an output characteristic model of an average power generation module with respect to daily illuminance.
  • the output characteristic in the case of the scale parameter r can be represented by a graph 602.
  • the predicted power generation output value of the power generation module 1501 is determined by calculating the value of the Y axis with respect to the daily illuminance of the X axis using the graph 602.
  • FIG. 6B uses a univariate output characteristic model with daily illuminance as a variable.
  • a bivariate output characteristic model with daily illuminance and temperature as variables and many other parameters added. It is also possible to use a variable output characteristic model.
  • FIG. 20 shows an example of the scale parameter r set for each power generation module 1501.
  • the scale parameter r can be set to a value reflecting a quality difference for each power generation module 1501 or an abnormality found in the past.
  • the scale parameter r can be set higher in advance.
  • scale parameters r may have the same value. Further, the scale parameter r is set to 0.0 for the power generation module 1501 that has been found abnormal in the past and has not yet been replaced. Thus, by setting the state of each power generation module 1501 as the scale parameter r, it is possible to obtain an output characteristic model that takes into account the difference in quality between the power generation modules 1501 and the diagnosed abnormality.
  • the module sunshine situation storage unit 204 is a memory area for temporarily storing the estimated sunshine situation value in each power generation module 1501.
  • the module sunshine status storage unit 204 is secured in a primary storage area on the remote diagnosis server 1507, for example.
  • the output sunshine situation estimation unit 205 uses the power generation output data stored in the power generation output data storage unit 202 and the output characteristic model stored in the output characteristic model storage unit 203 to generate the most generated power output data. It is configured to obtain the sunshine situation for each power generation module 1501 so as to be easy.
  • the output sunshine situation estimation unit 205 stores the obtained sunshine situation in the module sunshine situation storage unit 204.
  • the basic model for estimating the sunshine situation in the output sunshine situation estimating unit 205 is the same as the model shown in FIG. 7A.
  • FIG. 21 shows an example of the daily illuminance of all the power generation modules 1501 estimated by the above calculation.
  • FIG. 22A shows a diagram in which the daily illuminance estimated by the above calculation is represented by different textures for each range of values shown in FIG. 22B.
  • the estimated daily illuminance of the power generation module 1501 included in the string 1502 of the identification character O is lower than the estimated daily illuminance of the surrounding string 1502.
  • the sunshine has spatial continuity. Therefore, it is more accurate to correct the spatial continuity using the position data of the power generation module 1501 so as to improve the spatial continuity. It can be expected that it will be possible to estimate the sunshine.
  • the sunshine condition space correction unit 206 includes spatial smoothing means that averages the estimated value of the sunshine condition of the power generation module 1501 with the estimated value of the sunshine condition of other power generation modules in a predetermined area including the power generation module 1501. .
  • the spatial smoothing means identifies another power generation module 1501 within a predetermined range based on the position data stored in the module position data storage unit 201 for the target power generation module, and the target power generation stored in the module sunshine situation storage unit 204 Spatial correction is performed on the daily illuminance of the module so as to improve the continuity of the daily illuminance estimated between the power generation module of interest and the other power generation modules.
  • the illuminance after spatial correction is stored in the module sunshine situation storage unit 204.
  • the power generation output abnormality diagnosis unit 207 calculates the output difference ⁇ W between the means for calculating the expected output power of the power generation module 1501, the value obtained by adding the expected output power of the power generation module 1501 for each string 1502, and the actual output power data.
  • a means for calculating, a means for detecting a string 1502 whose output difference ⁇ W exceeds a threshold value as an abnormal string, and an output difference ⁇ W of the abnormal string and the value of each expected output power of the power generation module 1501 constituting the abnormal string are compared. To identify a power generation module 1501 in which an abnormality may occur.
  • the power generation output abnormality diagnosis unit 207 compares the power generation output expected value of the output characteristic model with the power generation output data when it is assumed that the estimated sunshine situation is correct, thereby generating a power generation module that can estimate that the output has decreased. Diagnose.
  • FIG. 23A shows a flowchart for explaining the operation of abnormality diagnosis.
  • the abnormality diagnosis device uses the position data stored in the module position data storage unit 201, the power generation output data stored in the power generation output data storage unit 202, and the output characteristic model stored in the output characteristic model storage unit 203.
  • Read step S2301.
  • the output sunshine situation estimation unit 205 estimates the illuminance using the read position data, power generation output data, and output characteristic model (step S2302), and records them in the module sunshine situation storage unit 204.
  • the sunshine situation space correction unit 206 spatially corrects the illuminance estimated using the position data (step S2303).
  • FIG. 23B shows a flowchart for explaining an example of the spatial correction processing.
  • the space smoothing means of the sunshine condition space correction unit 206 searches the N power generation modules 1501 in order from the one closest to the power generation module 1501 (step S3002).
  • the distance between the power generation modules 1501 can be obtained from the position coordinates stored in the module position data storage unit 1501.
  • the daily illuminance s of the power generation module 1501 of interest is estimated based on the daily illuminance s of all the power generation modules 1501 in the region 2402 within the hemisphere having the radius ⁇ from the power generation module 1501 of interest.
  • a spatial averaging method weighted by the kernel method is used when estimating the daily illuminance s (step S3003).
  • the kernel interpolation method is described in detail in Trevor Bailey, Tony Gatrell, Interactive Spatial Data Analysis, Prentice Hall, 1996 ISBN: 0582244935.
  • the weighted spatial average is given by:
  • Fig. 24 shows a diagram for explaining the weighted spatial averaging method.
  • attention is focused on the power generation module 1501 with the identification number 38 included in the string 1502 with the identification character H of the power generation panel 1505 with the identification number 3.
  • the daily illuminance of the power generation module 1501 of interest is estimated from the average value of the daily illuminance of the power generation module 1501 included in the region 2402 in the hemisphere with the radius ⁇ centered on the power generation module 1501.
  • the daily illuminance to be used is weighted according to the distance from the power generation module 1501 of interest.
  • the following kernel function is used as a weighting method.
  • l of the kernel function is a two-dimensional vector representing the position of the power generation module 1501
  • a typical kernel is
  • the solar illuminance obtained for the power generation module 1501 focused using the kernel function is stored in the module sunshine status storage unit 204 (step S3004).
  • the above processing is performed for all the power generation modules 1501 in the target range 2401 as the target power generation module 1501 (step S3001), and the spatial continuity of sunshine is increased.
  • FIG. 25 shows an example of the result of performing spatial averaging and performing spatial smoothing for each power generation module 1501.
  • FIG. 26A shows a diagram in which the daily illuminance corrected by the above processing is represented by different textures for each value range shown in FIG. 26B.
  • the power generation output abnormality diagnosis unit 207 compares the power generation output expected value of the output characteristic model with the power generation output data when it is assumed that the estimated sunshine situation is correct, thereby generating a power generation module that can estimate that the output has decreased. Diagnosis is made (step S2304).
  • FIG. 27 shows a flowchart for explaining an example of the power generation output abnormality diagnosis process.
  • an expected power generation output is calculated for each power generation module 1501 (step S2701).
  • FIG. 28 shows the result of estimating the expected output power for each power generation module 1501.
  • the expected output power is added in units of strings 1502, and the total value is compared with the output power obtained for each string 1502 (step S2702).
  • FIG. 29 shows an example of the calculation result for each string 1502. Subsequently, only strings whose difference ⁇ W between the output power obtained for each string 1502 and the expected output power is equal to or smaller than a predetermined value are extracted (step S2703). Assuming that ⁇ W is ⁇ 50 or less, in the example shown in FIG. 29, a string 1502 of identification characters G and O is extracted.
  • the output difference ⁇ W is compared with the expected output power for each module to identify the position of the power generation module 1501 where the abnormality has occurred (step S2704).
  • the reason why the module having an expected output power of 93 or less has failed is that The occurrence cannot be explained. Therefore, the power generation modules 1501 with the identification numbers 31 and 32 are excluded from the candidates, and it can be specified that an abnormality has occurred in any one of the power generation modules 1501 with the identification numbers 33 to 34.
  • the output difference ⁇ W of the string 1502 of the identification character O is ⁇ 194, and there is a possibility that an abnormality has occurred in all the power generation modules 1501 of the string 1502.
  • FIG. 30 shows a diagram for explaining an example of an abnormality diagnosis method when power generation output data is acquired in time series.
  • Power generation output data is stored every time t1 to t6, and the module sunshine situation storage unit 204 also prepares a storage area for each corresponding time t1 to t6, and if space-time spatial interpolation is used, it is higher. It becomes possible to estimate the accurate daily illuminance.
  • the sunshine situation can be estimated in consideration of the moving direction and speed of the clouds. For example, the daily illuminance at time t2 is corrected so as to continuously change with respect to the daily illuminance at time t1 and time t3.
  • the abnormality diagnosis operation is performed using output power data acquired every time t1 to t6.
  • each power generation module 1501 for each power generation module 1501, the expected output power in consideration of the sunshine condition is calculated and the abnormality diagnosis is performed.
  • An apparatus and an abnormality diagnosis method can be provided.
  • the abnormality diagnosis apparatus and abnormality diagnosis method it is possible to accurately detect an abnormality and to estimate the position of the power generation module where the abnormality has occurred.
  • DESCRIPTION OF SYMBOLS 100 ... Abnormality monitoring system 101, 1501 ... Power generation module, 102, 1502 ... String, 103, 1503 ... Measuring device, 104 ... Control device, 105 ... Abnormality diagnosis device, 201 ... Module position data storage unit, 202 ... Output power data Storage unit 203 ... Output characteristic model storage unit 204 ... Sunlight condition estimation unit 205 ... Module sunlight condition storage unit 206 ... Sunlight condition space correction unit 207 ... Output power abnormality determination unit 401 ... Module position data 501 ... Cloud, 502 ... shade, 601, 602, 701, 702 ... output characteristic model, 703, 704 ... block, 901 ... string G, 1101 ... abnormal string, 1504 ... communication device, 1505 ... power generation panel, 1506 ... network, 1507 ... Remote diagnostic server.

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 ストリングから出力された実際の出力電力と、発電に影響を及ぼす日照状況から出力電力を予測する出力特性モデルとを用いて、発電モジュールごとに実際の出力電力に最も近い日照状況の値を日照状況推定値として推定する日照状況推定部(204)と、着目ストリングに含まれる発電モジュールの日照状況推定値の総和が、着目ストリングの長尺方向の面に隣接する隣接ストリングごとの日照状況推定値の総和で決定される範囲内に収まるように日照状況推定値に補正を行い補正日照状況推定値を得る日照状況空間補正部(206)と、出力特性モデルおよび補正日照状況推定値を用いて算出した発電モジュールで期待される期待出力電力のストリング内の総和と実際の出力電力との差が閾値以上であり、かつ実際の出力電力が期待出力電力よりも小さい場合に、異常発生と判定する出力電力異常判定部(207)と、を具備する。

Description

異常診断装置および異常診断方法
 本発明は、異常診断装置および異常診断方法に関する。
 太陽光発電システムは、複数の発電モジュールが直列に接続されたストリングを備え、ストリング単位で発電出力(電力値や電流値)がセンシングされるように構成されている。それぞれの発電モジュールは経年劣化によって同じ日照状況でも発電出力が少しずつ減少する。また、製造品質上の問題や物理的損傷などの理由により、急激に発電出力が低下してしまうことがある。製造品質上の問題や物理的損傷等の異常が発生した発電モジュールは出力がゼロに近くなるため、放置しておくと発電になんら貢献しない。
 そこで、そのような発電出力が急激に低下した発電モジュールを早期に修理・交換するために、異常診断装置が必要となる。例えばすべての発電モジュールの発電出力を検出可能なセンサ(電流計など)が設置した場合には、日照度が高いときにセンサ値がゼロとなっている発電モジュールを検知することが可能となる。
 しかし、製造コストの制約からすべての発電モジュールに発電出力センサを設置することは困難である。ストリング毎の発電出力を互いに比較することにより異常モジュールを含むストリングを検出している。各ストリングの発電出力の平均値を算出し、例えば平均値より20%低下したストリングを異常とみなしている。
特開2005-340464号公報 特許第2874156号公報
異常診断システムを示す概念図である。 異常診断装置を示すブロック図である。 異常診断装置の動作を示すフローチャートである。 モジュール位置データ格納部に格納されるモジュール位置データの一例を示す図である。 モジュール位置データ格納部に格納されるモジュール位置データの一例を示す図である。 日照状況の一例を示す図である。 の日照状況における出力電力データ格納部に格納される出力電力データの一例を示す図である。 出力特性モデルの一例を示す図である。 出力特性モデル格納部に格納される出力特性モデルの一例を示す図である。 出力特性モデルの一例を示す図である。 発電モジュールごとの日照量の一例を示す図である。 図7Bに示す日照量の結果を視覚化した一例を示す図である。 図7Dで用いたパラメータの一例を示す図である。 日照状況空間補正部の動作を示すフローチャートである。 日照状況空間補正部の補正処理の第1処理の一例を示す図である。 補正処理の第2処理の一例を示す図である。 補正処理の第3処理の一例を示す図である。 図9Cに示す補正処理結果を視覚化した一例を示す図である。 出力電力異常判定部の動作を示すフローチャートである。 ストリングごとの期待出力電力の一例を示す図である。 発電モジュールごとの期待出力電力の一例を示す図である。 出力特性モデルの一例を示す図である。 異常判定処理の結果を視覚化した一例を示す図である。 長時間の出力電力データにおける日照状況推定結果を視覚化した一例を示す図である。 時系列での日照状況推定結果を視覚化した一例を示す図である。 本発明の第2実施形態に係る太陽光発電システムの一構成例を示す図である。 本発明の第2実施形態に係る太陽光発電システムの発電モジュールの識別番号およびストリングの識別文字について説明するための図である。 モジュール位置データ格納部に格納された位置データの一例について説明するための図である。 発電出力データ格納部に格納された出力電力の一例について説明するための図である。 図18に示す出力電力が得られたときの日照状況を説明するための図である。 発電モジュール毎に設定される出力特性モデルのスケールパラメータの一例について説明するための図である。 発電モジュール毎に算出された日照値の一例を示す図である。 図21に示す日照値をテクスチャで示した図である。 図22Bで用いたパラメータの一例を示す図である。 本発明の一実施携帯に係る異常診断装置の動作の一例について説明するためのフローチャートである。 発電モジュール毎の日照状況を、位置データを用いて空間補正する動作の一例について説明するためのフローチャートである。 発電モジュール毎の日照状況を空間補正する方法の一例について説明するための図である。 空間補正をした後の、発電モジュール毎の日照状況の一例を示す図である。 図25に示す日照状況をテクスチャで示した図である。 図26Aで用いたパラメータの一例を示す図である。 空間補正をした後の日照状況から異常が発生している発電モジュールを診断する方法の一例について説明するためのフローチャートである。 空間補正をした後の日照状況から算出される発電モジュール毎の発電出力の期待値の一例を示す図である。 発電モジュール毎の発電出力の期待値を加算したストリングの期待出力と、発電出力データに格納されたデータとの差を用いて診断する方法の一例について説明するための図である。 時系列で発電出力データを取得して、発電モジュールの異常を診断する方法の一例について説明するための図である。
 以下、図面を参照しながら実施形態に係る異常診断装置および方法について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。 
 第1実施形態に係る異常診断装置を含む太陽光発電システムにおける異常監視システムの一例について図1を参照して説明する。
 異常監視システム100は、発電モジュール101、計測装置103、制御装置104、および異常診断装置105を含む。 
 発電モジュール101は、例えば太陽光などの光を受光することにより発電を行う発電パネルであり、発電モジュール101を複数個直列に接続して1つのストリング102を形成する。図1の例では、5個の発電モジュール101を直列に接続して1つのストリング102を形成し、複数のストリング102が設置される。 
 計測装置103は、ストリング102ごとに接続され、ストリング102の出力電流または出力電圧を計測する。 
 制御装置104は、複数のストリング102の解放電圧などを制御する。 
 異常診断装置105は、各計測装置103から計測された複数のストリング102の計測値を受け取り、計測値に基づいて異常があるストリング102または発電モジュール101を判定する。なお、異常診断装置105を計測装置103に直接接続せずに、サーバ(図示せず)を計測装置103に接続して各計測装置103からの出力値を蓄積し、遠隔にある異常診断装置105がサーバからデータを受け取って判定してもよい。
 次に、本実施形態に係る異常診断装置について図2を参照して詳細に説明する。 
 本実施形態に係る異常診断装置105は、モジュール位置データ格納部201、出力電力データ格納部202、出力特性モデル格納部203、日照状況推定部204、モジュール日照状況格納部205、日照状況空間補正部206、および出力電力異常判定部207を含む。
 モジュール位置データ格納部201は、各発電モジュールが設置された位置データをモジュール位置データとして格納する。モジュール位置データについては図4を参照して後述する。
 出力電力データ格納部202は、ストリング102ごとに、一定期間計測した電力値を対応付けて出力電力データとして格納する。なお、出力電力データは電流値または電圧値でもよい。
 出力特性モデル格納部203は、日照量や気温などの発電に影響を及ぼす日照状況から出力電力を予測することが可能な出力特性モデルが発電モジュール101ごとに格納される。なお、出力特性モデルは、日照状況に応じて発電モジュール101で想定される出力電力の予測値を示す期待出力電力を算出できればどのようなモデルでもよい。期待出力電力を算出するモデルとしては、例えば、ニューラルネットワークや線形回帰モデルを用いればよい。出力特性モデル格納部203に格納される出力特性モデルについては図6を参照して後述する。
 日照状況推定部204は、出力電力データ格納部202から出力電力データを、出力特性モデル格納部203から出力特性モデルをそれぞれ受け取り、出力電力データに最も近い日照状況の値を日照状況推定値として推定する。具体的には、出力特性モデルに出力電力データを当てはめた場合の日照量を発電モジュール101ごとに日照状況推定値として算出する。
 モジュール日照状況格納部205は、日照状況推定部204から日照状況推定値を受け取って格納する。また、モジュール日照状況格納部205は、後述する日照状況空間補正部206から補正された日照状況推定値を示す補正日照状況推定値を受け取って格納する。
 日照状況空間補正部206は、モジュール位置データ格納部201からモジュール位置データを、モジュール日照状況格納部205から日照状況推定値をそれぞれ受け取る。そして日照状況空間補正部206は、モジュール位置データに基づいて隣接する発電モジュール101間で日照状況推定値の連続性が向上するように空間補正を行う。日照状況空間補正部206の動作については、図8および図9を用いて後述する。
 出力電力異常判定部207は、出力電力データ格納部202から出力電力データを、出力特性モデル格納部203から出力特性モデルを、モジュール日照状況格納部205から更新された日照状況推定値をそれぞれ受け取る。そして、出力電力異常判定部207は、出力特性モデルにより算出された期待出力電力(具体的には、ストリング102内の発電モジュール101の期待出力電力の総和)と実際の出力電力データとを比較し、出力が低下しており異常があると推定される発電モジュール101を判定する。ここで異常とは、完全に故障して発電することができない状態および通常想定される発電量よりも大幅に発電量が低い状態を含む。例えば、通常想定される発電量よりも5割程度の出力電力しか得ることができない場合は、その発電モジュールは異常であるとする。出力電力異常判定部207の動作については、図10および図11を参照して後述する。
 次に、異常診断装置の動作について図3のフローチャートを参照して詳細に説明する。 
 ステップS301では、モジュール位置データ格納部201にモジュール位置データが、出力特性モデル格納部203に出力特性モデルがそれぞれ読み込まれる。さらに、一定期間ごとに計測装置103がストリング102ごとの出力電力を計測し、出力電力データ格納部202に格納する。なお、外部にある読み込み手段により、装置が初めに起動するときまたは周期的にモジュール位置データと出力特性モデルとを読み込み、モジュール位置データ格納部201と出力特性モデル格納部203とにそれぞれ格納してもよい。
 ステップS302では、日照状況推定部204が、出力電力データから発電モジュール101ごとの日照状況を推定し、日照状況推定値を算出する。
 ステップS303では、日照状況空間補正部206が、発電モジュール101ごとの日照状況をモジュール位置データを参照して空間補正する。
 ステップS304では、出力電力異常判定部207が、補正された発電モジュール101ごとの日照状況推定値を用いて、発電モジュール101に異常があるかどうかを判定する。
 以下、本実施形態に係る異常診断装置の動作について具体的に説明する。 
 まず、モジュール位置データの一例について図4を参照して詳細に説明する。 
 図4Aでは、発電モジュール101の横一列5個を一組としてストリング102が形成される。さらにストリング102が縦6列、横3列に並列され、計18個のストリング(発電モジュール101は90個)が設置されている。各発電モジュール101には、1、2、・・・、90までのIDが与えられている。また、各ストリング102にグループIDが与えられ、例えばID1から5までの発電モジュール101により形成されるストリング102のグループIDはAである。以下では、グループIDがAのストリング102はストリングAとも呼ばれる。なお、ここでは18個のストリングを一例としているが、これに限らず、任意の数および任意の配列を用いてもよい。 
 図4Bでは、図4Aに示す発電モジュール101のID、グループID、X座標およびY座標をモジュール位置データ401として格納している。なお、X座標およびY座標は、モジュール位置データ401のように人工的なグリッド上の位置座標を用いてもよいし、より詳細な緯度および経度の値を用いてもよい。
 次に、出力電力データの一例について図5を参照して詳細に説明する。 
 図5Aは、図4Aに示す配置がされているストリング102に、雲501による陰502がかかった状態での出力電力データを示す。具体的には、ストリングA、B、C、G、HおよびI付近に雲501による陰502がかかり、さらに、発電モジュール101のID(識別番号)が35および74(以下、発電モジュール35、発電モジュール74という)の発電モジュールに異常があるものとする。
 図5Bは、出力電力データ格納部202に格納される図5Aに示す状況でのストリング102ごとの出力電力データを示すテーブルである。グループIDごとに同一時間内にサンプルされた出力電力がテーブルに格納されている。なお、出力電力データは時間内の平均でもよいし、総和を取ってもよい。図5Bに示すテーブルを参照すると、陰502がかかっている部分の発電モジュール101は、陰502がない部分の発電モジュール101よりも出力電力が低くなっていることがわかる。
 次に、出力特性モデルの一例について図6を参照して詳細に説明する。 
 図6Aは、発電モジュールごとのスケールパラメータrの値である。このrを用いることにより、発電モジュールごとの品質差または過去に判明した異常のある発電モジュールの情報を反映させることができる。例えば、平均的な出力電力を有する発電モジュールのrを1.0とした場合、r=1.05という発電モジュールは、平均的な発電モジュールより出力が5%上回る品質であるといえる。さらに、製造時や設置時の試験結果が良い発電モジュールに関しては、あらかじめrを高めに設定しておけばよい。なお、全てのrを同じ値にしてもよいし、発電モジュールごとに異なるrの値でもよい。また、過去に異常が判明し、まだ交換していない発電ジュールは、異常判定処理に用いないためにr=0.0と設定しておけばよい。
 図6Bは、発電モジュールごとのスケールパラメータrを用いた出力特性モデルの一例であり、日照量に対して出力電力がどのように変化するかを示すグラフである。出力特性モデル601は、rが1.0の場合の出力特性を示し、これが基本モデルとなる。出力特性モデル602はrが1.0よりも下回る場合の出力特性を示す。この出力特性モデルにより期待出力電力を決定できる。図6の例は、単変量モデルを用いているが、例えば温度も追加した2変量モデルなどを用いればよい。このように発電モジュールごとの状態を表す指標としてスケールパラメータrとして用意することにより、品質の差や診断済みの異常モジュールを考慮した異常判定を実現できる。
 次に、日照状況推定部204の推定処理について図7A乃至図7Cを参照して詳細に説明する。 
 図7Aは、図6Aのスケールパラメータrを用いた出力特性を示す。図7Aの出力特性モデルの基本モデルは式(1)で表される。 
W=200*S ・・・(1) 
 ここで、Wは出力電力、Sは日照状況推定値を示す。さらに、発電モジュールi(iは任意の自然数)のスケールパラメータをr(i)とした場合、出力特性モデルは式(2)で表すことができる。 
W(i)=200*r(i)*S(i)・・・(2)
 図7Aにおける出力特性モデル701は発電モジュール74の出力特性を示し、出力特性モデル702は発電モジュール90の出力特性を示す。ストリング102ごとの出力電力データが与えられた場合、日照状況推定値は式(3)により求められる。 
S(i)=W(i)/r(i)/200・・・(3) 
 例えば、図5Bより、発電モジュール74を含む5個の発電モジュールを直列接続したストリングOの出力電力は890(kW)であるので、発電モジュール「74」の日照状況推定値は式(4)のように計算できる。 
S(74)=890/5/1.10/200≒0.809・・・(4)
 同様に、発電モジュール「90」は、出力特性モデル702を用いればS(90)=1.00となる。なお、r(i)=0である場合には異常判定処理に用いないため計算を行わないこととする。
 図7Bは、上記に示した日照状況推定値をストリング102ごとに計算した結果である。ブロック703および704は、それぞれ発電モジュール「74」および「90」であることを示す。各発電モジュール101の日照状況推定値は、ストリング102ごとにしか出力電力が分からないため、ストリング102内の発電モジュール101の日照状況推定値は均一であるとして推定している。 
 図7Cは、図7Bの結果を日照状況推定値に応じて斜線で視覚的に表現した図であり、図7Dは、日照状況推定値に対応する斜線の種類を示すテーブルである。図7Cによれば、ストリングOの日照状況推定値が周辺のストリングと比較して低いことがわかる。
 次に、日照状況空間補正部206における空間補正処理について図8のフローチャートおよび図9を参照して詳細に説明する。日照には空間的な連続性があると考えられるので、位置情報を利用して空間的な連続性が向上するように補正する方がより正確な日照状況の推定が可能となる。 
 ステップS801では、日照にばらつきが生じているストリング102に空間スムージングを行う。ここでは、着目するストリング102(以下、着目ストリングという)の日照状況推定値と、着目ストリング102を形成する各発電モジュール101から着目ストリング102以外のストリング102を形成する各発電モジュール101までの各距離どうしの差が最小で、かつ該距離が最短の発電モジュール101を含む、着目ストリング102の両側に隣接するストリング102(以下、隣接ストリングという)の日照状況推定値とを用いて空間スムージング処理を行う。 
 ここで、長尺方向の面とは、ストリングが矩形であれば長辺側の面を表し、ストリングが波形である場合は山谷が続く側の面を表す。 
 具体的には、図7Bにおいて、ストリングQの日照状況推定値0.982は上側に隣接するストリングPの日照状況推定値1.01よりも小さく、下側に隣接するストリングRの日照状況推定値1.00よりも小さな値である。このようにV字型の日照のばらつきが狭い範囲で生じているとは考えにくいため、このような場合、ストリングPとストリングRとの平均によってストリングQの日照状況推定値を式(5)のように補正する。 
S(Q)=(S(P)+S(R))/2=(1.010+1.000)/2=1.005…(5) 
 ステップS801の処理を終えたストリング102ごとの日照状況推定値を図9Aに示す。なお、V字型の日照のばらつきだけでなく、3つ隣接したストリング102の中心のストリング102の日照だけ高い状態である、∧字型の日照のばらつきがある場合にも同様の空間スムージングを行う。
 ステップS802では、着目ストリング102の日照状況推定値が、着目ストリング102の短尺方向の面に隣接する両側のストリング102の日照状況推定値の範囲内にある場合、着目ストリング102の日照状況推定値の総和が変化しないように、着目ストリング102内で日照状況推定値の再配分を行う。これは、ストリング102内の発電モジュールの日照状況推定値は均一であるとして推定しているので、着目ストリング102の日照状況推定値の総和を維持したまま着目ストリング102内の発電モジュール101の日照状況推定値に傾斜をつけることで、日照に関してより空間的な連続性を再現することができるからである。
 具体的に再配分の一例を説明する。図9Aにおいて、まず、ストリングG901(ストリングAの右隣)の発電モジュールの接続方向と垂直に隣接するストリングAの日照状況推定値0.198に合わせて、ストリングG901内で最もストリングAに隣接する発電モジュール「31」の日照状況推定値を0.198にする。次に、ストリングMの日照状況推定値1.000に合わせて、ストリングG901内で最もストリングMに隣接する発電モジュール「35」の日照状況推定値を1.000にする。最後に、ストリングG901の日照状況推定値の総和は0.418*5=2.09であるので、この総和を変化させないように、残りの発電モジュール「32」「33」「34」の日照状況推定値を更新する。ここでは、発電モジュール「32」および「33」の日照状況推定値を0.198、発電モジュール「34」の日照状況推定値を0.496としてストリング内で傾斜を付ける。なお、基本的に3段階の傾斜処理を適用したが、3段階以上の傾斜計算を適用してもよい。 
 図9Aの日照状況推定値に対して、ストリング内で発電モジュールの日照状況推定値に傾斜計算を行った結果を図9Bに示す。
 ステップS803では、発電モジュールごとの空間スムージングを行い、更新された日照状況推定値として最終的に補正日照状況推定値を得る。ステップS803での空間スムージング処理としては、空間平均や空間メジアン、マルコフ確率場によるスムージングなどを適用すればよい。空間平均を適用して発電モジュールごとに空間スムージングを行った結果を図9Cに示す。 
 図9Cでは、発電モジュールに隣接する8個の発電モジュールと自らの推定値の平均値をとることにより、各発電モジュールの補正日照状況推定値を得る。図9Dは、図9Cの結果を図7Dの表記に従って、補正日照状況推定値に応じて斜線で表現した図である。図7Cに示す空間的な補正を行う前の日照状況推定値と比較すると、空間的な日照状況の連続性が向上していることがわかる。以上で空間補正処理を終了する。このように空間補正処理を行うことで、空間的な連続性が高まった補正日照状況推定値を得ることができる。なお、ストリングの形状が正方形である場合は、ステップS801およびステップS802の補正処理を、隣接ストリングにどのように適用してもよい。例えば、ステップS801の補正処理を行わずに、ステップS802の補正処理を着目ストリングの上下左右にある隣接ストリングに適用してもよい。
 さらに、着目ストリングの両側の2つのストリングで空間補正処理を行ったが、これに限らす、両側のさらに外にあるストリングを複数用いてステップS801の補正処理を行ってもよい。
 次に、出力電力異常判定部207における異常判定処理について図10のフローチャートを参照して詳細に説明する。 
 ステップS1001では、発電モジュールごとに期待出力電力を算出する。具体的には、発電モジュールiの値をS’(i)とすると、この発電モジュールの期待出力電力W’(i)は式(6)で表される。 
W’(i)=200*r(i)*S’(i)…(6) 
 ステップS1002では、ストリングごとに出力電力と期待出力電力との差である出力差を算出する。なお、出力電力はストリングごとにしか得られていないので、ストリング単位で発電モジュールごとの期待出力電力を足し合わせて出力電力と期待出力電力とを比較する。
 ステップS1003では、ストリングごとに、出力電力よりも期待出力電力の方が小さく、かつ出力差が閾値より小さいかどうかを判定する。出力電力よりも期待出力電力の方が小さく、かつ出力差が閾値より小さいストリングが無ければ異常判定処理を終了する。出力電力よりも期待出力電力の方が小さく、かつ出力差が閾値より小さいストリングが1以上あれば、それらを異常ストリングの候補としてステップS1004に進む。
 ステップS1004では、ストリングの長尺方向の面に隣接するストリングの出力差を参照して、異常ストリングの候補から削減するかどうかを判定する。具体的には、連続して隣接するストリングの出力差が大きくなっている場合に、それら連続するストリングを候補から削除する。これは、故障が2つの隣接するストリングで生じる可能性は低いと考えられるためである。異常ストリングの候補から削除するべきストリングがある場合には、それらのストリングを候補から削除し、残りのストリングを異常ストリングの候補としてステップS1005に進む。また、異常ストリングの候補から削除するべきストリングがない場合は、そのままステップS1005に進む。また、異常ストリングの候補を削除した結果、候補となるストリングがなくなった場合は異常判定処理を終了する。
 ステップS1005では、出力差と発電モジュールごとの期待出力電力を比較して、異常モジュールの位置を特定する。
 ここで、出力電力異常判定部207の異常判定処理の一例について図11A乃至図11Cを参照して詳細に説明する。 
 図11Aは、ストリングごとの出力電力、期待出力電力および出力差を対応付けて格納したテーブルであり、図11Bは、発電モジュールごとの期待出力電力を示し、図11Cは出力特性モデルから算出される期待出力電力の一例であり、ここでは発電モジュール「74」の例を示す。具体的には、発電モジュール「74」の期待出力電力は式(7)のようになる。 
W’(74)=200×1.10×0.985≒217(kW)…(7)
 図10のステップS1003で用いられる閾値Δ=50とすると、図11Aの例では、出力差が-50よりも小さいストリングC,D,GおよびOが異常ストリング1101の候補として抽出される。次に、連続したストリングCおよびDが異常ストリング1101の候補から削除され、最終的に異常ストリング1101はストリングGおよびOと判定される。 
 最後に、異常ストリング1101内で異常のある発電モジュール位置を判定する。ストリングGの場合は、出力差は-93であり、同時に2つの発電モジュールが故障しないと仮定すると、期待出力電力が93以下の発電モジュールが故障したという理由ではこの出力差とはならない。よって、発電モジュール31および32は候補から除外され、発電モジュール「33」「34」「35」のいずれかが異常のある発電モジュールとなる。ストリングOの場合は、出力差は-194であり、ストリングOの全ての発電モジュール「86」から「90」までが異常である可能性がある。
 最終的に出力される異常判定処理の結果表示の一例を図12に示す。 
 図12では、2つの異常ストリングが検出され、1つについては中央から右側の発電モジュールに異常があると判定される。なお、図12に示すように、異常のある発電モジュールの位置をユーザが視覚的に認識できるようにしてもよいし、異常のある発電モジュールを数値によってユーザに示してもよい。以上に示した異常判定処理は、複数回の判定結果を用いて総合的に判定してもよく、そのような場合には異常のある発電モジュールの位置特定に関し、さらなる精度向上が望める。
 ここで、長時間計測した出力電力データを用いて異常判定処理を行った結果を図13および図14に示す。 
 図13に示すように、日照のばらつきは帯状になると考えられるが、本実施形態では日照のばらつきが連続的であれば形状は問題ではないため、そのような場合でも異常判定ができる。さらに、モジュール日照状況推定用の記憶部を用意し、対応する時間ごとに出力電力データを時系列で格納した場合を図14に示す。このように、時間的な補正を加えて時空間補正を行った場合には、より高精度な日照の把握を行うことができ、正確な異常判定ができる。
 以上に示した本実施形態によれば、発電モジュールの出力電力を空間的な連続性が向上するように補正することで正確に異常を検出することができ、さらに異常が生じた発電モジュールの位置を推定することができる。
 次に、第2実施形態に係る異常診断装置および異常診断方法について図面を参照して説明する。なお、以下の説明において、上述の第1実施形態と同様の構成については、同一の符号を付して説明を省略する。
 図15に、太陽光発電システムと第2実施形態に係る異常診断装置を概略的に示す。太陽光発電システムは、ネットワーク1506を介して遠隔診断サーバ1507に接続された複数の発電パネル1505を備えている。発電パネル1505は、複数のストリング1502と、各ストリングの出力電圧および出力電流を計測する計測装置1503と、計測装置1503で計測された出力電圧および出力電流を遠隔診断サーバ1507へ送信するための通信装置1504と、を備えている。ストリング1502は、直列に接続された複数の発電モジュール1501を備えている。図15には6つの発電パネル1505の通信装置1504がネットワーク1506に接続されている。遠隔診断サーバ1507には、5つの発電パネル1505の各ストリング1502の出力電圧値および出力電流値が供給される。遠隔サーバ1507には、図2に示す異常診断装置105が搭載されている。
 なお、上記異常診断装置は、各構成をハードウエアにより実現してもよく、ソフトウエアにより実現してもよく、さらにハードウエアとソフトウエアとの組み合わせにより実現してもよい。
 図16に、モジュール位置データ格納部201に格納された発電モジュール位置データの一例を示す。モジュール位置データ格納部201には、各発電モジュール1501が設置された位置データがモジュール位置データとして格納される。なお、以下では、図15に示す太陽光発電システムを図16に示す記号と表記形式により示して説明する。
 図16に示す例では、3行5列のマトリクス状に配置された15個の発電モジュール1501を備える発電パネル1505が、6箇所に配置されている。各発電モジュール1501には識別番号(ID)1~90が付与されている。ストリング1502は、直列に接続された5つの発電モジュール1501を備えている。各ストリング1502にはグループ識別文字が付与され、例えば、識別番号が1~5の発電モジュール1501は、グループ識別文字がAのストリング1502を構成している。
 図17に示すように、モジュール位置データ格納部201は、発電モジュール1501の識別番号、ストリング1502のグループ識別文字、発電パネル1505の識別番号、発電モジュール1501の位置座標(X座標、Y座標)を蓄積している。発電モジュール1501の位置座標(X座標、Y座標)は、人工的なグリッド上の位置座標でもよく、また緯度と経度とでもよい。位置座標は、発電モジュール1501の位置を特定できる分解能を持っている座標であればよい。
 発電出力データ格納部202は、計測装置1503によって計測された出力電圧値および出力電流値を蓄積する。本実施形態では、発電出力データ格納部202は、一定期間におけるストリング1502毎の出力実績値を発電出力データとして格納する。異常診断装置は、遠隔診断サーバ1507のモニタや外部に接続された表示手段により、計測装置1503によって計測された出力電圧値および出力電流値をユーザに提示することが可能に構成されている。
 図18に、図16に示す太陽光発電システムにおける発電出力データの一例を示す。また、図18に示す発電出力データは、例えば、6つの発電パネル1505(識別番号1~6)の識別文字A、B、C、G、H、Iのストリング1502に雲による影がかかっている状況において得られたものである。
 図18の発電出力データは、一定時間内に測定された出力電圧および出力電流によって算出される出力電力値の積算値である。なお、発電出力データは一定時間内の出力電力値の平均値でもよく、積算値でもよい。なお、以下の例では、識別番号35と識別番号74の発電モジュール1501に異常がある場合について説明する。
 図19に、図18に示す発電出力データが得られた際の日照状況の一例を示す。6つの発電パネル1505は、互いに距離を置いて設置されている。識別番号1の発電パネル1505は、雲1900による影に位置しているため、日照度が低くなっている。また、識別番号3の発電パネル1505の一部も雲1900の影に位置しているため日照度が低い状態である。このような日照状況では、識別文字A、B、C、G、H、Iのストリング1502の出力電力は他のストリング1502よりも低くなる傾向となる。
 出力特性モデル格納部203は、日照度や気温などの発電に影響する日照状況から発電出力を予測することが可能な出力特性モデルを、発電モジュール1501毎に格納している。出力特性モデルは日照状況を入力として発電出力予測値を算出することが可能なモデルであればよく、例えば、ニューラルネットワークや線形回帰モデルなどを用いてもよい。
 図6Bに出力特性モデルの一例を示す。図6Bに示すモデルでは、基本モデル601と、モジュール毎のスケールパラメータrとによって出力特性が定義される。基本モデル601は、日照度に対する平均的な発電モジュールの出力特性モデルである。例えばスケールパラメータrの場合の出力特性はグラフ602で表すことができる。グラフ602を用いてX軸の日照度に対するY軸の値を算出することにより、発電モジュール1501の発電出力予測値を決定する。
 なお、図6Bの例は日照度を変数とする単変量出力特性モデルを用いているが、例えば、日照度と温度とを変数とした2変量出力特性モデルや、さらにその他のパラメータを追加した多変量出力特性モデルを用いることも可能である。
 図20に、発電モジュール1501毎に設定されたスケールパラメータrの一例を示す。スケールパラメータrは、発電モジュール1501毎の品質の差や、過去に判明した異常を反映させた値に設定することができる。例えば、r=1.05という発電モジュール1501は平均的な発電モジュール1501より出力が5%上回る品質と解釈できる。製造時や設置時の試験結果が良い発電モジュール1501に関しては、あらかじめスケールパラメータrを高めに設定しておくことができる。
 なお、全てのスケールパラメータrを同じ値にしてもよい。また、過去に異常が判明し、まだ交換していない発電モジュール1501についてはスケールパラメータrを0.0と設定する。このように発電モジュール1501毎の状態をスケールパラメータrとして設定することにより、発電モジュール1501毎の品質の差や診断済みの異常を考慮した出力特性モデルとすることができる。
 モジュール日照状況記憶部204は、各発電モジュール1501における日照状況推定値を一次記憶するためのメモリ領域である。モジュール日照状況記憶部204は、例えば、遠隔診断サーバ1507上の一次記憶領域中に確保される。
 出力日照状況推定部205は、発電出力データ格納部202に格納された発電出力データと、出力特性モデル格納部203に格納された出力特性モデルとを用いて、得られた発電出力データが最も起こりやすくなる日照状況を発電モジュール1501毎に求めるように構成されている。出力日照状況推定部205は、求めた日照状況をモジュール日照状況記憶部204に格納する。例えば、出力日照状況推定部205における日照状況推定の基本モデルは図7Aに示すモデルと同様である。
 図21に、上記の計算により推定された全ての発電モジュール1501の日照度の一例を示す。また、図22Aに、上記計算により推定された日照度を、図22Bに示す値の範囲ごとに異なるテクスチャで表した図を示す。図21および図22Aでは、識別文字Oのストリング1502に含まれる発電モジュール1501の推定した日照度と、周辺のストリング1502について推定された日照度とを比較して低いことが確認できる。
 ここで、実際には、日照には空間的な連続性があると考えられるので、発電モジュール1501の位置データを利用して空間的な連続性が向上するように補正を行ったほうが、より正確な日照の推定が可能になると期待できる。
 日照状況空間補正部206は、発電モジュール1501の日照状況の推定値を、発電モジュール1501を含む所定の領域内の他の発電モジュールの日照状況の推定値と平均した値とする空間スムージング手段を備える。空間スムージング手段は、注目発電モジューについてモジュール位置データ格納部201に格納された位置データにより所定の範囲内にある他の発電モジュール1501を特定し、モジュール日照状況記憶部204に格納されている注目発電モジュールの日照度に対して、注目発電モジュールと他の発電モジュール間で推定された日照度の連続性が向上するように空間補正を行う。空間補正後の日照度はモジュール日照状況記憶部204に格納される。
 発電出力異常診断部207は、発電モジュール1501の期待出力電力を算出する手段と、発電モジュール1501の期待出力電力をストリング1502ごとに足し合わせた値と、実際の出力電力データとの出力差ΔWを算出する手段と、出力差ΔWが閾値を超えるストリング1502を異常ストリングとして検知する手段と、異常ストリングの出力差ΔWと異常ストリングを構成する発電モジュール1501それぞれの期待出力電力の値とを比較することにより、異常が生じている可能性のある発電モジュール1501を特定する手段と、を備える。
 発電出力異常診断部207は、推定された日照状況が正しいと仮定したときの出力特性モデルの発電出力期待値と発電出力データを比較することによって、出力が低下していると推定できる発電モジュールを診断する。
 図23Aに、異常診断の動作を説明するためのフローチャートを示す。まず、異常診断装置は、モジュール位置データ格納部201に格納された位置データと、発電出力データ格納部202に格納された発電出力データと、出力特性モデル格納部203に格納された出力特性モデルを読み出す(ステップS2301)。出力日照状況推定部205は、読み出された位置データと、発電出力データと、出力特性モデルとを用いて日照度を推定して(ステップS2302)、モジュール日照状況記憶部204に記録する。続いて、日照状況空間補正部206は、位置データを用いて推定された日照度を空間補正する(ステップS2303)
 図23Bに空間補正処理の一例を説明するためのフローチャートを示す。まず、日照状況空間補正部206の空間スムージング手段は、ある発電モジュール1501に注目したときに、その発電モジュール1501に近いものから順番にN個の発電モジュール1501を検索する(ステップS3002)。発電モジュール1501間の距離はモジュール位置データ格納部1501に格納された位置座標から求めることができる。
 続いて、注目している発電モジュール1501から半径τの半球内の領域2402に有る全ての発電モジュール1501の日照度sに基づいて、注目している発電モジュール1501の日照度sを推定する。本実施形態では、日照度sを推定する際にカーネル法により重み付けをした空間平均法を用いている(ステップS3003)。カーネル補間法については、Trevor Bailey, Tony Gatrell, Interactive Spatial Data Analysis, Prentice Hall, 1996 ISBN: 0582244935.等に詳細に記載されている。重みをつけた空間平均は以下の式で示される。
Figure JPOXMLDOC01-appb-M000001
  ここで重みづけは、
Figure JPOXMLDOC01-appb-M000002
  とする。
  図24、重みをつける空間平均法を説明するための図を示す。図24では、一例として、識別番号3の発電パネル1505の、識別文字Hのストリング1502に含まれる識別番号38の発電モジュール1501に注目している。この発電モジュール1501を中心とした半径τの半球内の領域2402に含まれる発電モジュール1501の日照度の平均値から、注目している発電モジュール1501の日照度を推定する。
 半径τの半球内の領域2402に含まれる発電モジュール1501の日照度を利用するにあたり、注目している発電モジュール1501からの距離に応じて利用する日照度に重み付けを行う。注目する発電モジュール1501に近い発電モジュール1501の日照度を計算結果により反映させるために重み付けの方法として下記のようなカーネル関数を用いる。
Figure JPOXMLDOC01-appb-M000003
  ここで上記カーネル関数のlは発電モジュール1501の位置を表す二次元ベクトルであり代表的なカーネルは、
Figure JPOXMLDOC01-appb-M000004
  である。
 上記のカーネル関数を用いて注目した発電モジュール1501に関して求めた日照度をモジュール日照状況記憶部204へ格納する(ステップS3004)。以上の処理を、対象範囲2401内の全ての発電モジュール1501を注目発電モジュール1501として行い(ステップS3001)、日照の空間的な連続性を増加させる。
 図25に、空間平均処理を行い発電モジュール1501毎の空間スムージングを行った結果の一例を示す。また、図26Aに、上記処理により補正された日照度を、図26Bに示す値の範囲ごとに異なるテクスチャで表した図を示す。上記の処理を行うことによって、空間的な連続性が高い日照度を推定することができる。実際の日照状況も空間的な連続性が高いと仮定できるので、より正確な日照度を用いて発電モジュール1501の異常を診断することができる。
 発電出力異常診断部207では、推定された日照状況が正しいと仮定したときの出力特性モデルの発電出力期待値と発電出力データを比較することによって、出力が低下していると推定できる発電モジュールを診断する(ステップS2304)。
 図27に、発電出力異常診断処理の一例を説明するフローチャートを示す。まず、発電モジュール1501毎に期待発電出力を算出する(ステップS2701)。ここでは、発電モジュール1501毎に推定された日照度によって、発電出力を算出する。具体的には、識別番号iの発電モジュール1501の補正された日照度をS’(i)とすると、この発電モジュール1501の期待出力電力W’(i)は、W’(i)=200×r(i)×S’(i)によって算出することができる。
 図28に、各発電モジュール1501に関して期待出力電力を推定した結果を示す。例えば、識別番号74の発電モジュール1501の期待出力電力はW’(74)=200×1.10×0.985≒217(kW)と算出することができる。続いて、ストリング1502単位で期待出力電力を足し合わせて、その合計値とストリング1502毎に得られている出力電力とを比較する(ステップS2702)。
 図29に、ストリング1502毎の算出結果の一例を示す。続いて、ストリング1502毎に得られている出力電力と期待出力電力との差ΔWが所定値以下であるストリングのみを抽出する(ステップS2703)。仮にΔWが-50以下のものをとすると、図29に示す例では、識別文字Gと識別文字Oのストリング1502が抽出される。
 最後に、出力差ΔWとモジュール毎の期待出力電力とを比較して、異常が発生している発電モジュール1501の位置特定を行う(ステップS2704)。例えば、識別文字Gのストリング1502の出力差ΔWは-93であり、同時に2つの発電モジュール1501が故障しないと仮定すると、期待出力電力が93以下のモジュールが故障したという理由ではこの出力差ΔWの発生が説明できない。よって、識別番号31と識別番号32との発電モジュール1501は候補から除外され、識別番号33乃至識別番号34の発電モジュール1501のいずれかに異常が発生していると特定することができる。また、識別文字Oのストリング1502の出力差ΔWは-194であり、このストリング1502のすべての発電モジュール1501に異常が発生している可能性がある。
 異常診断を行う際には、複数回の診断結果を用いて総合的に診断を行うことが可能であり、そのような場合には異常が発生している発電モジュール1501の位置を更に特定することができる。
 図30に発電出力データを時系列で取得した場合の異常診断方法の一例を説明するための図を示す。発電出力データを時間t1~t6毎に格納し、モジュール日照状況記憶部204も対応する時間t1~t6毎に記憶領域を用意して、時空間的な空間補間を用いた場合には、より高精度な日照度を推定することが可能になる。発電出力データを時系列で取得すると、雲が移動する方向や速さを考慮して、日照状況を推定することができる。例えば、時間t2の日照度は、時間t1と時間t3のときの日照度に対して連続的に変化するように補正される。このように、日照度が前後の時間における日照度に対して連続的に変化するように補正すると、正確な異常診断が可能になる。異常診断の際には、時間t1~t6毎に取得された出力電力データを用いて上記異常診断の動作を行う。
 上記のように、本実施形態によれば、発電モジュール1501毎に日照状況を考慮した期待出力電力を算出して異常診断を行うため、太陽光発電システムについて発電モジュール単位の異常を検出する異常診断装置および異常診断方法を提供することができる。
 すなわち、本実施形態に係る異常診断装置および異常診断方法よれば、正確に異常を検出することができ、さらに異常が生じた発電モジュールの位置を推定することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 100…異常監視システム、101、1501…発電モジュール、102、1502…ストリング、103、1503…計測装置、104…制御装置、105…異常診断装置、201…モジュール位置データ格納部、202…出力電力データ格納部、203…出力特性モデル格納部、204…日照状況推定部、205…モジュール日照状況格納部、206…日照状況空間補正部、207…出力電力異常判定部、401…モジュール位置データ、501…雲、502…陰、601,602,701,702…出力特性モデル、703,704…ブロック、901…ストリングG、1101…異常ストリング、1504…通信装置、1505…発電パネル、1506…ネットワーク、1507…遠隔診断サーバ。

Claims (14)

  1.  発電モジュールが複数個直列に接続された単位を表すストリングごとに、該ストリングから出力された実際の出力電力と、発電に影響を及ぼす日照状況から出力電力を予測する出力特性モデルとを用いて、前記発電モジュールごとに前記実際の出力電力に最も近い日照状況の値を日照状況推定値として推定する日照状況推定部と、
     着目ストリングに含まれる発電モジュールの日照状況推定値の総和である第1総推定値を算出し、該着目ストリングの長尺方向の面に隣接する第1隣接ストリングごとに、隣接ストリングに含まれる発電モジュールの日照状況推定値の総和である第2総推定値を算出し、該第1総推定値が該第2総推定値のそれぞれで決定される範囲内に収まるように前記日照状況推定値に補正を行い補正日照状況推定値を得る日照状況空間補正部と、
     前記出力特性モデルおよび前記補正日照状況推定値を用いて算出した発電モジュールで期待される期待出力電力のストリング内の総和と前記実際の出力電力との差が第1閾値以上であり、かつ前記実際の出力電力が前記期待出力電力よりも小さい場合に、異常が発生していると判定する出力電力異常判定部と、を具備する異常診断装置。
  2.  前記日照状況空間補正部は、前記第1総推定値が、前記第1隣接ストリングの前記第2総推定値のそれぞれよりも第2閾値以上に小さい場合または第3閾値以上に大きい場合に、前記第1総推定値を複数の前記第2総推定値の平均値に置き換えるとともに、前記平均値または前記第1総推定値が、前記着目ストリングの短尺方向の面に隣接する第2隣接ストリングの第2総推定値のそれぞれで決定される範囲内にある場合、前記平均値または前記第1総推定値を階段状に再配分した値を補正日照状況推定値とする請求項1に記載の異常診断装置。
  3.  前記日照状況空間補正部は、前記着目発電モジュールの補正日照状況推定値と、該着目発電モジュールに隣接する発電モジュールの補正日照状況推定値との平均値を、該着目発電モジュールの新たな補正日照状況推定値とする請求項2に記載の異常診断装置。
  4.  発電モジュールが設置された位置を示すモジュール位置データを格納するモジュール位置データ格納部をさらに具備し、
     前記出力電力異常判定部は、前記モジュール位置データを参照して、異常が発生していると判定されたストリングである異常ストリング内で、前記期待出力電力が前記差以上である発電モジュールを異常発電モジュールと判定する請求項1から請求項3のいずれか1項に記載の異常診断装置。
  5.  前記出力電力異常判定部は、前記異常ストリングのうち、前記第1隣接ストリングと前記着目ストリングとが隣接する順番に、2以上のストリングが連続して異常ストリングと判定されている場合は、該隣接するストリングを異常ストリングと判定しない請求項4に記載の異常診断装置。
  6.  前記出力特性モデルは、前記発電モジュール全てに共通の基本モデルと、発電モジュールごとのスケールパラメータとを乗算することにより生成される請求項1から請求項5のいずれか1項に記載の異常診断装置。
  7.  前記日照状況は、前記発電モジュールに対する日照量であるか、または前記日照量および気温であるかのどちらかとする請求項1から請求項6のいずれか1項に記載の異常診断装置。
  8.  発電モジュールが複数個直列に接続された単位を表すストリングごとに、該ストリングから出力された実際の出力電力と、発電に影響を及ぼす日照状況から出力電力を予測する出力特性モデルとを用いて、前記発電モジュールごとに前記実際の出力電力に最も近い日照状況の値を日照状況推定値として推定する工程と、
     着目ストリングに含まれる発電モジュールの日照状況推定値の総和である第1総推定値を算出し、該着目ストリングの長尺方向の面に隣接する第1隣接ストリングごとに、隣接ストリングに含まれる発電モジュールの日照状況推定値の総和である第2総推定値を算出し、該第1総推定値が該第2総推定値のそれぞれで決定される範囲内に収まるように前記日照状況推定値に補正を行い補正日照状況推定値を得る工程と、
     前記出力特性モデルおよび前記補正日照状況推定値を用いて算出した発電モジュールで期待される期待出力電力のストリング内の総和と前記実際の出力電力との差が第1閾値以上であり、かつ前記実際の出力電力が前記期待出力電力よりも小さい場合に、異常が発生していると判定する工程と、
    を具備する異常診断方法。
  9.  直列に接続された複数の発電モジュールを備えたストリンリングと、前記ストリングから出力された電力を計測する計測手段と、前記計測手段により計測された電力を出力する通信手段と、を備えた太陽光発電システムの前記発電モジュールの異常を診断する異常診断装置であって、
     前記通信手段から出力された電力の値を格納した発電出力データ格納部と、
     前記複数の発電モジュールが設置された位置データを格納したモジュール位置データ格納部と、
     前記複数の発電モジュールそれぞれについて、日照状況と出力電力との関係を表す出力特性モデルを格納した出力特性モデル格納部と、
     前記発電出力データ格納部に格納された電力値と、前記出力特性モデルとから、発電モジュール毎の日照状況を推定する出力日照状況推定部と、
     前記出力日照状況推定部で推定された日照状況を記憶するモジュール日照状況記憶部と、
     前記位置データを用いて、前記モジュール日照状況記憶部に記憶された日照状況を補正する日照状況空間補正部と、
     補正された日照状況と前記出力特性モデルとから、前記発電モジュール毎の期待出力電力を算出し、前記発電出力データ格納部に格納された電力値と比較して前記複数の発電モジュールの異常を診断する発電出力異常診断部と、を備えた異常診断装置。
  10.  前記日照状況は、日照度を含む請求項9記載の異常診断装置。
  11.  前記日照状況は、温度をさらに含む請求項10記載の異常診断装置。
  12.  前記出力特性モデルは、すべての発電モジュールに共通の基本モデルに、前記発電モジュール毎のスケールパラメータを掛け合わせた特性モデルである請求項9記載の異常診断装置。
  13.  前記日照状況空間補正部は、前記発電モジュールの前記日照状況の推定値を、前記発電モジュールを含む所定の領域内の他の発電モジュールの前記日照状況の推定値と平均した値とする空間スムージング手段を備える請求項9記載の異常診断装置。
  14.  前記発電出力異常診断部は、前記発電モジュールの期待出力電力を算出する手段と、
    前記発電モジュールの期待出力電力を前記ストリングごとに足し合わせた値と、実際の出力電力データとの出力差を算出する手段と、前記出力差が閾値を超えるストリングを異常ストリングとして検知する手段と、前記異常ストリングの出力差と前記異常ストリングの複数の発電モジュールそれぞれの前記期待出力電力の値とを比較することにより、異常が生じている可能性のある発電モジュールを特定する手段と、を備える請求項9記載の異常診断装置。
PCT/JP2010/068873 2010-02-26 2010-10-25 異常診断装置および異常診断方法 WO2011104931A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10846594.9A EP2541611B1 (en) 2010-02-26 2010-10-25 Fault diagnosis device and fault diagnosis method
CN201080055255.8A CN102640297B (zh) 2010-02-26 2010-10-25 异常诊断装置和异常诊断方法
AU2010346725A AU2010346725B2 (en) 2010-02-26 2010-10-25 Fault diagnosis device and fault diagnosis method
US13/594,340 US9209743B2 (en) 2010-02-26 2012-08-24 Fault detection apparatus and fault detection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010042897A JP5214650B2 (ja) 2010-02-26 2010-02-26 異常診断装置および方法
JP2010-042897 2010-02-26
JP2010100113A JP5472913B2 (ja) 2010-04-23 2010-04-23 太陽光発電システムの異常診断装置
JP2010-100113 2010-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/594,340 Continuation US9209743B2 (en) 2010-02-26 2012-08-24 Fault detection apparatus and fault detection method

Publications (1)

Publication Number Publication Date
WO2011104931A1 true WO2011104931A1 (ja) 2011-09-01

Family

ID=44506369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068873 WO2011104931A1 (ja) 2010-02-26 2010-10-25 異常診断装置および異常診断方法

Country Status (5)

Country Link
US (1) US9209743B2 (ja)
EP (1) EP2541611B1 (ja)
CN (1) CN102640297B (ja)
AU (1) AU2010346725B2 (ja)
WO (1) WO2011104931A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500738A1 (en) * 2011-03-17 2012-09-19 Kabushiki Kaisha Toshiba Abnormality diagnosis for photovoltaic power generation system
AT512996A1 (de) * 2012-06-12 2013-12-15 Fronius Int Gmbh Photovoltaikanlage
CN104272128A (zh) * 2012-05-29 2015-01-07 东京毅力科创株式会社 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统
CN111693822A (zh) * 2020-06-23 2020-09-22 西安重冶电控科技有限公司 一种基于云平台的电气设备线路故障检测系统
US11086278B2 (en) 2019-08-29 2021-08-10 Inventus Holdings, Llc Adaptive system monitoring using incremental regression model development

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547033B1 (en) * 2011-11-12 2017-01-17 Sunpower Corporation Hierarchical fault prediction, detection and localization in PV systems with distributed electronics
JP6075997B2 (ja) 2012-08-27 2017-02-08 株式会社日立製作所 太陽光発電システムの故障診断方法
US9939485B1 (en) * 2012-11-14 2018-04-10 National Technology & Engineering Solutions Of Sandia, Llc Prognostics and health management of photovoltaic systems
JP6115764B2 (ja) * 2013-03-14 2017-04-19 オムロン株式会社 太陽光発電システム、異常判断処理装置、異常判断処理方法、およびプログラム
EP3128635A4 (en) * 2014-03-31 2017-08-30 Tensor Consulting Co. Ltd. Power generation system analysis device and method
DE102014119607B4 (de) 2014-12-23 2021-09-30 Sma Solar Technology Ag Ermittlung der Leistungsdichteverteilung eines Photovoltaikgenerators aus zeitlichen Verläufen seiner elektrischen Leistung
JP6573129B2 (ja) * 2014-12-24 2019-09-11 パナソニックIpマネジメント株式会社 監視装置、太陽光発電装置、監視システムおよび監視方法
CN105515531B (zh) * 2015-12-11 2017-09-12 中电投江苏新能源有限公司 一种基于监控系统的光伏组件衰减异常诊断方法
US10103537B2 (en) 2015-12-16 2018-10-16 Ge Energy Power Conversion Technology Ltd Ground fault detection and interrupt system
CN105811881B (zh) * 2016-05-27 2017-09-15 福州大学 一种在线的光伏阵列故障诊断系统实现方法
US10922634B2 (en) * 2017-05-26 2021-02-16 General Electric Company Determining compliance of a target asset to at least one defined parameter based on a simulated transient response capability of the target asset and as a function of physical operation data measured during an actual defined event
KR101803056B1 (ko) * 2017-08-25 2017-11-29 (주)대연씨앤아이 태양광 발전 모니터링 시스템을 위한 오류 보정 시스템 및 방법
US11387778B2 (en) 2018-10-17 2022-07-12 Solaredge Technologies Ltd. Photovoltaic system failure and alerting
CN111049476A (zh) * 2019-12-30 2020-04-21 杭州光曲智能科技有限公司 一种分布式光伏电站监控装置及方法
CN111539550B (zh) * 2020-03-13 2023-08-01 远景智能国际私人投资有限公司 光伏阵列工作状态的确定方法、装置、设备及存储介质
CN111555716B (zh) 2020-03-13 2023-07-28 远景智能国际私人投资有限公司 光伏阵列工作状态的确定方法、装置、设备及存储介质
CN112988081B (zh) * 2021-05-17 2021-08-17 浙江正泰仪器仪表有限责任公司 一种电量数据存储、抄读方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185235A (ja) * 1994-12-27 1996-07-16 Sharp Corp 太陽電池モジュールの異常チェック機能付連系形太陽光発電装置
JP2874156B2 (ja) 1994-04-13 1999-03-24 キヤノン株式会社 発電システム
JP2005340464A (ja) 2004-05-26 2005-12-08 Sharp Corp 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム
JP2006310780A (ja) * 2005-03-29 2006-11-09 Kyocera Corp 太陽光発電システム
JP2008091828A (ja) * 2006-10-05 2008-04-17 National Institute Of Advanced Industrial & Technology 太陽電池アレイ故障診断方法
JP2008271693A (ja) * 2007-04-19 2008-11-06 Hitachi Ltd 太陽光発電システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669987A (en) * 1994-04-13 1997-09-23 Canon Kabushiki Kaisha Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same
DE69620124T2 (de) * 1995-12-20 2002-10-31 Sharp Kk Wechselrichtersteuerungsverfahren und -vorrichtung
US7333916B2 (en) * 2003-04-04 2008-02-19 Bp Corporation North America Inc. Performance monitor for a photovoltaic supply
JP5051854B2 (ja) * 2006-05-02 2012-10-17 国立大学法人 奈良先端科学技術大学院大学 太陽電池の評価方法及び評価装置並びにその利用
JP5162737B2 (ja) * 2006-05-17 2013-03-13 英弘精機株式会社 太陽電池の特性評価装置
EP2089913B1 (en) * 2006-12-06 2015-07-22 Solaredge Technologies Ltd Monitoring of distributed power harvesting systems using dc power sources
US8300439B2 (en) * 2007-03-07 2012-10-30 Greenray Inc. Data acquisition apparatus and methodology for self-diagnosing of AC modules
US20090207543A1 (en) * 2008-02-14 2009-08-20 Independent Power Systems, Inc. System and method for fault detection and hazard prevention in photovoltaic source and output circuits
US9077206B2 (en) * 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
FR2941328B1 (fr) * 2009-01-19 2012-11-02 Commissariat Energie Atomique Procede de prevision de la production electrique d'un dispositif photovoltaique
WO2011031889A1 (en) * 2009-09-11 2011-03-17 Wattminder, Inc System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants
WO2012006723A1 (en) * 2010-07-16 2012-01-19 Mohamed Zakaria Mohamed Ahmed Shamseldein Reconfigurable photovoltaic structure
JP2012169581A (ja) * 2011-01-28 2012-09-06 Sharp Corp 光発電装置、光発電システム、および車両
US8165813B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for efficiently performing area-to-point conversion of satellite imagery for photovoltaic power generation fleet output estimation
US8165812B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for estimating power data for a photovoltaic power generation fleet
EP2587334A1 (en) * 2011-10-24 2013-05-01 Imec Reconfigurable PV configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874156B2 (ja) 1994-04-13 1999-03-24 キヤノン株式会社 発電システム
JPH08185235A (ja) * 1994-12-27 1996-07-16 Sharp Corp 太陽電池モジュールの異常チェック機能付連系形太陽光発電装置
JP2005340464A (ja) 2004-05-26 2005-12-08 Sharp Corp 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム
JP2006310780A (ja) * 2005-03-29 2006-11-09 Kyocera Corp 太陽光発電システム
JP2008091828A (ja) * 2006-10-05 2008-04-17 National Institute Of Advanced Industrial & Technology 太陽電池アレイ故障診断方法
JP2008271693A (ja) * 2007-04-19 2008-11-06 Hitachi Ltd 太陽光発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONY GATRELL: "Interactive Spatial Data Analysis, Trevor Bailey", 1996, PRENTICE HALL

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500738A1 (en) * 2011-03-17 2012-09-19 Kabushiki Kaisha Toshiba Abnormality diagnosis for photovoltaic power generation system
US9048781B2 (en) 2011-03-17 2015-06-02 Kabushiki Kaisha Toshiba Abnormality diagnosis device, method therefor, and computer-readable medium
CN104272128A (zh) * 2012-05-29 2015-01-07 东京毅力科创株式会社 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统
CN104272128B (zh) * 2012-05-29 2016-11-09 优信电子(香港)有限公司 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统
AT512996A1 (de) * 2012-06-12 2013-12-15 Fronius Int Gmbh Photovoltaikanlage
US11086278B2 (en) 2019-08-29 2021-08-10 Inventus Holdings, Llc Adaptive system monitoring using incremental regression model development
CN111693822A (zh) * 2020-06-23 2020-09-22 西安重冶电控科技有限公司 一种基于云平台的电气设备线路故障检测系统
CN111693822B (zh) * 2020-06-23 2022-04-12 西安重冶电控科技有限公司 一种基于云平台的电气设备线路故障检测系统

Also Published As

Publication number Publication date
AU2010346725A1 (en) 2012-10-11
CN102640297B (zh) 2015-01-14
EP2541611B1 (en) 2018-10-10
US20120323507A1 (en) 2012-12-20
AU2010346725B2 (en) 2013-11-28
CN102640297A (zh) 2012-08-15
US9209743B2 (en) 2015-12-08
EP2541611A4 (en) 2013-11-06
EP2541611A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011104931A1 (ja) 異常診断装置および異常診断方法
JP5330438B2 (ja) 異常診断装置およびその方法、コンピュータプログラム
JP5607772B2 (ja) 太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法
US9214894B2 (en) Evaluation method for solar power generation system, evaluation device, and evaluation program
JP5214650B2 (ja) 異常診断装置および方法
US11022720B2 (en) System for forecasting renewable energy generation
US20120296584A1 (en) Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller
US20160019323A1 (en) Solar power generation system, abnormality determination processing device, abnormality determination processing method, and program
KR102283487B1 (ko) 실시간 위성자료와 수치모델자료를 이용한 머신러닝기반 태양광 발전량 예측시스템
KR102054163B1 (ko) 태양광 발전량 예측 시스템 및 이를 포함하는 태양광 발전 장치
KR101808978B1 (ko) 발전 시스템 분석 장치 및 방법
JP5977272B2 (ja) 日射強度推定装置、日射強度推定システム及び日射強度推定方法
JP2016019404A (ja) 故障判定装置
CN111191406B (zh) 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置
JP6148508B2 (ja) 発電設備に対する収益分析装置およびその方法、ならびにプログラム
CN117150216B (zh) 一种电力数据回归分析方法及系统
CA2996731A1 (en) Methods and systems for energy use normalization and forecasting
JP5472913B2 (ja) 太陽光発電システムの異常診断装置
Acurio et al. Design and implementation of a machine learning state estimation model for unobservable microgrids
JP7300893B2 (ja) 太陽光発電出力推定装置、太陽光発電出力推定方法、および太陽光発電出力推定プログラム
Obeidi et al. Sunspot number-based neural network model for global solar radiation estimation in Ghardaïa
CN118410445B (zh) 分布式光伏异常数据检测方法、系统、电子设备及存储介质
KR102524158B1 (ko) 디지털 트윈 기반 태양광 발전소 관리 솔루션 제공 방법 및 장치
KR20200102649A (ko) 신재생 에너지 발전기의 발전량 극대화 가이드 시스템 및 관리 서버
JP2022146708A (ja) 太陽光発電性能評価装置、太陽光発電性能評価方法、およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055255.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7707/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010346725

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010846594

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010346725

Country of ref document: AU

Date of ref document: 20101025

Kind code of ref document: A