WO2011102106A1 - 車両 - Google Patents
車両 Download PDFInfo
- Publication number
- WO2011102106A1 WO2011102106A1 PCT/JP2011/000805 JP2011000805W WO2011102106A1 WO 2011102106 A1 WO2011102106 A1 WO 2011102106A1 JP 2011000805 W JP2011000805 W JP 2011000805W WO 2011102106 A1 WO2011102106 A1 WO 2011102106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle body
- lateral acceleration
- vehicle
- wheel
- acceleration sensor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K5/00—Cycles with handlebars, equipped with three or more main road wheels
- B62K5/10—Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62H—CYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
- B62H1/00—Supports or stands forming part of or attached to cycles
- B62H1/10—Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K5/00—Cycles with handlebars, equipped with three or more main road wheels
- B62K5/02—Tricycles
- B62K5/023—Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels
- B62K5/025—Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels power-driven
Definitions
- the present invention relates to a vehicle having at least a pair of left and right wheels.
- Patent Document 1 a technique for improving the stability of the vehicle during turning by tilting the vehicle body in the lateral direction has been proposed (for example, see Patent Document 1).
- the vehicle body in order to improve the turning performance, the vehicle body can be tilted inward in the turning direction, but the operation of tilting the vehicle body is difficult and the turning performance is low. , Passengers may feel uncomfortable or anxious.
- the present invention solves the problems of the conventional vehicle and maintains the stability of the vehicle body by controlling the inclination angle of the vehicle body so that the centrifugal force applied to the vehicle body and the gravity are balanced.
- the purpose of the present invention is to provide a highly safe vehicle that can improve the turning performance and that the occupant does not feel uncomfortable, is comfortable to ride, and can realize a stable running state. .
- a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel steering the vehicle body, A wheel rotatably attached to the driving unit, the driving wheel driving the vehicle body, a tilting actuator device for tilting the steering unit or the driving unit in a turning direction, and a lateral acceleration acting on the vehicle body And a control device for controlling the tilt of the vehicle body by controlling the tilt actuator device, the control device based on the lateral acceleration detected by the sensor.
- the inclination of the vehicle body is controlled so that the centrifugal force applied to the vehicle body and gravity are balanced.
- the inclination angle of the vehicle body can be controlled so that the centrifugal force and the gravity are balanced, and the vehicle body and the occupant are parallel to the longitudinal axis of the vehicle body. Since the directional force acts, the occupant does not feel uncomfortable, the ride comfort is good, and a stable running state can be realized.
- FIG. 1 is a diagram showing a configuration of a vehicle according to a first embodiment of the present invention
- FIG. 2 is a diagram showing a configuration of a vehicle link mechanism according to the first embodiment of the present invention
- FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in 1 embodiment.
- (a) is a right side view and (b) is a rear view.
- reference numeral 10 denotes a vehicle according to the present embodiment, which includes a main body 20 as a vehicle body drive unit, a riding unit 11 as a steering unit on which an occupant gets on and steer, and a center in the width direction in front of the vehicle body.
- the wheel 12F is a front wheel disposed as a steering wheel
- the left wheel 12L and the right wheel 12R are drive wheels disposed rearward as rear wheels.
- the vehicle 10 operates as a lean mechanism for leaning the vehicle body from side to side, that is, as a lean mechanism, that is, a vehicle body tilt mechanism, supporting the left and right wheels 12L and 12R, and the link mechanism 30.
- a link motor 25 as a tilt actuator device.
- the vehicle 10 may be a three-wheeled vehicle with two front wheels on the left and right and one wheel on the rear, or may be a four-wheeled vehicle with two wheels on the left and right. As shown in the figure, a case will be described in which the front wheel is a single wheel and the rear wheel is a left and right tricycle.
- the vehicle 10 can tilt the vehicle body in the lateral direction (left and right direction).
- the left and right wheels 12L and 12R stand upright with respect to the road surface 18, that is, the camber angle is 0 degree.
- the link mechanism 30 includes a left vertical link unit 33L that supports a left wheel 12L and a left rotation driving device 51L including an electric motor that applies driving force to the wheel 12L, a right wheel 12R, and the wheel 12R.
- a right vertical link unit 33R that supports a right rotation drive device 51R composed of an electric motor or the like that applies a driving force to an upper side, and an upper horizontal link unit 31U that connects the upper ends of the left and right vertical link units 33L and 33R;
- the lower horizontal link unit 31D that connects the lower ends of the left and right vertical link units 33L and 33R, and the central vertical member 21 that has an upper end fixed to the main body 20 and extends vertically.
- the left and right vertical link units 33L and 33R and the upper and lower horizontal link units 31U and 31D are rotatably connected. Further, the upper and lower horizontal link units 31U and 31D are rotatably connected to the central vertical member 21 at the center thereof.
- the left and right wheels 12L and 12R, the left and right rotational drive devices 51L and 51R, the left and right vertical link units 33L and 33R, and the upper and lower horizontal link units 31U and 31D are described in an integrated manner, The rotation drive device 51, the vertical link unit 33, and the horizontal link unit 31 will be described.
- the rotary drive device 51 as a drive actuator device is a so-called in-wheel motor, and a body as a stator is fixed to the vertical link unit 33 and is a rotor attached to the body so as to be rotatable.
- a rotating shaft is connected to the shaft of the wheel 12, and the wheel 12 is rotated by the rotation of the rotating shaft.
- the rotational drive device 51 may be a motor other than an in-wheel motor.
- the link motor 25 is a rotary electric actuator including an electric motor or the like, and includes a cylindrical body as a stator and a rotating shaft as a rotor rotatably attached to the body.
- the body is fixed to the main body portion 20 via the mounting flange 22, and the rotating shaft is fixed to the lateral link unit 31 ⁇ / b> U on the upper side of the link mechanism 30.
- the rotation axis of the link motor 25 functions as an inclination axis for inclining the main body 20 and is coaxial with the rotation axis of the connecting portion between the central vertical member 21 and the upper horizontal link unit 31U.
- the link motor 25 When the link motor 25 is driven to rotate the rotation shaft with respect to the body, the upper horizontal link unit 31U rotates with respect to the main body 20 and the central vertical member 21 fixed to the main body 20, The link mechanism 30 operates, that is, bends and stretches. Thereby, the main-body part 20 can be inclined. Note that the rotation axis of the link motor 25 may be fixed to the main body 20 and the central vertical member 21, and the body may be fixed to the upper horizontal link unit 31U.
- the link motor 25 includes a lock mechanism (not shown) that fixes the rotation shaft to the body so as not to rotate.
- the lock mechanism is a mechanical mechanism, and preferably does not consume electric power while the rotation shaft is fixed to the body so as not to rotate.
- the lock mechanism can fix the rotation shaft so as not to rotate at a predetermined angle with respect to the body.
- the boarding part 11 is connected to the front end of the main body part 20 via a connecting part (not shown).
- the connecting part may have a function of connecting the riding part 11 and the main body part 20 so as to be relatively displaceable in a predetermined direction.
- the boarding unit 11 includes a seat 11a, a footrest 11b, and a windbreak unit 11c.
- the seat 11 a is a part for a passenger to sit while the vehicle 10 is traveling.
- the footrest 11b is a part for supporting the occupant's foot, and is disposed on the front side (right side in FIG. 1A) and below the seat 11a.
- a battery device (not shown) is arranged behind or below the boarding unit 11 or in the main body unit 20.
- the battery device is an energy supply source for the rotation drive device 51 and the link motor 25.
- a control device, an inverter device, various sensors, and the like (not shown) are accommodated in the rear portion or the lower portion of the riding portion 11 or the main body portion 20.
- a steering device 41 is disposed in front of the seat 11a.
- the steering device 41 is provided with members necessary for steering such as a handle bar 41a as a steering device, a meter such as a speed meter, an indicator, and a switch.
- the occupant operates the handle bar 41a and other members to instruct the traveling state of the vehicle 10 (for example, traveling direction, traveling speed, turning direction, turning radius, etc.).
- a steering device that is a means for detecting the required turning amount of the vehicle body requested by the occupant, other devices such as a steering wheel, a jog dial, a touch panel, and a push button are used instead of the handle bar 41a. It can also be used as
- the wheel 12F is connected to the riding section 11 via a front wheel fork 17 which is a part of a suspension device (suspension device).
- the suspension device is a device similar to a suspension device for front wheels used in, for example, general motorcycles, bicycles, and the like, and the front wheel fork 17 is, for example, a telescopic type fork with a built-in spring.
- the wheel 12F as the steered wheel changes the steering angle in accordance with the operation of the handlebar 41a by the occupant, thereby changing the traveling direction of the vehicle 10.
- the handle bar 41a is connected to the upper end of a steering shaft member (not shown), and the upper end of the front wheel fork 17 is connected to the lower end of the steering shaft member.
- the steering shaft member is rotatably attached to a frame member (not shown) included in the riding section 11 in a state where the steering shaft member is inclined obliquely so that the upper end is located behind the lower end.
- the vehicle 10 has a lateral acceleration sensor 44.
- the lateral acceleration sensor 44 is a sensor composed of a general acceleration sensor, a gyro sensor, or the like.
- the vehicle 10 Since the vehicle 10 is stabilized by tilting the vehicle body toward the inside of the turn when turning, the vehicle 10 is controlled so that the centrifugal force to the outside of the turn and the gravity are balanced with each other by tilting the vehicle body.
- the vehicle body By performing such control, for example, even if the road surface 18 is inclined in a direction perpendicular to the traveling direction (left and right direction with respect to the traveling direction), the vehicle body can always be kept horizontal. As a result, the vehicle body and the occupant are apparently always subjected to gravity downward in the vertical direction, the sense of incongruity is reduced, and the stability of the vehicle 10 is improved.
- the lateral acceleration sensor 44 in order to detect the lateral acceleration of the leaning vehicle body, the lateral acceleration sensor 44 is attached to the vehicle body so that the output of the lateral acceleration sensor 44 becomes zero (the lateral acceleration sensor 44 Perform feedback control (with the target output value set to zero).
- the vehicle body can be tilted to an inclination angle at which the centrifugal force acting during turning and gravity are balanced. Further, even when the road surface 18 is inclined in a direction perpendicular to the traveling direction, the vehicle body can be controlled to have an inclination angle that makes the vehicle body vertical.
- the lateral acceleration sensor 44 is disposed on the back surface of the riding section 11.
- the lateral acceleration sensor 44 is disposed so as to be positioned at the center of the vehicle body in the width direction, that is, on the longitudinal axis of the vehicle body, and detects acceleration in a direction (lateral direction) perpendicular to the longitudinal axis of the vehicle body. To do. That is, the lateral acceleration sensor 44 is arranged so that the detection axis direction coincides with the lateral direction of the vehicle body.
- the vehicle 10 in the present embodiment has a vehicle body tilt control system as a part of the control device.
- the vehicle body tilt control system is a kind of computer system, and includes a tilt control ECU (Electronic Control Unit) 46 that functions as a tilt control device, as shown in FIG.
- the inclination control ECU 46 includes arithmetic means such as a processor, storage means such as a magnetic disk and semiconductor memory, an input / output interface, and the like, and is connected to the lateral acceleration sensor 44 and the link motor 25.
- the tilt control ECU 46 includes a tilt control unit 47 that outputs a torque command value for operating the link motor 25 based on the lateral acceleration detected by the lateral acceleration sensor 44.
- the tilt control unit 47 controls the tilt angle of the vehicle body so that the centrifugal force to the outside of the turn and the gravity are balanced when turning. Specifically, feedback control is performed, and the link motor 25 is operated so that the inclination angle of the vehicle body becomes an angle such that the value of the lateral acceleration detected by the lateral acceleration sensor 44 is zero or near zero. That is, the vehicle body is designed such that the centrifugal force to the outside of the turn and gravity are balanced and the acceleration component in the detection axis direction of the lateral acceleration sensor 44, that is, the lateral acceleration component becomes zero or near zero. Control the tilt angle. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value.
- FIG. 4 is a diagram for explaining the tilting operation of the vehicle body during turning in the first embodiment of the present invention
- FIG. 5 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle in the first embodiment of the present invention. It is.
- the vehicle body tilt control system starts the vehicle body tilt control process.
- the vehicle 10 turns with the link mechanism 30 in a state where the vehicle body is tilted inward (right side in the drawing) as shown in FIG.
- a centrifugal force to the outside of the turning acts on the vehicle body, and a lateral component of gravity is generated by tilting the vehicle body to the inside of the turn.
- the lateral acceleration sensor 44 detects the resultant force of the centrifugal force and the lateral component of gravity as lateral acceleration, and outputs the detected value a to the tilt control unit 47 as the lateral acceleration sensor value.
- the inclination control unit 47 performs feedback control and outputs a control value such that the detected value a becomes zero to the link motor 25.
- the vehicle body tilt control process is a process that is repeatedly executed by the vehicle body tilt control system at a predetermined control cycle T S (for example, 5 [ms]) while the vehicle 10 is turned on. This is a process for improving turning performance and ensuring passenger comfort.
- the inclination control unit 47 first acquires the lateral acceleration sensor value a (step S1).
- tilt control unit 47 obtains the control period T S (step S3), and calculates a differential value of a (step S4).
- the differential value of a is da / dt
- the da / dt is calculated by the following equation (1).
- da / dt (aa old ) / T S (1)
- the inclination control part 47 preserve
- saves as aold a (step S5). That is, the lateral acceleration sensor value a acquired at the time of execution of the current vehicle body tilt control process is stored as a old in the storage unit.
- tilt control unit 47 calculates the first control value U P (Step S6).
- the first control value UP is calculated by the following equation (2).
- U P C P a ⁇ formula (2)
- tilt control unit 47 calculates the second control value U D (step S7).
- the control gain of the differential control operation i.e., when the derivative time and C D
- the second control value U D is calculated by the following equation (3).
- U D C D da / dt (3)
- the inclination control unit 47 calculates a control value U (step S8).
- the control value U is the sum of the first control value U P and the second control value U D, is calculated by the following equation (4).
- U U P + U D ⁇ formula (4)
- the inclination control unit 47 outputs the control value U to the link motor 25 (step S9) and ends the process.
- the inclination angle of the vehicle body is controlled so that the centrifugal force to the outside of the turning and the gravity are balanced.
- the stability of the vehicle body can be maintained, the turning performance can be improved, and the rider does not feel uncomfortable and the ride comfort is improved.
- the tilt angle of the vehicle body is controlled so that the value of the lateral acceleration detected by the lateral acceleration sensor 44 is zero or near zero. That is, the vehicle body inclination angle is controlled with the lateral acceleration component value of zero as the target value.
- the tilt angle of the vehicle body can be controlled so that the centrifugal force to the outside of the turn balances with the gravity, and the lateral acceleration component becomes zero or near zero.
- the stability of the vehicle body can be maintained and the turning performance can be improved.
- the rider does not feel discomfort and the ride comfort is improved.
- working state can be implement
- FIG. 6 is a diagram for explaining the influence of the detection value of the lateral acceleration sensor in the second embodiment of the present invention
- FIG. 7 is a diagram showing the rear surface of the vehicle in the second embodiment of the present invention
- FIG. It is a block diagram which shows the structure of the vehicle body tilt control system in the 2nd Embodiment of this invention. 6
- (a) to (c) are diagrams showing a state in which one wheel falls
- (d) is a diagram for explaining the influence of rattling or the like of each part of the vehicle.
- (b) is a diagram showing a state where the vehicle body is inclined.
- the lateral acceleration is detected by the single lateral acceleration sensor 44 .
- an unnecessary acceleration component may be detected.
- the 18 recesses include the same circumferential acceleration component that occurs when only one of the left wheel 12L or the right wheel 12R falls.
- These circumferential acceleration components that is, acceleration components not directly derived from centrifugal force or gravity, deteriorate the controllability. For example, even if an attempt is made to increase the control gain in order to improve the responsiveness, the acceleration component that is not directly derived from the centrifugal force or gravity is observed. Therefore, the control gain cannot be increased.
- the lateral acceleration sensor 44 is displaced in the circumferential direction and detects the acceleration in the circumferential direction, as indicated by an arrow in FIG. That is, an acceleration component that is not directly derived from centrifugal force or gravity, that is, an unnecessary acceleration component is detected.
- the vehicle 10 includes a portion that functions as a spring and has elasticity like the tire portions of the left and right wheels 12L and 12R, and includes inevitable backlash at the connecting portions of each member. Therefore, as schematically shown in FIG. 6 (d), the lateral acceleration sensor 44 is considered to be attached to the vehicle body through inevitable play and springs, so that acceleration caused by displacement of the play and springs is considered. Are also detected as unnecessary acceleration components.
- Such an unnecessary acceleration component may deteriorate the controllability of the vehicle body tilt control system. For example, if the control gain of the vehicle body tilt control system is increased, control system vibration, divergence, and the like due to unnecessary acceleration components occur, so that it is not possible to increase the control gain even if responsiveness is to be improved. .
- lateral acceleration sensors 44 there are a plurality of lateral acceleration sensors 44, which are arranged at different heights.
- the first lateral acceleration sensor 44a is in the back of the riding section 11, the distance from the road surface 18, i.e., is disposed at the position of L 1 Height ing.
- the second lateral acceleration sensor 44b is the upper surface of the rear or body portion 20 of the riding portion 11, the distance from the road surface 18, i.e., is disposed at a position of L 2 height. Note that L 1 > L 2 .
- the first lateral acceleration sensor 44a detects lateral acceleration.
- the detection value a 1 is output, and the second lateral acceleration sensor 44b detects the lateral acceleration and outputs the detection value a 2 .
- the center of the tilting motion when the vehicle body tilts that is, the roll center, is strictly located slightly below the road surface 18, it is considered that the center is substantially equal to the road surface 18 in practice.
- both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are attached to a sufficiently rigid member. Further, if the difference between L 1 and L 2 is small, the difference between the detection values a 1 and a 2 is small. Therefore, it is desirable that the difference be sufficiently large, for example, 0.3 [m] or more. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are arranged on a so-called “spring top”. Furthermore, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are both disposed between the axle of the wheel 12F as the front wheel and the axle of the left and right wheels 12L and 12R as the rear wheels.
- both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed as close to the occupant as possible. Further, both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are preferably located on the central axis of the vehicle body extending in the traveling direction when viewed from above, that is, not offset with respect to the traveling direction. .
- the tilt control ECU 46 includes a lateral acceleration calculation unit 48 that calculates a combined lateral acceleration based on the lateral acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. Then, the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
- FIG. 9 is a diagram showing a dynamic model in the second embodiment of the present invention
- FIG. 10 is a block diagram of a control system in the second embodiment of the present invention
- FIG. 11 is a second embodiment of the present invention.
- FIG. 12 is a flowchart showing the operation of the vehicle body tilt control process of the vehicle according to the second embodiment of the present invention.
- 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
- 44B is a second sensor indicating the position where the second lateral acceleration sensor 44b is disposed on the vehicle body. Position.
- the acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b and outputting the detected value is: ⁇ 1> centrifugal force acting on the vehicle body during turning (centrifugal force of centrifugal force due to turning); ⁇ 2> Lateral component of gravity (component force of gravity) generated by tilting the vehicle body inward of turning, ⁇ 3> vehicle body inclination caused by only one of the left and right wheels 12L and 12R falling into the depression of the road surface 18 , Acceleration (rotational acceleration not depending on the link motor 25) generated by the displacement of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b in the circumferential direction due to backlash or spring displacement, and the ⁇ 4> link motor 25 Acceleration caused by the displacement of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b in the circumferential direction due to the operation of or the reaction thereof (by the link motor 25 Rolling acceleration), it is considered to be four.
- ⁇ 3> and ⁇ 4> are accelerations generated by displacement in the circumferential direction, they are proportional to the distance from the roll center, that is, roughly proportional to L 1 and L 2 .
- the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44a and the second lateral acceleration sensor 44b detect and output the detected value.
- the acceleration ⁇ 3> is defined as a X1 and a X2, and the first lateral acceleration sensor 44a and the second lateral acceleration.
- the acceleration of ⁇ 4> which is detected by the sensor 44b and outputs the detected value, is a M1 and a M2 .
- the acceleration of ⁇ 1> to the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b outputs the detected value detected by the a T, a first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b is detected
- the acceleration of ⁇ 2> that outputs the detected value is defined as a G. Since ⁇ 1> and ⁇ 2> are not related to the height of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, the detection values of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are equal.
- the angular velocity omega R the circumferential direction of displacement by the displacement or the like of Gataya spring
- the angular acceleration omega Let R '. Further, the angular velocity of the circumferential displacement due to the operation of the link motor 25 or its reaction is ⁇ M , and the angular acceleration is ⁇ M ′.
- a X1 L 1 ⁇ R ′
- a X2 L 2 ⁇ R ′
- a M1 L 1 ⁇ M ′
- a M2 L 2 ⁇ M ′.
- a 1 and a 2 are four accelerations ⁇ 1> to ⁇ 4.
- a 1 a T + a G + L 1 ⁇ R '+ L 1 ⁇ M' ⁇
- a 2 a T + a G + L 2 ⁇ R '+ L 2 ⁇ M' ⁇ (6)
- equation (7) can be obtained.
- a 1 ⁇ a 2 (L 1 ⁇ L 2 ) ⁇ R ′ + (L 1 ⁇ L 2 ) ⁇ M ′ (7)
- the values of L 1 and L 2 are known because they are the heights of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
- the value of ⁇ M ′ is known because it is a differential value of the angular velocity ⁇ M of the link motor 25.
- the value of ⁇ R ′ of the first term is unknown, and all other values are known. Therefore, the value of ⁇ R ′ can be obtained from the detected values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b. That is, unnecessary acceleration components can be removed based on the detection values a 1 and a 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b.
- f 1 is a transfer function represented by the equation (10) described later.
- G P is a control gain of the proportional control operation
- G D is the control gain of the differential control operation
- s is a differential element.
- the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first acquires the first lateral acceleration sensor value a 1 (step S11) and the second lateral acceleration calculation process. An acceleration sensor value a 2 is acquired (step S12). Then, the lateral acceleration calculation unit 48 calculates the acceleration difference ⁇ a (step S13).
- the ⁇ a is expressed by the following equation (8).
- ⁇ a a 1 ⁇ a 2 (8)
- the lateral acceleration calculation unit 48 performs ⁇ L call (step S14), and performs the L 2 call (step S15).
- the ⁇ L is expressed by the following equation (9).
- the lateral acceleration calculation unit 48 calculates a combined lateral acceleration a (step S16).
- the combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value a. 1 and a value obtained by synthesizing the second lateral acceleration sensor value a 2, and are obtained by the following equations (10) and (11).
- the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S17), and ends the lateral acceleration calculation process.
- the tilt control unit 47 starts the vehicle body tilt control process, and first receives the combined lateral acceleration a from the lateral acceleration calculation unit 48 (step S21).
- a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b is placed in different height positions, a first lateral acceleration sensor value a 1 and the second lateral acceleration sensor A combined lateral acceleration a obtained by combining the value a 2 is calculated, and the tilt angle of the vehicle body is controlled so that the value of the combined lateral acceleration a becomes zero or near zero. That is, the tilt angle of the vehicle body is controlled with a value of zero of the combined lateral acceleration a as a target value.
- the combined lateral acceleration a is obtained by removing ⁇ 3> and ⁇ 4> from the acceleration detected by the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b, and extracting only ⁇ 1> and ⁇ 2>. It can be said that. That is, the acceleration component in the detection axis direction of the lateral acceleration sensor in the outward acceleration in the turning direction generated by the turning of the vehicle 10 and the acceleration component in the detection axis direction of the lateral acceleration sensor in the gravity generated by the inclination of the vehicle body. A value obtained by selectively calculating only the combined value is the value of the combined lateral acceleration a.
- the case where there are two lateral acceleration sensors 44 has been described. However, if there are a plurality of lateral acceleration sensors 44 arranged at different heights, the number of lateral acceleration sensors 44 is three or more. There may be any number.
- FIG. 13 is a view showing the rear surface of the vehicle according to the third embodiment of the present invention.
- (a) is a view showing a state where the vehicle body is upright
- (b) is a view showing a state where the vehicle body is inclined.
- the vehicle 10 in the present embodiment does not have the link mechanism 30, and the main body 20 and the riding section 11 are connected so as to be swingable in the roll direction around the roll shaft 20 a, and an actuator device for tilting is provided.
- the link motor 25 By rotating the link motor 25 as shown in FIG. 13B, the riding section 11 can be swung and rolled, that is, tilted with respect to the main body section 20, as shown in FIG.
- the roll shaft 20a is the center of the movement in which the riding section 11 swings and rolls with respect to the main body 20, that is, the roll center. Note that the rotation shaft of the link motor 25 extending in the traveling direction of the vehicle body may coincide with the roll shaft 20a.
- the angle of the left and right wheels 12L and 12R with respect to the road surface 18, that is, the camber angle does not change, and the riding part 11 is swung with respect to the main body part 20 together with the wheel 12F as the front wheel to the turning inner wheel side
- the left and right wheels 12L and 12R stand upright with respect to the road surface 18 when the vehicle is traveling straight or turning, that is, the camber angle is 0 degree.
- the lateral acceleration sensor 44 includes a first lateral acceleration sensor 44a and a second lateral acceleration sensor 44b, and the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b Are arranged at different height positions.
- the center of the tilting motion when the riding section 11 tilts that is, the roll center coincides with the roll shaft 20a. Therefore, the heights L 1 and L 2 of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are set as distances from the roll shaft 20a.
- both the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b are disposed on the upper side or the lower side of the roll shaft 20a. Further, it is desirable that one of the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b be disposed as close to the roll shaft 20a as possible.
- lateral acceleration sensor 44 Other aspects of the lateral acceleration sensor 44 are the same as those of the second embodiment, and a description thereof will be omitted.
- the vehicle body tilt control system is also the same as that in the second embodiment, and a description thereof will be omitted. Furthermore, since the operation of the vehicle 10 in the present embodiment is the same as that in the second embodiment, the description thereof is omitted.
- FIG. 14 is a block diagram showing a configuration of a vehicle body tilt control system according to the fourth embodiment of the present invention.
- the lateral acceleration is detected by the two lateral acceleration sensors 44, that is, the first lateral acceleration sensor 44a and the second lateral acceleration sensor 44b has been described.
- a sensor other than the acceleration sensor may be used as long as it can detect lateral acceleration.
- a sensor capable of detecting lateral acceleration is not only a sensor that directly detects acceleration, such as an acceleration sensor, but also a sensor that can obtain acceleration by differentiating a detected value, such as a speed sensor. That is, it includes a sensor that indirectly detects acceleration.
- the roll rate sensor 44c is a general roll rate sensor that detects the angular velocity of the tilting motion of the vehicle body.
- the roll rate sensor 44c can detect a rotational angular velocity in a plane perpendicular to the ground. It is attached as possible.
- the vehicle body tilt control system in the present embodiment is as shown in FIG.
- a first lateral acceleration sensor 44 a and a roll rate sensor 44 c are connected to the tilt control ECU 46.
- the lateral acceleration calculation unit 48 calculates a combined lateral acceleration based on the differential value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c and the lateral acceleration detected by the first lateral acceleration sensor 44a.
- the tilt control unit 47 outputs a torque command value for operating the link motor 25 based on the combined lateral acceleration calculated as the lateral acceleration calculated by the lateral acceleration calculating unit 48.
- FIG. 15 is a diagram showing a dynamic model in the fourth embodiment of the present invention
- FIG. 16 is a flowchart showing an operation of lateral acceleration calculation processing in the fourth embodiment of the present invention.
- 44A is a first sensor position indicating the position where the first lateral acceleration sensor 44a is disposed on the vehicle body
- 44C is a second sensor position indicating the position where the roll rate sensor 44c is disposed on the vehicle body. is there.
- ⁇ 1 is the value of the angular velocity of the tilt motion of the vehicle body detected by the roll rate sensor 44c, that is, the roll rate sensor value.
- the roll rate sensor 44c can be attached at an arbitrary height position. In the example shown in the figure, it is attached at a position lower than the first lateral acceleration sensor 44a, but it may be attached at the same height as the first lateral acceleration sensor 44a, or the first lateral acceleration sensor. It may be attached at a position higher than 44a.
- the roll rate sensor 44c be attached to a sufficiently rigid member, like the first lateral acceleration sensor 44a. Further, when the vehicle body is supported by a spring such as a suspension, it is desirable that the roll rate sensor 44c be disposed on a so-called “spring top” similarly to the first lateral acceleration sensor 44a. Further, like the first lateral acceleration sensor 44a, the roll rate sensor 44c is preferably disposed between the axle of the wheel 12F that is the front wheel and the axles of the left and right wheels 12L and 12R that are the rear wheels. Furthermore, it is desirable that the roll rate sensor 44c be disposed as close to the occupant as possible, similarly to the first lateral acceleration sensor 44a. Regarding other points, the roll rate sensor 44c may be attached at any position as long as it can detect the tilting movement of the vehicle body, that is, the roll.
- the response characteristics of both must be theoretically or experimentally matched in advance. For example, when the time constant of either equivalent model is small (fast), adjustment is made with a filter or the like so that the time constant is equivalent to the output with the larger time constant.
- the lateral acceleration calculation unit 48 starts the lateral acceleration calculation process, and first, the first lateral acceleration sensor value a 1 as the lateral acceleration sensor value. Is acquired (step S31), and the roll rate sensor value ⁇ 1 is acquired (step S32).
- the lateral acceleration calculation unit 48 acquires the control cycle T S (step S34), and calculates the differential value of ⁇ 1 (step S35).
- ⁇ 1 ( ⁇ 1 ⁇ old ) / T S Formula (12)
- the lateral acceleration calculation section 48 performs L 1 call (step S36).
- the lateral acceleration calculation unit 48 calculates the combined lateral acceleration a (step S37).
- the combined lateral acceleration a is a value corresponding to the lateral acceleration sensor value a when there is one lateral acceleration sensor 44 as in the first embodiment, and is the first lateral acceleration sensor value.
- a a 1 ⁇ L 1 ⁇ 1 Formula (13)
- the lateral acceleration calculation unit 48 sends the combined lateral acceleration a to the tilt control unit 47 (step S38), and ends the lateral acceleration calculation process.
- the roll rate sensor 44c is employed as one of the plurality of sensors capable of detecting the acceleration in the lateral direction, and therefore the mounting position of the roll rate sensor 44c in the height direction. This increases the degree of freedom of design of the vehicle 10.
- the vehicle 10 may have the link mechanism 30 like the vehicle 10 in the second embodiment, or may have the link mechanism 30 like the vehicle 10 in the third embodiment. It may not be.
- FIG. 17 is a schematic diagram for explaining the dimensions of each part of the vehicle according to the fifth embodiment of the present invention.
- (a) is a top view and (b) is a right side view.
- the vehicle body tilt control system performs control so that the lateral acceleration value a falls within a predetermined range.
- the value a is described in the second to fourth embodiments as well as the lateral acceleration sensor value a when the number of the lateral acceleration sensors 44 is one as in the first embodiment.
- the combined lateral acceleration a is also included.
- the predetermined range is a stable range determined by a three-dimensional arrangement of the contact point of each wheel 12 and the center of gravity M of the vehicle 10 as shown in the figure.
- the center of gravity M is the total center of gravity including not only the vehicle 10 but also the occupant on board and the loaded object.
- h is the height of the center of gravity M, that is, the distance from the road surface 18 to the center of gravity M.
- K is an isosceles triangle whose apexes are the ground contact point of the wheel 12F as the front wheel and the ground contact points of the left and right wheels 12L and 12R as the rear wheels.
- the vehicle body tilt control system performs control so that the lateral acceleration value a satisfies the above expression (16) or (17), that is, falls within a predetermined range.
- the lateral acceleration value a falls within a stable range determined based on the height of the center of gravity M and the distance from the center of gravity M to the hypotenuse of the triangle K having the ground contact point of the wheel 12 as a vertex. Control the tilt of the car body.
- a vehicle body including a steering unit and a drive unit coupled to each other, a wheel rotatably attached to the steering unit, a steering wheel for steering the vehicle body, and a wheel rotatably attached to the drive unit
- a driving wheel for driving the vehicle body a tilting actuator device for tilting the steering unit or the driving unit in a turning direction; and two sensors for directly or indirectly detecting a lateral acceleration acting on the vehicle body;
- a control device for controlling the tilt of the vehicle body by controlling the tilt actuator device, and the control device is a sensor for acceleration in the outward direction of the turn based on the lateral acceleration detected by the two sensors.
- a vehicle that selectively calculates a combined value of an acceleration component in the detection axis direction of the sensor and an acceleration component in the detection axis direction of the sensor in gravity and controls the inclination of the vehicle body.
- the two sensors are arranged at different heights.
- control device further controls the inclination of the vehicle body by setting the target value of the composite value to zero.
- one of the two sensors is a roll rate sensor that detects the angular velocity of the tilting motion of the vehicle body.
- the stability of the vehicle body can be maintained even with a simple vehicle body configuration, and the turning performance can be improved.
- a vehicle body including a steering unit and a drive unit coupled to each other, and a wheel rotatably attached to the steering unit, the steering wheel for steering the vehicle body, and the drive unit being rotated.
- a control device for controlling the tilt of the vehicle body by controlling the tilt actuator device, wherein the control device detects the value of the lateral acceleration detected by the sensor and the height of the center of gravity.
- the inclination of the vehicle body is controlled so as to be within a stable range determined on the basis of the distance from the center of gravity to the hypotenuse of the triangle having the ground contact point of the wheel as a vertex.
- the lateral stability of the vehicle is improved, so that the ride comfort is good and a stable running state can be realized.
- control device further controls the inclination of the vehicle body so that the lateral acceleration detected by the sensor becomes zero or near zero.
- the inclination angle of the vehicle body can be controlled so that the centrifugal force and the gravity are balanced, and a force in a direction parallel to the longitudinal axis of the vehicle body acts on the vehicle body and the occupant. As a result, the passenger will not feel uncomfortable.
- the steering wheel is a one-wheel or two-wheel and the drive wheel is a two-wheel or one-wheel tricycle.
- the stability of the vehicle body can be maintained even with a simple vehicle body configuration, and the turning performance can be improved.
- the present invention can be used for a vehicle having at least a pair of left and right wheels.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
車体の安定を維持することができ、旋回性能を向上させることができるとともに、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができ、安全性が高くなるようにする。そのため、互いに連結された操舵部及び駆動部を備える車体と、車体を操舵する操舵輪と、車体を駆動する駆動輪と、操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、車体に作用する横加速度を直接的又は間接的に検出するセンサと、傾斜用アクチュエータ装置を制御して車体の傾斜を制御する制御装置とを有し、制御装置は、センサが検出する横加速度に基づいて、車体にかかる遠心力と重力とが釣り合うように、車体の傾斜を制御する。
Description
本発明は、少なくとも左右一対の車輪を有する車両に関するものである。
近年、エネルギ資源の枯渇問題に鑑み、車両の省燃費化が強く要求されている。その一方で、車両の低価格化等から、車両の保有者が増大し、1人が1台の車両を保有する傾向にある。そのため、例えば、4人乗りの車両を運転者1人のみが運転することで、エネルギが無駄に消費されるという問題点があった。車両の小型化による省燃費化としては、車両を1人乗りの三輪車又は四輪車として構成する形態が最も効率的であるといえる。
しかし、走行状態によっては、車両の安定性が低下してしまうことがある。そこで、車体を横方向に傾斜させることによって、旋回時の車両の安定性を向上させる技術が提案されている(例えば、特許文献1参照。)。
しかしながら、前記従来の車両においては、旋回性能を向上させるために、車体を旋回方向内側に傾斜させることができるようになっているが、車体を傾斜させる操作が困難であり、旋回性能が低いので、乗員が不快に感じたり、不安を抱いたりしてしまうことがある。
本発明は、前記従来の車両の問題点を解決して、車体にかかる遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することによって、車体の安定を維持することができ、旋回性能を向上させることができるとともに、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる安全性の高い車両を提供することを目的とする。
そのために、本発明の車両においては、互いに連結された操舵(だ)部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を直接的又は間接的に検出するセンサと、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記センサが検出する横加速度に基づいて、前記車体にかかる遠心力と重力とが釣り合うように、前記車体の傾斜を制御する。
請求項1及び2の構成によれば、遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することができ、車体及び乗員には、車体の縦方向軸線と平行な方向の力が作用することとなるので、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる。
請求項3~5の構成によれば、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。
請求項6及び7の構成によれば、簡素な車体構成であっても、車体の安定を維持することができ、旋回性能を向上させることができる。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図1は本発明の第1の実施の形態における車両の構成を示す図、図2は本発明の第1の実施の形態における車両のリンク機構の構成を示す図、図3は本発明の第1の実施の形態における車体傾斜制御システムの構成を示すブロック図である。なお、図1において、(a)は右側面図、(b)は背面図である。
図において、10は、本実施の形態における車両であり、車体の駆動部としての本体部20と、乗員が搭乗して操舵する操舵部としての搭乗部11と、車体の前方において幅方向の中心に配設された前輪である操舵輪としての車輪12Fと、後輪として後方に配設された駆動輪である左側の車輪12L及び右側の車輪12Rとを有する。さらに、前記車両10は、車体を左右に傾斜させる、すなわち、リーンさせるためのリーン機構、すなわち、車体傾斜機構として、左右の車輪12L及び12Rを支持するリンク機構30と、該リンク機構30を作動させるアクチュエータである傾斜用アクチュエータ装置としてのリンクモータ25とを有する。なお、前記車両10は、前輪が左右二輪であって後輪が一輪の三輪車であってもよいし、前輪及び後輪が左右二輪の四輪車であってもよいが、本実施の形態においては、図に示されるように、前輪が一輪であって後輪が左右二輪の三輪車である場合について説明する。
旋回時には、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角を変化させるとともに、搭乗部11及び本体部20を含む車体を旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。すなわち、前記車両10は車体を横方向(左右方向)にも傾斜させることができる。なお、図に示される例においては、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。
前記リンク機構30は、左側の車輪12L及び該車輪12Lに駆動力を付与する電気モータ等から成る左側の回転駆動装置51Lを支持する左側の縦リンクユニット33Lと、右側の車輪12R及び該車輪12Rに駆動力を付与する電気モータ等から成る右側の回転駆動装置51Rを支持する右側の縦リンクユニット33Rと、左右の縦リンクユニット33L及び33Rの上端同士を連結する上側の横リンクユニット31Uと、左右の縦リンクユニット33L及び33Rの下端同士を連結する下側の横リンクユニット31Dと、本体部20に上端が固定され、上下に延在する中央縦部材21とを有する。また、左右の縦リンクユニット33L及び33Rと上下の横リンクユニット31U及び31Dとは回転可能に連結されている。さらに、上下の横リンクユニット31U及び31Dは、その中央部で中央縦部材21と回転可能に連結されている。なお、左右の車輪12L及び12R、左右の回転駆動装置51L及び51R、左右の縦リンクユニット33L及び33R、並びに、上下の横リンクユニット31U及び31Dを統合的に説明する場合には、車輪12、回転駆動装置51、縦リンクユニット33及び横リンクユニット31として説明する。
そして、駆動用アクチュエータ装置としての前記回転駆動装置51は、いわゆるインホイールモータであって、固定子としてのボディが縦リンクユニット33に固定され、前記ボディに回転可能に取り付けられた回転子としての回転軸が車輪12の軸に接続され、前記回転軸の回転によって車輪12を回転させる。なお、前記回転駆動装置51は、インホイールモータ以外の種類のモータであってもよい。
また、前記リンクモータ25は、電気モータ等を含む回転式の電動アクチュエータであって、固定子としての円筒状のボディと、該ボディに回転可能に取り付けられた回転子としての回転軸とを備えるものであり、前記ボディが取付フランジ22を介して本体部20に固定され、前記回転軸がリンク機構30の上側の横リンクユニット31Uに固定されている。なお、リンクモータ25の回転軸は、本体部20を傾斜させる傾斜軸として機能し、中央縦部材21と上側の横リンクユニット31Uとの連結部分の回転軸と同軸になっている。そして、リンクモータ25を駆動して回転軸をボディに対して回転させると、本体部20及び該本体部20に固定された中央縦部材21に対して上側の横リンクユニット31Uが回動し、リンク機構30が作動する、すなわち、屈伸する。これにより、本体部20を傾斜させることができる。なお、リンクモータ25は、その回転軸が本体部20及び中央縦部材21に固定され、そのボディが上側の横リンクユニット31Uに固定されていてもよい。
なお、リンクモータ25は、回転軸をボディに対して回転不能に固定する図示されないロック機構を備える。該ロック機構は、メカニカルな機構であって、回転軸をボディに対して回転不能に固定している間には電力を消費しないものであることが望ましい。前記ロック機構によって、回転軸をボディに対して所定の角度で回転不能に固定することができる。
前記搭乗部11は、本体部20の前端に図示されない連結部を介して連結される。該連結部は、搭乗部11と本体部20とを所定の方向に相対的に変位可能に連結する機能を有していてもよい。
また、前記搭乗部11は、座席11a、フットレスト11b及び風よけ部11cを備える。前記座席11aは、車両10の走行中に乗員が着座するための部位である。また、前記フットレスト11bは、乗員の足部を支持するための部位であり、座席11aの前方側(図1(a)における右側)下方に配設される。
さらに、搭乗部11の後方若しくは下方又は本体部20には、図示されないバッテリ装置が配設されている。該バッテリ装置は、回転駆動装置51及びリンクモータ25のエネルギ供給源である。また、搭乗部11の後方若しくは下方又は本体部20には、図示されない制御装置、インバータ装置、各種センサ等が収納されている。
そして、座席11aの前方には、操縦装置41が配設されている。該操縦装置41には、操舵装置としてのハンドルバー41a、速度メータ等のメータ、インジケータ、スイッチ等の操縦に必要な部材が配設されている。乗員は、前記ハンドルバー41a及びその他の部材を操作して、車両10の走行状態(例えば、進行方向、走行速度、旋回方向、旋回半径等)を指示する。なお、乗員が要求する車体の要求旋回量を検出するための手段である操舵装置として、ハンドルバー41aに代えて他の装置、例えば、ステアリングホイール、ジョグダイヤル、タッチパネル、押しボタン等の装置を操舵装置として使用することもできる。
なお、車輪12Fは、サスペンション装置(懸架装置)の一部である前輪フォーク17を介して搭乗部11に接続されている。前記サスペンション装置は、例えば、一般的なオートバイ、自転車等において使用されている前輪用のサスペンション装置と同様の装置であり、前記前輪フォーク17は、例えば、スプリングを内蔵したテレスコピックタイプのフォークである。そして、一般的なオートバイ、自転車等の場合と同様に、乗員によるハンドルバー41aの操作に応じて操舵輪としての車輪12Fは舵角を変化させ、これにより、車両10の進行方向が変化する。
具体的には、前記ハンドルバー41aは、図示されない操舵軸部材の上端に接続され、操舵軸部材の下端には前輪フォーク17の上端が接続されている。前記操舵軸部材は、上端が下端よりも後方に位置するように斜めに傾斜した状態で、搭乗部11が備える図示されないフレーム部材に、回転可能に取り付けられている。
本実施の形態において、車両10は横加速度センサ44を有する。該横加速度センサ44は、一般的な加速度センサ、ジャイロセンサ等から成るセンサであって、車両10の横加速度、すなわち、車体の幅方向としての横方向(図1(b)における左右方向:車体の縦方向軸線に対して垂直な方向)の加速度を検出する。
車両10は、旋回時に車体を旋回内側に傾斜させて安定させるので、車体を傾斜させることによって、旋回時の旋回外側への遠心力と重力とが釣り合うような角度になるように制御される。このような制御を行うことによって、例えば、路面18が進行方向と垂直な方向(進行方向に対する左右方向)に傾斜していたとしても、常に車体を水平に保つことが可能になる。これにより、車体及び乗員には、見かけ上、常に重力が鉛直下向きにかかっていることになり、違和感が低減され、また、車両10の安定性が向上する。
そこで、本実施の形態においては、傾斜する車体の横方向の加速度を検出するために、横加速度センサ44を車体に取り付け、横加速度センサ44の出力がゼロとなるように(横加速度センサ44の出力の目標値をゼロとして)フィードバック制御を行う。これにより、旋回時に作用する遠心力と重力とが釣り合う傾斜角まで、車体を傾斜させることができる。また、進行方向と垂直な方向に路面18が傾斜している場合でも、車体が鉛直になる傾斜角となるように制御することができる。
図1に示される例において、横加速度センサ44は搭乗部11の背面に配設されている。また、前記横加速度センサ44は、車体の幅方向の中心、すなわち、車体の縦方向軸線上に位置するように配設され、車体の縦方向軸線に垂直な方向(横方向)の加速度を検出する。すなわち、横加速度センサ44の検出軸方向が車体の横方向に一致するように、配設されている。
また、本実施の形態における車両10は、制御装置の一部としての車体傾斜制御システムを有する。該車体傾斜制御システムは、一種のコンピュータシステムであり、図3に示されるように、傾斜制御装置として機能する傾斜制御ECU(Electronic Control Unit)46を備える。該傾斜制御ECU46は、プロセッサ等の演算手段、磁気ディスク、半導体メモリ等の記憶手段、入出力インターフェイス等を備え、横加速度センサ44及びリンクモータ25に接続されている。また、前記傾斜制御ECU46は、横加速度センサ44が検出した横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する傾斜制御部47を含む。
該傾斜制御部47は、旋回走行の際には、旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御する。具体的には、フィードバック制御を行い、車体の傾斜角度が、横加速度センサ44が検出する横加速度の値がゼロ又はゼロ近傍となるような角度になるように、リンクモータ25を作動させる。つまり、旋回外側への遠心力と重力とが釣り合って、横加速度センサ44の検出軸方向の加速度成分、すなわち、横方向の加速度成分がゼロ又はゼロ近傍となるような角度になるように、車体の傾斜角度を制御する。つまり、横方向の加速度成分の値ゼロを目標値として、車体の傾斜角度を制御する。これにより、車体及び搭乗部11に搭乗している乗員には、車体の縦方向軸線と平行な方向の力が作用することとなる。したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。
次に、前記構成の車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。
図4は本発明の第1の実施の形態における旋回走行時の車体の傾斜動作を説明する図、図5は本発明の第1の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。
旋回走行が開始されると、車体傾斜制御システムは車体傾斜制御処理を開始する。姿勢制御が行われることで、車両10は、リンク機構30によって、旋回走行時には、図4に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回する。また、旋回走行時には、旋回外側への遠心力が車体に作用するとともに、車体を旋回内側に傾けたことによって重力の横方向成分が発生する。そして、横加速度センサ44は、前記遠心力と重力の横方向成分との合力を横方向の加速度として検出し、検出値aを横加速度センサ値として傾斜制御部47に出力する。すると、該傾斜制御部47は、フィードバック制御を行い、検出値aの値がゼロとなるような制御値をリンクモータ25に出力する。
なお、車体傾斜制御処理は、車両10の電源が投入されている間、車体傾斜制御システムによって繰り返し所定の制御周期TS (例えば、5〔ms〕)で実行される処理であり、旋回時において、旋回性能の向上と乗員の快適性の確保とを図る処理である。
傾斜制御部47は、まず、横加速度センサ値aを取得する(ステップS1)。
続いて、傾斜制御部47は、aold 呼出を行う(ステップS2)。aold は、前回の車体傾斜制御処理実行時に保存された横加速度センサ値aである。なお、初期設定においては、aold =0とされている。
続いて、傾斜制御部47は、制御周期TS を取得し(ステップS3)、aの微分値を算出する(ステップS4)。ここで、aの微分値をda/dtとすると、該da/dtは次の式(1)によって算出される。
da/dt=(a-aold )/TS ・・・式(1)
そして、傾斜制御部47は、aold =aとして保存する(ステップS5)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度センサ値aをaold として、記憶手段に保存する。
da/dt=(a-aold )/TS ・・・式(1)
そして、傾斜制御部47は、aold =aとして保存する(ステップS5)。つまり、今回の車体傾斜制御処理実行時に取得した横加速度センサ値aをaold として、記憶手段に保存する。
続いて、傾斜制御部47は、第1制御値UP を算出する(ステップS6)。ここで、比例制御動作の制御ゲイン、すなわち、比例ゲインをCP とすると、第1制御値UP は次の式(2)によって算出される。
UP =CP a ・・・式(2)
続いて、傾斜制御部47は、第2制御値UD を算出する(ステップS7)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をCD とすると、第2制御値UD は次の式(3)によって算出される。
UD =CD da/dt ・・・式(3)
続いて、傾斜制御部47は、制御値Uを算出する(ステップS8)。該制御値Uは、第1制御値UP と第2制御値UD との合計であり、次の式(4)によって算出される。
U=UP +UD ・・・式(4)
最後に、傾斜制御部47は、制御値Uをリンクモータ25へ出力して(ステップS9)、処理を終了する。
UP =CP a ・・・式(2)
続いて、傾斜制御部47は、第2制御値UD を算出する(ステップS7)。ここで、微分制御動作の制御ゲイン、すなわち、微分時間をCD とすると、第2制御値UD は次の式(3)によって算出される。
UD =CD da/dt ・・・式(3)
続いて、傾斜制御部47は、制御値Uを算出する(ステップS8)。該制御値Uは、第1制御値UP と第2制御値UD との合計であり、次の式(4)によって算出される。
U=UP +UD ・・・式(4)
最後に、傾斜制御部47は、制御値Uをリンクモータ25へ出力して(ステップS9)、処理を終了する。
このように、本実施の形態においては、旋回走行時には、旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御する。これにより、車体の安定を維持することができ、旋回性能を向上させることができるとともに、乗員が違和感を感じることがなく、乗り心地が向上する。
具体的には、横加速度センサ44が検出する横加速度の値がゼロ又はゼロ近傍となるように、車体の傾斜角度を制御する。つまり、横方向の加速度成分の値ゼロを目標値として、車体の傾斜角度を制御する。
これにより、旋回外側への遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することができ、横方向の加速度成分がゼロ又はゼロ近傍となり、車体及び乗員には車体の縦方向軸線と平行な方向の力が作用する。
したがって、車体の安定を維持することができ、また、旋回性能を向上させることができる。また、乗員が違和感を感じることがなく、乗り心地が向上する。これにより、安定した走行状態を実現することができ、安全性の高い車両10を提供することができる。
次に、本発明の第2の実施の形態について説明する。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図6は本発明の第2の実施の形態における横加速度センサの検出値が受ける影響を説明する図、図7は本発明の第2の実施の形態における車両の背面を示す図、図8は本発明の第2の実施の形態における車体傾斜制御システムの構成を示すブロック図である。なお、図6において、(a)~(c)は片側の車輪が落下する状態を示す図、(d)は車両の各部のガタ等の影響を説明する図であり、図7において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。
前記第1の実施の形態においては、単一の横加速度センサ44によって横方向の加速度を検出する場合について説明した。しかし、横加速度センサ44が1つであると、不要加速度成分をも検出してしまうことがある。
横加速度センサ44で検出されるものは、旋回による遠心力、及び、車体が傾斜することによる重力成分のみでなく、リンク機構30によって車体を傾斜させる動作で発生する周方向の加速度成分や、路面18の凹部に左側の車輪12L又は右側の車輪12Rの一方のみが落ちたような場合に発生する同様の周方向の加速度成分が含まれる。これらの周方向の加速度成分、すなわち、遠心力や重力に直接由来しない加速度成分は、制御性を悪化させる。例えば、応答性を向上させようとして制御ゲインを大きくしようとしても、これらの遠心力や重力に直接由来しない加速度成分が観測されることで、制御系の振動や、最悪の場合には、発散を招くため、制御ゲインを大きくすることができない。
例えば、図6(a)~(c)に示されるように、車両10の走行中、路面18の窪(くぼ)みに左右の車輪12L及び12Rのいずれか一方のみが落下する場合があり得る。この場合、車体が傾斜するので、図6(c)における矢印で示されるように、横加速度センサ44は、周方向に変位し、該周方向の加速度を検出することになる。つまり、遠心力や重力に直接由来しない加速度成分、すなわち、不要加速度成分が検出されてしまう。
また、車両10は、例えば、左右の車輪12L及び12Rのタイヤ部分のように弾性を備え、ばねとして機能する部分を含み、また、各部材の接続部等に不可避的なガタが含まれる。そのため、図6(d)に模式的に示されるように、横加速度センサ44は、不可避的なガタやばねを介して車体に取り付けられていると考えられるので、ガタやばねの変位によって生じる加速度をも不要加速度成分として検出してしまう。
このような不要加速度成分は、車体傾斜制御システムの制御性を悪化させる可能性がある。例えば、車体傾斜制御システムの制御ゲインを大きくすると、不要加速度成分に起因する制御系の振動、発散等が発生するので、応答性を向上させようとしても制御ゲインを大きくすることができなくなってしまう。
そこで、本実施の形態においては、横加速度センサ44が複数であって、互いに異なる高さに配設されている。図7に示される例において、横加速度センサ44は、第1横加速度センサ44a及び第2横加速度センサ44bの2つであって、第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。第1横加速度センサ44a及び第2横加速度センサ44bの位置を適切に選択することで、効果的に不要加速度成分を取り除くことができる。
具体的には、図7(a)に示されるように、第1横加速度センサ44aは、搭乗部11の背面において、路面18からの距離、すなわち、高さがL1 の位置に配設されている。また、第2横加速度センサ44bは、搭乗部11の背面又は本体部20の上面において、路面18からの距離、すなわち、高さがL2 の位置に配設されている。なお、L1 >L2 である。そして、旋回走行時に、図7(b)に示されるように、車体を旋回内側(図において右側)に傾けた状態で旋回すると、第1横加速度センサ44aは、横方向の加速度を検出して検出値a1 を出力し、第2横加速度センサ44bは、横方向の加速度を検出して検出値a2 を出力する。なお、車体が傾く際の傾斜運動の中心、すなわち、ロール中心は、厳密には路面18よりわずかに下方に位置するが、実際上は、概略路面18と等しい位置であると考えられる。
前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、十分に剛性の高い部材に取り付けられることが望ましい。また、L1 とL2 との差は、小さいと検出値a1 及びa2 の差が小さくなるので、十分に大きいこと、例えば、0.3〔m〕以上、とすることが望ましい。さらに、車体がサスペンション等のばねで支持されている場合、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、いわゆる「ばね上」に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、可能な限り乗員の近くに配設されることが望ましい。さらに、前記第1横加速度センサ44a及び第2横加速度センサ44bは、ともに、上側から観て進行方向に延在する車体の中心軸上に位置すること、すなわち、進行方向に関してオフセットされないことが望ましい。
また、本実施の形態における車体傾斜制御システムは、図8に示されるようになっている。傾斜制御ECU46は、第1横加速度センサ44a及び第2横加速度センサ44bが検出した横加速度に基づいて合成横加速度を算出する横加速度演算部48を備える。そして、傾斜制御部47は、横加速度演算部48が算出した横加速度としての合成横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。
なお、その他の点の構成については、前記第1の実施の形態と同様であるので、その説明を省略する。
次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。
図9は本発明の第2の実施の形態における力学モデルを示す図、図10は本発明の第2の実施の形態における制御系のブロック図、図11は本発明の第2の実施の形態における横加速度演算処理の動作を示すフローチャート、図12は本発明の第2の実施の形態における車両の車体傾斜制御処理の動作を示すフローチャートである。
図9において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Bは車体において第2横加速度センサ44bの配設された位置を示す第2センサ位置である。
第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する加速度は、〈1〉旋回時に車体に作用する遠心力(旋回による遠心力の分力)、〈2〉車体を旋回内側に傾けたことによって発生する重力の横方向成分(重力の分力)、〈3〉左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度(リンクモータ25によらない回転加速度)、並びに、〈4〉リンクモータ25の作動又はその反作用により第1横加速度センサ44a及び第2横加速度センサ44bが周方向に変位することによって生じる加速度(リンクモータ25による回転加速度)、の4つであると考えられる。これら4つの加速度のうち、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さ、すなわち、L1 及びL2 と無関係である。一方、前記〈3〉及び〈4〉は、周方向に変位することによって生じる加速度であるから、ロール中心からの距離に比例する、すなわち、概略L1 及びL2 に比例する。
ここで、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈3〉の加速度をaX1及びaX2とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈4〉の加速度をaM1及びaM2とする。また、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈1〉の加速度をaT とし、第1横加速度センサ44a及び第2横加速度センサ44bが検出してその検出値を出力する〈2〉の加速度をaG とする。なお、前記〈1〉及び〈2〉は、第1横加速度センサ44a及び第2横加速度センサ44bの高さと無関係なので、第1横加速度センサ44a及び第2横加速度センサ44bの検出値は等しい。
そして、左右の車輪12L及び12Rのいずれか一方のみが路面18の窪みに落下することによる車体の傾斜、ガタやばねの変位等による周方向の変位の角速度をωR とし、その角加速度をωR ’とする。また、リンクモータ25の作動又はその反作用による周方向の変位の角速度をωM とし、その角加速度をωM ’とする。
すると、aX1=L1 ωR ’、aX2=L2 ωR ’、aM1=L1 ωM ’、aM2=L2 ωM ’となる。
また、第1横加速度センサ44a及び第2横加速度センサ44bが検出して出力する加速度の検出値をa1 及びa2 とすると、a1 及びa2 は、4つの加速度〈1〉~〈4〉の合計であるから、次の式(5)及び(6)で表される。
a1 =aT +aG +L1 ωR ’+L1 ωM ’ ・・・式(5)
a2 =aT +aG +L2 ωR ’+L2 ωM ’ ・・・式(6)
そして、式(5)から式(6)を減算すると、次の式(7)を得ることができる。
a1 -a2 =(L1 -L2 )ωR ’+(L1 -L2 )ωM ’ ・・・式(7)
ここで、L1 及びL2 の値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ωM ’の値は、リンクモータ25の角速度ωM の微分値であるから既知である。すると、前記式(7)の右辺においては、第1項のωR ’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 から、ωR ’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 に基づいて、不要加速度成分を取り除くことができる。
a1 =aT +aG +L1 ωR ’+L1 ωM ’ ・・・式(5)
a2 =aT +aG +L2 ωR ’+L2 ωM ’ ・・・式(6)
そして、式(5)から式(6)を減算すると、次の式(7)を得ることができる。
a1 -a2 =(L1 -L2 )ωR ’+(L1 -L2 )ωM ’ ・・・式(7)
ここで、L1 及びL2 の値は、第1横加速度センサ44a及び第2横加速度センサ44bの高さであるから既知である。また、ωM ’の値は、リンクモータ25の角速度ωM の微分値であるから既知である。すると、前記式(7)の右辺においては、第1項のωR ’の値のみが未知であり、他の値はすべて既知である。したがって、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 から、ωR ’の値を得ることが可能である。つまり、第1横加速度センサ44a及び第2横加速度センサ44bの検出値a1 及びa2 に基づいて、不要加速度成分を取り除くことができる。
本実施の形態における車体傾斜制御処理では、図10に示されるようなフィードバック制御が行われる。図10において、f1 は後述される式(10)で表される伝達関数である。また、GP は比例制御動作の制御ゲインであり、GD は微分制御動作の制御ゲインであり、sは微分要素である。
車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、第1横加速度センサ値a1 を取得するとともに(ステップS11)、第2横加速度センサ値a2 を取得する(ステップS12)。そして、横加速度演算部48は、加速度差Δaを算出する(ステップS13)。該Δaは次の式(8)によって表される。
Δa=a1 -a2 ・・・式(8)
続いて、横加速度演算部48は、ΔL呼出を行うとともに(ステップS14)、L2 呼出を行う(ステップS15)。前記ΔLは次の式(9)によって表される。
ΔL=L1 -L2 ・・・式(9)
続いて、横加速度演算部48は、合成横加速度aを算出する(ステップS16)。なお、合成横加速度aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値a1 と第2横加速度センサ値a2 とを合成した値であり、次の式(10)及び(11)によって得られる。
a=a2 -(L2 /ΔL)Δa ・・・式(10)
a=a1 -(L1 /ΔL)Δa ・・・式(11)
理論上は、式(10)によっても式(11)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるa2 を基準にすることが望ましい。そこで、本実施の形態においては、式(10)によって合成横加速度aを算出することとする。
Δa=a1 -a2 ・・・式(8)
続いて、横加速度演算部48は、ΔL呼出を行うとともに(ステップS14)、L2 呼出を行う(ステップS15)。前記ΔLは次の式(9)によって表される。
ΔL=L1 -L2 ・・・式(9)
続いて、横加速度演算部48は、合成横加速度aを算出する(ステップS16)。なお、合成横加速度aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値a1 と第2横加速度センサ値a2 とを合成した値であり、次の式(10)及び(11)によって得られる。
a=a2 -(L2 /ΔL)Δa ・・・式(10)
a=a1 -(L1 /ΔL)Δa ・・・式(11)
理論上は、式(10)によっても式(11)によっても、同じ値を得ることができるが、周方向の変位によって生じる加速度はロール中心からの距離に比例するので、実際上は、ロール中心により近い方の横加速度センサ44、すなわち、第2横加速度センサ44bの検出値であるa2 を基準にすることが望ましい。そこで、本実施の形態においては、式(10)によって合成横加速度aを算出することとする。
最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS17)、横加速度演算処理を終了する。
また、傾斜制御部47は、車体傾斜制御処理を開始し、まず、横加速度演算部48から合成横加速度aを受信する(ステップS21)。
続いて、傾斜制御部47は、aold 呼出を行う(ステップS22)。aold は、前回の車体傾斜制御処理実行時に保存された合成横加速度aである。なお、初期設定においては、aold =0とされている。
これ以降の動作、すなわち、図12に示されるステップS23~S29の動作は、前記第1の実施の形態において説明したステップS3~S9の動作と同様であるので、その説明を省略する。
このように、本実施の形態においては、第1横加速度センサ44aと第2横加速度センサ44bとを互いに異なる高さ位置に配設し、第1横加速度センサ値a1 と第2横加速度センサ値a2 とを合成した合成横加速度aを算出し、該合成横加速度aの値がゼロ又はゼロ近傍となるように、車体の傾斜角度を制御する。つまり、合成横加速度aの値ゼロを目標値として、車体の傾斜角度を制御する。
前記合成横加速度aは、第1横加速度センサ44a及び第2横加速度センサ44bが検出した加速度から前記〈3〉及び〈4〉を除去し、前記〈1〉及び〈2〉のみを抽出したものであると言える。すなわち、車両10の旋回によって発生する旋回方向外向きの加速度における横加速度センサの検出軸方向の加速度成分と、車体が傾斜することによって発生する重力における横加速度センサの検出軸方向の加速度成分との合成値のみを選択的に算出した値が合成横加速度aの値である。
これにより、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。
なお、本実施の形態においては、横加速度センサ44が2つである場合について説明したが、横加速度センサ44は、複数であって互いに異なる高さに配設されていれば、3つ以上であってもよく、いくつであってもよい。
次に、本発明の第3の実施の形態について説明する。なお、第1及び第2の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1及び第2の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図13は本発明の第3の実施の形態における車両の背面を示す図である。なお、図において、(a)は車体が直立している状態を示す図、(b)は車体が傾斜している状態を示す図である。
本実施の形態における車両10は、リンク機構30を有しておらず、本体部20と搭乗部11とが、ロール軸20aを中心に、ロール方向に揺動可能に連結され、傾斜用アクチュエータ装置としてのリンクモータ25を回転させることによって、図13(b)に示されるように、本体部20に対して搭乗部11を揺動させてロールさせる、すなわち、傾斜させることができる。前記ロール軸20aは、本体部20に対して搭乗部11が揺動してロールする動作の中心、すなわち、ロール中心である。なお、車体の進行方向に延在するリンクモータ25の回転軸を、前記ロール軸20aと一致させるようにしてもよい。
旋回時にも、左右の車輪12L及び12Rの路面18に対する角度、すなわち、キャンバ角は変化せず、搭乗部11を前輪である車輪12Fとともに、本体部20に対して揺動させ、旋回内輪側へ傾斜させることによって、旋回性能の向上と乗員の快適性の確保とを図ることができるようになっている。なお、図に示される例においては、直進時も旋回時も、左右の車輪12L及び12Rは路面18に対して直立している、すなわち、キャンバ角が0度になっている。
その他の点の構成については、前記第1の実施の形態と同様であるので、その説明を省略する。
なお、横加速度センサ44は、前記第2の実施の形態と同様に、第1横加速度センサ44a及び第2横加速度センサ44bを含み、前記第1横加速度センサ44aと第2横加速度センサ44bとは互いに異なる高さ位置に配設されている。
本実施の形態においては、搭乗部11が傾く際の傾斜運動の中心、すなわち、ロール中心はロール軸20aと一致する。そこで、第1横加速度センサ44a及び第2横加速度センサ44bの高さL1 及びL2 は、ロール軸20aからの距離として設定される。
前記第1横加速度センサ44a及び第2横加速度センサ44bは、ロール軸20aの上側又は下側に、両者ともに配設されることが望ましい。また、前記第1横加速度センサ44a及び第2横加速度センサ44bの一方は、できる限りロール軸20aに近接した位置に配設されることが望ましい。
横加速度センサ44について、その他の点は、前記第2の実施の形態と同様であるので、その説明を省略する。また、車体傾斜制御システムについても、前記第2の実施の形態と同様であるので、その説明を省略する。さらに、本実施の形態における車両10の動作についても、前記第2の実施の形態と同様であるので、その説明を省略する。
次に、本発明の第4の実施の形態について説明する。なお、第1~第3の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第3の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図14は本発明の第4の実施の形態における車体傾斜制御システムの構成を示すブロック図である。
前記第2及び第3の実施の形態においては、2つの横加速度センサ44、すなわち、第1横加速度センサ44aと第2横加速度センサ44bとによって横方向の加速度を検出する場合について説明した。しかし、横方向の加速度を検出可能なセンサであれば、加速度センサ以外の種類のセンサを使用することもできる。なお、横方向の加速度を検出可能なセンサとは、加速度センサのように加速度を直接的に検出するセンサのみならず、速度センサのように検出値を微分して加速度を得ることが可能なセンサ、すなわち、加速度を間接的に検出するセンサをも含むものである。
本実施の形態においては、前記第2横加速度センサ44bに代えて、加速度を間接的に検出するセンサとしてのロールレートセンサ44cを使用する例について説明する。なお、該ロールレートセンサ44cは、車体の傾斜運動の角速度を検出する一般的なロールレートセンサであって、例えば、ジャイロセンサを、地面と垂直方向の面内での回転角速度を検出することができるように取り付けたものである。
本実施の形態における車体傾斜制御システムは、図14に示されるようになっている。傾斜制御ECU46には、第1横加速度センサ44a及びロールレートセンサ44cが接続されている。そして、横加速度演算部48は、ロールレートセンサ44cが検出した車体の傾斜運動の角速度の微分値及び第1横加速度センサ44aが検出した横加速度に基づいて合成横加速度を算出する。そして、傾斜制御部47は、横加速度演算部48が算出した横加速度としての合成横加速度に基づいてリンクモータ25を作動させるためのトルク指令値を出力する。
なお、その他の点の構成については、前記第2及び第3の実施の形態と同様であるので、その説明を省略する。
次に、本実施の形態における車両10の動作について説明する。ここでは、旋回走行時における車体傾斜制御処理の動作についてのみ説明する。
図15は本発明の第4の実施の形態における力学モデルを示す図、図16は本発明の第4の実施の形態における横加速度演算処理の動作を示すフローチャートである。
図15において、44Aは車体において第1横加速度センサ44aの配設された位置を示す第1センサ位置であり、44Cは車体においてロールレートセンサ44cの配設された位置を示す第2センサ位置である。また、ω1 は、ロールレートセンサ44cが検出した車体の傾斜運動の角速度の値、すなわち、ロールレートセンサ値である。
なお、ロールレートセンサ44cは、任意の高さ位置に取り付けることができる。図に示される例においては、第1横加速度センサ44aよりも低い位置に取り付けられているが、第1横加速度センサ44aと同じ高さ位置に取り付けられていてもよいし、第1横加速度センサ44aよりも高い位置に取り付けられていてもよい。
もっとも、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、十分に剛性の高い部材に取り付けられることが望ましい。また、車体がサスペンション等のばねで支持されている場合、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、いわゆる「ばね上」に配設されることが望ましい。さらに、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、前輪である車輪12Fの車軸と後輪である左右の車輪12L及び12Rの車軸との間に配設されることが望ましい。さらに、ロールレートセンサ44cは、第1横加速度センサ44aと同様に、可能な限り乗員の近くに配設されることが望ましい。それ以外の点について、ロールレートセンサ44cは、車体の傾斜運動、すなわち、ロールを検出可能な位置であれば、いかなる位置に取り付けられていてもよい。
なお、第1横加速度センサ44aとロールレートセンサ44cとは互いに異なるセンサなので、両者の応答特性を、あらかじめ、理論的又は実験的に合わせておく必要がある。例えば、どちらかの等価モデルの時定数が小さい(速い)場合、時定数が大きい方の出力と同等の時定数となるようにフィルタ等で調整することになる。
本実施の形態において、車体傾斜制御システムが車体傾斜制御処理を開始すると、横加速度演算部48は、横加速度演算処理を開始し、まず、横加速度センサ値としての第1横加速度センサ値a1 を取得するとともに(ステップS31)、ロールレートセンサ値ω1 を取得する(ステップS32)。
続いて、横加速度演算部48は、ωold 呼出を行う(ステップS33)。ωold は、前回の車体傾斜制御処理実行時に保存されたロールレートセンサ値ω1 である。なお、初期設定においては、ωold =0とされている。
続いて、横加速度演算部48は、制御周期TS を取得し(ステップS34)、ω1 の微分値を算出する(ステップS35)。ここで、ω1 の微分値をΔω1 とすると、該Δω1 は次の式(12)によって算出される。
Δω1 =(ω1 -ωold )/TS ・・・式(12)
続いて、横加速度演算部48は、L1 呼出を行う(ステップS36)。
Δω1 =(ω1 -ωold )/TS ・・・式(12)
続いて、横加速度演算部48は、L1 呼出を行う(ステップS36)。
そして、横加速度演算部48は、合成横加速度aを算出する(ステップS37)。なお、該合成横加速度aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合における横加速度センサ値aに相当する値であって、第1横加速度センサ値a1 とロールレートセンサ値ω1 の微分値Δω1 とを合成した値であり、次の式(13)によって得られる。
a=a1 -L1 Δω1 ・・・式(13)
最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS38)、横加速度演算処理を終了する。
a=a1 -L1 Δω1 ・・・式(13)
最後に、横加速度演算部48は、傾斜制御部47へ合成横加速度aを送出して(ステップS38)、横加速度演算処理を終了する。
なお、傾斜制御部47による車体傾斜制御処理の動作については、前記第2の実施の形態と同様であるので、その説明を省略する。
このように、本実施の形態においては、横方向の加速度を検出可能な複数のセンサのうちの1つとしてロールレートセンサ44cを採用しているので、高さ方向に関するロールレートセンサ44cの取付位置の自由度が高くなり、車両10の設計自由度を高くすることができる。
なお、本実施の形態においては、前記第2及び第3の実施の形態における第2横加速度センサ44bに代えてロールレートセンサ44cを使用する例についてのみ説明したが、第1横加速度センサ44aに代えてロールレートセンサ44cを使用することもできる。また、車両10は、第2の実施の形態における車両10のようにリンク機構30を有するものであってもよいし、第3の実施の形態における車両10のようにリンク機構30を有していないものであってもよい。
次に、本発明の第5の実施の形態について説明する。なお、第1~第4の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。また、前記第1~第4の実施の形態と同じ動作及び同じ効果についても、その説明を省略する。
図17は本発明の第5の実施の形態における車両の各部の寸法を説明する模式図である。なお、図において、(a)は上面図、(b)は右側面図である。
本実施の形態において、車体傾斜制御システムは、横加速度の値aが所定の範囲内に収まるように制御する。なお、前記値aは、前記第1の実施の形態のように、横加速度センサ44が1つである場合の横加速度センサ値aのみならず、前記第2~4の実施の形態において説明した合成横加速度aも含むものである。
前記所定の範囲は、図に示されるように、各車輪12の接地点と車両10の重心Mとの三次元的配置で決定される安定範囲である。なお、前記重心Mは、車両10のみならず、搭乗している乗員及び搭載されている積載物をも含む全体の重心である。
図において、hは、重心Mの高さ、すなわち、路面18から重心Mまでの距離である。また、Kは、前輪である車輪12Fの接地点と、後輪である左右の車輪12L及び12Rの接地点とを頂点とする二等辺三角形である。
図17(a)に示されるように、上方から観て、重心Mが二等辺三角形K内にあれば、車両10の左右方向の安定性が確実に維持されることが分かる。
そこで、二等辺三角形Kの底辺K1と平行で、2つの斜辺を両端とし、重心Mを通る線分をM1とすると、重心Mから線分M1の両端までの範囲を前記安定範囲とする。ここで、車体が傾斜していないとき、すなわち、車体の縦方向軸線が鉛直であるときの重心Mから線分M1の片側端までの距離をLMとすると、重心Mが線分M1の端に位置するまで車体が傾斜したときの前記値aは、次の式(14)及び(15)で表される。
aINres =LM・9.807/(h-LM・sin(θ)) ・・・式(14)
aOUTres=LM・9.807/(h+LM・sin(θ)) ・・・式(15)
なお、前記式(14)及び(15)における定数9.807は、重力加速度を、θは車体の傾斜角度を表す。
aINres =LM・9.807/(h-LM・sin(θ)) ・・・式(14)
aOUTres=LM・9.807/(h+LM・sin(θ)) ・・・式(15)
なお、前記式(14)及び(15)における定数9.807は、重力加速度を、θは車体の傾斜角度を表す。
そして、旋回内側を正とし、旋回外側を負とした場合、次の式(16)が満足されるとき、前記値aは前記安定範囲内に収まっていると言える。
-aOUTres<a<aINres ・・・式(16)
また、ares =min(aINres 、aOUTres)とすると、次の式(17)が満足されるとき、前記値aは前記安定範囲内に収まっていると言える。
-ares <a<ares ・・・式(17)
このように、本実施の形態において、車体傾斜制御システムは、横加速度の値aが前記式(16)又は(17)を満足するように、すなわち、所定の範囲内に収まるように制御する。つまり、横加速度の値aが、重心Mの高さと、車輪12の接地点を頂点とする三角形Kの斜辺までの前記重心Mからの距離とに基づいて決定される安定範囲内に収まるように、車体の傾斜を制御する。
-aOUTres<a<aINres ・・・式(16)
また、ares =min(aINres 、aOUTres)とすると、次の式(17)が満足されるとき、前記値aは前記安定範囲内に収まっていると言える。
-ares <a<ares ・・・式(17)
このように、本実施の形態において、車体傾斜制御システムは、横加速度の値aが前記式(16)又は(17)を満足するように、すなわち、所定の範囲内に収まるように制御する。つまり、横加速度の値aが、重心Mの高さと、車輪12の接地点を頂点とする三角形Kの斜辺までの前記重心Mからの距離とに基づいて決定される安定範囲内に収まるように、車体の傾斜を制御する。
これにより、車両10の横方向の安定性が向上する。
さらに、本発明においては、従来の技術の問題点を解決する手段として、以下のようなものを示すことができる。
互いに連結された操舵部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を直接的又は間接的に検出する2つのセンサと、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記2つのセンサが検出する横加速度に基づいて、旋回方向外向きの加速度におけるセンサの検出軸方向の加速度成分と、重力におけるセンサの検出軸方向の加速度成分との合成値を選択的に算出し、前記車体の傾斜を制御する車両。
他の車両においては、さらに、前記2つのセンサは、互いに異なる高さに配設されている。
これらの構成によれば、不要加速度成分を取り除くことができるので、路面状況の影響を受けることがなく、制御系の振動、発散等の発生を防止することができ、車体傾斜制御システムの制御ゲインを大きくして制御の応答性を向上させることができる。
更に他の車両においては、さらに、前記制御装置は、前記合成値の目標値をゼロとして、前記車体の傾斜を制御する。
この構成によれば、車体及び乗員には、車体の縦方向軸線と平行な方向の力が作用することとなるので、乗員が違和感を感じることがなく、乗り心地がよく、安定した走行状態を実現することができる。
更に他の車両においては、さらに、前記2つのセンサのうちの1つは、車体の傾斜運動の角速度を検出するロールレートセンサである。
この構成によれば、簡素な車体構成であっても、車体の安定を維持することができ、旋回性能を向上させることができる。
更に他の車両においては、互いに連結された操舵部及び駆動部を備える車体と、前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、前記車体に作用する横加速度を直接的又は間接的に検出するセンサと、前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、該制御装置は、前記センサが検出する横加速度の値が、重心の高さと、前記車輪の接地点を頂点とする三角形の斜辺までの前記重心からの距離とに基づいて決定される安定範囲内に収まるように、前記車体の傾斜を制御する。
この構成によれば、車両の横方向の安定性が向上するので、乗り心地がよく、安定した走行状態を実現することができる。
更に他の車両においては、さらに、前記制御装置は、前記センサが検出する横加速度がゼロ又はゼロ近傍になるように、前記車体の傾斜を制御する。
この構成によれば、遠心力と重力とが釣り合うような角度になるように車体の傾斜角度を制御することができ、車体及び乗員には、車体の縦方向軸線と平行な方向の力が作用することとなるので、乗員が違和感を感じることがない。
更に他の車両においては、さらに、前記操舵輪が一輪又は二輪、かつ、前記駆動輪が二輪又は一輪の三輪車である。
この構成によれば、簡素な車体構成であっても、車体の安定を維持することができ、旋回性能を向上させることができる。
なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。
本発明は、少なくとも左右一対の車輪を有する車両に利用することができる。
10 車両
11 搭乗部
12F、12L、12R 車輪
20 本体部
25 リンクモータ
44 横加速度センサ
44a 第1横加速度センサ
44b 第2横加速度センサ
44c ロールレートセンサ
11 搭乗部
12F、12L、12R 車輪
20 本体部
25 リンクモータ
44 横加速度センサ
44a 第1横加速度センサ
44b 第2横加速度センサ
44c ロールレートセンサ
Claims (7)
- 互いに連結された操舵部及び駆動部を備える車体と、
前記操舵部に回転可能に取り付けられた車輪であって、前記車体を操舵する操舵輪と、
前記駆動部に回転可能に取り付けられた車輪であって、前記車体を駆動する駆動輪と、
前記操舵部又は駆動部を旋回方向に傾斜させる傾斜用アクチュエータ装置と、
前記車体に作用する横加速度を直接的又は間接的に検出するセンサと、
前記傾斜用アクチュエータ装置を制御して前記車体の傾斜を制御する制御装置とを有し、
該制御装置は、前記センサが検出する横加速度に基づいて、前記車体にかかる遠心力と重力とが釣り合うように、前記車体の傾斜を制御することを特徴とする車両。 - 前記制御装置は、前記センサが検出する横加速度の目標値をゼロとして、前記車体の傾斜を制御する請求項1に記載の車両。
- 前記センサは複数であり、互いに異なる高さに配設されている請求項1又は2に記載の車両。
- 前記制御装置は、前記複数のセンサが検出する横加速度を合成した合成横加速度の目標値をゼロとして、前記車体の傾斜を制御する請求項3に記載の車両。
- 前記複数のセンサのうちの1つは、前記車体の傾斜運動の角速度を検出するロールレートセンサである請求項4に記載の車両。
- 前記操舵輪が一輪又は二輪、かつ、前記駆動輪が二輪又は一輪の三輪車である請求項1~5のいずれか1項に記載の車両。
- 前記操舵部は、前記駆動部に対して揺動可能である請求項6に記載の車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800094874A CN102770334A (zh) | 2010-02-16 | 2011-02-14 | 车辆 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010031451 | 2010-02-16 | ||
JP2010-031451 | 2010-02-16 | ||
JP2010123961 | 2010-05-31 | ||
JP2010-123961 | 2010-05-31 | ||
JP2010-174154 | 2010-08-03 | ||
JP2010-174329 | 2010-08-03 | ||
JP2010174329A JP2012011997A (ja) | 2010-02-16 | 2010-08-03 | 車両 |
JP2010174154A JP2012011995A (ja) | 2010-02-16 | 2010-08-03 | 車両 |
JP2010-174245 | 2010-08-03 | ||
JP2010174245A JP2012011996A (ja) | 2010-02-16 | 2010-08-03 | 車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011102106A1 true WO2011102106A1 (ja) | 2011-08-25 |
Family
ID=44482711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000805 WO2011102106A1 (ja) | 2010-02-16 | 2011-02-14 | 車両 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011102106A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3375647A1 (en) * | 2017-03-17 | 2018-09-19 | Toyota Jidosha Kabushiki Kaisha | Automatic tilting vehicle |
EP3305640A4 (en) * | 2015-05-27 | 2019-01-30 | Equos Research Co., Ltd. | VEHICLE |
CN113415370A (zh) * | 2021-06-09 | 2021-09-21 | 邰金魁 | 平衡轴结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005088742A (ja) * | 2003-09-17 | 2005-04-07 | Honda Motor Co Ltd | 揺動型車両の揺動制御装置 |
JP2006001385A (ja) * | 2004-06-16 | 2006-01-05 | Sony Corp | 平行二輪車 |
JP2007118806A (ja) * | 2005-10-28 | 2007-05-17 | Equos Research Co Ltd | 車両 |
JP2007118807A (ja) * | 2005-10-28 | 2007-05-17 | Equos Research Co Ltd | 車両 |
JP2010058783A (ja) * | 2008-08-08 | 2010-03-18 | Yamaha Motor Co Ltd | 車体傾斜制御システムおよびそれを備えた鞍乗型車両 |
-
2011
- 2011-02-14 WO PCT/JP2011/000805 patent/WO2011102106A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005088742A (ja) * | 2003-09-17 | 2005-04-07 | Honda Motor Co Ltd | 揺動型車両の揺動制御装置 |
JP2006001385A (ja) * | 2004-06-16 | 2006-01-05 | Sony Corp | 平行二輪車 |
JP2007118806A (ja) * | 2005-10-28 | 2007-05-17 | Equos Research Co Ltd | 車両 |
JP2007118807A (ja) * | 2005-10-28 | 2007-05-17 | Equos Research Co Ltd | 車両 |
JP2010058783A (ja) * | 2008-08-08 | 2010-03-18 | Yamaha Motor Co Ltd | 車体傾斜制御システムおよびそれを備えた鞍乗型車両 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3305640A4 (en) * | 2015-05-27 | 2019-01-30 | Equos Research Co., Ltd. | VEHICLE |
US10526033B2 (en) | 2015-05-27 | 2020-01-07 | Equos Research Co., Ltd. | Vehicle |
EP3375647A1 (en) * | 2017-03-17 | 2018-09-19 | Toyota Jidosha Kabushiki Kaisha | Automatic tilting vehicle |
CN113415370A (zh) * | 2021-06-09 | 2021-09-21 | 邰金魁 | 平衡轴结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505319B2 (ja) | 車両 | |
JP5741278B2 (ja) | 車両 | |
WO2011102108A1 (ja) | 車両 | |
JP5521994B2 (ja) | 車両 | |
JP2012011995A (ja) | 車両 | |
WO2012102388A1 (ja) | 車両 | |
JP2013144471A (ja) | 車両 | |
JP5521865B2 (ja) | 車両 | |
JP5458723B2 (ja) | 車両 | |
JP2013112238A (ja) | 車両 | |
JP2013144513A (ja) | 車両 | |
JP2013071688A (ja) | 車両 | |
JP2013199214A (ja) | 車両 | |
WO2011102106A1 (ja) | 車両 | |
JP5458722B2 (ja) | 車両 | |
JP2011046297A (ja) | 車両 | |
JP5866927B2 (ja) | 車両 | |
JP2011194953A (ja) | 車両 | |
JP5440299B2 (ja) | 車両 | |
JP2011168094A (ja) | 車両の制御値設定方法 | |
JP5617650B2 (ja) | 車両 | |
JP5617652B2 (ja) | 車両 | |
JP5598117B2 (ja) | 車両 | |
JP5304681B2 (ja) | 車両 | |
JP5834835B2 (ja) | 車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009487.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11744397 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11744397 Country of ref document: EP Kind code of ref document: A1 |