WO2011102425A1 - 酸化物焼結体、酸化物混合体、それらの製造方法およびそれらを用いたターゲット - Google Patents
酸化物焼結体、酸化物混合体、それらの製造方法およびそれらを用いたターゲット Download PDFInfo
- Publication number
- WO2011102425A1 WO2011102425A1 PCT/JP2011/053405 JP2011053405W WO2011102425A1 WO 2011102425 A1 WO2011102425 A1 WO 2011102425A1 JP 2011053405 W JP2011053405 W JP 2011053405W WO 2011102425 A1 WO2011102425 A1 WO 2011102425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- oxide
- resistance
- titanium
- zinc
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 256
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 239000010936 titanium Substances 0.000 claims abstract description 579
- 239000011701 zinc Substances 0.000 claims abstract description 553
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 440
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 253
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 233
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 233
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 193
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 176
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 174
- 239000011787 zinc oxide Substances 0.000 claims abstract description 170
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000001301 oxygen Substances 0.000 claims abstract description 47
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 47
- 239000010408 film Substances 0.000 claims description 836
- 239000000758 substrate Substances 0.000 claims description 732
- 239000000843 powder Substances 0.000 claims description 235
- 238000000034 method Methods 0.000 claims description 204
- 239000002253 acid Substances 0.000 claims description 166
- 230000015572 biosynthetic process Effects 0.000 claims description 136
- 239000013078 crystal Substances 0.000 claims description 132
- 238000004544 sputter deposition Methods 0.000 claims description 119
- 239000012298 atmosphere Substances 0.000 claims description 108
- 239000002994 raw material Substances 0.000 claims description 103
- 239000010409 thin film Substances 0.000 claims description 94
- 238000007733 ion plating Methods 0.000 claims description 59
- 239000011812 mixed powder Substances 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 57
- 238000005245 sintering Methods 0.000 claims description 50
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 40
- 238000005530 etching Methods 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 238000000151 deposition Methods 0.000 claims description 30
- 238000010894 electron beam technology Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 30
- -1 zinc titanate compound Chemical class 0.000 claims description 30
- 229910052786 argon Inorganic materials 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 26
- 238000000465 moulding Methods 0.000 claims description 26
- 238000007740 vapor deposition Methods 0.000 claims description 26
- 229910052733 gallium Inorganic materials 0.000 claims description 24
- 238000000059 patterning Methods 0.000 claims description 24
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 claims description 18
- 229940007718 zinc hydroxide Drugs 0.000 claims description 18
- 229910021511 zinc hydroxide Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 125000004429 atom Chemical group 0.000 claims description 15
- 230000001590 oxidative effect Effects 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 238000004549 pulsed laser deposition Methods 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 239000012780 transparent material Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 162
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 222
- 239000003513 alkali Substances 0.000 description 167
- 238000002834 transmittance Methods 0.000 description 155
- 238000007654 immersion Methods 0.000 description 136
- 230000008859 change Effects 0.000 description 87
- 239000007789 gas Substances 0.000 description 80
- 238000002156 mixing Methods 0.000 description 77
- 239000012071 phase Substances 0.000 description 66
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 65
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 65
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 60
- 238000002441 X-ray diffraction Methods 0.000 description 57
- 238000009826 distribution Methods 0.000 description 57
- 238000011088 calibration curve Methods 0.000 description 47
- 238000005259 measurement Methods 0.000 description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 36
- 229910002804 graphite Inorganic materials 0.000 description 34
- 239000010439 graphite Substances 0.000 description 34
- 238000005477 sputtering target Methods 0.000 description 27
- 230000008021 deposition Effects 0.000 description 24
- 239000002245 particle Substances 0.000 description 21
- 238000004876 x-ray fluorescence Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 19
- 229910052984 zinc sulfide Inorganic materials 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 239000012300 argon atmosphere Substances 0.000 description 16
- 239000000654 additive Substances 0.000 description 15
- 230000000996 additive effect Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 15
- 239000004334 sorbic acid Substances 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- 238000002679 ablation Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 229910052738 indium Inorganic materials 0.000 description 10
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 9
- 229910001195 gallium oxide Inorganic materials 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 239000012046 mixed solvent Substances 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 206010021143 Hypoxia Diseases 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000005361 soda-lime glass Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000001272 pressureless sintering Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 206010048259 Zinc deficiency Diseases 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- IZGYIFFQBZWOLJ-CKAACLRMSA-N phaseic acid Chemical compound C1C(=O)C[C@@]2(C)OC[C@]1(C)[C@@]2(O)C=CC(/C)=C\C(O)=O IZGYIFFQBZWOLJ-CKAACLRMSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6265—Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62685—Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/652—Reduction treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
Definitions
- the present invention relates to an oxide sintered body, an oxide mixture, a production method thereof, and a target using them.
- Transparent conductive films that combine electrical conductivity and light transmission have been used as electrodes in solar cells, liquid crystal display elements, and other various light receiving elements, as well as automotive windows, heat ray reflective films for buildings, and antistatic properties. It is used in a wide range of applications, such as transparent anti-fogging elements for anti-fogging in membranes and frozen showcases.
- a transparent conductive film having a low resistance and excellent conductivity is suitable for a solar cell, a liquid crystal display element such as a liquid crystal, organic electroluminescence, and inorganic electroluminescence, a touch panel, and the like.
- the transparent conductive film for example, a tin oxide (SnO 2 ) -based thin film, a zinc oxide (ZnO) -based thin film, and an indium oxide (In 2 O 3 ) -based thin film are known.
- tin oxide-based transparent conductive film those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are known, and as a zinc oxide-based transparent conductive film, Those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are known, and indium oxide-based transparent conductive films include those containing tin as a dopant (ITO; Indium Tin Oxide). It has been. Among them, the most industrially used is an indium oxide-based transparent conductive film, and in particular, an ITO film is widely used because of its low resistance and excellent conductivity.
- the target used as a film raw material in these film formation methods is made of a solid containing a metal element constituting the film to be formed, and is a sintered body or a mixture of metal, metal oxide, metal nitride, metal carbide, etc. Body, and in some cases, a single crystal.
- the target when an oxide film such as ITO is formed by sputtering, the target is generally an alloy target made of a metal element constituting the film (In—Sn alloy in the case of an ITO film), Alternatively, an oxide target (a sintered body or a mixture made of In—Sn—O in the case of an ITO film) obtained by sintering or mixing an oxide containing a metal element constituting the film is used.
- an alloy target when an alloy target is used, all the oxygen in the formed film is supplied from the oxygen gas in the atmosphere, so the amount of oxygen gas in the atmosphere tends to fluctuate, and as a result, the oxygen in the atmosphere It may be difficult to keep the film formation rate depending on the amount of gas and the characteristics (specific resistance, transmittance) of the film obtained constant.
- oxide targets that is, oxide sintered bodies or oxide mixtures
- an indium oxide-based transparent conductive film such as an ITO film is expensive and may be depleted of resources because In (indium), which is an essential raw material, is a rare metal, and has toxicity and is harmful to the environment and the human body.
- In (indium) which is an essential raw material
- ITO film has toxicity and is harmful to the environment and the human body.
- an industrially versatile transparent conductive film that can be substituted for an ITO film because it may adversely affect the film.
- a zinc oxide-based transparent conductive film that can be industrially manufactured by a sputtering method has attracted attention, and research is being conducted to improve its conductive performance.
- Non-patent Document 1 attempts have been made to dope ZnO with various dopants in order to increase conductivity, and the optimum doping amount and the lowest resistivity have been reported for each of the various dopants.
- the optimum doping amount is 2 wt%, and the minimum resistivity at that time is 5.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the zinc oxide-based transparent conductive film has been improved to obtain a low resistance comparable to that of the ITO film at the laboratory level.
- conventional zinc oxide-based transparent conductive films are excellent in terms of conductivity, but have the disadvantage of being inferior in chemical durability such as heat resistance, moisture resistance, and chemical resistance (alkali resistance, acid resistance).
- the zinc oxide-based transparent conductive film has poor chemical resistance (acid resistance and alkali resistance) as described above, it is necessary to pattern the zinc oxide-based transparent conductive film in a desired shape (for example, an element) In the case of use for such applications, there is a problem that an appropriate wet etching solution does not exist and patterning cannot be performed satisfactorily.
- zinc oxide has a very high dissolution rate in acids and alkalis, etching with an acid or alkali on a zinc oxide-based transparent conductive film results in a very high etching rate. (Specifically, it is 100 times or more compared with the ITO film) and it immediately dissolved, and a good pattern shape could not be obtained.
- the tin oxide-based transparent conductive film has excellent chemical resistance (acid resistance and alkali resistance) and is stable against acids and alkalis.
- patterning by etching cannot be performed. Therefore, the zinc oxide-based transparent conductive film and the tin oxide-based transparent conductive film have a drawback that they can only be used for applications that do not require patterning. Therefore, as a means for enabling patterning of a zinc oxide-based thin film, it has been proposed that a specific acid can be used as an etchant and a specific element can be doped to reduce the etching rate (Patent Document 1). .
- etching a zinc oxide-based thin film doped with 6 at% of Ti in ZnO (where “at%” is the number of atoms of the additive element with respect to the total number of atoms of zinc and the additive element of 100)
- An example of etching a zinc oxide thin film doped with 3 at% Ti is disclosed.
- Patent Document 2 describes that the durability of a zinc oxide-based transparent conductive film is improved by adding titanium oxide (TiO 2 ) having extremely strong durability to zinc oxide.
- Patent Document 2 since the Ti element as the tetravalent element is substituted and dissolved in the site in the crystal of the zinc element, which is the divalent element, the charge balance is greatly lost, and the crystal structure is distorted. Since it is large and causes ionic impurity scattering, it is difficult to develop sufficient conductivity.
- JP 2008-159814 A Japanese Patent No. 4295811
- a first object of the present invention is to provide an oxide sintered body and an oxide mixture suitable for obtaining a zinc oxide-based transparent conductive film having both excellent conductivity and chemical durability, and methods for producing the same. And a target using them.
- the second object of the present invention is to provide a method for forming a zinc oxide-based transparent conductive film having both excellent conductivity and chemical durability, a zinc oxide-based transparent conductive film formed by this method, and this film. It is to provide a transparent conductive substrate provided.
- a third problem of the present invention is a zinc oxide thin film that has a sufficiently low etching rate at the time of patterning, can control the etching rate easily and reliably, has a good pattern shape, and has high conductivity. It is to provide a patterning method capable of obtaining the above.
- the oxide sintered body of the present invention is substantially composed of zinc, titanium, and oxygen, and the atomic ratio Ti / (Zn + Ti) of titanium to the total of zinc and titanium exceeds 0.02 and is 0.1 or less. It is.
- the method for producing an oxide sintered body according to the present invention after molding a raw material powder containing the following (A) and / or (B), the obtained molded body is subjected to inert atmosphere, vacuum or reduction. This is a method of sintering at 600 ° C. to 1500 ° C. in an atmosphere.
- the method for producing an oxide sintered body according to the present invention is as follows. After the raw material powder containing (A) and / or (B) is molded, the obtained molded body is sintered at 600 ° C. to 1500 ° C. in an air atmosphere or an oxidizing atmosphere, and then further vacuumed in an inert atmosphere. In this method, annealing is performed in a reducing atmosphere.
- the oxide mixture of the present invention comprises zinc oxide and titanium oxide.
- titanium with respect to the sum of zinc and titanium has an atomic ratio Ti / (Zn + Ti) of more than 0.02 and 0.1 or less.
- the method for producing an oxide mixture according to the present invention is obtained by molding a raw material powder containing a mixed powder of titanium oxide powder and zinc oxide powder or a mixed powder of titanium oxide powder and zinc hydroxide powder. In this method, the body is annealed at 50 ° C. or higher and lower than 600 ° C. in an air atmosphere, an inert atmosphere, a vacuum or a reducing atmosphere.
- the target of the present invention is a target obtained by processing the oxide sintered body or the oxide mixture.
- the method for forming a zinc oxide-based transparent conductive film according to the present invention comprises zinc oxide selected from the group consisting of a pulse laser deposition method (PLD method), a sputtering method, an ion plating method, and an electron beam (EB) vapor deposition method.
- a method of forming a transparent organic conductive film, which is substantially composed of zinc, titanium and oxygen, and the atomic ratio Ti / (Zn + Ti) of titanium to the total of zinc and titanium is more than 0.02 and not more than 0.1.
- a target obtained by processing a certain oxide sintered body or oxide mixture is used.
- the zinc oxide-based transparent conductive film of the present invention is a film formed by the method for forming the zinc oxide-based transparent conductive film.
- the transparent conductive substrate of this invention is a board
- the atomic ratio Ti / (Zn + Ti) of titanium with respect to the total of zinc and titanium is more than 0.02 and not more than 0.1
- the second target of the present invention is a target obtained by processing a zinc oxide-based transparent conductive film forming material.
- the second method for forming a zinc oxide-based transparent conductive film according to the present invention is the sputtering method, ion plating method, pulse laser deposition method (PLD method) or electron beam (EB) vapor deposition using the second target.
- PLD method pulse laser deposition method
- EB electron beam
- a zinc oxide-based transparent conductive film is formed by a method.
- the transparent conductive substrate of this invention is a board
- the patterning method according to the present invention is a method of patterning by etching a zinc oxide thin film with an acid, wherein the zinc oxide thin film contains zinc oxide as a main component, and the number of titanium atoms relative to the total of zinc and titanium.
- the ratio Ti / (Zn + Ti) is a thin film having a ratio exceeding 0.02 and not more than 0.1.
- a zinc oxide-based transparent conductive film having excellent conductivity and chemical durability can be formed by sputtering, ion plating, PLD, or EB vapor deposition.
- the transparent conductive film formed in this manner is extremely useful industrially because it has the advantage that it does not require toxic indium, which is a rare metal.
- a zinc oxide-based transparent conductive film having a good pattern shape and high conductivity can be obtained.
- the oxide sintered body of the present invention is a titanium-doped zinc oxide sintered body substantially composed of zinc, titanium, and oxygen.
- substantially means that 99% or more of all atoms constituting the oxide sintered body are composed of zinc, titanium, or oxygen.
- the atomic ratio Ti / (Zn + Ti) of titanium to the total of zinc and titanium is more than 0.02 and 0.1 or less.
- the value of Ti / (Zn + Ti) is 0.02 or less, chemical durability such as chemical resistance of a film formed using an oxide sintered body as a target is insufficient, and oxide sintering is performed. Since it becomes difficult for the zinc titanate compound to be formed in the body, the strength of the sintered body is reduced, making it difficult to process the target.
- the value of Ti / (Zn + Ti) exceeds 0.1, there is a high possibility that a titanium oxide crystal phase that is desired not to be included in the oxide sintered body is formed as described later.
- the oxide sintered body of the present invention is preferably composed of a zinc oxide phase and a zinc titanate compound phase, or composed of a zinc titanate compound phase.
- the oxide titanate contains a zinc titanate compound phase in this way, the strength of the sintered body itself increases, so cracks occur. It is hard to produce.
- the zinc titanate compound include ZnTiO 3 and Zn 2 TiO 4 , those in which a titanium element is dissolved in these zinc sites, those in which oxygen deficiency is introduced, and those having a Zn / Ti ratio. Non-stoichiometric compositions slightly deviating from the compound are also included.
- examples of zinc oxide include ZnO, a solution in which a titanium element is dissolved, a material in which oxygen deficiency is introduced, and a material having a non-stoichiometric composition due to zinc deficiency.
- the zinc oxide phase usually has a wurtzite structure.
- the oxide sintered body of the present invention does not substantially contain a titanium oxide crystal phase.
- the oxide sintered body contains a crystal phase of titanium oxide, the resulting film may lack uniformity in physical properties such as specific resistance.
- titanium oxide since the value of Ti / (Zn + Ti) described above is 0.1 or less, titanium oxide usually reacts completely with zinc oxide, and titanium oxide is contained in the oxide sintered body. A crystalline phase is unlikely to occur. Examples of the crystalline phase of titanium oxide include TiO 2 , Ti 2 O 3 , and TiO, as well as substances in which other elements such as Zn are dissolved in these crystals.
- the oxide sintered body of the present invention contains at least one element selected from the group consisting of gallium, aluminum, tin, silicon, germanium, zirconium and hafnium (hereinafter sometimes referred to as “additive element”), Furthermore, it is preferable to contain.
- additive element the specific resistance of the oxide sintered body itself can be reduced in addition to the specific resistance of the film formed using the oxide sintered body as a target.
- the film formation rate during DC sputtering depends on the specific resistance of the oxide sintered body as a sputtering target, and the productivity during film formation is improved by lowering the specific resistance of the oxide sintered body itself. Can do.
- the total content is 0.05% or less with respect to the total amount of all the metal elements which comprise oxide sinter by atomic ratio. If the content of the additive element exceeds 0.05%, the specific resistance of the film formed using the oxide sintered body as a target may increase.
- the additive element may be present in the oxide sintered body in the form of an oxide, or may be present in a form substituted (solid solution) in the zinc site of the zinc oxide phase, or titanic acid.
- the zinc compound phase may exist in a form substituted (solid solution) with titanium sites and / or zinc sites.
- the oxide sintered body of the present invention may contain other elements such as indium, iridium, ruthenium, rhenium as impurities in addition to the essential elements and additive elements of zinc and titanium.
- the total content of elements contained as impurities is preferably 0.5% or less in terms of atomic ratio with respect to the total amount of all metal elements constituting the oxide sintered body.
- the specific resistance of the oxide sintered body of the present invention is preferably 5 k ⁇ ⁇ cm or less.
- the deposition rate during direct current sputtering depends on the specific resistance of the oxide sintered body as a sputtering target. Therefore, if the specific resistance of the oxide sintered body exceeds 5 k ⁇ ⁇ cm, the direct current sputtering is stable. There is a risk that film formation cannot be performed.
- the specific resistance of the oxide sintered body of the present invention is preferably as low as possible. Specifically, it should be 100 ⁇ ⁇ cm or less.
- the oxide sintered body of the present invention is preferably obtained by a method for producing an oxide sintered body according to the present invention described later, but is not limited to those obtained by these production methods.
- a combination of titanium metal and zinc oxide powder or zinc hydroxide powder, or a combination of titanium oxide and zinc metal may be obtained as a raw material powder.
- the method for producing an oxide sintered body according to the present invention includes forming the raw material powder containing the following (A) and / or (B), and then sintering the obtained molded body, This is a method for obtaining an oxide sintered body.
- the raw material powder may be a mixed powder of titanium oxide powder and zinc oxide powder, a mixed powder of titanium oxide powder and zinc hydroxide powder, or a powder containing zinc titanate compound powder. It may be a mixed powder of zinc powder and zinc titanate compound powder or a mixed powder of titanium oxide powder, zinc hydroxide powder and zinc titanate compound powder. It is preferable to include a mixed powder of titanium oxide powder and zinc oxide powder or a mixed powder of titanium oxide powder and zinc hydroxide powder.
- the oxide sintered body of the present invention is In that case, titanium or zinc metal particles are likely to be present in the oxide sintered body, and when this is used as a target, the metal particles on the surface of the target melt during the film formation. There is a tendency that the composition of the obtained film and the composition of the target are largely different without being released.
- titanium oxide powder titanium oxide (TiO 2 ) made of tetravalent titanium, titanium oxide (Ti 2 O 3 ) made of trivalent titanium, titanium oxide (TiO) made of divalent titanium, or the like is used.
- Ti 2 O 3 powder it is preferable to use Ti 2 O 3 powder. Because the crystal structure of Ti 2 O 3 is trigonal and the zinc oxide mixed with it has a hexagonal wurtzite structure, the symmetry of the crystal structure is the same, and it is replaced when solid-phase sintering is performed. It is because it can be considered that it dissolves easily.
- the purity of the titanium oxide powder is preferably 99% by weight or more.
- the ratio of the low-valent titanium oxide mixture can be controlled.
- the structure of this low-valence titanium oxide can be confirmed by the results of instrumental analysis such as an X-ray diffraction apparatus (X-ray diffraction, XRD), an X-ray photoelectron spectrometer (X-ray Photoelectron Spectroscopy, XPS).
- the zinc oxide powder a powder of ZnO or the like having a wurtzite structure is usually used, and a powder obtained by firing this ZnO in advance in a reducing atmosphere and containing oxygen deficiency may be used.
- the purity of the zinc oxide powder is preferably 99% by weight or more.
- the zinc hydroxide powder may be either amorphous or crystalline.
- the zinc titanate compound powders of ZnTiO 3 , Zn 2 TiO 4 and the like can be used, and it is particularly preferable to use Zn 2 TiO 4 powder.
- the average particle size of each compound (powder) used as the raw material powder is preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less.
- the BET specific surface area of raw material powder is not specifically limited.
- the mixing ratio of each powder is Ti / (Zn + Ti) in atomic ratio in the finally obtained oxide sintered body, depending on the type of compound (powder) used. What is necessary is just to set suitably so that a value may become said range. At that time, considering that zinc has a higher vapor pressure than titanium and is likely to be volatilized when sintered, the desired composition of the desired oxide sintered body (atomic ratio of Zn and Ti), It is preferable to set the mixing ratio in advance so that the amount of zinc increases.
- the easiness of volatilization of zinc varies depending on the atmosphere during sintering.
- the atmosphere during sintering For example, when zinc oxide powder is used, only the volatilization of zinc oxide powder itself occurs in an air atmosphere or an oxidizing atmosphere.
- zinc oxide When sintered in a reducing atmosphere, zinc oxide is reduced, and it becomes easier to volatilize metal zinc than zinc oxide, so the amount of zinc lost increases (however, as described later, it is once sintered)
- the amount of zinc to be increased with respect to the target composition may be set in consideration of the sintering atmosphere or the like.
- each of the compounds (powder) used as the raw material powder may be only one kind, or two or more kinds may be used in combination.
- the method for molding the raw material powder is not particularly limited, and for example, the raw material powder may be mixed and the obtained mixture may be molded.
- the mixing can be performed using a known mixing method such as a ball mill, a vibration mill, an attritor, a dyno mill, or a dynamic mill.
- the raw material powder and the aqueous solvent are mixed, and the obtained slurry is sufficiently mixed, then solid-liquid separated, dried and granulated, and the obtained granulated product may be formed.
- the wet mixing may be performed by, for example, a wet ball mill using a hard ZrO 2 ball or a vibration mill, and the mixing time in the case of using a wet ball mill or a vibration mill is preferably about 12 to 78 hours.
- raw material powder may be dry-mixed as it is, wet mixing is more preferable.
- Known methods may be employed for solid-liquid separation, drying, and granulation.
- the obtained granulated product is molded, for example, the granulated product is put into a mold and 1 ton using a cold forming machine such as a cold press or a cold isostatic press (CIP), a uniaxial press or the like. It can be formed by applying a pressure of / cm 2 or more.
- a cold forming machine such as a cold press or a cold isostatic press (CIP), a uniaxial press or the like. It can be formed by applying a pressure of / cm 2 or more.
- Sintering of the obtained compact is performed in an inert atmosphere (nitrogen, argon, helium, neon, etc.), vacuum, reducing atmosphere (carbon dioxide, hydrogen, ammonia, etc.), air atmosphere and oxidizing atmosphere (oxygen concentration is higher than air). High atmosphere) at 600 ° C. to 1500 ° C.
- an annealing treatment in an inert atmosphere, a vacuum, or a reducing atmosphere applied after sintering in an air atmosphere or an oxidizing atmosphere causes oxygen deficiency in the oxide sintered body and lowers the specific resistance. To do. Therefore, even if sintering is performed in an inert atmosphere, a vacuum, or a reducing atmosphere, if it is desired to further reduce the specific resistance, it is preferable to perform annealing after the sintering.
- the sintering temperature is preferably 600 ° C. to 1700 ° C., more preferably 600 ° C. to 1500 ° C., further preferably 1000 ° C. to 1500 ° C., and most preferably 1000 ° C. to 1300 ° C. And If the sintering temperature is lower than 600 ° C., the sintering does not proceed sufficiently, so that the target density is lowered. On the other hand, if it exceeds 1500 ° C., zinc oxide itself decomposes and disappears.
- the rate of temperature increase is 5 ° C./min to 10 ° C./min up to 1000 ° C., and 1 ° C./min to 4 ° C. over 1000 ° C. to 1500 ° C. / Min is preferable in terms of making the sintered density uniform.
- Sintering is performed, for example, by preventing the decomposition in a state where the molded body is buried in the ZnO powder, whereby the density of the obtained sintered body is preferably 80% or more, more preferably 90%. It is preferable to do.
- a target composed of a high-density sintered body is preferable for reducing fine particles in the ablation plume, which may cause deterioration in film quality, that is, crystallinity and surface morphology, particularly in the case of the fs-PLD method. .
- the sintering time (that is, the holding time at the sintering temperature) is preferably 0.5 to 48 hours, more preferably 3 to 15 hours.
- Sintering is not particularly limited, and may be performed using an electric furnace, a gas furnace, a reduction furnace, or the like. Atmospheric pressure firing method, hot press method, hot isobaric press (HIP) method, discharge plasma Known methods such as a sintering (SPS) method and a cold isostatic pressing (CIP) method can be employed.
- SPS sintering
- CIP cold isostatic pressing
- Examples of the atmosphere in performing the annealing treatment include an atmosphere made of at least one selected from the group consisting of nitrogen, argon, helium, carbon dioxide and hydrogen, and a vacuum.
- a method of annealing treatment for example, a method of heating at normal pressure while introducing a non-oxidizing gas such as nitrogen, argon, helium, carbon dioxide, hydrogen, or a method of heating under vacuum (preferably 2 Pa or less)
- the former method is advantageous from the viewpoint of production cost.
- the annealing temperature is preferably 1000 ° C. to 1400 ° C., more preferably 1100 ° C. to 1300 ° C.
- the annealing time is preferably 7 hours to 15 hours, more preferably 8 hours to 12 hours. If the annealing temperature is less than 1000 ° C., introduction of oxygen vacancies by annealing may be insufficient. On the other hand, when it exceeds 1400 ° C., zinc is likely to be volatilized, and the composition of the obtained oxide sintered body (atom ratio of Zn and Ti) may be different from a desired ratio.
- the oxide mixture of the present invention comprises zinc oxide and titanium oxide. That is, the oxide mixture of the present invention is a mixture substantially consisting of zinc, titanium and oxygen. Here, “substantially” means that 99% or more of all atoms constituting the oxide mixture are composed of zinc, titanium, or oxygen.
- the atomic ratio Ti / (Zn + Ti) of titanium to the total of zinc and titanium is more than 0.02 and 0.1 or less.
- the above-described titanium oxide powder can be used.
- Zinc oxide usually has a wurtzite structure.
- the oxide mixture of the present invention is obtained by mixing zinc oxide powder and titanium oxide powder and molding the mixture, for example, uniaxial press molding. In order to increase the mechanical strength of the oxide mixture, the shaped oxide mixture may be heated below 600 ° C. If zinc oxide and titanium oxide are less than 600 ° C., they are not sintered to produce a composite oxide or the like.
- Titanium (III) oxide is oxidized in an atmosphere containing oxygen (air atmosphere and oxidizing atmosphere) and heated to 400 ° C. or higher to change to titanium (IV) oxide.
- the heating temperature is less than 600 ° C. in a reducing atmosphere and an inert atmosphere in which oxygen is not present, it can exist as a mixture without sintering.
- the atmosphere contains oxygen (oxidizing atmosphere and air atmosphere), it is preferable to heat at less than 400 ° C. By heating in this way, the mechanical strength of the oxide mixture can be increased. Since the strength of the mixture itself increases, for example, even if a film is formed under severe conditions (high power, etc.) as a target, cracks are hardly generated.
- the oxide mixture of the present invention may contain the above-described additive elements and impurities.
- the contents of additive elements and impurities are as described above.
- the method for producing the oxide mixture of the present invention comprises forming the mixed powder of titanium oxide powder and zinc oxide powder or the mixed powder of titanium oxide powder and zinc hydroxide powder, thereby forming the oxide mixture of the present invention. Is the way to get.
- the raw material powder may be a mixed powder of titanium oxide powder and zinc oxide powder or a mixed powder of titanium oxide powder and zinc hydroxide powder. It is preferable to include a mixed powder of titanium oxide powder and zinc oxide powder or a mixed powder of titanium oxide powder and zinc hydroxide powder.
- these titanium oxide powder, zinc oxide powder and zinc hydroxide powder those similar to the above-mentioned oxide sintered body can be used.
- the mixing ratio of each powder depends on the type of compound (powder) used, What is necessary is just to set suitably so that the value of Ti / (Zn + Ti) may become the above-mentioned range by atomic ratio in the oxide mixture finally obtained.
- the method for forming the raw material powder is not particularly limited, and is performed, for example, by the same method as that for the oxide sintered body.
- the obtained molded body is heated and annealed to increase the mechanical strength.
- Annealing is performed by a known method such as an atmospheric annealing method, a hot press method, an HIP method, an SPS method, or a CIP method.
- an atmosphere for example, nitrogen, argon, helium, carbon dioxide, vacuum (preferably 2 Pa or less), hydrogen, etc.
- an air atmosphere such as an air atmosphere, an inert atmosphere, a vacuum, a reducing atmosphere, or an oxidizing atmosphere (oxygen concentration higher than air) (Atmosphere) is performed at 50 ° C or higher and lower than 600 ° C.
- an oxidizing atmosphere oxygen concentration higher than air
- annealing is advantageously performed at normal pressure.
- the annealing time (that is, the holding time at the annealing temperature) is preferably 1 hour to 15 hours. If the annealing time is less than 1 hour, the mechanical strength is not sufficiently improved.
- the target of the present invention is a target used for film formation by, for example, a pulse laser deposition method (PLD method), a sputtering method, an ion plating method, or an electron beam (EB) evaporation method.
- PLD method pulse laser deposition method
- sputtering method a sputtering method
- ion plating method a ion plating method
- EB electron beam
- the solid material used at the time of such film-forming may be called a "tablet”, in this invention, these are described as a "target.”
- a general film forming method such as another vacuum film forming method such as a vacuum vapor deposition method, a chemical vapor deposition method, a mist CVD method, or a sol-gel method.
- the target of the present invention is obtained by processing the above-described oxide sintered body or oxide mixture of the present invention into a predetermined shape and predetermined dimensions.
- a processing method in particular is not restrict
- the surface of the oxide sintered body or the oxide mixture is subjected to surface grinding and the like, then cut to a predetermined size, and then attached to a support base, whereby the target of the present invention can be obtained.
- a plurality of oxide sintered bodies or oxide mixtures may be divided into divided shapes to form a large area target (composite target).
- PLD method Pulse laser deposition method
- the PLD method can be adopted as the method for forming the zinc oxide-based transparent conductive film of the present invention.
- the specific method and conditions are not particularly limited except that the above-described target (film forming material) is used, and known methods and conditions may be appropriately employed.
- PLD method is demonstrated, it is not limited to these.
- a pulse laser beam is focused on a film forming material such as a target, and the film forming material (a mixture of titanium oxide and zinc oxide) on the surface of the target is obtained by the high power density of the focused laser pulse.
- the film forming material a mixture of titanium oxide and zinc oxide
- both the target and the substrate are installed in a high vacuum chamber, and their operations are controlled by a feedthrough mechanism.
- the most widely used pulse laser source in the PLD method is an excimer laser.
- the excimer laser has a pulse width of several nanoseconds (ns) and a wavelength in the UV region. Its typical fluence (energy range density) is a few J / cm 2 for a typical 10 mm 2 focused spot.
- the nanosecond laser PLD method generates large droplets having a size of several microns, and is not suitable for a wide range of industrial nanosecond PLDs. Therefore, it is preferable to use a femtosecond laser or a similar ultrashort pulse laser as an ablation energy source (pulse laser source) used in the PLD method.
- femtosecond to picosecond laser pulses have a much higher peak power due to their ultrashort pulse width, and the ablation mechanism is essentially that of nanosecond laser ablation.
- the basic difference is that during the femtosecond pulse width, only negligible heat conduction occurs inside the target, so ablation basically occurs in an unmelted situation. Therefore, it is preferable to use the femtosecond PLD method (fs-PLD method) because a thin film in which no droplet is generated can be obtained.
- the pulse width of the laser beam of the femtosecond pulse laser to be used is usually 10 fs to 1 ps, and the pulse energy is usually 2 ⁇ J to 100 mJ.
- the beam is magnified 10 times with a microscope, and then condensed on the target surface with a condenser lens. By condensing this small, the fluence (energy density) at the focused spot can be changed to a maximum of 250 J / cm 2 with a spot size of 400 ⁇ m 2 .
- the ablation threshold of the film-forming material (Ti-containing ZnO) when using a femtosecond laser is the case for a nanosecond pulse laser Is relatively low.
- a fluence higher than 1 J / cm 2 is sufficient to ablate the Ti-containing ZnO target and generate ablation plasma.
- a high fluence of up to 5 J / cm 2 is preferred to reduce the number of particles in the plasma plume.
- a transparent thin film can be deposited by pulse laser on a simple substrate, or a multilayer periodic structure can be deposited directly.
- a pulse laser is incident from the back surface of the substrate and is focused on the target through the substrate, the film forming material ablated from the target adheres to the surface of the substrate facing the target.
- the distance from the substrate to the target can be changed by translating the substrate relative to the target. If the substrate is away from the target, a large area thin film can be formed.
- a fine pattern with the same size as the laser focused spot is formed on the substrate due to the short distance between the substrate and the target and the narrow angular distribution of the ablation plume at the base. can do.
- a pattern structure for example, periodic lines, lattices, dots
- a multilayer periodic dielectric structure can be deposited by alternately performing two deposition processes using different materials at each of a long distance and a short distance between the substrate and the target.
- the substrate is mounted on a substrate heater that can be heated up to 900 ° C.
- the substrate manipulator then applies lateral and rotational motion to the surface of the substrate, and the substrate manipulator can be used to adjust the distance between the substrate and the target.
- the vacuum system is operated at a base pressure of 1.5 ⁇ 10 ⁇ 8 Torr by being evacuated by a turbo molecular pump.
- different gases can be filled into the chamber from the inlet and outlet, for example, the chamber can be filled with 0.1-20 milliTorr of oxygen.
- Laser ablation occurs when a laser beam is focused on the target surface.
- the laser focused spot is fixed, while the disk-type target is rotated around its surface vertical axis to perform lateral translation back and forth along its surface. Do. This corresponds to scanning the laser beam across the target surface.
- the angular velocity of rotation is usually about 1 rev / sec.
- the translational velocity in the lateral direction is usually about 0.3 mm / second, and the fluence is usually about 20 J / cm ⁇ 2 .
- the pulse repetition frequency is kept at 1 kHz.
- the substrate Before condensing the laser beam on the target surface, the substrate is heated to a maximum of 600 ° C. to release the gas, and then the substrate is treated with oxygen plasma for about 5 minutes to carbonize the substrate. It is preferable to remove the contamination due to hydrogen.
- pre-ablation pre-ablation
- the purpose of pre-ablation is to clean the target surface that is dirty during the manufacturing process. During pre-ablation, a shutter is inserted between the target and the substrate to protect the substrate surface.
- a sputtering method may be employed as the method for forming the zinc oxide-based transparent conductive film of the present invention.
- the specific method and conditions are not particularly limited except that the above-described film forming materials are used, and a known sputtering method and conditions may be appropriately employed.
- Film formation by sputtering is performed, for example, by placing a target in a sputtering apparatus, introducing a sputtering gas into the apparatus, and applying a direct current (dc) or a high frequency (rf) electric field or performing sputtering.
- dc direct current
- rf high frequency
- an inert gas for example, Ar
- an oxidizing gas or a reducing gas can be used in combination.
- oxygen it is preferable not to contain oxygen qualitatively, and the oxygen concentration is preferably less than 0.05%, for example.
- the film formation conditions by the sputtering method are not particularly limited.
- the pressure is usually 0.1 to 10 Pa
- the substrate temperature is usually 25 to 300 ° C.
- the method of sputtering is not particularly limited.
- the sputtering method direct current sputtering method
- the RF sputtering method high frequency sputtering method
- the AC sputtering method alternating current sputtering method
- the DC sputtering method has an advantage that the film forming speed is higher than other methods, the sputtering efficiency is excellent, and the DC sputtering apparatus is inexpensive, easy to control, and consumes less power.
- these methods cannot be employed when the target is an insulator.
- the RF sputtering method can be used even if the target is an insulator.
- an ion plating method can be adopted as the method for forming the zinc oxide-based transparent conductive film of the present invention.
- a film forming material evaporation material
- the evaporation material is heated by irradiating, for example, argon plasma to the evaporation material.
- argon plasma argon plasma
- each particle of the vapor deposition material that has passed through the plasma is formed on a substrate placed at a position facing the hearth or the like.
- the specific method and conditions of the ion plating method are not particularly limited except that the film forming material described above is used, and a known method and conditions of the ion plating method may be appropriately employed.
- FIG. 1 shows an example of an ion plating apparatus suitable for performing the ion plating method.
- the ion plating apparatus 10 includes a vacuum vessel 12 that is a film forming chamber, a plasma gun (plasma beam generator) 14 that is a plasma source that supplies a plasma beam PB into the vacuum vessel 12, and a bottom portion in the vacuum vessel 12.
- An anode member 16 that is disposed and on which the plasma beam PB is incident is provided, and a transport mechanism 18 that appropriately moves a substrate holding member WH that holds a substrate W to be deposited above the anode member 16.
- the plasma gun 14 is a pressure gradient type, and its main body is provided on the side wall of the vacuum vessel 12.
- Reference numeral 20a indicates a carrier gas introduction path made of an inert gas such as Ar, which is the source of the plasma beam PB.
- the anode member 16 includes a hearth 16a as a main anode for guiding the plasma beam PB downward, and an annular auxiliary anode 16b disposed around the hearth 16a.
- the hearth 16a is controlled to an appropriate positive potential and sucks the plasma beam PB emitted from the plasma gun 14 downward.
- a through hole TH is formed at a central portion where the plasma beam PB is incident, and a vapor deposition material 22 is loaded in the through hole TH.
- the vapor deposition material 22 is a tablet formed into a columnar shape or a rod shape, and is heated and sublimated by an electric current from the plasma beam PB to generate a vapor deposition material.
- the hearth 16a has a structure for gradually raising the vapor deposition material 22, and the upper end of the vapor deposition material 22 always protrudes from the through hole TH of the hearth 16a by a certain amount.
- the auxiliary anode 16b is composed of an annular container arranged concentrically around the hearth 16a, and a permanent magnet 24a and a coil 24b are accommodated in the container.
- the permanent magnet 24a and the coil 24b are magnetic field control members, and form a cusp-like magnetic field directly above the hearth 16a, whereby the direction of the plasma beam PB incident on the hearth 16a is controlled and corrected.
- the transport mechanism 18 has a large number of rollers 18b arranged in the transport path 18a at equal intervals in the horizontal direction to support the substrate holding member WH, and rotates the rollers 18b to move the substrate holding member WH horizontally at a predetermined speed. And a drive device (not shown) to be moved.
- the substrate W is held by the substrate holding member WH.
- the substrate W may be fixedly disposed above the inside of the vacuum vessel 12 without providing the transport mechanism 18 for transporting the substrate W.
- Reference numeral 20b indicates a supply path for supplying an atmospheric gas other than oxygen
- reference numeral 20c indicates a supply path for supplying an inert gas such as Ar to the hearth 16a.
- Reference numeral 20d denotes an exhaust system.
- the vapor deposition material 22 is attached to the through hole TH of the hearth 16a disposed at the lower part of the vacuum vessel 12.
- the substrate W is disposed at an opposing position above the hearth 16a.
- a process gas corresponding to the film forming conditions is introduced into the vacuum vessel 12.
- a DC voltage is applied between the cathode 14a of the plasma gun 14 and the hearth 16a.
- a discharge is generated between the cathode 14a of the plasma gun 14 and the hearth 16a, thereby generating a plasma beam PB.
- the plasma beam PB reaches the hearth 16a by being guided by a magnetic field determined by the steering coil 14 and the permanent magnet 24a in the auxiliary anode 16b. At this time, since argon gas is supplied around the steamed material 22, the plasma beam PB is easily attracted to the hearth 16a.
- the vapor deposition material 22 exposed to the plasma is gradually heated.
- the vapor deposition material 22 sublimates and the vapor deposition material evaporates (emits).
- the vapor deposition material is ionized by the plasma beam PB, adheres (incides) to the substrate W, and is formed into a film.
- the flight direction of the vapor deposition material can be controlled by controlling the magnetic field above the hearth 16a by the permanent magnet 24a and the coil 24b, the plasma activity distribution and the reactivity of the substrate W above the hearth 16a.
- the film formation speed distribution on the substrate W can be adjusted in accordance with the distribution, and a thin film having a uniform film quality can be obtained over a wide area.
- An electron beam (EB) vapor deposition method can be adopted as the method for forming the zinc oxide-based transparent conductive film of the present invention.
- the specific method and conditions are not particularly limited except that the above-described film forming material is used, and a known electron beam (EB) vapor deposition method and conditions may be appropriately employed.
- EB electron beam
- a raw material target (tablet) is heated and evaporated by irradiating an electron beam in a vacuum, and this is deposited on an opposing transparent substrate for vapor deposition. Can be made on top.
- the zinc oxide-based transparent conductive film of the present invention is a transparent conductive film made of titanium-doped zinc oxide formed by the above-described method for forming a zinc oxide-based transparent conductive film.
- the atomic ratio (Ti / (Zn + Ti)) of titanium and zinc contained in the zinc oxide-based transparent conductive film of the present invention is as described above. As a result, the film can exhibit excellent conductivity due to the doping effect of titanium, and has excellent chemical durability.
- titanium is substituted and dissolved in zinc sites of a zinc oxide wurtzite crystal structure.
- the film thickness of the zinc oxide-based transparent conductive film of the present invention may be appropriately set according to the application, and is not particularly limited, but is preferably 50 nm to 600 nm, more preferably 100 nm to 500 nm. If the thickness is less than 50 nm, sufficient specific resistance may not be ensured. On the other hand, if the thickness exceeds 600 nm, the film may be colored.
- the transparent conductive substrate of the present invention comprises the above-described zinc oxide-based transparent conductive film on a transparent base material.
- the transparent substrate is not particularly limited as long as it can maintain the shape in various film forming methods.
- inorganic materials such as various glasses, thermoplastic resins and thermosetting resins (for example, epoxy resin, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose)
- a plate-like material, a sheet-like material, a film-like material or the like formed of a resin such as a plastic such as polyimide can be used, and a glass plate, a resin film, or a resin sheet is particularly preferable.
- the visible light transmittance of the transparent substrate is usually 90% or more, preferably 95% or more.
- the roll-to-roll film formation method used in the industry is used. It is preferable to form a film in a state where a tensile stress is applied while being controlled. Further, the resin film or the resin sheet may be formed in a heated state in advance, or the resin film or the resin sheet may be cooled during the film formation. It is also effective to increase the speed of transporting the resin film or resin sheet (for example, at 1.0 m / min or more) in order to reduce the time for damage during film formation. Film formation is possible even if the distance between the target resin film or resin sheet and the target is short, which is advantageous as an industrial process.
- the transparent base material may be formed with any of a single layer or multiple layers of an insulating layer, a semiconductor layer, a gas barrier layer, or a protective layer as required.
- the insulating layer include a silicon oxide film and a silicon nitride oxide film.
- the semiconductor layer include a thin film transistor (TFT), and the semiconductor layer is mainly formed on a glass substrate.
- the gas barrier layer include a silicon oxide film, a silicon nitride oxide film, and a magnesium aluminate film, and the gas barrier layer is formed on a resin plate or a resin film as a water vapor barrier film.
- a protective layer is for protecting the surface of a base material from a damage
- one layer or two or more layers of inorganic compounds can be stacked.
- the atomic ratio Ti / (Zn + Ti) of titanium with respect to the total of zinc and titanium is more than 0.02 and not more than 0.1, and the main component is zinc oxide. It consists of an oxide mixture or oxide sintered body containing at least one oxide of gallium and aluminum and titanium oxide.
- the ratio of the number of atoms of gallium or aluminum is 0.5% or more and 6% or less with respect to the total number of metal atoms.
- the ratio of the number of atoms of gallium or aluminum is less than 0.5%, the effect of improving conductivity is insufficient.
- gallium or aluminum cannot be completely substituted and dissolved in the zinc site and is precipitated at the crystal grain boundary, resulting in a decrease in conductivity and a decrease in transmittance.
- Both Al and Ga may be used. In that case, what is necessary is just to satisfy the above-mentioned conditions of 0.5% or more and 6% or less in the total amount thereof.
- the oxide mixture or oxide sintered body As the manufacturing method of the oxide mixture or oxide sintered body here, the oxide mixture or oxidation described above is used except that a mixed powder further added with aluminum oxide powder or gallium oxide powder is used as the raw material powder. This is the same as the manufacturing method of the sintered product.
- the ratio of the number of atoms of gallium or aluminum is 0.5% or more and 6% or less with respect to the total number of metal atoms.
- the ratio of the number of atoms of gallium or aluminum is less than 0.5%, the effect of improving conductivity is insufficient.
- gallium or aluminum cannot be completely substituted and dissolved in the zinc site and is precipitated at the crystal grain boundary, leading to a decrease in conductivity and a decrease in transmittance.
- Both Al and Ga may be used. In that case, what is necessary is just to satisfy the above-mentioned conditions of 1% or more and 6% or less in the total amount thereof.
- the oxide mixture and oxide sintered body are prepared by mixing zinc oxide powder, titanium oxide powder and aluminum oxide powder, or mixing zinc oxide powder, titanium oxide powder and gallium oxide powder, and press-molding. Is.
- the titanium oxide powder is as described above, and trivalent titanium oxide (III) or divalent titanium oxide (II) is preferable.
- the crystal phase of titanium oxide is specifically Ti 2 O 3 (III) and TiO (II).
- the zinc oxide-based transparent conductive film-forming material of the present invention may contain the above-described additive elements (however, excluding gallium and aluminum) and impurities.
- the contents of additive elements and impurities are as described above.
- the specific resistance of the formed transparent conductive film is reduced, and the conductivity can be improved.
- the content of the additive element exceeds 0.05%, the specific resistance of a film formed from the obtained zinc oxide-based transparent conductive film forming material may increase.
- the additive element may be present in the oxide mixture or oxide sintered body in the form of an oxide, or is present in the form substituted (solid solution) in the zinc site of the zinc oxide phase. Alternatively, it may be present in a form substituted (solid solution) in the titanium site of the titanium oxide phase.
- the oxide sintered body constituting the zinc oxide-based transparent conductive film forming material of the present invention preferably has a relative density of 93% or more, more preferably 95% to 100%.
- the relative density is defined as the density of the oxide sintered body divided by the theoretical density and multiplied by 100. If the relative density is less than 93%, the characteristic of the sintered body, that is, the high film formation rate may be impaired.
- the oxide mixture and the oxide sintered body are not particularly limited, and are manufactured by the above-described method, for example.
- the zinc oxide-based transparent conductive film forming material of the present invention is processed into a target used for film formation by, for example, sputtering, ion plating, pulse laser deposition (PLD), or electron beam (EB) evaporation.
- a zinc oxide-based transparent conductive film is formed using the processed target, and a transparent conductive substrate is obtained by forming the conductive film on the transparent substrate.
- the zinc oxide thin film as described above is etched with an acid.
- the etching solution that can be used in the present invention is not particularly limited as long as it contains an acid.
- an etching solution used for patterning a conventional transparent conductive film such as an ITO film can be used.
- the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrohalic acid (such as hydroiodic acid and hydrobromic acid), and mixtures thereof (such as aqua regia), Examples include organic acids such as oxalic acid, acetic acid, formic acid, propionic acid, succinic acid, malonic acid, butyric acid, citric acid.
- Etching solutions containing these are usually used as (water) solutions dissolved in a suitable solvent.
- the acid itself may be used.
- various salts such as ammonium sulfate and ferric chloride can be dissolved in the etching solution. Only 1 type may be used for etching liquid and it may use 2 or more types together.
- the concentration of the etching solution is not particularly limited, and may be set as appropriate according to the liquid temperature of the etching solution, the curing level of the film, and the like so as to obtain a desired etching rate.
- the temperature of the etching solution is preferably 10 ° C. to 150 ° C., more preferably 20 ° C. to 100 ° C. If the temperature of the etching solution is less than 10 ° C., etching may not be possible. On the other hand, if the temperature exceeds 150 ° C., a solvent such as water tends to volatilize and it may be difficult to control the concentration of the etching solution. .
- etching solution there is no particular limitation on the processing method when performing etching using the etching solution.
- an appropriate solvent for example, methyl cellosolve acetate
- the specific method and conditions for forming and removing the resist film and removing the exposed portion with the etching solution For example, in a wet etching process applied to a conventional transparent conductive film such as an ITO film. What is necessary is just to carry out suitably according to a method and conditions.
- the thin film patterned according to the present invention has high conductivity.
- the transparent conductive substrate obtained by forming and patterning the zinc oxide thin film on the transparent substrate has a specific resistance. Usually, it is 2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less, preferably 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less, more preferably 8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
- the surface resistance (sheet resistance) varies depending on the application, but is usually 5 to 10,000 ⁇ / ⁇ , preferably 10 to 300 ⁇ / ⁇ .
- the thin film patterned by the present invention is usually excellent in transparency.
- a transparent conductive substrate obtained by forming and patterning the zinc oxide thin film on the transparent base material is transparent.
- the rate is usually 85% or more, preferably 90% or more in the visible light region.
- the total light transmittance is preferably 80% or more, more preferably 85% or more, and the haze value is preferably 10% or less, more preferably 5% or less.
- the transparent conductive film formed using the oxide sintered body or oxide mixture of the present invention or the target of the present invention has excellent conductivity and chemical durability (heat resistance, moisture resistance, chemical resistance (resistance to resistance).
- the transparent conductive film formed using the oxide sintered body or oxide mixture of the present invention or the target of the present invention is used as a transparent radio wave absorber, an ultraviolet absorber, and a transparent semiconductor device as another metal. It can also be used in combination with a film or a metal oxide film.
- the thin film patterned by the present invention is obtained by sufficiently controlling the etching rate, the formed pattern shape is accurate.
- the heat resistance after the heat test is 1.5 times or less than the surface resistance before the heat test, it can be said that the heat resistance is excellent.
- ⁇ Alkali resistance> The transparent conductive substrate was immersed in a 3% NaOH aqueous solution (40 ° C.) for 10 minutes, and the presence or absence of a change in film quality on the substrate before and after immersion was confirmed visually.
- ⁇ Acid resistance> The transparent conductive substrate was immersed in a 3% HCl aqueous solution (40 ° C.) for 10 minutes, and the presence or absence of a change in film quality on the substrate before and after immersion was confirmed visually.
- Example 1 ⁇ Production of oxide mixture> Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide powder (Ti 2 O 3 powder; purity 99.9%, average particle size 1 ⁇ m or less) , Manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, these were put in a resin pot at a ratio of the atomic ratio of Zn: Ti of 94: 6 and wet mixed by a wet ball mill mixing method. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained molded body was annealed by holding it in an air atmosphere at 300 ° C. for 1 hour to obtain an oxide mixture (1).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the crystal structure of the oxide mixture (1) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), the crystal phase of zinc oxide (ZnO) and titanium oxide (Ti 2 O 3 ) It was a mixture.
- the obtained oxide mixture (1) is processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and a transparent conductive film is formed by sputtering using the sputtering target to produce a transparent conductive substrate.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 94: 6.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 5.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 11.6 ⁇ / ⁇ .
- the specific resistance distribution on the transparent conductive substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 2 ⁇ Production of oxide mixture> Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide powder (Ti 2 O 3 powder; purity 99.9%, average particle size 1 ⁇ m or less) , Manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, these were put in a resin pot at a ratio of the atomic ratio of Zn: Ti of 95: 5 and wet mixed by a wet ball mill mixing method. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained compact was annealed by holding it at 500 ° C. for 1 hour in an inert atmosphere (100% Ar atmosphere) to obtain an oxide mixture (2).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the obtained oxide mixture (2) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target.
- a transparent film having a film thickness of 500 nm was formed by a sputtering method in the same manner as in Example 1.
- a conductive film was formed to produce a transparent conductive substrate.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 9.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent conductive substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.
- titanium oxide powder Ti 2 O 3 powder; purity 99.9%, average particle size 1 ⁇ m or less (manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, these were put in a resin pot at a ratio of the Zn: Ti atomic number ratio of 99: 1, and wet mixed by a wet ball mill mixing method. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained compact was annealed by holding it at 500 ° C. for 1 hour in an inert atmosphere (100% Ar atmosphere) to obtain an oxide mixture (C1).
- an energy dispersive X-ray fluorescence apparatus (“EDX-700L” manufactured by Shimadzu Corporation)
- the obtained oxide mixture (C1) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a transparent conductive film was formed by sputtering in the same manner as in Example 1.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 1.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 24 ⁇ / ⁇ .
- the specific resistance distribution on the transparent conductive substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 70% on average in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film which is transparent and has low resistance but inferior in chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). Is clear.
- Example 3 Manufacture of oxide sinter>
- the disk-shaped molded body obtained in the same manner as in Example 1 was heated up to 1000 ° C. at 5 ° C./min, over 1000 ° C. up to 1500 ° C. at 1 ° C./min, and sintered at the sintering temperature. Sintering was performed by holding at 1500 ° C. for 5 hours, and then annealing treatment was performed at 1300 ° C. for 5 hours in an inert atmosphere (100% Ar atmosphere) to obtain an oxide sintered body (3).
- the obtained oxide sintered body (3) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness was formed on the substrate by sputtering as in Example 1.
- a 500 nm transparent conductive film was formed.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 12.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 4 Manufacture of oxide sinter>
- the disc-shaped molded body obtained in the same manner as in Example 2 was heated up to 1000 ° C. at 5 ° C./min, in excess of 1000 ° C. to 1300 ° C. at 1 ° C./min in an inert atmosphere (100% Ar atmosphere).
- the oxide was sintered by being heated and held at a sintering temperature of 1300 ° C. for 5 hours to obtain an oxide sintered body (4).
- the crystal structure of the oxide sintered body (4) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a mixture of phases and no titanium oxide was present.
- the obtained oxide sintered body (4) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by a sputtering method in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 5.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 11.6 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Comparative Example 2 Manufacture of oxide sinter>
- the disc-shaped molded body obtained in the same manner as in Comparative Example 1 was heated in an inert atmosphere (100% Ar atmosphere) up to 1000 ° C. at 5 ° C./min, over 1000 ° C. to 1300 ° C. at 1 ° C./min.
- the oxide was sintered by being heated and held at a sintering temperature of 1300 ° C. for 5 hours to obtain an oxide sintered body (C2).
- the obtained oxide sintered body (C2) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by a sputtering method in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 16 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 70% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film which is transparent and has low resistance but inferior in chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). Is clear.
- Example 5 ⁇ Manufacture of oxide sinter (hot press method)> Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.), the element number ratio of zinc element to titanium element is 97.0: 3.0 Were weighed so as to be, put in a polypropylene container, and further 2 mm ⁇ zirconia balls and ethanol as a mixed solvent were added. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (5).
- the crystal structure of the oxide sintered body (5) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a phase mixture and no titanium oxide was present.
- the obtained oxide sintered body (5) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by sputtering in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 6 ⁇ Manufacture of oxide sinter (hot press method)> Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), titanium oxide (Ti 2 O 3 (III), manufactured by Kojundo Chemical Laboratory Co., Ltd.), the ratio of the number of elements of zinc element and titanium element is 97.0: It weighed so that it might be set to 3.0, it put into the container made from a polypropylene, and also ethanol was added as a 2 mm diameter zirconia ball
- the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (6).
- the obtained oxide sintered body (6) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by sputtering in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- Example 7 ⁇ Manufacture of oxide sintered body (pressureless sintering method of TiO (II))> Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide powder (TiO (II) powder; purity 99.9%, average particle size) 1 ⁇ m or less, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, put them in a resin pot at a Zn: Ti atomic ratio of 97: 3, and wet-mixed by a wet ball mill mixing method did. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained disk-shaped molded body was heated in an inert atmosphere (100% Ar atmosphere) up to 1000 ° C. at 5 ° C./min, over 1000 ° C. to 1300 ° C. at 1 ° C./min, and baked.
- the oxide sintered body (7) was obtained by sintering by holding at 1300 ° C., which is a sintering temperature, for 5 hours.
- the obtained oxide sintered body (7) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by sputtering in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- the obtained disk-shaped molded body was heated in an inert atmosphere (100% Ar atmosphere) up to 1000 ° C. at 5 ° C./min, over 1000 ° C. to 1300 ° C. at 1 ° C./min, and baked.
- the oxide sintered body (C3) was obtained by sintering at 1300 ° C. which is a sintering temperature for 5 hours.
- the obtained oxide sintered body (C3) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by a sputtering method in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the composition (Zn: Ti) in the formed transparent conductive film was quantitatively analyzed using a calibration curve by the fluorescent X-ray method in the same manner as in Example 1.
- Zn: Ti (atomic ratio) 88 : 12.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 420.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 66% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film having both transparency and chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance), but high resistance. It is clear.
- Example 8 ⁇ Manufacture of oxide sintered body (pressureless sintering method of TiO (II))> Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide powder (TiO (II) powder; purity 99.9%, average particle size 1 ⁇ m or less) , Manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, these were put into a resin pot at a ratio of the Zn: Ti atomic ratio of 93: 7, and wet mixed by a wet ball mill mixing method. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained disk-shaped molded body was heated in an inert atmosphere (100% Ar atmosphere) up to 1000 ° C. at 5 ° C./min, over 1000 ° C. to 1300 ° C. at 1 ° C./min, and baked.
- the oxide sintered body (8) was obtained by sintering by holding at 1300 ° C., which is a sintering temperature, for 5 hours.
- the obtained oxide sintered body (8) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by sputtering in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 5.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 11.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 9 Manufacture of oxide sintered body (pressureless sintering method of TiO (II))> Zinc oxide powder (ZnO powder; purity 99.9%, average particle size 1 ⁇ m or less, manufactured by Wako Pure Chemical Industries, Ltd.) and titanium oxide powder (TiO (II) powder; purity 99.9%, average particle size 1 ⁇ m or less) , Manufactured by Kojundo Chemical Laboratory Co., Ltd.) as raw material powders, these were put into a resin pot at a ratio of the atomic ratio of Zn: Ti of 91: 9, and wet mixed by a wet ball mill mixing method. Wet mixing was performed using hard ZrO 2 balls as balls and mixing time of 18 hours.
- the mixed raw material powder slurry is taken out, dried and granulated, and then molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. It was.
- the obtained disk-shaped molded body was heated in an inert atmosphere (100% Ar atmosphere) up to 1000 ° C. at 5 ° C./min, over 1000 ° C. to 1300 ° C. at 1 ° C./min, and baked. Sintering was carried out by holding at 1300 ° C., which is a sintering temperature, for 5 hours to obtain an oxide sintered body (9).
- the obtained oxide sintered body (9) was processed into a disk shape of 50 mm ⁇ to obtain a sputtering target, and using this, a film thickness of 500 nm was formed by sputtering in the same manner as in Example 1.
- a transparent conductive film was formed to produce a transparent conductive substrate.
- the transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 1, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 44.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 65% in the infrared region (780 nm to 2700 nm).
- the transmittance of the quartz glass substrate before film formation is the same as that in Example 1 in both the visible region and the infrared region.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 10 Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 400 ° C.
- the obtained oxide mixture (10) was processed into a disk shape of 50 mm ⁇ to prepare a target, and a transparent conductive film was formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film was formed by sputtering using the target to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 5.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 10.2 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 14.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 88% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the acrylic transparent resin sheet before film formation averaged 93%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 93%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm.
- This molded body was first annealed at 500 ° C. for 3 hours in an atmospheric atmosphere of normal pressure (101.325 kPa) to obtain an oxide mixture (11).
- the crystal structure of the oxide mixture (11) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), it was a mixture of crystal phases of zinc oxide (ZnO) and titanium oxide.
- the obtained oxide mixture (11) was processed into a disk shape of 50 mm ⁇ to prepare a target, and a transparent conductive film was formed by sputtering using the target to obtain a transparent conductive substrate. .
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- 5N Ar gas
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 16 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 62% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 800 ° C.
- EDX-700L energy dispersive fluorescent X-ray apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- a target is prepared, and a transparent conductive film is formed by sputtering using this to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using this to obtain a transparent conductive substrate.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio of the Zn: Ti atomic ratio of 99: 1. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 400 ° C.
- oxide mixture (C4) was obtained by 3 hours in an argon atmosphere at normal pressure (101.325 kPa) to obtain an oxide mixture (C4).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the target was prepared by processing the obtained oxide mixture (C4) into a disk shape of 50 mm ⁇ , and a transparent conductive film was formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film quartz glass substrate
- sputtering was performed under the conditions of a pressure of 0.5 Pa, a power of 100 W, and a substrate temperature of 130 ° C. to form a transparent conductive film having a thickness of 200 nm on the substrate.
- the composition (Zn: Ti) in the formed transparent conductive film was quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation).
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 125 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 70% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 2.6 times the surface resistance before the moisture resistance test, and it was found that the moisture resistance was inferior.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 2.0 times the surface resistance before the heat test, and the heat resistance was poor.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared after immersion.
- the acid resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared. From the above, the obtained film on the transparent conductive substrate is transparent, but has high resistance and poor chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that
- the obtained oxide sintered body (C5) was processed into a shape of 4 inches ⁇ and 6 mmt, and bonded to an oxygen-free copper backing plate using indium solder to prepare a target. And using this target, the film-forming by sputtering method was performed on condition of the following, the transparent conductive film with a film thickness of 300 nm was formed on the transparent base material (quartz glass substrate), and the transparent conductive substrate was obtained.
- the Al content in the formed film was 2.3% by weight.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 25.3 ⁇ / ⁇ .
- the transmittance of the obtained transparent conductive substrate was an average of 88% in the visible region (380 nm to 780 nm) and an average of 55% in the infrared region (780 nm to 2700 nm).
- the moisture resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the moisture resistance test was 3.2 times the surface resistance before the moisture resistance test, and the moisture resistance was poor.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 7.0 times the surface resistance before the heat test, and it was found that the heat resistance was poor.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared after immersion.
- the acid resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared. From the above, the obtained film on the transparent conductive substrate is transparent and low resistance, but is a transparent conductive film inferior in chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 1000 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- crystal structure of the oxide mixture (13) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), the crystal phase of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) And no titanium oxide was present.
- the obtained oxide sintered body (13) is processed into a disk shape of 50 mm ⁇ to prepare a target, and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- a target is prepared, and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- the obtained oxide sintered body (15) is processed into a disk shape of 50 mm ⁇ to prepare a target, and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- FE-SEM field structure electron microscope
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed at a ratio of the Zn: Ti atomic ratio of 88:12 to obtain a mixture of raw material powders. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (C6).
- ZnO manufactured by Wako Pure Chemical Industries, Ltd., special grade
- titanium oxide powder Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed at a ratio of the Zn: Ti atomic ratio of 88
- the target oxide is produced by processing the obtained oxide sintered body (C6) into a disk shape of 50 mm ⁇ , and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation).
- Zn: Ti atomic ratio
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc, but the crystallinity was lowered.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.2 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 440 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 66% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the obtained film on the transparent conductive substrate is a transparent conductive film that is transparent and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that it is a resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing the Zn: Ti at an atomic ratio of 88:12. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (C7).
- EDX-700L energy dispersive fluorescent X-ray apparatus
- the crystal structure of the oxide sintered body (C7) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a mixture of phases and no titanium oxide was present.
- the target oxide is produced by processing the obtained oxide sintered body (C7) into a disk shape of 50 mm ⁇ , and a transparent conductive film is formed by sputtering using this to obtain a transparent conductive substrate.
- a transparent conductive film quartz glass substrate
- sputtering was performed under the conditions of a pressure of 0.5 Pa, a power of 75 W, and a substrate temperature of 250 ° C. to form a transparent conductive film having a thickness of 500 nm on the substrate.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation).
- Zn: Ti atomic ratio
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc, but the crystallinity was lowered.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 420 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 66% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the obtained film on the transparent conductive substrate is a transparent conductive film that is transparent and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that it is a resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed at a ratio of the Zn: Ti atomic ratio of 93: 7 to obtain a raw material powder mixture. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (16) (hot pressing method).
- the obtained oxide sintered body (16) is processed into a disk shape of 50 mm ⁇ to prepare a target, and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 6.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 12.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing the Zn: Ti at an atomic ratio of 93: 7. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (17) (hot press method).
- the crystal structure of the oxide sintered body (17) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a phase mixture and no titanium oxide was present.
- the target oxide is produced by processing the obtained oxide sintered body (17) into a disk shape of 50 mm ⁇ , and a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- a transparent conductive film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was heated at 500 ° C.
- the target was produced by processing the obtained oxide mixture (18) into a disk shape of 20 mm ⁇ , and a transparent conductive film was formed by using the PLD method to obtain a transparent conductive substrate.
- a transparent conductive film was formed by using the PLD method to obtain a transparent conductive substrate.
- the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 14.7 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 20 A target was produced by processing the oxide mixture (18) obtained in Example 19 into a disk shape of 20 mm ⁇ . Using this target, the transparent substrate (quartz glass substrate) in Example 19 was replaced with an acrylic transparent resin sheet (80 mm ⁇ 80 mm ⁇ 2 mmt flat plate), and the film formation conditions (Substrate Temperature) were changed as follows. In the same manner as in Example 19, a 300 nm-thick transparent conductive film was formed by the PLD method with a film formation time of 120 minutes.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4. Further, this transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 19, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis-oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 6.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 21 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 65% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the resin sheet before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 21 Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was sintered at 800 ° C.
- the obtained oxide sintered body (19) is processed into a disk shape of 20 mm ⁇ to produce a target, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate.
- a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate.
- PS-2000 pulse laser deposition apparatus
- the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 14.7 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio of the Zn: Ti atomic ratio of 99: 1. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was heated at 400 ° C.
- oxide mixture (C8) was obtained by 3 hours under an argon atmosphere at normal pressure (1.01325 ⁇ 10 2 kPa) to obtain an oxide mixture (C8).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the obtained oxide mixture (C8) was processed into a disk shape of 20 mm ⁇ to prepare a target, and using this, the PLD method was performed in a film formation time of 120 minutes in the same manner as in Example 19.
- a transparent conductive film having a thickness of 320 nm was formed.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 99: 1.
- this transparent conductive film was subjected to X-ray diffraction in the same manner as in Example 19, and when the doped state and crystal structure of titanium into zinc were examined, it was a C-axis-oriented wurtzite type single phase. It was found that titanium was substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.34 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 73.2 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was 90% on average in the visible region (380 nm to 780 nm).
- the transmittance in the visible region of the quartz glass substrate before film formation is the same as in Example 19.
- the surface resistance after the moisture resistance test was 2.4 times the surface resistance before the moisture resistance test, and the moisture resistance was poor.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 2.2 times the surface resistance before the heat test, which is inferior in heat resistance.
- the film on the transparent conductive substrate obtained is transparent, but has high resistance and poor conductivity, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that the transparent conductive film is inferior.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 800 ° C.
- EDX-700L energy dispersive fluorescent X-ray apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate. It was. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 97: 3.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 14.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders, and these are Zn: Ti Were mixed at a ratio of 97: 3 to obtain a mixture of raw material powders. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 800 ° C.
- EDX-700L energy dispersive fluorescent X-ray apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- a target is prepared, and a transparent conductive film is formed by using the PLD method to form a transparent conductive substrate. Obtained. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 97: 3.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 13.3 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed in such a ratio that the Zn: Ti atomic ratio was 97: 3 to obtain a mixture of raw material powders. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (22) (hot press sintering).
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate.
- a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.)
- the above target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( Using a “Comex 205 type” manufactured by Co., Ltd., a transparent conductive film having a film thickness of 300 nm was formed under the following film forming conditions with a film forming time of 120 minutes.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 97: 3.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 14.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, and heat treatment at 1000 ° C. for 4 hours.
- a disk-shaped oxide sintered body (23) (hot press sintering).
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate. It was. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 97: 3.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 13.3 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.7 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.3 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing the Zn: Ti at an atomic ratio of 93: 7. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (24) (hot press sintering).
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate. It was. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 93: 7.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 9.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 30.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 67% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.4 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio of the Zn: Ti atomic ratio of 88:12. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (C9) (hot press sintering).
- C9 hot press sintering
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate. It was. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 88:12.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 1.1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 367.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was 90% on average in the visible region (380 nm to 780 nm) and 75% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the obtained film on the transparent conductive substrate is a transparent conductive film that is transparent and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that it is a resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed at a ratio of the Zn: Ti atomic ratio of 88:12 to obtain a mixture of raw material powders. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (C10) (hot press sintering).
- C10 hot press sintering
- a target is prepared, and a transparent conductive film is formed by using the PLD method to obtain a transparent conductive substrate. It was. That is, in a pulse laser deposition apparatus (“PS-2000” manufactured by Seinan Kogyo Co., Ltd.), the target and a quartz glass substrate are placed so as to face the target, and a laser light emitting device (Lambda Physics ( A 300 nm-thick transparent conductive film was formed under the following film-forming conditions with a film-forming time of 120 minutes.
- PS-2000 pulse laser deposition apparatus
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 88:12.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.4 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 800.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was 90% on average in the visible region (380 nm to 780 nm) and 75% on average in the infrared region (780 nm to 2700 nm). Note that the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the obtained film on the transparent conductive substrate is a transparent conductive film that is transparent and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that it is a resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 500 ° C.
- an oxide mixture 25.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- a tablet is produced by processing the obtained oxide mixture (25) into a disk shape of 20 mm ⁇ , and a transparent conductive film is formed by ion plating using this to form a transparent conductive substrate. Obtained.
- ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a transparent substrate a non-alkali glass substrate having a thickness of 0.7 mm.
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 36.5 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio of the Zn: Ti atomic ratio of 99: 1. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was annealed at 400 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- ion plating is performed under the following conditions, and the film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a transparent substrate a non-alkali glass substrate having a thickness of 0.7 mm.
- a 150 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 99: 1.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 467 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 91% in the visible region (380 to 780 nm) and an average of 70% in the infrared region (780 to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the transparent conductive substrate obtained is a transparent conductive film that is transparent but has high resistance and inferior chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 8.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 160 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 91% in the visible region (380 to 780 nm) and an average of 70% in the infrared region (780 to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the surface resistance after the moisture resistance test was 1.8 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.5 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is transparent and low resistance even when the film thickness is 100 nm or less, and has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that this is a transparent conductive film having both properties.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-).
- EDX was used to investigate the doping state of titanium into zinc, and further the field structure electron microscope (FE-SEM) was used to examine the crystal structure. Was found to be substituted and dissolved in zinc.
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 8.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 42.5 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 85% in the visible region (380 nm to 780 nm) and an average of 65% in the infrared region (780 nm to 2700 nm).
- the transmittance of the heat-resistant transparent resin film before film formation in the visible region (380 nm to 780 nm) was 90% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 90% on average.
- the surface resistance after the moisture resistance test was 1.8 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.5 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is transparent and low resistance even when the substrate is a heat resistant film, and has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that this is a transparent conductive film having both properties.
- Example 30 Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm.
- This compact was sintered at 800 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- the obtained oxide sintered body (26) is processed into a disk shape of 20 mm ⁇ to produce a tablet, and a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- ion plating apparatus (“SUPLaDUO” manufactured by Chugai Furnace Co., Ltd.)
- ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- Atmospheric gas conditions during film formation: Argon 160 sccm
- Oxygen 2 sccm
- Discharge current during film formation 100 A Deposition time: 200 seconds
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 39.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 96: 4 to obtain a mixture of raw material powders.
- the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (27).
- the crystal structure of the oxide sintered body (27) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a mixture of phases and no titanium oxide was present.
- a tablet is produced, and a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 96: 4.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 7.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 36.5 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders, and these are Zn: Ti Were mixed at a ratio of 97: 3 to obtain a mixture of raw material powders.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped sintered body. Further, the sintered body was sintered at 800 ° C.
- oxide sintered body 28
- EDX-700L energy dispersive fluorescent X-ray apparatus
- RINT2000 X-ray diffractometer
- crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a phase mixture and no titanium oxide was present.
- the obtained oxide sintered body (28) is processed into a disk shape of 20 mm ⁇ to produce a tablet, and a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- ion plating apparatus (“SUPLaDUO” manufactured by Chugai Furnace Co., Ltd.)
- ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- Atmospheric gas conditions during film formation: Argon 160 sccm
- Oxygen 2 sccm
- Discharge current during film formation 100 A Deposition time: 200 seconds
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersive X-ray fluorescence apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 97: 3.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 6.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 30.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders, and these are Zn: Ti Were mixed at a ratio of 97: 3 to obtain a mixture of raw material powders. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 1000 ° C.
- EDX-700L energy dispersive fluorescent X-ray apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 95: 5.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 6.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 30.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders, and these are Zn: Ti Were mixed at a ratio of 98.5: 1.5 to obtain a raw material powder mixture. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 1000 ° C.
- oxide sintered body (C12) was obtained by 4 hours in an argon atmosphere at normal pressure (1.01325 ⁇ 10 2 kPa) to obtain an oxide sintered body (C12).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the crystal structure of the oxide sintered body (C12) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a mixture of phases and no titanium oxide was present.
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 98.5: 1.5.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 1.2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 60.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 70% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the surface resistance after the moisture resistance test was 2.6 times the surface resistance before the moisture resistance test, and it was found that the moisture resistance was inferior.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 2.0 times the surface resistance before the heat test, and the heat resistance was poor.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared after immersion.
- the acid resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared. From the above, the film on the obtained transparent conductive substrate is transparent and low resistance, but is a transparent conductive film inferior in chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance) Is clear.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders, and these are Zn: Ti Were mixed at a ratio of 88:12 to obtain a mixture of raw material powders. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 1000 ° C.
- oxide sintered body (C13) was obtained by 4 hours in an argon atmosphere at normal pressure (1.01325 ⁇ 10 2 kPa) to obtain an oxide sintered body (C13).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the crystal structure of this oxide sintered body (C13) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), crystals of zinc oxide (ZnO) and zinc titanate (Zn 2 TiO 4 ) were obtained. It was a phase mixture and no titanium oxide was present.
- the obtained oxide sintered body (C13) is processed into a disk shape of 20 mm ⁇ to produce a tablet, and a transparent conductive film is formed by ion plating using the tablet.
- a transparent conductive film is formed by ion plating using the tablet.
- ion plating apparatus (“SUPLaDUO” manufactured by Chugai Furnace Co., Ltd.), ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 88:12.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 2.4 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 1200.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was 90% on average in the visible region (380 nm to 780 nm) and 73% on average in the infrared region (780 nm to 2700 nm).
- the moisture resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the moisture resistance test was 1.1 times that before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate it was found that the surface resistance after the heat test was 1.1 times the surface resistance before the heat test, and the heat resistance was excellent.
- the obtained film on the transparent conductive substrate is a transparent conductive film that is transparent and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that it is a resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 (III); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. These were mixed at a ratio of the Zn: Ti atomic ratio of 93: 7 to obtain a raw material powder mixture. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (30).
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 93: 7.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 1.1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 55.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 67% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing the Zn: Ti at an atomic ratio of 93: 7. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (31).
- the obtained oxide sintered body (31) is processed into a disk shape of 20 mm ⁇ to produce a tablet, and a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- a transparent conductive film is formed by ion plating using the tablet, thereby forming a transparent conductive substrate.
- ion plating apparatus (“SUPLaDUO” manufactured by Chugai Furnace Co., Ltd.)
- ion plating is performed under the following conditions, and a film thickness is formed on a transparent substrate (a non-alkali glass substrate having a thickness of 0.7 mm).
- a 200 nm transparent conductive film was formed.
- Preheating temperature of substrate before film formation 250 ° C.
- Pressure during film formation 0.3 Pa
- the composition (Zn: Ti) in the formed transparent conductive film is quantitatively analyzed using a calibration curve by a fluorescent X-ray method using a wavelength dispersion type fluorescent X-ray apparatus (“XRF-1700WS” manufactured by Shimadzu Corporation). As a result, Zn: Ti (atomic ratio) was 93: 7.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM).
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 9.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 47.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 67% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the glass substrate before film formation averaged 94%, and the transmittance in the infrared region (780 nm to 2700 nm) averaged 94%.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is.
- Example 36 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the element number ratio of zinc element, gallium element, and titanium element is 93.0: 2.0: 5.0, put it in a polypropylene container, and then add ethanol as a 2mm ⁇ zirconia ball and mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- Relative density 100 ⁇ [(density of sintered body) / (theoretical density)]
- theoretical density (Zinc oxide simple substance density ⁇ mixing weight ratio + gallium oxide simple substance density ⁇ mixing weight ratio + titanium oxide simple substance density ⁇ mixing weight ratio)
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. 0.7 ⁇ 10 ⁇ 4 ⁇ cm.
- the surface resistance was 9.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put in an electric furnace and heat-treated at 300 ° C. in an air atmosphere to obtain an oxide mixture. The obtained oxide mixture was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Sputtering device "E-200S” manufactured by Canon Anelva Sputtering method: DC magnetron sputtering Ultimate vacuum: 2.0 ⁇ 10 ⁇ 4 Pa Ar pressure: 0.5 Pa
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. 0.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 9.2 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 57% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the moisture resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- the obtained sintered body was processed into a shape of 4 inches ⁇ and 6 mm thick, and bonded to an oxygen-free copper backing plate using indium solder to prepare a target. And using this target, the film-forming by sputtering method was performed on the following conditions, the transparent conductive film with a film thickness of 500 nm was formed on the transparent base material (quartz glass substrate), and the transparent conductive substrate was obtained.
- the Al content in the formed film was 2.3% by weight.
- Sputtering equipment Canon Anelva “E-200S” Sputtering method: DC magnetron sputtering Magnetic field strength: 1000 Gauss (directly above the target, horizontal component)
- the specific resistance of the transparent conductive film on the obtained transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 50% in the infrared region (780 nm to 2700 nm).
- the moisture resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the moisture resistance test was 2.1 times the surface resistance before the moisture resistance test, and the moisture resistance was poor.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 2.0 times the surface resistance before the heat test, and the heat resistance was poor.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared after immersion.
- the acid resistance of the obtained transparent conductive substrate was evaluated, the film was completely dissolved and disappeared.
- Example 38 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element, and titanium element is 96.5: 0.5: 3.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put in an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 96.8% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 36. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 8.2 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 39 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element and titanium element is 94.5: 0.5: 5.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body.
- the relative density of the sintered body was calculated from the size of the sintered body, it was 94.6%.
- the relative density is obtained in the same manner as in Example 36.
- the obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. 0.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 9.2 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 40 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element and titanium element is 92.5: 0.5: 7.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 93.9% when the relative density of this sintered compact was computed from the size of a sintered compact. The relative density is obtained in the same manner as in Example 36. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 11.0 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 41 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element and titanium element is 96.5: 0.5: 3.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 96.7% when the relative density of this sintered compact was computed from the size of a sintered compact. The relative density is obtained in the same manner as in Example 36. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 7.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 42 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element and titanium element is 94.5: 0.5: 5.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 94.5% when the relative density of this sintered compact was computed from the size of a sintered compact. The relative density is obtained in the same manner as in Example 36. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor. 4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 43 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, gallium element and titanium element is 92.5: 0.5: 7.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body.
- the relative density of the sintered body was calculated from the size of the sintered body, it was 94.0%.
- the relative density is obtained in the same manner as in Example 36.
- the obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 10.6 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 1.1 times the surface resistance before the heat test, and the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 44 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.)
- a mixture of raw material powders was obtained by weighing so that the element number ratio of zinc element, gallium element and titanium element was 96.5: 0.5: 3.0.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 7.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 45 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), gallium oxide (Ga 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.)
- a mixture of raw material powders was obtained by weighing so that the element number ratio of zinc element, gallium element and titanium element was 94.5: 0.5: 5.0.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours.
- the relative density of the sintered body was calculated from the size of the sintered body and found to be 95.6%. The relative density is obtained in the same manner as in Example 36. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor. 4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 46 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the element number ratio of zinc element, aluminum element and titanium element is 96.5: 0.5: 3.0, put it in a polypropylene container, and then add ethanol as a 2mm ⁇ zirconia ball and mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 96.9% when the relative density of this sintered compact was computed from the size of the sintered compact.
- the relative density is obtained from the following formula.
- the obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- Relative density 100 ⁇ [(density of sintered body) / (theoretical density)]
- theoretical density (Zinc oxide simple substance density ⁇ mixing weight ratio + Aluminum oxide simple substance density ⁇ mixing weight ratio + titanium oxide simple substance density ⁇ mixing weight ratio)
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 8.2 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 47 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, aluminum element and titanium element is 94.5: 0.5: 5.0, put it in a polypropylene container, and then add ethanol as a 2mm ⁇ zirconia ball and mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 94.8% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) using the “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. 0.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 9.2 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 48 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (Ti 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, aluminum element and titanium element is 92.5: 0.5: 7.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 94.2% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 11.0 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 49 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the element number ratio of zinc element, aluminum element and titanium element is 96.5: 0.5: 3.0, put it in a polypropylene container, and then add ethanol as a 2mm ⁇ zirconia ball and mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 96.8% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 7.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 50 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, aluminum element and titanium element is 94.5: 0.5: 5.0, put it in a polypropylene container, and then add ethanol as a 2mm ⁇ zirconia ball and mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 94.7% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor. 4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 51 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.) Weigh so that the number ratio of zinc element, aluminum element and titanium element is 92.5: 0.5: 7.0, put in a polypropylene container, and then add 2mm ⁇ zirconia balls and ethanol as a mixed solvent. It was. This was mixed by a ball mill to obtain a mixed powder.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body. It was 94.2% when the relative density of this sintered compact was computed from the size of the sintered compact. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. The surface resistance was 11.0 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, it was found that the surface resistance after the heat test was 1.1 times the surface resistance before the heat test, and the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 52 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.)
- a mixture of raw material powders was obtained by weighing so that the element number ratio of zinc element, aluminum element and titanium element was 96.5: 0.5: 3.0.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped sintered body.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 7.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- Example 53 Zinc oxide (ZnO, manufactured by Kishida Chemical Co., Ltd.), aluminum oxide (Al 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.), and titanium oxide (TiO (II), manufactured by Kojundo Chemical Laboratory Co., Ltd.)
- a mixture of raw material powders was obtained by weighing so that the element number ratio of zinc element, aluminum element and titanium element was 94.5: 0.5: 5.0.
- the mixed powder obtained by removing the balls and ethanol is put into a mold (die) made of graphite, and vacuum-pressed at a pressure of 40 MPa with a punch made of graphite, followed by heat treatment at 1000 ° C. for 4 hours. To obtain a disk-shaped sintered body.
- the relative density of the sintered body was calculated from the size of the sintered body and found to be 95.8%. The relative density is obtained in the same manner as in Example 46. The obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Target size 50.8mm ⁇ 3mm thickness
- Substrate temperature 250 ° C
- Sputtering power 30W
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor. 4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the obtained transparent conductive substrate was an average of 89% in the visible region (380 nm to 780 nm) and an average of 59% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.2 times the surface resistance before the moisture resistance test, and the moisture resistance was excellent.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.2 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the film on the obtained transparent conductive substrate is a transparent conductive film that is transparent and has low resistance, and also has chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance). It is clear that there is. Moreover, since it is excellent in alkali resistance and acid resistance, it is estimated that it has an appropriate etching rate at the time of patterning.
- the mixed powder obtained by removing the balls and ethanol was placed in a mold and pressurized with a pressure of 40 MPa to obtain a disk-shaped molded body. This was put into an electric furnace and heat-treated at 1300 ° C. in an Ar atmosphere to obtain a sintered body.
- the relative density of the sintered body was calculated from the size of the sintered body, it was 93.0%.
- the relative density is obtained in the same manner as in Example 46.
- the obtained sintered body was ground and polished to obtain a sintered body having a diameter of 50.8 mm and a thickness of 3 mm.
- the obtained sintered body was bonded using indium solder using a copper plate as a backing plate to obtain a sputtering target.
- a film was formed by sputtering.
- the sputtering conditions were as follows, and a thin film having a thickness of about 500 nm was obtained.
- Substrate used Soda lime glass (50.8 mm x 50.8 mm x 0.5 mm)
- the obtained thin film was dissolved in 2-fold diluted hydrochloric acid, and the thin film composition was measured by ICP-AES (Thermo Scientific “Thermo-6500”). As a result, a thin film having a composition almost equal to the target composition was obtained. It was.
- the transparent conductive film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM-). EDX) was used to investigate the doping state of titanium into zinc, and further, the crystal structure was examined using a field emission electron microscope (FE-SEM). Was found to be substituted and dissolved in zinc.
- FE-SEM field emission electron microscope
- the sheet resistance of the obtained thin film was measured by a four-probe method (Mitsubishi Chemical Co., Ltd., Loresta) and the film thickness was measured using “Alpha-Step IQ” manufactured by Tencor, and the resistivity was calculated. It was 2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. The surface resistance was 164 ⁇ / ⁇ . The specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 50% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the surface resistance after the moisture resistance test was 1.3 times the surface resistance before the moisture resistance test and was excellent in moisture resistance.
- the heat resistance of the obtained transparent conductive substrate was evaluated, the surface resistance after the heat test was 1.3 times the surface resistance before the heat test, and it was found that the heat resistance was excellent.
- the alkali resistance of the obtained transparent conductive substrate was evaluated, it was found that there was no change in film quality before and after immersion, and the alkali resistance was excellent.
- the acid resistance of the obtained transparent conductive substrate was evaluated, it was found that after immersion, the film thickness was thin and dissolved, but the film quality did not change before and after immersion, and the acid resistance was excellent. It was.
- the obtained film on the transparent conductive substrate is a transparent conductive film that has both chemical durability (heat resistance, moisture resistance, alkali resistance, acid resistance), alkali resistance, and acid resistance. Although it is a film, it has low near-infrared transmittance and high resistance.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by High Purity Chemicals Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- ZnO manufactured by Wako Pure Chemical Industries, Ltd., special grade
- Ti 2 O 3 titanium oxide powder
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 400 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- RINT2000 X-ray diffractometer
- a target is prepared by processing the obtained oxide mixture (32) into a disk shape of 50 mm ⁇ , and a zinc oxide-based thin film is formed by sputtering using the target to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 8.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 16.6 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1% by mass citric acid aqueous solution at 30 ° C. for 60 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.27 nm / second.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 800 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- ZnO zinc oxide
- Zn 2 TiO 4 zinc titanate
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the zinc oxide thin film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM).
- the specific resistance of the zinc oxide thin film on the obtained transparent conductive substrate was 4.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.8 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1% by mass citric acid aqueous solution at 30 ° C. for 60 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.40 nm / second.
- the etching rate is 0.5 nm / second or less, the level is sufficiently controllable.
- this thin film is patterned using the citric acid aqueous solution as an etchant using a predetermined pattern mask, good etching is achieved. A pattern could be formed.
- the etching rate can be easily controlled, and a conductive zinc oxide thin film pattern was obtained.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (Ti 2 O 3 ; manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio of the Zn: Ti atomic ratio of 99: 1. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 400 ° C.
- oxide mixture (C14) was obtained by 3 hours under an atmospheric pressure (0.1013 MPa) argon atmosphere to obtain an oxide mixture (C14).
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the obtained oxide mixture (C14) is processed into a disk shape of 50 mm ⁇ to prepare a target, and a zinc oxide-based thin film is formed by sputtering using this to obtain a transparent conductive substrate.
- the zinc oxide thin film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM).
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 2.25 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, and the surface resistance was 112.5 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 70% on average in the infrared region (780 nm to 2700 nm).
- this film it is difficult to control because the etching rate is 1.0 nm / second or more, and when this thin film is patterned using a citric acid aqueous solution similar to Example 1 as an etching solution using a mask of a predetermined pattern, It was difficult to form a good etching pattern.
- a zinc oxide thin film doped with aluminum atoms was formed on soda lime glass (thickness 0.7 mm) by a direct current magnetron sputtering method using a zinc oxide sputtering target containing 2% by mass of aluminum oxide. Sputtering was performed at a power of 75 W during film formation, a film formation pressure of 0.5 Pa, an oxygen partial pressure of 0 Pa, a substrate temperature of room temperature, and a film formation time of 30 minutes.
- Example 54 the etching rate of the formed thin film was examined and found to be 1.5 nm / second.
- this film it is difficult to control because the etching rate is 1.0 nm / second or more, and when this thin film is patterned using a citric acid aqueous solution similar to Example 1 as an etching solution using a mask of a predetermined pattern, It was difficult to form a good etching pattern.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing at a ratio where the atomic ratio of Zn: Ti was 92: 8. Subsequently, the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This compact was annealed at 400 ° C.
- EDX-700L energy dispersive X-ray fluorescence apparatus
- the crystal structure of this oxide mixture (34) was examined with an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation), the crystal phase of zinc oxide (ZnO) and titanium oxide (Ti 2 O 3 ) It was a mixture.
- a target is prepared by processing the obtained oxide mixture (34) into a disk shape of 50 mm ⁇ , and a zinc oxide-based thin film is formed by sputtering using this to obtain a transparent conductive substrate.
- the above-mentioned target and a transparent substrate quartz glass substrate
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 7.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 15.2 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was 90% on average in the visible region (380 nm to 780 nm) and 65% on average in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1% by mass citric acid aqueous solution at 30 ° C. for 60 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.27 nm / second.
- the etching rate is 0.5 nm / second or less, the level is sufficiently controllable.
- this thin film is patterned using the citric acid aqueous solution as an etchant using a predetermined pattern mask, good etching is achieved. A pattern could be formed.
- the etching rate can be easily controlled, and a conductive zinc oxide thin film pattern was obtained.
- Example 57 Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the obtained mixture was put into a mold and molded by a uniaxial press at a molding pressure of 500 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 30 mm and a thickness of 5 mm. This molded body was sintered at 800 ° C.
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate is 0.5 nm / second or less, the level is sufficiently controllable.
- this thin film is patterned using the citric acid aqueous solution as an etchant using a predetermined pattern mask, good etching is achieved. A pattern could be formed.
- the etching rate can be easily controlled, and a conductive zinc oxide thin film pattern was obtained.
- Example 58 Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders. Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (36).
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the zinc oxide thin film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM).
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1% by mass citric acid aqueous solution at 30 ° C. for 60 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.40 nm / second.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- a mixture of raw material powders was obtained by mixing the Zn: Ti at an atomic ratio of 88:12. After the mixing operation, the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (C15).
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the zinc oxide thin film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM).
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 2.1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, and the surface resistance was 420.0 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1% by mass citric acid aqueous solution at 30 ° C. for 60 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.16 nm / second.
- the etching rate is 0.5 nm / second or less, the level is sufficiently controllable.
- this thin film is patterned using the citric acid aqueous solution as an etchant using a predetermined pattern mask, good etching is achieved. A pattern could be formed.
- the etching rate can be easily controlled, and a conductive zinc oxide thin film pattern was obtained. Although the etching rate was sufficiently controllable, the resistance was high.
- Zinc oxide powder (ZnO; manufactured by Wako Pure Chemical Industries, Ltd., special grade) and titanium oxide powder (TiO (II); manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) are used as raw material powders.
- Mixing was performed at a Zn: Ti atomic ratio of 97: 3 to obtain a raw material powder mixture.
- the mixed powder obtained by removing the balls and ethanol is placed in a graphite mold (die), vacuum-pressed at a pressure of 40 MPa with a graphite punch, and heated at 1000 ° C. for 4 hours. To obtain a disk-shaped oxide sintered body (37).
- a sputtering apparatus (“E-200” manufactured by Canon Anelva Engineering Co., Ltd.)
- Ar gas purity 99.9995% or more, Ar pure
- Gas 5N
- the zinc oxide thin film is subjected to X-ray diffraction using an attachment for thin film measurement using an X-ray diffractometer (“RINT2000” manufactured by Rigaku Corporation) and an energy dispersive X-ray microanalyzer (TEM).
- the specific resistance of the obtained zinc oxide thin film on the transparent conductive substrate was 4.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the surface resistance was 8.4 ⁇ / ⁇ .
- the specific resistance distribution on the transparent substrate was uniform in the plane.
- the transmittance of the transparent conductive substrate obtained was an average of 89% in the visible region (380 nm to 780 nm) and an average of 60% in the infrared region (780 nm to 2700 nm).
- the transmittance in the visible region (380 nm to 780 nm) of the quartz glass substrate before film formation was 94% on average, and the transmittance in the infrared region (780 nm to 2700 nm) was 94% on average.
- the etching rate of the film was examined by measuring the rate of decrease in film thickness (nm / second) when the formed thin film was immersed in a 1 mol / l acetic acid aqueous solution at 20 ° C. for 120 seconds.
- the film thickness was measured using a stylus type film thickness meter (“Alpha-Step IV” manufactured by Tencor). As a result, the etching rate of the formed thin film was 0.33 nm / second.
- the etching rate is 0.5 nm / second or less, the level is sufficiently controllable.
- this thin film is patterned using the citric acid aqueous solution as an etchant using a predetermined pattern mask, good etching is achieved. A pattern could be formed.
- the etching rate can be easily controlled, and a conductive zinc oxide thin film pattern was obtained.
- a zinc oxide thin film doped with aluminum atoms was formed on soda lime glass (thickness 0.7 mm) by a direct current magnetron sputtering method using a zinc oxide sputtering target containing 2% by mass of aluminum oxide. Sputtering was performed at a power of 75 W during film formation, a film formation pressure of 0.5 Pa, an oxygen partial pressure of 0 Pa, a substrate temperature of room temperature, and a film formation time of 30 minutes.
- the etching rate of the formed thin film was examined in the same manner as in Example 1, it was 1.5 nm / second.
- the etching rate of the film was examined by measuring the rate of film thickness reduction (nm / second) when the formed thin film was immersed in a 1 mol / l acetic acid aqueous solution at 20 ° C. for 120 seconds. The film thickness was measured using a stylus type film thickness meter (“Alpha-Step IQ” manufactured by Tencor). As a result, the etching rate of the formed thin film was 2.42 nm / second.
- this film it is difficult to control because the etching rate is 1.0 nm / second or more.
- this thin film is patterned using an acetic acid aqueous solution similar to that in Example 59 as an etchant using a mask having a predetermined pattern, it is good. It was difficult to form an etching pattern.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
すなわち、本発明の酸化物焼結体は、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である。
本発明に係る酸化物焼結体の製造方法は、以下の(A)および/または(B)を含む原料粉末を成形した後、得られた成形体を、不活性雰囲気中、真空中または還元雰囲気中600℃~1500℃で焼結する方法である。
(A)酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉
(B)チタン酸亜鉛化合物粉
本発明に係る酸化物焼結体の製造方法は、以下の(A)および/または(B)を含む原料粉末を成形した後、得られた成形体を大気雰囲気中または酸化雰囲気中600℃~1500℃で焼結し、その後さらに不活性雰囲気中、真空中または還元雰囲気中でアニール処理を施す方法である。
(A)酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉
(B)チタン酸亜鉛化合物粉
本発明の酸化物混合体は、酸化亜鉛および酸化チタンからなり、亜鉛とチタンとの合計に対するチタンが原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である。
本発明に係る酸化物混合体の製造方法は、酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉を含む原料粉末を成形した後、得られた成形体に大気雰囲気中、不活性雰囲気中、真空中または還元雰囲気中50℃以上600℃未満でアニール処理を施す方法である。
本発明のターゲットは、上記酸化物焼結体または上記酸化物混合体を加工して得られるターゲットである。
本発明に係る酸化亜鉛系透明導電膜の形成方法は、パルスレーザ堆積法(PLD法)、スパッタリング法、イオンプレーティング法およびエレクトロンビーム(EB)蒸着法からなる群より選ばれる1種により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いる方法である。
本発明の酸化亜鉛系透明導電膜は、上記酸化亜鉛系透明導電膜の形成方法により形成された膜である。
本発明の透明導電性基板は、透明基材上に、上記酸化亜鉛系透明導電膜を備える基板である。
本発明の酸化亜鉛系透明導電膜形成材料は、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下であり、酸化亜鉛を主成分とし、ガリウムおよびアルミニウムのうち少なくとも一方の酸化物と、酸化チタンとを含み、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.5%以上6%以下であり、かつ前記酸化チタンが、式TiO2-X(X=0.1~1)で表される低原子価酸化チタンである酸化物混合体または酸化物焼結体からなる。
本発明の第二のターゲットは、酸化亜鉛系透明導電膜形成材料を加工して得られるターゲットである。
本発明に係る第二の酸化亜鉛系透明導電膜の形成方法は、上記第二のターゲットを用いて、スパッタリング法、イオンプレーティング法、パルスレーザ堆積法(PLD法)またはエレクトロンビーム(EB)蒸着法により酸化亜鉛系透明導電膜を形成する方法である。
本発明の透明導電性基板は、透明基材上に、上記透明導電膜の形成方法により形成された酸化亜鉛系透明導電膜を備える基板である。
本発明に係るパターニング方法は、酸化亜鉛系薄膜を酸によりエッチングしてパターニングする方法であって、前記酸化亜鉛系薄膜が、酸化亜鉛を主成分とし、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下の薄膜である方法である。
本発明の酸化物焼結体は、実質的に亜鉛、チタンおよび酸素からなるチタンドープ酸化亜鉛の焼結体である。ここで、「実質的」とは、酸化物焼結体を構成する全原子の99%以上が亜鉛、チタンまたは酸素からなることを意味する。
本発明に係る酸化物焼結体の製造方法は、以下の(A)および/または(B)を含む原料粉末を成形した後、得られた成形体を焼結することにより、上記本発明の酸化物焼結体を得る方法である。
(A)酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉
(B)チタン酸亜鉛化合物粉
本発明の酸化物混合体は、酸化亜鉛と酸化チタンとからなる。すなわち、本発明の酸化物混合体は、実質的に亜鉛、チタンおよび酸素からなる混合体である。ここで、「実質的」とは、酸化物混合体を構成する全原子の99%以上が亜鉛、チタンまたは酸素からなることを意味する。
本発明の酸化物混合体の製造方法は、酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉を成形することにより、上記本発明の酸化物混合体を得る方法である。原料粉末としては、酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉であればよい。好ましくは、酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉を含むものがよい。これらの酸化チタン粉、酸化亜鉛粉および水酸化亜鉛粉としては、上述の酸化物焼結体と同様のものを使用することができる。
本発明のターゲットは、例えば、パルスレーザ堆積法(PLD法)、スパッタリング法、イオンプレーティング法またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットである。なお、このような成膜の際に用いる固形材料のことを「タブレット」と称する場合もあるが、本発明においてはこれらを含め「ターゲット」と記載する。さらに、真空蒸着法などの他の真空成膜法、化学気相成長法、ミストCVD法、ゾルゲル法等の一般的な成膜方法により成膜することも可能である。
本発明の酸化亜鉛系透明導電膜の形成方法は、PLD法が採用され得る。具体的手法や条件などについては、上述のターゲット(膜形成材料)を用いること以外、特に制限はなく、公知の手法や条件を適宜採用すればよい。以下、PLD法について説明するが、これらに限定されない。
本発明の酸化亜鉛系透明導電膜の形成方法は、スパッタリング法が採用され得る。具体的手法や条件などについては、上述の膜形成材料を用いること以外、特に制限はなく、公知のスパッタリング法の手法や条件を適宜採用すればよい。
さらに、本発明の酸化亜鉛系透明導電膜の形成方法は、イオンプレーティング法が採用され得る。イオンプレーティング法は、成膜室に配設した電極部としてのハース等に、膜形成材料(蒸着材料)を配置し、この蒸着材料に例えばアルゴンプラズマを照射して蒸着材料を加熱し、蒸発させ、プラズマを通過した蒸着材料の各粒子をハース等に対向する位置に置かれた基板に成膜させる方法である。イオンプレーティング法の具体的手法や条件などについては、上述の膜形成材料を用いること以外、特に制限はなく、公知のイオンプレーティング法の手法や条件を適宜採用すればよい。
本発明の酸化亜鉛系透明導電膜の形成方法は、エレクトロンビーム(EB)蒸着法が採用され得る。具体的手法や条件などについては、上述の膜形成材料を用いること以外、特に制限はなく、公知のエレクトロンビーム(EB)蒸着法の手法や条件を適宜採用すればよい。エレクトロンビーム(EB)蒸着法では、原料ターゲット(タブレット)に電子ビームを真空中で照射することにより加熱蒸発させて、対向した透明基板上にこれを堆積させ蒸着を行い、透明導電膜を透明基板上に作製することができる。
本発明の酸化亜鉛系透明導電膜は、上述の酸化亜鉛系透明導電膜の形成方法により形成されたチタンドープ酸化亜鉛からなる透明導電膜である。本発明の酸化亜鉛系透明導電膜中に含まれるチタンと亜鉛の原子数比(Ti/(Zn+Ti))は、上記の通りである。これにより、チタンのドープ効果により優れた導電性を発現しうるとともに、化学的耐久性にも優れた膜となる。この酸化亜鉛系透明導電膜は、チタンが酸化亜鉛のウルツ鉱の結晶構造の亜鉛サイトに置換固溶したものある。
本発明の透明導電性基板は、透明基材上に、上述の酸化亜鉛系透明導電膜を備えるものである。
本発明の酸化亜鉛系透明導電膜形成材料は、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を越え0.1以下であり、酸化亜鉛を主成分とし、ガリウムおよびアルミニウムのうち少なくとも一方の酸化物と、酸化チタンとを含む酸化物混合体または酸化物焼結体からなる。
本発明のパターニング方法においては、以上のような酸化亜鉛系薄膜を酸によりエッチングする。
<比抵抗>
比抵抗は、抵抗率計(三菱化学(株)製「LORESTA-GP、MCP-T610」)を用いて、四端子四探針法により測定した。詳しくは、サンプルに4本の針状の電極を直線上に置き、外側の二探針間に一定の電流を流し、内側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し、抵抗を求めた。
<表面抵抗>
表面抵抗(Ω/□)は、比抵抗(Ω・cm)を膜厚(cm)で除することにより算出した。
<透過率>
透過率は、紫外可視近赤外分光光度計(日本分光(株)製「V-670」)を用いて測定した。
<耐湿性>
透明導電性基板を、温度60℃、相対湿度90%の雰囲気中に1000時間保持する耐湿試験に付した後、表面抵抗を測定した。耐湿試験後の表面抵抗が、耐湿試験前の表面抵抗の2倍以下であると、耐湿性に優れると言える。
<耐熱性>
透明導電性基板を、温度200℃の大気中に5時間保持する耐熱試験に付した後、表面抵抗を測定した。耐熱試験後の表面抵抗が、耐熱試験前の表面抵抗の1.5倍以下であると、耐熱性に優れると言える。
<耐アルカリ性>
透明導電性基板を、3%のNaOH水溶液(40℃)中に10分間浸漬し、浸漬前後の基板上の膜質の変化の有無を目視にて確認した。
<耐酸性>
透明導電性基板を、3%のHCl水溶液(40℃)中に10分間浸漬し、浸漬前後の基板上の膜質の変化の有無を目視にて確認した。
<酸化物混合体の製造>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(Ti2O3粉末;純度99.9%、平均粒径1μm以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が94:6となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物混合体(1)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=94:6であった(Ti/(Zn+Ti)=0.06)。この酸化物混合体(1)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物混合体の製造>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(Ti2O3粉末;純度99.9%、平均粒径1μm以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が95:5となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物混合体(2)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=95:5であった(Ti/(Zn+Ti)=0.05)。この酸化物混合体(2)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物混合体の製造>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(Ti2O3粉末;純度99.9%、平均粒径1・m以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物混合体(C1)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1であった(Ti/(Zn+Ti)=0.01)。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.3倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗ではあるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
<酸化物焼結体の製造>
実施例1と同様にして得た円盤状成形体を、大気雰囲気中、1000℃までを5℃/分で、1000℃を超え1500℃までを1℃/分で昇温し、焼結温度である1500℃で5時間保持することにより焼結し、その後、不活性雰囲気(100%Ar雰囲気)にて1300℃で5時間アニール処理を行い、酸化物焼結体(3)を得た。
得られた酸化物焼結体(3)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7であった(Ti/(Zn+Ti)=0.07)。この酸化物焼結体(3)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=93:7であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態を調べところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造>
実施例2と同様にして得た円盤状成形体を、不活性雰囲気(100%Ar雰囲気)中、1000℃までを5℃/分で、1000℃を超え1300℃までを1℃/分で昇温し、焼結温度である1300℃で5時間保持することにより焼結し、酸化物焼結体(4)を得た。
得られた酸化物焼結体(4)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=94:6であった(Ti/(Zn+Ti)=0.06)。この酸化物焼結体(4)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=94:6であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造>
比較例1と同様にして得た円盤状成形体を、不活性雰囲気(100%Ar雰囲気)中、1000℃までを5℃/分で、1000℃を超え1300℃までを1℃/分で昇温し、焼結温度である1300℃で5時間保持することにより焼結し、酸化物焼結体(C2)を得た。
得られた酸化物焼結体(C2)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=98.5:1.5であった(Ti/(Zn+Ti)=0.015)。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=98.5:1.5であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.1倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.8倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗ではあるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
<酸化物焼結体の製造(ホットプレス法)>
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とチタン元素の元素数比が97.0:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(5)を得た。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=97:3であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造(ホットプレス法)>
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化チタン(Ti2O3(III)、(株)高純度化学研究所製)を、亜鉛元素とチタン元素の元素数比が97.0:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(6)を得た。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=97:3であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造(TiO(II)の常圧焼結法)>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1・m以下、和光純薬工業(株)製)および酸化チタン粉(TiO(II)粉末;純度99.9%、平均粒径1・m以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物焼結体(7)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3であった(Ti/(Zn+Ti)=0.03)。この酸化物焼結体(7)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=97:3であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造(TiO(II)の常圧焼結法)>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(TiO(II)粉末;純度99.9%、平均粒径1μm以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物焼結体(C3)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12であった(Ti/(Zn+Ti)=0.12)。この酸化物焼結体(C3)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=88:12であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均66%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
<酸化物焼結体の製造(TiO(II)の常圧焼結法)>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(TiO(II)粉末;純度99.9%、平均粒径1μm以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物焼結体(8)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7であった(Ti/(Zn+Ti)=0.07)。この酸化物焼結体(8)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=93:7であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
<酸化物焼結体の製造(TiO(II)の常圧焼結法)>
酸化亜鉛粉(ZnO粉末;純度99.9%、平均粒径1μm以下、和光純薬工業(株)製)および酸化チタン粉(TiO(II)粉末;純度99.9%、平均粒径1μm以下、(株)高純度化学研究所製)を原料粉末とし、これらをZn:Tiの原子数比が91:9となる割合で樹脂製ポットに入れ、湿式ボールミル混合法により湿式混合した。湿式混合は、ボールとして硬質ZrO2ボールを用い、混合時間を18時間として行った。
次いで、混合後の原料粉末スラリーを取り出し、乾燥、造粒した後、冷間静水圧プレスにて1ton/cm2の圧力をかけて成形し、直径100mm、厚さ8mmの円盤状成形体を得た。
得られた酸化物焼結体(9)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=91:9であった(Ti/(Zn+Ti)=0.09)。この酸化物焼結体(9)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
形成した透明導電膜中の組成(Zn:Ti)について、実施例1と同様にして、蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=91:9であった。また、この透明導電膜について、実施例1と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の透過率は、可視領域、赤外領域とも実施例1と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(101.325kPa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(10)を得た。
得られた酸化物混合体(10)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物混合体(10)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
実施例10で得た酸化物混合体(10)を50mmφの円盤状に加工することにより、ターゲットを作製し、これを用いてスパッタリング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(アクリル系透明樹脂シート)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、電力100W、基板温度130℃の条件下でスパッタリングを行い、基板上に膜厚500nmの透明導電膜を形成した。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均88%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前のアクリル系透明樹脂シートの可視領域(380nm~780nm)における透過率は平均93%であり、赤外領域(780nm~2700nm)における透過率は平均93%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.4倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を、まず常圧(101.325kPa)の大気雰囲気下、500℃で3時間アニールして、酸化物混合体(11)を得た。
次に、得られた酸化物混合体(11)を50mmφの円盤状に加工することにより、ターゲットを作製し、これを用いてスパッタリング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、スパッタリング装置(キャノンアネルバエンジニアリング(株)製「E-200」)内に、上記ターゲットと透明基材(石英ガラス基板)とをそれぞれ設置し、Arガス(純度99.9995%以上、Ar純ガス=5N)を12sccmで導入して、圧力0.5Pa、電力100W、基板温度130℃の条件下でスパッタリングを行い、基板上に膜厚500nmの透明導電膜を形成した。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均62%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.4倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(12)を得た。
得られた酸化物焼結体(12)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(12)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(101.325kPa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(C4)を得た。
得られた酸化物混合体(C4)をエネルギー分散型蛍光X線装置(島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1(Ti/(Zn+Ti)=0.01)であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.6倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明ではあるが、高抵抗であり、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)には劣る透明導電膜であることが明らかである。
平均粒径が1μmの酸化亜鉛粉末97.7重量部と、平均粒径が0.2μmの酸化アルミニウム粉末2.3重量部とを、ポリエチレン製ポットに入れ、乾式ボールミルを用いて72時間混合し、原料粉末の混合物を得た。得られた混合物を金型に入れ、成形圧300kg/cm2の圧力でプレスを行い、成形体を得た。この成形体に3ton/cm2の圧力でCIPによる緻密化処理を施した後、以下の条件で焼結して、アルミニウムドープ酸化亜鉛の酸化物焼結体(C5)を得た。
焼結温度:1500℃
昇温速度:50℃/時間
保持時間:5時間
焼結雰囲気:大気中
得られた酸化物焼結体(C5)は、X線回折で分析したところ、ZnOとZnAl2O4との2相の混合組織であった。
装置 :dcマグネトロンスパッタ装置
磁界強度 :1000Gauss(ターゲット直上、水平成分)
基板温度 :200℃
到達真空度 :5×10-5Pa
スパッタリングガス :Ar
スパッタリングガス圧:0.5Pa
DCパワー :300W
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均88%、赤外領域(780nm~2700nm)で平均55%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の3.2倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の7.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗ではあるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)には劣る透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(13)を得た。
得られた酸化物焼結体(13)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物混合体(13)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
実施例14と同様にして、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(14)を得た(ホットプレス法)。
得られた酸化物焼結体(14)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(14)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(15)を得た(ホットプレス法)。
得られた酸化物焼結体(15)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(15)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(C6)を得た。
得られた酸化物焼結体(C6)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C6)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均66%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(C7)を得た。
得られた酸化物焼結体(C7)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C7)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均66%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(16)を得た(ホットプレス法)。
得られた酸化物焼結体(16)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(16)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(17)を得た(ホットプレス法)。
得られた酸化物焼結体(17)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(17)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、500℃で1時間加熱して、酸化物混合体(18)を得た。
得られた酸化物混合体(18)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物混合体(18)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):250℃
Base Pressure: 7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.4×10-4Ω・cmであり、表面抵抗は14.7Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
実施例19で得られた酸化物混合体(18)を20mmφの円盤状に加工することにより、ターゲットを作製した。このターゲットを用いて、実施例19における透明基板(石英ガラス基板)をアクリル系透明樹脂シート(80mm×80mm×2mmt平板)に代えるとともに、成膜条件(Substrate Temperature)を下記通り変更したこと以外は、実施例19と同様にして、成膜時間120分間でPLD法により、膜厚300nmの透明導電膜を形成した。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):130℃
Base Pressure: 7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は6.3×10-4Ω・cmであり、表面抵抗は21Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の樹脂シートの可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(19)を得た。
得られた酸化物焼結体(19)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物焼結体(19)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):250℃
Base Pressure: 7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.4×10-4Ω・cmであり、表面抵抗は14.7Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、400℃で3時間加熱して、酸化物混合体(C8)を得た。
得られた酸化物混合体(C8)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1(Ti/(Zn+Ti)=0.01)であった。
形成した透明導電膜中の組成(Zn:Ti)について、波長分散型蛍光X線装置((株)島津製作所製「XRF-1700WS」)を用い蛍光X線法により検量線を用いて定量分析を行ったところ、Zn:Ti(原子数比)=99:1であった。また、この透明導電膜について、実施例19と同様にして、X線回折を行うとともに、亜鉛へのチタンのドープ状態および結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた透明導電性基板上の透明導電膜の比抵抗は2.34×10-3Ω・cmであり、表面抵抗は73.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%であった。なお、成膜前の石英ガラス基板の可視領域における透過率は、実施例19と同じである。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.4倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.2倍であり、耐熱性に劣ることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明ではあるが、抵抗が大きく導電性に劣るとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)にも劣る透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(20)を得た。
得られた酸化物焼結体(20)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(20)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.2×10-4Ω・cmであり、表面抵抗は14.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.7倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(21)を得た。
得られた、酸化物焼結体(21)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この、酸化物焼結体(21)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.0×10-4Ω・cmであり、表面抵抗は13.3Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.7倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(22)を得た(ホットプレス焼結)。得られた酸化物焼結体(22)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(22)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.2×10-4Ω・cmであり、表面抵抗は14.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.7倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(23)を得た(ホットプレス焼結)。得られた酸化物焼結体(23)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(23)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は4.0×10-4Ω・cmであり、表面抵抗は13.3Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.7倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(24)を得た(ホットプレス焼結)。得られた酸化物焼結体(24)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(24)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は9.0×10-4Ω・cmであり、表面抵抗は30.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均67%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.4倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(C9)を得た(ホットプレス焼結)。得られた酸化物焼結体(C3)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C9)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は1.1×10-2Ω・cmであり、表面抵抗は367.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均75%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(C10)を得た(ホットプレス焼結)。得られた酸化物焼結体(C10)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C10)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)との結晶相の混合物であり、酸化チタンは全く存在していなかった。
<成膜条件>
Laser:ArF Excimer Laser(波長=193nm)
Laser Energy:18mJ
Repetition Frequency:5Hz
Target to substrate Distance:40nm
Substrate:Corning#1737
Substrate Temperature(℃):200℃
Base Pressure:7.2×10-4Pa
Gas Pressure(酸素):0.25Pa
Gas Flow Rate:8.6sccm
Film thickness:300nm
得られた透明導電性基板上の透明導電膜の比抵抗は2.4×10-2Ω・cmであり、表面抵抗は800.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均75%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(100Pa)のアルゴン雰囲気下、500℃で3時間アニールして、酸化物混合体(25)を得た。
得られた酸化物混合体(25)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。
次に、得られた酸化物混合体(25)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(100Pa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(C11)を得た。
得られた酸化物混合体(C11)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1(Ti/(Zn+Ti)=0.01)であった。
次に、得られた酸化物混合体(C11)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚150nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :150秒
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均91%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の3.1倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の3.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明であるが、高抵抗であり、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
実施例27と同様にして得られた酸化物混合体(25)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚50nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :50秒
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均91%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.8倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.5倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、膜厚が100nm以下であっても、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
実施例27と同様にして得られた酸化物混合体(25)を20mmφの円盤状に加工することにより、タブレットを作製し、これを用いてイオンプレーティング法により透明導電膜を成膜し、透明導電基板を得た。すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(200℃以上で耐熱性を示す厚み0.3mmの耐熱透明樹脂フィルム)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:200℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均85%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の耐熱透明樹脂フィルムの可視領域(380nm~780nm)における透過率は平均90%であり、赤外領域(780nm~2700nm)における透過率は平均90%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.8倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.5倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、基板が耐熱性フィルムであっても、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(26)を得た。
得られた酸化物焼結体(26)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物焼結体(26)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は7.8×10-4Ω・cmであり、表面抵抗は39.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.5倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が96:4となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(27)を得た。
得られた酸化物焼結体(27)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=96:4(Ti/(Zn+Ti)=0.04)であった。この酸化物焼結体(27)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は7.3×10-4Ω・cmであり、表面抵抗は36.5Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。さらに該焼結体をアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(28)を得た。
得られた酸化物焼結体(28)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(28)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は6.0×10-4Ω・cmであり、表面抵抗は30.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(29)を得た。
得られた酸化物焼結体(29)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(29)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は6.0×10-4Ω・cmであり、表面抵抗は30.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.6倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.3倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が98.5:1.5となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(C12)を得た。
得られた酸化物焼結体(C12)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=98.5:1.5(Ti/(Zn+Ti)=0.015)であった。この酸化物焼結体(C12)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は1.2×10-3Ω・cmであり、表面抵抗は60.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.6倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるが、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)に劣る透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、1000℃で4時間焼結して、酸化物焼結体(C13)を得た。
得られた酸化物焼結体(C13)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。この酸化物焼結体(C13)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
すなわち、イオンプレーティング装置(中外炉工業(株)製「SUPLaDUO」)を用い、下記の条件でイオンプレーティングを行い、透明基材(厚み0.7mmの無アルカリガラス基板)上に、膜厚200nmの透明導電膜を形成した。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力 :0.3Pa
成膜時の雰囲気ガス条件 :アルゴン=160sccm、酸素=2sccm
成膜時の放電電流 :100A
成膜時間 :200秒
得られた透明導電性基板上の透明導電膜の比抵抗は2.4×10-2Ω・cmであり、表面抵抗は1200.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均73%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.1倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.1倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であるが高抵抗であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3(III);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(30)を得た。(ホットプレス)
得られた酸化物焼結体(30)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(30)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力:0.3Pa
成膜時の雰囲気ガス条件:アルゴン=160sccm、酸素=2sccm
成膜時の放電電流:100A
成膜時間:200秒
得られた透明導電性基板上の透明導電膜の比抵抗は1.1×10-3Ω・cmであり、表面抵抗は55.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均67%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.4倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が93:7となる割合で混合し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(31)を得た。(ホットプレス焼結)
得られた酸化物焼結体(31)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=93:7(Ti/(Zn+Ti)=0.07)であった。この酸化物焼結体(31)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
成膜前の基板の予備加熱温度:250℃
成膜時の圧力:0.3Pa
成膜時の雰囲気ガス条件:アルゴン=160sccm、酸素=2sccm
成膜時の放電電流:100A
成膜時間:200秒
得られた透明導電性基板上の透明導電膜の比抵抗は9.4×10-4Ω・cmであり、表面抵抗は47.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均67%であった。なお、成膜前のガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.4倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
以上のことから、得られた透明導電性基板上の膜は、透明かつ低抵抗であるとともに、化学的耐久性(耐熱性、耐湿性、耐アルカリ性、耐酸性)をも兼ね備えた透明導電膜であることが明らかである。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が93.0:2.0:5.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ95.3%であった。なお、相対密度は、下記の式から求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
相対密度=100×[(焼結体の密度)/(理論密度)]
但し、理論密度=(酸化亜鉛の単体密度×混合重量比+酸化ガリウムの単体密度×混合重量比+酸化チタンの単体密度×混合重量比)
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.7×10-4Ωcmであった。表面抵抗は9.4Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が94.0:2.0:4.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、大気雰囲気中300℃で加熱処理を行い、酸化物混合体を得た。
得られた酸化物混合体を、銅板をバッキングプレートとして用い、インジウム半田を用いてボンディングし、スパッタリングターゲットを得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.6×10-4Ω・cmであった。表面抵抗は9.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均57%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の1.2倍であり、耐湿性に優れることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の1.2倍であり、耐熱性に優れることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
平均粒径が1μmの酸化亜鉛粉末97.7重量部と、平均粒径が0.2μ?の酸化アルミニウム粉末2.3重量部とを、ポリエチレン製ポットに入れ、乾式ボールミルを用いて72時間混合し、原料粉末の混合物を得た。得られた混合物を金型に入れ、成形圧300kg/cm2の圧力でプレスを行い、成形体を得た。この成形体に3ton/cm2の圧力でCIPによる緻密化処理を施した後、以下の条件で焼結して、アルミニウムドープ酸化亜鉛の焼結体を得た。
焼結温度 :1500℃
昇温速度 :50℃/時間
保持時間 :5時間
焼結雰囲気:大気中
得られた焼結体は、X線回折で分析したところ、ZnOとZnAl2O4との2相の混合組織であった。
スパッタリング装置:キャノンアネルバ製 「E-200S」
スパッタ方式:DCマグネトロンスパッタリング
磁界強度:1000Gauss(ターゲット直上、水平成分)
基板温度:250℃
到達真空度:5×10-5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
DCパワー:300W
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均50%であった。
得られた透明導電性基板の耐湿性を評価したところ、耐湿試験後の表面抵抗は、耐湿試験前の表面抵抗の2.1倍であり、耐湿性に劣ることがわかった。また、得られた透明導電性基板の耐熱性を評価したところ、耐熱試験後の表面抵抗は、耐熱試験前の表面抵抗の2.0倍であり、耐熱性に劣ることがわかった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬後には膜は完全に溶解し、消失していた。また、得られた透明導電性基板の耐酸性を評価したところ、膜は完全に溶解し、消失していた。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気中、1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ96.8%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.1×10-4Ω・cmであった。表面抵抗は8.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.6%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.6×10-4Ω・cmであった。表面抵抗は9.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が92.5:0.5:7.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ93.9%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、5.5×10-4Ω・cmであった。表面抵抗は11.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ96.7%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、3.9×10-4Ω・cmであった。表面抵抗は7.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.5%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.4×10-4Ω・cmであった。表面抵抗は8.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が92.5:0.5:7.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.0%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmΦ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、5.3×10-4Ω・cmであった。表面抵抗は10.6Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。(ホットプレス焼結)
この焼結体の相対密度を焼結体のサイズから算出したところ96.3%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、3.9×10-4Ω・cmであった。表面抵抗は7.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化ガリウム(Ga2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とガリウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。(ホットプレス焼結)
この焼結体の相対密度を焼結体のサイズから算出したところ95.6%であった。なお、相対密度は、実施例36と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.4×10-4Ω・cmであった。表面抵抗は8.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ96.9%であった。なお、相対密度は、下記の式から求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
相対密度=100×[(焼結体の密度)/(理論密度)]
但し、理論密度=(酸化亜鉛の単体密度×混合重量比+酸化アルミニウムの単体密度×混合重量比+酸化チタンの単体密度×混合重量比)
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.1×10-4Ω・cmであった。表面抵抗は8.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmΦジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.8%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.6×10-4Ω・cmであった。表面抵抗は9.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(Ti2O3、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が92.5:0.5:7.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.2%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、5.5×10-4Ω・cmであった。表面抵抗は11.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ96.8%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、3.9×10-4Ω・cmであった。表面抵抗は7.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.7%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmΦ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.4×10-4Ω・cmであった。表面抵抗は8.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が92.5:0.5:7.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmφジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ94.2%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、5.5×10-4Ω・cmであった。表面抵抗は11.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が96.5:0.5:3.0となるように秤量し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。(ホットプレス焼結)
この焼結体の相対密度を焼結体のサイズから算出したところ96.6%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、3.9×10-4Ω・cmであった。表面抵抗は7.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が94.5:0.5:5.0となるように秤量し、原料粉末の混合物を得た。混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の焼結体を得た。(ホットプレス焼結)
この焼結体の相対密度を焼結体のサイズから算出したところ95.8%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmφ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、4.4×10-4Ω・cmであった。表面抵抗は8.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均59%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛(ZnO、キシダ化学(株)製)、酸化アルミニウム(Al2O3、住友化学(株)製)、および酸化チタン(TiO(II)、(株)高純度化学研究所製)を、亜鉛元素とアルミニウム元素とチタン元素の元素数比が90.0:7.0:3.0となるように秤量し、ポリプロピレン製の容器に入れ、更に2mmΦジルコニア製ボールと混合溶媒としてエタノールを入れた。これをボールミルにより混合し、混合粉末を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を金型に入れ、40MPaの圧力で加圧し、円盤型の成形体を得た。これを電気炉に入れ、Ar雰囲気で1300℃で加熱処理を行い、焼結体を得た。この焼結体の相対密度を焼結体のサイズから算出したところ93.0%であった。なお、相対密度は、実施例46と同様にして求めている。得られた焼結体に研削、表面研磨を施し、50.8mmφ、厚さ3mmの焼結体を得た。
得られたスパッタリングターゲットを用い、スパッタリングにより成膜を行った。スパッタ条件は以下のとおりであり、厚さ約500nmの薄膜を得た。
ターゲット寸法 :50.8mmΦ 3mm厚
スパッタリング装置 :キャノンアネルバ製 「E-200S」
スパッタ方式 :DCマグネトロンスパッタリング
到達真空度 :2.0×10-4Pa
Ar圧力 :0.5Pa
基板温度 :250℃
スパッタ電力 :30W
使用基板 :ソーダライムガラス(50.8mm×50.8mm×0.5mm)
また、この透明導電膜について、X線回折装置(理学電機(株)製「RINT2000」)を用い薄膜測定用のアタッチメントを使用したX線回折を行うとともに、エネルギー分散型X線マイクロアナライザー(TEM-EDX)を用いて亜鉛へのチタンのドープ状態を調べ、さらに電界放射型電子顕微鏡(FE-SEM)を用いて結晶構造を調べたところ、C軸配向したウルツ鉱型の単相であり、チタンが亜鉛に置換固溶していることがわかった。
得られた薄膜のシート抵抗を四探針法(三菱化学(株)製、ロレスタ)で、膜厚をTencor社製「Alpha-Step IQ」を用いて測定し、抵抗率を算出したところ、8.2×10-3Ω・cmであった。表面抵抗は164Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均50%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
得られた透明導電性基板の耐アルカリ性を評価したところ、浸漬前後で膜質に変化はなく耐アルカリ性に優れていることがわかった。また、得られた透明導電性基板の耐酸性を評価したところ、浸漬後、膜厚が薄くなっており溶解していたが、浸漬前後で膜質に変化はなく耐酸性に優れていることがわかった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学品研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が92:8となる割合で混合し、原料粉末の混合物を得た。
次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(0.1013MPa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(32)を得た。
得られた酸化物混合体(32)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=92:8(Ti/(Zn+Ti)=0.08)であった。この酸化物混合体(32)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は8.3×10-4Ω・cmであり、表面抵抗は16.6Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。
次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(33)を得た。
得られた酸化物焼結体(33)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。この酸化物焼結体(33)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は4.4×10-4Ω・cmであり、表面抵抗は8.8Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(Ti2O3;(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が99:1となる割合で混合し、原料粉末の混合物を得た。
次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(0.1013MPa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(C14)を得た。
得られた酸化物混合体(C14)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=99:1(Ti/(Zn+Ti)=0.01)であった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は2.25×10-3Ω・cmであり、表面抵抗は112.5Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均70%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化アルミニウムを2質量%含有した酸化亜鉛スパッタリング用ターゲットを用い、直流マグネトロンスパッタリング法により、アルミニウム原子をドープした酸化亜鉛薄膜を、ソーダライムガラス(厚さ0.7mm)上に形成した。なお、スパッタリングは、成膜時の電力を75W、成膜圧力を0.5Pa、酸素分圧を0Pa、基板温度を室温、成膜時間を30分間として行った。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が92:8となる割合で混合し、原料粉末の混合物を得た。
次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(0.1013MPa)のアルゴン雰囲気下、400℃で3時間アニールして、酸化物混合体(34)を得た。
得られた酸化物混合体(34)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=92:8(Ti/(Zn+Ti)=0.08)であった。この酸化物混合体(34)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)と酸化チタン(Ti2O3)の結晶相の混合物であった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は7.6×10-4Ω・cmであり、表面抵抗は15.2Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均90%、赤外領域(780nm~2700nm)で平均65%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。
次いで、得られた混合物を金型に入れ、一軸プレスにより成形圧500kg/cm2にて成形し、直径30mm、厚さ5mmの円盤状の成形体を得た。この成形体を常圧(1.01325×102kPa)のアルゴン雰囲気下、800℃で4時間焼結して、酸化物焼結体(35)を得た。
得られた酸化物焼結体(35)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03
)であった。この酸化物焼結体(35)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は4.2×10-4Ω・cmであり、表面抵抗は8.4Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(36)を得た。得られた酸化物焼結体(36)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。
この酸化物焼結体(36)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は4.2×10-4Ω・cmであり、表面抵抗は8.4Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が88:12となる割合で混合し、原料粉末の混合物を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(C15)を得た。得られた酸化物焼結体(C15)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=88:12(Ti/(Zn+Ti)=0.12)であった。
この酸化物焼結体(C15)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は2.1×10-2Ω・cmであり、表面抵抗は420.0Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化亜鉛粉末(ZnO;和光純薬工業(株)製、特級)および酸化チタン粉末(TiO(II);(株)高純度化学研究所製、純度99.99%)を原料粉末とし、これらをZn:Tiの原子数比が97:3となる割合で混合し、原料粉末の混合物を得た。
混合操作後、ボールとエタノールを除去して得られた混合粉末を黒鉛からなる金型(ダイス)に入れ、黒鉛からなるパンチにて40MPaの圧力で真空加圧し、1000℃、4時間、加熱処理を行い円盤型の酸化物焼結体(37)を得た。得られた酸化物焼結体(37)をエネルギー分散型蛍光X線装置((株)島津製作所製「EDX-700L」)にて分析したところ、ZnとTiの原子数比はZn:Ti=97:3(Ti/(Zn+Ti)=0.03)であった。
この酸化物焼結体(37)の結晶構造をX線回折装置(理学電機(株)製「RINT2000」)により調べたところ、酸化亜鉛(ZnO)とチタン酸亜鉛(Zn2TiO4)の結晶相の混合物であり、酸化チタンは全く存在していなかった。
得られた透明導電性基板上の酸化亜鉛系薄膜の比抵抗は4.2×10-4Ω・cmであり、表面抵抗は8.4Ω/□であった。なお、透明基板上の比抵抗の分布は面内均一であった。
得られた透明導電性基板の透過率は、可視領域(380nm~780nm)で平均89%、赤外領域(780nm~2700nm)で平均60%であった。なお、成膜前の石英ガラス基板の可視領域(380nm~780nm)における透過率は平均94%であり、赤外領域(780nm~2700nm)における透過率は平均94%であった。
酸化アルミニウムを2質量%含有した酸化亜鉛スパッタリング用ターゲットを用い、直流マグネトロンスパッタリング法により、アルミニウム原子をドープした酸化亜鉛薄膜を、ソーダライムガラス(厚さ0.7mm)上に形成した。なお、スパッタリングは、成膜時の電力を75W、成膜圧力を0.5Pa、酸素分圧を0Pa、基板温度を室温、成膜時間を30分間として行った。
次に、形成された薄膜を20℃の1mol/lの酢酸水溶液に120秒間浸漬させたときの膜厚の減少速度(nm/秒)を測定することにより、膜のエッチング速度を調べた。なお、膜厚は、触針式膜厚計(Tencor社製「Alpha-Step IQ」)を用いて測定した。その結果、形成された薄膜のエッチング速度は2.42nm/秒であった。
Claims (35)
- 実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体。
- 酸化亜鉛相とチタン酸亜鉛化合物相とから構成される、請求項1に記載の酸化物焼結体。
- チタン酸亜鉛化合物相から構成される、請求項1に記載の酸化物焼結体。
- 実質的に酸化チタンの結晶相を含有しない、請求項1~3のいずれかに記載の酸化物焼結体。
- チタンの原子価は4価未満である、請求項1~4のいずれかに記載の酸化物焼結体。
- ガリウム、アルミニウム、錫、シリコン、ゲルマニウム、ジルコニウムおよびハフニウムからなる群より選ばれる少なくとも1種の元素をも含有する、請求項1~5のいずれかに記載の酸化物焼結体。
- 請求項1~6のいずれかに記載の酸化物焼結体を製造する方法であって、以下の(A)および/または(B)を含む原料粉末を成形した後、得られた成形体を不活性雰囲気中、真空中または還元雰囲気あるいは不活性雰囲気中600℃~1500℃で焼結する方法。
(A)酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉
(B)チタン酸亜鉛化合物粉 - 請求項1~6のいずれかに記載の酸化物焼結体を製造する方法であって、以下の(A)および/または(B)を含む原料粉末を成形した後、得られた成形体を大気雰囲気中または酸化雰囲気中600℃~1500℃で焼結し、その後さらに不活性雰囲気中、真空中または還元雰囲気中でアニール処理を施す方法。
(A)酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉
(B)チタン酸亜鉛化合物粉 - 前記酸化チタン粉が、式:TiO2-X(X=0.1~1)で表される低原子価酸化チタンの粉末である、請求項7または8に記載の方法。
- 前記アニール処理の雰囲気は、窒素、アルゴン、ヘリウム、二酸化炭素、アンモニアおよび水素からなる群より選ばれる少なくとも1種からなる雰囲気または真空である請求項8または9に記載の方法。
- 酸化亜鉛および酸化チタンからなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物混合体。
- 前記酸化チタンにおけるチタンの原子価は、4価未満である、請求項11に記載の酸化物混合体。
- ガリウム、アルミニウム、錫、シリコン、ゲルマニウム、ジルコニウムおよびハフニウムからなる群より選ばれる少なくとも1種の元素をも含有する、請求項11または12に記載の酸化物混合体。
- 請求項11~13のいずれかに記載の酸化物混合体を製造する方法であって、酸化チタン粉と酸化亜鉛粉との混合粉もしくは酸化チタン粉と水酸化亜鉛粉との混合粉を含む原料粉末を成形した後、得られた成形体に大気雰囲気中、酸化雰囲気中、不活性雰囲気中、真空中または還元雰囲気中50℃以上600℃未満でアニール処理を施す方法。
- 前記酸化チタン粉が、式:TiO2-X(X=0.1~1)で表される低原子価酸化チタンの粉末である、請求項14に記載の方法。
- 前記アニール処理の雰囲気は、窒素、アルゴン、ヘリウム、二酸化炭素および水素からなる群より選ばれる少なくとも1種からなる雰囲気または真空である、請求項14または15に記載の方法。
- スパッタリング法、イオンプレーティング法、パルスレーザ堆積法(PLD法)またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットであって、請求項1~6のいずれかに記載の酸化物焼結体または請求項11~13のいずれかに記載の酸化物混合体を加工して得られるターゲット。
- パルスレーザ堆積法(PLD法)、スパッタリング法、イオンプレーティング法およびエレクトロンビーム(EB)蒸着法からなる群より選ばれる1種により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いる方法。
- 前記チタンは、式TiO2-X(X=0.1~1)で表される低原子価酸化チタン由来のチタンである、請求項18に記載の方法。
- 前記低原子価酸化チタンは、2価のチタンからなる酸化チタン(TiO)あるいは3価のチタンからなる酸化チタン(Ti2O3)である、請求項19に記載の方法。
- 請求項18~20のいずれかに記載の方法により形成された、酸化亜鉛系透明導電膜。
- 透明基材上に、請求項21に記載の酸化亜鉛系透明導電膜を備える透明導電性基板。
- 前記透明基材が、ガラス板、樹脂フィルムまたは樹脂シートである、請求項22に記載の透明導電性基板。
- 亜鉛とチタンの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を越え0.1以下であり、酸化亜鉛を主成分とし、ガリウムおよびアルミニウムのうち少なくとも一方の酸化物と、酸化チタンとを含み、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.5%以上6%以下であり、かつ前記酸化チタンが、式TiO2-X(X=0.1~1)で表される低原子価酸化チタンである酸化物混合体または酸化物焼結体からなる酸化亜鉛系透明導電膜形成材料。
- 前記低原子価酸化チタンにおけるチタンの原子価は、2価または3価である、請求項24に記載の酸化亜鉛系透明導電膜形成材料。
- 前記酸化物焼結体の相対密度が93%以上である、請求項24または25に記載の酸化亜鉛系透明導電膜形成材料。
- スパッタリング法、イオンプレーティング法、パルスレーザ堆積法(PLD法)またはエレクトロンビーム(EB)蒸着法による成膜に用いられるターゲットであって、請求項24~26のいずれかに記載の酸化亜鉛系透明導電膜形成材料を加工して得られるターゲット。
- 請求項27に記載のターゲットを用いて、スパッタリング法、イオンプレーティング法、パルスレーザ堆積法(PLD法)またはエレクトロンビーム(EB)蒸着法により酸化亜鉛系透明導電膜を形成する方法。
- 透明基材上に、請求項28に記載の透明導電膜の形成方法により形成された酸化亜鉛系透明導電膜を備える透明導電性基板。
- 酸化亜鉛系薄膜を酸によりエッチングしてパターニングする方法であって、前記酸化亜鉛系薄膜が、酸化亜鉛を主成分とし、亜鉛とチタンの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下の薄膜であるパターニング方法。
- 前記酸化亜鉛系薄膜が、実質的に亜鉛、チタンおよび酸素からなる酸化物焼結体または酸化物混合体を加工して得られたターゲットを膜形成材料として成膜されたものである、請求項30に記載のパターニング方法。
- 前記チタンは、一般式TiO2-X(X=0.1~1)で表される低原子価酸化チタン由来のチタンである、請求項30または31に記載のパターニング方法。
- 前記低原子価酸化チタンは、2価のチタンからなる酸化チタン(TiO)または3価のチタンからなる酸化チタン(Ti2O3)である、請求項32に記載のパターニング方法。
- 前記酸化亜鉛系薄膜が真空成膜法により成膜された膜である、請求項30~33のいずれかに記載のパターニング方法。
- 前記真空成膜法がスパッタリング法、イオンプレーティング法、パルスレーザーデポジション法(PLD法)またはエレクトロンビーム(EB)蒸着法である、請求項34に記載のパターニング方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800102349A CN102762518A (zh) | 2010-02-18 | 2011-02-17 | 氧化物烧结体、氧化物混合物、它们的制造方法以及使用它们的靶 |
KR1020127024066A KR20120129972A (ko) | 2010-02-18 | 2011-02-17 | 산화물 소결체, 산화물 혼합체, 이들의 제조 방법 및 이들을 이용한 타겟 |
Applications Claiming Priority (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-033843 | 2010-02-18 | ||
JP2010033843 | 2010-02-18 | ||
JP2010033844 | 2010-02-18 | ||
JP2010-033844 | 2010-02-18 | ||
JP2010035722 | 2010-02-22 | ||
JP2010-035722 | 2010-02-22 | ||
JP2010040198 | 2010-02-25 | ||
JP2010-040198 | 2010-02-25 | ||
JP2010052253 | 2010-03-09 | ||
JP2010-052253 | 2010-03-09 | ||
JP2010-052251 | 2010-03-09 | ||
JP2010052251 | 2010-03-09 | ||
JP2010267726 | 2010-11-30 | ||
JP2010-267727 | 2010-11-30 | ||
JP2010267727 | 2010-11-30 | ||
JP2010-267726 | 2010-11-30 | ||
JP2010-268610 | 2010-12-01 | ||
JP2010268610A JP2011190528A (ja) | 2010-02-18 | 2010-12-01 | 酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板 |
JP2010268611 | 2010-12-01 | ||
JP2010-268611 | 2010-12-01 | ||
JP2010-281041 | 2010-12-16 | ||
JP2010281043 | 2010-12-16 | ||
JP2010-281043 | 2010-12-16 | ||
JP2010281041 | 2010-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011102425A1 true WO2011102425A1 (ja) | 2011-08-25 |
Family
ID=44483011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053405 WO2011102425A1 (ja) | 2010-02-18 | 2011-02-17 | 酸化物焼結体、酸化物混合体、それらの製造方法およびそれらを用いたターゲット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011102425A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121298A1 (ja) * | 2011-03-07 | 2012-09-13 | 住友化学株式会社 | 酸化物焼結体、その製造方法およびそれを用いたターゲット |
JP2013209277A (ja) * | 2012-03-02 | 2013-10-10 | Sumitomo Chemical Co Ltd | 酸化亜鉛系焼結体の製造方法およびターゲット |
CN114592175A (zh) * | 2018-03-30 | 2022-06-07 | Jx金属株式会社 | 溅射靶部件及其制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04317455A (ja) * | 1991-04-15 | 1992-11-09 | Sumitomo Metal Mining Co Ltd | Ito焼結体の製造方法 |
JP2008159814A (ja) * | 2006-12-22 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | 酸化亜鉛系薄膜用エッチャント及び酸化亜鉛系薄膜のパターニング方法 |
JP4295811B1 (ja) * | 2008-09-17 | 2009-07-15 | 三井金属鉱業株式会社 | 酸化亜鉛系ターゲット |
JP2009167515A (ja) * | 2008-01-15 | 2009-07-30 | Kanazawa Inst Of Technology | 透明導電膜製造用スパッタリングターゲット及び透明導電膜形成方法 |
JP2009298649A (ja) * | 2008-06-13 | 2009-12-24 | Sumitomo Metal Mining Co Ltd | 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、導電性積層体 |
-
2011
- 2011-02-17 WO PCT/JP2011/053405 patent/WO2011102425A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04317455A (ja) * | 1991-04-15 | 1992-11-09 | Sumitomo Metal Mining Co Ltd | Ito焼結体の製造方法 |
JP2008159814A (ja) * | 2006-12-22 | 2008-07-10 | Mitsui Mining & Smelting Co Ltd | 酸化亜鉛系薄膜用エッチャント及び酸化亜鉛系薄膜のパターニング方法 |
JP2009167515A (ja) * | 2008-01-15 | 2009-07-30 | Kanazawa Inst Of Technology | 透明導電膜製造用スパッタリングターゲット及び透明導電膜形成方法 |
JP2009298649A (ja) * | 2008-06-13 | 2009-12-24 | Sumitomo Metal Mining Co Ltd | 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、導電性積層体 |
JP4295811B1 (ja) * | 2008-09-17 | 2009-07-15 | 三井金属鉱業株式会社 | 酸化亜鉛系ターゲット |
Non-Patent Citations (1)
Title |
---|
TAKUYA SAKAI ET AL.: "TZO Usumaku Tomei Dodenmaku no Tei Teikoritsuka", ANNUAL SYMPOSIUM OF THE VACUUM SOCIETY OF JAPAN, vol. 50TH, 4 November 2009 (2009-11-04), pages 106 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121298A1 (ja) * | 2011-03-07 | 2012-09-13 | 住友化学株式会社 | 酸化物焼結体、その製造方法およびそれを用いたターゲット |
JP2013209277A (ja) * | 2012-03-02 | 2013-10-10 | Sumitomo Chemical Co Ltd | 酸化亜鉛系焼結体の製造方法およびターゲット |
CN114592175A (zh) * | 2018-03-30 | 2022-06-07 | Jx金属株式会社 | 溅射靶部件及其制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI402862B (zh) | 氧化物燒結體、其製法、使用它之透明導電膜之製法與所得到的透明導電膜 | |
KR20120129972A (ko) | 산화물 소결체, 산화물 혼합체, 이들의 제조 방법 및 이들을 이용한 타겟 | |
JP5593612B2 (ja) | 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜、並びに透明導電性基材 | |
JP5339100B2 (ja) | Zn−Si−O系酸化物焼結体とその製造方法およびスパッタリングターゲットと蒸着用タブレット | |
TWI500786B (zh) | 透明導電膜之製造方法、透明導電膜之製造裝置、濺鍍靶及透明導電膜 | |
JP4982423B2 (ja) | 酸化亜鉛薄膜形成用スパッタターゲットと、それを用いて得られる酸化亜鉛薄膜を有する表示素子及び太陽電池 | |
WO2011115177A1 (ja) | 透明導電膜 | |
JP2007314364A (ja) | 酸化物焼結体、ターゲット、及びそれを用いて得られる酸化物透明導電膜ならびにその製造方法 | |
JP2011184715A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
WO2011102425A1 (ja) | 酸化物焼結体、酸化物混合体、それらの製造方法およびそれらを用いたターゲット | |
JP2011190528A (ja) | 酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板 | |
WO2011152682A2 (ko) | 투명도전막, 투명도전막용 타겟 및 투명도전막용 타겟의 제조방법 | |
JP2012132090A (ja) | 酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板 | |
JP2012106879A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
JP2012158825A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、酸化亜鉛系透明導電膜の形成方法および透明導電性基板 | |
JP2011207742A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
JP2012193073A (ja) | 酸化物成形体、酸化物焼結体、および透明導電膜形成材料 | |
JP2012106880A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
JP5952031B2 (ja) | 酸化物焼結体の製造方法およびターゲットの製造方法 | |
JP2003100154A (ja) | 透明導電膜およびその製造方法並びにその用途 | |
JP2012197216A (ja) | 酸化物焼結体、その製造方法およびそれを用いたターゲット | |
WO2014021374A1 (ja) | 酸化物焼結体およびそれを加工したタブレット | |
JP2012140673A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
JP2012140696A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
TW201200616A (en) | Oxide sintered body, oxide mixture, manufacturing methods for same, and targets using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180010234.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11744711 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127024066 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11744711 Country of ref document: EP Kind code of ref document: A1 |