[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011102015A1 - Intracardiac defibrillation catheter system - Google Patents

Intracardiac defibrillation catheter system Download PDF

Info

Publication number
WO2011102015A1
WO2011102015A1 PCT/JP2010/066880 JP2010066880W WO2011102015A1 WO 2011102015 A1 WO2011102015 A1 WO 2011102015A1 JP 2010066880 W JP2010066880 W JP 2010066880W WO 2011102015 A1 WO2011102015 A1 WO 2011102015A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
catheter
defibrillation
electrode group
supply device
Prior art date
Application number
PCT/JP2010/066880
Other languages
French (fr)
Japanese (ja)
Inventor
泰 小野寺
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Publication of WO2011102015A1 publication Critical patent/WO2011102015A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • A61N1/3937Monitoring output parameters
    • A61N1/3943Monitoring output parameters for threshold determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/0563Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion

Definitions

  • the present invention relates to an intracardiac defibrillation catheter system, and more specifically, includes a defibrillation catheter that is inserted into the heart chamber, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter.
  • the present invention relates to a catheter system.
  • An external defibrillator is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
  • AED an external defibrillator
  • electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage.
  • the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
  • Atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
  • AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
  • the present inventors have introduced a defibrillation catheter that is inserted into the heart chamber and performs defibrillation, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter.
  • a catheter system including an electrocardiograph Japanese Patent Application No. 2009-70940.
  • the operation history of the defibrillation catheter is a part of the treatment record, for example, if the output voltage and output time in each defibrillation can be printed and attached to the patient's chart.
  • a memory for storing the operation history is provided in the power supply device, and an output voltage and an output time each time an operation such as defibrillation is performed by the defibrillation catheter.
  • Such information may be written in the memory of the power supply device.
  • the defibrillation catheter needs to be given serial information (serial number) that can be read by the power supply device.
  • the operation history information of the defibrillation catheter includes a plurality of power supply devices. Management of the operation history information becomes very complicated.
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be supplied to a patient. Another object of the present invention is to provide an intracardiac defibrillation catheter system capable of performing defibrillation treatment without causing burns on the patient's body surface. Still another object of the present invention is to provide an intracardiac defibrillation catheter system capable of recording the operation history of a defibrillation catheter.
  • Still another object of the present invention is to reconnect different power supply devices so that even if there is a history of operating the defibrillation catheters by a plurality of power supply devices, the operation history by the defibrillation catheters is stored in one memory. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be stored in the device and can manage operation history information for each defibrillation catheter.
  • An intracardiac defibrillation catheter system of the present invention includes a defibrillation catheter that is inserted into the heart chamber and performs defibrillation, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter.
  • a catheter system comprising: The defibrillation catheter includes an insulating tube member; A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member; A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side; A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group; A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group; The catheter serial storage unit in which the serial information of the defibrillation catheter is stored, and the information related to the event including the defibrillation by the defibrillation catheter, the time at which the event is performed, and the connected power supply device A memory having an event information storage unit for storing serial information; The power supply device includes a
  • Voltages having different polarities are applied from the power supply unit to the first DC electrode group and the second DC electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
  • the arithmetic processing unit of the power supply device when defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, the first DC electrode group and the Information on the set value of the electrical energy to be applied between the second DC electrode group, the actually applied output voltage and the output time is acquired, and the information is used for the time and connection of the defibrillation.
  • the event information storage unit in the memory of the defibrillation catheter is written.
  • the defibrillation catheter constituting the intracardiac defibrillation catheter system of the present invention is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium. Then, the power supply device applies voltages having different polarities to the first DC electrode group and the second DC electrode group via the first lead wire group and the second lead wire group (the first DC electrode group and the second DC electrode group). By applying a DC voltage to the group), electrical energy is directly applied to the heart undergoing fibrillation, whereby defibrillation treatment is performed.
  • the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber electrical energy is directly applied to the fibrillated heart.
  • the electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
  • the arithmetic processing unit of the power supply apparatus (connected to the defibrillation catheter) constituting this system
  • the resistance value intracardiac resistance value
  • the output voltage Event information storage unit in the memory of the defibrillation catheter includes information on the actual applied voltage
  • output time actually applied time
  • information related to an event including defibrillation is stored in the event information storage unit in the memory of the defibrillation catheter. Even if an event is performed using a plurality of power supply devices, information relating to the event is not distributed to the plurality of power supply devices. Thereby, event history information can be managed for each defibrillation catheter specified by the serial information.
  • the defibrillation catheter has only a memory (storage means), and the processing unit of the power supply apparatus is responsible for processing such information. Does not increase in size or its structure.
  • the arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention measures the resistance value between the first DC electrode group and the second DC electrode group of the defibrillation catheter.
  • the measurement of the resistance value is recognized as an event, and the measured resistance value is measured together with the measured time and the serial information of the connected power supply device. It is preferable to write in the event information storage unit in the catheter memory. Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
  • the arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention reconnects the same or different power supply device to the defibrillation catheter from which the power supply device used was removed Sometimes, it is preferable to recognize this as an event, and write the reconnection time and the serial information of the reconnected power supply device in the event information storage unit in the memory of the defibrillation catheter. As a result, the history of reconnection (replacement) of the power supply device can be recorded together with the serial information of the power supply device before and after the replacement.
  • a power supply device constituting the intracardiac defibrillation catheter system of the present invention has a memory information display unit or a memory information output unit connected to the calculation processing unit, and the calculation processing unit of the power supply device includes:
  • the information written in the memory of the defibrillation catheter may be read and displayed on the memory information display unit or output to the memory information output unit.
  • the information written in the memory for example, the history of defibrillation written in the event information storage unit on the memory information display unit, this can be confirmed during the procedure. Further, by outputting the information written in the memory to the memory information output unit, it can be left as a part of the treatment record.
  • the intracardiac defibrillation catheter system of the present invention comprises an electrocardiograph together with the defibrillation catheter and the power supply device,
  • the power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
  • a switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact;
  • the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching It is preferable that voltages having different polarities are applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connection connector.
  • the path from the catheter connector to the electrocardiograph connector is secured by selecting the first contact in the switching unit constituting the power supply device, the first DC electrode group and / or the second DC of the defibrillation catheter is secured.
  • the electrocardiogram can be measured by the electrodes constituting the electrode group, and the obtained electrocardiogram information can be input to the electrocardiograph via the catheter connector, the switching unit, and the electrocardiograph connector.
  • the defibrillation catheter constituting the present invention can be used as an electrode catheter for measuring cardiac potential.
  • the electrode catheter is removed, It is possible to save the trouble of newly inserting a catheter for defibrillation.
  • the defibrillation catheter includes a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group.
  • a potential measuring electrode group comprising: The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device.
  • a path directly connecting the catheter connector and the electrocardiograph connector is formed, The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit. Is preferably entered.
  • the potential measurement electrode group The electrocardiograph can acquire the electrocardiogram measured by the above-mentioned, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
  • an electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph constituting the intracardiac defibrillation catheter system of (5) or (6).
  • this cardiac potential measuring means is an electrode pad or an electrode catheter.
  • the electrocardiogram measurement is performed.
  • An electrocardiograph can acquire the electrocardiogram measured by the means, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
  • the power supply device constituting the intracardiac defibrillation catheter system according to (5) to (8) above includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and the calculation An electrocardiogram information display unit connected to the processing unit, It is preferable that the electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit.
  • cardiac potential information input to the electrocardiograph (cardiac potential acquired by the electrodes constituting the first DC electrode group and / or the second DC electrode group of the defibrillation catheter, the defibrillation catheter)
  • a part of the cardiac potential acquired by the electrodes constituting the potential measuring electrode group or the cardiac potential acquired by the cardiac potential measuring means other than the defibrillation catheter) is input to the arithmetic processing unit.
  • the DC power supply unit can be controlled based on this electrocardiographic information.
  • defibrillation treatment (such as input of an external switch) can be performed while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit with the electrocardiogram information display unit.
  • the intracardiac defibrillation catheter system of the present invention electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive.
  • the event history of a defibrillation catheter can be recorded. According to the intracardiac defibrillation catheter system of the present invention, this defibrillation catheter can be used even if an event by a defibrillation catheter is performed using a plurality of power supply devices by reconnecting different power supply devices. Can be stored in one memory (event information storage unit), and event history information can be managed for each defibrillation catheter.
  • FIG. 1 is a block diagram illustrating one embodiment of an intracardiac defibrillation catheter system of the present invention.
  • FIG. It is a top view for description which shows the fibrillation catheter which comprises the catheter system shown in FIG.
  • FIG. 2 is a plan view for explaining the fibrillation catheter constituting the catheter system shown in FIG. 1 (a diagram for explaining dimensions and hardness).
  • FIG. 3 is a transverse sectional view showing a section AA in FIG. 2.
  • FIG. 3 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG. 2;
  • FIG. 3 is a perspective view showing an internal structure of a handle of the embodiment of the defibrillation catheter shown in FIG. 2.
  • FIG. 2 is a plan view for explaining the fibrillation catheter constituting the catheter system shown in FIG. 1 (a diagram for explaining dimensions and hardness).
  • FIG. 3 is a transverse sectional view showing a section AA in FIG. 2.
  • FIG. 7 is a partially enlarged view of the inside (front end side) of the handle shown in FIG. 6.
  • FIG. 7 is a partial enlarged view of the inside (base end side) of the handle shown in FIG. 6.
  • FIG. 2 is a block diagram showing a flow of cardiac potential information when the cardiac potential is measured by a defibrillation catheter in the catheter system shown in FIG. 1.
  • FIG. 3 is a part of a flowchart (Step 1 to Step 7) showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
  • FIG. 6 is a remaining part (Step 8 to Step 16) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
  • FIG. FIG. 7 is a remaining part (Step 17 to Step 22) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1.
  • FIG. FIG. 2 is a block diagram showing a flow of information between the arithmetic processing unit of the power supply device and the memory of the defibrillation catheter when the power supply device is connected to the defibrillation catheter in the catheter system shown in FIG. 1.
  • FIG. 2 is a block diagram showing a flow of electrocardiographic information in an electrocardiographic measurement mode in the catheter system shown in FIG. 1.
  • FIG. 2 is a block diagram showing a flow of information relating to a resistance value between electrode groups and a cardiac potential information in the defibrillation mode of the catheter system shown in FIG. 1. It is a block diagram which shows the state at the time of DC voltage application in the defibrillation mode of the catheter system shown in FIG. It is an electric potential waveform diagram measured when predetermined
  • FIG. 2 is a block diagram showing a state in which information related to defibrillation performed by a defibrillation catheter in the catheter system shown in FIG. 1 is written in the memory of the defibrillation catheter by the arithmetic processing unit of the power supply device. . It is a block diagram which shows other embodiment of the intracardiac defibrillation catheter system of this invention.
  • the intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100 that is inserted into the heart chamber and performs defibrillation, and a power supply device 700 that applies a DC voltage to the electrodes of the defibrillation catheter 100.
  • a catheter system comprising an electrocardiograph 800 and an electrocardiogram measuring means 900;
  • the defibrillation catheter 100 includes a multi-lumen tube 10, A first DC electrode group 31G composed of eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10, A second DC electrode group 32G consisting of eight ring-shaped electrodes 32 mounted on the multi-lumen tube 10 and spaced from the first DC electrode group 31G toward the base end side; A proximal-side potential measurement electrode group 33G composed of four ring-shaped electrodes 33 mounted on the multi-lumen tube 10 and spaced apart from the second DC electrode group 32G toward the proximal end side; A first lead wire group 41G consisting of eight lead wires 41 having tips connected to the electrodes 31 constituting the first DC electrode group 31G; A second lead wire group 42G consisting of eight lead wires 42 having tips connected to the electrodes 32 constituting the second DC electrode group 32G; A third lead wire group 43G consisting of four lead wires 43 whose tips are connected to
  • the power supply device 700 includes a DC power supply unit 71, A catheter connection connector 72 connected to the proximal end side of the first lead wire group 41G, the second lead wire group 42G and the third lead wire group 43G of the defibrillation catheter 100; An electrocardiograph connector 73 connected to an input terminal of the electrocardiograph 800; An external switch 74 including a mode changeover switch 741, an electric energy setting switch 742, a charging switch 743, and an electric energy application switch 744 for setting the power supply device 700 to a defibrillation mode;
  • the DC power supply unit 71 is controlled based on the input of the external switch 74, and the DC voltage output circuit 751 from the DC power supply unit 71 is provided.
  • a switching unit comprising a switching switch of one circuit and two contacts, a catheter connection connector 72 connected to a common contact, the electrocardiograph connection connector 73 connected to a first contact, and an arithmetic processing unit 75 connected to a second contact 76 with;
  • the potential information is input to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73 of the power supply device 700,
  • the operation processing unit 75 of the power supply device 700 switches the contact of the switching unit 76 to the second contact, and the calculation is performed from the DC power supply unit 71 of the power supply device 700.
  • Voltages having different polarities are applied to the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 via the output circuit 751, the switching unit 76, and the catheter connection connector 72 of the processing unit 75;
  • the arithmetic processing unit 75 of the power supply device 700 (1) When the power supply device 700 is first connected to the defibrillation catheter 100, the first connection information in the memory 110 of the defibrillation catheter 100 is obtained from the time when the power supply device 700 was first connected and the serial information of the power supply device 700 connected first.
  • the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 is written, (3) When the defibrillation is not performed after the resistance value between the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is measured, the measurement of the resistance value is recognized as an event.
  • the measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the measured time and the serial information of the connected power supply device 700, (4)
  • the time of reconnection and the reconnection Write the serial information of the power supply device 700 to the event information storage unit 113 in the memory 110 of the defibrillation catheter 100, (5)
  • the event is determined from the connection time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100. It is determined whether or not the elapsed time up to the time at which the operation is performed exceeds the catheter use time limit stored in the memory 752 of the power supply device 700. This is a system for controlling the next event by the catheter 100 not to be executed.
  • the intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100, a power supply device 700, an electrocardiograph 800, and an electrocardiogram measuring means 900.
  • the defibrillation catheter 100 constituting the catheter system of the present embodiment includes a multi-lumen tube 10, a handle 20, a first DC electrode group 31G, a second DC electrode group 32G, A proximal-side potential measurement electrode group 33G, a first lead wire group 41G, a second lead wire group 42G, and a third lead wire group 43G are provided.
  • the multi-lumen tube 10 (insulating tube member having a multi-lumen structure) constituting the defibrillation catheter 100 has four lumens (first lumen 11 and second lumen 12). , A third lumen 13 and a fourth lumen 14) are formed.
  • 15 is a fluororesin layer that divides the lumen
  • 16 is an inner (core) portion made of a low hardness nylon elastomer
  • 17 is an outer (shell) portion made of a high hardness nylon elastomer.
  • 4 and 18 in FIG. 4 is a stainless steel wire forming a braided blade.
  • the fluororesin layer 15 partitioning the lumen is made of a highly insulating material such as perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • the nylon elastomer that forms the outer portion 17 of the multi-lumen tube 10 has a hardness that varies depending on the axial direction.
  • the multi-lumen tube 10 is comprised so that hardness may become high in steps toward the base end side from the front end side.
  • the hardness of the region indicated by L1 (length 52 mm) (hardness by a D-type hardness meter) is 40
  • the hardness of the region indicated by L2 (length 108 mm) is 55, L3 (long).
  • the hardness of the region shown by 25.7 mm) is 63
  • the hardness of the region shown by L4 (length 10 mm) is 68
  • the hardness of the region shown by L5 is 72.
  • the braided blade composed of the stainless steel wire 18 is formed only in the region indicated by L5 in FIG. 3, and is provided between the inner portion 16 and the outer portion 17 as shown in FIG.
  • the outer diameter of the multi-lumen tube 10 is, for example, 1.2 to 3.3 mm.
  • the method for manufacturing the multi-lumen tube 10 is not particularly limited.
  • the handle 20 constituting the defibrillation catheter 100 in the present embodiment includes a handle main body 21, a knob 22, and a strain relief 24. By rotating the knob 22, the tip of the multi-lumen tube 10 can be deflected (swinged).
  • the first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G are attached to the outer periphery (the tip region where no braid is formed) inside the multi-lumen tube 10.
  • the “electrode group” is a set of a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. Refers to the body.
  • the first DC electrode group is formed by mounting a plurality of electrodes constituting the same pole (-pole or + pole) at a narrow interval in the tip region of the multi-lumen tube.
  • the number of electrodes constituting the first DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
  • the first DC electrode group 31 ⁇ / b> G includes eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10.
  • the electrode 31 constituting the first DC electrode group 31G is connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 41 constituting the first lead wire group 41G) and a connector described later.
  • the width (length in the axial direction) of the electrode 31 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 31 is too narrow, the amount of heat generated when a voltage is applied may be excessive, which may damage surrounding tissues. On the other hand, if the width of the electrode 31 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the first DC electrode group 31G is provided may be impaired.
  • the mounting interval of the electrodes 31 is preferably 1 to 5 mm, and 2 mm is a preferable example.
  • the first DC electrode group 31G is located, for example, in the coronary vein.
  • the second DC electrode group is separated from the mounting position of the first DC electrode group of the multi-lumen tube toward the base end side and constitutes a plurality of poles (+ pole or ⁇ pole) opposite to the first DC electrode group. Electrodes are mounted at narrow intervals.
  • the number of electrodes constituting the second DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
  • the second DC electrode group 32G includes eight ring-shaped electrodes 32 that are mounted on the multi-lumen tube 10 while being spaced apart from the mounting position of the first DC electrode group 31G toward the proximal end side.
  • the electrodes 32 constituting the second DC electrode group 32G are connected to a catheter connection connector of the power supply device 700 via a lead wire (lead wire 42 constituting the second lead wire group 42G) and a connector described later.
  • the width (length in the axial direction) of the electrode 32 is preferably 2 to 5 mm, and is 4 mm as a suitable example. If the width of the electrode 32 is too narrow, the amount of heat generated at the time of voltage application becomes excessive, which may damage the surrounding tissue. On the other hand, if the width of the electrode 32 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the second DC electrode group 32G is provided may be impaired.
  • the mounting interval of the electrodes 32 is preferably 1 to 5 mm, and 2 mm is a preferable example.
  • the second DC electrode group 32G is located, for example, in the right atrium.
  • the proximal-side potential measurement electrode group 33G includes four ring-shaped electrodes 33 that are mounted on the multi-lumen tube 10 so as to be spaced apart from the mounting position of the second DC electrode group 32G toward the proximal end side. Yes.
  • the electrodes 33 constituting the proximal-side potential measuring electrode group 33G are connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 43 constituting the third lead wire group 43G) and a connector described later. Yes.
  • the width (length in the axial direction) of the electrode 33 is preferably 0.5 to 2.0 mm, and 1.2 mm is a preferable example. If the width of the electrode 33 is too wide, the measurement accuracy of the cardiac potential is lowered, or it is difficult to specify the site where the abnormal potential is generated.
  • the mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
  • the proximal-side potential measurement electrode group 33G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
  • a distal tip 35 is attached to the distal end of the defibrillation catheter 100.
  • a lead wire is not connected to the tip chip 35 and is not used as an electrode in this embodiment. However, it can also be used as an electrode by connecting a lead wire.
  • the constituent material of the tip 35 is not particularly limited, such as metal materials such as platinum and stainless steel, various resin materials, and the like.
  • the distance d2 between the first DC electrode group 31G (base end side electrode 31) and the second DC electrode group 32G (tip end side electrode 32) is preferably 40 to 100 mm, and 66 mm is a preferable example. is there.
  • the distance d3 between the second DC electrode group 32G (base end side electrode 32) and the base end side potential measurement electrode group 33G (tip end side electrode 33) is preferably 5 to 50 mm, and a suitable example is shown. 30 mm.
  • platinum or a platinum-based material is used in order to improve the contrast with respect to X-rays. It is preferable to consist of these alloys.
  • the first lead wire group 41G shown in FIGS. 4 and 5 is an aggregate of eight lead wires 41 connected to each of the eight electrodes (31) constituting the first DC electrode group (31G). .
  • Each of the eight electrodes 31 constituting the first DC electrode group 31G can be electrically connected to the power supply device 700 by the first lead wire group 41G (lead wire 41).
  • the eight electrodes 31 constituting the first DC electrode group 31G are connected to different lead wires 41, respectively.
  • Each of the lead wires 41 is welded to the inner peripheral surface of the electrode 31 at the tip portion, and enters the first lumen 11 from a side hole formed in the tube wall of the multi-lumen tube 10.
  • the eight lead wires 41 that have entered the first lumen 11 extend to the first lumen 11 as a first lead wire group 41G.
  • the second lead wire group 42G shown in FIGS. 4 and 5 is an assembly of eight lead wires 42 connected to each of the eight electrodes (32) constituting the second DC electrode group (32G). .
  • Each of the eight electrodes 32 constituting the second DC electrode group 32G can be electrically connected to the power supply device 700 by the second lead wire group 42G (lead wire 42).
  • the eight electrodes 32 constituting the second DC electrode group 32G are connected to different lead wires 42, respectively.
  • Each of the lead wires 42 is welded to the inner peripheral surface of the electrode 32 at the tip portion thereof, and the second lumen 12 (the first lead wire group 41G extends from the side hole formed in the tube wall of the multi-lumen tube 10. A different lumen from the existing first lumen 11 is entered.
  • the eight lead wires 42 that have entered the second lumen 12 extend to the second lumen 12 as a second lead wire group 42G.
  • the first lead wire group 41G extends to the first lumen 11 and the second lead wire group 42G extends to the second lumen 12. Fully insulated and isolated. Therefore, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G (first DC electrode group 31G) and the second lead wire group 42G (second DC electrode group 32G). Can be reliably prevented.
  • the third lead wire group 43G shown in FIG. 4 is an assembly of four lead wires 43 connected to each of the electrodes (33) constituting the proximal-side potential measurement electrode group (33G).
  • Each of the electrodes 33 constituting the proximal-side potential measurement electrode group 33G can be electrically connected to the power supply device 700 by the third lead wire group 43G (lead wire 43).
  • the four electrodes 33 constituting the base end side potential measurement electrode group 33G are connected to different lead wires 43, respectively.
  • Each of the lead wires 43 is welded to the inner peripheral surface of the electrode 33 at the tip portion thereof, and enters the third lumen 13 from a side hole formed in the tube wall of the multi-lumen tube 10.
  • the four lead wires 43 that have entered the third lumen 13 extend to the third lumen 13 as a third lead wire group 43G.
  • the third lead wire group 43G extending to the third lumen 13 is completely insulated and isolated from both the first lead wire group 41G and the second lead wire group 42G. Therefore, when a voltage necessary for defibrillation is applied, the third lead wire group 43G (base end side potential measurement electrode group 33G) and the first lead wire group 41G (first DC electrode group 31G) or the first A short circuit between the two lead wire group 42G (second DC electrode group 32G) can be reliably prevented.
  • the lead wire 41, the lead wire 42, and the lead wire 43 are all made of a resin-coated wire in which the outer peripheral surface of the metal conducting wire is covered with a resin such as polyimide.
  • the coating resin has a thickness of about 2 to 30 ⁇ m.
  • 65 is a pull wire.
  • the pull wire 65 extends to the fourth lumen 14 and extends eccentrically with respect to the central axis of the multi-lumen tube 10.
  • the tip portion of the pull wire 65 is fixed to the tip tip 35 with solder. Moreover, a large-diameter portion for retaining (a retaining portion) may be formed at the tip of the pull wire 65. Thereby, the tip tip 35 and the pull wire 65 are firmly coupled, and the tip tip 35 can be reliably prevented from falling off.
  • the proximal end portion of the pull wire 65 is connected to the knob 22 of the handle 20, and the pull wire 65 is pulled by operating the knob 22, whereby the distal end portion of the multi-lumen tube 10 is deflected.
  • the pull wire 65 is made of stainless steel or a Ni—Ti superelastic alloy, but is not necessarily made of metal.
  • the pull wire 65 may be formed of, for example, a high-strength non-conductive wire. Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
  • the first lead wire group 41G, the second lead wire group 42G, and the third lead wire group 43G are insulated and isolated also inside the handle 20.
  • FIG. 6 is a perspective view showing the internal structure of the handle of the defibrillation catheter 100 in this embodiment
  • FIG. 7 is a partially enlarged view of the inside of the handle (front end side)
  • FIG. 8 is the inside of the handle (base end side). It is a partial enlarged view.
  • the base end portion of the multi-lumen tube 10 is inserted into the distal end opening of the handle 20, whereby the multi-lumen tube 10 and the handle 20 are connected.
  • a cylindrical connector 50 formed by arranging a plurality of pin terminals (51, 52, 53) protruding in the distal direction on the distal end surface 50 ⁇ / b> A is provided at the proximal end portion of the handle 20.
  • each of the three lead wire groups (first lead wire group 41G, second lead wire group 42G, and third lead wire group 43G) is inserted into the handle 20.
  • Three insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) are extended.
  • the distal end portion (about 10 mm from the distal end) of the first insulating tube 26 is inserted into the first lumen 11 of the multi-lumen tube 10, whereby the first insulating tube 26 is
  • the first lead wire group 41G is connected to the first lumen 11 extending.
  • the first insulating tube 26 connected to the first lumen 11 passes through the inner hole of the first protective tube 61 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the first lead wire group 41G to the vicinity of the connector 50.
  • the first lead wire group 41G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the first insulating tube 26) without being kinked. Can do.
  • the first lead wire group 41G extending from the base end opening of the first insulating tube 26 is divided into eight lead wires 41 constituting the first lead wire group 41G, and each of the lead wires 41 is a front end surface 50A of the connector 50.
  • each of the lead wires 41 is a front end surface 50A of the connector 50.
  • a region where the pin terminals (pin terminals 51) to which the lead wires 41 constituting the first lead wire group 41G are connected and fixed is arranged is referred to as a “first terminal group region”.
  • the distal end portion (about 10 mm from the distal end) of the second insulating tube 27 is inserted into the second lumen 12 of the multi-lumen tube 10, whereby the second lead wire group 42G extends in the second insulating tube 27.
  • the second insulating tube 27 connected to the second lumen 12 passes through the inner hole of the second protective tube 62 extending to the inside of the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the second lead wire group 42G to the vicinity of the connector 50.
  • the second lead wire group 42G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the second insulating tube 27) without being kinked. Can do.
  • the second lead wire group 42G extending from the proximal end opening of the second insulating tube 27 is divided into eight lead wires 42 constituting the second lead wire group 42G, and each of these lead wires 42 is a front end surface 50A of the connector 50.
  • a region where the pin terminals (pin terminals 52) to which the lead wires 42 constituting the second lead wire group 42G are connected and fixed is disposed is referred to as a “second terminal group region”.
  • the distal end portion (about 10 mm from the distal end) of the third insulating tube 28 is inserted into the third lumen 13 of the multi-lumen tube 10, whereby the third lead wire group 43G extends in the third insulating tube 28.
  • the third insulating tube 28 connected to the third lumen 13 passes through the inner hole of the second protective tube 62 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path for guiding the proximal end portion of the third lead wire group 43G to the vicinity of the connector 50.
  • the third lead wire group 43G extending from the multi-lumen tube 10 extends inside the handle 20 (inner hole of the third insulating tube 28) without kinking. Can do.
  • the third lead wire group 43G extending from the proximal end opening of the third insulating tube 28 is divided into four lead wires 43 constituting the third lead wire group 43, and each of the lead wires 43 is connected to the distal end surface 50A of the connector 50.
  • an area where the pin terminals (pin terminals 53) to which the lead wires 43 constituting the third lead wire group 43G are connected and fixed is arranged is referred to as a “third terminal group area”.
  • examples of the constituent material of the insulating tubes include polyimide resin, polyamide resin, and polyamideimide resin. .
  • a polyimide resin is particularly preferable because of its high hardness, easy insertion of the lead wire group, and capable of thin molding.
  • the thickness of the insulating tube is preferably 20 to 40 ⁇ m, and is 30 ⁇ m as a suitable example.
  • nylon elastomer such as “Pebax” (registered trademark of ARKEMA) is exemplified. be able to.
  • the first lead wire group 41G extends in the first insulating tube 26, and the second lead in the second insulating tube 27. Since the wire group 42G extends and the third lead wire group 43G extends in the third insulating tube 28, the first lead wire group 41G and the second lead wire are also provided inside the handle 20.
  • the group 42G and the third lead wire 43G can be completely insulated and isolated.
  • the first insulating tube 26 is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
  • the insulating tube is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52.
  • the defibrillation catheter 100 partitions the distal end surface 50A of the connector 50 on which a plurality of pin terminals are arranged into a first terminal group region, a second terminal group region, and a third terminal group region, and leads A partition plate 55 that separates the wire 41 from the lead wire 42 and the lead wire 43 is provided.
  • the partition plate 55 that partitions the first terminal group region, the second terminal group region, and the third terminal group region is formed by molding an insulating resin into a bowl shape having flat surfaces on both sides.
  • the insulating resin constituting the partition plate 55 is not particularly limited, and a general-purpose resin such as polyethylene can be used.
  • the thickness of the partition plate 55 is, for example, 0.1 to 0.5 mm, and 0.2 mm is a preferable example.
  • the height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the front end surface 50A of the connector 50 and the insulating tubes (the first insulating tube 26 and the second insulating tube 27).
  • the separation distance is 7 mm
  • the height of the partition plate 55 is, for example, 8 mm.
  • the distal end edge cannot be positioned on the distal end side with respect to the proximal end of the insulating tube.
  • the lead wire 41 (the base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) constituting the first lead wire group 41G, and the second lead wire group
  • the lead wire 42 (the base end portion of the lead wire 42 extending from the base end opening of the second insulating tube 27) constituting the 42G can be reliably and orderly isolated.
  • the partition plate 55 is not provided, the lead wire 41 and the lead 42 cannot be separated (separated) in an orderly manner, and these may be mixed.
  • the lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G, to which voltages having different polarities are applied, are separated from each other by the partition plate 55 and are in contact with each other. Therefore, when the defibrillation catheter 100 is used, even if a voltage necessary for defibrillation in the heart chamber is applied, the lead wires 41 (first insulating tube) constituting the first lead wire group 41G are applied. 26 of the lead wire 41 extending from the proximal end opening of the lead wire 26 and the lead wire 42 constituting the second lead wire group 42G (the lead wire 42 extending from the proximal end opening of the second insulating tube 27). A short circuit does not occur between the base end portion and the base end portion.
  • the lead wire 41 constituting the first lead wire group 41G is connected to the second terminal group region.
  • the lead 41 straddles the partition wall 55, so that a connection error can be easily found.
  • the lead wire 43 (pin terminal 53) constituting the third lead wire group 43G is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52).
  • the present invention is not limited to this, and may be separated from the lead wire 42 (pin terminal 52) by the partition plate 55 together with the lead wire 41 (pin terminal 51).
  • the distal end edge of the partition plate 55 is located on the distal end side with respect to both the proximal end of the first insulating tube 26 and the proximal end of the second insulating tube 27.
  • the lead wire (lead wire 41 constituting the first lead wire group 41G) extending from the base end opening of the first insulating tube 26 and the lead extending from the base end opening of the second insulating tube 27 are provided.
  • the partition plate 55 is always present, and the short circuit due to the contact between the lead wires 41 and the lead wires 42 is surely prevented. Can do.
  • eight lead wires 41 extending from the base end opening of the first insulating tube 26 and connected and fixed to the pin terminal 51 of the connector 50, and from the base end opening of the second insulating tube 27 are connected.
  • Eight lead wires 42 extending and fixedly connected to the pin terminal 52 of the connector 50, and four leads extending from the proximal end opening of the third insulating tube 28 and fixedly connected to the pin terminal 53 of the connector 50.
  • the shape of the wire 43 is held and fixed by the periphery of the wire 43 being hardened by the resin 58.
  • the resin 58 that retains the shape of the lead wire is formed into a cylindrical shape having the same diameter as the connector 50, and the pin terminal, the lead wire, the base end portion of the insulating tube, and the partition plate 55 are formed inside the resin molded body. Is embedded. According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire region of the end portion can be completely covered with the resin 58, and the shape of the lead wire (base end portion) can be completely held and fixed. Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the partition plate 55, and is 9 mm, for example, when the height of the partition plate 55 is 8 mm.
  • the resin 58 constituting the resin molded body is not particularly limited, but it is preferable to use a thermosetting resin or a photocurable resin.
  • a thermosetting resin or a photocurable resin Specifically, urethane-based, epoxy-based, and urethane-epoxy-based curable resins can be exemplified.
  • the shape of the lead wire is held and fixed by the resin 58, when the defibrillation catheter 100 is manufactured (when the connector 50 is mounted inside the handle 20), an insulating tube is used. It is possible to prevent the lead wire extending from the base end opening from being kinked or coming into contact with the edge of the pin terminal and causing damage (for example, generation of cracks in the coating resin of the lead wire).
  • the defibrillation catheter 100 constituting the catheter system of this embodiment includes a memory 110 having a catheter serial storage unit 111, an initial connection information storage unit 112, and an event information storage unit 113. I have.
  • the memory 110 provided in the defibrillation catheter 100 is composed of, for example, a memory chip stored inside the handle 20.
  • Table 1 below shows an example of the memory structure of the defibrillation catheter 100, along with written information.
  • Serial information of the defibrillation catheter 100 is stored in the catheter serial storage unit 111 of the memory 110.
  • serial information of the defibrillation catheter 100 a manufacturing number (serial number), a manufacturing date, etc. can be mentioned.
  • This serial information is information on product management written at the time of manufacture of the defibrillation catheter 100, and cannot be rewritten or added.
  • the deserialization catheter serial number (123456) is written in the catheter serial storage unit 111.
  • the first connection information storage unit 112 of the memory 110 stores the time (date and time) when the power supply device is first connected to the defibrillation catheter 100 and the serial information of the power supply device connected first.
  • the first connection time and the serial information of the first connected power supply device are written by the arithmetic processing unit of the first connected power supply device, and cannot be rewritten once written.
  • the performance of the defibrillation catheter 100 which is a disposable product, deteriorates when used for a certain period of time. For this reason, the defibrillation catheter 100 is set with a use time limit (this use time limit is stored in the memory 752 of the power supply device 700) from the viewpoint of performance and safety.
  • the “time when the power supply device is first connected to the catheter 100” is a starting point of the use time limit of the defibrillation catheter 100.
  • the first connection information storage unit 112 is written with the time when the power supply device was first connected (December 5, 2009, 10:00:00).
  • a serial number (10011) is written as serial information of the connected power supply device.
  • Information related to an event (operation) including defibrillation by the defibrillation catheter 100 was connected to the event information storage unit 113 of the memory 110 and the time (date and time) when the event was performed, and at that time It is stored together with the power supply serial information.
  • the resistance value (intracardiac resistance value) between the first DC electrode group 31G and the second DC electrode group 32G is attempted to be applied between these electrode groups.
  • the information on the set value of electric energy, the actually applied output voltage and the output time is stored in the event information storage unit 113 together with the time when this defibrillation is performed and the serial information of the power supply device connected at that time. Written.
  • the event 2 of the event information storage unit 113 has a defibrillation as an event, a resistance value (75 ⁇ ) between the electrode groups, an energy set value (15J), an output The voltage (300 V) and output time (13.5 msec) are written in the event information storage unit 113 together with the time when defibrillation is performed and the serial number of the power supply device connected at that time (event 3) The same applies to 4 and 7.)
  • the measurement of the resistance value between the first DC electrode group 31G and the second DC electrode group 32G is usually performed prior to defibrillation, it can be included in the defibrillation event.
  • the measurement of the resistance value is recognized as a single event, and the measured resistance value is measured together with the measured time and the serial information of the connected power supply device, and the event information storage unit 113. Is written to.
  • the resistance value (75 ⁇ ) between the electrode groups has a measurement time (December 5, 2009 10:05:00 Second) and the serial number (10011) of the power supply device connected at that time are written in the event information storage unit 113.
  • the resistance value (79 ⁇ ) between the electrode groups is measured at the measurement time (December 5, 2009 10:53:22) and the serial number (10032) of the power supply device connected at that time. At the same time, it is written in the event information storage unit 113.
  • the power supply device when the power supply device is connected to the defibrillation catheter 100, if it is the first connection, the time and serial information of this power supply device are written in the initial connection information storage unit 112. However, when the same or different power supply devices are reconnected, the information is written in the event information storage unit 113.
  • the event 5 in the event information storage unit 113 includes the reconnection time (December 5, 2009, 10:40:08) and the reconnected power supply device.
  • the serial number (10032) is written in the event information storage unit 113.
  • the power supply device 700 constituting the catheter system of the present embodiment includes a DC power supply unit 71, a catheter connection connector 72, an electrocardiograph connection connector 73, an external switch (input means) 74, and the like. , An arithmetic processing unit 75, a switching unit 76, an electrocardiogram input connector 77, and an electrocardiogram information display unit 78.
  • the DC power supply unit 71 has a built-in capacitor, and the built-in capacitor is charged by the input of the external switch 74 (charge switch 743).
  • the catheter connector 72 is connected to the connector 50 of the defibrillation catheter 100, and is electrically connected to the proximal end side of the first lead wire group (41G), the second lead wire group (42G), and the third lead wire group (43G). Connected.
  • the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1, Pin terminals 51 (actually 8) that connect and fix the eight lead wires 41 constituting the first lead wire group, and terminals 721 (actually 8) of the catheter connector 72, Pin terminals 52 (actually 8) that connect and fix the eight lead wires 42 constituting the second lead wire group, and terminals 722 (actually 8) of the catheter connector 72, Pin terminals 53 (actually four) to which the four lead wires 43 constituting the third lead wire group are connected and fixed, and terminals 723 (actually four) of the catheter connector 72 are connected to each other. Yes.
  • the terminal 721 and the terminal 722 of the catheter connection connector 72 are connected to the switching unit 76, and the terminal 723 is directly connected to the electrocardiograph connection connector 73 without passing through the switching unit 76.
  • the cardiac potential information measured by the first DC electrode group 31G and the second DC electrode group 32G reaches the electrocardiograph connection connector 73 via the switching unit 76, and is measured by the proximal-side potential measurement electrode group 33G.
  • the electrocardiogram information thus reached reaches the electrocardiograph connector 73 without passing through the switching unit 76.
  • the electrocardiograph connector 73 is connected to the input terminal of the electrocardiograph 800.
  • An external switch 74 serving as input means includes a mode switch 741 for switching between a cardiac potential measurement mode and a defibrillation mode, an electrical energy setting switch 742 for setting electrical energy applied during defibrillation, and a DC power supply unit A charge switch 743 for charging 71 and an electric energy application switch (discharge switch) 744 for defibrillation by applying electric energy. All input signals from these external switches 74 are sent to the arithmetic processing unit 75.
  • the arithmetic processing unit 75 of the power supply device controls the DC power supply unit 71, the switching unit 76, and the electrocardiogram information display unit 78 based on the input of the external switch 74.
  • the arithmetic processing unit 75 has an output circuit 751 for outputting a DC voltage from the DC power supply unit 71 to the electrode of the defibrillation catheter 100 via the switching unit 76.
  • the terminal 721 of the catheter connection connector 72 shown in FIG. 9 finally, the first DC electrode group 31G of the defibrillation catheter 100
  • the terminal 722 of the catheter connection connector 72 finally, The DC voltage may be applied so that the second DC electrode group 32G of the defibrillation catheter 100 has a different polarity from each other (when one electrode group is a negative electrode, the other electrode group is a positive electrode). it can.
  • the arithmetic processing unit 75 includes a memory 752 in which serial information of the power supply device 700 and a catheter use time limit are stored, and an internal clock 753 for determining the time.
  • the serial information of the power supply device 700 stored in the memory 752 can include a manufacturing number (serial number), a manufacturing date, and the like. This serial information is information on product management written at the time of manufacturing the power supply device, and cannot be rewritten or added.
  • the catheter use time limit stored in the memory 752 is set from the viewpoint of the performance and safety of the defibrillation catheter 100 and cannot be rewritten by the user of the catheter system.
  • the time limit for using the catheter is longer than the maximum time required for one procedure, and is a time that does not cause a problem from the viewpoint of the performance and safety of the defibrillation catheter. For example, it is set to 24 hours. Of course, the present invention is not limited to this.
  • the time determined by the internal clock 753 includes the time when the power supply device is first connected to the defibrillation catheter 100, and the event (defibrillation, measurement of resistance value between electrode groups, power supply device) by the defibrillation catheter 100.
  • the time at which the reconnection is performed can be given.
  • the arithmetic processing unit 75 obtains the connected time with reference to the internal clock 753, and this time is stored in the memory 752. Are written in the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100.
  • the means for detecting that the power supply device 700 is connected to the defibrillation catheter 100 is not particularly limited.
  • a circuit in which a weak current flows when the power supply device 700 is connected or a power supply device 700 is provided.
  • a means for providing a physical switch to the catheter connector 72 is not particularly limited.
  • connection of the power supply device 700 is the “first” connection or reconnection in the defibrillation catheter 100 is calculated by the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100.
  • the processing unit 75 refers to and the information is not stored in the first connection information storage unit 112, it is determined that the connection is the “first” connection, and when the information is stored in the first connection information storage unit 112, Judge that it is a reconnection.
  • the arithmetic processing unit 75 has a resistance value between the first DC electrode group 31G and the second DC electrode group 32G (prior to the defibrillation. Measured intracardiac resistance value), set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), output voltage and output time (actual Information on the voltage and time applied to the power supply device, and this information is stored in the memory 752 in the time when this defibrillation is performed (time by the internal clock 753) and the power supply device 700 connected thereto. Together with the stored serial information), the event information is stored in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 (events 2, 3, 4, Reference).
  • the arithmetic processing unit 75 measures the resistance value. And the measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the time at which it was measured and the serial information of the connected power supply device 700 (see the above table). 1 event 1 and 6). Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
  • the arithmetic processing unit 75 reconnects the same or different power supply device 700 to the defibrillation catheter 100 (initial connection information in the memory 110). (When connected to the defibrillation catheter 100 whose time is stored in the storage unit 112), this is recognized as an event, and the reconnection time and the serial information of the power supply device 700 are stored in the memory 110 of the defibrillation catheter 100. Write to the event information storage unit 113 (see event 5 in Table 1 above). As a result, a history of reconnection (exchange) of the power supply device can be recorded.
  • the catheter system of the present embodiment it is possible to record a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100.
  • a history of events defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device
  • information related to these events is stored not in the power supply device side but in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100, an event of one defibrillation catheter 100 is stored in a plurality of power supply devices. Even if it is performed using the above, the information related to these events is not distributed to a plurality of power supply apparatuses.
  • the arithmetic processing unit 75 performs the initial connection information storage unit in the memory 110 of the defibrillation catheter 100 for each event written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100. It is determined whether or not the elapsed time from the connection time written in 112 to the time when the event is performed exceeds the catheter use time limit stored in the memory 752 of the power supply device 700. If it is determined, control is performed so that the next event by the defibrillation catheter 100 is not executed.
  • the event 3 stored in the event information storage unit 113 is removed from the connection time (10:00:00) written in the initial connection information storage unit 112.
  • the elapsed time until the time when fibrillation is performed (10:09:25) is 9 minutes 25 seconds, and the use time limit of the catheter stored in the memory 752 of the power supply device 700 is set to 24 hours 00 minutes 00, for example. If it is a second, since the elapsed time does not exceed the catheter use time limit, the next event 4 can be defibrillated.
  • a defibrillation catheter that is a disposable product can be used only during a time when there is no problem in terms of performance and safety.
  • the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as a starting point for the use restriction time of the defibrillation catheter 100. Therefore, even if the event is performed by reconnecting the same or different power supply devices, after the use time limit has elapsed from the connection time written in the initial connection information storage unit 112, the event by the defibrillation catheter 100 is transmitted. There is no execution.
  • the switching unit 76 has a common contact to which the catheter connection connector 72 (terminal 721 and terminal 722) is connected, an electrocardiograph connection connector 73 is connected to the first contact, and an arithmetic processing unit 75 is connected to the second contact. It consists of a switch with two circuit contacts. That is, when the first contact is selected, a path connecting the catheter connection connector 72 and the electrocardiograph connection connector 73 is secured, and when the second contact is selected, the catheter connection connector 72 and the arithmetic processing unit 75 are connected. A connecting route is secured.
  • the switching operation of the switching unit 76 is controlled by the arithmetic processing unit 75 based on the input of the external switch 74 (mode switching switch 741 and electrical energy application switch 744).
  • the electrocardiogram input connector 77 is connected to the arithmetic processing unit 75 and also connected to the output terminal of the electrocardiograph 800. With this electrocardiogram input connector 77, the electrocardiogram information output from the electrocardiograph 800 (usually part of the electrocardiogram information input to the electrocardiograph 800) can be input to the arithmetic processing unit 75.
  • the unit 75 can control the DC power supply unit 71 and the switching unit 76 based on the cardiac potential information.
  • the cardiac potential information display unit 78 is connected to the arithmetic processing unit 75, and the cardiac potential information display unit 78 displays the cardiac potential information (mainly the cardiac potential waveform) input from the electrocardiogram input connector 77 to the arithmetic processing unit 75. Then, the operator can perform defibrillation treatment (such as input of an external switch) while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit 75.
  • defibrillation treatment such as input of an external switch
  • the electrocardiograph 800 (input terminal) constituting the catheter system of the present embodiment is connected to the electrocardiograph connector 73 of the power supply device 700, and the defibrillation catheter 100 (first DC electrode group 31G, second DC electrode group 32G). And electrocardiographic potential information measured by the base-side potential measuring electrode group 33G) is input to the electrocardiograph 800 from the electrocardiograph connector 73.
  • the electrocardiograph 800 (other input terminal) is also connected to the electrocardiogram measuring unit 900, and the electrocardiogram information measured by the electrocardiogram measuring unit 900 is also input to the electrocardiograph 800.
  • the electrocardiogram measuring means 900 includes an electrode pad attached to the patient's body surface for measuring a 12-lead electrocardiogram, and an electrode catheter (an electrode different from the defibrillation catheter 100) mounted in the patient's heart. Catheter).
  • the electrocardiograph 800 (output terminal) is connected to the electrocardiogram input connector 77 of the power supply device 700, Part of the cardiac potential information (cardiac potential information from the defibrillation catheter 100 and cardiac potential information from the cardiac potential measuring means 900) input to the electrocardiograph 800 is sent from the electrocardiogram input connector 77 to the arithmetic processing unit 75. be able to.
  • the defibrillation catheter 100 in this embodiment can be used as an electrode catheter for measuring cardiac potential when defibrillation treatment is not required.
  • FIG. 10 shows the flow of cardiac potential information when cardiac potential is measured by the defibrillation catheter 100 according to the present embodiment when performing cardiac catheterization (for example, high frequency therapy).
  • the switching unit 76 of the power supply device 700 selects the first contact to which the electrocardiograph connection connector 73 is connected.
  • the cardiac potential measured by the electrodes constituting the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 passes through the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73. Input to the electrocardiograph 800.
  • the cardiac potential measured by the electrodes constituting the proximal-side potential measurement electrode group 33G of the defibrillation catheter 100 passes directly from the catheter connection connector 72 through the electrocardiograph connection connector 73 without passing through the switching unit 76. And input to the electrocardiograph 800.
  • Cardiac potential information (cardiac potential waveform) from the defibrillation catheter 100 is displayed on a monitor (not shown) of the electrocardiograph 800. Further, a part of the cardiac potential information from the defibrillation catheter 100 (for example, the potential difference between the electrodes 31 (first pole and second pole) constituting the first DC electrode group 31G) is transferred from the electrocardiograph 800 to the electrocardiogram. Via the input connector 77 and the arithmetic processing unit 75, it can be input to the electrocardiogram information display unit 78 and displayed.
  • the defibrillation catheter 100 can be used as an electrode catheter for measuring cardiac potential.
  • defibrillation treatment can be immediately performed with the defibrillation catheter 100 used as an electrode catheter.
  • the trouble of newly inserting a catheter for defibrillation can be saved.
  • the power supply device 700 is connected to the defibrillation catheter 100. Specifically, the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1 (see Step 1 in FIG. 11A and FIG. 9).
  • the arithmetic processing unit 75 of the power supply device 700 Upon detecting that the power supply device 700 is connected to the defibrillation catheter 100, the arithmetic processing unit 75 of the power supply device 700 reads serial information from the catheter serial storage unit 111 in the memory of the defibrillation catheter 100. In order to determine whether this connection is the first connection in the defibrillation catheter 100 or the reconnection of the same or different power supply device, the initial connection information storage unit 112 in the memory 110 is referred to. Then, it is determined whether or not information is written therein. If no information is written in the initial connection information storage unit 112, the process proceeds to Step 3, and if information is written, the process proceeds to Step 4 (Step 2, (See FIG. 12).
  • the arithmetic processing unit 75 of the power supply device 700 causes the time when the power supply device 700 is connected at Step 1 (time by the internal clock 753) and the power supply device 700.
  • Serial information (serial information stored in the memory 752) is written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the process proceeds to Step 5 (Step 3, see FIG. 12).
  • Step 4 When information is written in the initial connection information storage unit 112, the arithmetic processing unit 75 of the power supply device 700 delimits the time when the power supply device 700 was connected in Step 1 and the serial information of the power supply device 700. Write to the event information storage unit 113 in the memory 110 of the kinetic catheter 100 and proceed to Step 5 (Step 4, see FIG. 12).
  • the position of the electrodes of the defibrillation catheter 100 (constituting electrodes of the first DC electrode group 31G, the second DC electrode group 32G, and the proximal end side potential measurement electrode group 33G) is confirmed on the X-ray image, and the cardiac potential measurement is performed.
  • a part of the electrocardiogram information (12-lead electrocardiogram) input to the electrocardiograph 800 is selected from the means 900 (electrode pad affixed to the body surface), and the arithmetic processing unit 75 of the power supply 700 is selected from the electrocardiogram input connector 77. (Step 5).
  • a part of the electrocardiogram information input to the arithmetic processing unit 75 is displayed on the electrocardiogram information display unit 78 (see FIG. 13).
  • the constituent electrodes of the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73.
  • the inputted cardiac potential information and the heart inputted from the constituent electrodes of the proximal side potential measurement electrode group 33G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connector 72 and the electrocardiograph connector 73.
  • the potential information is displayed on a monitor (not shown) of the electrocardiograph 800.
  • the mode changeover switch 741 which is the external switch 74, is input (Step 6).
  • the power supply device 700 in the present embodiment is in the “cardiac potential measurement mode” in the initial state, the switching unit 76 selects the first contact, and the electrocardiograph connection connector from the catheter connection connector 72 via the switching unit 76. A route to 73 is secured.
  • the arithmetic processing unit 75 of the power supply device 700 starts from the time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the event information storage unit It is determined whether or not the elapsed time up to the time of the last writing in 113 exceeds the catheter use time limit stored in the memory 752 of the arithmetic processing unit 75. If not, the process proceeds to Step 8. If it exceeds, the subsequent operation cannot be performed and “end” is performed (Step 7).
  • connection of the power supply device 700 in Step 1 is the first connection in this defibrillation catheter 100 (when going through Steps 2, 3, 5, 6), information is stored in the event information storage unit 113. Since it has not been written, it is possible to proceed to Step 8.
  • the connection of the power supply device 700 in Step 1 is a connection again in this defibrillation catheter 100 (when going through Steps 2, 4, 5, and 6)
  • the event information storage unit 113 is finally written.
  • the time is the time when the power supply device 700 written in Step 4 is reconnected.
  • the time last written in the event information storage unit 113 is the application of electric energy (defibrillation) in Step 17 described later. ).
  • the arithmetic processing unit 75 sets the mode of the power supply device 700 to “cardiac potential measurement mode”. To “defibrillation mode” (Step 8 in FIG. 11B).
  • Step 9 As shown in FIG. 14, when the mode changeover switch 741 is input to switch to the defibrillation mode, the contact of the switching unit 76 is switched to the second contact by the control signal of the arithmetic processing unit 75, and the catheter connection connector 72. Thus, a route from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 9).
  • the switching unit 76 selects the second contact point, the electrocardiographic information from the constituent electrodes of the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is input to the electrocardiograph 800. (Therefore, this electrocardiographic information cannot be sent to the arithmetic processing unit 75). However, the electrocardiographic information from the constituent electrodes of the proximal-side potential measurement electrode group 33G that does not pass through the switching unit 76 is input to the electrocardiograph 800.
  • Step 10 When the contact point of the switching unit 76 is switched to the second contact point, the resistance value between the first DC electrode group (31G) and the second DC electrode group (32G) of the defibrillation catheter 100 is measured (Step 10). .
  • the resistance value input to the arithmetic processing unit 75 from the catheter connection connector 72 via the switching unit 76 is combined with a part of the cardiac potential information from the cardiac potential measuring means 900 input to the arithmetic processing unit 75. It can be displayed on the potential information display section 78 (see FIG. 14).
  • the contact point of the switching unit 76 is switched to the first contact point, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored (Step 11).
  • the time during which the contact of the switching unit 76 selects the second contact is, for example, 1 second.
  • the arithmetic processing unit 75 determines whether or not the resistance value measured in Step 10 exceeds a certain value, and if not, in the next Step 13 (preparation for applying a DC voltage). If it has exceeded, the process returns to Step 5 (confirmation of the electrode position of the defibrillation catheter 100) (Step 12).
  • the resistance value exceeds a certain value the first DC electrode group and / or the second DC electrode group is surely placed at a predetermined site (for example, a coronary vein tube wall, an inner wall of the right atrium). Since it means that the contact has not been made, it is necessary to return to Step 5 and readjust the position of the electrode.
  • the voltage is applied only when the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 are reliably brought into contact with a predetermined part (for example, the coronary vein tube wall or the right atrial inner wall). Therefore, an effective defibrillation treatment can be performed.
  • a predetermined part for example, the coronary vein tube wall or the right atrial inner wall. Therefore, an effective defibrillation treatment can be performed.
  • the electric energy setting switch 742 which is the external switch 74 is input to set the applied energy at the time of defibrillation (Step 13).
  • the applied energy can be set from 1J to 30J in increments of 1J.
  • the operation processing unit 75 switches the contact of the switching unit 76 to the second contact, and the catheter connection connector 72 reaches the operation processing unit 75 via the switching unit 76. A path is secured, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 16).
  • the output circuit 751, the switching unit 76, and the catheter connection connector of the calculation processing unit 75 are received from the DC power supply unit 71 that has received the control signal from the calculation processing unit 75.
  • Direct current voltages having different polarities are applied to the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 via 72 (see Step 17 in FIG. 11C and FIG. 15).
  • the arithmetic processing unit 75 performs arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77, and sends a control signal to the DC power supply unit 71.
  • one R wave maximum peak
  • the electrocardiogram waveform a part of the 12-lead electrocardiogram from the electrocardiogram measurement means 900
  • the peak height is detected.
  • a certain time for example, 1/10 of the peak width of the R wave
  • the application is started after a very short time).
  • the horizontal axis represents time and the vertical axis represents potential.
  • the time (t 0 ) from the time when the trigger level is reached until the start of application is 0.01 to 0.05 seconds, for example, 0.01 seconds if a suitable example is shown.
  • t 1 + t 2 is, for example, 0.006 to 0.03 seconds, and 0.02 seconds if a suitable example is shown.
  • the measured peak voltage (V 1 ) is, for example, 300 to 600V.
  • Step 18 After a certain time (t 0 + t) has elapsed after the potential difference in the cardiac potential waveform reaches the trigger level, application of a voltage from the DC power supply unit 71 is stopped in response to a control signal from the arithmetic processing unit 75. (Step 18).
  • the applied record (cardiac potential waveform at the time of application as shown in FIG. 16) is displayed on the cardiac potential information display section 78 (Step 19).
  • the display time is, for example, 5 seconds.
  • the arithmetic processing unit 75 of the power supply device 700 has a resistance value (defibrillation) between the first DC electrode group 31G and the second DC electrode group 32G.
  • the intracardiac resistance value measured in advance when performing the measurement) the set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), Information on the output voltage (actually applied voltage indicated by V 1 in FIG. 16) and output time (actually applied time indicated by t in FIG. 16) is obtained, and this information is obtained by this defibrillation.
  • the contact point of the switching unit 76 is switched to the first contact point, the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored, and the first DC electrode of the defibrillation catheter 100 is restored.
  • the electrocardiographic information from the constituent electrodes of the group 31G and the second DC electrode group 32G is input to the electrocardiograph 800 (Step 21, see FIG. 13).
  • the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 can directly apply electrical energy to the heart that has caused fibrillation.
  • the electrical stimulation (electric shock) necessary and sufficient for fibrillation treatment can be reliably applied only to the heart. And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
  • a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100 can be recorded.
  • information related to these events is stored in the memory 110 (event information storage unit 113) of the defibrillation catheter 100, an event of one defibrillation catheter 100 is performed using a plurality of power supply devices. Even so, the information related to these events is not distributed to a plurality of power supply apparatuses. Therefore, event history information can be managed for each defibrillation catheter 100 specified by the serial information.
  • the event history can be used for investigating the cause of the occurrence of the abnormality.
  • Information written in the memory 110 of the defibrillation catheter 100 can be read out by an appropriate information reading device.
  • a defibrillation catheter that is a disposable product can be used only for a limited use time set from the viewpoint of its performance and safety, and for a defibrillation catheter that has passed the limited use time, Defibrillation (application of electrical energy) by the defibrillation catheter is not performed. Thereby, the performance and safety of the defibrillation catheter can be ensured.
  • the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as a starting point for the use restriction time of the defibrillation catheter 100.
  • the event by the defibrillation catheter 100 is executed after the use time limit has elapsed from the connection time written in the initial connection information storage unit 112. I will not let you.
  • the electrocardiogram information measured by the constituent electrodes 33 of the proximal-side potential measurement electrode group 33G is transmitted from the catheter connector 72 to the electrocardiograph via the electrocardiograph connector 73 without passing through the switching unit 76. Since the electrocardiograph 800 is connected to the electrocardiogram measuring means 900, the electrocardiograms from the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are detected by the heart. During defibrillation treatment that cannot be obtained by the electrometer 800 (the switching unit 76 switches to the second contact, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked.
  • the electrocardiograph 800 can acquire the electrocardiogram information measured by the proximal-side potential measurement electrode group 33G and the electrocardiogram measurement means 900 even when the electrocardiogram 800 is It is possible to perform defibrillation therapy while monitoring (monitoring) the cardiac potential at 800.
  • the arithmetic processing unit 75 of the power supply device 700 controls the DC power source 71 by performing arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77 ( Application is started after a lapse of a certain time (for example, 0.01 seconds) after the potential difference in the cardiac potential waveform reaches the trigger level), so that the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are The voltage can be applied in synchronization with the cardiac potential waveform, and an effective defibrillation treatment can be performed.
  • the arithmetic processing unit 75 that is, the first DC electrode group 31G and the second DC electrode group 32G have a predetermined part (for example, Only when it is securely abutted against the coronary vein wall, the inner wall of the right atrium), it is controlled so that it can proceed to preparation for applying a DC voltage, so effective defibrillation treatment is performed. be able to.
  • FIG. 18 is a block diagram showing another embodiment of the intracardiac defibrillation catheter system of the present invention.
  • the power supply device 701 of the present embodiment is provided with a memory information display unit or a memory information output unit 79 connected to the arithmetic processing unit 75.
  • the arithmetic processing unit 75 constituting the power supply device 701 of the present embodiment reads information written in the memory 110 of the defibrillation catheter 100 and displays it on the memory information display unit or outputs it to the memory information output unit. Can be made.
  • the information written in the memory 110 By displaying the information written in the memory 110, for example, the history of defibrillation written in the event information storage unit 113 on the memory information display unit, this can be confirmed during the procedure.
  • the information written in the memory 110 is output to the memory information output unit, and this is left as a part of the treatment record. Specifically, the output voltage and output time in each defibrillation are printed. Can be attached to the patient's chart.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

An intracardiac defibrillation catheter system comprises a defibrillation catheter (100) and a power supply device (700). The defibrillation catheter (100) includes a first DC electrode group (31G), a second DC electrode group (32G), and memory (110) having an event information storage portion (113). The power supply device (700) includes a DC power supply unit (71), a catheter connecting connector (72), and an arithmetic processing unit (75) having an output circuit (751) for the DC voltage from the DC power supply unit (71) and an internal clock (753). The arithmetic processing unit (75) controls the DC power supply unit (71), stores the serial information of the power supply device (700), and controls writing to and reading from the memory (110) of the defibrillation catheter (100). The arithmetic processing unit (75) writes information relating to carried out defibrillation to the event information storage portion (113) in the memory of the defibrillation catheter (100). The intracardiac defibrillation catheter system makes it possible to record the operation history of a defibrillation catheter.

Description

心腔内除細動カテーテルシステムIntracardiac defibrillation catheter system
 本発明は、心腔内除細動カテーテルシステムに関し、更に詳しくは、心腔内に挿入される除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置とを備えたカテーテルシステムに関する。 The present invention relates to an intracardiac defibrillation catheter system, and more specifically, includes a defibrillation catheter that is inserted into the heart chamber, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter. The present invention relates to a catheter system.
 心房細動を除去する除細動器として体外式除細動器(AED)が知られている(例えば、特許文献1参照)。
 AEDによる除細動治療では、患者の体表に電極パッドを装着して直流電圧を印加することにより、患者の体内に電気エネルギーを与える。ここに、電極パッドから患者の体内に流れる電気エネルギーは、通常150~200Jとされ、そのうちの一部(通常、数%~20%程度)が心臓に流れて除細動治療に供される。
An external defibrillator (AED) is known as a defibrillator for removing atrial fibrillation (see, for example, Patent Document 1).
In defibrillation treatment by AED, electrical energy is given to the patient's body by attaching an electrode pad to the patient's body surface and applying a DC voltage. Here, the electrical energy flowing from the electrode pad into the patient's body is usually 150 to 200 J, and a part (usually about several percent to 20%) of the fluid flows to the heart and is used for the defibrillation treatment.
特開2001-112874号公報参照See JP 2001-112874 A
 しかして、心房細動は、心臓カテーテル術中において起こりやすく、この場合にも電気的除細動を行う必要がある。
 しかしながら、電気エネルギーを体外から供給するAEDによっては、細動を起こしている心臓に対して効果的な電気エネルギー(例えば10~30J)を供給することは困難である。
Thus, atrial fibrillation is likely to occur during cardiac catheterization, and even in this case, it is necessary to perform cardioversion.
However, depending on the AED that supplies electric energy from outside the body, it is difficult to supply effective electric energy (for example, 10 to 30 J) to the heart that is causing fibrillation.
 すなわち、体外から供給される電気エネルギーのうち、心臓に流れる割合が少ない場合(例えば数%程度)には、十分な除細動治療を行うことができない。
 一方、体外から供給される電気エネルギーが高い割合で心臓に流れた場合には、心臓の組織が損傷を受ける虞も考えられる。
 また、AEDによる除細動治療では、電極パッドを装着した体表に火傷が生じやすい。そして、上記のように、心臓に流れる電気エネルギーの割合が少ない場合には、電気エネルギーの供給を繰り返して行うことによって火傷の程度が重くなり、カテーテル術を受けている患者にとって相当の負担となる。
That is, sufficient defibrillation treatment cannot be performed when the proportion of electrical energy supplied from outside the body is small (for example, about several percent).
On the other hand, when the electrical energy supplied from outside the body flows to the heart at a high rate, the heart tissue may be damaged.
Further, in the defibrillation treatment by AED, burns are likely to occur on the body surface to which the electrode pad is attached. And as mentioned above, when the ratio of the electrical energy flowing to the heart is small, repeated supply of electrical energy increases the degree of burns, which is a considerable burden for patients undergoing catheterization. .
 このような問題を解決するために、本発明者らは、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置と、心電計とを備えたカテーテルシステムを提案している(特願2009-70940号明細書)。 In order to solve such a problem, the present inventors have introduced a defibrillation catheter that is inserted into the heart chamber and performs defibrillation, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter. Has proposed a catheter system including an electrocardiograph (Japanese Patent Application No. 2009-70940).
 しかして、上記のような構成の心腔内除細動カテーテルシステムにおいて、除細動カテーテルの動作履歴を記録することができれば望ましい。 However, in the intracardiac defibrillation catheter system configured as described above, it is desirable if the operation history of the defibrillation catheter can be recorded.
 例えば、使用している途中で除細動カテーテルに異常が発生し、所望の除細動治療ができなくなった場合に、その動作の履歴(どのような条件で除細動が行われていたか)は、異常発生の原因を究明する上できわめて有用な情報である。 For example, when an abnormality occurs in the defibrillation catheter during use and the desired defibrillation treatment cannot be performed, the history of the operation (under what conditions defibrillation was performed) Is extremely useful information for investigating the cause of abnormalities.
 また、除細動カテーテルの開発過程での耐久試験において、厳しい条件(例えば、過大
な電圧の印加)で動作させて不具合を生じさせたときの動作履歴は、除細動カテーテルの改良点を絞り込む上できわめて有用な情報である。
Also, in the endurance test in the defibrillation catheter development process, the operation history when operating under severe conditions (for example, application of excessive voltage) and causing problems will narrow down the improvements of the defibrillation catheter. Very useful information above.
 更に、除細動カテーテルの動作履歴を治療記録の一部として残すこと、例えば、各除細動における出力電圧・出力時間などを印字して患者のカルテに貼付することができれば好ましい。 Furthermore, it is preferable to leave the operation history of the defibrillation catheter as a part of the treatment record, for example, if the output voltage and output time in each defibrillation can be printed and attached to the patient's chart.
 除細動カテーテルの動作履歴を記録する方法として、動作履歴を記憶するためのメモリを電源装置に設け、除細動カテーテルにより、除細動などの動作が行われるごとに、出力電圧、出力時間などの情報を電源装置のメモリに書き込むことが考えられる。
 この場合において、除細動カテーテルには、電源装置によって読み取り可能なシリアル情報(シリアル番号)が付与されている必要がある。
As a method of recording the operation history of the defibrillation catheter, a memory for storing the operation history is provided in the power supply device, and an output voltage and an output time each time an operation such as defibrillation is performed by the defibrillation catheter. Such information may be written in the memory of the power supply device.
In this case, the defibrillation catheter needs to be given serial information (serial number) that can be read by the power supply device.
 しかしながら、例えば、手技中に予備の電源装置に接続し直した場合など、除細動カテーテルに接続された電源装置が1基でない場合には、除細動カテーテルの動作履歴情報が複数の電源装置に分散されてしまうことになり、動作履歴情報の管理がきわめて煩雑となる。 However, when there is not one power supply device connected to the defibrillation catheter, for example, when the power supply device is reconnected to the spare power supply device during the procedure, the operation history information of the defibrillation catheter includes a plurality of power supply devices. Management of the operation history information becomes very complicated.
 本発明は以上のような事情に基いてなされたものあって、本発明の目的は、心臓カテーテル術中に心房細動を起こした心臓に対して、除細動に必要かつ十分な電気エネルギーを確実に供給することができる心腔内除細動カテーテルシステムを提供することにある。
 本発明の他の目的は、患者の体表に火傷を生じさせることなく、除細動治療を行うことのできる心腔内除細動カテーテルシステムを提供することにある。
 本発明の更に他の目的は、除細動カテーテルの動作履歴を記録することができる心腔内除細動カテーテルシステムを提供することにある。
 本発明の更に他の目的は、異なる電源装置を接続し直すことにより、複数の電源装置によって除細動カテーテルを動作した履歴があったとしても、この除細動カテーテルによる動作履歴を1つのメモリに記憶させることができ、除細動カテーテルごとに動作履歴情報の管理を行うことのできる心腔内除細動カテーテルシステムを提供することにある。
The present invention has been made based on the circumstances as described above, and an object of the present invention is to ensure the necessary and sufficient electric energy for defibrillation for the heart that has undergone atrial fibrillation during cardiac catheterization. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be supplied to a patient.
Another object of the present invention is to provide an intracardiac defibrillation catheter system capable of performing defibrillation treatment without causing burns on the patient's body surface.
Still another object of the present invention is to provide an intracardiac defibrillation catheter system capable of recording the operation history of a defibrillation catheter.
Still another object of the present invention is to reconnect different power supply devices so that even if there is a history of operating the defibrillation catheters by a plurality of power supply devices, the operation history by the defibrillation catheters is stored in one memory. It is an object of the present invention to provide an intracardiac defibrillation catheter system that can be stored in the device and can manage operation history information for each defibrillation catheter.
(1)本発明の心腔内除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置とを備えたカテーテルシステムであって;
 前記除細動カテーテルは、絶縁性のチューブ部材と、
 前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群(第1DC電極群)と、
 前記第1DC電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群(第2DC電極群)と、
 前記第1DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
 前記第2DC電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
 前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、並びに、前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
 前記電源装置は、DC電源部と、
 前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
 前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
 前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
  前記除細動カテーテルにより除細動を行うときには、前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群とに、互いに異なる極性の電圧が印加され、
  前記電源装置の演算処理部は、前記除細動カテーテルにより除細動が行われたときに、前記第1DC電極群と前記第2DC電極群との間の抵抗値、前記第1DC電極群と前記第2DC電極群との間に印加しようとした電気エネルギーの設定値、実際に印加された出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことを特徴とする。
(1) An intracardiac defibrillation catheter system of the present invention includes a defibrillation catheter that is inserted into the heart chamber and performs defibrillation, and a power supply device that applies a DC voltage to the electrode of the defibrillation catheter. A catheter system comprising:
The defibrillation catheter includes an insulating tube member;
A first electrode group (first DC electrode group) composed of a plurality of ring-shaped electrodes attached to the distal end region of the tube member;
A second electrode group (second DC electrode group) composed of a plurality of ring-shaped electrodes mounted on the tube member apart from the first DC electrode group on the proximal end side;
A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first DC electrode group;
A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second DC electrode group;
The catheter serial storage unit in which the serial information of the defibrillation catheter is stored, and the information related to the event including the defibrillation by the defibrillation catheter, the time at which the event is performed, and the connected power supply device A memory having an event information storage unit for storing serial information;
The power supply device includes a DC power supply unit,
A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device to determine the time And an arithmetic processing unit that has an internal clock and controls writing to and reading from the memory of the defibrillation catheter;
When defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group is measured, and then, based on an input of the external switch, the DC of the power supply device is measured. Voltages having different polarities are applied from the power supply unit to the first DC electrode group and the second DC electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
The arithmetic processing unit of the power supply device, when defibrillation is performed by the defibrillation catheter, a resistance value between the first DC electrode group and the second DC electrode group, the first DC electrode group and the Information on the set value of the electrical energy to be applied between the second DC electrode group, the actually applied output voltage and the output time is acquired, and the information is used for the time and connection of the defibrillation. Along with the serial information of the power supply device, the event information storage unit in the memory of the defibrillation catheter is written.
 本発明の心腔内除細動カテーテルシステムを構成する除細動カテーテルを、第1DC電極群が冠状静脈内に位置し、第2DC電極群が右心房内に位置するように心腔内に挿入し、電源装置によって、第1リード線群および第2リード線群を介して、第1DC電極群と第2DC電極群とに、互いに異なる極性の電圧を印加する(第1DC電極群と第2DC電極群との間に直流電圧を印加する)ことにより、細動を起こしている心臓に直接的に電気エネルギーが与えられ、これにより除細動治療が行われる。 The defibrillation catheter constituting the intracardiac defibrillation catheter system of the present invention is inserted into the heart chamber such that the first DC electrode group is located in the coronary vein and the second DC electrode group is located in the right atrium. Then, the power supply device applies voltages having different polarities to the first DC electrode group and the second DC electrode group via the first lead wire group and the second lead wire group (the first DC electrode group and the second DC electrode group). By applying a DC voltage to the group), electrical energy is directly applied to the heart undergoing fibrillation, whereby defibrillation treatment is performed.
 このように、心腔内に配置した除細動カテーテルの第1DC電極群および第2DC電極群により、細動を起こした心臓に対して直接的に電気エネルギーを与えることによれば、除細動治療に必要かつ十分な電気的刺激(電気ショック)を心臓のみに確実に与えることができる。
 そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。
As described above, according to the first DC electrode group and the second DC electrode group of the defibrillation catheter disposed in the heart chamber, electrical energy is directly applied to the fibrillated heart. The electrical stimulation (electric shock) necessary and sufficient for treatment can be reliably applied only to the heart.
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
 本発明の心腔内除細動カテーテルシステムを構成する除細動カテーテルによって除細動が行われたときには、このシステムを構成する(この除細動カテーテルに接続された)電源装置の演算処理部により、第1DC電極群と第2DC電極群との間の抵抗値(心内抵抗値)、第1DC電極群と第2DC電極群との間に印加しようとした電気エネルギーの設定値、出力電圧(実際に印加された電圧)および出力時間(実際に印加された時間)の情報が、この除細動が行われた時刻および電源装置のシリアル情報とともに、除細動カテーテルのメモリにおけるイベント情報記憶部に書き込まれ、当該除細動カテーテルのイベント(動作)履歴として記憶される。 When defibrillation is performed by the defibrillation catheter constituting the intracardiac defibrillation catheter system of the present invention, the arithmetic processing unit of the power supply apparatus (connected to the defibrillation catheter) constituting this system Thus, the resistance value (intracardiac resistance value) between the first DC electrode group and the second DC electrode group, the set value of the electrical energy to be applied between the first DC electrode group and the second DC electrode group, the output voltage ( Event information storage unit in the memory of the defibrillation catheter includes information on the actual applied voltage) and output time (actually applied time) along with the time when this defibrillation was performed and the serial information of the power supply device. And is stored as an event (operation) history of the defibrillation catheter.
 本発明の心腔内除細動カテーテルシステムによれば、除細動を含むイベントに係る情報が、除細動カテーテルのメモリにおけるイベント情報記憶部に記憶されるので、1つの除細動カテーテルのイベントを複数の電源装置を使用して行ったとしても、イベントに係る情報が、複数の電源装置に分散されることはない。これにより、シリアル情報で特定された除細動カテーテルごとに、イベント履歴情報の管理を行うことができる。
 また、イベント履歴情報に関して除細動カテーテルに備えられているのはメモリ(記憶手段)のみであり、これらの情報を処理する役割は電源装置の演算処理部が担っているので、除細動カテーテルが大型化したり、その構造が複雑化したりすることはない。
According to the intracardiac defibrillation catheter system of the present invention, information related to an event including defibrillation is stored in the event information storage unit in the memory of the defibrillation catheter. Even if an event is performed using a plurality of power supply devices, information relating to the event is not distributed to the plurality of power supply devices. Thereby, event history information can be managed for each defibrillation catheter specified by the serial information.
In addition, regarding the event history information, the defibrillation catheter has only a memory (storage means), and the processing unit of the power supply apparatus is responsible for processing such information. Does not increase in size or its structure.
(2)本発明の心腔内除細動カテーテルシステムを構成する電源装置の演算処理部は、前記除細動カテーテルの前記第1DC電極群と前記第2DC電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことが好ましい。
 これにより、除細動を行わなかったときの心内抵抗値のデータについても記録することができる。
(2) The arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention measures the resistance value between the first DC electrode group and the second DC electrode group of the defibrillation catheter. When the defibrillation is not performed after the detection, the measurement of the resistance value is recognized as an event, and the measured resistance value is measured together with the measured time and the serial information of the connected power supply device. It is preferable to write in the event information storage unit in the catheter memory.
Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
(3)本発明の心腔内除細動カテーテルシステムを構成する電源装置の演算処理部は、使用していた電源装置が取り外された除細動カテーテルに、同一または異なる電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことが好ましい。
 これにより、電源装置を再接続(交換)したことの履歴を、交換前後の電源装置のシリアル情報とともに記録することができる。
(3) The arithmetic processing unit of the power supply device constituting the intracardiac defibrillation catheter system of the present invention reconnects the same or different power supply device to the defibrillation catheter from which the power supply device used was removed Sometimes, it is preferable to recognize this as an event, and write the reconnection time and the serial information of the reconnected power supply device in the event information storage unit in the memory of the defibrillation catheter.
As a result, the history of reconnection (replacement) of the power supply device can be recorded together with the serial information of the power supply device before and after the replacement.
(4)本発明の心腔内除細動カテーテルシステムを構成する電源装置は、前記演算処理部に接続されたメモリ情報表示部またはメモリ情報出力部を有し、前記電源装置の演算処理部は、前記除細動カテーテルのメモリに書き込まれている情報を読み出して、前記メモリ情報表示部に表示させ、または、前記メモリ情報出力部に出力させてもよい。
 メモリに書き込まれている情報、例えば、イベント情報記憶部に書き込まれた除細動の履歴をメモリ情報表示部に表示させることにより、手技中にこれを確認することができる。また、メモリに書き込まれている情報をメモリ情報出力部に出力させることにより、治療記録の一部として残すことができる。
(4) A power supply device constituting the intracardiac defibrillation catheter system of the present invention has a memory information display unit or a memory information output unit connected to the calculation processing unit, and the calculation processing unit of the power supply device includes: The information written in the memory of the defibrillation catheter may be read and displayed on the memory information display unit or output to the memory information output unit.
By displaying the information written in the memory, for example, the history of defibrillation written in the event information storage unit on the memory information display unit, this can be confirmed during the procedure. Further, by outputting the information written in the memory to the memory information output unit, it can be left as a part of the treatment record.
(5)本発明の心腔内除細動カテーテルシステムにおいて、前記除細動カテーテルおよび前記電源装置とともに、心電計を備え、
 前記電源装置は、前記心電計の入力端子に接続される心電計接続コネクタと、
 1回路2接点の切替スイッチからなり、共通接点に前記カテーテル接続コネクタが接続され、第1接点に前記心電計接続コネクタが接続され、第2接点に前記演算処理部が接続された切替部とを備えてなり;
 前記除細動カテーテルの第1電極群および/または第2電極群を構成する電極により心電位を測定するときには、前記切替部において第1接点が選択され、前記除細動カテーテルからの心電位情報が、前記電源装置の前記カテーテル接続コネクタ、前記切替部および前記心電計接続コネクタを経由して前記心電計に入力され、
 前記除細動カテーテルにより除細動を行うときには、前記電源装置の前記演算処理部によって前記切替部の接点が第2接点に切り替わり、前記DC電源部から、前記演算処理部の出力回路、前記切替部および前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることが好ましい。
(5) The intracardiac defibrillation catheter system of the present invention comprises an electrocardiograph together with the defibrillation catheter and the power supply device,
The power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
A switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact; Comprising:
When the cardiac potential is measured by the electrodes constituting the first electrode group and / or the second electrode group of the defibrillation catheter, the first contact is selected in the switching unit, and the cardiac potential information from the defibrillation catheter is selected. Is input to the electrocardiograph via the catheter connection connector of the power supply device, the switching unit and the electrocardiograph connection connector,
When defibrillation is performed by the defibrillation catheter, the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching It is preferable that voltages having different polarities are applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connection connector.
 電源装置を構成する切替部において、第1接点を選択することにより、カテーテル接続コネクタから心電計接続コネクタに至る経路が確保されるので、除細動カテーテルの第1DC電極群および/または第2DC電極群を構成する電極により心電位を測定し、得られる心電位情報を、カテーテル接続コネクタ、切替部および心電計接続コネクタを経由して心電計に入力することができる。 Since the path from the catheter connector to the electrocardiograph connector is secured by selecting the first contact in the switching unit constituting the power supply device, the first DC electrode group and / or the second DC of the defibrillation catheter is secured. The electrocardiogram can be measured by the electrodes constituting the electrode group, and the obtained electrocardiogram information can be input to the electrocardiograph via the catheter connector, the switching unit, and the electrocardiograph connector.
 すなわち、心臓カテーテル術中において除細動治療を必要としないときには、本発明を構成する除細動カテーテルを心電位測定用の電極カテーテルとして用いることができる。この結果、心臓カテーテル術中に心房細動が起きたときに、電極カテーテルを抜去して、
除細動のためのカテーテルを新に挿入するなどの手間を省くことができる。
That is, when defibrillation treatment is not required during cardiac catheterization, the defibrillation catheter constituting the present invention can be used as an electrode catheter for measuring cardiac potential. As a result, when atrial fibrillation occurs during cardiac catheterization, the electrode catheter is removed,
It is possible to save the trouble of newly inserting a catheter for defibrillation.
(6)上記(5)の心腔内除細動カテーテルシステムにおいて、前記除細動カテーテルは、前記第1電極群または前記第2電極群から離間して前記チューブ部材に装着された複数の電極からなる電位測定電極群と、
 前記電位測定電極群を構成する電極の各々に先端が接続された複数のリード線からなり、その基端側が、前記電源装置のカテーテル接続コネクタに接続される電位測定用のリード線群とを備えてなり、
 前記電源装置には、前記カテーテル接続コネクタと、前記心電計接続コネクタとを直接結ぶ経路が形成され、
 前記電位測定電極群を構成する電極によって測定された心電位情報は、前記電源装置の前記カテーテル接続コネクタから、前記切替部を経ることなく、前記心電計接続コネクタを経由して前記心電計に入力されることが好ましい。
(6) In the intracardiac defibrillation catheter system according to (5), the defibrillation catheter includes a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group. A potential measuring electrode group comprising:
The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device. And
In the power supply device, a path directly connecting the catheter connector and the electrocardiograph connector is formed,
The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit. Is preferably entered.
 このような構成によれば、除細動カテーテルの第1DC電極群および前記第2DC電極群からの心電位を心電計が取得することのできない除細動治療の際にも、電位測定電極群によって測定された心電位を心電計が取得することができ、心電計において心電位を監視(モニタリング)しながら除細動治療を行うことができる。 According to such a configuration, even in the case of defibrillation treatment in which the electrocardiograph cannot acquire the cardiac potential from the first DC electrode group and the second DC electrode group of the defibrillation catheter, the potential measurement electrode group The electrocardiograph can acquire the electrocardiogram measured by the above-mentioned, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
(7)上記(5)または(6)の心腔内除細動カテーテルシステムを構成する心電計には、前記除細動カテーテル以外の心電位測定手段が接続されていることが好ましい。
(8)また、この心電位測定手段が電極パッドまたは電極カテーテルであることが好ましい。
(7) It is preferable that an electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph constituting the intracardiac defibrillation catheter system of (5) or (6).
(8) Moreover, it is preferable that this cardiac potential measuring means is an electrode pad or an electrode catheter.
 このような構成によれば、除細動カテーテルの第1DC電極群および前記第2DC電極群からの心電位を心電計が取得することのできない除細動治療の際にも、当該心電位測定手段によって測定された心電位を心電計が取得することができ、心電計において心電位を監視(モニタリング)しながら除細動治療を行うことができる。 According to such a configuration, even in the case of defibrillation treatment in which the electrocardiograph cannot obtain the electrocardiogram from the first DC electrode group and the second DC electrode group of the defibrillation catheter, the electrocardiogram measurement is performed. An electrocardiograph can acquire the electrocardiogram measured by the means, and defibrillation treatment can be performed while monitoring the electrocardiogram with the electrocardiograph.
(9)上記(5)~(8)の心腔内除細動カテーテルシステムを構成する電源装置は、前記演算処理部および前記心電計の出力端子に接続された心電図入力コネクタと、前記演算処理部に接続された心電位情報表示部とを備えてなり、
 前記心電図入力コネクタに入力された前記心電計からの心電位情報は、前記演算処理部に入力され、さらに、前記心電位情報表示部に表示されることが好ましい。
(9) The power supply device constituting the intracardiac defibrillation catheter system according to (5) to (8) above includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and the calculation An electrocardiogram information display unit connected to the processing unit,
It is preferable that the electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit.
 このような構成によれば、心電計に入力された心電位情報(除細動カテーテルの第1DC電極群および/または第2DC電極群を構成する電極により取得された心電位、除細動カテーテルの電位測定電極群を構成する電極により取得された心電位、あるいは、除細動カテーテル以外の心電位測定手段により取得された心電位)の一部が演算処理部に入力され、演算処理部では、この心電位情報に基いてDC電源部を制御することができる。
 また、演算処理部に入力された心電位情報(波形)を心電位情報表示部で監視しながら除細動治療(外部スイッチの入力など)を行うことができる。
According to such a configuration, cardiac potential information input to the electrocardiograph (cardiac potential acquired by the electrodes constituting the first DC electrode group and / or the second DC electrode group of the defibrillation catheter, the defibrillation catheter) A part of the cardiac potential acquired by the electrodes constituting the potential measuring electrode group or the cardiac potential acquired by the cardiac potential measuring means other than the defibrillation catheter) is input to the arithmetic processing unit. The DC power supply unit can be controlled based on this electrocardiographic information.
Further, defibrillation treatment (such as input of an external switch) can be performed while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit with the electrocardiogram information display unit.
 本発明の心腔内除細動カテーテルシステムによれば、心臓カテーテル術中に心房細動等を起こした心臓に対して、除細動に必要かつ十分な電気エネルギーを確実に供給することができる。また、患者の体表に火傷を生じさせることもなく侵襲性も少ない。
 本発明の心腔内除細動カテーテルシステムによれば、除細動カテーテルのイベント履歴を記録することができる。
 本発明の心腔内除細動カテーテルシステムによれば、異なる電源装置を接続し直すこと
により、除細動カテーテルによるイベントを複数の電源装置を使用して行ったとしても、この除細動カテーテルによるイベント履歴を1つのメモリ(イベント情報記憶部)に記憶させることができ、除細動カテーテルごとにイベント履歴情報の管理を行うことができる。
According to the intracardiac defibrillation catheter system of the present invention, electrical energy necessary and sufficient for defibrillation can be reliably supplied to the heart that has undergone atrial fibrillation or the like during cardiac catheterization. In addition, it does not cause burns on the patient's body surface and is less invasive.
According to the intracardiac defibrillation catheter system of the present invention, the event history of a defibrillation catheter can be recorded.
According to the intracardiac defibrillation catheter system of the present invention, this defibrillation catheter can be used even if an event by a defibrillation catheter is performed using a plurality of power supply devices by reconnecting different power supply devices. Can be stored in one memory (event information storage unit), and event history information can be managed for each defibrillation catheter.
本発明の心腔内除細動カテーテルシステムの一実施形態を示すブロック図である。1 is a block diagram illustrating one embodiment of an intracardiac defibrillation catheter system of the present invention. FIG. 図1に示したカテーテルシステムを構成する細動カテーテルを示す説明用平面図である。It is a top view for description which shows the fibrillation catheter which comprises the catheter system shown in FIG. 図1に示したカテーテルシステムを構成する細動カテーテルを示す説明用平面図(寸法および硬度を説明するための図)である。FIG. 2 is a plan view for explaining the fibrillation catheter constituting the catheter system shown in FIG. 1 (a diagram for explaining dimensions and hardness). 図2のA-A断面を示す横断面図である。FIG. 3 is a transverse sectional view showing a section AA in FIG. 2. 図2のB-B断面、C-C断面、D-D断面を示す横断面図である。FIG. 3 is a transverse sectional view showing a BB section, a CC section, and a DD section in FIG. 2; 図2に示した除細動カテーテルの一実施形態のハンドルの内部構造を示す斜視図である。FIG. 3 is a perspective view showing an internal structure of a handle of the embodiment of the defibrillation catheter shown in FIG. 2. 図6に示したハンドル内部(先端側)の部分拡大図である。FIG. 7 is a partially enlarged view of the inside (front end side) of the handle shown in FIG. 6. 図6に示したハンドル内部(基端側)の部分拡大図である。FIG. 7 is a partial enlarged view of the inside (base end side) of the handle shown in FIG. 6. 図1に示したカテーテルシステムにおいて、除細動カテーテルのコネクタと、電源装置のカテーテル接続コネクタとの連結状態を模式的に示す説明図である。In the catheter system shown in FIG. 1, it is explanatory drawing which shows typically the connection state of the connector of a defibrillation catheter, and the catheter connection connector of a power supply device. 図1に示したカテーテルシステムにおいて、除細動カテーテルによって心電位を測定する場合の心電位情報の流れを示すブロック図である。FIG. 2 is a block diagram showing a flow of cardiac potential information when the cardiac potential is measured by a defibrillation catheter in the catheter system shown in FIG. 1. 図1に示したカテーテルシステムにおける電源装置の動作および操作を示すフローチャートの一部(Step1~Step7)である。FIG. 3 is a part of a flowchart (Step 1 to Step 7) showing the operation and operation of the power supply device in the catheter system shown in FIG. 1. FIG. 図1に示したカテーテルシステムにおける電源装置の動作および操作を示すフローチャートの残部(Step8~Step16)である。FIG. 6 is a remaining part (Step 8 to Step 16) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1. FIG. 図1に示したカテーテルシステムにおける電源装置の動作および操作を示すフローチャートの残部(Step17~Step22)である。FIG. 7 is a remaining part (Step 17 to Step 22) of the flowchart showing the operation and operation of the power supply device in the catheter system shown in FIG. 1. FIG. 図1に示したカテーテルシステムにおいて、除細動カテーテルに電源装置を接続したときの、電源装置の演算処理部と、除細動カテーテルのメモリとの間の情報の流れを示すブロック図である。FIG. 2 is a block diagram showing a flow of information between the arithmetic processing unit of the power supply device and the memory of the defibrillation catheter when the power supply device is connected to the defibrillation catheter in the catheter system shown in FIG. 1. 図1に示したカテーテルシステムにおいて、心電位測定モードにおける心電位情報の流れを示すブロック図である。FIG. 2 is a block diagram showing a flow of electrocardiographic information in an electrocardiographic measurement mode in the catheter system shown in FIG. 1. 図1に示したカテーテルシステムの除細動モードにおいて、電極群間の抵抗値に係る情報および心電位情報の流れを示すブロック図である。FIG. 2 is a block diagram showing a flow of information relating to a resistance value between electrode groups and a cardiac potential information in the defibrillation mode of the catheter system shown in FIG. 1. 図1に示したカテーテルシステムの除細動モードにおいて直流電圧印加時の状態を示すブロック図である。It is a block diagram which shows the state at the time of DC voltage application in the defibrillation mode of the catheter system shown in FIG. 図1に示したカテーテルシステムを構成する除細動カテーテルによって所定の電気エネルギーを付与した際に測定される電位波形図である。It is an electric potential waveform diagram measured when predetermined | prescribed electric energy is provided with the defibrillation catheter which comprises the catheter system shown in FIG. 図1に示したカテーテルシステムにおいて、除細動カテーテルによってなされた除細動に係る情報が、電源装置の演算処理部により、除細動カテーテルのメモリに書き込まれている状態を示すブロック図である。FIG. 2 is a block diagram showing a state in which information related to defibrillation performed by a defibrillation catheter in the catheter system shown in FIG. 1 is written in the memory of the defibrillation catheter by the arithmetic processing unit of the power supply device. . 本発明の心腔内除細動カテーテルシステムの他の実施形態を示すブロック図である。It is a block diagram which shows other embodiment of the intracardiac defibrillation catheter system of this invention.
<第1実施形態>
 本実施形態の心腔内除細動カテーテルシステムは、心腔内に挿入されて除細動を行う除細動カテーテル100と、この除細動カテーテル100の電極に直流電圧を印加する電源装置700と、心電計800と、心電位測定手段900を備えたカテーテルシステムであ
って;
 除細動カテーテル100は、マルチルーメンチューブ10と、
 マルチルーメンチューブ10の先端領域に装着された8個のリング状電極31からなる第1DC電極群31Gと、
 第1DC電極群31Gから基端側に離間してマルチルーメンチューブ10に装着された8個のリング状電極32からなる第2DC電極群32Gと、
 第2DC電極群32Gから基端側に離間してマルチルーメンチューブ10に装着された4個のリング状電極33からなる基端側電位測定電極群33Gと、
 第1DC電極群31Gを構成する電極31の各々に先端が接続された8本のリード線41からなる第1リード線群41Gと、
 第2DC電極群32Gを構成する電極32の各々に先端が接続された8本のリード線42からなる第2リード線群42Gと、
 基端側電位測定電極群33Gを構成する電極33の各々に先端が接続された4本のリード線43からなる第3リード線群43Gと、
 除細動カテーテル100のシリアル情報が記憶されたカテーテルシリアル記憶部111、除細動カテーテル100に電源装置が最初に接続された時刻および最初に接続された電源装置のシリアル情報を記憶する初回接続情報記憶部112、並びに、除細動カテーテル100による除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部113を有するメモリ110とを備えてなり;
 電源装置700は、DC電源部71と、
 除細動カテーテル100の第1リード線群41G、第2リード線群42Gおよび第3リード線群43Gの基端側に接続されるカテーテル接続コネクタ72と、
 心電計800の入力端子に接続される心電計接続コネクタ73と、
 電源装置700を除細動モードにするためのモード切替スイッチ741、電気エネルギー設定スイッチ742、充電スイッチ743および電気エネルギー印加スイッチ744を含む外部スイッチ74と、
 外部スイッチ74の入力に基いてDC電源部71を制御するとともに、DC電源部71からの直流電圧の出力回路751を有し、さらに、電源装置700のシリアル情報およびカテーテルの使用制限時間が記憶されたメモリ752、並びに時刻を確定するための内部時計753を有し、除細動カテーテル100のメモリ110への書き込みおよび読み出しを制御する演算処理部75と、
 1回路2接点の切替スイッチからなり、共通接点にカテーテル接続コネクタ72が接続され、第1接点に前記心電計接続コネクタ73が接続され、第2接点に演算処理部75が接続された切替部76とを備えてなり;
 除細動カテーテル100の第1DC電極群31Gおよび/または第2DC電極群32Gを構成する電極により心電位を測定するときには、切替部76において第1接点が選択され、除細動カテーテル100からの心電位情報が、電源装置700のカテーテル接続コネクタ72、切替部76および心電計接続コネクタ73を経由して心電計800に入力され、
 除細動カテーテル100により除細動を行うときには、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値(心内抵抗値)が測定された後、外部スイッチ74(電気エネルギー設定スイッチ742、充電スイッチ743、電気エネルギー印加スイッチ744)の入力に基いて、電源装置700の演算処理部75によって切替部76の接点が第2接点に切り替わり、電源装置700のDC電源部71から、演算処理部75の出力回路751、切替部76およびカテーテル接続コネクタ72を経由して、除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとに、互いに異なる極性の電圧が印加され;
 電源装置700の演算処理部75は、
 (1)除細動カテーテル100に電源装置700を最初に接続したときに、最初に接続
した時刻および最初に接続した電源装置700のシリアル情報を、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込み、
 (2)除細動カテーテル100により除細動が行われたときに、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値、第1DC電極群31Gと第2DC電極群32Gとの間に印加しようとした電気エネルギーの設定値、実際に印加された出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
 (3)除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
 (4)使用していた電源装置が取り外された除細動カテーテル100に対して、同一または異なる電源装置700を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した電源装置700のシリアル情報を、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、
 (5)除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込まれたイベントごとに、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻から、そのイベントが行われた時刻までの経過時間が、電源装置700のメモリ752に記憶されたカテーテルの使用制限時間を超えているか否かを判断し、超えていると判断した場合には、当該除細動カテーテル100による次のイベントを実行させないように制御するシステムである。
<First Embodiment>
The intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100 that is inserted into the heart chamber and performs defibrillation, and a power supply device 700 that applies a DC voltage to the electrodes of the defibrillation catheter 100. A catheter system comprising an electrocardiograph 800 and an electrocardiogram measuring means 900;
The defibrillation catheter 100 includes a multi-lumen tube 10,
A first DC electrode group 31G composed of eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10,
A second DC electrode group 32G consisting of eight ring-shaped electrodes 32 mounted on the multi-lumen tube 10 and spaced from the first DC electrode group 31G toward the base end side;
A proximal-side potential measurement electrode group 33G composed of four ring-shaped electrodes 33 mounted on the multi-lumen tube 10 and spaced apart from the second DC electrode group 32G toward the proximal end side;
A first lead wire group 41G consisting of eight lead wires 41 having tips connected to the electrodes 31 constituting the first DC electrode group 31G;
A second lead wire group 42G consisting of eight lead wires 42 having tips connected to the electrodes 32 constituting the second DC electrode group 32G;
A third lead wire group 43G consisting of four lead wires 43 whose tips are connected to each of the electrodes 33 constituting the base side potential measurement electrode group 33G;
The catheter serial storage unit 111 in which serial information of the defibrillation catheter 100 is stored, the time when the power supply device is first connected to the defibrillation catheter 100 and the initial connection information for storing the serial information of the power supply device connected first. Memory having storage unit 112 and event information storage unit 113 for storing information related to an event including defibrillation by defibrillation catheter 100 together with the time when the event was performed and serial information of the connected power supply device 110;
The power supply device 700 includes a DC power supply unit 71,
A catheter connection connector 72 connected to the proximal end side of the first lead wire group 41G, the second lead wire group 42G and the third lead wire group 43G of the defibrillation catheter 100;
An electrocardiograph connector 73 connected to an input terminal of the electrocardiograph 800;
An external switch 74 including a mode changeover switch 741, an electric energy setting switch 742, a charging switch 743, and an electric energy application switch 744 for setting the power supply device 700 to a defibrillation mode;
The DC power supply unit 71 is controlled based on the input of the external switch 74, and the DC voltage output circuit 751 from the DC power supply unit 71 is provided. Further, the serial information of the power supply device 700 and the catheter use time limit are stored. A memory 752 and an internal clock 753 for determining the time, and an arithmetic processing unit 75 that controls writing and reading of the defibrillation catheter 100 to and from the memory 110;
A switching unit comprising a switching switch of one circuit and two contacts, a catheter connection connector 72 connected to a common contact, the electrocardiograph connection connector 73 connected to a first contact, and an arithmetic processing unit 75 connected to a second contact 76 with;
When the cardiac potential is measured by the electrodes constituting the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100, the first contact is selected in the switching unit 76, and the heart from the defibrillation catheter 100 is selected. The potential information is input to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73 of the power supply device 700,
When defibrillation is performed by the defibrillation catheter 100, after the resistance value (intracardiac resistance value) between the first DC electrode group 31G and the second DC electrode group 32G is measured, the external switch 74 (electric energy setting switch) 742, the charging switch 743, and the electric energy application switch 744), the operation processing unit 75 of the power supply device 700 switches the contact of the switching unit 76 to the second contact, and the calculation is performed from the DC power supply unit 71 of the power supply device 700. Voltages having different polarities are applied to the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 via the output circuit 751, the switching unit 76, and the catheter connection connector 72 of the processing unit 75;
The arithmetic processing unit 75 of the power supply device 700
(1) When the power supply device 700 is first connected to the defibrillation catheter 100, the first connection information in the memory 110 of the defibrillation catheter 100 is obtained from the time when the power supply device 700 was first connected and the serial information of the power supply device 700 connected first. Write to the storage unit 112,
(2) When defibrillation is performed by the defibrillation catheter 100, the resistance value between the first DC electrode group 31G and the second DC electrode group 32G, the first DC electrode group 31G and the second DC electrode group 32G Information on the set value of electric energy to be applied in between, information on the actually applied output voltage and output time is acquired, and these information are used as the time when this defibrillation is performed and the connected power supply device 700. Together with the serial information, the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 is written,
(3) When the defibrillation is not performed after the resistance value between the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is measured, the measurement of the resistance value is recognized as an event. The measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the measured time and the serial information of the connected power supply device 700,
(4) When the same or different power supply device 700 is reconnected to the defibrillation catheter 100 from which the power supply device used has been removed, this is recognized as an event, the time of reconnection and the reconnection Write the serial information of the power supply device 700 to the event information storage unit 113 in the memory 110 of the defibrillation catheter 100,
(5) For each event written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100, the event is determined from the connection time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100. It is determined whether or not the elapsed time up to the time at which the operation is performed exceeds the catheter use time limit stored in the memory 752 of the power supply device 700. This is a system for controlling the next event by the catheter 100 not to be executed.
 図1に示すように、本実施形態の心腔内除細動カテーテルシステムは、除細動カテーテル100と、電源装置700と、心電計800と、心電位測定手段900とを備えている。 As shown in FIG. 1, the intracardiac defibrillation catheter system of this embodiment includes a defibrillation catheter 100, a power supply device 700, an electrocardiograph 800, and an electrocardiogram measuring means 900.
 図2乃至図5に示すように、本実施形態のカテーテルシステムを構成する除細動カテーテル100は、マルチルーメンチューブ10と、ハンドル20と、第1DC電極群31Gと、第2DC電極群32Gと、基端側電位測定電極群33Gと、第1リード線群41Gと、第2リード線群42Gと、第3リード線群43Gとを備えている。 As shown in FIGS. 2 to 5, the defibrillation catheter 100 constituting the catheter system of the present embodiment includes a multi-lumen tube 10, a handle 20, a first DC electrode group 31G, a second DC electrode group 32G, A proximal-side potential measurement electrode group 33G, a first lead wire group 41G, a second lead wire group 42G, and a third lead wire group 43G are provided.
 図4および図5に示すように、除細動カテーテル100を構成するマルチルーメンチューブ10(マルチルーメン構造を有する絶縁性のチューブ部材)には、4つのルーメン(第1ルーメン11、第2ルーメン12、第3ルーメン13、第4ルーメン14)が形成されている。 4 and 5, the multi-lumen tube 10 (insulating tube member having a multi-lumen structure) constituting the defibrillation catheter 100 has four lumens (first lumen 11 and second lumen 12). , A third lumen 13 and a fourth lumen 14) are formed.
 図4および図5において、15は、ルーメンを区画するフッ素樹脂層、16は、低硬度のナイロンエラストマーからなるインナー(コア)部、17は、高硬度のナイロンエラストマーからなるアウター(シェル)部であり、図4における18は、編組ブレードを形成するステンレス素線である。 4 and 5, 15 is a fluororesin layer that divides the lumen, 16 is an inner (core) portion made of a low hardness nylon elastomer, and 17 is an outer (shell) portion made of a high hardness nylon elastomer. 4 and 18 in FIG. 4 is a stainless steel wire forming a braided blade.
 ルーメンを区画するフッ素樹脂層15は、例えばパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などの絶縁性の高い材料により構成されている。 The fluororesin layer 15 partitioning the lumen is made of a highly insulating material such as perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE).
 マルチルーメンチューブ10のアウター部17を構成するナイロンエラストマーは、軸方向によって異なる硬度のものが用いられている。これにより、マルチルーメンチューブ10は、先端側から基端側に向けて段階的に硬度が高くなるよう構成されている。
 好適な一例を示せば、図3において、L1(長さ52mm)で示す領域の硬度(D型硬度計による硬度)は40、L2(長さ108mm)で示す領域の硬度は55、L3(長さ25.7mm)で示す領域の硬度は63、L4(長さ10mm)で示す領域の硬度は68、L5(長さ500mm)で示す領域の硬度は72である。
The nylon elastomer that forms the outer portion 17 of the multi-lumen tube 10 has a hardness that varies depending on the axial direction. Thereby, the multi-lumen tube 10 is comprised so that hardness may become high in steps toward the base end side from the front end side.
As a preferable example, in FIG. 3, the hardness of the region indicated by L1 (length 52 mm) (hardness by a D-type hardness meter) is 40, and the hardness of the region indicated by L2 (length 108 mm) is 55, L3 (long). The hardness of the region shown by 25.7 mm) is 63, the hardness of the region shown by L4 (length 10 mm) is 68, and the hardness of the region shown by L5 (length 500 mm) is 72.
 ステンレス素線18により構成される編組ブレードは、図3においてL5で示される領域においてのみ形成され、図4に示すように、インナー部16とアウター部17との間に設けられている。
 マルチルーメンチューブ10の外径は、例えば1.2~3.3mmとされる。
The braided blade composed of the stainless steel wire 18 is formed only in the region indicated by L5 in FIG. 3, and is provided between the inner portion 16 and the outer portion 17 as shown in FIG.
The outer diameter of the multi-lumen tube 10 is, for example, 1.2 to 3.3 mm.
 マルチルーメンチューブ10を製造する方法としては特に限定されるものではない。 The method for manufacturing the multi-lumen tube 10 is not particularly limited.
 本実施形態における除細動カテーテル100を構成するハンドル20は、ハンドル本体21と、摘まみ22と、ストレインリリーフ24とを備えている。
 摘まみ22を回転操作することにより、マルチルーメンチューブ10の先端部を偏向(首振り)させることができる。
The handle 20 constituting the defibrillation catheter 100 in the present embodiment includes a handle main body 21, a knob 22, and a strain relief 24.
By rotating the knob 22, the tip of the multi-lumen tube 10 can be deflected (swinged).
 マルチルーメンチューブ10の外周(内部に編組が形成されていない先端領域)には、第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gが装着されている。ここに、「電極群」とは、同一の極を構成し(同一の極性を有し)、または、同一の目的を持って、狭い間隔(例えば5mm以下)で装着された複数の電極の集合体をいう。 The first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G are attached to the outer periphery (the tip region where no braid is formed) inside the multi-lumen tube 10. Here, the “electrode group” is a set of a plurality of electrodes that constitute the same pole (having the same polarity) or are mounted at a narrow interval (for example, 5 mm or less) with the same purpose. Refers to the body.
 第1DC電極群は、マルチルーメンチューブの先端領域において、同一の極(-極または+極)を構成することになる複数の電極が狭い間隔で装着されてなる。ここに、第1DC電極群を構成する電極の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個とされ、好ましくは8~10個とされる。 The first DC electrode group is formed by mounting a plurality of electrodes constituting the same pole (-pole or + pole) at a narrow interval in the tip region of the multi-lumen tube. Here, the number of electrodes constituting the first DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
 本実施形態において、第1DC電極群31Gは、マルチルーメンチューブ10の先端領域に装着された8個のリング状電極31から構成されている。
 第1DC電極群31Gを構成する電極31は、リード線(第1リード線群41Gを構成するリード線41)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。
In the present embodiment, the first DC electrode group 31 </ b> G includes eight ring-shaped electrodes 31 attached to the tip region of the multi-lumen tube 10.
The electrode 31 constituting the first DC electrode group 31G is connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 41 constituting the first lead wire group 41G) and a connector described later.
 ここに、電極31の幅(軸方向の長さ)は、2~5mmであることが好ましく、好適な一例を示せば4mmである。
 電極31の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極31の幅が広過ぎると、マルチルーメンチューブ10における第1DC電極群31Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
   
Here, the width (length in the axial direction) of the electrode 31 is preferably 2 to 5 mm, and is 4 mm as a suitable example.
If the width of the electrode 31 is too narrow, the amount of heat generated when a voltage is applied may be excessive, which may damage surrounding tissues. On the other hand, if the width of the electrode 31 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the first DC electrode group 31G is provided may be impaired.
 電極31の装着間隔(隣り合う電極の離間距離)は、1~5mmであることが好ましく、好適な一例を示せば2mmである。
 除細動カテーテル100の使用時(心腔内に配置されるとき)において、第1DC電極群31Gは、例えば冠状静脈内に位置する。
The mounting interval of the electrodes 31 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the defibrillation catheter 100 is used (when placed in the heart chamber), the first DC electrode group 31G is located, for example, in the coronary vein.
 第2DC電極群は、マルチルーメンチューブの第1DC電極群の装着位置から基端側に離間して、第1DC電極群とは逆の極(+極または-極)を構成することになる複数の電極が狭い間隔で装着されてなる。ここに、第2DC電極群を構成する電極の個数は、電極の幅や配置間隔によっても異なるが、例えば4~13個とされ、好ましくは8~10個と
される。
The second DC electrode group is separated from the mounting position of the first DC electrode group of the multi-lumen tube toward the base end side and constitutes a plurality of poles (+ pole or −pole) opposite to the first DC electrode group. Electrodes are mounted at narrow intervals. Here, the number of electrodes constituting the second DC electrode group varies depending on the width and arrangement interval of the electrodes, but is 4 to 13, for example, and preferably 8 to 10.
 本実施形態において、第2DC電極群32Gは、第1DC電極群31Gの装着位置から基端側に離間してマルチルーメンチューブ10に装着された8個のリング状電極32から構成されている。
 第2DC電極群32Gを構成する電極32は、リード線(第2リード線群42Gを構成するリード線42)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。
In the present embodiment, the second DC electrode group 32G includes eight ring-shaped electrodes 32 that are mounted on the multi-lumen tube 10 while being spaced apart from the mounting position of the first DC electrode group 31G toward the proximal end side.
The electrodes 32 constituting the second DC electrode group 32G are connected to a catheter connection connector of the power supply device 700 via a lead wire (lead wire 42 constituting the second lead wire group 42G) and a connector described later.
 ここに、電極32の幅(軸方向の長さ)は、2~5mmであることが好ましく、好適な一例を示せば4mmである。
 電極32の幅が狭過ぎると、電圧印加時の発熱量が過大となって、周辺組織に損傷を与える虞がある。一方、電極32の幅が広過ぎると、マルチルーメンチューブ10における第2DC電極群32Gが設けられている部分の可撓性・柔軟性が損なわれることがある。
   
Here, the width (length in the axial direction) of the electrode 32 is preferably 2 to 5 mm, and is 4 mm as a suitable example.
If the width of the electrode 32 is too narrow, the amount of heat generated at the time of voltage application becomes excessive, which may damage the surrounding tissue. On the other hand, if the width of the electrode 32 is too wide, the flexibility and flexibility of the portion of the multi-lumen tube 10 where the second DC electrode group 32G is provided may be impaired.
 電極32の装着間隔(隣り合う電極の離間距離)は、1~5mmであることが好ましく、好適な一例を示せば2mmである。
 除細動カテーテル100の使用時(心腔内に配置されるとき)において、第2DC電極群32Gは、例えば右心房に位置する。
The mounting interval of the electrodes 32 (distance between adjacent electrodes) is preferably 1 to 5 mm, and 2 mm is a preferable example.
When the defibrillation catheter 100 is used (when placed in the heart chamber), the second DC electrode group 32G is located, for example, in the right atrium.
 本実施形態において、基端側電位測定電極群33Gは、第2DC電極群32Gの装着位置から基端側に離間してマルチルーメンチューブ10に装着された4個のリング状電極33から構成されている。
 基端側電位測定電極群33Gを構成する電極33は、リード線(第3リード線群43Gを構成するリード線43)および後述するコネクタを介して、電源装置700のカテーテル接続コネクタに接続されている。
In the present embodiment, the proximal-side potential measurement electrode group 33G includes four ring-shaped electrodes 33 that are mounted on the multi-lumen tube 10 so as to be spaced apart from the mounting position of the second DC electrode group 32G toward the proximal end side. Yes.
The electrodes 33 constituting the proximal-side potential measuring electrode group 33G are connected to the catheter connection connector of the power supply device 700 via a lead wire (lead wire 43 constituting the third lead wire group 43G) and a connector described later. Yes.
 ここに、電極33の幅(軸方向の長さ)は0.5~2.0mmであることが好ましく、好適な一例を示せば1.2mmである。
 電極33の幅が広過ぎると、心電位の測定精度が低下したり、異常電位の発生部位の特定が困難となったりする。
Here, the width (length in the axial direction) of the electrode 33 is preferably 0.5 to 2.0 mm, and 1.2 mm is a preferable example.
If the width of the electrode 33 is too wide, the measurement accuracy of the cardiac potential is lowered, or it is difficult to specify the site where the abnormal potential is generated.
 電極33の装着間隔(隣り合う電極の離間距離)は、1.0~10.0mmであることが好ましく、好適な一例を示せば5mmである。
 除細動カテーテル100の使用時(心腔内に配置されるとき)において、基端側電位測定電極群33Gは、例えば、異常電位が発生しやすい上大静脈に位置する。
The mounting interval of the electrodes 33 (the distance between adjacent electrodes) is preferably 1.0 to 10.0 mm, and 5 mm is a preferable example.
When the defibrillation catheter 100 is used (when placed in the heart chamber), the proximal-side potential measurement electrode group 33G is located, for example, in the superior vena cava where an abnormal potential is likely to occur.
 除細動カテーテル100の先端には、先端チップ35が装着されている。
 この先端チップ35には、リード線は接続されておらず、本実施形態では電極として使用していない。但し、リード線を接続させることにより、電極として使用することも可能である。先端チップ35の構成材料は、白金、ステンレスなどの金属材料、各種の樹脂材料など、特に限定されるものではない。
A distal tip 35 is attached to the distal end of the defibrillation catheter 100.
A lead wire is not connected to the tip chip 35 and is not used as an electrode in this embodiment. However, it can also be used as an electrode by connecting a lead wire. The constituent material of the tip 35 is not particularly limited, such as metal materials such as platinum and stainless steel, various resin materials, and the like.
 第1DC電極群31G(基端側の電極31)と、第2DC電極群32G(先端側の電極32)との離間距離d2は40~100mmであることが好ましく、好適な一例を示せば66mmである。 The distance d2 between the first DC electrode group 31G (base end side electrode 31) and the second DC electrode group 32G (tip end side electrode 32) is preferably 40 to 100 mm, and 66 mm is a preferable example. is there.
 第2DC電極群32G(基端側の電極32)と、基端側電位測定電極群33G(先端側の電極33)との離間距離d3は5~50mmであることが好ましく、好適な一例を示せ
ば30mmである。
The distance d3 between the second DC electrode group 32G (base end side electrode 32) and the base end side potential measurement electrode group 33G (tip end side electrode 33) is preferably 5 to 50 mm, and a suitable example is shown. 30 mm.
 第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gを構成する電極31,32,33としては、X線に対する造影性を良好なものとするために、白金または白金系の合金からなることが好ましい。 As the electrodes 31, 32, 33 constituting the first DC electrode group 31G, the second DC electrode group 32G, and the proximal-side potential measurement electrode group 33G, platinum or a platinum-based material is used in order to improve the contrast with respect to X-rays. It is preferable to consist of these alloys.
 図4および図5に示される第1リード線群41Gは、第1DC電極群(31G)を構成する8個の電極(31)の各々に接続された8本のリード線41の集合体である。
 第1リード線群41G(リード線41)により、第1DC電極群31Gを構成する8個の電極31の各々を電源装置700に電気的に接続することができる。
The first lead wire group 41G shown in FIGS. 4 and 5 is an aggregate of eight lead wires 41 connected to each of the eight electrodes (31) constituting the first DC electrode group (31G). .
Each of the eight electrodes 31 constituting the first DC electrode group 31G can be electrically connected to the power supply device 700 by the first lead wire group 41G (lead wire 41).
 第1DC電極群31Gを構成する8個の電極31は、それぞれ、異なるリード線41に接続される。リード線41の各々は、その先端部分において電極31の内周面に溶接されるとともに、マルチルーメンチューブ10の管壁に形成された側孔から第1ルーメン11に進入する。第1ルーメン11に進入した8本のリード線41は、第1リード線群41Gとして、第1ルーメン11に延在する。 The eight electrodes 31 constituting the first DC electrode group 31G are connected to different lead wires 41, respectively. Each of the lead wires 41 is welded to the inner peripheral surface of the electrode 31 at the tip portion, and enters the first lumen 11 from a side hole formed in the tube wall of the multi-lumen tube 10. The eight lead wires 41 that have entered the first lumen 11 extend to the first lumen 11 as a first lead wire group 41G.
 図4および図5に示される第2リード線群42Gは、第2DC電極群(32G)を構成する8個の電極(32)の各々に接続された8本のリード線42の集合体である。
 第2リード線群42G(リード線42)により、第2DC電極群32Gを構成する8個の電極32の各々を電源装置700に電気的に接続することができる。
The second lead wire group 42G shown in FIGS. 4 and 5 is an assembly of eight lead wires 42 connected to each of the eight electrodes (32) constituting the second DC electrode group (32G). .
Each of the eight electrodes 32 constituting the second DC electrode group 32G can be electrically connected to the power supply device 700 by the second lead wire group 42G (lead wire 42).
 第2DC電極群32Gを構成する8個の電極32は、それぞれ、異なるリード線42に接続される。リード線42の各々は、その先端部分において電極32の内周面に溶接されるとともに、マルチルーメンチューブ10の管壁に形成された側孔から第2ルーメン12(第1リード線群41Gが延在する第1ルーメン11とは異なるルーメン)に進入する。第2ルーメン12に進入した8本のリード線42は、第2リード線群42Gとして、第2ルーメン12に延在する。 The eight electrodes 32 constituting the second DC electrode group 32G are connected to different lead wires 42, respectively. Each of the lead wires 42 is welded to the inner peripheral surface of the electrode 32 at the tip portion thereof, and the second lumen 12 (the first lead wire group 41G extends from the side hole formed in the tube wall of the multi-lumen tube 10. A different lumen from the existing first lumen 11 is entered. The eight lead wires 42 that have entered the second lumen 12 extend to the second lumen 12 as a second lead wire group 42G.
 上記のように、第1リード線群41Gが第1ルーメン11に延在し、第2リード線群42Gが第2ルーメン12に延在していることにより、両者は、マルチルーメンチューブ10内において完全に絶縁隔離されている。このため、除細動に必要な電圧が印加されたときに、第1リード線群41G(第1DC電極群31G)と、第2リード線群42G(第2DC電極群32G)との間の短絡を確実に防止することができる。 As described above, the first lead wire group 41G extends to the first lumen 11 and the second lead wire group 42G extends to the second lumen 12. Fully insulated and isolated. Therefore, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G (first DC electrode group 31G) and the second lead wire group 42G (second DC electrode group 32G). Can be reliably prevented.
 図4に示される第3リード線群43Gは、基端側電位測定電極群(33G)を構成する電極(33)の各々に接続された4本のリード線43の集合体である。
 第3リード線群43G(リード線43)により、基端側電位測定電極群33Gを構成する電極33の各々を電源装置700に電気的に接続することができる。
The third lead wire group 43G shown in FIG. 4 is an assembly of four lead wires 43 connected to each of the electrodes (33) constituting the proximal-side potential measurement electrode group (33G).
Each of the electrodes 33 constituting the proximal-side potential measurement electrode group 33G can be electrically connected to the power supply device 700 by the third lead wire group 43G (lead wire 43).
 基端側電位測定電極群33Gを構成する4個の電極33は、それぞれ、異なるリード線43に接続されている。リード線43の各々は、その先端部分において電極33の内周面に溶接されるとともに、マルチルーメンチューブ10の管壁に形成された側孔から第3ルーメン13に進入する。第3ルーメン13に進入した4本のリード線43は、第3リード線群43Gとして、第3ルーメン13に延在する。 The four electrodes 33 constituting the base end side potential measurement electrode group 33G are connected to different lead wires 43, respectively. Each of the lead wires 43 is welded to the inner peripheral surface of the electrode 33 at the tip portion thereof, and enters the third lumen 13 from a side hole formed in the tube wall of the multi-lumen tube 10. The four lead wires 43 that have entered the third lumen 13 extend to the third lumen 13 as a third lead wire group 43G.
 上記のように、第3ルーメン13に延在している第3リード線群43Gは、第1リード線群41Gおよび第2リード線群42Gの何れからも完全に絶縁隔離されている。このため、除細動に必要な電圧が印加されたときに、第3リード線群43G(基端側電位測定電極群33G)と、第1リード線群41G(第1DC電極群31G)または第2リード線群
42G(第2DC電極群32G)との間の短絡を確実に防止することができる。
As described above, the third lead wire group 43G extending to the third lumen 13 is completely insulated and isolated from both the first lead wire group 41G and the second lead wire group 42G. Therefore, when a voltage necessary for defibrillation is applied, the third lead wire group 43G (base end side potential measurement electrode group 33G) and the first lead wire group 41G (first DC electrode group 31G) or the first A short circuit between the two lead wire group 42G (second DC electrode group 32G) can be reliably prevented.
 リード線41、リード線42およびリード線43は、何れも、ポリイミドなどの樹脂によって金属導線の外周面が被覆された樹脂被覆線からなる。ここに、被覆樹脂の膜厚としては2~30μm程度とされる。 The lead wire 41, the lead wire 42, and the lead wire 43 are all made of a resin-coated wire in which the outer peripheral surface of the metal conducting wire is covered with a resin such as polyimide. Here, the coating resin has a thickness of about 2 to 30 μm.
 図4および図5において65はプルワイヤである。
 プルワイヤ65は、第4ルーメン14に延在し、マルチルーメンチューブ10の中心軸に対して偏心して延びている。
4 and 5, 65 is a pull wire.
The pull wire 65 extends to the fourth lumen 14 and extends eccentrically with respect to the central axis of the multi-lumen tube 10.
 プルワイヤ65の先端部分は、ハンダによって先端チップ35に固定されている。また、プルワイヤ65の先端には抜け止め用大径部(抜け止め部)が形成されていてもよい。これにより、先端チップ35とプルワイヤ65とは強固に結合され、先端チップ35の脱落などを確実に防止することができる。 The tip portion of the pull wire 65 is fixed to the tip tip 35 with solder. Moreover, a large-diameter portion for retaining (a retaining portion) may be formed at the tip of the pull wire 65. Thereby, the tip tip 35 and the pull wire 65 are firmly coupled, and the tip tip 35 can be reliably prevented from falling off.
 一方、プルワイヤ65の基端部分は、ハンドル20の摘まみ22に接続されており、摘まみ22を操作することによってプルワイヤ65が引っ張られ、これにより、マルチルーメンチューブ10の先端部が偏向する。
 プルワイヤ65は、ステンレスやNi-Ti系超弾性合金製で構成してあるが、必ずしも金属で構成する必要はない。プルワイヤ65は、たとえば高強度の非導電性ワイヤなどで構成してもよい。
 なお、マルチルーメンチューブの先端部を偏向させる機構は、これに限定されるものではなく、例えば、板バネを備えてなるものであってもよい。
On the other hand, the proximal end portion of the pull wire 65 is connected to the knob 22 of the handle 20, and the pull wire 65 is pulled by operating the knob 22, whereby the distal end portion of the multi-lumen tube 10 is deflected.
The pull wire 65 is made of stainless steel or a Ni—Ti superelastic alloy, but is not necessarily made of metal. The pull wire 65 may be formed of, for example, a high-strength non-conductive wire.
Note that the mechanism for deflecting the distal end portion of the multi-lumen tube is not limited to this, and may be a plate spring, for example.
 マルチルーメンチューブ10の第4ルーメン14には、プルワイヤ65のみが延在しており、リード線(群)は延在していない。これにより、マルチルーメンチューブ10の先端部の偏向操作時において、軸方向に移動するプルワイヤ65によってリード線が損傷(例えば、擦過傷)を受けることを防止することができる。 In the fourth lumen 14 of the multi-lumen tube 10, only the pull wire 65 extends, and the lead wire (group) does not extend. Thereby, it is possible to prevent the lead wire from being damaged (for example, scratched) by the pull wire 65 moving in the axial direction during the deflection operation of the distal end portion of the multi-lumen tube 10.
 本実施形態における除細動カテーテル100は、ハンドル20の内部においても、第1リード線群41Gと、第2リード線群42Gと、第3リード線群43Gとが絶縁隔離されている。 In the defibrillation catheter 100 according to the present embodiment, the first lead wire group 41G, the second lead wire group 42G, and the third lead wire group 43G are insulated and isolated also inside the handle 20.
 図6は、本実施形態における除細動カテーテル100のハンドルの内部構造を示す斜視図、図7は、ハンドル内部(先端側)の部分拡大図、図8は、ハンドル内部(基端側)の部分拡大図である。 6 is a perspective view showing the internal structure of the handle of the defibrillation catheter 100 in this embodiment, FIG. 7 is a partially enlarged view of the inside of the handle (front end side), and FIG. 8 is the inside of the handle (base end side). It is a partial enlarged view.
 図6に示すように、マルチルーメンチューブ10の基端部は、ハンドル20の先端開口に挿入され、これにより、マルチルーメンチューブ10と、ハンドル20とが接続されている。 As shown in FIG. 6, the base end portion of the multi-lumen tube 10 is inserted into the distal end opening of the handle 20, whereby the multi-lumen tube 10 and the handle 20 are connected.
 図6および図8に示すように、ハンドル20の基端部には、先端方向に突出する複数のピン端子(51、52、53)を先端面50Aに配置してなる円筒状のコネクタ50が内蔵されている。
 また、図6乃至図8に示すように、ハンドル20の内部には、3つのリード線群(第1リード線群41G、第2リード線群42G、第3リード線群43G)の各々が挿通される3本の絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27、第3絶縁性チューブ28)が延在している。
As shown in FIGS. 6 and 8, a cylindrical connector 50 formed by arranging a plurality of pin terminals (51, 52, 53) protruding in the distal direction on the distal end surface 50 </ b> A is provided at the proximal end portion of the handle 20. Built in.
As shown in FIGS. 6 to 8, each of the three lead wire groups (first lead wire group 41G, second lead wire group 42G, and third lead wire group 43G) is inserted into the handle 20. Three insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) are extended.
 図6および図7に示すように、第1絶縁性チューブ26の先端部(先端から10mm程
度)は、マルチルーメンチューブ10の第1ルーメン11に挿入され、これにより、第1絶縁性チューブ26は、第1リード線群41Gが延在する第1ルーメン11に連結されている。
 第1ルーメン11に連結された第1絶縁性チューブ26は、ハンドル20の内部に延在する第1の保護チューブ61の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第1リード線群41Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第1ルーメン11)から延び出した第1リード線群41Gは、キンクすることなく、ハンドル20の内部(第1絶縁性チューブ26の内孔)を延在することができる。
 第1絶縁性チューブ26の基端開口から延び出した第1リード線群41Gは、これを構成する8本のリード線41にばらされ、これらリード線41の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第1リード線群41Gを構成するリード線41が接続固定されたピン端子(ピン端子51)が配置されている領域を「第1端子群領域」とする。
As shown in FIGS. 6 and 7, the distal end portion (about 10 mm from the distal end) of the first insulating tube 26 is inserted into the first lumen 11 of the multi-lumen tube 10, whereby the first insulating tube 26 is The first lead wire group 41G is connected to the first lumen 11 extending.
The first insulating tube 26 connected to the first lumen 11 passes through the inner hole of the first protective tube 61 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the first lead wire group 41G to the vicinity of the connector 50. Thereby, the first lead wire group 41G extending from the multi-lumen tube 10 (first lumen 11) extends inside the handle 20 (inner hole of the first insulating tube 26) without being kinked. Can do.
The first lead wire group 41G extending from the base end opening of the first insulating tube 26 is divided into eight lead wires 41 constituting the first lead wire group 41G, and each of the lead wires 41 is a front end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, a region where the pin terminals (pin terminals 51) to which the lead wires 41 constituting the first lead wire group 41G are connected and fixed is arranged is referred to as a “first terminal group region”.
 第2絶縁性チューブ27の先端部(先端から10mm程度)は、マルチルーメンチューブ10の第2ルーメン12に挿入され、これにより、第2絶縁性チューブ27は、第2リード線群42Gが延在する第2ルーメン12に連結されている。
 第2ルーメン12に連結された第2絶縁性チューブ27は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第2リード線群42Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第2ルーメン12)から延び出した第2リード線群42Gは、キンクすることなく、ハンドル20の内部(第2絶縁性チューブ27の内孔)を延在することができる。
 第2絶縁性チューブ27の基端開口から延び出した第2リード線群42Gは、これを構成する8本のリード線42にばらされ、これらリード線42の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第2リード線群42Gを構成するリード線42が接続固定されたピン端子(ピン端子52)が配置されている領域を「第2端子群領域」とする。
The distal end portion (about 10 mm from the distal end) of the second insulating tube 27 is inserted into the second lumen 12 of the multi-lumen tube 10, whereby the second lead wire group 42G extends in the second insulating tube 27. Connected to the second lumen 12.
The second insulating tube 27 connected to the second lumen 12 passes through the inner hole of the second protective tube 62 extending to the inside of the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path that guides the proximal end portion of the second lead wire group 42G to the vicinity of the connector 50. Accordingly, the second lead wire group 42G extending from the multi-lumen tube 10 (second lumen 12) extends inside the handle 20 (inner hole of the second insulating tube 27) without being kinked. Can do.
The second lead wire group 42G extending from the proximal end opening of the second insulating tube 27 is divided into eight lead wires 42 constituting the second lead wire group 42G, and each of these lead wires 42 is a front end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, a region where the pin terminals (pin terminals 52) to which the lead wires 42 constituting the second lead wire group 42G are connected and fixed is disposed is referred to as a “second terminal group region”.
 第3絶縁性チューブ28の先端部(先端から10mm程度)は、マルチルーメンチューブ10の第3ルーメン13に挿入され、これにより、第3絶縁性チューブ28は、第3リード線群43Gが延在する第3ルーメン13に連結されている。
 第3ルーメン13に連結された第3絶縁性チューブ28は、ハンドル20の内部に延在する第2の保護チューブ62の内孔を通ってコネクタ50(ピン端子が配置された先端面50A)の近傍まで延びており、第3リード線群43Gの基端部をコネクタ50の近傍に案内する挿通路を形成している。これにより、マルチルーメンチューブ10(第3ルーメン13)から延び出した第3リード線群43Gは、キンクすることなく、ハンドル20の内部(第3絶縁性チューブ28の内孔)を延在することができる。
 第3絶縁性チューブ28の基端開口から延び出した第3リード線群43Gは、これを構成する4本のリード線43にばらされ、これらリード線43の各々は、コネクタ50の先端面50Aに配置されたピン端子の各々にハンダにより接続固定されている。ここに、第3リード線群43Gを構成するリード線43が接続固定されたピン端子(ピン端子53)が配置されている領域を「第3端子群領域」とする。
The distal end portion (about 10 mm from the distal end) of the third insulating tube 28 is inserted into the third lumen 13 of the multi-lumen tube 10, whereby the third lead wire group 43G extends in the third insulating tube 28. Connected to the third lumen 13.
The third insulating tube 28 connected to the third lumen 13 passes through the inner hole of the second protective tube 62 extending inside the handle 20 and is connected to the connector 50 (tip surface 50A on which the pin terminal is disposed). It extends to the vicinity and forms an insertion path for guiding the proximal end portion of the third lead wire group 43G to the vicinity of the connector 50. As a result, the third lead wire group 43G extending from the multi-lumen tube 10 (third lumen 13) extends inside the handle 20 (inner hole of the third insulating tube 28) without kinking. Can do.
The third lead wire group 43G extending from the proximal end opening of the third insulating tube 28 is divided into four lead wires 43 constituting the third lead wire group 43, and each of the lead wires 43 is connected to the distal end surface 50A of the connector 50. Are fixedly connected to each of the pin terminals arranged by soldering. Here, an area where the pin terminals (pin terminals 53) to which the lead wires 43 constituting the third lead wire group 43G are connected and fixed is arranged is referred to as a “third terminal group area”.
 ここに、絶縁性チューブ(第1絶縁性チューブ26、第2絶縁性チューブ27および第3絶縁性チューブ28)の構成材料としては、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂などを例示することができる。これらのうち、硬度が高くて、リード線群を挿通しやすく、肉薄成形が可能なポリイミド樹脂が特に好ましい。
 絶縁性チューブの肉厚としては、20~40μmであることが好ましく、好適な一例を
示せば30μmである。
Here, examples of the constituent material of the insulating tubes (the first insulating tube 26, the second insulating tube 27, and the third insulating tube 28) include polyimide resin, polyamide resin, and polyamideimide resin. . Of these, a polyimide resin is particularly preferable because of its high hardness, easy insertion of the lead wire group, and capable of thin molding.
The thickness of the insulating tube is preferably 20 to 40 μm, and is 30 μm as a suitable example.
 また、絶縁性チューブが内挿される保護チューブ(第1の保護チューブ61および第2の保護チューブ62)の構成材料としては、「Pebax」(ARKEMA社の登録商標)などのナイロン系エラストマーを例示することができる。 Moreover, as a constituent material of the protective tube (the first protective tube 61 and the second protective tube 62) into which the insulating tube is inserted, nylon elastomer such as “Pebax” (registered trademark of ARKEMA) is exemplified. be able to.
 上記のような構成を有する本実施形態における除細動カテーテル100によれば、第1絶縁性チューブ26内に第1リード線群41Gが延在し、第2絶縁性チューブ27内に第2リード線群42Gが延在し、第3絶縁性チューブ28内に第3リード線群43Gが延在していることで、ハンドル20の内部においても、第1リード線群41Gと、第2リード線群42Gと、第3リード線43Gとを完全に絶縁隔離することができる。この結果、除細動に必要な電圧が印加されたときにおいて、ハンドル20の内部における第1リード線群41Gと、第2リード線群42Gと、第3リード線43Gとの間の短絡(特に、ルーメンの開口付近において延び出したリード線群間における短絡)を確実に防止することができる。 According to the defibrillation catheter 100 in the present embodiment having the above-described configuration, the first lead wire group 41G extends in the first insulating tube 26, and the second lead in the second insulating tube 27. Since the wire group 42G extends and the third lead wire group 43G extends in the third insulating tube 28, the first lead wire group 41G and the second lead wire are also provided inside the handle 20. The group 42G and the third lead wire 43G can be completely insulated and isolated. As a result, when a voltage necessary for defibrillation is applied, a short circuit between the first lead wire group 41G, the second lead wire group 42G, and the third lead wire 43G inside the handle 20 (particularly, Short circuit between the lead wire groups extending near the opening of the lumen can be reliably prevented.
 さらに、ハンドル20の内部において、第1絶縁性チューブ26が第1の保護チューブ61によって保護され、第2絶縁性チューブ27および第3絶縁性チューブ28が第2の保護チューブ52によって保護されていることにより、例えば、マルチルーメンチューブ10の先端部の偏向操作時に摘まみ22の構成部材(可動部品)が接触・擦過することによって絶縁性チューブが損傷することを防止することができる。 Further, in the handle 20, the first insulating tube 26 is protected by the first protective tube 61, and the second insulating tube 27 and the third insulating tube 28 are protected by the second protective tube 52. Thereby, for example, it is possible to prevent the insulating tube from being damaged by contact and rubbing of the constituent members (movable parts) of the knob 22 during the deflection operation of the distal end portion of the multi-lumen tube 10.
 本実施形態における除細動カテーテル100は、複数のピン端子が配置されたコネクタ50の先端面50Aを、第1端子群領域と、第2端子群領域および第3端子群領域とに仕切り、リード線41と、リード線42およびリード線43とを互いに隔離する隔壁板55を備えている。 The defibrillation catheter 100 according to the present embodiment partitions the distal end surface 50A of the connector 50 on which a plurality of pin terminals are arranged into a first terminal group region, a second terminal group region, and a third terminal group region, and leads A partition plate 55 that separates the wire 41 from the lead wire 42 and the lead wire 43 is provided.
 第1端子群領域と、第2端子群領域および第3端子群領域とを仕切る隔壁板55は、絶縁性樹脂を、両側に平坦面を有する樋状に成型加工してなる。隔壁板55を構成する絶縁性樹脂としては、特に限定されるものではなく、ポリエチレンなどの汎用樹脂を使用することができる。 The partition plate 55 that partitions the first terminal group region, the second terminal group region, and the third terminal group region is formed by molding an insulating resin into a bowl shape having flat surfaces on both sides. The insulating resin constituting the partition plate 55 is not particularly limited, and a general-purpose resin such as polyethylene can be used.
 隔壁板55の厚さは、例えば0.1~0.5mmとされ、好適な一例を示せば0.2mmである。
 隔壁板55の高さ(基端縁から先端縁までの距離)は、コネクタ50の先端面50Aと絶縁性チューブ(第1絶縁性チューブ26および第2絶縁性チューブ27)との離間距離より高いことが必要であり、この離間距離が7mmの場合、隔壁板55の高さは、例えば8mmとされる。高さが7mm未満の隔壁板では、その先端縁を、絶縁性チューブの基端よりも先端側に位置させることができない。
The thickness of the partition plate 55 is, for example, 0.1 to 0.5 mm, and 0.2 mm is a preferable example.
The height of the partition plate 55 (distance from the base end edge to the front end edge) is higher than the separation distance between the front end surface 50A of the connector 50 and the insulating tubes (the first insulating tube 26 and the second insulating tube 27). When the separation distance is 7 mm, the height of the partition plate 55 is, for example, 8 mm. In the partition plate having a height of less than 7 mm, the distal end edge cannot be positioned on the distal end side with respect to the proximal end of the insulating tube.
 このような構成によれば、第1リード線群41Gを構成するリード線41(第1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)とを確実かつ整然と隔離することができる。
 隔壁板55を備えていない場合には、リード線41と、リード42とを整然と隔離する(分ける)ことができず、これらが混線するおそれがある。
According to such a configuration, the lead wire 41 (the base end portion of the lead wire 41 extending from the base end opening of the first insulating tube 26) constituting the first lead wire group 41G, and the second lead wire group The lead wire 42 (the base end portion of the lead wire 42 extending from the base end opening of the second insulating tube 27) constituting the 42G can be reliably and orderly isolated.
When the partition plate 55 is not provided, the lead wire 41 and the lead 42 cannot be separated (separated) in an orderly manner, and these may be mixed.
 そして、互いに異なる極性の電圧が印加される、第1リード線群41Gを構成するリード線41と、第2リード線群42Gを構成するリード線42とが、隔壁板55により互いに隔離されて接触することがないので、除細動カテーテル100の使用時において、心腔
内除細動に必要な電圧を印加しても、第1リード線群41Gを構成するリード線41(第1絶縁性チューブ26の基端開口から延び出したリード線41の基端部分)と、第2リード線群42Gを構成するリード線42(第2絶縁性チューブ27の基端開口から延び出したリード線42の基端部分)との間で短絡が発生することはない。
The lead wires 41 constituting the first lead wire group 41G and the lead wires 42 constituting the second lead wire group 42G, to which voltages having different polarities are applied, are separated from each other by the partition plate 55 and are in contact with each other. Therefore, when the defibrillation catheter 100 is used, even if a voltage necessary for defibrillation in the heart chamber is applied, the lead wires 41 (first insulating tube) constituting the first lead wire group 41G are applied. 26 of the lead wire 41 extending from the proximal end opening of the lead wire 26 and the lead wire 42 constituting the second lead wire group 42G (the lead wire 42 extending from the proximal end opening of the second insulating tube 27). A short circuit does not occur between the base end portion and the base end portion.
 また、除細動カテーテルの製造時において、リード線をピン端子に接続固定する際に誤りが生じた場合、例えば、第1リード線群41Gを構成するリード線41を、第2端子群領域におけるピン端子に接続した場合には、そのリード41は隔壁55を跨ぐことになるので、接続の誤りを容易に発見することができる。 Further, when an error occurs when the lead wire is connected and fixed to the pin terminal during manufacture of the defibrillation catheter, for example, the lead wire 41 constituting the first lead wire group 41G is connected to the second terminal group region. When connected to the pin terminal, the lead 41 straddles the partition wall 55, so that a connection error can be easily found.
 なお、第3リード線群43Gを構成するリード線43(ピン端子53)は、リード線42(ピン端子52)とともに、隔壁板55によりリード線41(ピン端子51)から隔離されているが、これに限定されるものではなく、リード線41(ピン端子51)とともに、隔壁板55によってリード線42(ピン端子52)から隔離されていてもよい。 The lead wire 43 (pin terminal 53) constituting the third lead wire group 43G is separated from the lead wire 41 (pin terminal 51) by the partition plate 55 together with the lead wire 42 (pin terminal 52). However, the present invention is not limited to this, and may be separated from the lead wire 42 (pin terminal 52) by the partition plate 55 together with the lead wire 41 (pin terminal 51).
 除細動カテーテル100において、隔壁板55の先端縁は、第1絶縁性チューブ26の基端および第2絶縁性チューブ27の基端の何れよりも先端側に位置している。
 これにより、第1絶縁性チューブ26の基端開口から延び出したリード線(第1リード線群41Gを構成するリード線41)と、第2絶縁性チューブ27の基端開口から延び出たリード線(第2リード線群42Gを構成するリード線42)との間には、常に隔壁板55が存在することになり、リード線41とリード線42との接触による短絡を確実に防止することができる。
In the defibrillation catheter 100, the distal end edge of the partition plate 55 is located on the distal end side with respect to both the proximal end of the first insulating tube 26 and the proximal end of the second insulating tube 27.
Thereby, the lead wire (lead wire 41 constituting the first lead wire group 41G) extending from the base end opening of the first insulating tube 26 and the lead extending from the base end opening of the second insulating tube 27 are provided. Between the wires (the lead wires 42 constituting the second lead wire group 42G), the partition plate 55 is always present, and the short circuit due to the contact between the lead wires 41 and the lead wires 42 is surely prevented. Can do.
 図8に示すように、第1絶縁性チューブ26の基端開口から延び出してコネクタ50のピン端子51に接続固定された8本のリード線41、第2絶縁性チューブ27の基端開口から延び出してコネクタ50のピン端子52に接続固定された8本のリード線42、第3絶縁性チューブ28の基端開口から延び出してコネクタ50のピン端子53に接続固定された4本のリード線43は、これらの周囲が樹脂58で固められることにより、それぞれの形状が保持固定されている。 As shown in FIG. 8, eight lead wires 41 extending from the base end opening of the first insulating tube 26 and connected and fixed to the pin terminal 51 of the connector 50, and from the base end opening of the second insulating tube 27 are connected. Eight lead wires 42 extending and fixedly connected to the pin terminal 52 of the connector 50, and four leads extending from the proximal end opening of the third insulating tube 28 and fixedly connected to the pin terminal 53 of the connector 50 The shape of the wire 43 is held and fixed by the periphery of the wire 43 being hardened by the resin 58.
 リード線の形状を保持する樹脂58は、コネクタ50と同径の円筒状に成形されており、この樹脂成形体の内部に、ピン端子、リード線、絶縁性チューブの基端部および隔壁板55が埋め込まれた状態となっている。
 そして、絶縁性チューブの基端部が樹脂成形体の内部に埋め込まれている構成によれば、絶縁性チューブの基端開口より延び出してからピン端子に接続固定されるまでのリード線(基端部分)の全域を樹脂58によって完全に覆うことができ、リード線(基端部分)の形状を完全に保持固定することができる。
 また、樹脂成形体の高さ(基端面から先端面までの距離)は、隔壁板55の高さよりも高いことが好ましく、隔壁板55の高さが8mmの場合に、例えば9mmとされる。
The resin 58 that retains the shape of the lead wire is formed into a cylindrical shape having the same diameter as the connector 50, and the pin terminal, the lead wire, the base end portion of the insulating tube, and the partition plate 55 are formed inside the resin molded body. Is embedded.
According to the configuration in which the proximal end portion of the insulating tube is embedded in the resin molded body, the lead wire (base) from the base end opening of the insulating tube until it is connected and fixed to the pin terminal. The entire region of the end portion can be completely covered with the resin 58, and the shape of the lead wire (base end portion) can be completely held and fixed.
Further, the height of the resin molded body (distance from the base end surface to the front end surface) is preferably higher than the height of the partition plate 55, and is 9 mm, for example, when the height of the partition plate 55 is 8 mm.
 ここに、樹脂成形体を構成する樹脂58としては特に限定されるのではないが、熱硬化性樹脂または光硬化性樹脂を使用することが好ましい。具体的には、ウレタン系、エポキシ系、ウレタン-エポキシ系の硬化性樹脂を例示することができる。 Here, the resin 58 constituting the resin molded body is not particularly limited, but it is preferable to use a thermosetting resin or a photocurable resin. Specifically, urethane-based, epoxy-based, and urethane-epoxy-based curable resins can be exemplified.
 上記のような構成によれば、樹脂58によってリード線の形状が保持固定されるので、除細動カテーテル100を製造する際(ハンドル20の内部にコネクタ50を装着する際)に、絶縁性チューブの基端開口から延び出したリード線がキンクしたり、ピン端子のエッジと接触したりして損傷(例えば、リード線の被覆樹脂にクラックが発生)することを防止することができる。 According to the above configuration, since the shape of the lead wire is held and fixed by the resin 58, when the defibrillation catheter 100 is manufactured (when the connector 50 is mounted inside the handle 20), an insulating tube is used. It is possible to prevent the lead wire extending from the base end opening from being kinked or coming into contact with the edge of the pin terminal and causing damage (for example, generation of cracks in the coating resin of the lead wire).
 図1に示したように、本実施形態のカテーテルシステムを構成する除細動カテーテル100は、カテーテルシリアル記憶部111と、初回接続情報記憶部112と、イベント情報記憶部113とを有するメモリ110を備えている。
 除細動カテーテル100に備えられたメモリ110は、例えば、ハンドル20の内部に格納されたメモリチップから構成される。
As shown in FIG. 1, the defibrillation catheter 100 constituting the catheter system of this embodiment includes a memory 110 having a catheter serial storage unit 111, an initial connection information storage unit 112, and an event information storage unit 113. I have.
The memory 110 provided in the defibrillation catheter 100 is composed of, for example, a memory chip stored inside the handle 20.
 下記の表1は、除細動カテーテル100のメモリ構造の一例を、書き込まれた情報とともに示している。 Table 1 below shows an example of the memory structure of the defibrillation catheter 100, along with written information.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 メモリ110のカテーテルシリアル記憶部111には、除細動カテーテル100のシリアル情報が記憶されている。
 除細動カテーテル100のシリアル情報としては、製造番号(シリアル番号)、製造年月日などを挙げることができる。このシリアル情報は、除細動カテーテル100の製造時に書き込まれた製品管理上の情報であって、書き換えたり、追記したりすることはできない。
 例えば、表1に示したメモリ110の構造において、カテーテルシリアル記憶部111には、除細動カテーテルのシリアル番号(123456)が書き込まれている。
Serial information of the defibrillation catheter 100 is stored in the catheter serial storage unit 111 of the memory 110.
As serial information of the defibrillation catheter 100, a manufacturing number (serial number), a manufacturing date, etc. can be mentioned. This serial information is information on product management written at the time of manufacture of the defibrillation catheter 100, and cannot be rewritten or added.
For example, in the structure of the memory 110 shown in Table 1, the deserialization catheter serial number (123456) is written in the catheter serial storage unit 111.
 メモリ110の初回接続情報記憶部112には、除細動カテーテル100に電源装置が最初に接続された時刻(日時)および最初に接続した電源装置のシリアル情報が記憶される。
 最初に接続された時刻および最初に接続した電源装置のシリアル情報は、最初に接続した電源装置の演算処理部によって書き込まれ、一度書き込まれた後は書き換えることはできない。
 使い捨て(Disposable)の製品である除細動カテーテル100は、ある程度の時間使用することによって性能が低下する。このため、除細動カテーテル100には、性能および安全の観点から使用制限時間(この使用制限時間は、電源装置700のメモリ752に記憶されている。)が設定されており、「除細動カテーテル100に電源装置が最初に接続された時刻」は、除細動カテーテル100の使用制限時間の起算点となる。
The first connection information storage unit 112 of the memory 110 stores the time (date and time) when the power supply device is first connected to the defibrillation catheter 100 and the serial information of the power supply device connected first.
The first connection time and the serial information of the first connected power supply device are written by the arithmetic processing unit of the first connected power supply device, and cannot be rewritten once written.
The performance of the defibrillation catheter 100, which is a disposable product, deteriorates when used for a certain period of time. For this reason, the defibrillation catheter 100 is set with a use time limit (this use time limit is stored in the memory 752 of the power supply device 700) from the viewpoint of performance and safety. The “time when the power supply device is first connected to the catheter 100” is a starting point of the use time limit of the defibrillation catheter 100.
 上記表1に示したメモリ110の構造において、初回接続情報記憶部112には、電源装置が最初に接続された時刻(2009年12月5日10時00分00秒)が書き込まれ、最初に接続した電源装置のシリアル情報としてシリアル番号(10011)が書き込まれている。 In the structure of the memory 110 shown in Table 1 above, the first connection information storage unit 112 is written with the time when the power supply device was first connected (December 5, 2009, 10:00:00). A serial number (10011) is written as serial information of the connected power supply device.
 メモリ110のイベント情報記憶部113には、除細動カテーテル100による除細動を含むイベント(動作)に係る情報が、そのイベントが行われた時刻(日時)、およびそのときに接続されていた電源装置のシリアル情報とともに記憶される。 Information related to an event (operation) including defibrillation by the defibrillation catheter 100 was connected to the event information storage unit 113 of the memory 110 and the time (date and time) when the event was performed, and at that time It is stored together with the power supply serial information.
 イベント情報記憶部113に記憶されるイベントとしては、
 (1)除細動カテーテル100による除細動(電気エネルギーの印加)、
 (2)除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値の測定、
 (3)除細動カテーテル100によるイベントに使用した電源装置が取り外された後、この除細動カテーテル100に対して、同一または異なる電源装置を再接続する操作を挙げることができる。
As an event stored in the event information storage unit 113,
(1) Defibrillation (application of electrical energy) by the defibrillation catheter 100,
(2) measurement of a resistance value between the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100,
(3) After the power supply device used for the event by the defibrillation catheter 100 is removed, an operation of reconnecting the same or different power supply device to the defibrillation catheter 100 can be exemplified.
 除細動カテーテル100によって除細動が行われたときには、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値(心内抵抗値)、これらの電極群の間に印加しようとした電気エネルギーの設定値、実際に印加された出力電圧および出力時間の情報が、この除細動が行われた時刻およびそのときに接続されている電源装置のシリアル情報とともに、イベント情報記憶部113に書き込まれる。 When defibrillation is performed by the defibrillation catheter 100, the resistance value (intracardiac resistance value) between the first DC electrode group 31G and the second DC electrode group 32G is attempted to be applied between these electrode groups. The information on the set value of electric energy, the actually applied output voltage and the output time is stored in the event information storage unit 113 together with the time when this defibrillation is performed and the serial information of the power supply device connected at that time. Written.
 例えば、上記表1に示したメモリ110の構造において、イベント情報記憶部113のイベント2には、除細動をイベントとして、電極群間の抵抗値(75Ω)、エネルギー設定値(15J)、出力電圧(300V)および出力時間(13.5msec)が、除細動が行われた時刻およびそのときに接続されていた電源装置のシリアル番号とともに、イベント情報記憶部113に書き込まれている(イベント3、4および7についても同様である。)。 For example, in the structure of the memory 110 shown in Table 1 above, the event 2 of the event information storage unit 113 has a defibrillation as an event, a resistance value (75Ω) between the electrode groups, an energy set value (15J), an output The voltage (300 V) and output time (13.5 msec) are written in the event information storage unit 113 together with the time when defibrillation is performed and the serial number of the power supply device connected at that time (event 3) The same applies to 4 and 7.)
 第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値の測定は、通常、除細動
に先行して行われるため、除細動のイベントに含めることができるが、その後に除細動が行われなかった場合には、抵抗値の測定が単独のイベントとして認識され、測定された抵抗値が、測定された時刻および接続されている電源装置のシリアル情報とともに、イベント情報記憶部113に書き込まれる。
Since the measurement of the resistance value between the first DC electrode group 31G and the second DC electrode group 32G is usually performed prior to defibrillation, it can be included in the defibrillation event. When the movement is not performed, the measurement of the resistance value is recognized as a single event, and the measured resistance value is measured together with the measured time and the serial information of the connected power supply device, and the event information storage unit 113. Is written to.
 例えば、上記表1に示したメモリ110の構造において、イベント情報記憶部113のイベント1には、電極群間の抵抗値(75Ω)が、測定時刻(2009年12月5日10時05分00秒)およびそのときに接続されていた電源装置のシリアル番号(10011)とともに、イベント情報記憶部113に書き込まれている。
 また、イベント6には、電極群間の抵抗値(79Ω)が、測定時刻(2009年12月5日10時53分22秒)およびそのときに接続されていた電源装置のシリアル番号(10032)とともに、イベント情報記憶部113に書き込まれている。
For example, in the structure of the memory 110 shown in Table 1 above, in the event 1 of the event information storage unit 113, the resistance value (75Ω) between the electrode groups has a measurement time (December 5, 2009 10:05:00 Second) and the serial number (10011) of the power supply device connected at that time are written in the event information storage unit 113.
In event 6, the resistance value (79Ω) between the electrode groups is measured at the measurement time (December 5, 2009 10:53:22) and the serial number (10032) of the power supply device connected at that time. At the same time, it is written in the event information storage unit 113.
 本実施形態のカテーテルシステムにおいて、除細動カテーテル100に電源装置を接続したときには、それが最初の接続である場合には、その時刻およびこの電源装置のシリアル情報が初回接続情報記憶部112に書き込まれるが、同一または異なる電源装置を再接続した場合には、それらの情報は、イベント情報記憶部113に書き込まれることになる。 In the catheter system of this embodiment, when the power supply device is connected to the defibrillation catheter 100, if it is the first connection, the time and serial information of this power supply device are written in the initial connection information storage unit 112. However, when the same or different power supply devices are reconnected, the information is written in the event information storage unit 113.
 例えば、上記表1に示したメモリ110の構造において、イベント情報記憶部113のイベント5には、再接続した時刻(2009年12月5日10時40分08秒)、および再接続した電源装置のシリアル番号(10032)がイベント情報記憶部113に書き込まれている。 For example, in the structure of the memory 110 shown in Table 1, the event 5 in the event information storage unit 113 includes the reconnection time (December 5, 2009, 10:40:08) and the reconnected power supply device. The serial number (10032) is written in the event information storage unit 113.
 図1に示したように、本実施形態のカテーテルシステムを構成する電源装置700は、DC電源部71と、カテーテル接続コネクタ72と、心電計接続コネクタ73と、外部スイッチ(入力手段)74と、演算処理部75と、切替部76と、心電図入力コネクタ77と、心電位情報表示部78とを備えている。 As shown in FIG. 1, the power supply device 700 constituting the catheter system of the present embodiment includes a DC power supply unit 71, a catheter connection connector 72, an electrocardiograph connection connector 73, an external switch (input means) 74, and the like. , An arithmetic processing unit 75, a switching unit 76, an electrocardiogram input connector 77, and an electrocardiogram information display unit 78.
 DC電源部71にはコンデンサが内蔵され、外部スイッチ74(充電スイッチ743)の入力により、内蔵コンデンサが充電される。 The DC power supply unit 71 has a built-in capacitor, and the built-in capacitor is charged by the input of the external switch 74 (charge switch 743).
 カテーテル接続コネクタ72は、除細動カテーテル100のコネクタ50と接続され、第1リード線群(41G)、第2リード線群(42G)および第3リード線群(43G)の基端側と電気的に接続される。 The catheter connector 72 is connected to the connector 50 of the defibrillation catheter 100, and is electrically connected to the proximal end side of the first lead wire group (41G), the second lead wire group (42G), and the third lead wire group (43G). Connected.
 図9に示すように、除細動カテーテル100のコネクタ50と、電源装置700のカテーテル接続コネクタ72とが、コネクタケーブルC1によって連結されることにより、
 第1リード線群を構成する8本のリード線41を接続固定したピン端子51(実際には8個)と、カテーテル接続コネクタ72の端子721(実際には8個)、
 第2リード線群を構成する8本のリード線42を接続固定したピン端子52(実際には8個)と、カテーテル接続コネクタ72の端子722(実際には8個)、
 第3リード線群を構成する4本のリード線43を接続固定したピン端子53(実際には4個)と、カテーテル接続コネクタ72の端子723(実際には4個)が、それぞれ接続されている。
As shown in FIG. 9, the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1,
Pin terminals 51 (actually 8) that connect and fix the eight lead wires 41 constituting the first lead wire group, and terminals 721 (actually 8) of the catheter connector 72,
Pin terminals 52 (actually 8) that connect and fix the eight lead wires 42 constituting the second lead wire group, and terminals 722 (actually 8) of the catheter connector 72,
Pin terminals 53 (actually four) to which the four lead wires 43 constituting the third lead wire group are connected and fixed, and terminals 723 (actually four) of the catheter connector 72 are connected to each other. Yes.
 ここに、カテーテル接続コネクタ72の端子721および端子722は、切替部76に接続され、端子723は、切替部76を経ることなく心電計接続コネクタ73に直接接続されている。
 これにより、第1DC電極群31Gおよび第2DC電極群32Gにより測定された心電
位情報は、切替部76を経由して心電計接続コネクタ73に到達し、基端側電位測定電極群33Gにより測定された心電位情報は、切替部76を経ることなく、心電計接続コネクタ73に到達する。
Here, the terminal 721 and the terminal 722 of the catheter connection connector 72 are connected to the switching unit 76, and the terminal 723 is directly connected to the electrocardiograph connection connector 73 without passing through the switching unit 76.
As a result, the cardiac potential information measured by the first DC electrode group 31G and the second DC electrode group 32G reaches the electrocardiograph connection connector 73 via the switching unit 76, and is measured by the proximal-side potential measurement electrode group 33G. The electrocardiogram information thus reached reaches the electrocardiograph connector 73 without passing through the switching unit 76.
 心電計接続コネクタ73は、心電計800の入力端子に接続されている。
 入力手段である外部スイッチ74は、心電位測定モードと除細動モードとを切り替えるためのモード切替スイッチ741、除細動の際に印加する電気エネルギーを設定する電気エネルギー設定スイッチ742、DC電源部71を充電するための充電スイッチ743、電気エネルギーを印加して除細動を行うための電気エネルギー印加スイッチ(放電スイッチ)744からなる。これら外部スイッチ74からの入力信号はすべて演算処理部75に送られる。
The electrocardiograph connector 73 is connected to the input terminal of the electrocardiograph 800.
An external switch 74 serving as input means includes a mode switch 741 for switching between a cardiac potential measurement mode and a defibrillation mode, an electrical energy setting switch 742 for setting electrical energy applied during defibrillation, and a DC power supply unit A charge switch 743 for charging 71 and an electric energy application switch (discharge switch) 744 for defibrillation by applying electric energy. All input signals from these external switches 74 are sent to the arithmetic processing unit 75.
 電源装置の演算処理部75は、外部スイッチ74の入力に基づいて、DC電源部71、切替部76および心電位情報表示部78を制御する。
 この演算処理部75には、DC電源部71からの直流電圧を切替部76を介して除細動カテーテル100の電極に出力するための出力回路751を有している。
The arithmetic processing unit 75 of the power supply device controls the DC power supply unit 71, the switching unit 76, and the electrocardiogram information display unit 78 based on the input of the external switch 74.
The arithmetic processing unit 75 has an output circuit 751 for outputting a DC voltage from the DC power supply unit 71 to the electrode of the defibrillation catheter 100 via the switching unit 76.
 この出力回路751により、図9に示したカテーテル接続コネクタ72の端子721(最終的には、除細動カテーテル100の第1DC電極群31G)と、カテーテル接続コネクタ72の端子722(最終的には、除細動カテーテル100の第2DC電極群32G)とが互いに異なる極性となる(一方の電極群が-極のときには、他方の電極群は+極となる)ように直流電圧を印加することができる。 By this output circuit 751, the terminal 721 of the catheter connection connector 72 shown in FIG. 9 (finally, the first DC electrode group 31G of the defibrillation catheter 100) and the terminal 722 of the catheter connection connector 72 (finally, The DC voltage may be applied so that the second DC electrode group 32G of the defibrillation catheter 100 has a different polarity from each other (when one electrode group is a negative electrode, the other electrode group is a positive electrode). it can.
 演算処理部75は、電源装置700のシリアル情報およびカテーテルの使用制限時間が記憶されたメモリ752と、時刻を確定するための内部時計753とを有している。 The arithmetic processing unit 75 includes a memory 752 in which serial information of the power supply device 700 and a catheter use time limit are stored, and an internal clock 753 for determining the time.
 メモリ752に記憶された電源装置700のシリアル情報としては、製造番号(シリアル番号)、製造年月日などを挙げることができる。このシリアル情報は、電源装置の製造時に書き込まれた製品管理上の情報であって、書き換えたり、追記したりすることはできない。
 メモリ752に記憶されたカテーテルの使用制限時間は、除細動カテーテル100の性能および安全の観点から設定され、カテーテルシステムの使用者によって書き換えることはできない。
 カテーテルの使用制限時間としては、1回の手技に要する最大時間より長い時間であり、かつ、除細動カテーテルの性能および安全の観点から問題を起こすことのない時間とされ、例えば24時間と設定することができるが、これに限定されるものではないことは勿論である。
The serial information of the power supply device 700 stored in the memory 752 can include a manufacturing number (serial number), a manufacturing date, and the like. This serial information is information on product management written at the time of manufacturing the power supply device, and cannot be rewritten or added.
The catheter use time limit stored in the memory 752 is set from the viewpoint of the performance and safety of the defibrillation catheter 100 and cannot be rewritten by the user of the catheter system.
The time limit for using the catheter is longer than the maximum time required for one procedure, and is a time that does not cause a problem from the viewpoint of the performance and safety of the defibrillation catheter. For example, it is set to 24 hours. Of course, the present invention is not limited to this.
 内部時計753によって確定される時刻としては、除細動カテーテル100に電源装置を最初に接続した時刻、および除細動カテーテル100によるイベント(除細動、電極群間の抵抗値の測定、電源装置の再接続)が行われた時刻を挙げることができる。 The time determined by the internal clock 753 includes the time when the power supply device is first connected to the defibrillation catheter 100, and the event (defibrillation, measurement of resistance value between electrode groups, power supply device) by the defibrillation catheter 100. The time at which the reconnection is performed can be given.
 演算処理部75は、除細動カテーテル100に電源装置700を最初に接続したときに、接続した時刻を内部時計753を参照して取得し、この時刻を、メモリ752に記憶された電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込む。 When the power supply device 700 is first connected to the defibrillation catheter 100, the arithmetic processing unit 75 obtains the connected time with reference to the internal clock 753, and this time is stored in the memory 752. Are written in the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100.
 ここに、除細動カテーテル100に電源装置700が接続されたことの検知手段としては特に限定されるものではなく、例えば、接続したときに微弱電流が流れるような回路を設けたり、電源装置700のカテーテル接続コネクタ72に物理的なスイッチを設けたり
する手段を挙げることができる。
Here, the means for detecting that the power supply device 700 is connected to the defibrillation catheter 100 is not particularly limited. For example, a circuit in which a weak current flows when the power supply device 700 is connected or a power supply device 700 is provided. And a means for providing a physical switch to the catheter connector 72.
 また、電源装置700の接続が、この除細動カテーテル100において「最初の」接続であるか、再接続であるかは、この除細動カテーテル100のメモリ110における初回接続情報記憶部112を演算処理部75が参照し、初回接続情報記憶部112に情報が記憶されていない場合には「最初の」接続であると判断し、初回接続情報記憶部112に情報が記憶されている場合には再接続であると判断する。 Whether the connection of the power supply device 700 is the “first” connection or reconnection in the defibrillation catheter 100 is calculated by the first connection information storage unit 112 in the memory 110 of the defibrillation catheter 100. When the processing unit 75 refers to and the information is not stored in the first connection information storage unit 112, it is determined that the connection is the “first” connection, and when the information is stored in the first connection information storage unit 112, Judge that it is a reconnection.
 演算処理部75は、除細動カテーテル100により除細動が行われたときに、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値(除細動を行うときに先行して測定された心内抵抗値)、第1DC電極群31Gと第2DC電極群32Gとの間に印加しようとした電気エネルギーの設定値(エネルギー設定スイッチ742による入力値)、出力電圧および出力時間(実際に印加された電圧および時間)の情報を取得し、これらの情報を、この除細動が行われた時刻(内部時計753による時刻)および接続されている電源装置700のシリアル情報(メモリ752に記憶されているシリアル情報)とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込む(上記表1のイベント2、3、4、7参照)。 When the defibrillation is performed by the defibrillation catheter 100, the arithmetic processing unit 75 has a resistance value between the first DC electrode group 31G and the second DC electrode group 32G (prior to the defibrillation. Measured intracardiac resistance value), set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), output voltage and output time (actual Information on the voltage and time applied to the power supply device, and this information is stored in the memory 752 in the time when this defibrillation is performed (time by the internal clock 753) and the power supply device 700 connected thereto. Together with the stored serial information), the event information is stored in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 ( events 2, 3, 4, Reference).
 また、除細動カテーテル100の第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値が測定された後に除細動が行われない場合において、演算処理部75は、抵抗値の測定をイベントとして認識し、測定された抵抗値を、これを測定した時刻および接続されている電源装置700のシリアル情報とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込む(上記表1のイベント1、6参照)。
 これにより、除細動を行わなかったときの心内抵抗値のデータについても記録することができる。
When the defibrillation is not performed after the resistance value between the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is measured, the arithmetic processing unit 75 measures the resistance value. And the measured resistance value is written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100 together with the time at which it was measured and the serial information of the connected power supply device 700 (see the above table). 1 event 1 and 6).
Thereby, it is possible to record the data of the intracardiac resistance value when the defibrillation is not performed.
 更に、演算処理部75は、除細動カテーテル100によるイベントに使用した電源装置が取り外された後、この除細動カテーテル100に、同一または異なる電源装置700を再接続(メモリ110の初回接続情報記憶部112に時刻が記憶されている除細動カテーテル100に接続)したとき、これをイベントとして認識し、再接続した時刻および電源装置700のシリアル情報を、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込む(上記表1のイベント5参照)。
 これにより、電源装置を再接続(交換)したことの履歴を記録することができる。
Further, after the power supply device used for the event by the defibrillation catheter 100 is removed, the arithmetic processing unit 75 reconnects the same or different power supply device 700 to the defibrillation catheter 100 (initial connection information in the memory 110). (When connected to the defibrillation catheter 100 whose time is stored in the storage unit 112), this is recognized as an event, and the reconnection time and the serial information of the power supply device 700 are stored in the memory 110 of the defibrillation catheter 100. Write to the event information storage unit 113 (see event 5 in Table 1 above).
As a result, a history of reconnection (exchange) of the power supply device can be recorded.
 本実施形態のカテーテルシステムによれば、除細動カテーテル100によるイベント(除細動、電極群間の抵抗値の測定、電源装置の再接続)の履歴を記録することができる。しかも、これらのイベントに係る情報が、電源装置側ではなく、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に記憶されるので、1つの除細動カテーテル100のイベントを複数の電源装置を使用して行ったとしても、これらのイベントに係る情報が、複数の電源装置に分散されることはない。 According to the catheter system of the present embodiment, it is possible to record a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100. In addition, since information related to these events is stored not in the power supply device side but in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100, an event of one defibrillation catheter 100 is stored in a plurality of power supply devices. Even if it is performed using the above, the information related to these events is not distributed to a plurality of power supply apparatuses.
 本実施形態のカテーテルシステムにおいて、演算処理部75は、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込まれたイベントごとに、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻から、そのイベントが行われた時刻までの経過時間が、電源装置700のメモリ752に記憶されたカテーテルの使用制限時間を超えているか否かを判断し、超えていると判断した場合には、この除細動カテーテル100による次のイベントを実行させないように制御する。 In the catheter system of the present embodiment, the arithmetic processing unit 75 performs the initial connection information storage unit in the memory 110 of the defibrillation catheter 100 for each event written in the event information storage unit 113 in the memory 110 of the defibrillation catheter 100. It is determined whether or not the elapsed time from the connection time written in 112 to the time when the event is performed exceeds the catheter use time limit stored in the memory 752 of the power supply device 700. If it is determined, control is performed so that the next event by the defibrillation catheter 100 is not executed.
 例えば、上記表1に示したメモリ110の構造において、初回接続情報記憶部112に
書き込まれた接続時刻(10時00分00秒)から、イベント情報記憶部113に記憶されているイベント3の除細動が行われた時刻(10時09分25秒)までの経過時間は9分25秒間であり、電源装置700のメモリ752に記憶されたカテーテルの使用制限時間を、例えば24時間00分00秒間とすると、前記経過時間は、カテーテルの使用制限時間を超えていないので、次のイベント4の除細動を行うことができる。
For example, in the structure of the memory 110 shown in Table 1 above, the event 3 stored in the event information storage unit 113 is removed from the connection time (10:00:00) written in the initial connection information storage unit 112. The elapsed time until the time when fibrillation is performed (10:09:25) is 9 minutes 25 seconds, and the use time limit of the catheter stored in the memory 752 of the power supply device 700 is set to 24 hours 00 minutes 00, for example. If it is a second, since the elapsed time does not exceed the catheter use time limit, the next event 4 can be defibrillated.
 このような構成を有する本実施形態のカテーテルシステムによれば、使い捨て(Disposable)の製品である除細動カテーテルを、その性能や安全性の観点から問題のない時間に限り使用することができる。
 しかも、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻(電源装置を最初に接続した時刻)を、当該除細動カテーテル100の使用制限時間の起算点としているので、同一または異なる電源装置を再接続してイベントを行うことにしても、初回接続情報記憶部112に書き込まれた接続時刻から使用制限時間を経過した後には、除細動カテーテル100によるイベントを実行させることはない。
According to the catheter system of this embodiment having such a configuration, a defibrillation catheter that is a disposable product can be used only during a time when there is no problem in terms of performance and safety.
In addition, the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as a starting point for the use restriction time of the defibrillation catheter 100. Therefore, even if the event is performed by reconnecting the same or different power supply devices, after the use time limit has elapsed from the connection time written in the initial connection information storage unit 112, the event by the defibrillation catheter 100 is transmitted. There is no execution.
 切替部76は、共通接点にカテーテル接続コネクタ72(端子721および端子722)が接続され、第1接点に心電計接続コネクタ73が接続され、第2接点に演算処理部75が接続された1回路2接点の切替スイッチからなる。
 すなわち、第1接点を選択したときには、カテーテル接続コネクタ72と、心電計接続コネクタ73とを結ぶ経路が確保され、第2接点を選択したときには、カテーテル接続コネクタ72と、演算処理部75とを結ぶ経路が確保される。
The switching unit 76 has a common contact to which the catheter connection connector 72 (terminal 721 and terminal 722) is connected, an electrocardiograph connection connector 73 is connected to the first contact, and an arithmetic processing unit 75 is connected to the second contact. It consists of a switch with two circuit contacts.
That is, when the first contact is selected, a path connecting the catheter connection connector 72 and the electrocardiograph connection connector 73 is secured, and when the second contact is selected, the catheter connection connector 72 and the arithmetic processing unit 75 are connected. A connecting route is secured.
 切替部76の切替動作は、外部スイッチ74(モード切替スイッチ741・電気エネルギー印加スイッチ744)の入力に基いて演算処理部75により制御される。 The switching operation of the switching unit 76 is controlled by the arithmetic processing unit 75 based on the input of the external switch 74 (mode switching switch 741 and electrical energy application switch 744).
 心電図入力コネクタ77は、演算処理部75に接続され、また、心電計800の出力端子に接続される。
 この心電図入力コネクタ77により、心電計800から出力される心電位情報(通常、心電計800に入力された心電位情報の一部)を演算処理部75に入力することができ、演算処理部75では、この心電位情報に基いて、DC電源部71および切替部76を制御することができる。
The electrocardiogram input connector 77 is connected to the arithmetic processing unit 75 and also connected to the output terminal of the electrocardiograph 800.
With this electrocardiogram input connector 77, the electrocardiogram information output from the electrocardiograph 800 (usually part of the electrocardiogram information input to the electrocardiograph 800) can be input to the arithmetic processing unit 75. The unit 75 can control the DC power supply unit 71 and the switching unit 76 based on the cardiac potential information.
 心電位情報表示部78は演算処理部75に接続され、心電位情報表示部78には、心電図入力コネクタ77から演算処理部75に入力された心電位情報(主に、心電位波形)が表示され、オペレータは、演算処理部75に入力された心電位情報(波形)を監視しながら除細動治療(外部スイッチの入力など)を行うことができる。 The cardiac potential information display unit 78 is connected to the arithmetic processing unit 75, and the cardiac potential information display unit 78 displays the cardiac potential information (mainly the cardiac potential waveform) input from the electrocardiogram input connector 77 to the arithmetic processing unit 75. Then, the operator can perform defibrillation treatment (such as input of an external switch) while monitoring the electrocardiogram information (waveform) input to the arithmetic processing unit 75.
 本実施形態のカテーテルシステムを構成する心電計800(入力端子)は、電源装置700の心電計接続コネクタ73に接続され、除細動カテーテル100(第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gの構成電極)により測定された心電位情報は、心電計接続コネクタ73から心電計800に入力される。 The electrocardiograph 800 (input terminal) constituting the catheter system of the present embodiment is connected to the electrocardiograph connector 73 of the power supply device 700, and the defibrillation catheter 100 (first DC electrode group 31G, second DC electrode group 32G). And electrocardiographic potential information measured by the base-side potential measuring electrode group 33G) is input to the electrocardiograph 800 from the electrocardiograph connector 73.
 また、心電計800(他の入力端子)は心電位測定手段900にも接続され、心電位測定手段900により測定された心電位情報も心電計800に入力される。
 ここに、心電位測定手段900としては、12誘導心電図を測定するために患者の体表面に貼付される電極パッド、患者の心臓内に装着される電極カテーテル(除細動カテーテル100とは異なる電極カテーテル)を挙げることができる。
The electrocardiograph 800 (other input terminal) is also connected to the electrocardiogram measuring unit 900, and the electrocardiogram information measured by the electrocardiogram measuring unit 900 is also input to the electrocardiograph 800.
Here, the electrocardiogram measuring means 900 includes an electrode pad attached to the patient's body surface for measuring a 12-lead electrocardiogram, and an electrode catheter (an electrode different from the defibrillation catheter 100) mounted in the patient's heart. Catheter).
 心電計800(出力端子)は、電源装置700の心電図入力コネクタ77に接続され、
心電計800に入力された心電位情報(除細動カテーテル100からの心電位情報および心電位測定手段900からの心電位情報)の一部を、心電図入力コネクタ77から演算処理部75に送ることができる。
The electrocardiograph 800 (output terminal) is connected to the electrocardiogram input connector 77 of the power supply device 700,
Part of the cardiac potential information (cardiac potential information from the defibrillation catheter 100 and cardiac potential information from the cardiac potential measuring means 900) input to the electrocardiograph 800 is sent from the electrocardiogram input connector 77 to the arithmetic processing unit 75. be able to.
 本実施形態における除細動カテーテル100は、除細動治療を必要としないときには、心電位測定用の電極カテーテルとして用いることができる。 The defibrillation catheter 100 in this embodiment can be used as an electrode catheter for measuring cardiac potential when defibrillation treatment is not required.
 図10は、心臓カテーテル術(例えば高周波治療)を行う際に、本実施形態に係る除細動カテーテル100によって心電位を測定する場合の心電位情報の流れを示している。
 このとき、電源装置700の切替部76は、心電計接続コネクタ73が接続された第1接点を選択している。
FIG. 10 shows the flow of cardiac potential information when cardiac potential is measured by the defibrillation catheter 100 according to the present embodiment when performing cardiac catheterization (for example, high frequency therapy).
At this time, the switching unit 76 of the power supply device 700 selects the first contact to which the electrocardiograph connection connector 73 is connected.
 除細動カテーテル100の第1DC電極群31Gおよび/または第2DC電極群32Gを構成する電極によって測定された心電位は、カテーテル接続コネクタ72、切替部76および心電計接続コネクタ73を経由して心電計800に入力される。
 また、除細動カテーテル100の基端側電位測定電極群33Gを構成する電極によって測定された心電位は、カテーテル接続コネクタ72から、切替部76を通ることなく直接心電計接続コネクタ73を経由して心電計800に入力される。
The cardiac potential measured by the electrodes constituting the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 passes through the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73. Input to the electrocardiograph 800.
In addition, the cardiac potential measured by the electrodes constituting the proximal-side potential measurement electrode group 33G of the defibrillation catheter 100 passes directly from the catheter connection connector 72 through the electrocardiograph connection connector 73 without passing through the switching unit 76. And input to the electrocardiograph 800.
 除細動カテーテル100からの心電位情報(心電位波形)は、心電計800のモニタ(図示省略)に表示される。
 また、除細動カテーテル100からの心電位情報の一部(例えば、第1DC電極群31Gを構成する電極31(第1極と第2極)間の電位差)を、心電計800から、心電図入力コネクタ77および演算処理部75を経由して、心電位情報表示部78に入力して表示することができる。
Cardiac potential information (cardiac potential waveform) from the defibrillation catheter 100 is displayed on a monitor (not shown) of the electrocardiograph 800.
Further, a part of the cardiac potential information from the defibrillation catheter 100 (for example, the potential difference between the electrodes 31 (first pole and second pole) constituting the first DC electrode group 31G) is transferred from the electrocardiograph 800 to the electrocardiogram. Via the input connector 77 and the arithmetic processing unit 75, it can be input to the electrocardiogram information display unit 78 and displayed.
 上記のように、心臓カテーテル術中において除細動治療を必要としないときには、除細動カテーテル100を心電位測定用の電極カテーテルとして用いることができる。 As described above, when defibrillation treatment is not required during cardiac catheterization, the defibrillation catheter 100 can be used as an electrode catheter for measuring cardiac potential.
 そして、心臓カテーテル術中において心房細動が起こったときには、電極カテーテルとして使用していた除細動カテーテル100によって直ちに除細動治療を行うことができる。この結果、心房細動が起きたときに、除細動のためのカテーテルを新に挿入するなどの手間を省くことができる。 When atrial fibrillation occurs during cardiac catheterization, defibrillation treatment can be immediately performed with the defibrillation catheter 100 used as an electrode catheter. As a result, when atrial fibrillation occurs, the trouble of newly inserting a catheter for defibrillation can be saved.
 以下、本実施形態の心腔内除細動カテーテルシステムによる除細動治療の一例について、図11に示すフローチャートに沿って説明する。 Hereinafter, an example of a defibrillation treatment by the intracardiac defibrillation catheter system of the present embodiment will be described with reference to the flowchart shown in FIG.
(1)先ず、除細動カテーテル100に電源装置700を接続する。具体的には、除細動カテーテル100のコネクタ50と、電源装置700のカテーテル接続コネクタ72とを、コネクタケーブルC1によって連結する(図11AのStep1、図9参照)。 (1) First, the power supply device 700 is connected to the defibrillation catheter 100. Specifically, the connector 50 of the defibrillation catheter 100 and the catheter connection connector 72 of the power supply device 700 are connected by the connector cable C1 (see Step 1 in FIG. 11A and FIG. 9).
(2)除細動カテーテル100に電源装置700が接続されたことを検知したこの電源装置700の演算処理部75は、除細動カテーテル100のメモリにおけるカテーテルシリアル記憶部111からシリアル情報を読み出すとともに、この接続が、この除細動カテーテル100において最初の接続であるか、あるいは、同一または異なる電源装置の再接続であるかを判断するために、メモリ110における初回接続情報記憶部112を参照し、そこに情報が書き込まれているか否かを判断し、初回接続情報記憶部112に情報が書き込まれていない場合にはStep3に進み、情報が書き込まれている場合にはStep4に進む(Step2、図12参照)。 (2) Upon detecting that the power supply device 700 is connected to the defibrillation catheter 100, the arithmetic processing unit 75 of the power supply device 700 reads serial information from the catheter serial storage unit 111 in the memory of the defibrillation catheter 100. In order to determine whether this connection is the first connection in the defibrillation catheter 100 or the reconnection of the same or different power supply device, the initial connection information storage unit 112 in the memory 110 is referred to. Then, it is determined whether or not information is written therein. If no information is written in the initial connection information storage unit 112, the process proceeds to Step 3, and if information is written, the process proceeds to Step 4 (Step 2, (See FIG. 12).
(3)初回接続情報記憶部112に情報が書き込まれていない場合に、電源装置700の演算処理部75は、Step1において電源装置700を接続した時刻(内部時計753による時刻)および電源装置700のシリアル情報(メモリ752に記憶されているシリアル情報)を、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込み、Step5に進む(Step3、図12参照)。 (3) When information is not written in the initial connection information storage unit 112, the arithmetic processing unit 75 of the power supply device 700 causes the time when the power supply device 700 is connected at Step 1 (time by the internal clock 753) and the power supply device 700. Serial information (serial information stored in the memory 752) is written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the process proceeds to Step 5 (Step 3, see FIG. 12).
(4)初回接続情報記憶部112に情報が書き込まれている場合には、電源装置700の演算処理部75は、Step1において電源装置700を接続した時刻および電源装置700のシリアル情報を、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込み、Step5に進む(Step4、図12参照)。 (4) When information is written in the initial connection information storage unit 112, the arithmetic processing unit 75 of the power supply device 700 delimits the time when the power supply device 700 was connected in Step 1 and the serial information of the power supply device 700. Write to the event information storage unit 113 in the memory 110 of the kinetic catheter 100 and proceed to Step 5 (Step 4, see FIG. 12).
(5)X線画像で、除細動カテーテル100の電極(第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gの構成電極)の位置を確認するとともに、心電位測定手段900(体表面に貼付した電極パッド)から心電計800に入力されている心電位情報(12誘導心電図)の一部を選択して、心電図入力コネクタ77から電源装置700の演算処理部75に入力する(Step5)。このとき、演算処理部75に入力された心電位情報の一部は心電位情報表示部78に表示される(図13参照)。
 また、除細動カテーテル100の第1DC電極群31Gおよび/または第2DC電極群32Gの構成電極から、カテーテル接続コネクタ72、切替部76、心電計接続コネクタ73を経由して心電計800に入力された心電位情報、除細動カテーテル100の基端側電位測定電極群33Gの構成電極から、カテーテル接続コネクタ72、心電計接続コネクタ73を経由して心電計800に入力された心電位情報は、心電計800のモニタ(図示省略)に表示されている。
(5) The position of the electrodes of the defibrillation catheter 100 (constituting electrodes of the first DC electrode group 31G, the second DC electrode group 32G, and the proximal end side potential measurement electrode group 33G) is confirmed on the X-ray image, and the cardiac potential measurement is performed. A part of the electrocardiogram information (12-lead electrocardiogram) input to the electrocardiograph 800 is selected from the means 900 (electrode pad affixed to the body surface), and the arithmetic processing unit 75 of the power supply 700 is selected from the electrocardiogram input connector 77. (Step 5). At this time, a part of the electrocardiogram information input to the arithmetic processing unit 75 is displayed on the electrocardiogram information display unit 78 (see FIG. 13).
In addition, from the constituent electrodes of the first DC electrode group 31G and / or the second DC electrode group 32G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connection connector 72, the switching unit 76, and the electrocardiograph connection connector 73. The inputted cardiac potential information and the heart inputted from the constituent electrodes of the proximal side potential measurement electrode group 33G of the defibrillation catheter 100 to the electrocardiograph 800 via the catheter connector 72 and the electrocardiograph connector 73. The potential information is displayed on a monitor (not shown) of the electrocardiograph 800.
(6)次に、外部スイッチ74であるモード切替スイッチ741を入力する(Step6)。本実施形態における電源装置700は、初期状態において「心電位測定モード」であり、切替部76は第1接点を選択し、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が確保されている。 (6) Next, the mode changeover switch 741, which is the external switch 74, is input (Step 6). The power supply device 700 in the present embodiment is in the “cardiac potential measurement mode” in the initial state, the switching unit 76 selects the first contact, and the electrocardiograph connection connector from the catheter connection connector 72 via the switching unit 76. A route to 73 is secured.
(7)モード切替スイッチ741が入力されると、電源装置700の演算処理部75は、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれている時刻から、イベント情報記憶部113に最後に書き込まれた時刻までの経過時間が、演算処理部75のメモリ752に記憶されているカテーテルの使用制限時間を超えているか否かを判断し、超えていない場合にはStep8に進み、超えている場合には、以後の動作を行うことができず「終了」となる(Step7)。 (7) When the mode changeover switch 741 is input, the arithmetic processing unit 75 of the power supply device 700 starts from the time written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100, and the event information storage unit It is determined whether or not the elapsed time up to the time of the last writing in 113 exceeds the catheter use time limit stored in the memory 752 of the arithmetic processing unit 75. If not, the process proceeds to Step 8. If it exceeds, the subsequent operation cannot be performed and “end” is performed (Step 7).
 ここに、Step1における電源装置700の接続が、この除細動カテーテル100において最初の接続である場合(Step2、3、5、6を経由した場合)には、イベント情報記憶部113には情報が書き込まれていないため、Step8に進むことができる。他方、Step1における電源装置700の接続が、この除細動カテーテル100において再度の接続である場合(Step2、4、5、6を経由した場合)には、イベント情報記憶部113に最後に書き込まれた時刻は、Step4で書き込んだ電源装置700を再接続した時刻となる。
 また、後述するStep22からStep6に戻った場合(Step22、6を経由した場合)には、イベント情報記憶部113に最後に書き込まれた時刻は、後述するStep17において、電気エネルギーの印加(除細動)を行った時刻となる。
Here, when the connection of the power supply device 700 in Step 1 is the first connection in this defibrillation catheter 100 (when going through Steps 2, 3, 5, 6), information is stored in the event information storage unit 113. Since it has not been written, it is possible to proceed to Step 8. On the other hand, when the connection of the power supply device 700 in Step 1 is a connection again in this defibrillation catheter 100 (when going through Steps 2, 4, 5, and 6), the event information storage unit 113 is finally written. The time is the time when the power supply device 700 written in Step 4 is reconnected.
In addition, when returning from Step 22 described later to Step 6 (when going through Steps 22 and 6), the time last written in the event information storage unit 113 is the application of electric energy (defibrillation) in Step 17 described later. ).
(8)初回接続情報記憶部112に書き込まれている時刻から、イベント情報記憶部113に最後に書き込まれた時刻までの経過時間が、カテーテルの使用制限時間を超えていないと判断されると、演算処理部75は、電源装置700のモードを「心電位測定モード」
から「除細動モード」に切り替える(図11BのStep8)。
(8) When it is determined that the elapsed time from the time written in the first connection information storage unit 112 to the time last written in the event information storage unit 113 does not exceed the catheter use time limit, The arithmetic processing unit 75 sets the mode of the power supply device 700 to “cardiac potential measurement mode”.
To “defibrillation mode” (Step 8 in FIG. 11B).
(9)図14に示すように、モード切替スイッチ741が入力されて除細動モードに切り替わると、演算処理部75の制御信号によって切替部76の接点が第2接点に切り替わり、カテーテル接続コネクタ72から、切替部76を経由して演算処理部75に至る経路が確保され、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が遮断される(Step9)。切替部76が第2接点を選択しているとき、除細動カテーテル100の第1DC電極群31Gおよび第2DC電極群32Gの構成電極からの心電位情報は、心電計800に入力することはできない(従って、この心電位情報を演算処理部75に送ることもできない。)。但し、切替部76を経由しない基端側電位測定電極群33Gの構成電極からの心電位情報は心電計800に入力される。 (9) As shown in FIG. 14, when the mode changeover switch 741 is input to switch to the defibrillation mode, the contact of the switching unit 76 is switched to the second contact by the control signal of the arithmetic processing unit 75, and the catheter connection connector 72. Thus, a route from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 9). When the switching unit 76 selects the second contact point, the electrocardiographic information from the constituent electrodes of the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 is input to the electrocardiograph 800. (Therefore, this electrocardiographic information cannot be sent to the arithmetic processing unit 75). However, the electrocardiographic information from the constituent electrodes of the proximal-side potential measurement electrode group 33G that does not pass through the switching unit 76 is input to the electrocardiograph 800.
(10)切替部76の接点が第2接点に切り替わったところで、除細動カテーテル100の第1DC電極群(31G)と第2DC電極群(32G)との間の抵抗値を測定する(Step10)。カテーテル接続コネクタ72から、切替部76を経由して、演算処理部75に入力された抵抗値は、演算処理部75に入力された心電位測定手段900からの心電位情報の一部とともに、心電位情報表示部78に表示することができる(図14参照)。 (10) When the contact point of the switching unit 76 is switched to the second contact point, the resistance value between the first DC electrode group (31G) and the second DC electrode group (32G) of the defibrillation catheter 100 is measured (Step 10). . The resistance value input to the arithmetic processing unit 75 from the catheter connection connector 72 via the switching unit 76 is combined with a part of the cardiac potential information from the cardiac potential measuring means 900 input to the arithmetic processing unit 75. It can be displayed on the potential information display section 78 (see FIG. 14).
(11)切替部76の接点が第1接点に切り替わり、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が復帰する(Step11)。
 なお、切替部76の接点が第2接点を選択している時間(上記のStep9~Step10)は、例えば1秒間とされる。
(11) The contact point of the switching unit 76 is switched to the first contact point, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored (Step 11).
Note that the time during which the contact of the switching unit 76 selects the second contact (Step 9 to Step 10 above) is, for example, 1 second.
(12)演算処理部75は、Step10で測定した抵抗値が一定の値を超えているか否かを判定し、超えていない場合には、次のStep13(直流電圧を印加するための準備)に進み、超えている場合にはStep5(除細動カテーテル100の電極の位置確認)に戻る(Step12)。
 ここに、抵抗値が一定の値を超えている場合には、第1DC電極群および/または第2DC電極群が、所定の部位(例えば、冠状静脈の管壁、右心房の内壁)に確実に当接されていないことを意味するので、Step5に戻り電極の位置を再調整する必要がある。
 このように、除細動カテーテル100の第1DC電極群および第2DC電極群が、所定の部位(例えば、冠状静脈の管壁、右心房の内壁)に対し確実に当接されたときにのみ電圧を印加することができるので、効果的な除細動治療を行うことができる。
(12) The arithmetic processing unit 75 determines whether or not the resistance value measured in Step 10 exceeds a certain value, and if not, in the next Step 13 (preparation for applying a DC voltage). If it has exceeded, the process returns to Step 5 (confirmation of the electrode position of the defibrillation catheter 100) (Step 12).
Here, when the resistance value exceeds a certain value, the first DC electrode group and / or the second DC electrode group is surely placed at a predetermined site (for example, a coronary vein tube wall, an inner wall of the right atrium). Since it means that the contact has not been made, it is necessary to return to Step 5 and readjust the position of the electrode.
Thus, the voltage is applied only when the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 are reliably brought into contact with a predetermined part (for example, the coronary vein tube wall or the right atrial inner wall). Therefore, an effective defibrillation treatment can be performed.
(13)外部スイッチ74である電気エネルギー設定スイッチ742を入力して、除細動の際の印加エネルギーを設定する(Step13)。
 本実施形態における電源装置700によれば、印加エネルギーは1Jから30Jまで、1J刻みで設定することができる。
(13) The electric energy setting switch 742 which is the external switch 74 is input to set the applied energy at the time of defibrillation (Step 13).
According to the power supply device 700 in the present embodiment, the applied energy can be set from 1J to 30J in increments of 1J.
(14)外部スイッチ74である充電スイッチ743を入力して、DC電源部71の内蔵コンデンサにエネルギーを充電する(Step14)。 (14) The charge switch 743 which is the external switch 74 is input, and the built-in capacitor of the DC power supply unit 71 is charged with energy (Step 14).
(15)充電完了後、外部スイッチ74である電気エネルギー印加スイッチ744を入力する(Step15)。 (15) After the charging is completed, the electric energy application switch 744 that is the external switch 74 is input (Step 15).
(16)電気エネルギー印加スイッチ744が入力されると、演算処理部75によって切替部76の接点が第2接点に切り替わり、カテーテル接続コネクタ72から、切替部76を経由して演算処理部75に至る経路が確保され、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が遮断される(Step16)。 (16) When the electric energy application switch 744 is input, the operation processing unit 75 switches the contact of the switching unit 76 to the second contact, and the catheter connection connector 72 reaches the operation processing unit 75 via the switching unit 76. A path is secured, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked (Step 16).
(17)切替部76の接点が第2接点に切り替わった後、演算処理部75からの制御信号を受けたDC電源部71から、演算処理部75の出力回路751、切替部76およびカテーテル接続コネクタ72を経由して、除細動カテーテル100の第1DC電極群と、第2DC電極群とに、互いに異なる極性の直流電圧が印加される(図11CのStep17、図15参照)。 (17) After the contact point of the switching unit 76 is switched to the second contact point, the output circuit 751, the switching unit 76, and the catheter connection connector of the calculation processing unit 75 are received from the DC power supply unit 71 that has received the control signal from the calculation processing unit 75. Direct current voltages having different polarities are applied to the first DC electrode group and the second DC electrode group of the defibrillation catheter 100 via 72 (see Step 17 in FIG. 11C and FIG. 15).
 ここに、演算処理部75は、心電図入力コネクタ77を経由して入力された心電位波形に同期をとって電圧が印加されるよう演算処理してDC電源部71に制御信号を送る。
 具体的には、演算処理部75に逐次入力される心電位波形(心電位測定手段900からの12誘導心電図の一部)において1つのR波(最大ピーク)を検知して、そのピーク高さを求め、次に、このピーク高さの80%の高さ(トリガーレベル)に電位差が到達した時点(次のR波が立ち上がり時)から一定時間(例えば、R波のピーク幅の1/10程度の極めて短い時間)の経過後に印加を開始する。
Here, the arithmetic processing unit 75 performs arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77, and sends a control signal to the DC power supply unit 71.
Specifically, one R wave (maximum peak) is detected in the electrocardiogram waveform (a part of the 12-lead electrocardiogram from the electrocardiogram measurement means 900) sequentially input to the arithmetic processing unit 75, and the peak height is detected. Next, a certain time (for example, 1/10 of the peak width of the R wave) from when the potential difference reaches the height (trigger level) of 80% of the peak height (when the next R wave rises) is obtained. The application is started after a very short time).
 図16は、本実施形態における除細動カテーテル100によって所定の電気エネルギー(例えば、設定出力=10J)を付与した際に測定される電位波形を示す図である。同図において、横軸は時間、縦軸は電位を表す。
 先ず、演算処理部75に入力された心電位波形における電位差がトリガーレベルに到達してから一定時間(t)経過後、第1DC電極群31Gが-極、第2DC電極群32Gが+極となるよう、両者の間で直流電圧を印加することにより、電気エネルギーが供給されて測定電位が立ち上がる(Vは、このときのピーク電圧である。)。一定時間(t)経過後、第1DC電極群31Gが+極、第2DC電極群32Gが-極となるよう、±を反転した直流電圧を両者の間で印加することにより、電気エネルギーが供給されて測定電位が立ち上がる(Vは、このときのピーク電圧である。)。
FIG. 16 is a diagram illustrating a potential waveform measured when predetermined electrical energy (for example, set output = 10 J) is applied by the defibrillation catheter 100 in the present embodiment. In the figure, the horizontal axis represents time and the vertical axis represents potential.
First, after a lapse of a certain time (t 0 ) after the potential difference in the electrocardiographic waveform input to the arithmetic processing unit 75 reaches the trigger level, the first DC electrode group 31G is negative, and the second DC electrode group 32G is positive. Thus, by applying a DC voltage between the two, electric energy is supplied and the measured potential rises (V 1 is the peak voltage at this time). After a certain time (t 1 ) has elapsed, electric energy is supplied by applying a DC voltage with ± reversed between the first DC electrode group 31G and the second DC electrode group 32G so that the first DC electrode group 31G becomes the positive pole and the negative pole. As a result, the measurement potential rises (V 2 is the peak voltage at this time).
 ここに、トリガーレベルに到達してから印加を開始するまでの時間(t)は、例えば0.01~0.05秒、好適な一例を示せば0.01秒とされ、時間(t=t+t)は、例えば0.006~0.03秒、好適な一例を示せば0.02秒とされる。
 これにより、演算処理部75に入力された心電位波形(最大ピークであるR波)に同期をとって電圧を印加することができ、効果的な除細動治療を行うことができる。
 測定されるピーク電圧(V)は、例えば300~600Vとされる。
Here, the time (t 0 ) from the time when the trigger level is reached until the start of application is 0.01 to 0.05 seconds, for example, 0.01 seconds if a suitable example is shown. t 1 + t 2 ) is, for example, 0.006 to 0.03 seconds, and 0.02 seconds if a suitable example is shown.
Thereby, a voltage can be applied synchronizing with the cardiac potential waveform (R wave which is the maximum peak) input to the arithmetic processing unit 75, and effective defibrillation treatment can be performed.
The measured peak voltage (V 1 ) is, for example, 300 to 600V.
(18)心電位波形における電位差がトリガーレベルに到達してから一定時間(t+t)が経過後、演算処理部75からの制御信号を受けてDC電源部71からの電圧の印加が停止する(Step18)。 (18) After a certain time (t 0 + t) has elapsed after the potential difference in the cardiac potential waveform reaches the trigger level, application of a voltage from the DC power supply unit 71 is stopped in response to a control signal from the arithmetic processing unit 75. (Step 18).
(19)電圧の印加が停止した後、印加した記録(図16に示したような印加時の心電位波形)が心電位情報表示部78に表示される(Step19)。表示時間としては、例えば5秒間とされる。 (19) After the application of voltage is stopped, the applied record (cardiac potential waveform at the time of application as shown in FIG. 16) is displayed on the cardiac potential information display section 78 (Step 19). The display time is, for example, 5 seconds.
(20)電源装置700の演算処理部75は、除細動カテーテル100により除細動が行われたときに、第1DC電極群31Gと第2DC電極群32Gとの間の抵抗値(除細動を行うときに先行して測定された心内抵抗値)、第1DC電極群31Gと第2DC電極群32Gとの間に印加しようとした電気エネルギーの設定値(エネルギー設定スイッチ742による入力値)、出力電圧(図16のVで示される実際に印加された電圧)および出力時間(図16のtで示される実際に印加された時間)の情報を取得し、これらの情報を、この除細動が行われた時刻(内部時計753により確定した時刻)および電源装置700のシリアル情報(メモリ752に記憶されているシリアル情報)とともに、除細動カテーテル100のメモリ110におけるイベント情報記憶部113に書き込む(Step20、図17参照)。 (20) When the defibrillation is performed by the defibrillation catheter 100, the arithmetic processing unit 75 of the power supply device 700 has a resistance value (defibrillation) between the first DC electrode group 31G and the second DC electrode group 32G. The intracardiac resistance value measured in advance when performing the measurement), the set value of electric energy to be applied between the first DC electrode group 31G and the second DC electrode group 32G (input value by the energy setting switch 742), Information on the output voltage (actually applied voltage indicated by V 1 in FIG. 16) and output time (actually applied time indicated by t in FIG. 16) is obtained, and this information is obtained by this defibrillation. In the memory 110 of the defibrillation catheter 100 together with the time when the movement is performed (time determined by the internal clock 753) and the serial information of the power supply device 700 (serial information stored in the memory 752). Write to kick event information storage unit 113 (Step 20, see FIG. 17).
(21)切替部76の接点が第1接点に切り替わり、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が復帰し、除細動カテーテル100の第1DC電極群31Gおよび第2DC電極群32Gの構成電極からの心電位情報が、心電計800に入力される(Step21、図13参照)。 (21) The contact point of the switching unit 76 is switched to the first contact point, the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is restored, and the first DC electrode of the defibrillation catheter 100 is restored. The electrocardiographic information from the constituent electrodes of the group 31G and the second DC electrode group 32G is input to the electrocardiograph 800 (Step 21, see FIG. 13).
(22)心電計800のモニタに表示される、除細動カテーテル100の構成電極(第1DC電極群31G、第2DC電極群32Gおよび基端側電位測定電極群33Gの構成電極)からの心電位情報(心電図)、並びに、心電位測定手段900からの心電位情報(12誘導心電図)を観察し、「正常」であれば終了とし、「正常でない(心房細動が治まっていない)」場合には、Step6に戻る(Step22)。 (22) The heart from the constituent electrodes of the defibrillation catheter 100 (the constituent electrodes of the first DC electrode group 31G, the second DC electrode group 32G, and the proximal potential measuring electrode group 33G) displayed on the monitor of the electrocardiograph 800 When the potential information (electrocardiogram) and the cardiac potential information (12-lead electrocardiogram) from the electrocardiogram measuring means 900 are observed. Then, return to Step 6 (Step 22).
 本実施形態のカテーテルシステムによれば、除細動カテーテル100の第1DC電極群31Gおよび第2DC電極群32Gにより、細動を起こした心臓に対して直接的に電気エネルギーを与えることができ、除細動治療に必要かつ十分な電気的刺激(電気ショック)を心臓のみに確実に与えることができる。
 そして、心臓に直接的に電気エネルギーを与えることができるので、患者の体表に火傷を生じさせることもない。
According to the catheter system of the present embodiment, the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 can directly apply electrical energy to the heart that has caused fibrillation. The electrical stimulation (electric shock) necessary and sufficient for fibrillation treatment can be reliably applied only to the heart.
And since electrical energy can be given directly to the heart, it does not cause burns on the patient's body surface.
 また、除細動カテーテル100によるイベント(除細動、電極群間の抵抗値の測定、電源装置の再接続)の履歴を記録することができる。
 しかも、これらのイベントに係る情報が、除細動カテーテル100のメモリ110(イベント情報記憶部113)に記憶されるので、1つの除細動カテーテル100のイベントを複数の電源装置を使用して行ったとしても、これらのイベントに係る情報が、複数の電源装置に分散されることはない。従って、シリアル情報で特定された除細動カテーテル100ごとに、イベント履歴情報の管理を行うことができる。
 これにより、例えば、使用している途中で除細動カテーテルに異常が発生した場合に、イベント履歴を異常発生の原因究明に利用することができる。
 なお、除細動カテーテル100のメモリ110に書き込まれた情報は、適宜の情報読出装置によって読み出すことができる。
In addition, a history of events (defibrillation, measurement of resistance value between electrode groups, reconnection of power supply device) by the defibrillation catheter 100 can be recorded.
In addition, since information related to these events is stored in the memory 110 (event information storage unit 113) of the defibrillation catheter 100, an event of one defibrillation catheter 100 is performed using a plurality of power supply devices. Even so, the information related to these events is not distributed to a plurality of power supply apparatuses. Therefore, event history information can be managed for each defibrillation catheter 100 specified by the serial information.
Thereby, for example, when an abnormality occurs in the defibrillation catheter during use, the event history can be used for investigating the cause of the occurrence of the abnormality.
Information written in the memory 110 of the defibrillation catheter 100 can be read out by an appropriate information reading device.
 更に、使い捨て(Disposable)の製品である除細動カテーテルを、その性能や安全性の観点から設定される使用制限時間に限り使用することができ、使用制限時間を過ぎた除細動カテーテルに、除細動カテーテルによる除細動(電気エネルギーの印加)を行わせることはない。これにより、除細動カテーテルの性能および安全性を確保することができる。
 しかも、除細動カテーテル100のメモリ110における初回接続情報記憶部112に書き込まれた接続時刻(電源装置を最初に接続した時刻)を、当該除細動カテーテル100の使用制限時間の起算点としているので、同一または異なる電源装置を再接続してイベントを行うことにしても、初回接続情報記憶部112に書き込まれた接続時刻から使用制限時間を経過した後に、除細動カテーテル100によるイベントを実行させることはない。
Furthermore, a defibrillation catheter that is a disposable product can be used only for a limited use time set from the viewpoint of its performance and safety, and for a defibrillation catheter that has passed the limited use time, Defibrillation (application of electrical energy) by the defibrillation catheter is not performed. Thereby, the performance and safety of the defibrillation catheter can be ensured.
In addition, the connection time (time when the power supply device is first connected) written in the initial connection information storage unit 112 in the memory 110 of the defibrillation catheter 100 is used as a starting point for the use restriction time of the defibrillation catheter 100. Therefore, even if the event is performed by reconnecting the same or different power supply devices, the event by the defibrillation catheter 100 is executed after the use time limit has elapsed from the connection time written in the initial connection information storage unit 112. I will not let you.
 また、基端側電位測定電極群33Gの構成電極33によって測定された心電位情報は、カテーテル接続コネクタ72から、切替部76を経ることなく、心電計接続コネクタ73を経由して心電計800に入力され、さらに、この心電計800には、心電位測定手段900が接続されているので、除細動カテーテル100の第1DC電極群31Gおよび第2DC電極群32Gからの心電位を心電計800が取得することのできない除細動治療の際(切替部76が第2接点に切り替わり、カテーテル接続コネクタ72から、切替部76を経由して心電計接続コネクタ73に至る経路が遮断されているとき)にも、基端側電位測
定電極群33Gおよび心電位測定手段900によって測定された心電位情報を心電計800が取得することができ、心電計800において心電位を監視(モニタリング)しながら除細動治療を行うことができる。
Further, the electrocardiogram information measured by the constituent electrodes 33 of the proximal-side potential measurement electrode group 33G is transmitted from the catheter connector 72 to the electrocardiograph via the electrocardiograph connector 73 without passing through the switching unit 76. Since the electrocardiograph 800 is connected to the electrocardiogram measuring means 900, the electrocardiograms from the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are detected by the heart. During defibrillation treatment that cannot be obtained by the electrometer 800 (the switching unit 76 switches to the second contact, and the path from the catheter connection connector 72 to the electrocardiograph connection connector 73 via the switching unit 76 is blocked. The electrocardiograph 800 can acquire the electrocardiogram information measured by the proximal-side potential measurement electrode group 33G and the electrocardiogram measurement means 900 even when the electrocardiogram 800 is It is possible to perform defibrillation therapy while monitoring (monitoring) the cardiac potential at 800.
 さらに、電源装置700の演算処理部75は、心電図入力コネクタ77を経由して入力された心電位波形に同期をとって電圧が印加されるように演算処理してDC電源部71を制御する(心電位波形における電位差がトリガーレベルに到達してから一定時間(例えば0.01秒)経過後に印加を開始させる)ので、除細動カテーテル100の第1DC電極群31Gおよび第2DC電極群32Gに対し、心電位波形に同期をとって電圧を印加することができ、効果的な除細動治療を行うことができる。 Further, the arithmetic processing unit 75 of the power supply device 700 controls the DC power source 71 by performing arithmetic processing so that a voltage is applied in synchronization with the electrocardiographic waveform input via the electrocardiogram input connector 77 ( Application is started after a lapse of a certain time (for example, 0.01 seconds) after the potential difference in the cardiac potential waveform reaches the trigger level), so that the first DC electrode group 31G and the second DC electrode group 32G of the defibrillation catheter 100 are The voltage can be applied in synchronization with the cardiac potential waveform, and an effective defibrillation treatment can be performed.
 さらに、演算処理部75は、除細動カテーテル100の電極群間の抵抗値が一定の値を超えていない場合、すなわち、第1DC電極群31Gおよび第2DC電極群32Gが、所定の部位(例えば、冠状静脈の管壁、右心房の内壁)に確実に当接されたときにのみ、直流電圧を印加するための準備に進むことができるよう制御するので、効果的な除細動治療を行うことができる。 Further, when the resistance value between the electrode groups of the defibrillation catheter 100 does not exceed a certain value, the arithmetic processing unit 75, that is, the first DC electrode group 31G and the second DC electrode group 32G have a predetermined part (for example, Only when it is securely abutted against the coronary vein wall, the inner wall of the right atrium), it is controlled so that it can proceed to preparation for applying a DC voltage, so effective defibrillation treatment is performed. be able to.
<第2実施形態>
 図18は、本発明の心腔内除細動カテーテルシステムの他の実施形態を示すブロック図である。
 本実施形態の電源装置701には、第1実施形態に係る電源装置700の構成に加えて、演算処理部75に接続されたメモリ情報表示部またはメモリ情報出力部79が設けられている。
 本実施形態の電源装置701を構成する演算処理部75は、除細動カテーテル100のメモリ110に書き込まれている情報を読み出して、メモリ情報表示部に表示させ、または、メモリ情報出力部に出力させることができる。
 メモリ110に書き込まれている情報、例えば、イベント情報記憶部113に書き込まれた除細動の履歴をメモリ情報表示部に表示させることにより、手技中にこれを確認することができる。
 また、メモリ110に書き込まれている情報をメモリ情報出力部に出力させて、これを治療記録の一部として残すこと、具体的には、各除細動における出力電圧・出力時間などを印字して患者のカルテに貼付することができる。
Second Embodiment
FIG. 18 is a block diagram showing another embodiment of the intracardiac defibrillation catheter system of the present invention.
In addition to the configuration of the power supply device 700 according to the first embodiment, the power supply device 701 of the present embodiment is provided with a memory information display unit or a memory information output unit 79 connected to the arithmetic processing unit 75.
The arithmetic processing unit 75 constituting the power supply device 701 of the present embodiment reads information written in the memory 110 of the defibrillation catheter 100 and displays it on the memory information display unit or outputs it to the memory information output unit. Can be made.
By displaying the information written in the memory 110, for example, the history of defibrillation written in the event information storage unit 113 on the memory information display unit, this can be confirmed during the procedure.
In addition, the information written in the memory 110 is output to the memory information output unit, and this is left as a part of the treatment record. Specifically, the output voltage and output time in each defibrillation are printed. Can be attached to the patient's chart.
 100 除細動カテーテル
 10  マルチルーメンチューブ
 11  第1ルーメン
 12  第2ルーメン
 13  第3ルーメン
 14  第4ルーメン
 15  フッ素樹脂層
 16  インナー(コア)部
 17  アウター(シェル)部
 18  ステンレス素線
 20  ハンドル
 21  ハンドル本体
 22  摘まみ
 24  ストレインリリーフ
 26  第1絶縁性チューブ
 27  第2絶縁性チューブ
 28  第3絶縁性チューブ
 31G 第1DC電極群
 31  リング状電極
 32G 第2DC電極群
 32  リング状電極
 33G 基端側電位測定電極群
 33  リング状電極
 35  先端チップ
 41G 第1リード線群
 41  リード線
 42G 第2リード線群
 42  リード線
 43G 第3リード線群
 43  リード線
 50  除細動カテーテルのコネクタ
 51,52,53 ピン端子
 55  隔壁板
 58  樹脂
 61  第1の保護チューブ
 62  第2の保護チューブ
 65  プルワイヤ
 110 メモリ
 111 カテーテルシリアル記憶部
 112 初回接続情報記憶部
 113 イベント情報記憶部
 700 電源装置
 71  DC電源部
 72  カテーテル接続コネクタ
 721,722,723  端子
 73  心電計接続コネクタ
 74  外部スイッチ(入力手段)
 741 モード切替スイッチ
 742 電気エネルギー設定スイッチ
 743 充電スイッチ
 744 電気エネルギー印加スイッチ(放電スイッチ)
 75  演算処理部
 751 出力回路
 752 メモリ
 753 内部時計
 76  切替部
 78  心電位情報表示部
 800 心電計
 900 心電位測定手段
DESCRIPTION OF SYMBOLS 100 Defibrillation catheter 10 Multi-lumen tube 11 1st lumen 12 2nd lumen 13 3rd lumen 14 4th lumen 15 Fluororesin layer 16 Inner (core) part 17 Outer (shell) part 18 Stainless steel wire 20 Handle 21 Handle body 22 knob 24 strain relief 26 first insulating tube 27 second insulating tube 28 third insulating tube 31G first DC electrode group 31 ring electrode 32G second DC electrode group 32 ring electrode 33G proximal side potential measurement electrode group 33 ring-shaped electrode 35 tip 41G first lead wire group 41 lead wire 42G second lead wire group 42 lead wire 43G third lead wire group 43 lead wire 50 defibrillation catheter connector 51, 52, 53 pin terminal 55 septum Board 58 resin 61 first protective tube 62 second protective tube 65 pull wire 110 memory 111 catheter serial storage unit 112 first connection information storage unit 113 event information storage unit 700 power supply device 71 DC power supply unit 72 catheter connection connector 721, 722, 723 Terminal 73 ECG connector 74 External switch (input means)
741 Mode changeover switch 742 Electric energy setting switch 743 Charging switch 744 Electric energy application switch (discharge switch)
75 arithmetic processing unit 751 output circuit 752 memory 753 internal clock 76 switching unit 78 electrocardiogram information display unit 800 electrocardiograph 900 electrocardiogram measuring means

Claims (9)

  1.  心腔内に挿入されて除細動を行う除細動カテーテルと、この除細動カテーテルの電極に直流電圧を印加する電源装置とを備えたカテーテルシステムであって;
     前記除細動カテーテルは、絶縁性のチューブ部材と、
     前記チューブ部材の先端領域に装着された複数のリング状電極からなる第1電極群と、
     前記第1電極群から基端側に離間して前記チューブ部材に装着された複数のリング状電極からなる第2電極群と、
     前記第1電極群を構成する電極の各々に先端が接続された複数のリード線からなる第1リード線群と、
     前記第2電極群を構成する電極の各々に先端が接続された複数のリード線からなる第2リード線群と、
     前記除細動カテーテルのシリアル情報が記憶されたカテーテルシリアル記憶部、並びに、前記除細動カテーテルによる除細動を含むイベントに係る情報を、そのイベントが行われた時刻および接続された電源装置のシリアル情報とともに記憶するイベント情報記憶部を有するメモリとを備えてなり;
     前記電源装置は、DC電源部と、
     前記除細動カテーテルの第1リード線群および第2リード線群の基端側に接続されるカテーテル接続コネクタと、
     前記電源装置を除細動モードにするためのモード切替スイッチ、電気エネルギーの設定スイッチおよび電気エネルギーの印加スイッチを含む外部スイッチと、
     前記外部スイッチの入力に基いて前記DC電源部を制御するとともに、当該DC電源部からの直流電圧の出力回路を有し、更に、前記電源装置のシリアル情報を記憶し、時刻を確定するための内部時計を有し、前記除細動カテーテルのメモリへの書き込みおよび読み出しを制御する演算処理部とを備えてなり;
      前記除細動カテーテルにより除細動を行うときには、前記第1電極群と前記第2電極群との間の抵抗値が測定された後、前記外部スイッチの入力に基いて、前記電源装置のDC電源部から、前記演算処理部の出力回路、前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と前記第2電極群とに、互いに異なる極性の電圧が印加され、
      前記電源装置の演算処理部は、前記除細動カテーテルにより除細動が行われたときに、前記第1電極群と前記第2電極群との間の抵抗値、前記第1電極群と前記第2電極群との間に印加しようとした電気エネルギーの設定値、出力電圧および出力時間の情報を取得し、これらの情報を、この除細動が行われた時刻および接続されている電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことを特徴とする心腔内除細動カテーテルシステム。
    A catheter system comprising a defibrillation catheter inserted into a heart chamber for defibrillation and a power supply device for applying a DC voltage to an electrode of the defibrillation catheter;
    The defibrillation catheter includes an insulating tube member;
    A first electrode group consisting of a plurality of ring-shaped electrodes attached to the tip region of the tube member;
    A second electrode group consisting of a plurality of ring-shaped electrodes mounted on the tube member apart from the first electrode group on the proximal end side;
    A first lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the first electrode group;
    A second lead wire group comprising a plurality of lead wires each having a tip connected to each of the electrodes constituting the second electrode group;
    The catheter serial storage unit in which the serial information of the defibrillation catheter is stored, and the information related to the event including the defibrillation by the defibrillation catheter, the time at which the event is performed, and the connected power supply device A memory having an event information storage unit for storing serial information;
    The power supply device includes a DC power supply unit,
    A catheter connection connector connected to the proximal end side of the first lead wire group and the second lead wire group of the defibrillation catheter;
    An external switch including a mode changeover switch for setting the power supply device in a defibrillation mode, an electric energy setting switch, and an electric energy application switch;
    The DC power supply unit is controlled based on the input of the external switch, and has a DC voltage output circuit from the DC power supply unit, and further stores serial information of the power supply device to determine the time And an arithmetic processing unit that has an internal clock and controls writing to and reading from the memory of the defibrillation catheter;
    When defibrillation is performed by the defibrillation catheter, after the resistance value between the first electrode group and the second electrode group is measured, the DC of the power supply device is determined based on the input of the external switch. Voltages having different polarities are applied from the power supply unit to the first electrode group and the second electrode group of the defibrillation catheter via the output circuit of the arithmetic processing unit and the catheter connector.
    The arithmetic processing unit of the power supply device, when defibrillation is performed by the defibrillation catheter, a resistance value between the first electrode group and the second electrode group, the first electrode group and the Information on the set value, output voltage, and output time of the electrical energy to be applied between the second electrode group is acquired, and these information are used as the time when this defibrillation is performed and the connected power supply device. The intracardiac defibrillation catheter system is written in the event information storage unit in the memory of the defibrillation catheter together with the serial information.
  2.  前記電源装置の演算処理部は、前記除細動カテーテルの前記第1電極群と前記第2電極群との間の抵抗値が測定された後に除細動が行われない場合に、抵抗値の測定をイベントとして認識し、測定された抵抗値を、測定された時刻および接続されている電源装置のシリアル情報とともに、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことを特徴とする請求項1に記載の心腔内除細動カテーテルシステム。 When the defibrillation is not performed after the resistance value between the first electrode group and the second electrode group of the defibrillation catheter is measured, the arithmetic processing unit of the power supply device may The measurement is recognized as an event, and the measured resistance value is written in the event information storage unit in the memory of the defibrillation catheter together with the measured time and serial information of the connected power supply device. Item 2. The intracardiac defibrillation catheter system according to Item 1.
  3.  前記電源装置の演算処理部は、使用していた電源装置が取り外された除細動カテーテルに、同一または異なる前記電源装置を再接続したときに、これをイベントとして認識し、再接続した時刻および再接続した電源装置のシリアル情報を、前記除細動カテーテルのメモリにおけるイベント情報記憶部に書き込むことを特徴とする請求項1または請求項2に記載の心腔内除細動カテーテルシステム。 The arithmetic processing unit of the power supply apparatus recognizes this as an event when the same or different power supply apparatus is reconnected to the defibrillation catheter from which the power supply apparatus used has been removed, and the reconnection time and The intracardiac defibrillation catheter system according to claim 1 or 2, wherein serial information of the reconnected power supply device is written in an event information storage unit in a memory of the defibrillation catheter.
  4.  前記電源装置は、前記演算処理部に接続されたメモリ情報表示部またはメモリ情報出力
    部を有し、
     前記電源装置の演算処理部は、前記除細動カテーテルのメモリに書き込まれている情報を読み出して、前記メモリ情報表示部に表示させ、または、前記メモリ情報出力部に出力させることを特徴とする請求項1乃至請求項3の何れかに記載の心腔内除細動カテーテルシステム。
    The power supply device has a memory information display unit or a memory information output unit connected to the arithmetic processing unit,
    The arithmetic processing unit of the power supply device reads information written in a memory of the defibrillation catheter, displays the information on the memory information display unit, or outputs the information to the memory information output unit. The intracardiac defibrillation catheter system according to any one of claims 1 to 3.
  5.  心電計を備えた請求項1に記載の心腔内除細動カテーテルシステムであって、
     前記電源装置は、前記心電計の入力端子に接続される心電計接続コネクタと、
     1回路2接点の切替スイッチからなり、共通接点に前記カテーテル接続コネクタが接続され、第1接点に前記心電計接続コネクタが接続され、第2接点に前記演算処理部が接続された切替部とを備えてなり;
     前記除細動カテーテルの第1電極群および/または第2電極群を構成する電極により心電位を測定するときには、前記切替部において第1接点が選択され、前記除細動カテーテルからの心電位情報が、前記電源装置の前記カテーテル接続コネクタ、前記切替部および前記心電計接続コネクタを経由して前記心電計に入力され、
     前記除細動カテーテルにより除細動を行うときには、前記電源装置の前記演算処理部によって前記切替部の接点が第2接点に切り替わり、前記DC電源部から、前記演算処理部の出力回路、前記切替部および前記カテーテル接続コネクタを経由して、前記除細動カテーテルの前記第1電極群と、前記第2電極群とに、互いに異なる極性の電圧が印加されることを特徴とする心腔内除細動カテーテルシステム。
    The intracardiac defibrillation catheter system of claim 1, comprising an electrocardiograph,
    The power supply device is an electrocardiograph connection connector connected to an input terminal of the electrocardiograph,
    A switching unit comprising a switching switch of one circuit and two contacts, wherein the catheter connection connector is connected to a common contact, the electrocardiograph connection connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact; Comprising:
    When the cardiac potential is measured by the electrodes constituting the first electrode group and / or the second electrode group of the defibrillation catheter, the first contact is selected in the switching unit, and the cardiac potential information from the defibrillation catheter is selected. Is input to the electrocardiograph via the catheter connection connector of the power supply device, the switching unit and the electrocardiograph connection connector,
    When defibrillation is performed by the defibrillation catheter, the calculation processing unit of the power supply device switches the contact of the switching unit to the second contact, and the DC power supply unit outputs the output circuit of the calculation processing unit, the switching A voltage having different polarities is applied to the first electrode group and the second electrode group of the defibrillation catheter via the catheter and the catheter connector. Fibrillation catheter system.
  6.  前記除細動カテーテルは、前記第1電極群または前記第2電極群から離間して前記チューブ部材に装着された複数の電極からなる電位測定電極群と、
     前記電位測定電極群を構成する電極の各々に先端が接続された複数のリード線からなり、その基端側が、前記電源装置のカテーテル接続コネクタに接続される電位測定用のリード線群とを備えてなり、
     前記電源装置には、前記カテーテル接続コネクタと、前記心電計接続コネクタとを直接結ぶ経路が形成され、
     前記電位測定電極群を構成する電極によって測定された心電位情報は、前記電源装置の前記カテーテル接続コネクタから、前記切替部を経ることなく、前記心電計接続コネクタを経由して前記心電計に入力されることを特徴とする請求項5に記載の心腔内除細動カテーテルシステム。
    The defibrillation catheter includes a potential measurement electrode group composed of a plurality of electrodes mounted on the tube member apart from the first electrode group or the second electrode group;
    The electrode comprises a plurality of lead wires each having a tip connected to each of the electrodes constituting the potential measuring electrode group, and a proximal end side of the electrode includes a potential measuring lead wire group connected to the catheter connector of the power supply device. And
    In the power supply device, a path directly connecting the catheter connector and the electrocardiograph connector is formed,
    The electrocardiogram information measured by the electrodes constituting the potential measurement electrode group is transmitted from the catheter connection connector of the power supply device via the electrocardiograph connection connector without passing through the switching unit. The intracardiac defibrillation catheter system according to claim 5, wherein
  7.  前記心電計には、前記除細動カテーテル以外の心電位測定手段が接続されていることを特徴とする請求項5または請求項6に記載の心腔内除細動カテーテルシステム。 7. The intracardiac defibrillation catheter system according to claim 5 or 6, wherein an electrocardiogram measuring means other than the defibrillation catheter is connected to the electrocardiograph.
  8.  前記心電位測定手段が電極パッドまたは電極カテーテルであることを特徴とする請求項7に記載の心腔内除細動カテーテルシステム。 The intracardiac defibrillation catheter system according to claim 7, wherein the cardiac potential measuring means is an electrode pad or an electrode catheter.
  9.  前記電源装置は、前記演算処理部および前記心電計の出力端子に接続された心電図入力コネクタと、前記演算処理部に接続された心電位情報表示部とを備えてなり、
     前記心電図入力コネクタに入力された前記心電計からの心電位情報は、前記演算処理部に入力され、さらに、前記心電位情報表示部に表示されることを特徴とする請求項5乃至請求項8の何れかに記載の心腔内除細動カテーテルシステム。
    The power supply device includes an electrocardiogram input connector connected to the arithmetic processing unit and an output terminal of the electrocardiograph, and an electrocardiogram information display unit connected to the arithmetic processing unit,
    6. The electrocardiogram information from the electrocardiograph input to the electrocardiogram input connector is input to the arithmetic processing unit and further displayed on the electrocardiogram information display unit. 9. The intracardiac defibrillation catheter system according to any one of 8 above.
PCT/JP2010/066880 2010-02-19 2010-09-29 Intracardiac defibrillation catheter system WO2011102015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010035299A JP4672801B1 (en) 2010-02-19 2010-02-19 Intracardiac defibrillation catheter system
JP2010-035299 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102015A1 true WO2011102015A1 (en) 2011-08-25

Family

ID=44079998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066880 WO2011102015A1 (en) 2010-02-19 2010-09-29 Intracardiac defibrillation catheter system

Country Status (3)

Country Link
JP (1) JP4672801B1 (en)
TW (1) TWI476027B (en)
WO (1) WO2011102015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171138A (en) * 2017-03-31 2018-11-08 日本ライフライン株式会社 Defibrillation catheter system
CN113573775A (en) * 2019-03-15 2021-10-29 日本来富恩株式会社 Intracardiac defibrillation catheter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528698A (en) * 2000-04-04 2003-09-30 アシスト メディカル システムズ, インコーポレイテッド Angiographic injector subassembly
JP4221492B2 (en) * 2001-12-31 2009-02-12 バイオセンス・ウエブスター・インコーポレーテツド Method and apparatus for atrial defibrillation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219582B1 (en) * 1998-12-30 2001-04-17 Daig Corporation Temporary atrial cardioversion catheter
US20030036774A1 (en) * 2000-06-01 2003-02-20 Chris Maier Switching apparatus for monitoring catherter signals and performing cardioversion defibrillations
US7488290B1 (en) * 2004-02-19 2009-02-10 Cardiac Pacemakers, Inc. System and method for assessing cardiac performance through transcardiac impedance monitoring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528698A (en) * 2000-04-04 2003-09-30 アシスト メディカル システムズ, インコーポレイテッド Angiographic injector subassembly
JP4221492B2 (en) * 2001-12-31 2009-02-12 バイオセンス・ウエブスター・インコーポレーテツド Method and apparatus for atrial defibrillation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018171138A (en) * 2017-03-31 2018-11-08 日本ライフライン株式会社 Defibrillation catheter system
CN113573775A (en) * 2019-03-15 2021-10-29 日本来富恩株式会社 Intracardiac defibrillation catheter
EP3939652A4 (en) * 2019-03-15 2022-09-28 Japan Lifeline Co., Ltd. Intercardiac defibrillation catheter

Also Published As

Publication number Publication date
JP2011167413A (en) 2011-09-01
TWI476027B (en) 2015-03-11
JP4672801B1 (en) 2011-04-20
TW201138886A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4545216B1 (en) Intracardiac defibrillation catheter system
JP4672802B1 (en) Intracardiac defibrillation catheter system
JP4545210B2 (en) Defibrillation catheter
JP5900974B2 (en) Intracardiac defibrillation catheter system
JP6632511B2 (en) Intracardiac defibrillation catheter system
JP4672801B1 (en) Intracardiac defibrillation catheter system
JP4346110B1 (en) Defibrillation catheter
US20230211154A1 (en) Intracardiac defibrillation catheter system
JP4346109B1 (en) Defibrillation catheter
TW202204004A (en) Intracardiac defibrillation catheter system
JP2019150526A (en) Intracardiac defibrillation catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846147

Country of ref document: EP

Kind code of ref document: A1