[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011104008A2 - Wärmedämmendes feuerfestes hochtemperaturbeständiges formteil - Google Patents

Wärmedämmendes feuerfestes hochtemperaturbeständiges formteil Download PDF

Info

Publication number
WO2011104008A2
WO2011104008A2 PCT/EP2011/000872 EP2011000872W WO2011104008A2 WO 2011104008 A2 WO2011104008 A2 WO 2011104008A2 EP 2011000872 W EP2011000872 W EP 2011000872W WO 2011104008 A2 WO2011104008 A2 WO 2011104008A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
weight
silica
binder
cenospheres
Prior art date
Application number
PCT/EP2011/000872
Other languages
English (en)
French (fr)
Other versions
WO2011104008A3 (de
Inventor
Rainer Angenendt
Peer Genth
Original Assignee
Vatramaxx Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vatramaxx Gmbh filed Critical Vatramaxx Gmbh
Priority to EP11709864A priority Critical patent/EP2539295A2/de
Publication of WO2011104008A2 publication Critical patent/WO2011104008A2/de
Publication of WO2011104008A3 publication Critical patent/WO2011104008A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/003Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hybrid binders other than those of the polycarboxylate type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1315Non-ceramic binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a heat-insulating refractory high-temperature resistant molded part containing a plurality of lightweight fillers, a binder and fibers and / or wollastonite, for applications up to about 1600 ° C.
  • lightweight fillers is to be understood here as high-melting mineral granules of low density, for example fly ash, expanded volcanic rocks, expanded perlite, etc.
  • Refractory bricks are formed refractory products with a total porosity> 45% and an application temperature of at least 800 ° C.
  • ASTM C 155-70 and DIN EN 1094 define the temperature at which the shrinkage of the material after 24 h or 12 h is not more than 2% and a maximum density.
  • silicate bricks To divide lightweight refractory bricks, silicate bricks, zirconia and corundum light bricks. The greatest importance and spread comes to the aluminum silicate light bricks (chamotte and mullite bricks).
  • alumina carrier For the production of raw materials based on A1 2 0 3 , Si0 2 and possibly CaO are used.
  • alumina carrier are raw materials such as clay, kaolin, chamotte,
  • Sillimanite, andalusite, kyanite and mullite and alumina, alumina hydrate and corundum used.
  • fine-grained raw materials In addition to the fine-grained raw materials, coarse-grained, porous raw materials such as lightweight chamotte and hollow spheres made from corundum and mullite are also used.
  • Known refractory bricks have a bulk density of 0.5 to 1.4 g / cm 3 , a
  • German Offenlegungsschrift DE 10 2007 012 489 A1 describes exclusively insulating and exothermic feeders from the foundry industry.
  • Chapter 1 is a term from the foundry industry and refers to geometric sprues on castings, in the form of the voids volume deficit is to be placed during the casting solidification and which are removed in the cleaning process of the castings again.
  • the feeders themselves are destroyed in this process (disposable parts).
  • a feeder has the task of avoiding the formation of voids (cavities) in a casting, and has other different tasks in a casting mold:
  • the exothermic feeders described in DE 10 2007 012 489 A1 contain thermally similar mixtures which are very dangerous and have led to extreme fires in some factories.
  • the thermite reaction is a redox reaction in which aluminum is used as a reducing agent, e.g. Iron (III) oxide to reduce iron.
  • the mixture is called thermite:
  • the reaction products are alumina and elemental iron.
  • the reaction is very exothermic, ie under strong heat.
  • the ignition medium used is barium peroxide with magnesium.
  • Thermitgemische are not explosives and can be brought to implementation (inflammation) only by a very large heat input (activation energy).
  • the burning process is a strongly exothermic reaction (up to 3000 ° C). Since burning thermite does not require external oxygen, the reaction can not be stifled and in any environment - even under sand or water - be ignited and continue to burn. Extinguishing tests with water and moisture lead to a further redox reaction, in which the water is reduced by the less noble metals and thus metal oxide and hydrogen are formed:
  • base material mixed with binder with a certain firing pressure and possibly defined working temperature is introduced into a core mold (the "core box"). After hardening or precuring of the casting core thus produced, it is installed in the casting mold.
  • core box a core mold
  • so-called cold box or hot box core shooting machines are used.
  • the blends in the present patent application contain significantly more water. In the recipe, the water content is at least 10 wt% and larger. The blends in the present patent application therefore correspond to their consistency ramming masses or plastic masses.
  • the binders listed in DE 10 2007 012 489 A1 are exclusive
  • Thermoplastics also known as plastomers, are plastics that can be deformed in a specific temperature range (thermo-plastic). This process is reversible, that is, it can be repeated as often as desired by cooling and reheating to the molten state, as long as not using the so-called thermal decomposition of the material by overheating.
  • Thermoplastics are mainly processed by injection molding, which is similar to the core shooting method described in DE 10 2007 012 489 AI.
  • the thermoplastics include z. Acrylonitrile-butadiene-styrene (ABS), polyamides (PA), polylactate (PLA), polymethylmethacrylate (PMMA), polycarbonate (PC),
  • PET Polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PEEK polyetheretherketone
  • PVC polyvinyl chloride
  • thermoplastic binders In no way are the properties of thermoplastic binders to be compared with the hybrid binders described in the present patent application which must ensure strength over a wide temperature range.
  • the invention has for its object to provide extremely stable moldings of the type mentioned, which have a density of less than 1.0 g / cm 3 , to about a maximum of 1500 ° C virtually no shrinkage, namely less than 1.0%, and show up to this temperature no external or internal cracks and no crumbling and for continuous temperatures up to about 1600 ° C are suitable and the one clearly show higher cold compressive strength than refractory bricks comparable gross density and comparable thermal conductivity show.
  • the geometry of the molded parts is basically no limit. Bricks, pipes, hollow bodies and other molded parts can be produced.
  • aqueous mass which are prepared by known shaping processes, subsequent drying and thermal treatment in various stages from 950 to about 1450 ° C.
  • the following molding methods are suitable:
  • the kaolin present in the plastic starting material is converted into spinel and quartz, which then serves as a binder for the not yet melted at this temperature volcanic rocks.
  • the surface of the cenospheres can be adjusted to the requirements in a targeted manner by adding or exchanging minerals and melts in the flux. With approximately the same densities and thermal properties can be adjusted to the requirements in a targeted manner by adding or exchanging minerals and melts in the flux. With approximately the same densities and thermal properties can be adjusted to the requirements in a targeted manner by adding or exchanging minerals and melts in the flux. With approximately the same densities and thermal properties can be adjusted to the requirements in a targeted manner by adding or exchanging minerals and melts in the flux. With approximately the same densities and thermal properties can
  • lightweight flameproof can be used up to 1600 ° C moldings with adapted to the intended use surfaces of the cenospheres.
  • the content of fibers and / or wollastonite serves to cohesion of the mass in the wet state.
  • the hybrid binder provides for the cohesion after drying at temperatures up to about 200 ° C due to the organic component and at higher temperatures by the sintering of the silica particles.
  • the kaolin used and the silica sol are also a binder, which at elevated
  • the light fillers namely the microcellularly expanded volcanic rocks and the cenospheres provide the necessary volume and a relatively low density compared to the prior art.
  • the microcellularly inflated volcanic rocks soften at temperatures above about 1000 ° C and higher and then serve as a flux and binder between the
  • microcellular expanded volcanic stones are surface treated to protect against water attack in the plastic masses and mortars, thereby rendering the masses shelf stable.
  • inflated cellular volcanic rock in the form of nonporous hollow granules is used as light filler.
  • porous hollow granules on the other hand, the bulk density would increase, more glue and more minerals would be required, the masses would become duller and thus would be worse to process and the porosity of the end product would increase significantly.
  • the main constituent of the composition according to the invention are fly ash cenospheres, which in particular have a proportion of from 20 to 45% by weight.
  • Fly ash is the solid, disperse (particulate, particulate, dusty) residue of burns, which is due to its high dispersity (fineness) discharged with the flue gases. Fly ash is produced in large quantities in
  • the particle size ranges from about 1 ⁇ to 1 mm.
  • Particle shapes include both smooth, massive spheres and hollow spheres (so-called cenospheres), platelets, fibers and agglomerates.
  • the density is 2.2 to 2.4 kg / dm 3
  • the bulk density is between 0.9 to 1.1 kg / dm 3 .
  • the composition of the fly ash strongly depends on the fuel (lignite or
  • Hard coal and extends from residual carbon and minerals (quartz) to toxic substances such as heavy metals (arsenic to zinc) and dioxins.
  • the fly ash also acts as a carrier of adsorbed pollutants. While pure, uniform, consistent fuels such as hard coal provide a good usable fly ash, the brown coal fly ash (BFA) is composed of many different substances. Due to their chemical and physical properties, such as the pozzolanic reactivity, the spherical grain shape and the grain distribution, hard coal fly ash (SFA) in particular is a high - quality secondary raw material and is found in the
  • fly ash is used in the building materials industry according to DIN EN 450 as an additive in cement and concrete. Furthermore, the fly ash can be used for the production of bricks made of sand-lime brick or aerated concrete. In road and earthworks, the fly ash is used together with Gesteinskömung as a building material for unbound base courses.
  • Kaolin / Silica Kieselsol Kaolin also referred to as china clay or aluminum silicate, is a fine, iron-free, white rock containing as its main constituent kaolinite, a weathering product of feldspar.
  • the kaolin used as a film covers the high-melting light filler and forms a solid structure even at about 900 ° C.
  • Shrinkage is affected by the ratio of kaolin / silica / silica sol and their distribution.
  • Another advantage of the used mixture of kaolin silica silica sol is that the mass after hardening is hard and mechanically stable.
  • Binders is used with a binding effect in different temperature ranges.
  • the innovation of the product according to the invention is, in particular, that suitable, complementary binder systems are used, for. B. the
  • Hybrid binder which already has the support structures made of fibers in the
  • Volcanic rocks as a flux for the additional minerals and as a fixation for the cenospheres. Due to the cavities formed by the melting, stresses can be buffered by increasing the temperature and expanding within the mass.
  • a key customer benefit when using the products according to the invention is that in addition to the desired goal of efficient high-temperature insulation a Significant cost savings in the area of opportunity costs for customers can be realized. The reduction of these costs is achieved primarily by improving the energy balance and also the life cycle assessment by reducing emissions for the customer.
  • Perlite (English: perlite) referred to in geosciences an altered (chemically and physically transformed) volcanic glass (obsidian) and is thus one of the rocks.
  • the so-called pearlitic structure is formed here by approximately pea-sized glass beads.
  • Perlite contains up to 2% water and has a density of about 900 to 1000 kg / m 3 (bulk density of crude perlite).
  • microcellularly-expanded volcanic rocks are suitable for the purposes of the invention, produced according to new environmentally friendly and energy-saving methods, and achieve properties and technical values that expand from older, porous ones
  • Microcellular, expanded volcanic rock is a filler from the group of aluminum silicates and consists of spherical ("honeycomb"), rod-shaped and flaky particles resulting in high packing densities and higher bond strengths than conventional hollow microspheres due to mechanical and cohesive bonding forces.
  • Targeted surface coatings enable an advantageous bond with the inorganic or organic matrix. This results in less shrinkage and better technical properties.
  • Commercially available is blown impregnated perlite z. B. under the trade name NOBLITE® (product of the company NOBLITE, Route de Claye, F-77181 LE PIN, France) and Technoperl® (product of Europerl Germany, D-94032 Passau, Nibelebenplatz 4).
  • ceramic and / or mineral high-melting fibers and / or organic high-melting fibers, for example carbon fibers are used.
  • Wollastonite is also possible.
  • Ceramic fibers or ceramic fibers are fibers
  • inorganic, non-metallic material inorganic, non-metallic material.
  • ceramic polycrystalline inorganic materials
  • precursors produced by pyrolysis amorphous fibers, which are referred to by their properties as ceramic fibers.
  • amorphous glass fibers which are not counted among the ceramic fibers, is best made possible by the manufacturing process (glass fibers from glass melt, amorphous ceramic fibers from polymeric precursors by pyrolysis).
  • the ceramic fibers are classified into oxidic and non-oxidic.
  • oxidic ceramic fibers fibers based on alumina and silica in different proportions and in part even with additional boron oxide or zirconium oxide are known.
  • Mixed oxide fibers of 85% A1 2 0 3 and 15% Si0 2 are also referred to as mullite fibers. All of these fibers are polycrystalline.
  • Non-oxide, industrially produced fibers have various types of silicon carbide fibers known.
  • Starting polymers are almost exclusively so-called poly-carbosilanes. These are polymers of hydrocarbons in which individual carbon atoms have been replaced by silicon atoms or silanes in which individual silicon atoms have been replaced by carbon atoms. Additives crosslink the polymers in a hardening process so that they can be used after the P2011 / 000872
  • Spinning process in the pyrolysis not simply evaporate, but - as in the production of carbon fibers - are converted into an amorphous, usually non-stoichiometric, still free carbon-containing SiC ceramic fiber.
  • an organic-inorganic hybrid binder which is obtainable under the trade name COL.9 from BASF. It contains 50 to 100 nm composite particles containing amorphous silica particles 5 and a polymer 6 based on n-butyl acrylate and methyl methacrylate (see Figure 1). The particles are dispersed in water. Due to the stickiness of the particles due to the polymer content is obtained an excellent binder for low temperatures, up to about 200 ° C. At elevated temperatures, the polymer fraction decomposes and the silica particles remain and thus preserve the structure, wherein the silica particles also forms a solid framework at a correspondingly high temperature. Shrinkage therefore does not occur at low or elevated
  • the binder has a solids content of about 35 to 40% by weight.
  • the silicate content, based on the solids content, is 30 to 50 wt .-%.
  • a surface-treated silica is used.
  • Silica is an intimate mixture of finely divided silica and kaolinite.
  • the Neuburg Siliceous Earth is known, which is preferably used according to the invention.
  • the silica is treated with a silane so that the individual particles have a functional hydrophilic surface.
  • Such an activated silica is available under the trade name "AKTISIL EM” from Hoffmann Mineral GmbH, Neuburg (Danube) Here, the silica is treated with 3-epoxypropyloxipropyltrimethoxysilane.
  • This so-called activated silica can be used in powder form the use of a mixture of silica sol and kaolin / kaolinite. Production examples and example formulations for the plastic mass used to produce the molded parts
  • step 1 mix all the liquid components of the recipe; then the components are weighed separately according to the recipe. step 1
  • Mixer to be used e.g. beba compulsory mixer
  • the premix now has a creamy consistency and may no longer contain lumps. If there are any lumps left, rasp them by hand, mix again with the same setting until there are no more lumps.
  • the mass must correspond to a loose bed to a pourable mortar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Ein wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil, welches für Dauereinsatztemperaturen von 1200 bis 1600 °C geeignet ist und mehrere Leichtfüllstoffe, ein Reaktionsprodukt der thermischen Härtung eines Bindemittels und Fasern und/oder Wollastonit enthält, ist dadurch gekennzeichnet, dass es Cenosphären aus Flugasche und geblähtem geschlossenzelligem Vulkangestein als Leichtfüllstoffe, dass es Flussmittel und dass es Siliciumdioxid als Reaktionsprodukt der thermischen Härtung des Bindemittels enthält.

Description

Wärmedämrnendes feuerfestes hochtemperaturbeständiges Formteil
Die Erfindung betrifft ein wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil, enthaltend mehrere Leichtfüllstoffe, ein Bindemittel und Fasern und/oder Wollastonit, für Anwendungen bis ca. 1600 °C.
Unter dem Begriff Leichtfüllstoffe sind hier hochschmelzende mineralische Granulate niedriger Dichte zu verstehen, zum Beispiel Flugasche, geblähte Vulkangesteine, Bläh- perlit usw.
In der vorliegenden Anmeldung wird„feinteilig" nicht im Sinne einer bestimmten kleinen Korngröße, sondern im Sinne von„pulverförmig" oder„granulär" im
Gegensatz zu„stückig" verwendet. Es kommt also nicht auf eine spezielle Korngröße oder Korngrößenverteilung an.
Stand der Technik
Feuerleichtsteine sind geformte, feuerfeste Erzeugnisse mit einer Gesamtporosität > 45 % und einer Anwendungstemperatur von mindestens 800 °C. ASTM C 155-70 und DIN EN 1094 definieren die Temperatur, bei der die Schwindung des Materials nach 24 h bzw. 12 h nicht mehr als 2 % beträgt, sowie eine maximale Rohdichte.
Ausgehend vom Chemismus sind Feuerleichtsteine in aluminiumsilikatische
Feuerleichtsteine, Silikaleichtsteine, Zirkonleichtsteine und Korundleichtsteine zu unterteilen. Die größte Bedeutung und Verbreitung kommt den Aluminium- silikatleichtsteinen (Schamotte- und Mullitsteinen) zu.
Zur Herstellung werden Rohstoffe auf der Basis von A1203, Si02 und eventuell CaO verwendet. Als Tonerdeträger werden Rohstoffe wie Ton, Kaolin, Schamotte,
Sillimanit, Andalusit, Kyanit und Mullit sowie Tonerde, Tonerdehydrat und Korund eingesetzt.
Neben den feinkörnigen Rohstoffen kommen auch grobkörnige, poröse Rohstoffe wie Leichtschamotte und Hohlkugeln aus Korund und Mullit zur Anwendung.
Bekannte Feuerleichtsteine haben eine Rohdichte von 0,5 bis 1 ,4 g/cm3, eine
Wärmeleitfähigkeit von 0,13 bis 1,3 W/mK bei 400 °C, von 0,17 bis 1,2 W/mK bei 800
BESTÄTIGUNGSKOPIE 2011/000872
- 2 -
°C, von 0,23 bis 1,1 W/mK bei 1200 °C und einen Anwendungstemperaturbereich von 1000 °C bis 1800 °C. (Quelle: G. Routschka, H. Wuthnow, Taschenbuch Feuerfeste Werkstoffe, 4. Auflage 2007, Vulkan-Verlag GmbH, Essen) S. 354 - 360). Die deutsche Offenlegungsschrift DE 10 2007 012 489 A1 beschreibt ausschließlich isolierende und exotherme Speiser aus der Gießereitechnik. Speiser ist ein Begriff aus der Gießereitechnik und bezeichnet geometrische Angusskörper an Gussteilen, in deren Form das Lunkervolumendefizit bei der Gussteilerstarrung platziert werden soll und welche im Putzvorgang der Gussteile wieder entfernt werden. Die Speiser selbst werden bei diesem Vorgang zerstört (Einwegteile).
Ein Speiser hat die Aufgabe, die Lunkerbildung (Hohlräume) in einem Gussteil zu vermeiden, und hat weitere unterschiedliche Aufgaben in einer Gießform:
• Steuerung der Erstarrungsrichtung der vergossenen Schmelze (möglichst
gerichtet zum Speiser hin)
• Ausgleich der Verringerung des spezifischen Volumens der vergossenen
Schmelze während des Phasenübergangs Flüssig/Fest
• Entlüftung der Gussform während des Gießvorgangs (Ausnahme: Blindspeiser) "Speiser- Varianten": Naturspeiser, Isolierspeiser, Exothermspeiser: Durch Isolierung bzw. zusätzliches Aufheizen der Speiser nach dem Gießvorgang können die
Speiserabmessungen kleiner gehalten werden, was zu einer Materialeinsparung (besseres Gussteilausbringen) führt.
Die in der DE 10 2007 012 489 AI beschriebenen exothermen Speiser enthalten thermitähnliche Abmischungen, die sehr gefährlich sind und in einigen Fabriken zu extremen Bränden geführt haben. Die Thermitreaktion ist eine Redoxreaktion, bei der Aluminium als Reduktionsmittel benutzt wird, um z.B. Eisen(III)-oxid zu Eisen zu reduzieren. Das Gemisch wird Thermit genannt:
Fe203 + 2 AI -> 2 Fe + A1203
Die Reaktionsprodukte sind Aluminiumoxid und elementares Eisen. Die Reaktion läuft sehr stark exotherm ab, also unter starker Wärmeentwicklung. Als Zündmittel wird Bariumperoxid mit Magnesium benutzt.
Thermitgemische sind kein Explosivstoff und lassen sich nur durch eine sehr große Wärmezufuhr (Aktivierungsenergie) zur Umsetzung (Entzündung) bringen. Der Brennvorgang ist eine stark exotherme Reaktion (bis zu 3000 °C). Da brennendes Thermit keinen externen Sauerstoff benötigt, kann die Reaktion nicht erstickt werden und in jeder Umgebung - auch unter Sand oder Wasser - gezündet werden und weiterbrennen. Löschversuche mit Wasser sowie Feuchtigkeit führen zu einer weiteren Redoxreaktion, in der das Wasser von den unedleren Metallen reduziert wird und so Metalloxid und Wasserstoff entstehen:
2 AI + 3 H20 -> 3 H2 + A1203
2 Fe + 3 H20 -> 3 H2 + Fe203
Die Anwesenheit von Wasser stellt daher eine große Gefahr bei der Thermitreaktion dar und führt zum explosionsartigen Ausschleudern glutflüssiger Stoffe sowie zu explosionsfähigen Wasserstoff-Sauerstoff-Mischungen (Knallgas). Thermitgemische müssen daher trocken gelagert werden.
Die in der DE 10 2007 012 489 AI in Abs. [0053] und [0054] aufgeführten Rezepturen haben einen Wassergehalt von ca. 1,5 bis 2,5 %. Es handelt sich also um pulverförmige Abmischungen, die offensichtlich ausschließlich für das Kernschießverfahren hergestellt werden.
In der Kernschießmaschine wird mit Bindemittel versetzter Formgrundstoff mit einem bestimmten Schießdruck und eventuell definierter Arbeitstemperatur in eine Kernform (den "Kernkasten") eingebracht. Nach dem Aushärten bzw. Vorhärten des so hergestellten Gusskerns wird dieser in die Gießform eingebaut. Je nach dem für das Aushärten des Formstoffes beigemischten Bindemittel kommen so genannte Coldbox- oder Hotbox-Kernschießmaschinen zum Einsatz. Die Abmischungen in der vorliegenden Patentanmeldung enthalten erheblich mehr Wasser. In der Rezeptur ist der Wassergehalt mindestens 10 Gew.-% und größer. Die Abmischungen in der vorliegenden Patentanmeldung entsprechen daher von ihrer Konsistenz Stampfmassen oder plastischen Massen. Die in der DE 10 2007 012 489 A 1 aufgeführten Bindemittel sind ausschließlich
Thermoplaste. Thermoplaste, auch Plastomere genannt, sind Kunststoffe, die sich in einem bestimmten Temperaturbereich (thermo-plastisch) verformen lassen. Dieser Vorgang ist reversibel, das heißt, er kann durch Abkühlung und Wiedererwärmung bis in den schmelzflüssigen Zustand beliebig oft wiederholt werden, solange nicht durch Überhitzung die sogenannte thermische Zersetzung des Materials einsetzt. Thermoplaste werden vor allem im Spritzgießverfahren verarbeitet, welches ähnlich ist dem in der DE 10 2007 012 489 AI beschriebenen Kernschießverfahren. Zu den Thermoplasten zählen z. B.: Acrylnitril-Butadien-Styrol (ABS), Polyamide (PA), Polylactat (PLA), Polymethylmethacrylat (PMMA), Polycarbonat (PC),
Polyethylenterephthalat (PET), Polyethylen (PE), Polypropylen (PP), Polystyrol (PS), Polyetheretherketon (PEEK) und Polyvinylchlorid (PVC). Der am längsten bekannte Thermoplast ist Celluloid.
Keinesfalls sind die Eigenschaften von thermoplastischen Bindemitteln mit den in der vorliegenden Patentanmeldung beschriebenen Hybridbindemitteln zu vergleichen, die die Festigkeit über einen großen Temperaturbereich gewährleisten müssen.
Ein Brennen der in der DE 10 2007 012 489 AI beschriebenen Produkte ist nicht möglich. Sie würden zerfallen oder sich mit Thermit entzünden und verbrennen. Eine Nutzung ist danach nicht mehr möglich.
Die Reduzierung der Emission in der DE 10 2007 012 489 AI wird nur zum Schutz der Gussform, aber nicht der Umwelt oder zur Vermeidung von Brandgefahren etc.
durchgeführt. Die Emission ist erheblich höher als in unseren Produkten. In den Mischungen der DE 10 2007 012 489 A 1 werden als Leichtfüllstoff nur feuerfeste
Cenospheren aus Si02 (gibt es aber tatsächlich nicht), A1203 (gibt es in der genannten Körnung nicht) und Aluminiumsilikat beschrieben, jedoch keine Fasern und keine geblähte Vulkanasche etc. wie in der vorliegenden Patentanmeldung. Die in der DE 10 2007 012 489 AI dargestellten Produkte lassen sich für die in der vorliegenden Patentanmeldung dargestellten Anwendungen aufgrund ihrer
Eigenschaften nicht einsetzen. Die Erfindung ist deshalb aus der DE 10 2007 012 489 AI nicht nahegelegt.
Aufgabe und Lösung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, äußerst stabile Formteile der eingangs genannten Art bereitzustellen, die eine Dichte von weniger als 1,0 g/cm3, bis etwa maximal 1500 °C praktisch keinen Schrumpf, nämlich weniger als 1,0 % haben, und bis zu dieser Temperatur keine äußeren oder inneren Risse und kein Zerbröseln zeigen und für Dauertemperaturen bis etwa 1600 °C geeignet sind und die eine deutlich höhere Kaltdruckfestigkeit aufweisen als Feuerleichtsteine vergleichbarer Rohdichte und vergleichbarer Wärmeleitfähigkeit zeigen.
Diese Aufgabe wird bei einem feuerfesten Formteil der eingangs genannten Art erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angeführt.
Der Geometrie der Formteile ist grundsätzlich keine Grenze gesetzt. Ziegelsteine, Rohre, Hohlkörper und andere Formteile sind herstellbar.
Zur Herstellung wird von einer wässrigen Masse ausgegangen, die durch bekannte Formgebungsverfahren, nachfolgendes Trocknen und thermische Behandlung in verschiedenen Stufen von 950 bis etwa 1450 °C hergestellt werden. So sind zum Beispiel die folgenden Formgebungsverfahren geeignet:
• Vibrationspressen mit niedriger Auflast,
• Isostatisches Pressen,
• Manuelles oder mechanisches Stampfen bzw. Rammen für komplexe Formen oder kleinere Anzahl zu fertigender Teile,
· Strang- bzw. Extrusionsverfahren,
• Schlickergießen, insbesondere für spezielle Teile, aber auch für größere Blöcke, wobei der Wassergehalt der für Schlickergießen hergestellten Massen um ca. 10 bis 20 % höher liegt. Vor dem Brennen ist ein vorsichtiges und möglichst vollständiges Trocknen zu empfehlen, um Trockenrisse oder Fehler nach dem Brennen zu vermeiden. Die Trocknung kann bei Raumtemperatur oder bei Temperaturen von ca. 70 °C
vorgenommen werden. Beim Brennen bei 950 bis 1050 °C wird das in der plastischen Ausgangsmasse vorhandene Kaolin in Spinell und Quarz umgewandelt, welches dann als Bindemittel für die bei dieser Temperatur noch nicht geschmolzene Vulkangesteine dient.
Ein weiterer Brand bei ca. 1250 °C lässt aus dem Spinell+Quarz Pseudo-Mullit entstehen. Für Anwendungen oberhalb von 1350 °C ist ein weiterer Brand bei ca. 1400 °C notwendig. Der Pseudo-Mullit setzt sich nun vollständig zu Mullit und Cristobalit um. Trocknung und Brand verändern das Gefüge der fixierten Cenosphären bis zu ihrem Erweichungs- bzw. Schmelzpunkt nicht. Die ab ca. 1000°C aufschmelzenden mikrozellulär geblähten Vulkangesteine dienen oberhalb 1150 °C mit den Kieselerden und Kaolin als Flussmittel. Über REM -Aufnahmen konnte nachgewiesen werden, dass dieses Flussmittel sich gleichmäßig über die Cenosphären verteilt und diese beschichtet.
Während die Cenosphären während des Brandes unverändert bleiben, kann die Oberfläche der Cenosphären gezielt durch Zugaben oder Austausch von Mineralien und Einschmelzen in dem Flussmittel den Anforderungen angepasst werden. Bei annähernd gleichen Rohdichten und wärmetechnischen Eigenschaften können
Formteile hergestellt werden, die in den beschichteten Oberflächen der Cenosphären, je nach Zuschlagstoff z.B. den sauren Schamotte SS85 (85% <= Si02 < 93%) oder den aluminiumreichen Steinen, Schmelz und Sintermullitsteinen M60 (55% >= A1203 < 65%) zuzuordnen sind. Somit lassen sich leichte druckfeste, bis 1600°C verwendbare Formteile mit an den Verwendungszweck angepassten Oberflächen der Cenosphären herstellen.
Eigenschaften und Herstellung der plastischen Masse, die als Ausgangsmaterial zur Herstellung des erfindungsgemäßen wärmedämmenden feuerfesten Formteils dient
Der Gehalt an Fasern und/oder Wollastonit dient zum Zusammenhalt der Masse im feuchten Zustand. Das Hybridbindemittel sorgt für den Zusammenhalt nach Trocknung bei Temperaturen bis etwa 200 °C aufgrund des organischen Bestandteils und bei höheren Temperaturen durch die Sinterung der Kieselsäurepartikel. Das eingesetzte Kaolin und das Kieselsol sind ebenfalls ein Bindemittel, welches bei erhöhter
Temperatur seine Funktion entfaltet. Die Leichtfüllstoffe, nämlich die mikrozellulär geblähten Vulkangesteine und die Cenosphären sorgen für das notwendige Volumen und für eine relativ niedrige Rohdichte im Vergleich zum Stand der Technik. Die mikrozellulär geblähten Vulkangesteine erweichen bei Temperaturen ab etwa 1000 °C und höher und dienen dann als Flussmittel und Bindemittel zwischen den
hochtemperaturbeständigen Cenosphären.
Vorteilhaft ist auch, wenn hochschmelzende Zusätze wie Siliciumcarbid, Kohlenstoff, Korund usw. enthalten sind, um chemische, thermische und mechanische Eigenschaft und Beständigkeit des Formteils und der Ausgangsmasse, wie Viskosität,
Druckerweichungspunkt, Temperaturbeständigkeit, Schrumpfverhalten und andere Eigenschaften gezielt einstellen zu können. Die mikrozellularen geblähten Vulkangesteine sind oberflächenbehandelt, um sie gegen Wasserangriff in den plastischen Massen und Mörteln zu schützen, wodurch die Massen lagerbeständig werden. Als Leichtfüllstoff wird zum einen geblähtes zelluläres Vulkangestein in Form nichtporöser Hohlgranulate eingesetzt. Bei porösen Hohlgranulaten würde sich dagegen die Rohdichte erhöhen, mehr Kleber und mehr Mineralien wären erforderlich, die Massen würden stumpfer und wären damit schlechter zu verarbeiten und die Porosität des Endproduktes würde sich deutlich erhöhen.
Flugasche
Hauptbestandteil der erfindungsgemäßen Masse sind Cenosphären aus Flugasche, die insbesondere einen Anteil von 20 bis 45 Gew.-% haben.
Flugasche ist der feste, disperse (teilchenförmige, partikelförmige, staubförmige) Rückstand von Verbrennungen, der auf Grund seiner hohen Dispersität (Feinheit) mit den Rauchgasen ausgetragen wird. Flugasche entsteht in großen Mengen in
Wärmekraftwerken und Müllverbrennungsanlagen und muss dort durch Filter aus den Rauchgasen abgeschieden werden. Die Teilchengröße reicht von etwa 1 μπι bis 1 mm.
An Teilchenformen treten sowohl glatte, massive Kugeln als auch Hohlkugeln (so genannte Cenosphären), Plättchen, Fasern und Agglomerate auf. Die Dichte beträgt 2,2 bis 2,4 kg/dm3, die Schüttdichte liegt zwischen 0,9 bis 1,1 kg/dm3. Die Zusammensetzung der Flugasche hängt stark vom Brennmaterial (Braunkohle oder
Steinkohle) ab und erstreckt sich von Restkohlenstoff und Mineralien (Quarz) bis hin zu toxischen Stoffen wie Schwermetallen (Arsen bis Zink) und Dioxinen. Dabei wirkt die Flugasche auch als Träger adsorbierter Schadstoffe. Während reine, einheitliche, gleich bleibende Brennstoffe wie Steinkohle eine gut verwertbare Flugasche ergeben, setzt sich die Braunkohlenflugasche (BFA) aus vielen verschiedenen Stoffen zusammen. Aufgrund ihrer chemischen und physikalischen Eigenschaften, wie der puzzolanischen Reaktivität, der kugeligen Kornform und der Kornverteilung, ist insbesondere die Steinkohlenflugasche (SFA) ein hochwertiger Sekundärrohstoff und findet im
Bauwesen eine Vielzahl von Anwendungsmöglichkeiten.
Schadstoffreie Flugasche wird in der Baustoffindustrie gemäß DIN EN 450 als Zusatzstoff in Zement und Beton eingesetzt. Des Weiteren kann die Flugasche zur Herstellung von Mauersteinen aus Kalksandstein oder Porenbeton dienen. Im Straßen- und Erdbau wird die Flugasche zusammen mit Gesteinskömung als Baustoff für ungebundene Tragschichten verwendet.
(Quelle: Wikipedia)
Nur die Fraktion der Cenosphären wird in den erfindungsgemäßen Massen eingesetzt, da hier die Dichte im Bereich von 0,5 - 0,9 g/ml und die Schüttdichte mit 0,3 -0,6 g ml erheblich niedriger liegt.
Kaolin/Kieselerde Kieselsol Kaolin, auch als Porzellanerde oder Aluminiumsilikat bezeichnet, ist ein feines, eisenfreies, weißes Gestein, das als Hauptbestandteil Kaolinit, ein Verwitterungsprodukt des Feldspats, enthält.
Das eingesetzte Kaolin bedeckt als Film den hoch schmelzenden Leichtfüllstoff und bildet bereits bei etwa 900 °C eine feste Struktur. Die Festigkeit der Struktur und der
Schrumpf wird durch das Verhältnis Kaolin/Kieselerde/Kieselsol und deren Verteilung beeinflusst.
Ein weiterer Vorteil des eingesetzten Gemischs von Kaolin Kieselerde Kieselsol liegt darin, dass die Masse nach dem Erhärten hart und mechanisch stabil ist.
Die hohe mechanische Stabilität ohne Schrumpf bei Temperaturen bis etwa 1600 °C wird erfindungsgemäß durch das Zusammenwirken der wesentlichen Komponenten
• hoch schmelzender Leichtfüllstoff Cenosphären,
· (T bis 1650 °C)
• mikrozellulär geblähtes Vulkangestein
• Kaolin, Kieselerde, Kieselsol • Mineralische Zuschlagsstoffe wie Korund, Quarz, Mullit,
Calciummagnesiumsilikate, Chromerze, Zirkonsilikat, etc.
• keramische oder andere hochschmelzende Fasern und/oder Wollastonit
erreicht.
Vorgeschlagen wird außerdem, dass eine Bindemittelmischung aus mehreren
Bindemitteln mit einer Bindewirkung in unterschiedlichen Temperaturbereichen eingesetzt wird. Die Innovation des erfindungsgemäßen Produktes besteht insbesondere darin, dass geeignete, sich ergänzende Bindemittel-Systeme eingesetzt werden, z. B. das
Hybridbindemittel, welches die Stützkonstruktionen aus Fasern bereits bei der
Trocknung unter Raumtemperatur mit den Leichtfüllstoffen (geblähte Vulkangesteine) ausreichend vernetzen, um die Struktur bis ca. 200 °C zu fixieren. Durch mineralische Bindemittel, z. B. Kaolin, die bereits enthalten sind, sowie die im Hybridbindemittel enthaltende Kieselsäure wird diese Struktur ab ca. 900 °C so ausreichend stark verstärkt, dass bei den jeweiligen angestrebten Anwendungstemperaturen ebenfalls kein Schrumpfen erfolgt. Oberhalb von 1050 °C dienen die sich erweichenden mikrozellular geblähten
Vulkangesteine als Flussmittel für die zusätzlichen Mineralien und als Fixierung für die Cenosphären. Durch die durch das Aufschmelzen entstandenen Hohlräume können Spannungen durch Temperaturerhöhung und Ausdehnung innerhalb der Masse abgepuffert werden.
Steigen die Temperaturen weiter an, finden je nach Zuschlagstoff weitere chemische Veränderungen statt. Die Fixierung der Cenosphären bleibt hiervon bis zu deren Erweichungspunkt unberührt und garantiert damit die Formstabilität. Besonders innovativ ist dabei, dass sich die unterschiedlichen Bindemittel und das hoch schmelzende mineralische Granulat hinsichtlich der bei Temperaturerhöhung erfolgende Verfestigung dieser Materialien so ergänzen, dass ein formstabiles und gewichtskonstantes Produkt mit unterschiedlich einstellbaren Strukturen, Dichten und Festigkeiten bis zu der maximalen Anwendungstemperatur entsteht.
Ein zentraler Kundennutzen beim Einsatz der erfindungsgemäßen Produkte liegt darin, dass neben dem gewünschten Ziel einer effizienten Hochtemperaturisolierung eine signifikante Kostenersparnis im Bereich der Opportunitätskosten für die Kunden realisiert werden kann. Die Senkung dieser Kosten wird vornehmlich durch die Verbesserung der Energiebilanz und auch der Ökobilanz durch Emissionsreduktion für den Kunden erreicht.
Weitere wichtige Vorteile der erfindungsgemäßen Produkte:
• Nicht brennbar
• Geringes Gewicht
• Hohe Temperaturbeständigkeit
· Niedrige Wärmeleitfähigkeit
• Gute Festigkeitseigenschaften
• Einfache Montage und Verarbeitung
• Viele Kombinationsmöglichkeiten
• Geringe Alkalität
· Nicht hygroskopisch
• Chemikalienbeständig
• Gutes elektrisches Isoliervermögen
• Recyclebar
• Deponiefähig
Perlit (englisch: perlite) bezeichnet in den Geowissenschaften ein alteriertes (chemisch und physikalisch umgewandeltes) vulkanisches Glas (Obsidian) und zählt damit zu den Gesteinen. Die so genannte perlitische Struktur wird hier durch etwa erbsengroße Glaskügelchen gebildet. Perlit enthält bis zu 2 % Wasser und hat eine Dichte von etwa 900 bis 1000 kg/m3 (Schüttdichte des Rohperlit). Durch Glühen auf ca. 800°C bis 1000 °C bläht sich Perlit auf das fünfzehn- bis zwanzigfache seines Ursprungsvolumens auf und hat dann eine Schüttdichte von 50 bis 100 kg/m3 und eine Wärmeleitfähigkeit von λ = 0,040 bis 0,070 W/mK. Erfindungsgemäß sind diese Perlite wegen der Porosität nicht einsetzbar.
Erfindungsgemäß geeignet sind dagegen mikrozellular expandierte Vulkangesteine, nach neuen umweltschonenden und energiesparenden Verfahren hergestellt, erzielen Eigenschaften und technische Werte, die es von älteren, porig expandierten
Vulkangesteinen ("expandierten Perliten") unterscheidet. Mikrozellulares, expandiertes Vulkangestein ist ein Füllstoff aus der Gruppe der Aluminiumsilikate und setzt sich aus kugeligen ("Bienenwabenstruktur"), stäbchenförmigen und flockigen Teilchen zusammen, woraus hohe Packungsdichten und höhere Verbundsfestigkeiten als bei herkömmlichen Mikrohohlkugeln durch mechanische und kohäsive Bindungskräfte resultieren. Gezielte Oberflächenbeschichtungen ermöglichen einen vorteilhaften Verbund mit der anorganischen bzw. organischen Matrix. Hieraus resultiert weniger Schwund und bessere technische Eigenschaften. Kommerziell erhältlich ist geblähtes imprägniertes Perlit z. B. unter dem Handelsnamen NOBLITE® (Produkt der Fa. NOBLITE, Route de Claye, F-77181 LE PIN, Frankreich)und Technoperl® (Produkt der Europerl Deutschland, D-94032 Passau, Nibelungenplatz 4).
Erfindungsgemäß eingesetzte Fasern
Insbesondere werden keramische und/oder mineralische hochschmelzende Fasern und/oder organische hochschmelzende Fasern, zum Beispiel Kohlefasern, eingesetzt. Wollastonit ist auch möglich.
Bei Keramikfasern oder keramischen Fasern handelt es sich um Fasern aus
anorganischem, nicht-metallischem Material. Ursprünglich sind nur polykristalline anorganische Werkstoffe als keramisch bezeichnet worden. Inzwischen gibt es aber aus verschiedenen Polymeren, sogenannten Precursoren, durch Pyrolyse hergestellte amorphe Fasern, die auf Grund ihrer Eigenschaften als keramische Fasern bezeichnet werden. Die Abgrenzung zu ebenfalls amorphen Glasfasern, die nicht zu den keramischen Fasern gezählt werden, ist am besten durch den Herstellprozess möglich (Glasfasern aus Glasschmelze, amorphe Keramikfasern aus polymeren Vorstufen durch Pyrolyse). Die keramischen Fasern werden in oxidische und nicht-oxidische eingeteilt.
An oxidischen Keramikfasern sind Fasern auf der Basis von Aluminiumoxid und Siliciumdioxid in unterschiedlichen Anteilen und zum Teil noch mit zusätzlichem Boroxid oder Zirkonoxid bekannt. Mischoxidfasern aus 85 % A1203 und 15 % Si02 werden auch als Mullitfasern bezeichnet. Alle diese Fasern sind polykristallin.
An nichtoxidischen, industriell hergestellten Fasern (außer den Kohlenstofffasern) sind verschiedene Typen von Siliciumcarbidfasern bekannt. Ausgangspolymere sind fast ausschließlich sogenannte Poly-Carbosilane. Es handelt sich hierbei um Polymere aus Kohlenwasserstoffen, in denen einzelne Kohlenstoff- durch Siliciumatome oder Silane, in denen einzelne Silicium- durch Kohlenstoffatome ersetzt worden sind. Durch Zusätze werden die Polymere in einem Härtungsprozess vernetzt, damit sie nach dem P2011/000872
- 12 -
Spinnprozess bei der Pyrolyse nicht einfach verdampfen, sondern - wie bei der Herstellung von Kohlenstofffasern - in eine amorphe, meist nicht-stöchiometrische, noch freien Kohlenstoff enthaltende SiC-Keramikfaser umgewandelt werden. Bei speziellen Herstellverfahren ist auch die Herstellung sehr feinkristalliner und reiner SiC- Fasern mit deutlich verbesserten Hochtemperatureigenschaften möglich.
Erfindungsgemäß eingesetztes Hvbridbindemittel Vorzugsweise wird ein organisch-anorganisches Hybridbindemittel eingesetzt, welches unter dem Handelsnamen COL.9 der Firma BASF erhältlich ist. Es enthält 50 bis 100 nm große zusammengesetzte Partikel, welche amorphe Kieselsäurepartikel 5 und ein Polymer 6 auf der Basis von n-Butylacrylat und Methylmethacrylat enthalten (siehe Figur 1). Die Partikel sind in Wasser dispergiert. Durch die Klebrigkeit der Partikel aufgrund des Polymergehaltes erhält man ein ausgezeichnetes Bindemittel für niedrige Temperaturen, etwa bis 200 °C. Bei erhöhten Temperaturen zersetzt sich der Polymeranteil und die Kieselsäurepartikel bleiben übrig und damit die Struktur erhalten, wobei die Kieselsäurepartikel bei einer entsprechend hohen Temperatur ebenfalls ein festes Gerüst bildet. Ein Schrumpf tritt daher weder bei niedriger noch bei erhöhter
Temperatur auf. Das Bindemittel hat einen Festkörpergehalt von etwa 35 bis 40 Gew.- %. Der Silicatanteil, bezogen auf den Feststoffgehalt, beträgt 30 bis 50 Gew.-%.
Erfindungsgemäß eingesetzte Kieselerde
Vorzugsweise wird eine oberflächenbehandelte Kieselerde eingesetzt. Unter Kieselerde versteht man ein inniges Gemisch von feinteiliger Kieselsäure und Kaolinit. Bekannt ist zum Beispiel die Neuburger Kieselerde, die erfindungsgemäß bevorzugt eingesetzt wird. Für die bessere Benetzbarkeit mit Wasser ist die Kieselerde mit einem Silan behandelt, so dass die einzelnen Partikel eine funktionelle hydrophile Oberfläche erhalten.
Erhältlich ist eine derartige aktivierte Kieselerde unter dem Handelsnamen„AKTISIL EM" der Firma Hoffmann Mineral GmbH, Neuburg (Donau). Hier ist die Kieselerde mit 3-Epoxipropyloxipropyltrimethoxisilan behandelt. Diese so genannte aktivierte Kieselerde kann in Pulverform eingesetzt werden. Möglich ist erfindungsgemäß aber auch der Einsatz eines Gemisches von Kieselsäuresol und Kaolin/Kaolinit. Herstellungsbeispiele und Beispielrezepturen für die zur Herstellung der Formteile eingesetzte plastische Masse
Vorbereitung
Als erstes sind alle flüssigen Komponenten der Rezeptur aufzumischen; dann werden die Komponenten getrennt nach der Rezeptur genau abgewogen. Stufe 1
Zu verwendender Mischer: z.B. beba Zwangsmischer
Alle flüssigen Rohstoffe sind mit dem Wasser zu mischen (Schaumbildung vermeiden); anschließend werden die Fasern per Hand zerrupft und mit der Wassermischung benetzt, bis sie komplett durchfeuchtet sind.
Stufe 2
Zugabe der 1. Hälfte der Cenosphären. Nun wird bei geschlossenem Deckel gemischt. Mischzeit: ca.10 Minuten Stufe 3
Nun erfolgt die Zugabe der mineralischen Zuschlagstoffe wie Kaolin, Korund, Kieselerde, etc.
Mischzeit : 20 Minuten
Die Vormischung erhält nun eine sämige Konsistenz und darf keine Klumpen mehr enthalten. Sollten noch Klumpen vorhanden sein, per Hand zerrupfen, nochmals bei gleicher Einstellung so lange nachmischen, bis keine Klumpen mehr vorhanden sind.
Stufe 4
Nun muss die 2. Hälfte der Cenosphären unter die Masse geknetet werden. Mischzeit : 15 Minuten
Stufe 5 Zugabe des mikrozellularen geblähten Vulkangesteins. Anschließend wird bei geschlossenem Deckel gemischt.
Mischzeit: 25 Minuten
Die Masse muss je nach Verarbeitungsart einer lockeren Schüttung bis einem gießfähigen Mörtel entsprechen.
Die nun fertig gestellte Mischung wird nun mittels eines der oben genannten Formgebungsverfahren zur Herstellung der erfindungsgemäßen Formteile eingesetzt.
Grundsätzlich sind alle Formgebungsverfahren möglich, die für halbtrockene Massen über plastische Massen bis hin zu gießfähigen Massen geeignet sind. Speziell bei Verfahren mit Druck oder hohen Scherkräften wie Extrudieren ist auf die begrenzte Belastbarkeit der Leichtfüllstoffe zu achten.
Beispielrezeptur
200 kg Ansatz:
Wasser 60,00 kg
Keramische Faser„Altra" B80 der Firma Rath 8, 10 kg
Bindemittel„C0L.9" von Fa. BASF 2,00 kg
Kieselsol„Levasil 200A/30" von Fa. Akzo Nobel Chemicals 8,20 kg
Aluminiumhydroxyd Trefil 744-300 EST von Fa. Quarzwerke 20,40 kg „Cenosphäres W300" von Fa. Omega Minerals 51 ,40 kg Mikrozellulares geblähtes Vulkangestein„Noblite 200 EC"
von Fa. Noblite 21 ,60 kg
Kieselerde„Aktisil EM" von Fa. Hoffmann Mineral 10,40 kg
Korund„Sepasil EK-R 220 MST" von Fa. Quarzwerke 17,90 kg

Claims

Ansprüche
Wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil, welches für Dauereinsatztemperaturen von 1200 bis 1600 °C geeignet ist und mehrere Leichtfüllstoffe, ein Reaktionsprodukt der thermischen Härtung eines
Bindemittels und Fasern und/oder Wollastonit enthält,
dadurch gekennzeichnet,
dass es Cenosphären aus Flugasche und geblähtem geschlossenzelligem Vulkangestein als Leichtfüllstoffe, dass es Flussmittel und dass es
Siliciumdioxid als Reaktionsprodukt der thermischen Härtung des Bindemittels enthält.
2. Formteil nach Anspruch 1 ,
dadurch gekennzeichnet,
dass es eine einheitliche Art von Fasern oder ein Gemisch unterschiedlicher Fasern, insbesondere keramische Fasern, mit einem Erweichungspunkt von mindestens 1200° C und/oder Wollastonit enthält.
Formteil nach Anspruch 1 ,
gekennzeichnet durch
die folgende Zusammensetzung:
Cenosphären von 30 - 60 Gew.-% mikrozellulares geblähtes Vulkangestein von 10 -40 Gew.-% Siliciumdioxid (Si02) von 40 - 70 Gew.-% Aluminiumoxid (A1203) von 15 - 65 Gew.-% Fasern bis 10Gew.-% Wollastonit bis 30 Gew.-%
Formteil nach Anspruch 1 ,
dadurch gekennzeichnet,
dass hochschmelzende Zusätze wie Siliciumcarbid, Kohlenstoff, Korund enthalten sind. 5. Formteil nach Anspruch 1 ,
dadurch gekennzeichnet,
dass es ausgebildet ist als Normstein, Mauerstein, Ofentür oder
Wärmedämmplatte oder
als Auskleidung für Transportwagen in Keramik-Brennöfen oder
als Innenisolation der Deckel von Transporttiegeln für flüssiges Metall oder als Innenisolation der Transporttiegel für flüssiges Metall oder
als Rinnenstein für flüssiges Metall oder
als Feuerwendestein für den Kraftwerks- und Industrieanlagenbau oder als Abdeckplatte für Herdwagen in Brennöfen für Keramik und Porzellan.
Formteil nach einem der vorhergehenden Ansprüche,
herstellbar durch Formgebung einer plastischen Masse und Trocknung sowie Brennen,
wobei die Masse Fasern und/oder Wollastonit und Wasser sowie mindestens zwei Leichtfüllstoffe und ein Flussmittel enthält,
dass man als Leichtfüllstoffe Cenosphären aus Flugasche und geblähte geschlossenzellige Vulkanasche einsetzt, die mit einer oberflächlichen
Wasserschutzschicht ausgerüstet sind,
dass die Masse als Bindemittel ein organisch-anorganisches Hybrid-Bindemittel enthält, welches Kieselsäure und ein organisches Polymer enthält, und dass die Masse Kaolin oder Kaolinit als Flussmittel und Siliciumdioxid, vorzugsweise Kieselsol, insbesondere Kieselerde enthält.
Formteil nach Anspruch 6,
dadurch gekennzeichnet,
dass das in der plastischen Masse eingesetzte Hybridbindemittel Partikel enthält, die wiederum aus amorphen Kieselsäurepartikeln (5) zusammengesetzt sind, die als Bindemittel ein Polymer (6) auf Acrylatbasis enthalten,
insbesondere n-Butylacrylat und Methylmethacrylat.
Formteil nach Anspruch 6,
dadurch gekennzeichnet,
dass in der plastischen Masse eine modifizierte Kieselerde eingesetzt wird, die Kieselsäure-Kaolinit-Partikel enthält, deren Oberfläche mit einem Netzmittel, insbesondere einem Silan beschichtet ist.
Formteil nach Anspruch 6,
dadurch gekennzeichnet, dass die plastische Masse eine einheitliche Art von Fasern oder ein Gemisch unterschiedlicher Fasern, insbesondere keramische Fasern, mit einem Erweichungspunkt von mindestens 1200° C und/oder Wollastonit enthält.
Formteil nach Anspruch 6,
dadurch gekennzeichnet,
dass die plastische Masse die folgende Zusammensetzung hat:
Cenosphären 20 bis 45 Gew.-% mikrozellulares geblähtes Vulkangestein 5 bis 20 Gew.-%
Hybridbindemittel 1 bis 6 Gew.-%
Fasern bis 6 Gew.-%
Wollastonit bis 15 Gew.-% modifizierte Kieselerde 3 bis 15 Gew.-%.
Rest Wasser.
PCT/EP2011/000872 2010-02-24 2011-02-23 Wärmedämmendes feuerfestes hochtemperaturbeständiges formteil WO2011104008A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11709864A EP2539295A2 (de) 2010-02-24 2011-02-23 Wärmedämmendes feuerfestes hochtemperaturbeständiges formteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010009148 DE102010009148B4 (de) 2010-02-24 2010-02-24 Wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil
DE102010009148.0 2010-02-24

Publications (2)

Publication Number Publication Date
WO2011104008A2 true WO2011104008A2 (de) 2011-09-01
WO2011104008A3 WO2011104008A3 (de) 2011-10-20

Family

ID=44070731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/000872 WO2011104008A2 (de) 2010-02-24 2011-02-23 Wärmedämmendes feuerfestes hochtemperaturbeständiges formteil

Country Status (3)

Country Link
EP (1) EP2539295A2 (de)
DE (1) DE102010009148B4 (de)
WO (1) WO2011104008A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033219A1 (de) * 2016-08-19 2018-02-22 Wacker Chemie Ag Poröser formkörper in gestalt einer dämmputzschicht oder einer dämmplatte
CN113511904A (zh) * 2021-04-22 2021-10-19 武汉科技大学 一种轻量莫来石质耐火材料及其制备方法
CN113563092A (zh) * 2021-07-29 2021-10-29 阿尔赛(苏州)无机材料有限公司 一种空心球陶瓷纤维砖及其制备方法
CN116553921A (zh) * 2023-02-27 2023-08-08 河南三元光电科技有限公司 一种耐高温隔热复合材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048175B4 (de) 2010-10-13 2016-07-21 Werner Bloem Aktives schadstoffreduzierendes Formteil
DE102010048174B4 (de) 2010-10-13 2015-04-02 TDH - GmbH Technischer Dämmstoffhandel Intumeszentes wärmedämmendes feuerfestes Formteil und Verfahren zu dessen Herstellung
CN106495738B (zh) * 2016-10-25 2019-04-16 中电声韵声学工程技术(北京)有限公司 一种陶瓷吸声材料及其制备方法与用途
CN111732424A (zh) * 2020-07-14 2020-10-02 黑龙江火山岩科技有限公司 火山岩低膨胀陶瓷坯料及火山岩低膨胀陶瓷的制备方法
CN111995419A (zh) * 2020-09-02 2020-11-27 巩义市益鑫耐火材料厂 一种铁水预处理用环保型强化复合脱磷包砖及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012489A1 (de) 2007-03-15 2008-09-25 AS Lüngen GmbH Zusammensetzung zur Herstellung von Speisern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847633A (en) * 1972-04-10 1974-11-12 Litvin R Building material for modular construction
GB1499804A (en) * 1974-12-17 1978-02-01 Hartfree A Thermally insulating and fire resistant compositions and articles made therefrom
CN1158323A (zh) * 1996-11-21 1997-09-03 张运勇 一种轻质墙体保温防火膏体及其生产方法
EP1829838B1 (de) * 2000-03-14 2016-08-24 James Hardie Technology Limited Faserzementbaumaterialien mit Zusätzen mit geringer Dichte
CN100422118C (zh) * 2000-10-17 2008-10-01 小田建设株式会社 多孔吸音性陶瓷成型体及其制造方法
KR20050031196A (ko) * 2003-09-29 2005-04-06 최준한 불연성 조성물, 이를 이용한 건축용 불연성 성형품 및이의 제조방법
CN101172870A (zh) * 2007-10-18 2008-05-07 李哲 一种防火保温材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012489A1 (de) 2007-03-15 2008-09-25 AS Lüngen GmbH Zusammensetzung zur Herstellung von Speisern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. ROUTSCHKA, H. WUTHNOW: "Taschenbuch Feuerfeste Werkstoffe", 10720, VULKAN-VERLAG GMBH, pages: 354 - 360

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033219A1 (de) * 2016-08-19 2018-02-22 Wacker Chemie Ag Poröser formkörper in gestalt einer dämmputzschicht oder einer dämmplatte
US11059755B2 (en) 2016-08-19 2021-07-13 Wacker Chemie Ag Porous molded body in the form of an insulating plaster layer or an insulating panel
CN113511904A (zh) * 2021-04-22 2021-10-19 武汉科技大学 一种轻量莫来石质耐火材料及其制备方法
CN113511904B (zh) * 2021-04-22 2022-06-14 武汉科技大学 一种轻量莫来石质耐火材料及其制备方法
CN113563092A (zh) * 2021-07-29 2021-10-29 阿尔赛(苏州)无机材料有限公司 一种空心球陶瓷纤维砖及其制备方法
CN113563092B (zh) * 2021-07-29 2023-12-22 阿尔赛(苏州)无机材料有限公司 一种空心球陶瓷纤维砖及其制备方法
CN116553921A (zh) * 2023-02-27 2023-08-08 河南三元光电科技有限公司 一种耐高温隔热复合材料及其制备方法

Also Published As

Publication number Publication date
DE102010009148A1 (de) 2011-08-25
EP2539295A2 (de) 2013-01-02
WO2011104008A3 (de) 2011-10-20
DE102010009148B4 (de) 2013-10-10

Similar Documents

Publication Publication Date Title
DE102010009148B4 (de) Wärmedämmendes feuerfestes hochtemperaturbeständiges Formteil
EP2539296B1 (de) Plastische feuerfeste masse und feuerfester mörtel
DE102010009144B4 (de) Wärmedämmendes feuerfestes Formteil
EP2516348B1 (de) Flugascheverarbeitung und herstellung von artikeln mit flugaschezusammensetzungen
DE112008000701B4 (de) Zusammensetzung zur Herstellung von Speisern, deren Verwendung, Verfahren zur Herstellung von Speisern unter Verwendung der Zusammensetzung und so hergestellte Speiser.
DE102010044466B4 (de) Verfahren zur Herstellung eines wärmedämmenden Brandschutzformteils und ebensolches Brandschutzformteil
DE102010009142B4 (de) Plastische feuerfeste hochtemperaturbeständige Masse und feuerfester hochtemperaturbeständiger Mörtel und deren Verwendung
EP2462075B1 (de) Zusammensetzung für einen feuerleichtstein mit hohem anorthitanteil
JP2018524261A (ja) 断熱材
WO2002070431A1 (de) Gesinterte anorganische granulate und formkörper auf basis von kohlenstoff und/oder molybdänverbindungen in einer keramischen matrix
DE2339139A1 (de) Keramische isoliersteine
EP3478431A1 (de) Verwendung eines wärmedämmenden formkörpers zur isolation von metallschmelzen gegenüber der atmosphäre oder einem metallurgischen gefäss
AT369723B (de) Verfahren zur herstellung eines neuen baustoffes
EP3478432A1 (de) Platte, insbesondere abdeckplatte für metallschmelzen, sowie verfahren zur herstellung der platte und deren verwendung
DE102010009145A1 (de) Leichte pastöse feuerfeste Kleber und ihre Verwendung
DD296477A5 (de) Hochtemperaturbestaendige poroese zuschlagstoffkoernung und verfahren zu ihrer herstellung
KR100241593B1 (ko) 세라믹소재 방음판(방음재)의 제조방법
EP2580171B2 (de) Feuerfestes regeneratgranulat, verfahren zu seiner herstellung sowie dessen verwendung
DE102008053231B4 (de) Thermisch stabiler betonfreier Verbundwerkstoff, Verfahren zu seiner Herstellung und Verwendung des Verbundwerkstoffs
DE102020206957A1 (de) Trockener Versatz und Versatzfrischmasse zur Herstellung eines grobkeramischen, gebrannten feuerfesten Erzeugnisses, insbesondere einer Rohrschutzplatte, aus nitridgebundenem Siliciumcarbid, derartiges Erzeugnis sowie Verfahren zu seiner Herstellung und Müllverbrennungsanlage, Rauchgasentschwefelungsanlage und Schmelzwanne mit einem derartigen Erzeugnis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11709864

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011709864

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2235/MUMNP/2012

Country of ref document: IN