WO2011104931A1 - 異常診断装置および異常診断方法 - Google Patents
異常診断装置および異常診断方法 Download PDFInfo
- Publication number
- WO2011104931A1 WO2011104931A1 PCT/JP2010/068873 JP2010068873W WO2011104931A1 WO 2011104931 A1 WO2011104931 A1 WO 2011104931A1 JP 2010068873 W JP2010068873 W JP 2010068873W WO 2011104931 A1 WO2011104931 A1 WO 2011104931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- output
- sunshine
- string
- power
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 45
- 238000010248 power generation Methods 0.000 claims abstract description 301
- 238000012937 correction Methods 0.000 claims abstract description 42
- 238000003860 storage Methods 0.000 claims abstract description 37
- 230000005856 abnormality Effects 0.000 claims description 113
- 230000002159 abnormal effect Effects 0.000 claims description 35
- 238000013500 data storage Methods 0.000 claims description 33
- 238000009499 grossing Methods 0.000 claims description 13
- 238000012935 Averaging Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 28
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004171 remote diagnosis Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to an abnormality diagnosis device and an abnormality diagnosis method.
- the solar power generation system includes a string in which a plurality of power generation modules are connected in series, and is configured to sense a power generation output (power value or current value) in units of strings.
- the power generation output of each power generation module decreases gradually even under the same sunshine conditions due to deterioration over time.
- the power generation output may be abruptly reduced due to manufacturing quality problems or physical damage.
- a power generation module in which an abnormality such as a problem in manufacturing quality or physical damage has occurred has an output close to zero. Therefore, if left untreated, it does not contribute to power generation.
- an abnormality diagnosis device is required to repair and replace such a power generation module whose power generation output has sharply decreased at an early stage.
- a sensor such as an ammeter
- a string including an abnormal module is detected by comparing the power generation output for each string.
- the average value of the power generation output of each string is calculated. For example, a string that is 20% lower than the average value is regarded as abnormal.
- JP 2005-340464 A Japanese Patent No. 2874156
- FIG. 7B It is a figure which shows an example of the parameter used by FIG. 7D.
- FIG. 7D It is a flowchart which shows operation
- amendment part It is a figure which shows an example of the 1st process of the correction process of a sunshine condition space correction
- FIG. 9C It is a figure which shows an example which visualized the correction process result shown to FIG. 9C. It is a flowchart which shows operation
- FIG. 22B It is a figure which shows an example of the sunlight value calculated for every electric power generation module. It is the figure which showed the sunshine value shown in FIG. 21 with the texture. It is a figure which shows an example of the parameter used by FIG. 22B. It is a flowchart for demonstrating an example of operation
- FIG. 26A It is the figure which showed the sunshine situation shown in FIG. 25 with the texture. It is a figure which shows an example of the parameter used by FIG. 26A. It is a flowchart for demonstrating an example of the method of diagnosing the electric power generation module in which abnormality has generate
- the abnormality monitoring system 100 includes a power generation module 101, a measurement device 103, a control device 104, and an abnormality diagnosis device 105.
- the power generation module 101 is a power generation panel that generates power by receiving light such as sunlight, and a plurality of power generation modules 101 are connected in series to form one string 102. In the example of FIG. 1, five power generation modules 101 are connected in series to form one string 102, and a plurality of strings 102 are installed.
- the measuring device 103 is connected to each string 102 and measures the output current or output voltage of the string 102.
- the control device 104 controls the release voltage and the like of the plurality of strings 102.
- the abnormality diagnosis device 105 receives the measurement values of the plurality of strings 102 measured from the respective measurement devices 103, and determines the string 102 or the power generation module 101 having an abnormality based on the measurement values. Note that the abnormality diagnosis device 105 is not directly connected to the measurement device 103, but a server (not shown) is connected to the measurement device 103 to accumulate output values from the measurement devices 103. May determine by receiving data from the server.
- the abnormality diagnosis apparatus 105 includes a module position data storage unit 201, an output power data storage unit 202, an output characteristic model storage unit 203, a sunshine situation estimation unit 204, a module sunshine situation storage unit 205, and a sunshine situation space correction unit. 206, and an output power abnormality determination unit 207.
- the module position data storage unit 201 stores the position data where each power generation module is installed as module position data.
- the module position data will be described later with reference to FIG.
- the output power data storage unit 202 stores the power value measured for a certain period in association with each string 102 as output power data.
- the output power data may be a current value or a voltage value.
- the output characteristic model storage unit 203 stores, for each power generation module 101, an output characteristic model capable of predicting output power from the sunshine situation that affects power generation such as the amount of sunlight and temperature.
- the output characteristic model may be any model as long as the expected output power indicating the predicted value of the output power assumed by the power generation module 101 can be calculated according to the sunshine situation.
- a model for calculating the expected output power for example, a neural network or a linear regression model may be used.
- the output characteristic model stored in the output characteristic model storage unit 203 will be described later with reference to FIG.
- the sunshine situation estimation unit 204 receives the output power data from the output power data storage unit 202 and the output characteristic model from the output characteristic model storage unit 203, and estimates the value of the sunshine situation closest to the output power data as the sunshine situation estimated value. To do. Specifically, the amount of sunshine when the output power data is applied to the output characteristic model is calculated for each power generation module 101 as a sunshine situation estimated value.
- the module sunshine situation storage unit 205 receives the sunshine situation estimated value from the sunshine situation estimation unit 204 and stores it. Further, the module sunshine situation storage unit 205 receives and stores a corrected sunshine situation estimated value indicating a sunshine situation estimated value corrected from the sunshine situation space correcting unit 206 described later.
- the sunshine situation space correction unit 206 receives the module position data from the module position data storage unit 201 and the sunshine situation estimated value from the module sunshine situation storage unit 205, respectively. And the sunshine condition space correction
- the output power abnormality determination unit 207 receives the output power data from the output power data storage unit 202, the output characteristic model from the output characteristic model storage unit 203, and the updated sunshine situation estimated value from the module sunshine situation storage unit 205. Then, the output power abnormality determination unit 207 compares the expected output power (specifically, the sum of the expected output power of the power generation module 101 in the string 102) calculated by the output characteristic model with the actual output power data. Then, the power generation module 101 whose output is reduced and is estimated to be abnormal is determined.
- the abnormality includes a state where the power generation cannot be generated due to a complete failure and a state where the power generation amount is significantly lower than the power generation amount normally assumed. For example, when only about 50% of output power can be obtained from the normally assumed power generation amount, it is assumed that the power generation module is abnormal.
- the operation of the output power abnormality determination unit 207 will be described later with reference to FIGS. 10 and 11.
- step S301 module position data is read into the module position data storage unit 201, and an output characteristic model is read into the output characteristic model storage unit 203. Further, the measuring apparatus 103 measures the output power for each string 102 at regular intervals and stores it in the output power data storage unit 202. Note that the module position data and the output characteristic model are read by the external reading means when the apparatus is first started or periodically and stored in the module position data storage unit 201 and the output characteristic model storage unit 203, respectively. Also good.
- step S302 the sunshine situation estimation unit 204 estimates the sunshine situation for each power generation module 101 from the output power data, and calculates the estimated sunshine situation value.
- step S303 the sunshine situation space correction unit 206 spatially corrects the sunshine situation for each power generation module 101 with reference to the module position data.
- step S304 the output power abnormality determination unit 207 determines whether there is an abnormality in the power generation module 101 using the corrected sunshine situation estimated value for each power generation module 101.
- the string 102 is formed with five horizontal rows of the power generation modules 101 as one set. Furthermore, the strings 102 are arranged in 6 rows and 3 rows, and a total of 18 strings (90 power generation modules 101) are installed. Each power generation module 101 is given IDs up to 1, 2,. Each string 102 is given a group ID. For example, the group ID of the strings 102 formed by the power generation modules 101 having IDs 1 to 5 is A. Hereinafter, the string 102 having the group ID A is also referred to as a string A.
- 18 strings are taken as an example, but the present invention is not limited to this, and any number and any arrangement may be used.
- the ID, group ID, X coordinate, and Y coordinate of the power generation module 101 shown in FIG. 4A are stored as module position data 401.
- the X coordinate and the Y coordinate position coordinates on an artificial grid may be used as in the module position data 401, or more detailed latitude and longitude values may be used.
- FIG. 5A shows the output power data in a state where the shadow 102 by the cloud 501 is applied to the string 102 arranged as shown in FIG. 4A.
- the shadow 502 by the cloud 501 is applied in the vicinity of the strings A, B, C, G, H, and I, and the ID (identification number) of the power generation module 101 is 35 and 74 (hereinafter referred to as the power generation module 35, power generation). Assume that there is an abnormality in the power generation module of module 74).
- FIG. 5B is a table showing output power data for each string 102 stored in the output power data storage unit 202 in the situation shown in FIG. 5A.
- the output power sampled within the same time for each group ID is stored in the table.
- the output power data may be an average over time or a total sum. Referring to the table shown in FIG. 5B, it can be seen that the power generation module 101 in the portion where the shade 502 is applied has lower output power than the power generation module 101 in the portion where there is no shade 502.
- FIG. 6A shows the value of the scale parameter r for each power generation module.
- FIG. 6B is an example of an output characteristic model using the scale parameter r for each power generation module, and is a graph showing how the output power changes with respect to the amount of sunlight.
- the output characteristic model 601 shows output characteristics when r is 1.0, and this is a basic model.
- the output characteristic model 602 shows output characteristics when r is less than 1.0.
- the expected output power can be determined by this output characteristic model.
- FIG. 6 uses a univariate model, for example, a bivariate model added with temperature may be used.
- FIG. 7A shows output characteristics using the scale parameter r of FIG. 6A.
- a basic model of the output characteristic model in FIG. 7A is expressed by Expression (1).
- W 200 * S (1)
- W is the output power
- S is the estimated sunshine situation value.
- the output characteristic model can be expressed by Expression (2).
- W (i) 200 * r (i) * S (i) (2)
- the output characteristic model 701 in FIG. 7A shows the output characteristic of the power generation module 74, and the output characteristic model 702 shows the output characteristic of the power generation module 90.
- FIG. 7B shows a result of calculating the estimated sunshine situation values shown above for each string 102.
- Blocks 703 and 704 indicate power generation modules “74” and “90”, respectively. Since the estimated sunshine situation value of each power generation module 101 knows only the output power for each string 102, the estimated sunshine situation value of the power generation module 101 in the string 102 is estimated to be uniform.
- FIG. 7C is a diagram in which the result of FIG. 7B is visually expressed by hatching according to the estimated sunshine situation value
- FIG. 7D is a table showing the type of hatched line corresponding to the estimated sunshine situation value. According to FIG. 7C, it can be seen that the estimated sunshine situation value of the string O is lower than that of the surrounding strings.
- step S ⁇ b> 801 spatial smoothing is performed on the string 102 in which sunshine varies.
- the estimated sunshine situation of the string 102 of interest (hereinafter referred to as the string of interest) and the distances from the power generation modules 101 forming the string of interest 102 to the power generation modules 101 forming the strings 102 other than the string of interest 102
- Spatial smoothing processing is performed using the sunshine condition estimation values of strings 102 (hereinafter referred to as adjacent strings) adjacent to both sides of the string of interest 102 including the power generation module 101 having the smallest difference and the shortest distance.
- the surface in the longitudinal direction represents the surface on the long side if the string is rectangular, and the surface on the side where the valleys and valleys follow if the string is corrugated. Specifically, in FIG.
- FIG. 9A shows the estimated sunshine situation values for each string 102 for which processing in step S801 has been completed. The same spatial smoothing is performed not only when the V-shaped sunshine varies, but also when there is a variation in the V-shaped sunshine, which is a state where only the sunshine of the center string 102 of the three adjacent strings 102 is high. .
- step S ⁇ b> 802 if the estimated sunshine situation value of the string of interest 102 is within the range of sunshine situation estimates of the strings 102 on both sides adjacent to the surface in the short direction of the string of interest 102, Redistribution of estimated sunshine situation values is performed within the string of interest 102 so that the sum does not change. This is because it is estimated that the estimated sunshine situation values of the power generation modules in the string 102 are uniform, so the sunshine situation of the power generation modules 101 in the string of interest 102 is maintained while maintaining the sum of the estimated sunshine situation values of the string of interest 102. This is because the spatial continuity with respect to sunshine can be reproduced by providing a slope to the estimated value.
- the string G901 (right adjacent to the string A) is adjacent to the string A most closely in the string G901 in accordance with the sunshine situation estimated value 0.198 of the string A adjacent to the connection direction of the power generation module perpendicularly.
- the estimated sunlight condition value of the power generation module “31” is set to 0.198.
- the sunshine situation estimated value 1.000 of the string M the sunshine situation estimated value of the power generation module “35” closest to the string M in the string G901 is set to 1.000.
- the sunshine conditions of the remaining power generation modules “32”, “33”, and “34” are not changed.
- FIG. 9B shows a result of performing a slope calculation on the estimated sunshine condition of the power generation module in the string with respect to the estimated sunshine condition of FIG. 9A.
- step S803 spatial smoothing is performed for each power generation module, and finally a corrected sunshine situation estimated value is obtained as an updated sunshine situation estimated value.
- spatial smoothing process in step S803 spatial averaging, spatial median, smoothing by Markov random field, or the like may be applied.
- FIG. 9C shows the result of applying spatial smoothing and performing spatial smoothing for each power generation module.
- the corrected sunshine situation estimated value of each power generation module is obtained by taking the average value of the eight power generation modules adjacent to the power generation module and its own estimated value.
- FIG. 9D is a diagram in which the result of FIG. 9C is represented by hatching according to the corrected sunshine situation estimated value in accordance with the notation of FIG. 7D.
- the continuity of the spatial sunshine situation is improved when compared with the estimated sunshine situation value before the spatial correction shown in FIG. 7C.
- the correction processing in steps S801 and S802 may be applied to the adjacent strings in any way.
- the correction process of step S802 may be applied to adjacent strings on the top, bottom, left and right of the string of interest without performing the correction process of step S801.
- the correction processing in step S801 may be performed using a plurality of strings that are further outside on both sides.
- step S1002 an output difference that is the difference between the output power and the expected output power is calculated for each string. In addition, since the output power is obtained only for each string, the output power and the expected output power are compared by adding the expected output power for each power generation module in units of strings.
- step S1003 for each string, it is determined whether the expected output power is smaller than the output power and the output difference is smaller than the threshold value. If there is no string in which the expected output power is smaller than the output power and the output difference is smaller than the threshold, the abnormality determination process is terminated. If there are one or more strings in which the expected output power is smaller than the output power and the output difference is smaller than the threshold, the process advances to step S1004 as abnormal string candidates.
- step S1004 it is determined whether or not to reduce the abnormal string candidates by referring to the output difference between the strings adjacent to the longitudinal surface of the string. Specifically, when the output difference between adjacent strings is large, these consecutive strings are deleted from the candidates. This is because it is unlikely that a failure will occur in two adjacent strings. If there are strings to be deleted from the abnormal string candidates, these strings are deleted from the candidates, and the remaining strings are set as abnormal string candidates, and the process advances to step S1005. If there is no string to be deleted from the abnormal string candidates, the process directly proceeds to step S1005. Further, when there is no candidate string as a result of deleting the abnormal string candidates, the abnormality determination process is terminated.
- step S1005 the output difference is compared with the expected output power for each power generation module to identify the position of the abnormal module.
- FIG. 11A is a table in which output power, expected output power, and output difference for each string are stored in association with each other
- FIG. 11B shows expected output power for each power generation module
- FIG. 11C is calculated from the output characteristic model. This is an example of the expected output power.
- the power generation module “74” is shown. Specifically, the expected output power of the power generation module “74” is expressed by Expression (7).
- strings C, D, G, and O having an output difference smaller than ⁇ 50 are extracted as abnormal string 1101 candidates in the example of FIG.
- the consecutive strings C and D are deleted from the candidates for the abnormal string 1101, and finally the abnormal string 1101 is determined as the strings G and O.
- an abnormal power generation module position in the abnormal string 1101 is determined.
- the output difference is ⁇ 93, and assuming that the two power generation modules do not fail at the same time, this output difference does not occur because the power generation module whose expected output power is 93 or less has failed. Therefore, the power generation modules 31 and 32 are excluded from the candidates, and any one of the power generation modules “33”, “34”, and “35” is an abnormal power generation module.
- the output difference is ⁇ 194, and all the power generation modules “86” to “90” of the string O may be abnormal.
- FIG. 12 An example of the result display of the abnormality determination process that is finally output is shown in FIG.
- two abnormal strings are detected, and it is determined that one of the power generation modules on the right side from the center is abnormal.
- the user may be able to visually recognize the position of the abnormal power generation module, or the abnormal power generation module may be indicated to the user by a numerical value.
- the abnormality determination process described above may be comprehensively determined using a plurality of determination results. In such a case, further improvement in accuracy can be expected with respect to specifying the position of the power generation module having an abnormality.
- FIG. 13 and FIG. 14 show the results of performing the abnormality determination process using the output power data measured for a long time.
- the variation in sunshine is considered to be a band shape, but in this embodiment, if the variation in sunshine is continuous, the shape is not a problem.
- FIG. 14 shows a case where a storage unit for estimating the module sunshine situation is prepared and output power data is stored in time series for each corresponding time. As described above, when the temporal and spatial correction is performed by adding the temporal correction, it is possible to grasp the sunshine with higher accuracy and to accurately determine the abnormality.
- FIG. 15 schematically shows the solar power generation system and the abnormality diagnosis apparatus according to the second embodiment.
- the solar power generation system includes a plurality of power generation panels 1505 connected to a remote diagnosis server 1507 via a network 1506.
- the power generation panel 1505 includes a plurality of strings 1502, a measuring device 1503 that measures the output voltage and output current of each string, and communication for transmitting the output voltage and output current measured by the measuring device 1503 to the remote diagnosis server 1507.
- the string 1502 includes a plurality of power generation modules 1501 connected in series.
- communication devices 1504 of six power generation panels 1505 are connected to a network 1506.
- the remote diagnosis server 1507 is supplied with the output voltage value and output current value of each string 1502 of the five power generation panels 1505.
- the remote server 1507 is equipped with the abnormality diagnosis apparatus 105 shown in FIG.
- each configuration may be realized by hardware, may be realized by software, or may be realized by a combination of hardware and software.
- FIG. 16 shows an example of power generation module position data stored in the module position data storage unit 201.
- position data where each power generation module 1501 is installed is stored as module position data.
- power generation panels 1505 including 15 power generation modules 1501 arranged in a matrix of 3 rows and 5 columns are arranged at six locations.
- Each power generation module 1501 is assigned an identification number (ID) 1 to 90.
- the string 1502 includes five power generation modules 1501 connected in series.
- Each string 1502 is given a group identification character.
- the power generation module 1501 with an identification number of 1 to 5 constitutes a string 1502 with a group identification character A.
- the module position data storage unit 201 stores the identification number of the power generation module 1501, the group identification character of the string 1502, the identification number of the power generation panel 1505, and the position coordinates (X coordinate, Y coordinate) of the power generation module 1501. Accumulated.
- the position coordinates (X coordinate, Y coordinate) of the power generation module 1501 may be position coordinates on an artificial grid, or may be latitude and longitude.
- the position coordinates may be coordinates having a resolution capable of specifying the position of the power generation module 1501.
- the power generation output data storage unit 202 accumulates the output voltage value and the output current value measured by the measuring device 1503. In the present embodiment, the power generation output data storage unit 202 stores the actual output value for each string 1502 over a certain period as power generation output data.
- the abnormality diagnosis apparatus is configured to be able to present the output voltage value and the output current value measured by the measurement apparatus 1503 to the user by using a monitor of the remote diagnosis server 1507 or a display unit connected to the outside.
- FIG. 18 shows an example of power generation output data in the solar power generation system shown in FIG. Further, in the power generation output data shown in FIG. 18, for example, a cloud shadow is applied to the strings 1502 of the identification characters A, B, C, G, H, and I of the six power generation panels 1505 (identification numbers 1 to 6). Obtained in the situation.
- the power generation output data in FIG. 18 is an integrated value of the output power value calculated from the output voltage and output current measured within a certain time.
- the power generation output data may be an average value of output power values within a fixed time or an integrated value.
- FIG. 19 shows an example of the sunshine situation when the power generation output data shown in FIG. 18 is obtained.
- the six power generation panels 1505 are installed at a distance from each other. Since the power generation panel 1505 with the identification number 1 is located in the shadow of the cloud 1900, the daily illuminance is low. Moreover, since part of the power generation panel 1505 with the identification number 3 is also located in the shadow of the cloud 1900, the daily illuminance is low. In such a sunshine situation, the output power of the strings 1502 of the identification characters A, B, C, G, H, and I tends to be lower than that of the other strings 1502.
- the output characteristic model storage unit 203 stores, for each power generation module 1501, an output characteristic model that can predict the power generation output from the sunshine situation that affects the power generation such as daily illuminance and temperature.
- the output characteristic model only needs to be a model that can calculate the power generation output prediction value with the sunshine condition as an input.
- a neural network or a linear regression model may be used.
- Fig. 6B shows an example of the output characteristic model.
- output characteristics are defined by the basic model 601 and the scale parameter r for each module.
- the basic model 601 is an output characteristic model of an average power generation module with respect to daily illuminance.
- the output characteristic in the case of the scale parameter r can be represented by a graph 602.
- the predicted power generation output value of the power generation module 1501 is determined by calculating the value of the Y axis with respect to the daily illuminance of the X axis using the graph 602.
- FIG. 6B uses a univariate output characteristic model with daily illuminance as a variable.
- a bivariate output characteristic model with daily illuminance and temperature as variables and many other parameters added. It is also possible to use a variable output characteristic model.
- FIG. 20 shows an example of the scale parameter r set for each power generation module 1501.
- the scale parameter r can be set to a value reflecting a quality difference for each power generation module 1501 or an abnormality found in the past.
- the scale parameter r can be set higher in advance.
- scale parameters r may have the same value. Further, the scale parameter r is set to 0.0 for the power generation module 1501 that has been found abnormal in the past and has not yet been replaced. Thus, by setting the state of each power generation module 1501 as the scale parameter r, it is possible to obtain an output characteristic model that takes into account the difference in quality between the power generation modules 1501 and the diagnosed abnormality.
- the module sunshine situation storage unit 204 is a memory area for temporarily storing the estimated sunshine situation value in each power generation module 1501.
- the module sunshine status storage unit 204 is secured in a primary storage area on the remote diagnosis server 1507, for example.
- the output sunshine situation estimation unit 205 uses the power generation output data stored in the power generation output data storage unit 202 and the output characteristic model stored in the output characteristic model storage unit 203 to generate the most generated power output data. It is configured to obtain the sunshine situation for each power generation module 1501 so as to be easy.
- the output sunshine situation estimation unit 205 stores the obtained sunshine situation in the module sunshine situation storage unit 204.
- the basic model for estimating the sunshine situation in the output sunshine situation estimating unit 205 is the same as the model shown in FIG. 7A.
- FIG. 21 shows an example of the daily illuminance of all the power generation modules 1501 estimated by the above calculation.
- FIG. 22A shows a diagram in which the daily illuminance estimated by the above calculation is represented by different textures for each range of values shown in FIG. 22B.
- the estimated daily illuminance of the power generation module 1501 included in the string 1502 of the identification character O is lower than the estimated daily illuminance of the surrounding string 1502.
- the sunshine has spatial continuity. Therefore, it is more accurate to correct the spatial continuity using the position data of the power generation module 1501 so as to improve the spatial continuity. It can be expected that it will be possible to estimate the sunshine.
- the sunshine condition space correction unit 206 includes spatial smoothing means that averages the estimated value of the sunshine condition of the power generation module 1501 with the estimated value of the sunshine condition of other power generation modules in a predetermined area including the power generation module 1501. .
- the spatial smoothing means identifies another power generation module 1501 within a predetermined range based on the position data stored in the module position data storage unit 201 for the target power generation module, and the target power generation stored in the module sunshine situation storage unit 204 Spatial correction is performed on the daily illuminance of the module so as to improve the continuity of the daily illuminance estimated between the power generation module of interest and the other power generation modules.
- the illuminance after spatial correction is stored in the module sunshine situation storage unit 204.
- the power generation output abnormality diagnosis unit 207 calculates the output difference ⁇ W between the means for calculating the expected output power of the power generation module 1501, the value obtained by adding the expected output power of the power generation module 1501 for each string 1502, and the actual output power data.
- a means for calculating, a means for detecting a string 1502 whose output difference ⁇ W exceeds a threshold value as an abnormal string, and an output difference ⁇ W of the abnormal string and the value of each expected output power of the power generation module 1501 constituting the abnormal string are compared. To identify a power generation module 1501 in which an abnormality may occur.
- the power generation output abnormality diagnosis unit 207 compares the power generation output expected value of the output characteristic model with the power generation output data when it is assumed that the estimated sunshine situation is correct, thereby generating a power generation module that can estimate that the output has decreased. Diagnose.
- FIG. 23A shows a flowchart for explaining the operation of abnormality diagnosis.
- the abnormality diagnosis device uses the position data stored in the module position data storage unit 201, the power generation output data stored in the power generation output data storage unit 202, and the output characteristic model stored in the output characteristic model storage unit 203.
- Read step S2301.
- the output sunshine situation estimation unit 205 estimates the illuminance using the read position data, power generation output data, and output characteristic model (step S2302), and records them in the module sunshine situation storage unit 204.
- the sunshine situation space correction unit 206 spatially corrects the illuminance estimated using the position data (step S2303).
- FIG. 23B shows a flowchart for explaining an example of the spatial correction processing.
- the space smoothing means of the sunshine condition space correction unit 206 searches the N power generation modules 1501 in order from the one closest to the power generation module 1501 (step S3002).
- the distance between the power generation modules 1501 can be obtained from the position coordinates stored in the module position data storage unit 1501.
- the daily illuminance s of the power generation module 1501 of interest is estimated based on the daily illuminance s of all the power generation modules 1501 in the region 2402 within the hemisphere having the radius ⁇ from the power generation module 1501 of interest.
- a spatial averaging method weighted by the kernel method is used when estimating the daily illuminance s (step S3003).
- the kernel interpolation method is described in detail in Trevor Bailey, Tony Gatrell, Interactive Spatial Data Analysis, Prentice Hall, 1996 ISBN: 0582244935.
- the weighted spatial average is given by:
- Fig. 24 shows a diagram for explaining the weighted spatial averaging method.
- attention is focused on the power generation module 1501 with the identification number 38 included in the string 1502 with the identification character H of the power generation panel 1505 with the identification number 3.
- the daily illuminance of the power generation module 1501 of interest is estimated from the average value of the daily illuminance of the power generation module 1501 included in the region 2402 in the hemisphere with the radius ⁇ centered on the power generation module 1501.
- the daily illuminance to be used is weighted according to the distance from the power generation module 1501 of interest.
- the following kernel function is used as a weighting method.
- l of the kernel function is a two-dimensional vector representing the position of the power generation module 1501
- a typical kernel is
- the solar illuminance obtained for the power generation module 1501 focused using the kernel function is stored in the module sunshine status storage unit 204 (step S3004).
- the above processing is performed for all the power generation modules 1501 in the target range 2401 as the target power generation module 1501 (step S3001), and the spatial continuity of sunshine is increased.
- FIG. 25 shows an example of the result of performing spatial averaging and performing spatial smoothing for each power generation module 1501.
- FIG. 26A shows a diagram in which the daily illuminance corrected by the above processing is represented by different textures for each value range shown in FIG. 26B.
- the power generation output abnormality diagnosis unit 207 compares the power generation output expected value of the output characteristic model with the power generation output data when it is assumed that the estimated sunshine situation is correct, thereby generating a power generation module that can estimate that the output has decreased. Diagnosis is made (step S2304).
- FIG. 27 shows a flowchart for explaining an example of the power generation output abnormality diagnosis process.
- an expected power generation output is calculated for each power generation module 1501 (step S2701).
- FIG. 28 shows the result of estimating the expected output power for each power generation module 1501.
- the expected output power is added in units of strings 1502, and the total value is compared with the output power obtained for each string 1502 (step S2702).
- FIG. 29 shows an example of the calculation result for each string 1502. Subsequently, only strings whose difference ⁇ W between the output power obtained for each string 1502 and the expected output power is equal to or smaller than a predetermined value are extracted (step S2703). Assuming that ⁇ W is ⁇ 50 or less, in the example shown in FIG. 29, a string 1502 of identification characters G and O is extracted.
- the output difference ⁇ W is compared with the expected output power for each module to identify the position of the power generation module 1501 where the abnormality has occurred (step S2704).
- the reason why the module having an expected output power of 93 or less has failed is that The occurrence cannot be explained. Therefore, the power generation modules 1501 with the identification numbers 31 and 32 are excluded from the candidates, and it can be specified that an abnormality has occurred in any one of the power generation modules 1501 with the identification numbers 33 to 34.
- the output difference ⁇ W of the string 1502 of the identification character O is ⁇ 194, and there is a possibility that an abnormality has occurred in all the power generation modules 1501 of the string 1502.
- FIG. 30 shows a diagram for explaining an example of an abnormality diagnosis method when power generation output data is acquired in time series.
- Power generation output data is stored every time t1 to t6, and the module sunshine situation storage unit 204 also prepares a storage area for each corresponding time t1 to t6, and if space-time spatial interpolation is used, it is higher. It becomes possible to estimate the accurate daily illuminance.
- the sunshine situation can be estimated in consideration of the moving direction and speed of the clouds. For example, the daily illuminance at time t2 is corrected so as to continuously change with respect to the daily illuminance at time t1 and time t3.
- the abnormality diagnosis operation is performed using output power data acquired every time t1 to t6.
- each power generation module 1501 for each power generation module 1501, the expected output power in consideration of the sunshine condition is calculated and the abnormality diagnosis is performed.
- An apparatus and an abnormality diagnosis method can be provided.
- the abnormality diagnosis apparatus and abnormality diagnosis method it is possible to accurately detect an abnormality and to estimate the position of the power generation module where the abnormality has occurred.
- DESCRIPTION OF SYMBOLS 100 ... Abnormality monitoring system 101, 1501 ... Power generation module, 102, 1502 ... String, 103, 1503 ... Measuring device, 104 ... Control device, 105 ... Abnormality diagnosis device, 201 ... Module position data storage unit, 202 ... Output power data Storage unit 203 ... Output characteristic model storage unit 204 ... Sunlight condition estimation unit 205 ... Module sunlight condition storage unit 206 ... Sunlight condition space correction unit 207 ... Output power abnormality determination unit 401 ... Module position data 501 ... Cloud, 502 ... shade, 601, 602, 701, 702 ... output characteristic model, 703, 704 ... block, 901 ... string G, 1101 ... abnormal string, 1504 ... communication device, 1505 ... power generation panel, 1506 ... network, 1507 ... Remote diagnostic server.
Landscapes
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
第1実施形態に係る異常診断装置を含む太陽光発電システムにおける異常監視システムの一例について図1を参照して説明する。
発電モジュール101は、例えば太陽光などの光を受光することにより発電を行う発電パネルであり、発電モジュール101を複数個直列に接続して1つのストリング102を形成する。図1の例では、5個の発電モジュール101を直列に接続して1つのストリング102を形成し、複数のストリング102が設置される。
計測装置103は、ストリング102ごとに接続され、ストリング102の出力電流または出力電圧を計測する。
制御装置104は、複数のストリング102の解放電圧などを制御する。
異常診断装置105は、各計測装置103から計測された複数のストリング102の計測値を受け取り、計測値に基づいて異常があるストリング102または発電モジュール101を判定する。なお、異常診断装置105を計測装置103に直接接続せずに、サーバ(図示せず)を計測装置103に接続して各計測装置103からの出力値を蓄積し、遠隔にある異常診断装置105がサーバからデータを受け取って判定してもよい。
本実施形態に係る異常診断装置105は、モジュール位置データ格納部201、出力電力データ格納部202、出力特性モデル格納部203、日照状況推定部204、モジュール日照状況格納部205、日照状況空間補正部206、および出力電力異常判定部207を含む。
ステップS301では、モジュール位置データ格納部201にモジュール位置データが、出力特性モデル格納部203に出力特性モデルがそれぞれ読み込まれる。さらに、一定期間ごとに計測装置103がストリング102ごとの出力電力を計測し、出力電力データ格納部202に格納する。なお、外部にある読み込み手段により、装置が初めに起動するときまたは周期的にモジュール位置データと出力特性モデルとを読み込み、モジュール位置データ格納部201と出力特性モデル格納部203とにそれぞれ格納してもよい。
まず、モジュール位置データの一例について図4を参照して詳細に説明する。
図4Aでは、発電モジュール101の横一列5個を一組としてストリング102が形成される。さらにストリング102が縦6列、横3列に並列され、計18個のストリング(発電モジュール101は90個)が設置されている。各発電モジュール101には、1、2、・・・、90までのIDが与えられている。また、各ストリング102にグループIDが与えられ、例えばID1から5までの発電モジュール101により形成されるストリング102のグループIDはAである。以下では、グループIDがAのストリング102はストリングAとも呼ばれる。なお、ここでは18個のストリングを一例としているが、これに限らず、任意の数および任意の配列を用いてもよい。
図4Bでは、図4Aに示す発電モジュール101のID、グループID、X座標およびY座標をモジュール位置データ401として格納している。なお、X座標およびY座標は、モジュール位置データ401のように人工的なグリッド上の位置座標を用いてもよいし、より詳細な緯度および経度の値を用いてもよい。
図5Aは、図4Aに示す配置がされているストリング102に、雲501による陰502がかかった状態での出力電力データを示す。具体的には、ストリングA、B、C、G、HおよびI付近に雲501による陰502がかかり、さらに、発電モジュール101のID(識別番号)が35および74(以下、発電モジュール35、発電モジュール74という)の発電モジュールに異常があるものとする。
図6Aは、発電モジュールごとのスケールパラメータrの値である。このrを用いることにより、発電モジュールごとの品質差または過去に判明した異常のある発電モジュールの情報を反映させることができる。例えば、平均的な出力電力を有する発電モジュールのrを1.0とした場合、r=1.05という発電モジュールは、平均的な発電モジュールより出力が5%上回る品質であるといえる。さらに、製造時や設置時の試験結果が良い発電モジュールに関しては、あらかじめrを高めに設定しておけばよい。なお、全てのrを同じ値にしてもよいし、発電モジュールごとに異なるrの値でもよい。また、過去に異常が判明し、まだ交換していない発電ジュールは、異常判定処理に用いないためにr=0.0と設定しておけばよい。
図7Aは、図6Aのスケールパラメータrを用いた出力特性を示す。図7Aの出力特性モデルの基本モデルは式(1)で表される。
W=200*S ・・・(1)
ここで、Wは出力電力、Sは日照状況推定値を示す。さらに、発電モジュールi(iは任意の自然数)のスケールパラメータをr(i)とした場合、出力特性モデルは式(2)で表すことができる。
W(i)=200*r(i)*S(i)・・・(2)
図7Aにおける出力特性モデル701は発電モジュール74の出力特性を示し、出力特性モデル702は発電モジュール90の出力特性を示す。ストリング102ごとの出力電力データが与えられた場合、日照状況推定値は式(3)により求められる。
S(i)=W(i)/r(i)/200・・・(3)
例えば、図5Bより、発電モジュール74を含む5個の発電モジュールを直列接続したストリングOの出力電力は890(kW)であるので、発電モジュール「74」の日照状況推定値は式(4)のように計算できる。
S(74)=890/5/1.10/200≒0.809・・・(4)
同様に、発電モジュール「90」は、出力特性モデル702を用いればS(90)=1.00となる。なお、r(i)=0である場合には異常判定処理に用いないため計算を行わないこととする。
図7Cは、図7Bの結果を日照状況推定値に応じて斜線で視覚的に表現した図であり、図7Dは、日照状況推定値に対応する斜線の種類を示すテーブルである。図7Cによれば、ストリングOの日照状況推定値が周辺のストリングと比較して低いことがわかる。
ステップS801では、日照にばらつきが生じているストリング102に空間スムージングを行う。ここでは、着目するストリング102(以下、着目ストリングという)の日照状況推定値と、着目ストリング102を形成する各発電モジュール101から着目ストリング102以外のストリング102を形成する各発電モジュール101までの各距離どうしの差が最小で、かつ該距離が最短の発電モジュール101を含む、着目ストリング102の両側に隣接するストリング102(以下、隣接ストリングという)の日照状況推定値とを用いて空間スムージング処理を行う。
ここで、長尺方向の面とは、ストリングが矩形であれば長辺側の面を表し、ストリングが波形である場合は山谷が続く側の面を表す。
具体的には、図7Bにおいて、ストリングQの日照状況推定値0.982は上側に隣接するストリングPの日照状況推定値1.01よりも小さく、下側に隣接するストリングRの日照状況推定値1.00よりも小さな値である。このようにV字型の日照のばらつきが狭い範囲で生じているとは考えにくいため、このような場合、ストリングPとストリングRとの平均によってストリングQの日照状況推定値を式(5)のように補正する。
S(Q)=(S(P)+S(R))/2=(1.010+1.000)/2=1.005…(5)
ステップS801の処理を終えたストリング102ごとの日照状況推定値を図9Aに示す。なお、V字型の日照のばらつきだけでなく、3つ隣接したストリング102の中心のストリング102の日照だけ高い状態である、∧字型の日照のばらつきがある場合にも同様の空間スムージングを行う。
図9Aの日照状況推定値に対して、ストリング内で発電モジュールの日照状況推定値に傾斜計算を行った結果を図9Bに示す。
図9Cでは、発電モジュールに隣接する8個の発電モジュールと自らの推定値の平均値をとることにより、各発電モジュールの補正日照状況推定値を得る。図9Dは、図9Cの結果を図7Dの表記に従って、補正日照状況推定値に応じて斜線で表現した図である。図7Cに示す空間的な補正を行う前の日照状況推定値と比較すると、空間的な日照状況の連続性が向上していることがわかる。以上で空間補正処理を終了する。このように空間補正処理を行うことで、空間的な連続性が高まった補正日照状況推定値を得ることができる。なお、ストリングの形状が正方形である場合は、ステップS801およびステップS802の補正処理を、隣接ストリングにどのように適用してもよい。例えば、ステップS801の補正処理を行わずに、ステップS802の補正処理を着目ストリングの上下左右にある隣接ストリングに適用してもよい。
ステップS1001では、発電モジュールごとに期待出力電力を算出する。具体的には、発電モジュールiの値をS’(i)とすると、この発電モジュールの期待出力電力W’(i)は式(6)で表される。
W’(i)=200*r(i)*S’(i)…(6)
ステップS1002では、ストリングごとに出力電力と期待出力電力との差である出力差を算出する。なお、出力電力はストリングごとにしか得られていないので、ストリング単位で発電モジュールごとの期待出力電力を足し合わせて出力電力と期待出力電力とを比較する。
図11Aは、ストリングごとの出力電力、期待出力電力および出力差を対応付けて格納したテーブルであり、図11Bは、発電モジュールごとの期待出力電力を示し、図11Cは出力特性モデルから算出される期待出力電力の一例であり、ここでは発電モジュール「74」の例を示す。具体的には、発電モジュール「74」の期待出力電力は式(7)のようになる。
W’(74)=200×1.10×0.985≒217(kW)…(7)
図10のステップS1003で用いられる閾値Δ=50とすると、図11Aの例では、出力差が-50よりも小さいストリングC,D,GおよびOが異常ストリング1101の候補として抽出される。次に、連続したストリングCおよびDが異常ストリング1101の候補から削除され、最終的に異常ストリング1101はストリングGおよびOと判定される。
最後に、異常ストリング1101内で異常のある発電モジュール位置を判定する。ストリングGの場合は、出力差は-93であり、同時に2つの発電モジュールが故障しないと仮定すると、期待出力電力が93以下の発電モジュールが故障したという理由ではこの出力差とはならない。よって、発電モジュール31および32は候補から除外され、発電モジュール「33」「34」「35」のいずれかが異常のある発電モジュールとなる。ストリングOの場合は、出力差は-194であり、ストリングOの全ての発電モジュール「86」から「90」までが異常である可能性がある。
図12では、2つの異常ストリングが検出され、1つについては中央から右側の発電モジュールに異常があると判定される。なお、図12に示すように、異常のある発電モジュールの位置をユーザが視覚的に認識できるようにしてもよいし、異常のある発電モジュールを数値によってユーザに示してもよい。以上に示した異常判定処理は、複数回の判定結果を用いて総合的に判定してもよく、そのような場合には異常のある発電モジュールの位置特定に関し、さらなる精度向上が望める。
図13に示すように、日照のばらつきは帯状になると考えられるが、本実施形態では日照のばらつきが連続的であれば形状は問題ではないため、そのような場合でも異常判定ができる。さらに、モジュール日照状況推定用の記憶部を用意し、対応する時間ごとに出力電力データを時系列で格納した場合を図14に示す。このように、時間的な補正を加えて時空間補正を行った場合には、より高精度な日照の把握を行うことができ、正確な異常判定ができる。
図23Bに空間補正処理の一例を説明するためのフローチャートを示す。まず、日照状況空間補正部206の空間スムージング手段は、ある発電モジュール1501に注目したときに、その発電モジュール1501に近いものから順番にN個の発電モジュール1501を検索する(ステップS3002)。発電モジュール1501間の距離はモジュール位置データ格納部1501に格納された位置座標から求めることができる。
Claims (14)
- 発電モジュールが複数個直列に接続された単位を表すストリングごとに、該ストリングから出力された実際の出力電力と、発電に影響を及ぼす日照状況から出力電力を予測する出力特性モデルとを用いて、前記発電モジュールごとに前記実際の出力電力に最も近い日照状況の値を日照状況推定値として推定する日照状況推定部と、
着目ストリングに含まれる発電モジュールの日照状況推定値の総和である第1総推定値を算出し、該着目ストリングの長尺方向の面に隣接する第1隣接ストリングごとに、隣接ストリングに含まれる発電モジュールの日照状況推定値の総和である第2総推定値を算出し、該第1総推定値が該第2総推定値のそれぞれで決定される範囲内に収まるように前記日照状況推定値に補正を行い補正日照状況推定値を得る日照状況空間補正部と、
前記出力特性モデルおよび前記補正日照状況推定値を用いて算出した発電モジュールで期待される期待出力電力のストリング内の総和と前記実際の出力電力との差が第1閾値以上であり、かつ前記実際の出力電力が前記期待出力電力よりも小さい場合に、異常が発生していると判定する出力電力異常判定部と、を具備する異常診断装置。 - 前記日照状況空間補正部は、前記第1総推定値が、前記第1隣接ストリングの前記第2総推定値のそれぞれよりも第2閾値以上に小さい場合または第3閾値以上に大きい場合に、前記第1総推定値を複数の前記第2総推定値の平均値に置き換えるとともに、前記平均値または前記第1総推定値が、前記着目ストリングの短尺方向の面に隣接する第2隣接ストリングの第2総推定値のそれぞれで決定される範囲内にある場合、前記平均値または前記第1総推定値を階段状に再配分した値を補正日照状況推定値とする請求項1に記載の異常診断装置。
- 前記日照状況空間補正部は、前記着目発電モジュールの補正日照状況推定値と、該着目発電モジュールに隣接する発電モジュールの補正日照状況推定値との平均値を、該着目発電モジュールの新たな補正日照状況推定値とする請求項2に記載の異常診断装置。
- 発電モジュールが設置された位置を示すモジュール位置データを格納するモジュール位置データ格納部をさらに具備し、
前記出力電力異常判定部は、前記モジュール位置データを参照して、異常が発生していると判定されたストリングである異常ストリング内で、前記期待出力電力が前記差以上である発電モジュールを異常発電モジュールと判定する請求項1から請求項3のいずれか1項に記載の異常診断装置。 - 前記出力電力異常判定部は、前記異常ストリングのうち、前記第1隣接ストリングと前記着目ストリングとが隣接する順番に、2以上のストリングが連続して異常ストリングと判定されている場合は、該隣接するストリングを異常ストリングと判定しない請求項4に記載の異常診断装置。
- 前記出力特性モデルは、前記発電モジュール全てに共通の基本モデルと、発電モジュールごとのスケールパラメータとを乗算することにより生成される請求項1から請求項5のいずれか1項に記載の異常診断装置。
- 前記日照状況は、前記発電モジュールに対する日照量であるか、または前記日照量および気温であるかのどちらかとする請求項1から請求項6のいずれか1項に記載の異常診断装置。
- 発電モジュールが複数個直列に接続された単位を表すストリングごとに、該ストリングから出力された実際の出力電力と、発電に影響を及ぼす日照状況から出力電力を予測する出力特性モデルとを用いて、前記発電モジュールごとに前記実際の出力電力に最も近い日照状況の値を日照状況推定値として推定する工程と、
着目ストリングに含まれる発電モジュールの日照状況推定値の総和である第1総推定値を算出し、該着目ストリングの長尺方向の面に隣接する第1隣接ストリングごとに、隣接ストリングに含まれる発電モジュールの日照状況推定値の総和である第2総推定値を算出し、該第1総推定値が該第2総推定値のそれぞれで決定される範囲内に収まるように前記日照状況推定値に補正を行い補正日照状況推定値を得る工程と、
前記出力特性モデルおよび前記補正日照状況推定値を用いて算出した発電モジュールで期待される期待出力電力のストリング内の総和と前記実際の出力電力との差が第1閾値以上であり、かつ前記実際の出力電力が前記期待出力電力よりも小さい場合に、異常が発生していると判定する工程と、
を具備する異常診断方法。 - 直列に接続された複数の発電モジュールを備えたストリンリングと、前記ストリングから出力された電力を計測する計測手段と、前記計測手段により計測された電力を出力する通信手段と、を備えた太陽光発電システムの前記発電モジュールの異常を診断する異常診断装置であって、
前記通信手段から出力された電力の値を格納した発電出力データ格納部と、
前記複数の発電モジュールが設置された位置データを格納したモジュール位置データ格納部と、
前記複数の発電モジュールそれぞれについて、日照状況と出力電力との関係を表す出力特性モデルを格納した出力特性モデル格納部と、
前記発電出力データ格納部に格納された電力値と、前記出力特性モデルとから、発電モジュール毎の日照状況を推定する出力日照状況推定部と、
前記出力日照状況推定部で推定された日照状況を記憶するモジュール日照状況記憶部と、
前記位置データを用いて、前記モジュール日照状況記憶部に記憶された日照状況を補正する日照状況空間補正部と、
補正された日照状況と前記出力特性モデルとから、前記発電モジュール毎の期待出力電力を算出し、前記発電出力データ格納部に格納された電力値と比較して前記複数の発電モジュールの異常を診断する発電出力異常診断部と、を備えた異常診断装置。 - 前記日照状況は、日照度を含む請求項9記載の異常診断装置。
- 前記日照状況は、温度をさらに含む請求項10記載の異常診断装置。
- 前記出力特性モデルは、すべての発電モジュールに共通の基本モデルに、前記発電モジュール毎のスケールパラメータを掛け合わせた特性モデルである請求項9記載の異常診断装置。
- 前記日照状況空間補正部は、前記発電モジュールの前記日照状況の推定値を、前記発電モジュールを含む所定の領域内の他の発電モジュールの前記日照状況の推定値と平均した値とする空間スムージング手段を備える請求項9記載の異常診断装置。
- 前記発電出力異常診断部は、前記発電モジュールの期待出力電力を算出する手段と、
前記発電モジュールの期待出力電力を前記ストリングごとに足し合わせた値と、実際の出力電力データとの出力差を算出する手段と、前記出力差が閾値を超えるストリングを異常ストリングとして検知する手段と、前記異常ストリングの出力差と前記異常ストリングの複数の発電モジュールそれぞれの前記期待出力電力の値とを比較することにより、異常が生じている可能性のある発電モジュールを特定する手段と、を備える請求項9記載の異常診断装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10846594.9A EP2541611B1 (en) | 2010-02-26 | 2010-10-25 | Fault diagnosis device and fault diagnosis method |
CN201080055255.8A CN102640297B (zh) | 2010-02-26 | 2010-10-25 | 异常诊断装置和异常诊断方法 |
AU2010346725A AU2010346725B2 (en) | 2010-02-26 | 2010-10-25 | Fault diagnosis device and fault diagnosis method |
US13/594,340 US9209743B2 (en) | 2010-02-26 | 2012-08-24 | Fault detection apparatus and fault detection method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042897A JP5214650B2 (ja) | 2010-02-26 | 2010-02-26 | 異常診断装置および方法 |
JP2010-042897 | 2010-02-26 | ||
JP2010100113A JP5472913B2 (ja) | 2010-04-23 | 2010-04-23 | 太陽光発電システムの異常診断装置 |
JP2010-100113 | 2010-04-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/594,340 Continuation US9209743B2 (en) | 2010-02-26 | 2012-08-24 | Fault detection apparatus and fault detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011104931A1 true WO2011104931A1 (ja) | 2011-09-01 |
Family
ID=44506369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068873 WO2011104931A1 (ja) | 2010-02-26 | 2010-10-25 | 異常診断装置および異常診断方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9209743B2 (ja) |
EP (1) | EP2541611B1 (ja) |
CN (1) | CN102640297B (ja) |
AU (1) | AU2010346725B2 (ja) |
WO (1) | WO2011104931A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2500738A1 (en) * | 2011-03-17 | 2012-09-19 | Kabushiki Kaisha Toshiba | Abnormality diagnosis for photovoltaic power generation system |
AT512996A1 (de) * | 2012-06-12 | 2013-12-15 | Fronius Int Gmbh | Photovoltaikanlage |
CN104272128A (zh) * | 2012-05-29 | 2015-01-07 | 东京毅力科创株式会社 | 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统 |
CN111693822A (zh) * | 2020-06-23 | 2020-09-22 | 西安重冶电控科技有限公司 | 一种基于云平台的电气设备线路故障检测系统 |
US11086278B2 (en) | 2019-08-29 | 2021-08-10 | Inventus Holdings, Llc | Adaptive system monitoring using incremental regression model development |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9547033B1 (en) * | 2011-11-12 | 2017-01-17 | Sunpower Corporation | Hierarchical fault prediction, detection and localization in PV systems with distributed electronics |
JP6075997B2 (ja) | 2012-08-27 | 2017-02-08 | 株式会社日立製作所 | 太陽光発電システムの故障診断方法 |
US9939485B1 (en) * | 2012-11-14 | 2018-04-10 | National Technology & Engineering Solutions Of Sandia, Llc | Prognostics and health management of photovoltaic systems |
JP6115764B2 (ja) * | 2013-03-14 | 2017-04-19 | オムロン株式会社 | 太陽光発電システム、異常判断処理装置、異常判断処理方法、およびプログラム |
EP3128635A4 (en) * | 2014-03-31 | 2017-08-30 | Tensor Consulting Co. Ltd. | Power generation system analysis device and method |
DE102014119607B4 (de) | 2014-12-23 | 2021-09-30 | Sma Solar Technology Ag | Ermittlung der Leistungsdichteverteilung eines Photovoltaikgenerators aus zeitlichen Verläufen seiner elektrischen Leistung |
JP6573129B2 (ja) * | 2014-12-24 | 2019-09-11 | パナソニックIpマネジメント株式会社 | 監視装置、太陽光発電装置、監視システムおよび監視方法 |
CN105515531B (zh) * | 2015-12-11 | 2017-09-12 | 中电投江苏新能源有限公司 | 一种基于监控系统的光伏组件衰减异常诊断方法 |
US10103537B2 (en) | 2015-12-16 | 2018-10-16 | Ge Energy Power Conversion Technology Ltd | Ground fault detection and interrupt system |
CN105811881B (zh) * | 2016-05-27 | 2017-09-15 | 福州大学 | 一种在线的光伏阵列故障诊断系统实现方法 |
US10922634B2 (en) * | 2017-05-26 | 2021-02-16 | General Electric Company | Determining compliance of a target asset to at least one defined parameter based on a simulated transient response capability of the target asset and as a function of physical operation data measured during an actual defined event |
KR101803056B1 (ko) * | 2017-08-25 | 2017-11-29 | (주)대연씨앤아이 | 태양광 발전 모니터링 시스템을 위한 오류 보정 시스템 및 방법 |
US11387778B2 (en) | 2018-10-17 | 2022-07-12 | Solaredge Technologies Ltd. | Photovoltaic system failure and alerting |
CN111049476A (zh) * | 2019-12-30 | 2020-04-21 | 杭州光曲智能科技有限公司 | 一种分布式光伏电站监控装置及方法 |
CN111539550B (zh) * | 2020-03-13 | 2023-08-01 | 远景智能国际私人投资有限公司 | 光伏阵列工作状态的确定方法、装置、设备及存储介质 |
CN111555716B (zh) | 2020-03-13 | 2023-07-28 | 远景智能国际私人投资有限公司 | 光伏阵列工作状态的确定方法、装置、设备及存储介质 |
CN112988081B (zh) * | 2021-05-17 | 2021-08-17 | 浙江正泰仪器仪表有限责任公司 | 一种电量数据存储、抄读方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08185235A (ja) * | 1994-12-27 | 1996-07-16 | Sharp Corp | 太陽電池モジュールの異常チェック機能付連系形太陽光発電装置 |
JP2874156B2 (ja) | 1994-04-13 | 1999-03-24 | キヤノン株式会社 | 発電システム |
JP2005340464A (ja) | 2004-05-26 | 2005-12-08 | Sharp Corp | 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム |
JP2006310780A (ja) * | 2005-03-29 | 2006-11-09 | Kyocera Corp | 太陽光発電システム |
JP2008091828A (ja) * | 2006-10-05 | 2008-04-17 | National Institute Of Advanced Industrial & Technology | 太陽電池アレイ故障診断方法 |
JP2008271693A (ja) * | 2007-04-19 | 2008-11-06 | Hitachi Ltd | 太陽光発電システム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5669987A (en) * | 1994-04-13 | 1997-09-23 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same |
DE69620124T2 (de) * | 1995-12-20 | 2002-10-31 | Sharp Kk | Wechselrichtersteuerungsverfahren und -vorrichtung |
US7333916B2 (en) * | 2003-04-04 | 2008-02-19 | Bp Corporation North America Inc. | Performance monitor for a photovoltaic supply |
JP5051854B2 (ja) * | 2006-05-02 | 2012-10-17 | 国立大学法人 奈良先端科学技術大学院大学 | 太陽電池の評価方法及び評価装置並びにその利用 |
JP5162737B2 (ja) * | 2006-05-17 | 2013-03-13 | 英弘精機株式会社 | 太陽電池の特性評価装置 |
EP2089913B1 (en) * | 2006-12-06 | 2015-07-22 | Solaredge Technologies Ltd | Monitoring of distributed power harvesting systems using dc power sources |
US8300439B2 (en) * | 2007-03-07 | 2012-10-30 | Greenray Inc. | Data acquisition apparatus and methodology for self-diagnosing of AC modules |
US20090207543A1 (en) * | 2008-02-14 | 2009-08-20 | Independent Power Systems, Inc. | System and method for fault detection and hazard prevention in photovoltaic source and output circuits |
US9077206B2 (en) * | 2008-05-14 | 2015-07-07 | National Semiconductor Corporation | Method and system for activating and deactivating an energy generating system |
FR2941328B1 (fr) * | 2009-01-19 | 2012-11-02 | Commissariat Energie Atomique | Procede de prevision de la production electrique d'un dispositif photovoltaique |
WO2011031889A1 (en) * | 2009-09-11 | 2011-03-17 | Wattminder, Inc | System for and method of monitoring and diagnosing the performance of photovoltaic or other renewable power plants |
WO2012006723A1 (en) * | 2010-07-16 | 2012-01-19 | Mohamed Zakaria Mohamed Ahmed Shamseldein | Reconfigurable photovoltaic structure |
JP2012169581A (ja) * | 2011-01-28 | 2012-09-06 | Sharp Corp | 光発電装置、光発電システム、および車両 |
US8165813B2 (en) * | 2011-07-25 | 2012-04-24 | Clean Power Research, L.L.C. | Computer-implemented system and method for efficiently performing area-to-point conversion of satellite imagery for photovoltaic power generation fleet output estimation |
US8165812B2 (en) * | 2011-07-25 | 2012-04-24 | Clean Power Research, L.L.C. | Computer-implemented system and method for estimating power data for a photovoltaic power generation fleet |
EP2587334A1 (en) * | 2011-10-24 | 2013-05-01 | Imec | Reconfigurable PV configuration |
-
2010
- 2010-10-25 WO PCT/JP2010/068873 patent/WO2011104931A1/ja active Application Filing
- 2010-10-25 AU AU2010346725A patent/AU2010346725B2/en active Active
- 2010-10-25 EP EP10846594.9A patent/EP2541611B1/en active Active
- 2010-10-25 CN CN201080055255.8A patent/CN102640297B/zh active Active
-
2012
- 2012-08-24 US US13/594,340 patent/US9209743B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2874156B2 (ja) | 1994-04-13 | 1999-03-24 | キヤノン株式会社 | 発電システム |
JPH08185235A (ja) * | 1994-12-27 | 1996-07-16 | Sharp Corp | 太陽電池モジュールの異常チェック機能付連系形太陽光発電装置 |
JP2005340464A (ja) | 2004-05-26 | 2005-12-08 | Sharp Corp | 太陽電池アレイ診断装置およびそれを用いた太陽光発電システム |
JP2006310780A (ja) * | 2005-03-29 | 2006-11-09 | Kyocera Corp | 太陽光発電システム |
JP2008091828A (ja) * | 2006-10-05 | 2008-04-17 | National Institute Of Advanced Industrial & Technology | 太陽電池アレイ故障診断方法 |
JP2008271693A (ja) * | 2007-04-19 | 2008-11-06 | Hitachi Ltd | 太陽光発電システム |
Non-Patent Citations (1)
Title |
---|
TONY GATRELL: "Interactive Spatial Data Analysis, Trevor Bailey", 1996, PRENTICE HALL |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2500738A1 (en) * | 2011-03-17 | 2012-09-19 | Kabushiki Kaisha Toshiba | Abnormality diagnosis for photovoltaic power generation system |
US9048781B2 (en) | 2011-03-17 | 2015-06-02 | Kabushiki Kaisha Toshiba | Abnormality diagnosis device, method therefor, and computer-readable medium |
CN104272128A (zh) * | 2012-05-29 | 2015-01-07 | 东京毅力科创株式会社 | 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统 |
CN104272128B (zh) * | 2012-05-29 | 2016-11-09 | 优信电子(香港)有限公司 | 太阳光发电监视方法以及在该方法中使用的太阳光发电监视系统 |
AT512996A1 (de) * | 2012-06-12 | 2013-12-15 | Fronius Int Gmbh | Photovoltaikanlage |
US11086278B2 (en) | 2019-08-29 | 2021-08-10 | Inventus Holdings, Llc | Adaptive system monitoring using incremental regression model development |
CN111693822A (zh) * | 2020-06-23 | 2020-09-22 | 西安重冶电控科技有限公司 | 一种基于云平台的电气设备线路故障检测系统 |
CN111693822B (zh) * | 2020-06-23 | 2022-04-12 | 西安重冶电控科技有限公司 | 一种基于云平台的电气设备线路故障检测系统 |
Also Published As
Publication number | Publication date |
---|---|
AU2010346725A1 (en) | 2012-10-11 |
CN102640297B (zh) | 2015-01-14 |
EP2541611B1 (en) | 2018-10-10 |
US20120323507A1 (en) | 2012-12-20 |
AU2010346725B2 (en) | 2013-11-28 |
CN102640297A (zh) | 2012-08-15 |
US9209743B2 (en) | 2015-12-08 |
EP2541611A4 (en) | 2013-11-06 |
EP2541611A1 (en) | 2013-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011104931A1 (ja) | 異常診断装置および異常診断方法 | |
JP5330438B2 (ja) | 異常診断装置およびその方法、コンピュータプログラム | |
JP5607772B2 (ja) | 太陽電池パネル監視プログラム、太陽電池パネル監視装置及び太陽電池パネル監視方法 | |
US9214894B2 (en) | Evaluation method for solar power generation system, evaluation device, and evaluation program | |
JP5214650B2 (ja) | 異常診断装置および方法 | |
US11022720B2 (en) | System for forecasting renewable energy generation | |
US20120296584A1 (en) | Mppt controller, solar battery control device, solar power generation system, mppt control program, and control method for mppt controller | |
US20160019323A1 (en) | Solar power generation system, abnormality determination processing device, abnormality determination processing method, and program | |
KR102283487B1 (ko) | 실시간 위성자료와 수치모델자료를 이용한 머신러닝기반 태양광 발전량 예측시스템 | |
KR102054163B1 (ko) | 태양광 발전량 예측 시스템 및 이를 포함하는 태양광 발전 장치 | |
KR101808978B1 (ko) | 발전 시스템 분석 장치 및 방법 | |
JP5977272B2 (ja) | 日射強度推定装置、日射強度推定システム及び日射強度推定方法 | |
JP2016019404A (ja) | 故障判定装置 | |
CN111191406B (zh) | 确定光伏模块串的电学模型的方法、与其相关的诊断方法和装置 | |
JP6148508B2 (ja) | 発電設備に対する収益分析装置およびその方法、ならびにプログラム | |
CN117150216B (zh) | 一种电力数据回归分析方法及系统 | |
CA2996731A1 (en) | Methods and systems for energy use normalization and forecasting | |
JP5472913B2 (ja) | 太陽光発電システムの異常診断装置 | |
Acurio et al. | Design and implementation of a machine learning state estimation model for unobservable microgrids | |
JP7300893B2 (ja) | 太陽光発電出力推定装置、太陽光発電出力推定方法、および太陽光発電出力推定プログラム | |
Obeidi et al. | Sunspot number-based neural network model for global solar radiation estimation in Ghardaïa | |
CN118410445B (zh) | 分布式光伏异常数据检测方法、系统、电子设备及存储介质 | |
KR102524158B1 (ko) | 디지털 트윈 기반 태양광 발전소 관리 솔루션 제공 방법 및 장치 | |
KR20200102649A (ko) | 신재생 에너지 발전기의 발전량 극대화 가이드 시스템 및 관리 서버 | |
JP2022146708A (ja) | 太陽光発電性能評価装置、太陽光発電性能評価方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080055255.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10846594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7707/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010346725 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010846594 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010346725 Country of ref document: AU Date of ref document: 20101025 Kind code of ref document: A |