[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011161814A1 - Electrically driven vehicle and method of controlling thereof - Google Patents

Electrically driven vehicle and method of controlling thereof Download PDF

Info

Publication number
WO2011161814A1
WO2011161814A1 PCT/JP2010/060852 JP2010060852W WO2011161814A1 WO 2011161814 A1 WO2011161814 A1 WO 2011161814A1 JP 2010060852 W JP2010060852 W JP 2010060852W WO 2011161814 A1 WO2011161814 A1 WO 2011161814A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper limit
vehicle
storage device
vehicle speed
power storage
Prior art date
Application number
PCT/JP2010/060852
Other languages
French (fr)
Japanese (ja)
Inventor
山本 雅哉
優 仲尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/806,420 priority Critical patent/US8755963B2/en
Priority to EP10853674.9A priority patent/EP2586644B1/en
Priority to PCT/JP2010/060852 priority patent/WO2011161814A1/en
Priority to JP2012521241A priority patent/JP5418676B2/en
Priority to CN201080067707.4A priority patent/CN102958740B/en
Publication of WO2011161814A1 publication Critical patent/WO2011161814A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to an electric vehicle and a method for controlling the electric vehicle, and more particularly, to traveling control of an electric vehicle capable of traveling only with an output of a rotating electric machine.
  • An electric vehicle configured such that a rotating electric machine generates a vehicle driving force by electric power from a secondary battery mounted on the vehicle is attracting attention. For example, development of hybrid vehicles, fuel cell vehicles, electric vehicles, and the like is underway as electric vehicles. In such an electric vehicle, traveling control is required to achieve both avoidance of overcharge / discharge of the in-vehicle secondary battery and ensuring of driving performance according to the driver's request.
  • Patent Document 1 describes a vehicle control device and a vehicle control method.
  • an upper limit value or a lower limit value of a change amount of torque generated by a drive motor that is a rotating electrical machine that generates vehicle drive force is set as a limit value of output power or input power of a secondary battery and a vehicle speed. It describes that it sets based on.
  • the drive motor is directed to output the torque required by the driver without causing overcharge / discharge of the secondary battery.
  • the upper limit values of the input power and output power of the secondary battery are generally set based on the state of charge (SOC) and temperature of the secondary battery. It is.
  • the output of the drive motor is set so that the output power of the secondary battery does not exceed the upper limit value. For this reason, when the output power upper limit value is severely restricted due to the SOC decrease or temperature rise of the secondary battery, the output of the drive motor is also restricted.
  • a hybrid vehicle equipped with a rotating electric machine and an engine is known as an embodiment of an electric vehicle.
  • traveling using only the output of the rotating electrical machine and traveling using the output of the rotating electrical machine and the engine are properly used.
  • energy efficiency is improved (that is, fuel efficiency is improved) by limiting the operation of the engine to the high efficiency region while effectively using the stored power of the secondary battery.
  • plug-in hybrid vehicle in which a vehicle-mounted secondary battery can be charged by a power source external to the vehicle, it is directed to actively select traveling based only on the output of the rotating electrical machine.
  • the output power of the secondary battery is severely limited as described above, the operation of the engine becomes more frequent than usual in order to ensure output and acceleration performance.
  • the present invention has been made in order to solve such problems, and an object of the present invention is to perform vehicle travel using only the output of the rotating electrical machine so as to improve the energy efficiency and drivability of the electric vehicle. It is to set the upper limit vehicle speed appropriately.
  • an electric vehicle in one aspect of the present invention, includes a rotating electric machine for generating vehicle driving force, a power storage device mounted on the vehicle, and a power control unit for performing power conversion between the power storage device and the rotating electric machine. And a control device for controlling vehicle travel.
  • the control device includes an upper limit vehicle speed setting unit.
  • the upper limit vehicle speed setting unit is configured to variably set the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine based on at least one of the state of charge of the power storage device and the output current of the power storage device.
  • the upper limit vehicle speed setting unit sets the upper limit vehicle speed lower when the SOC is low than when the SOC is high, and sets the output current to When the upper limit vehicle speed is variably set based on this, when the output current is large, the upper limit vehicle speed is set lower than when the output current is small.
  • control device further includes a travel control unit.
  • travel control unit is configured to control the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine, which further increases the output of the rotating electrical machine.
  • the control device further includes a charge state estimation unit, a current load estimation unit, and a charge / discharge control unit.
  • the charge state estimation unit is configured to calculate an estimated SOC value of the power storage device based on an output of a sensor arranged in the power storage device.
  • the current load estimation unit is configured to calculate a current load parameter indicating a thermal load of the device due to the passage of the output current based on the output current of the power storage device.
  • the charge / discharge control unit is configured to variably set the output power upper limit value of the power storage device based on the calculated estimated SOC value and current load parameter.
  • the upper limit vehicle speed setting unit variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
  • the upper limit vehicle speed setting unit sets the upper limit according to the first upper limit speed variably set according to the current load parameter and the minimum value of the second upper limit speed variably set according to the SOC estimated value. Set the vehicle speed.
  • the electrically powered vehicle charges the power storage device by an internal combustion engine for generating vehicle driving force, a power generation mechanism configured to generate charging power for the power storage device by the output of the internal combustion engine, and a power source external to the vehicle And an external charging unit.
  • the control device further includes a travel mode selection unit and a travel control unit.
  • the mode selection unit includes a first traveling mode (EV mode) in which the internal combustion engine and the rotating electrical machine are used so as to travel mainly by the output of the rotating electrical machine regardless of the SOC of the electrical storage device, depending on the state of charge of the electrical storage device.
  • one of the second traveling mode (HV mode) using the internal combustion engine and the rotating electric machine is selected so as to travel while maintaining the SOC of the power storage device within a predetermined control range.
  • the traveling control unit travels by the output of only the rotating electrical machine when the torque and the vehicle speed of the electric vehicle are within the first region, and when outside the first region.
  • the rotating electrical machine and the internal combustion engine are controlled so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine.
  • the first area is set reflecting the upper limit vehicle speed set by the upper limit vehicle speed setting unit.
  • the traveling control unit travels by the output of only the rotating electric machine when the torque and the vehicle speed of the electric vehicle are within the second region, while the outside of the second region
  • the rotary electric machine and the internal combustion engine so that the electric power is generated by the power generation mechanism when the SOC of the power storage device falls below the control range.
  • the upper limit vehicle speed in the second region is set regardless of the state of the power storage device.
  • the electric vehicle is an electric vehicle that uses only a rotating electric machine as a generation source of vehicle driving force.
  • the control device further includes a travel control unit for prohibiting the output of the vehicle driving force by the rotating electrical machine while the vehicle speed exceeds the upper limit vehicle speed by the upper limit vehicle speed setting unit.
  • a method for controlling an electric vehicle wherein the electric vehicle performs power conversion between a rotating electrical machine for generating vehicle driving force, a power storage device, and the power storage device and the rotating electrical machine.
  • Power control unit variably sets the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine based on the step of obtaining the charge state of the power storage device and the output current of the power storage device, and at least one of the charge state and the output current. Steps.
  • the upper limit vehicle speed when the upper limit vehicle speed is variably set based on the state of charge, when the SOC is low, the upper limit vehicle speed is set lower than when the SOC is high, and the upper limit vehicle speed is set based on the output current. If the output current is large, the upper limit vehicle speed is set lower than when the output current is small.
  • control method further includes a step of controlling the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine, when the vehicle speed exceeds the upper limit vehicle speed, further increasing the output of the rotating electrical machine. Further prepare.
  • the control method calculates a remaining capacity estimated value of the power storage device based on an output of a sensor arranged in the power storage device, and calculates an output current based on the output current of the power storage device. Calculating a current load parameter indicating a thermal load of the device due to passage.
  • the control method further includes a step of variably setting the output power upper limit value of the power storage device based on the calculated estimated SOC value and current load parameter.
  • the step of setting the upper limit vehicle speed variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
  • the step of setting the upper limit vehicle speed includes a step of variably setting the first upper limit speed according to the current load parameter, a step of variably setting the second upper limit speed according to the SOC estimation value, Setting an upper limit vehicle speed according to a minimum value of the first upper limit speed and the second upper limit speed.
  • the electric vehicle includes an internal combustion engine for generating a vehicle driving force, a power generation mechanism configured to generate charging power for the power storage device based on an output of the internal combustion engine, and a power source external to the vehicle. And an external charging unit for charging.
  • the control method includes a first travel mode in which the internal combustion engine and the rotating electrical machine are used to travel mainly by the output of the rotating electrical machine regardless of the SOC of the electrical storage device, and the SOC of the electrical storage device, depending on the state of charge of the electrical storage device.
  • the torque and the vehicle speed of the electric vehicle are
  • the rotary electric machine and the internal combustion engine are driven so as to travel by the output of only the rotary electric machine when inside the first region, while they run by the output of both the rotary electric machine and the internal combustion engine when outside the first region.
  • a step of controlling the engine is set reflecting the upper limit vehicle speed set up variably.
  • the step of controlling is to travel by the output of only the rotating electrical machine when the torque and the vehicle speed of the electric vehicle are within the second region, while outside the second region.
  • the rotating electrical machine and the internal combustion engine so that the electric power is generated by the power generation mechanism when the remaining capacity of the power storage device falls below the control range.
  • the upper limit vehicle speed in the second region is set regardless of the state of the power storage device.
  • the electric vehicle is an electric vehicle that uses only a rotating electric machine as a generation source of vehicle driving force.
  • the control method further includes a step of controlling the vehicle travel so as to prohibit the output of the vehicle driving force by the rotating electrical machine when the vehicle speed exceeds the upper limit vehicle speed.
  • the present invention it is possible to appropriately set the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine so that the energy efficiency and drivability of the electric vehicle are improved.
  • FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle which is an example of an electric vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of a power split mechanism shown in FIG. 1.
  • FIG. 2 is a collinear diagram showing a relationship between rotational speeds of the engine shown in FIG. 1 and MG1 and MG2. It is a functional block diagram explaining the traveling control in the electric vehicle by Embodiment 1 of this invention. It is a conceptual diagram explaining the heat load design of an apparatus.
  • FIG. 6 is a waveform diagram illustrating an example of selection of a travel mode with respect to SOC transition in the electric vehicle according to the first embodiment.
  • 5 is a conceptual diagram illustrating selection of motor travel and hybrid travel in the electric vehicle according to Embodiment 1.
  • FIG. 5 is a conceptual diagram illustrating setting of a motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment. It is a conceptual diagram explaining the setting of the motor driving
  • FIG. 3 is a conceptual diagram illustrating an example of vehicle speed limitation in motor traveling of the electric vehicle according to the first embodiment. 3 is a flowchart showing a processing procedure of travel control in the electric vehicle according to the first embodiment. It is a flowchart which shows the setting process sequence of a motor driving
  • FIG. 3 is a conceptual diagram illustrating setting of a motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment. It is a conceptual diagram explaining the setting of the motor driving
  • FIG. 3 is a conceptual diagram illustrating an example of
  • FIG. 6 is a conceptual diagram illustrating a preferable setting example of a motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment. It is a block diagram which shows schematic structure of the electric vehicle which is an example of the electric vehicle by Embodiment 2 of this invention.
  • FIG. 9 is a conceptual diagram illustrating setting of an upper limit vehicle speed in an electric vehicle according to a second embodiment.
  • a hybrid vehicle (plug-in hybrid vehicle) equipped with a secondary battery that can be charged by a power source outside the vehicle is illustrated as an electric vehicle according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle which is an example of an electric vehicle according to Embodiment 1 of the present invention.
  • hybrid vehicle 5 is equipped with an internal combustion engine (engine) 18 and motor generators MG1 and MG2, and travels with their outputs controlled to optimum ratios.
  • the hybrid vehicle 5 further includes a power storage device 10.
  • the power storage device 10 is a rechargeable power storage element, and typically includes a secondary battery such as a lithium ion battery or nickel metal hydride. Or you may comprise the electrical storage apparatus 10 by electric power storage elements other than secondary batteries, such as an electric double layer capacitor.
  • FIG. 1 shows a system configuration related to charging / discharging of the power storage device 10 in the hybrid vehicle 5.
  • Power storage device 10 can input / output electric power to / from motor generators MG1, MG2 through power conversion by electric power control unit 20 in the system start-up state of hybrid vehicle 5 (hereinafter also referred to as “IG on state”). is there.
  • the power storage device 10 is connected to a power source (not shown, hereinafter referred to as “not shown”) by electrical connection via the connector unit 3 while the hybrid vehicle 5 is stopped (hereinafter also referred to as “IG off state”). It can also be charged by an external power source.
  • the external power supply supplied to the hybrid vehicle 5 via the connector unit 3 may be power generated by a solar panel installed on a roof of a house or the like instead of or in addition to a commercial power supply. . Details of charging the power storage device 10 by an external power source (hereinafter also referred to as “external charging”) will be described later.
  • the monitoring unit 11 outputs the temperature Tb, the voltage Vb, and the current Ib as the state detection values of the power storage device 10 based on the outputs of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 provided in the power storage device 10.
  • the temperature sensor 12, the voltage sensor 13, and the current sensor 14 collectively indicate the temperature sensor, the voltage sensor, and the current sensor provided in the power storage device 10. That is, in practice, at least a part of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 will be described in detail in terms of being generally provided.
  • the power split mechanism 22 will be further described with reference to FIG.
  • the power split mechanism 22 is constituted by a planetary gear including a sun gear 202, a pinion gear 204, a carrier 206, and a ring gear 208.
  • the pinion gear 204 engages with the sun gear 202 and the ring gear 208.
  • the carrier 206 supports the pinion gear 204 so that it can rotate.
  • Sun gear 202 is coupled to the rotation shaft of motor generator MG1.
  • the carrier 206 is connected to the crankshaft of the engine 18.
  • Ring gear 208 is connected to the rotation shaft of motor generator MG 2 and reduction gear 95.
  • the engine 18, the motor generator MG1 and the motor generator MG2 are connected via a power split mechanism 22 made of planetary gears, so that the rotational speeds of the engine 18, motor generator MG1 and motor generator MG2 are as shown in FIG. In the collinear diagram, the relationship is a straight line.
  • the power split mechanism 22 divides the driving force generated by the operation of the engine 18 into two parts, and distributes one of them to the motor generator MG1 side and the remaining part to the motor generator MG2.
  • the driving force distributed from power split mechanism 22 to motor generator MG1 side is used for the power generation operation.
  • the driving force distributed to the motor generator MG2 side is combined with the driving force generated by the motor generator MG2 and used to drive the drive wheels 24F.
  • hybrid travel when the vehicle 18 travels using only the output of the motor generator MG2 with the engine 18 stopped (hereinafter, also referred to as “motor travel”), the engine 18 is operated to drive the engine 18 and the motor generator MG2. It is possible to select vehicle travel using both outputs (hereinafter also referred to as “hybrid travel”).
  • the hybrid vehicle 5 further includes a power control unit 20.
  • Power control unit 20 is configured to be capable of bi-directional power conversion between motor generator MG1 and motor generator MG2 and power storage device 10.
  • Power control unit 20 includes a converter (CONV) 6, and an inverter (INV1) 8-1 and an inverter (INV2) 8-2 respectively associated with motor generators MG1 and MG2.
  • Converter (CONV) 6 is configured to be able to perform bidirectional DC voltage conversion between power storage device 10 and positive bus MPL that transmits the DC link voltage of inverters 8-1 and 8-2. That is, the input / output voltage of power storage device 10 and the DC voltage between positive bus MPL and negative bus MNL are boosted or lowered in both directions.
  • the step-up / step-down operation in converter 6 is controlled according to switching command PWC from control device 100.
  • a smoothing capacitor C is connected between the positive bus MPL and the negative bus MNL.
  • the DC voltage between positive bus MPL and negative bus MNL is detected by voltage sensor 16.
  • Inverter 8-1 and inverter 8-2 perform bidirectional power conversion between DC power of positive bus MPL and negative bus MNL and AC power input / output to / from motor generators MG1 and MG2.
  • inverter 8-1 converts AC power generated by motor generator MG1 into DC power in response to switching command PWM1 from control device 100, and supplies the DC power to positive bus MPL and negative bus MNL.
  • inverter 8-2 converts DC power supplied via positive bus MPL and negative bus MNL into AC power in accordance with switching command PWM2 from control device 100, and supplies the AC power to motor generator MG2.
  • motor generator MG ⁇ b> 2 is configured to receive electric power from power storage device 10 and generate vehicle driving force.
  • Motor generator MG1 is configured to generate charging power for power storage device 10 based on the output of engine 18.
  • a system main relay 7 that is inserted and connected to the positive line PL and the negative line NL.
  • the system main relay 7 is turned on / off in response to a relay control signal SE from the control device 100.
  • the control device 100 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface. (ECU: Electronic Control Unit) Then, control device 100 executes control related to vehicle travel and external charging by reading out and executing a program stored in advance in a ROM or the like from RAM. Note that at least a part of the ECU may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
  • FIG. 1 shows the temperature Tb, voltage Vb, and current Ib of the power storage device 10 from the monitoring unit 11 and the line between the positive bus MPL and the negative bus MNL.
  • the system voltage Vh from the measured voltage sensor 16 is illustrated.
  • battery temperature Tb, battery voltage Vb, and battery are described for temperature Tb, voltage Vb, and current Ib of power storage device 10. Also referred to as current Ib.
  • the control device 100 continuously estimates the SOC of the power storage device 10.
  • the SOC indicates the amount of charge (remaining charge amount) when the power storage device 10 is based on the fully charged state.
  • the SOC is expressed as a ratio (0 to 100%) of the current charge amount to the full charge capacity. It is.
  • Hybrid vehicle 5 further includes a connector receiving unit 35 and an external charging unit 30 for charging power storage device 10 with an external power source.
  • connector unit 3 When external charging is performed on power storage device 10, connector unit 3 is connected to connector receiving unit 35, so that power from an external power source is connected to external charging unit via positive charging line CPL and negative charging line CNL. 30.
  • the connector receiving unit 35 includes a connection detection sensor 35a for detecting the connection state between the connector receiving unit 35 and the connector unit 3, and the control device 100 uses the connection signal CON from the connection detection sensor 35a to Detect that charging is possible with an external power supply.
  • a connection detection sensor 35a for detecting the connection state between the connector receiving unit 35 and the connector unit 3, and the control device 100 uses the connection signal CON from the connection detection sensor 35a to Detect that charging is possible with an external power supply.
  • a single-phase AC commercial power supply is used as an external power supply is illustrated.
  • the connector unit 3 typically constitutes a coupling mechanism for supplying an external power source such as a commercial power source to the hybrid vehicle 5.
  • the connector unit 3 is connected to a charging station (not shown) provided with an external power source via a power line PSL made of a cabtire cable or the like.
  • the connector part 3 is electrically connected with the external charging part 30 mounted in the hybrid vehicle 5 by connecting with the hybrid vehicle 5 at the time of external charging.
  • the hybrid vehicle 5 is provided with a connector receiving portion 35 connected to the connector portion 3 for receiving an external power supply.
  • External charging unit 30 is a device for receiving power from an external power source to charge power storage device 10 and is disposed between positive line PL and negative line NL and positive charge line CPL and negative charge line CNL. .
  • the external charging unit 30 includes a current control unit 30a and a voltage conversion unit 30b, and converts power from the external power source into power suitable for charging the power storage device 10.
  • the voltage conversion unit 30b is a device for converting the supply voltage of the external power source into a voltage suitable for charging the power storage device 10, and typically includes a winding transformer having a predetermined transformation ratio, And AC-AC switching regulator.
  • current control unit 30a rectifies the AC voltage after voltage conversion by voltage conversion unit 30b to generate a DC voltage, and controls the charging current supplied to power storage device 10 in accordance with the charging current command from control device 100. To do.
  • the current control unit 30a typically includes a single-phase bridge circuit or the like. Note that the external charging unit 30 may be realized by an AC-DC switching regulator or the like instead of the configuration including the current control unit 30a and the voltage conversion unit 30b.
  • the external power supply may be received by a configuration in which the external power supply and the vehicle are electromagnetically coupled in a non-contact manner to supply electric power.
  • the configuration for external charging of the electric vehicle is not particularly limited.
  • the hybrid vehicle 5 travels by selecting one of two travel modes, an EV (Electric Vehicle) mode and an HV (Hybrid Vehicle) mode.
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • Hybrid vehicle 5 selects EV mode until the SOC of power storage device 10 falls below a predetermined mode determination value, and travels mainly using only the driving force from motor generator MG2.
  • this EV mode since it is not necessary to maintain the SOC, basically, the power generation operation by motor generator MG1 receiving the driving force of engine 18 is not performed.
  • the EV mode is intended to improve the fuel consumption rate by maintaining the engine 18 in a stopped state.
  • a driving force request such as rapid acceleration is given from the driver
  • a request unrelated to the driving force request such as an air conditioning request is given, or when other conditions are satisfied, the engine 18 is allowed to start.
  • the traveling mode is switched to the HV mode.
  • the power generation by motor generator MG1 is controlled such that the SOC of power storage device 10 is maintained within a predetermined control range. That is, the engine 18 also starts to operate in response to the start of power generation by the motor generator MG1. A part of the driving force generated by the operation of the engine 18 may be used for traveling of the hybrid vehicle 5.
  • the control device 100 determines the rotational speed of the engine 18 and the amount of power generated by the motor generator MG1 based on the signals from the sensors, the traveling state, the accelerator opening, etc. so that the overall fuel efficiency is optimized. And a target value for the torque of motor generator MG2.
  • the user can select the travel mode by operating the selection switch 26 provided in the vicinity of the driver's seat. That is, the user can forcibly select the HV mode or the EV mode by an operation input to the selection switch 26.
  • the power storage device 10 corresponds to a “power storage device”
  • the motor generator MG2 corresponds to a “rotating electric machine”
  • the engine 18 corresponds to an “internal combustion engine”.
  • the motor generator MG1 corresponds to a “power generation mechanism”.
  • the “EV mode” corresponds to the “first travel mode”
  • the “HV mode” corresponds to the “second travel mode”.
  • FIG. 4 is a functional block diagram illustrating travel control in the electric vehicle according to the first embodiment of the present invention. Note that each functional block described in FIG. 4 can be realized by executing software processing by the control device 100 in accordance with a preset program. Alternatively, a circuit (hardware) having a function corresponding to the functional block can be configured in the control device 100.
  • state estimation unit 110 estimates the SOC of power storage device 10 based on battery data (Tb, Ib, Vb) from monitoring unit 11. For example, state estimating unit 110 sequentially calculates the SOC estimated value (#SOC) of power storage device 10 based on the integrated value of the charge / discharge amount of power storage device 10. The integrated value of the charge / discharge amount can be obtained by temporally integrating the product (power) of the battery current Ib and the battery voltage Vb. Alternatively, the estimated SOC value (#SOC) may be calculated based on the relationship between the open circuit voltage (OCV) and the SOC.
  • OCV open circuit voltage
  • the current load estimation unit 120 calculates a current load parameter MP indicating the thermal load of the device due to the passage of the battery current Ib based on the battery current Ib.
  • the current load parameter MP is reflected in the charge / discharge control of the power storage device 10, thereby generating heat from components of the electric system (components such as a reactor, a capacitor, and a switching element that constitute the power control unit 20). Control so that does not become excessive.
  • the thermal load of each device is designed by defining a limit line indicating an allowable time for the moving average value of the energized current. That is, according to the level of the energization current, an allowable time in which the current can be continuously energized is designed in advance, so that the load indicated by the product of the energization current and the energization time does not exceed the limit line. Charge / discharge of the power storage device 10 is limited as necessary.
  • the current load parameter MP is defined as a parameter for quantitatively evaluating the thermal load in each device due to the passage of the battery current Ib.
  • the current load parameter MP is calculated by smoothing the temporal transition of the square value of the battery current Ib with a low-pass filter. For example, the current load parameter MP is calculated according to the following equation (1) for each constant control cycle by using a low-pass filter as a first-order lag system.
  • MP (n) (K ⁇ 1) / K ⁇ MP (n ⁇ 1) + Ib 2 (n) / K (1)
  • MP (n) is a calculated value in the current control cycle
  • MP (n ⁇ 1) is a calculated value in the previous control cycle
  • Ib 2 (n) is a square value of the battery current Ib in the current control cycle.
  • the coefficient K is a value determined by a first-order delay time constant and a control cycle. The time constant increases as the coefficient K increases. The larger the time constant, the greater the change in the current load parameter MP with respect to the change in the square value of the battery current Ib.
  • traveling mode selection unit 205 is configured to select one of the HV mode and the EV mode according to the SOC of power storage device 10.
  • FIG. 6 shows an example of selection of the travel mode for the SOC transition in the hybrid vehicle 5.
  • the EV mode is selected because the SOC estimation value (#SOC) is higher than the mode determination value Sth.
  • the SOC control range at each timing is a range from a control lower limit value SOCl to a control upper limit value SOCu.
  • An intermediate value between the control lower limit SOCl and the control upper limit SOCu is the control center value SOCr.
  • the SOC of the power storage device 10 gradually decreases due to running in the EV mode.
  • the control center value SOCr of the SOC control range is set corresponding to the current SOC estimated value (#SOC). That is, in the EV mode, the SOC control range also decreases as the SOC decreases.
  • engine 18 is not started for the purpose of charging power storage device 10.
  • the traveling mode shifts from the EV mode to the HV mode.
  • the control center value SOCr is set to a constant value for the HV mode.
  • the control lower limit SOCl is also kept constant.
  • the power storage device 10 When the HV mode is forcibly selected by operating the selection switch 26 during the EV mode (#SOC> Sth), the power storage device 10 is charged / discharged so as to maintain the SOC at that time. Be controlled. That is, the SOC control range is set such that control center value SOCr is fixed to the estimated SOC value (#SOC) when selector switch 26 is operated.
  • traveling mode selection unit 205 selects the EV mode during a period in which the SOC estimation value (#SOC) by state estimation unit 110 is higher than mode determination value Sth.
  • traveling mode selection unit 205 switches the traveling mode from the EV mode to the HV mode.
  • the traveling mode selection unit 205 forcibly selects the HV mode or the EV mode according to the user operation.
  • the travel mode selection unit 205 outputs a travel mode signal MD indicating which one of the EV mode and the HV mode is selected.
  • the charge / discharge control unit 150 sets the input power upper limit value Win and the output power upper limit value Wout based on the state of the power storage device 10.
  • SOC estimated value #SOC
  • the output power upper limit value Wout is limited from the default value
  • the input power upper limit value Win becomes smaller. More limited than the default value.
  • the battery temperature Tb is low or high
  • the input power upper limit value Win and the output power upper limit value Wout are suppressed as compared to the normal temperature.
  • the charge / discharge control unit 150 further sets the input power upper limit value Win and the output power upper limit value Wout, further reflecting the current load parameter MP by the current load estimation unit 120. For example, when the current load parameter MP is smaller than the determination value (threshold value) Mp, the charge / discharge control unit 150 does not limit the output power upper limit value Wout from the viewpoint of the current load (thermal load due to current). When MP exceeds determination value Mp, output power upper limit Wout is limited.
  • Charging / discharging control unit 150 variably sets input power upper limit value Win and output power upper limit value Wout based on at least one of SOC of power storage device 10 and battery current Ib reflected in current load parameter MP. Configured.
  • the charge / discharge control unit 150 determines whether or not the power storage device 10 needs to be charged while the vehicle is traveling. As described above, in the EV mode, a charge request for the power storage device 10 is not generated. In the HV mode, a charge request for power storage device 10 is generated according to the relationship between the estimated SOC value (#SOC) and the SOC control range (SOCl to SOCu).
  • motor travel upper limit vehicle speed setting unit 210 sets upper limit vehicle speed VMmax in motor travel based only on the output of motor generator MG2. Set. Details of the setting of the upper limit vehicle speed VMmax will be described later.
  • the traveling control unit 200 calculates a vehicle driving force and a vehicle braking force necessary for the entire hybrid vehicle 5 according to a vehicle state of the hybrid vehicle 5 and a driver operation.
  • the driver operation includes an amount of depression of an accelerator pedal (not shown), a position of a shift lever (not shown), an amount of depression of a brake pedal (not shown), and the like.
  • the traveling control unit 200 controls output distribution between the motor generators MG1 and MG2 and the engine 18 so as to realize the requested vehicle driving force or vehicle braking force.
  • this output distribution control an output request to motor generators MG1 and MG2 and an output request to engine 18 are determined.
  • either motor traveling or engine traveling is selected.
  • the output request to motor generators MG1 and MG2 is set after restricting charging / discharging of power storage device 10 within a power range (Win to Wout) where power storage device 10 can be charged / discharged. Is done. That is, when the output power of power storage device 10 cannot be secured, the output from motor generator MG2 is limited.
  • the distribution unit 250 calculates the torque and rotation speed of the motor generators MG1 and MG2 in response to the output request to the motor generators MG1 and MG2 set by the travel control unit 200.
  • a control command for torque and rotation speed is output to inverter control unit 260, and at the same time, a control command value for DC voltage Vh is output to converter control unit 270.
  • the distribution unit 250 generates an engine control instruction indicating the engine power and the engine target rotational speed determined by the travel control unit 200.
  • this engine control instruction fuel injection, ignition timing, valve timing, etc. of the engine 18 (not shown) are controlled.
  • Inverter control unit 260 generates switching commands PWM1 and PWM2 for driving motor generators MG1 and MG2 in accordance with a control command from distribution unit 250.
  • the switching commands PWM1 and PWM2 are output to inverters 8-1 and 8-2, respectively.
  • Converter control unit 270 generates switching command PWC such that DC voltage Vh is controlled according to the control command from distribution unit 250.
  • the charge / discharge power of power storage device 10 is controlled by voltage conversion of converter 6 in accordance with switching command PWC.
  • traveling control of the hybrid vehicle 5 with improved energy efficiency is realized in accordance with the vehicle state and driver operation.
  • the horizontal axis indicates the vehicle speed V of the hybrid vehicle 5
  • the vertical axis indicates the drive torque T.
  • the maximum output line 300 of the hybrid vehicle 5 is defined by the vehicle speed V and the drive torque T.
  • the curved portion of the maximum output line 300 corresponds to the upper limit output power.
  • each of maximum output lines 340 and 350 for motor travel are defined.
  • each of maximum output lines 340 and 350 includes a straight line portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax in motor travel, and a curve portion that defines upper limit output power.
  • the motor driving is selected, and the vehicle driving force is ensured only by the output of the motor generator MG.
  • the vehicle driving force is ensured by the hybrid travel that starts the engine 18.
  • the motor travel region is set relatively narrow in order to drive the engine 18 in the engine high efficiency region.
  • the maximum output line 350 is set relatively wide in order to positively select motor travel.
  • hybrid travel is selected at each of the operating points 302 to 306.
  • motor travel is selected in the EV mode.
  • the hybrid vehicle is selected because it is outside the maximum output line 350. That is, the engine 18 is started.
  • V> VMmax is satisfied, and the vehicle is outside the maximum output line 350, so that hybrid travel is selected. That is, when vehicle speed V exceeds motor travel upper limit vehicle speed VMmax, start of engine 18 is instructed and hybrid travel is selected. As a result, motor travel in a region exceeding the motor travel upper limit vehicle speed VMmax is avoided. That is, the continuation of the motor running with the output of motor generator MG2 further increased is prohibited.
  • Motor generators MG1 and MG2 have low efficiency because iron loss increases in the high rotation speed region.
  • the running resistance increases at high vehicle speeds, it is likely to be in a high load state. For this reason, in motor driving at a high vehicle speed, the energy efficiency (fuel consumption) of the hybrid vehicle 5 deteriorates, and the current for obtaining the same output, that is, the battery current Ib increases. Therefore, by setting the motor travel upper limit vehicle speed VMmax, the vehicle travel is controlled so as to avoid continuous motor travel in the high speed region.
  • FIG. 8 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment.
  • a maximum output line 350 for motor travel in the EV mode defines a linear portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax, and an upper limit output power in a range of T ⁇ TMmax and V ⁇ VMmax. Consists of curved parts.
  • the curved portion changes according to output power upper limit value Wout of power storage device 10. Specifically, when the output power upper limit value Wout is limited, a region inside the maximum output line 350, that is, a region where motor travel is selected is narrowed.
  • the motor travel upper limit vehicle speed setting unit 210 changes the motor travel upper limit vehicle speed VMmax according to the state of the power storage device 10. As a result, the frequency with which the output power upper limit Wout is limited is reduced.
  • FIG. 9 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed with respect to the current load parameter.
  • the upper limit vehicle speed VMmax is set to a default value.
  • the motor travel upper limit vehicle speed VMmax is decreased stepwise. By creating a map corresponding to FIG. 9 in advance, the motor travel upper limit vehicle speed VMmax can be set corresponding to the current load parameter MP. Alternatively, the motor travel upper limit vehicle speed VMmax may be decreased continuously corresponding to the decrease in ⁇ MP.
  • FIG. 10 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed with respect to the SOC of the power storage device 10.
  • the horizontal axis represents the estimated SOC value (#SOC) calculated by state estimation unit 110.
  • SOC the estimated SOC value
  • #SOC> S1 upper limit vehicle speed VMmax is set to a default value.
  • #SOC is lower than determination value S1
  • motor traveling upper limit vehicle speed VMmax is decreased stepwise in response to the decrease in SOC.
  • motor traveling upper limit vehicle speed VMmax can be set corresponding to the estimated SOC value (#SOC). Note that the motor travel upper limit vehicle speed VMmax may be continuously decreased with respect to the decrease in the SOC.
  • FIG. 11 shows an example of the vehicle speed limit of the hybrid vehicle 5 during continuous motor travel in the EV mode.
  • the estimated SOC value (#SOC) gradually decreases with time. Due to the continuous discharge of the power storage device 10 as the motor travels, the current load parameter MP also gradually increases according to the battery current Ib.
  • the motor traveling upper limit vehicle speed VMmax (1) corresponding to the current load parameter MP is sequentially set according to the map shown in FIG.
  • motor traveling upper limit vehicle speed VMmax (2) corresponding to the estimated SOC value (#SOC) is sequentially set according to the map shown in FIG.
  • the minimum value of VMmax (1) and VMmax (2) is set to the motor travel upper limit vehicle speed VMmax.
  • the VMmax (1) decreases at each of the times t1, t3, t4, and t5 according to the increase in the current load parameter MP.
  • VMmax (2) decreases at times t2 and t6 in accordance with the decrease in estimated SOC value (#SOC). Since the motor travel upper limit vehicle speed VMmax decreases due to the decrease in VMmax (1) or VMmax (2), the vehicle speed of the hybrid vehicle 5 is also gradually limited and decreases.
  • the output power upper limit value Wout is lowered.
  • the engine 18 is started and a transition is made from motor travel to hybrid travel.
  • hybrid travel the output from motor generator MG2 decreases.
  • the output power from the power storage device 10 and the battery current Ib also decrease.
  • the current load parameter MP starts to decrease.
  • the hybrid travel is selected until the current load parameter MP is sufficiently decreased and the limitation of the output power upper limit value Wout is released or the vehicle speed and / or drive torque of the hybrid vehicle 5 is decreased.
  • the traveling control in which the motor traveling upper limit vehicle speed VMmax is fixed, it is predicted that the current load parameter MP reaches the threshold value Mt earlier than the example illustrated in FIG. Once the output power upper limit value Wout is limited, the starting frequency of the engine 18 may increase thereafter. That is, in hybrid vehicle 5 according to the present embodiment, by changing (decreasing) motor traveling upper limit vehicle speed VMmax according to the state of power storage device 10, the period during which output power from power storage device 10 can be secured can be extended. It is understood that
  • FIG. 12 shows a processing procedure of travel control in the electric vehicle (hybrid vehicle 5) according to the embodiment of the present invention.
  • the processing of each step shown in FIG. 12 can be realized by the control device 100 executing a predetermined program stored in advance or operating a dedicated electronic circuit.
  • the series of control processes shown in FIG. 12 are repeatedly executed at regular control cycles.
  • control device 100 estimates the SOC of power storage device 10 in step S100. That is, in step S100, the estimated SOC value (#SOC) is calculated by the same function as that of state estimation unit 110 in FIG. Thereby, control device 100 acquires the state of charge of power storage device 10.
  • step S110 the control device 100 acquires the battery current Ib. Further, in step S110, a current load parameter MP based on the battery current Ib is calculated according to the above (1). That is, the processing in step S110 corresponds to the function of the current load estimation unit 120 in FIG.
  • Control device 100 sets input power upper limit value Win and output power upper limit value Wout of power storage device 10 in step S120. That is, in step S120, the input power upper limit value Win and the output power upper limit value Wout are variably set by the same function as the charge / discharge control unit 150 in FIG. As described above, when the current load parameter MP exceeds the threshold value Mt, the input power upper limit value Win and the output power upper limit value Wout are limited. Further, in step S140, control device 100 selects the travel mode of hybrid vehicle 5 as either the HV mode or the EV mode based mainly on the SOC of power storage device 10.
  • Control device 100 sets motor travel upper limit vehicle speed VMmax of hybrid vehicle 5 according to the state of power storage device 10 in step S150.
  • FIG. 13 is a flowchart for explaining in detail the processing in step S150 of FIG.
  • control device 100 determines whether or not the traveling mode is the EV mode.
  • control device 100 advances the process to step S154.
  • step S154 the motor travel upper limit vehicle speed VMmax (1) is set according to the current load parameter MP according to the characteristics of FIG.
  • step S155 control device 100 sets motor travel upper limit vehicle speed VMmax (2) according to the estimated SOC value (#SOC) in accordance with the characteristics of FIG.
  • control device 100 sets the minimum value of motor travel upper limit vehicle speed VMmax (1) and VMmax (2) as motor travel upper limit vehicle speed VMmax.
  • control device 100 sets motor travel upper limit vehicle speed VMmax for HV mode in step S158.
  • the vehicle travels so as to keep the SOC of power storage device 10 constant, that is, without actively using battery power. Therefore, in general, motor travel upper limit vehicle speed VMmax in HV mode is fixed to a constant value with respect to the state of power storage device 10.
  • control device 100 controls output distribution between motor generators MG1, MG2 and engine 18 by the same function as travel control unit 200 in FIG.
  • the motor output maximum output line 350 is set reflecting the motor drive upper limit vehicle speed VMmax set in step S150. Then, according to the maximum output lines 340 and 350, selection of motor travel and engine travel, that is, whether or not the engine 18 is required to be operated is determined. Further, an output request to motor generators MG1 and MG2 and an output request to engine 18 are determined.
  • the above-described travel control for avoiding motor travel in a region exceeding the motor travel upper limit vehicle speed VMmax is realized.
  • control device 100 controls engine 18 and motor generators MG1 and MG2 in accordance with the engine control command, MG1 control command, and MG2 control command, respectively, according to the output distribution control in step S160.
  • upper limit vehicle speed VMmax of motor travel is set to the state of power storage device 10 (SOC and current load). It can be variably set according to the parameter MP). This ensures a longer period during which the vehicle can travel without being limited by the output power upper limit value Wout by the SOC and / or the current load parameter MP, as compared with the travel control that fixes the motor travel upper limit vehicle speed VMmax.
  • the area that can be handled by the motor running relative to the driver's acceleration request is relatively wide, so that the engine running can be suppressed and the motor running can be applied for a long time. That is, since the operation frequency of the engine 18 in the EV mode can be reduced, it is possible to avoid the deterioration of the emission and to travel with high energy efficiency.
  • FIG. 14 shows a preferable setting example of the motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment.
  • the relationship between the motor travel upper limit vehicle speed VMmax (EV) in the EV mode and the motor travel upper limit vehicle speed VMmax (HV) in the HV mode may be set so as to be reversed from FIG.
  • the motor travel upper limit vehicle speed VMmax (EV) in the EV mode which is variably set according to the state of the power storage device 10, is preferably set lower than the motor travel upper limit vehicle speed VMmax (HV) in the HV mode.
  • the hybrid vehicle 5 can increase the overall energy efficiency.
  • the motor traveling upper limit vehicle speed VMmax is set to be relatively low so as to prevent the output power upper limit value Wout from being limited.
  • FIG. 15 is a schematic block diagram showing a schematic configuration of an electric vehicle (electric vehicle) 5 # according to the second embodiment of the present invention.
  • FIG. 16 shows the maximum output line 300 of the electric vehicle 5 #.
  • Maximum output line 300 is the same as the maximum output line of motor generator MG.
  • Maximum output line 300 includes a straight line portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax of motor generator MG, and a curve portion that defines the upper limit output power.
  • traveling control of the electric vehicle (electric vehicle 5 #) of the second embodiment can be realized with a configuration in which the traveling mode selection unit 205 and the distribution unit 250 that are essentially unnecessary in FIG. 4 are deleted.
  • traveling control unit 200 follows control command for motor generator MG in accordance with maximum output line 300 reflecting upper limit vehicle speed VMmax set by motor traveling upper limit vehicle speed setting unit 210. to generate.
  • the control command is generated so that the input / output power of power storage device 10 falls within the range of input power upper limit value Win to output power upper limit value Wout.
  • inverter control unit 260 generates a switching command for inverter 8 in accordance with the control command for motor generator MG.
  • Converter control unit 270 generates a switching command for converter 6 so as to control charge / discharge power of power storage device 10 by controlling DC voltage Vh according to the voltage command value.
  • step S140 in the travel control of the electric vehicle (electric vehicle 5 #) of the second embodiment, the process of step S140 is omitted in the flowchart of FIG. 12, and the electric vehicle 5 # is controlled according to the motor travel upper limit vehicle speed VMmax by step S150. This can be realized by setting the upper limit vehicle speed Vmax. Furthermore, in step S160, a control command for motor generator MG is generated according to maximum output line 300 reflecting upper limit vehicle speed VMmax. In step S170, motor generator MG can be controlled in accordance with this control command.
  • the configuration of power control unit 20 is not limited to the configuration illustrated in FIGS. 1 and 15, and may be any configuration as long as it is a configuration for driving motor generators MG and MG2 by the power of power storage device 10. check to describe that it is applicable to. Further, it will be described in a definite manner that the configuration of the drive systems of hybrid vehicle 5 and electric vehicle 5 # is not limited to the examples shown in FIGS. Similarly, if the hybrid vehicle 5 is configured to generate the charging power of the power storage device by the engine output, a “power generation mechanism” different from the motor generator MG1 of FIG. 1 can be applied.
  • any other parameter reflecting the battery current Ib can be applied instead of the current load parameter MP.
  • any state quantity or parameter relating to the power storage device 10 that is reflected in the limitation of the output power upper limit value Wout can be used instead of the current load parameter MP.
  • the present invention can be applied to an electric vehicle that can travel only with the output of a rotating electrical machine that uses the electric power of the in-vehicle power storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Motor driving that uses just the output of a rotating electrical machine, which uses power of a vehicle-mounted storage battery apparatus, can be applied to an electrically driven vehicle, within an area inside a maximum output line (350) for motor driving. The maximum output line (350) is comprised of straight-line portions that prescribe the upper-limit torque (TMmax) and upper-limit vehicle speed (VMmax) upon motor driving, and a curved-line portion that prescribes the upper-limit output power. When the upper-limit value (Wout) for output power from the storage battery apparatus is limited due to a rise in the electric-current load or decrease in the SOC of the storage battery apparatus, the driving range within which motor driving can be applied will become narrower. Operation within a high-revolution range where efficiency drops is avoided, by changing the upper-limit vehicle-speed (VMmax) for motor driving in accordance with the SOC and/or the electric-current load of the storage battery apparatus. This enables a long driving period to be secured, without being limited by the upper-limit value (Wout) for output power.

Description

電動車両およびその制御方法Electric vehicle and control method thereof
 この発明は、電動車両およびその制御方法に関し、より特定的には、回転電機の出力のみで走行することが可能な電動車両の走行制御に関する。 The present invention relates to an electric vehicle and a method for controlling the electric vehicle, and more particularly, to traveling control of an electric vehicle capable of traveling only with an output of a rotating electric machine.
 車両に搭載した二次電池からの電力によって回転電機が車両駆動力を発生するように構成された電動車両が注目を集めている。例えば、電動車両として、ハイブリッド車、燃料電池自動車、電気自動車等の開発が進められている。このような電動車両では、車載二次電池の過充放電の回避と、ドライバ要求に応じた運転性能の確保とを両立するような走行制御が必要となる。 An electric vehicle configured such that a rotating electric machine generates a vehicle driving force by electric power from a secondary battery mounted on the vehicle is attracting attention. For example, development of hybrid vehicles, fuel cell vehicles, electric vehicles, and the like is underway as electric vehicles. In such an electric vehicle, traveling control is required to achieve both avoidance of overcharge / discharge of the in-vehicle secondary battery and ensuring of driving performance according to the driver's request.
 特開2006-109650号公報(特許文献1)には、車両用制御装置および車両用制御方法が記載されている。特許文献1は、車両駆動力を発生する回転電機である駆動モータが生成するトルクの変化量の上限値または下限値を、二次電池の出力電力または入力電力の制限値と車両の速度とに基づいて設定することを記載する。これにより、二次電池の過充放電を起こすことなく、ドライバが要求するトルクを駆動モータが出力することが指向される。 Japanese Patent Laid-Open No. 2006-109650 (Patent Document 1) describes a vehicle control device and a vehicle control method. In Patent Document 1, an upper limit value or a lower limit value of a change amount of torque generated by a drive motor that is a rotating electrical machine that generates vehicle drive force is set as a limit value of output power or input power of a secondary battery and a vehicle speed. It describes that it sets based on. Thus, the drive motor is directed to output the torque required by the driver without causing overcharge / discharge of the secondary battery.
特開2006-109650号公報JP 2006-109650 A
 特許文献1にも記載されるように、二次電池の充電状態(SOC:State of Charge)や温度に基づいて、二次電池の入力電力および出力電力の上限値が設定されることが一般的である。駆動モータの出力は、二次電池の出力電力が上限値を超えない範囲で設定される。このため、二次電池のSOC低下や温度上昇によって、出力電力上限値が厳しく制限されると、駆動モータの出力も制限されることになる。 As described in Patent Document 1, the upper limit values of the input power and output power of the secondary battery are generally set based on the state of charge (SOC) and temperature of the secondary battery. It is. The output of the drive motor is set so that the output power of the secondary battery does not exceed the upper limit value. For this reason, when the output power upper limit value is severely restricted due to the SOC decrease or temperature rise of the secondary battery, the output of the drive motor is also restricted.
 回転電機とエンジンとを搭載したハイブリッド車が電動車両の一態様として知られている。ハイブリッド車では、回転電機の出力のみによる走行と、回転電機およびエンジンの出力による走行とが使い分けられる。これにより、二次電池の蓄積電力を有効に使用しつつ、エンジンの作動を高効率領域に限定することによって、エネルギ効率の向上(すなわち、燃費の改善)が図られる。特に、車両外部の電源によって車載二次電池を充電可能な、いわゆるプラグインハイブリッド車では、積極的に回転電機の出力のみによる走行を選択することが指向される。しかしながら、上述のように二次電池の出力電力が厳しく制限される状態となると、出力や加速性能を確保するために、エンジンの作動が通常よりも頻繁になる。これにより、エネルギ効率の低下(すなわち、燃費の悪化)やエミッションの悪化が懸念される。 A hybrid vehicle equipped with a rotating electric machine and an engine is known as an embodiment of an electric vehicle. In the hybrid vehicle, traveling using only the output of the rotating electrical machine and traveling using the output of the rotating electrical machine and the engine are properly used. Thereby, energy efficiency is improved (that is, fuel efficiency is improved) by limiting the operation of the engine to the high efficiency region while effectively using the stored power of the secondary battery. In particular, in a so-called plug-in hybrid vehicle in which a vehicle-mounted secondary battery can be charged by a power source external to the vehicle, it is directed to actively select traveling based only on the output of the rotating electrical machine. However, when the output power of the secondary battery is severely limited as described above, the operation of the engine becomes more frequent than usual in order to ensure output and acceleration performance. As a result, there is concern about a decrease in energy efficiency (that is, deterioration in fuel consumption) and deterioration in emissions.
 また、回転電機のみが車両駆動力の発生源である電動車両(たとえば、電気自動車)では、上述のように二次電池の出力電力が厳しく制限される状態となると、ドライバ要求に応えた加速性能が低下することにより運転性能(ドライバビリティ)の低下が懸念される。 In addition, in an electric vehicle (for example, an electric vehicle) in which only the rotating electrical machine is a source of vehicle driving force, when the output power of the secondary battery is severely limited as described above, the acceleration performance that meets the driver's request As a result, the driving performance (drivability) may be reduced.
 一方で、高車速時には、走行抵抗が高まるため加速を伴わない定常走行であっても高負荷状態となる傾向がある。このため、回転電機の出力のみによる高車速走行が継続されると、二次電池からの出力電流、すなわち、回転電機を駆動制御するための電気システムの通過電流が比較的大きくなる状態が継続する虞がある。この結果、当該電気システムの構成部品の温度上昇や二次電池の負荷増大を抑制するために、上述のような出力電力の制限値が厳しく制限される状態となり易い。さらに、一旦出力電力が厳しく制限される状態になると、SOC低下や温度上昇が回復するまでこの制限が継続するため、上記の問題が比較的長期間継続する可能性がある。 On the other hand, at high vehicle speeds, running resistance increases, so even in steady running without acceleration, there is a tendency to be in a high load state. For this reason, when the high vehicle speed traveling only by the output of the rotating electrical machine is continued, the state in which the output current from the secondary battery, that is, the passing current of the electric system for driving and controlling the rotating electrical machine is relatively large continues. There is a fear. As a result, in order to suppress the temperature rise of the components of the electrical system and the increase in the load of the secondary battery, the limit value of the output power as described above tends to be severely restricted. Furthermore, once the output power is severely restricted, this restriction continues until the SOC drop or temperature rise is recovered, so the above problem may continue for a relatively long period of time.
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、電動車両のエネルギ効率やドライバビリティが向上するように、回転電機の出力のみによる車両走行の上限車速を適切に設定することである。 The present invention has been made in order to solve such problems, and an object of the present invention is to perform vehicle travel using only the output of the rotating electrical machine so as to improve the energy efficiency and drivability of the electric vehicle. It is to set the upper limit vehicle speed appropriately.
 この発明のある局面では、電動車両は、車両駆動力を発生するための回転電機と、車両に搭載された蓄電装置と、蓄電装置および回転電機の間で電力変換を行なうための電力制御ユニットと、車両走行を制御するための制御装置とを備える。制御装置は、上限車速設定部を含む。上限車速設定部は、蓄電装置の充電状態および蓄電装置の出力電流の少なくとも一方に基づいて、回転電機の出力のみによる車両走行の上限車速を可変に設定するように構成される。 In one aspect of the present invention, an electric vehicle includes a rotating electric machine for generating vehicle driving force, a power storage device mounted on the vehicle, and a power control unit for performing power conversion between the power storage device and the rotating electric machine. And a control device for controlling vehicle travel. The control device includes an upper limit vehicle speed setting unit. The upper limit vehicle speed setting unit is configured to variably set the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine based on at least one of the state of charge of the power storage device and the output current of the power storage device.
 好ましくは、上限車速設定部は、充電状態を示すSOCに基づいて上限車速を可変に設定する場合には、SOCが低いときには、SOCが高いときに比べて上限車速を低く設定し、出力電流に基づいて上限車速を可変に設定する場合には、出力電流が大きいときには、出力電流が小さいときに比べて上限車速を低く設定する。 Preferably, when the upper limit vehicle speed is variably set based on the SOC indicating the state of charge, the upper limit vehicle speed setting unit sets the upper limit vehicle speed lower when the SOC is low than when the SOC is high, and sets the output current to When the upper limit vehicle speed is variably set based on this, when the output current is large, the upper limit vehicle speed is set lower than when the output current is small.
 また好ましくは、制御装置は、走行制御部をさらに含む。走行制御部は、車速が上限車速を超えたときには、回転電機の出力をさらに増加した、回転電機の出力のみによる車両走行の継続を禁止するように車両走行を制御するように構成される。 Also preferably, the control device further includes a travel control unit. When the vehicle speed exceeds the upper limit vehicle speed, the travel control unit is configured to control the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine, which further increases the output of the rotating electrical machine.
 好ましくは、制御装置は、充電状態推定部と、電流負荷推定部と、充放電制御部とをさらに含む。充電状態推定部は、蓄電装置に配置されたセンサの出力に基づいて、蓄電装置のSOC推定値を算出するよう構成される。電流負荷推定部は、蓄電装置の出力電流に基づいて、出力電流の通過による機器の熱負荷を示す電流負荷パラメータを算出するように構成される。充放電制御部は、算出されたSOC推定値および電流負荷パラメータに基づいて、蓄電装置の出力電力上限値を可変に設定するように構成される。上限車速設定部は、算出された電流負荷パラメータに少なくとも基づいて、上限車速を可変に設定する。 Preferably, the control device further includes a charge state estimation unit, a current load estimation unit, and a charge / discharge control unit. The charge state estimation unit is configured to calculate an estimated SOC value of the power storage device based on an output of a sensor arranged in the power storage device. The current load estimation unit is configured to calculate a current load parameter indicating a thermal load of the device due to the passage of the output current based on the output current of the power storage device. The charge / discharge control unit is configured to variably set the output power upper limit value of the power storage device based on the calculated estimated SOC value and current load parameter. The upper limit vehicle speed setting unit variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
 さらに好ましくは、上限車速設定部は、電流負荷パラメータに応じて可変に設定される第1の上限速度および、SOC推定値に応じて可変に設定される第2の上限速度の最小値に従って、上限車速を設定する。 More preferably, the upper limit vehicle speed setting unit sets the upper limit according to the first upper limit speed variably set according to the current load parameter and the minimum value of the second upper limit speed variably set according to the SOC estimated value. Set the vehicle speed.
 好ましくは、電動車両は、車両駆動力を発生するための内燃機関と、内燃機関の出力によって蓄電装置の充電電力を発生するように構成された発電機構と、車両外部の電源によって蓄電装置を充電するための外部充電部とをさらに備える。制御装置は、走行モード選択部および走行制御部をさらに含む。モード選択部は、蓄電装置の充電状態に応じて、蓄電装置のSOCにかかわらず主に回転電機の出力によって走行するように内燃機関および回転電機を使用する第1の走行モード(EVモード)と、蓄電装置のSOCを所定の制御範囲内に維持して走行するように内燃機関および回転電機を使用する第2の走行モード(HVモード)との一方を選択する。走行制御部は、第1の走行モードでは、電動車両のトルクおよび車速が第1の領域の内部であるときは回転電機のみの出力によって走行する一方で、第1の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御する。そして、第1の領域は、上限車速設定部による上限車速を反映して設定される。 Preferably, the electrically powered vehicle charges the power storage device by an internal combustion engine for generating vehicle driving force, a power generation mechanism configured to generate charging power for the power storage device by the output of the internal combustion engine, and a power source external to the vehicle And an external charging unit. The control device further includes a travel mode selection unit and a travel control unit. The mode selection unit includes a first traveling mode (EV mode) in which the internal combustion engine and the rotating electrical machine are used so as to travel mainly by the output of the rotating electrical machine regardless of the SOC of the electrical storage device, depending on the state of charge of the electrical storage device. Then, one of the second traveling mode (HV mode) using the internal combustion engine and the rotating electric machine is selected so as to travel while maintaining the SOC of the power storage device within a predetermined control range. In the first traveling mode, the traveling control unit travels by the output of only the rotating electrical machine when the torque and the vehicle speed of the electric vehicle are within the first region, and when outside the first region. The rotating electrical machine and the internal combustion engine are controlled so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine. The first area is set reflecting the upper limit vehicle speed set by the upper limit vehicle speed setting unit.
 さらに好ましくは、走行制御部は、第2の走行モードでは、電動車両のトルクおよび車速が第2の領域の内部であるときは回転電機のみの出力によって走行する一方で、第2の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するとともに、蓄電装置のSOCが制御範囲よりも低下したときには発電機構によって蓄電装置の充電電力を発生するように、回転電機および内燃機関を制御する。第2の領域の上限車速は、蓄電装置の状態とは無関係に設定される。 More preferably, in the second traveling mode, the traveling control unit travels by the output of only the rotating electric machine when the torque and the vehicle speed of the electric vehicle are within the second region, while the outside of the second region The rotary electric machine and the internal combustion engine so that the electric power is generated by the power generation mechanism when the SOC of the power storage device falls below the control range. Control. The upper limit vehicle speed in the second region is set regardless of the state of the power storage device.
 あるいは好ましくは、電動車両は、回転電機のみを車両駆動力の発生源とする電気自動車である。制御装置は、車速が上限車速設定部による上限車速を超えている間、回転電機による車両駆動力の出力を禁止するための走行制御部をさらに含む。 Alternatively, preferably, the electric vehicle is an electric vehicle that uses only a rotating electric machine as a generation source of vehicle driving force. The control device further includes a travel control unit for prohibiting the output of the vehicle driving force by the rotating electrical machine while the vehicle speed exceeds the upper limit vehicle speed by the upper limit vehicle speed setting unit.
 この発明の他のある局面では、電動車両の制御方法であって、電動車両は、車両駆動力を発生するための回転電機と、蓄電装置と、蓄電装置および回転電機の間で電力変換を行なうための電力制御ユニットとを備える。制御方法は、蓄電装置の充電状態および蓄電装置の出力電流を取得するステップと、この充電状態および出力電流の少なくとも一方に基づいて、回転電機の出力のみによる車両走行の上限車速を可変に設定するステップとを備える。 In another aspect of the present invention, there is provided a method for controlling an electric vehicle, wherein the electric vehicle performs power conversion between a rotating electrical machine for generating vehicle driving force, a power storage device, and the power storage device and the rotating electrical machine. Power control unit. The control method variably sets the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine based on the step of obtaining the charge state of the power storage device and the output current of the power storage device, and at least one of the charge state and the output current. Steps.
 好ましくは、設定するステップは、充電状態に基づいて上限車速を可変に設定する場合には、SOCが低いときには、SOCが高いときに比べて上限車速を低く設定し、出力電流に基づいて上限車速を可変に設定する場合には、出力電流が大きいときには、出力電流が小さいときに比べて上限車速を低く設定する。 Preferably, in the step of setting, when the upper limit vehicle speed is variably set based on the state of charge, when the SOC is low, the upper limit vehicle speed is set lower than when the SOC is high, and the upper limit vehicle speed is set based on the output current. If the output current is large, the upper limit vehicle speed is set lower than when the output current is small.
 また好ましくは、制御方法は、車速が上限車速を超えた場合には、回転電機の出力をさらに増加した、回転電機の出力のみによる車両走行の継続を禁止するように車両走行を制御するステップをさらに備える。 Preferably, the control method further includes a step of controlling the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine, when the vehicle speed exceeds the upper limit vehicle speed, further increasing the output of the rotating electrical machine. Further prepare.
 好ましくは、取得するステップは、制御方法は、蓄電装置に配置されたセンサの出力に基づいて、蓄電装置の残容量推定値を算出するステップと、蓄電装置の出力電流に基づいて、出力電流の通過による機器の熱負荷を示す電流負荷パラメータを算出するステップとを含む。制御方法は、算出されたSOC推定値および電流負荷パラメータに基づいて、蓄電装置の出力電力上限値を可変に設定するステップをさらに備える。上限車速を設定するステップは、算出された電流負荷パラメータに少なくとも基づいて、上限車速を可変に設定する。 Preferably, in the obtaining step, the control method calculates a remaining capacity estimated value of the power storage device based on an output of a sensor arranged in the power storage device, and calculates an output current based on the output current of the power storage device. Calculating a current load parameter indicating a thermal load of the device due to passage. The control method further includes a step of variably setting the output power upper limit value of the power storage device based on the calculated estimated SOC value and current load parameter. The step of setting the upper limit vehicle speed variably sets the upper limit vehicle speed based on at least the calculated current load parameter.
 さらに好ましくは、上限車速を設定するステップは、電流負荷パラメータに応じて第1の上限速度を可変に設定するステップと、SOC推定値に応じて第2の上限速度を可変に設定するステップと、第1の上限速度および第2の上限速度の最小値に従って、上限車速を設定するステップとを含む。 More preferably, the step of setting the upper limit vehicle speed includes a step of variably setting the first upper limit speed according to the current load parameter, a step of variably setting the second upper limit speed according to the SOC estimation value, Setting an upper limit vehicle speed according to a minimum value of the first upper limit speed and the second upper limit speed.
 また好ましくは、電動車両は、車両駆動力を発生するための内燃機関と、内燃機関の出力によって蓄電装置の充電電力を発生するように構成された発電機構と、車両外部の電源によって蓄電装置を充電するための外部充電部とをさらに備える。制御方法は、蓄電装置の充電状態に応じて、蓄電装置のSOCにかかわらず主に回転電機の出力によって走行するように内燃機関および回転電機を使用する第1の走行モードと、蓄電装置のSOCを所定の制御範囲内に維持して走行するように内燃機関および回転電機を使用する第2の走行モードとの一方を選択するステップと、第1の走行モードでは、電動車両のトルクおよび車速が第1の領域の内部であるときは回転電機のみの出力によって走行する一方で、第1の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するように、回転電機および内燃機関を制御するするステップとをさらに備える。そして、第1の領域は、可変に設定された上限車速を反映して設定される。 Preferably, the electric vehicle includes an internal combustion engine for generating a vehicle driving force, a power generation mechanism configured to generate charging power for the power storage device based on an output of the internal combustion engine, and a power source external to the vehicle. And an external charging unit for charging. The control method includes a first travel mode in which the internal combustion engine and the rotating electrical machine are used to travel mainly by the output of the rotating electrical machine regardless of the SOC of the electrical storage device, and the SOC of the electrical storage device, depending on the state of charge of the electrical storage device. Selecting one of the second travel mode using the internal combustion engine and the rotating electric machine so that the vehicle travels while maintaining within a predetermined control range, and in the first travel mode, the torque and the vehicle speed of the electric vehicle are The rotary electric machine and the internal combustion engine are driven so as to travel by the output of only the rotary electric machine when inside the first region, while they run by the output of both the rotary electric machine and the internal combustion engine when outside the first region. And a step of controlling the engine. And the 1st field is set reflecting the upper limit vehicle speed set up variably.
 さらに好ましくは、制御するステップは、第2の走行モードでは、電動車両のトルクおよび車速が第2の領域の内部であるときは回転電機のみの出力によって走行する一方で、第2の領域の外部であるときは回転電機および内燃機関の両方の出力によって走行するとともに、蓄電装置の残容量が制御範囲よりも低下したときには発電機構によって蓄電装置の充電電力を発生するように、回転電機および内燃機関を制御する。そして、第2の領域の上限車速は、蓄電装置の状態とは無関係に設定される。 More preferably, in the second traveling mode, the step of controlling is to travel by the output of only the rotating electrical machine when the torque and the vehicle speed of the electric vehicle are within the second region, while outside the second region. The rotating electrical machine and the internal combustion engine so that the electric power is generated by the power generation mechanism when the remaining capacity of the power storage device falls below the control range. To control. The upper limit vehicle speed in the second region is set regardless of the state of the power storage device.
 あるいは好ましくは、電動車両は、回転電機のみを車両駆動力の発生源とする電気自動車である。制御方法は、車速が、上限車速を超えているときは、回転電機による車両駆動力の出力を禁止するように車両走行を制御するステップをさらに備える。 Alternatively, preferably, the electric vehicle is an electric vehicle that uses only a rotating electric machine as a generation source of vehicle driving force. The control method further includes a step of controlling the vehicle travel so as to prohibit the output of the vehicle driving force by the rotating electrical machine when the vehicle speed exceeds the upper limit vehicle speed.
 この発明によれば、電動車両のエネルギ効率やドライバビリティが向上するように、回転電機の出力のみによる車両走行の上限車速を適切に設定することができる。 According to the present invention, it is possible to appropriately set the upper limit vehicle speed for vehicle travel based only on the output of the rotating electrical machine so that the energy efficiency and drivability of the electric vehicle are improved.
本発明の実施の形態1による電動車両の一例であるハイブリッド車の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a hybrid vehicle which is an example of an electric vehicle according to Embodiment 1 of the present invention. 図1に示した動力分割機構の概略構成図である。FIG. 2 is a schematic configuration diagram of a power split mechanism shown in FIG. 1. 図1に示したエンジンおよびMG1,MG2の回転速度の関係を示す共線図である。FIG. 2 is a collinear diagram showing a relationship between rotational speeds of the engine shown in FIG. 1 and MG1 and MG2. 本発明の実施の形態1による電動車両における走行制御を説明する機能ブロック図である。It is a functional block diagram explaining the traveling control in the electric vehicle by Embodiment 1 of this invention. 機器の熱負荷設計を説明する概念図である。It is a conceptual diagram explaining the heat load design of an apparatus. 実施の形態1による電動車両におけるSOC推移に対する走行モードの選択の一例を説明する波形図である。FIG. 6 is a waveform diagram illustrating an example of selection of a travel mode with respect to SOC transition in the electric vehicle according to the first embodiment. 実施の形態1による電動車両におけるモータ走行およびハイブリッド走行の選択を説明する概念図である。5 is a conceptual diagram illustrating selection of motor travel and hybrid travel in the electric vehicle according to Embodiment 1. FIG. 実施の形態1による電動車両におけるモータ走行上限車速の設定を説明する概念図である。FIG. 5 is a conceptual diagram illustrating setting of a motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment. 電池負荷パラメータに対するモータ走行上限車速の設定を説明する概念図である。It is a conceptual diagram explaining the setting of the motor driving | running | working upper limit vehicle speed with respect to a battery load parameter. 蓄電装置のSOCに対するモータ走行上限車速の設定を説明する概念図である。It is a conceptual diagram explaining the setting of the motor driving | running | working upper limit vehicle speed with respect to SOC of an electrical storage apparatus. 実施の形態1による電動車両のモータ走行における車速制限の例を示す概念図である。FIG. 3 is a conceptual diagram illustrating an example of vehicle speed limitation in motor traveling of the electric vehicle according to the first embodiment. 実施の形態1による電動車両における走行制御の処理手順を示すフローチャートである。3 is a flowchart showing a processing procedure of travel control in the electric vehicle according to the first embodiment. モータ走行上限車速の設定処理手順を示すフローチャートである。It is a flowchart which shows the setting process sequence of a motor driving | running | working upper limit vehicle speed. 実施の形態1による電動車両におけるモータ走行上限車速の好ましい設定例を説明する概念図である。FIG. 6 is a conceptual diagram illustrating a preferable setting example of a motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment. 本発明の実施の形態2による電動車両の一例である電気自動車の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric vehicle which is an example of the electric vehicle by Embodiment 2 of this invention. 実施の形態2による電動車両における上限車速の設定を説明する概念図である。FIG. 9 is a conceptual diagram illustrating setting of an upper limit vehicle speed in an electric vehicle according to a second embodiment.
 以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付して、その説明は原則として繰返さないものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated in principle.
 [実施の形態1]
 実施の形態1では、本発明の実施の形態による電動車両として、車両外部の電源により充電可能な二次電池を搭載したハイブリッド車(プラグインハイブリッド車)を例示する。
[Embodiment 1]
In the first embodiment, a hybrid vehicle (plug-in hybrid vehicle) equipped with a secondary battery that can be charged by a power source outside the vehicle is illustrated as an electric vehicle according to the embodiment of the present invention.
 図1は、本発明の実施の形態1による電動車両の一例であるハイブリッド車の概略構成を示すブロック図である。 FIG. 1 is a block diagram showing a schematic configuration of a hybrid vehicle which is an example of an electric vehicle according to Embodiment 1 of the present invention.
 図1を参照して、ハイブリッド車5は、内燃機関(エンジン)18とモータジェネレータMG1,MG2とを搭載し、それぞれの出力を最適な比率に制御して走行する。ハイブリッド車5は、さらに、蓄電装置10を搭載する。 Referring to FIG. 1, hybrid vehicle 5 is equipped with an internal combustion engine (engine) 18 and motor generators MG1 and MG2, and travels with their outputs controlled to optimum ratios. The hybrid vehicle 5 further includes a power storage device 10.
 蓄電装置10は、再充電可能な電力貯蔵要素であり、代表的にリチウムイオン電池やニッケル水素などの二次電池で構成される。あるいは、電気二重層キャパシタなどの二次電池以外の電力貯蔵要素によって、蓄電装置10を構成してもよい。図1には、ハイブリッド車5のうちの蓄電装置10の充放電に関連するシステム構成が記載されている。 The power storage device 10 is a rechargeable power storage element, and typically includes a secondary battery such as a lithium ion battery or nickel metal hydride. Or you may comprise the electrical storage apparatus 10 by electric power storage elements other than secondary batteries, such as an electric double layer capacitor. FIG. 1 shows a system configuration related to charging / discharging of the power storage device 10 in the hybrid vehicle 5.
 蓄電装置10は、ハイブリッド車5のシステム起動状態(以下、「IGオン状態」とも称する)において、電力制御ユニット20による電力変換を介して、モータジェネレータMG1,MG2に対して電力を入出力可能である。 Power storage device 10 can input / output electric power to / from motor generators MG1, MG2 through power conversion by electric power control unit 20 in the system start-up state of hybrid vehicle 5 (hereinafter also referred to as “IG on state”). is there.
 さらに、蓄電装置10は、ハイブリッド車5のシステム停止中(以下、「IGオフ状態」とも記す)において、コネクタ部3を介した電気的な接続によって、車両外部の電源(図示せず、以下「外部電源」とも称する)により充電可能である。なお、コネクタ部3を介してハイブリッド車5に供給される外部電源は、商用電源に代えて、もしくはこれに加えて住宅の屋根などに設置された太陽電池パネルによる発電電力などであってもよい。外部電源による蓄電装置10の充電(以下、「外部充電」とも称する)の詳細については、後ほど説明する。 Further, the power storage device 10 is connected to a power source (not shown, hereinafter referred to as “not shown”) by electrical connection via the connector unit 3 while the hybrid vehicle 5 is stopped (hereinafter also referred to as “IG off state”). It can also be charged by an external power source. Note that the external power supply supplied to the hybrid vehicle 5 via the connector unit 3 may be power generated by a solar panel installed on a roof of a house or the like instead of or in addition to a commercial power supply. . Details of charging the power storage device 10 by an external power source (hereinafter also referred to as “external charging”) will be described later.
 監視ユニット11は、蓄電装置10に設けられた温度センサ12、電圧センサ13および電流センサ14の出力に基づいて、蓄電装置10の状態検出値として、温度Tb、電圧Vb、電流Ibを出力する。なお、温度センサ12、電圧センサ13および電流センサ14については、蓄電装置10に設けられる温度センサ、電圧センサ、および電流センサのそれぞれを包括的に示すものである。すなわち、実際には、温度センサ12、電圧センサ13および電流センサ14の少なくとも一部については、複数個設けられることが一般的である点について確認的に記載する。 The monitoring unit 11 outputs the temperature Tb, the voltage Vb, and the current Ib as the state detection values of the power storage device 10 based on the outputs of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 provided in the power storage device 10. Note that the temperature sensor 12, the voltage sensor 13, and the current sensor 14 collectively indicate the temperature sensor, the voltage sensor, and the current sensor provided in the power storage device 10. That is, in practice, at least a part of the temperature sensor 12, the voltage sensor 13, and the current sensor 14 will be described in detail in terms of being generally provided.
 エンジン18と、モータジェネレータMG1と、モータジェネレータMG2とは、動力分割機構22を介して機械的に連結される。そして、ハイブリッド車5の走行状況に応じて、動力分割機構22を介して上記3者の間で駆動力の分配および結合が行なわれ、その結果として、駆動輪24Fが駆動される。 Engine 18, motor generator MG 1, and motor generator MG 2 are mechanically connected via power split mechanism 22. Then, according to the traveling state of the hybrid vehicle 5, the driving force is distributed and combined among the three persons via the power split mechanism 22, and as a result, the drive wheels 24F are driven.
 図2を参照して、動力分割機構22についてさらに説明する。動力分割機構22は、サンギヤ202と、ピニオンギヤ204と、キャリア206と、リングギヤ208とを含む遊星歯車によって構成される。 The power split mechanism 22 will be further described with reference to FIG. The power split mechanism 22 is constituted by a planetary gear including a sun gear 202, a pinion gear 204, a carrier 206, and a ring gear 208.
 ピニオンギヤ204は、サンギヤ202およびリングギヤ208と係合する。キャリア206は、ピニオンギヤ204が自転可能であるように支持する。サンギヤ202はモータジェネレータMG1の回転軸に連結される。キャリア206はエンジン18のクランクシャフトに連結される。リングギヤ208はモータジェネレータMG2の回転軸および減速機95に連結される。 The pinion gear 204 engages with the sun gear 202 and the ring gear 208. The carrier 206 supports the pinion gear 204 so that it can rotate. Sun gear 202 is coupled to the rotation shaft of motor generator MG1. The carrier 206 is connected to the crankshaft of the engine 18. Ring gear 208 is connected to the rotation shaft of motor generator MG 2 and reduction gear 95.
 エンジン18、モータジェネレータMG1およびモータジェネレータMG2が、遊星歯車からなる動力分割機構22を介して連結されることで、エンジン18、モータジェネレータMG1およびモータジェネレータMG2の回転速度は、図3に示すように、共線図において直線で結ばれる関係になる。 The engine 18, the motor generator MG1 and the motor generator MG2 are connected via a power split mechanism 22 made of planetary gears, so that the rotational speeds of the engine 18, motor generator MG1 and motor generator MG2 are as shown in FIG. In the collinear diagram, the relationship is a straight line.
 ハイブリッド車5の走行時において、動力分割機構22は、エンジン18の作動によって発生する駆動力を二分割し、その一方をモータジェネレータMG1側へ配分するとともに、残部をモータジェネレータMG2へ配分する。動力分割機構22からモータジェネレータMG1側へ配分された駆動力は、発電動作に用いられる。一方、モータジェネレータMG2側へ配分された駆動力は、モータジェネレータMG2で発生した駆動力と合成されて、駆動輪24Fの駆動に使用される。 When the hybrid vehicle 5 is traveling, the power split mechanism 22 divides the driving force generated by the operation of the engine 18 into two parts, and distributes one of them to the motor generator MG1 side and the remaining part to the motor generator MG2. The driving force distributed from power split mechanism 22 to motor generator MG1 side is used for the power generation operation. On the other hand, the driving force distributed to the motor generator MG2 side is combined with the driving force generated by the motor generator MG2 and used to drive the drive wheels 24F.
 このように、ハイブリッド車5では、エンジン18を停止してモータジェネレータMG2の出力のみを用いた車両走行(以下、「モータ走行」とも称する)と、エンジン18を作動させてエンジン18およびモータジェネレータMG2の両方の出力を用いた車両走行(以下、「ハイブリッド走行」とも称する)とを選択できる。 As described above, in the hybrid vehicle 5, when the vehicle 18 travels using only the output of the motor generator MG2 with the engine 18 stopped (hereinafter, also referred to as “motor travel”), the engine 18 is operated to drive the engine 18 and the motor generator MG2. It is possible to select vehicle travel using both outputs (hereinafter also referred to as “hybrid travel”).
 再び図1を参照して、ハイブリッド車5は、電力制御ユニット20をさらに備える。電力制御ユニット20は、モータジェネレータMG1およびモータジェネレータMG2と、蓄電装置10との間で双方向に電力変換可能に構成される。電力制御ユニット20は、コンバータ(CONV)6と、モータジェネレータMG1およびMG2にそれぞれ対応付けられたインバータ(INV1)8-1およびインバータ(INV2)8-2とを含む。 Referring to FIG. 1 again, the hybrid vehicle 5 further includes a power control unit 20. Power control unit 20 is configured to be capable of bi-directional power conversion between motor generator MG1 and motor generator MG2 and power storage device 10. Power control unit 20 includes a converter (CONV) 6, and an inverter (INV1) 8-1 and an inverter (INV2) 8-2 respectively associated with motor generators MG1 and MG2.
 コンバータ(CONV)6は、蓄電装置10と、インバータ8-1,8-2の直流リンク電圧を伝達する正母線MPLとの間で、双方向の直流電圧変換を実行可能に構成される。すなわち、蓄電装置10の入出力電圧と、正母線MPLおよび負母線MNL間の直流電圧とは、双方向に昇圧または降圧される。コンバータ6における昇降圧動作は、制御装置100からのスイッチング指令PWCに従ってそれぞれ制御される。また、正母線MPLおよび負母線MNLの間には、平滑コンデンサCが接続される。そして、正母線MPLおよび負母線MNL間の直流電圧は、電圧センサ16によって検知される。 Converter (CONV) 6 is configured to be able to perform bidirectional DC voltage conversion between power storage device 10 and positive bus MPL that transmits the DC link voltage of inverters 8-1 and 8-2. That is, the input / output voltage of power storage device 10 and the DC voltage between positive bus MPL and negative bus MNL are boosted or lowered in both directions. The step-up / step-down operation in converter 6 is controlled according to switching command PWC from control device 100. A smoothing capacitor C is connected between the positive bus MPL and the negative bus MNL. The DC voltage between positive bus MPL and negative bus MNL is detected by voltage sensor 16.
 インバータ8-1およびインバータ8-2は、正母線MPLおよび負母線MNLの直流電力と、モータジェネレータMG1およびMG2に入出力される交流電力との間の双方向の電力変換を実行する。主として、インバータ8-1は、制御装置100からのスイッチング指令PWM1に応じて、モータジェネレータMG1で発生する交流電力を直流電力に変換し、正母線MPLおよび負母線MNLへ供給する。一方、インバータ8-2は、制御装置100からのスイッチング指令PWM2に応じて、正母線MPLおよび負母線MNLを介して供給される直流電力を交流電力に変換して、モータジェネレータMG2へ供給する。すなわち、ハイブリッド車5において、モータジェネレータMG2は、蓄電装置10からの電力を受けて車両駆動力を発生するように構成される。また、モータジェネレータMG1は、エンジン18の出力によって蓄電装置10の充電電力を発生するように構成される。 Inverter 8-1 and inverter 8-2 perform bidirectional power conversion between DC power of positive bus MPL and negative bus MNL and AC power input / output to / from motor generators MG1 and MG2. Mainly, inverter 8-1 converts AC power generated by motor generator MG1 into DC power in response to switching command PWM1 from control device 100, and supplies the DC power to positive bus MPL and negative bus MNL. On the other hand, inverter 8-2 converts DC power supplied via positive bus MPL and negative bus MNL into AC power in accordance with switching command PWM2 from control device 100, and supplies the AC power to motor generator MG2. In other words, in hybrid vehicle 5, motor generator MG <b> 2 is configured to receive electric power from power storage device 10 and generate vehicle driving force. Motor generator MG1 is configured to generate charging power for power storage device 10 based on the output of engine 18.
 蓄電装置10と電力制御ユニット20との間には、正線PLおよび負線NLに介挿接続されたシステムメインリレー7が設けられる。システムメインリレー7は、制御装置100からのリレー制御信号SEに応答してオンオフされる。 Between the power storage device 10 and the power control unit 20, there is provided a system main relay 7 that is inserted and connected to the positive line PL and the negative line NL. The system main relay 7 is turned on / off in response to a relay control signal SE from the control device 100.
 制御装置100は、代表的には、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶部と、入出力インターフェイスとを主体として構成された電子制御装置(ECU:Electronic Control Unit)により構成される。そして、制御装置100は、CPUが予めROMなどに格納されたプログラムをRAMから読出して実行することによって、車両走行および外部充電に係る制御を実行する。なお、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。 The control device 100 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface. (ECU: Electronic Control Unit) Then, control device 100 executes control related to vehicle travel and external charging by reading out and executing a program stored in advance in a ROM or the like from RAM. Note that at least a part of the ECU may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
 制御装置100に入力される情報の一例として、図1には、監視ユニット11からの、蓄電装置10の温度Tb、電圧Vbおよび電流Ibや、正母線MPLと負母線MNLとの線間に配置された電圧センサ16からのシステム電圧Vhを例示する。なお、上述のように、蓄電装置10として代表的には二次電池が適用されるので、以下では、蓄電装置10の温度Tb、電圧Vbおよび電流Ibについて、バッテリ温度Tb、バッテリ電圧Vbおよびバッテリ電流Ibとも称することとする。 As an example of information input to the control device 100, FIG. 1 shows the temperature Tb, voltage Vb, and current Ib of the power storage device 10 from the monitoring unit 11 and the line between the positive bus MPL and the negative bus MNL. The system voltage Vh from the measured voltage sensor 16 is illustrated. As described above, since a secondary battery is typically applied as power storage device 10, hereinafter, battery temperature Tb, battery voltage Vb, and battery are described for temperature Tb, voltage Vb, and current Ib of power storage device 10. Also referred to as current Ib.
 また、制御装置100は、蓄電装置10のSOCを連続的に推定する。SOCは、蓄電装置10が満充電状態を基準にしたときの充電量(残存電荷量)を示すものであり、一例として、満充電容量に対する現在の充電量の比率(0~100%)で表わされる。 Further, the control device 100 continuously estimates the SOC of the power storage device 10. The SOC indicates the amount of charge (remaining charge amount) when the power storage device 10 is based on the fully charged state. As an example, the SOC is expressed as a ratio (0 to 100%) of the current charge amount to the full charge capacity. It is.
 ここで、外部充電のための構成について説明する。
 ハイブリッド車5は、蓄電装置10を外部電源により充電するための、コネクタ受入部35および外部充電部30とをさらに備える。
Here, a configuration for external charging will be described.
Hybrid vehicle 5 further includes a connector receiving unit 35 and an external charging unit 30 for charging power storage device 10 with an external power source.
 蓄電装置10に対して外部充電を行なう場合には、コネクタ部3がコネクタ受入部35に連結されることで、正充電線CPLおよび負充電線CNLを介して外部電源からの電力が外部充電部30へ供給される。また、コネクタ受入部35は、コネクタ受入部35とコネクタ部3との連結状態を検出するための連結検出センサ35aを含んでおり、この連結検出センサ35aからの連結信号CONによって制御装置100は、外部電源により充電可能な状態となったことを検出する。なお、本実施の形態においては、外部電源として単相交流の商用電源が用いられる場合について例示する。 When external charging is performed on power storage device 10, connector unit 3 is connected to connector receiving unit 35, so that power from an external power source is connected to external charging unit via positive charging line CPL and negative charging line CNL. 30. The connector receiving unit 35 includes a connection detection sensor 35a for detecting the connection state between the connector receiving unit 35 and the connector unit 3, and the control device 100 uses the connection signal CON from the connection detection sensor 35a to Detect that charging is possible with an external power supply. In the present embodiment, a case where a single-phase AC commercial power supply is used as an external power supply is illustrated.
 コネクタ部3は、代表的に商用電源などの外部電源をハイブリッド車5に供給するための連結機構を構成する。コネクタ部3は、キャブタイヤケーブルなどからなる電力線PSLを介して外部電源を備えた充電ステーション(図示せず)と連結される。そして、コネクタ部3は、外部充電時にハイブリッド車5と連結されることによって、外部電源とハイブリッド車5に搭載された外部充電部30とを電気的に接続する。一方、ハイブリッド車5には、コネクタ部3と連結された、外部電源を受入れるためのコネクタ受入部35が設けられる。 The connector unit 3 typically constitutes a coupling mechanism for supplying an external power source such as a commercial power source to the hybrid vehicle 5. The connector unit 3 is connected to a charging station (not shown) provided with an external power source via a power line PSL made of a cabtire cable or the like. And the connector part 3 is electrically connected with the external charging part 30 mounted in the hybrid vehicle 5 by connecting with the hybrid vehicle 5 at the time of external charging. On the other hand, the hybrid vehicle 5 is provided with a connector receiving portion 35 connected to the connector portion 3 for receiving an external power supply.
 外部充電部30は、外部電源からの電力を受けて蓄電装置10を充電するための装置であり、正線PLおよび負線NLと正充電線CPLおよび負充電線CNLとの間に配置される。 External charging unit 30 is a device for receiving power from an external power source to charge power storage device 10 and is disposed between positive line PL and negative line NL and positive charge line CPL and negative charge line CNL. .
 また、外部充電部30は、電流制御部30aと、電圧変換部30bとを含み、外部電源からの電力を蓄電装置10の充電に適した電力に変換する。具体的には、電圧変換部30bは、外部電源の供給電圧を蓄電装置10の充電に適した電圧に変換するための装置であり、代表的に所定の変圧比を有する巻線型の変圧器や、AC-ACスイッチングレギュレータなどからなる。また、電流制御部30aは、電圧変換部30bによる電圧変換後の交流電圧を整流して直流電圧を生成するとともに、制御装置100からの充電電流指令に従って、蓄電装置10に供給する充電電流を制御する。電流制御部30aは、代表的に単相のブリッジ回路などからなる。なお、電流制御部30aおよび電圧変換部30bからなる構成に代えて、AC-DCスイッチングレギュレータなどによって外部充電部30を実現してもよい。 The external charging unit 30 includes a current control unit 30a and a voltage conversion unit 30b, and converts power from the external power source into power suitable for charging the power storage device 10. Specifically, the voltage conversion unit 30b is a device for converting the supply voltage of the external power source into a voltage suitable for charging the power storage device 10, and typically includes a winding transformer having a predetermined transformation ratio, And AC-AC switching regulator. Further, current control unit 30a rectifies the AC voltage after voltage conversion by voltage conversion unit 30b to generate a DC voltage, and controls the charging current supplied to power storage device 10 in accordance with the charging current command from control device 100. To do. The current control unit 30a typically includes a single-phase bridge circuit or the like. Note that the external charging unit 30 may be realized by an AC-DC switching regulator or the like instead of the configuration including the current control unit 30a and the voltage conversion unit 30b.
 なお、図1に示す構成に代えて、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成によって、外部電源を受入れてもよい。具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して電力供給を行なう構成を適用することができる。このように、本発明の適用において、電動車両の外部充電のための構成は特に限定されるものではない。 Note that, instead of the configuration shown in FIG. 1, the external power supply may be received by a configuration in which the external power supply and the vehicle are electromagnetically coupled in a non-contact manner to supply electric power. Specifically, it is possible to apply a configuration in which a primary coil is provided on the external power supply side, a secondary coil is provided on the vehicle side, and power is supplied using mutual inductance between the primary coil and the secondary coil. . Thus, in the application of the present invention, the configuration for external charging of the electric vehicle is not particularly limited.
 上述のように、ハイブリッド車5では、蓄電装置10を外部充電できるため、エンジン18を可能な限り停止状態に維持して走行することがエネルギ効率上好ましい。そのため、ハイブリッド車5は、EV(Electric Vehicle)モードおよびHV(Hybrid Vehicle)モードの2つの走行モードの一方を選択して走行する。 As described above, in the hybrid vehicle 5, since the power storage device 10 can be externally charged, it is preferable in terms of energy efficiency that the engine 18 is kept running as much as possible. Therefore, the hybrid vehicle 5 travels by selecting one of two travel modes, an EV (Electric Vehicle) mode and an HV (Hybrid Vehicle) mode.
 ハイブリッド車5は、蓄電装置10のSOCが所定のモード判定値を下回るまでの間、EVモードを選択して、主としてモータジェネレータMG2からの駆動力のみで走行する。このEVモードでは、SOCを維持する必要はないので、基本的に、エンジン18の駆動力を受けたモータジェネレータMG1での発電動作は行なわれない。なお、EVモードは、エンジン18を停止状態に維持して燃料消費率を向上させることを目的としているが、運転者からの急加速などの駆動力要求が与えられた場合、触媒暖機時や空調要求などの駆動力要求とは無関係な要求が与えられた場合、およびその他の条件が成立した場合などにおいては、エンジン18の始動が許可される。 Hybrid vehicle 5 selects EV mode until the SOC of power storage device 10 falls below a predetermined mode determination value, and travels mainly using only the driving force from motor generator MG2. In this EV mode, since it is not necessary to maintain the SOC, basically, the power generation operation by motor generator MG1 receiving the driving force of engine 18 is not performed. The EV mode is intended to improve the fuel consumption rate by maintaining the engine 18 in a stopped state. However, when a driving force request such as rapid acceleration is given from the driver, When a request unrelated to the driving force request such as an air conditioning request is given, or when other conditions are satisfied, the engine 18 is allowed to start.
 EVモード中に蓄電装置10のSOCがモード判定値まで低下すると、走行モードはHVモードに切換わる。HVモードにおいては、蓄電装置10のSOCが予め定められた所定の制御範囲内に維持されるように、モータジェネレータMG1による発電が制御される。すなわち、モータジェネレータMG1による発電の開始に応じて、エンジン18も作動を開始する。なお、エンジン18の作動によって生じる駆動力の一部はハイブリッド車5の走行に用いられてもよい。 When the SOC of the power storage device 10 decreases to the mode determination value during the EV mode, the traveling mode is switched to the HV mode. In the HV mode, the power generation by motor generator MG1 is controlled such that the SOC of power storage device 10 is maintained within a predetermined control range. That is, the engine 18 also starts to operate in response to the start of power generation by the motor generator MG1. A part of the driving force generated by the operation of the engine 18 may be used for traveling of the hybrid vehicle 5.
 HVモードでは、制御装置100は、総合的な燃費が最適化されるように、各センサからの信号、走行状況、アクセル開度などに基づいて、エンジン18の回転速度、モータジェネレータMG1の発電量、およびモータジェネレータMG2のトルクについての目標値を決定する。 In the HV mode, the control device 100 determines the rotational speed of the engine 18 and the amount of power generated by the motor generator MG1 based on the signals from the sensors, the traveling state, the accelerator opening, etc. so that the overall fuel efficiency is optimized. And a target value for the torque of motor generator MG2.
 さらに、ハイブリッド車5では、運転席の近傍に設けられた選択スイッチ26をユーザが操作することによって走行モードを選択することも可能である。すなわち、ユーザは、選択スイッチ26への操作入力によって、HVモードまたはEVモードを強制的に選択できる。 Furthermore, in the hybrid vehicle 5, the user can select the travel mode by operating the selection switch 26 provided in the vicinity of the driver's seat. That is, the user can forcibly select the HV mode or the EV mode by an operation input to the selection switch 26.
 図1に示すこの発明の実施の形態と本願発明との対応関係については、蓄電装置10が「蓄電装置」に相当し、モータジェネレータMG2が「回転電機」に相当し、エンジン18が「内燃機関」に相当し、モータジェネレータMG1が「発電機構」に相当する。また、「EVモード」が「第1の走行モード」に相当し、「HVモード」が「第2の走行モード」に対応する。 Regarding the correspondence between the embodiment of the present invention shown in FIG. 1 and the present invention, the power storage device 10 corresponds to a “power storage device”, the motor generator MG2 corresponds to a “rotating electric machine”, and the engine 18 corresponds to an “internal combustion engine”. The motor generator MG1 corresponds to a “power generation mechanism”. The “EV mode” corresponds to the “first travel mode”, and the “HV mode” corresponds to the “second travel mode”.
 図4は、本発明の実施の形態1による電動車両における走行制御を説明する機能ブロック図である。なお、図4に記載された各機能ブロックについては、予め設定されたプログラムに従って制御装置100がソフトウェア処理を実行することにより実現することができる。あるいは、制御装置100の内部に、当該機能ブロックに相当する機能を有する回路(ハードウェア)を構成することも可能である。 FIG. 4 is a functional block diagram illustrating travel control in the electric vehicle according to the first embodiment of the present invention. Note that each functional block described in FIG. 4 can be realized by executing software processing by the control device 100 in accordance with a preset program. Alternatively, a circuit (hardware) having a function corresponding to the functional block can be configured in the control device 100.
 図4を参照して、状態推定部110は、監視ユニット11からの電池データ(Tb,Ib,Vb)に基づいて、蓄電装置10のSOCを推定する。たとえば、状態推定部110は、蓄電装置10の充放電量の積算値に基づいて蓄電装置10のSOC推定値(♯SOC)を順次演算する。充放電量の積算値は、バッテリ電流Ibおよびバッテリ電圧Vbの積(電力)を時間的に積分することで得られる。あるいは、開放電圧(OCV:Open Circuit Voltage)とSOCとの関係に基づいてSOC推定値(♯SOC)を算出してもよい。 Referring to FIG. 4, state estimation unit 110 estimates the SOC of power storage device 10 based on battery data (Tb, Ib, Vb) from monitoring unit 11. For example, state estimating unit 110 sequentially calculates the SOC estimated value (#SOC) of power storage device 10 based on the integrated value of the charge / discharge amount of power storage device 10. The integrated value of the charge / discharge amount can be obtained by temporally integrating the product (power) of the battery current Ib and the battery voltage Vb. Alternatively, the estimated SOC value (#SOC) may be calculated based on the relationship between the open circuit voltage (OCV) and the SOC.
 電流負荷推定部120は、バッテリ電流Ibに基づいて、バッテリ電流Ibの通過による機器の熱負荷を示す電流負荷パラメータMPを算出する。本実施の形態では、蓄電装置10の充放電制御に電流負荷パラメータMPを反映することによって、電気システムの構成機器(電力制御ユニット20を構成する、リアクトル、コンデンサ、スイッチング素子等の部品)の発熱が過大にならないように制御する。 The current load estimation unit 120 calculates a current load parameter MP indicating the thermal load of the device due to the passage of the battery current Ib based on the battery current Ib. In the present embodiment, the current load parameter MP is reflected in the charge / discharge control of the power storage device 10, thereby generating heat from components of the electric system (components such as a reactor, a capacitor, and a switching element that constitute the power control unit 20). Control so that does not become excessive.
 図5に示されるように、一般的に各機器の熱負荷は、通電電流の移動平均値に対する許容時間を示す限界線を定めることによって設計される。すなわち、通電電流のレベルに応じて、当該電流を継続的に通電できる許容時間が予め設計されており、通電電流および通電時間の積で示される負荷が、限界線を超えることがないように、蓄電装置10の充放電を必要に応じて制限する。 As shown in FIG. 5, in general, the thermal load of each device is designed by defining a limit line indicating an allowable time for the moving average value of the energized current. That is, according to the level of the energization current, an allowable time in which the current can be continuously energized is designed in advance, so that the load indicated by the product of the energization current and the energization time does not exceed the limit line. Charge / discharge of the power storage device 10 is limited as necessary.
 図1に示した電気システムでは、各機器の通過電流の大きさは、バッテリ電流Ibの大きさに従ったものとなる。したがって、電流負荷パラメータMPは、バッテリ電流Ibの通過による各機器での熱負荷を定量的に評価するためのパラメータとして定義される。電流負荷パラメータMPは、バッテリ電流Ibの二乗値の時間的な推移をローパスフィルタによって平滑化することによって算出される。たとえば、ローパスフィルタを一次遅れ系とすることによって、電流負荷パラメータMPは、一定の制御周期毎に下記(1)式に従って算出される。 In the electrical system shown in FIG. 1, the magnitude of the passing current of each device is in accordance with the magnitude of the battery current Ib. Therefore, the current load parameter MP is defined as a parameter for quantitatively evaluating the thermal load in each device due to the passage of the battery current Ib. The current load parameter MP is calculated by smoothing the temporal transition of the square value of the battery current Ib with a low-pass filter. For example, the current load parameter MP is calculated according to the following equation (1) for each constant control cycle by using a low-pass filter as a first-order lag system.
 MP(n)=(K-1)/K・MP(n-1)+Ib2(n)/K …(1)
 式(1)において、MP(n)は今回の制御周期での算出値であり、MP(n-1)は前回の制御周期での算出値である。そして、Ib2(n)は、今回の制御周期でのバッテリ電流Ibの二乗値である。そして、係数Kは、一次遅れの時定数および制御周期によって定められる値である。係数Kが大きいほど時定数が大きくなる。時定数が大きいほど、バッテリ電流Ibの二乗値の変化に対する電流負荷パラメータMPの変化を大きくなまらせることになる。なお、熱負荷の評価のために、時定数については、大電流時には通常よりも小さい値に設定することが好ましい。また、放熱時(MP(n-1)>Ib2(n))には、発熱時(MP(n-1)<Ib2(n))よりも時定数を小さい値に設定する。
MP (n) = (K−1) / K · MP (n−1) + Ib 2 (n) / K (1)
In Equation (1), MP (n) is a calculated value in the current control cycle, and MP (n−1) is a calculated value in the previous control cycle. Ib 2 (n) is a square value of the battery current Ib in the current control cycle. The coefficient K is a value determined by a first-order delay time constant and a control cycle. The time constant increases as the coefficient K increases. The larger the time constant, the greater the change in the current load parameter MP with respect to the change in the square value of the battery current Ib. In order to evaluate the thermal load, it is preferable to set the time constant to a value smaller than usual when the current is large. Further, the time constant is set to a smaller value during heat dissipation (MP (n−1)> Ib 2 (n)) than during heat generation (MP (n−1) <Ib 2 (n)).
 再び図4を参照して、走行モード選択部205は、蓄電装置10のSOCに応じて、HVモードおよびEVモードの一方を選択するように構成される。 Referring to FIG. 4 again, traveling mode selection unit 205 is configured to select one of the HV mode and the EV mode according to the SOC of power storage device 10.
 図6には、ハイブリッド車5におけるSOC推移に対する走行モードの選択の一例が示される。 FIG. 6 shows an example of selection of the travel mode for the SOC transition in the hybrid vehicle 5.
 図6を参照して、ハイブリッド車5は、車両走行開始時(時刻t1)には、蓄電装置10はSOC上限値Smaxの近傍まで外部充電されている。イグニッションスイッチがオンされてハイブリッド車5の走行が開示されると、SOC推定値(♯SOC)がモード判定値Sthよりも高いため、EVモードが選択される。なお、各タイミングでの、SOC制御範囲は、制御下限値SOCl~制御上限値SOCuの範囲である。制御下限値SOClおよび制御上限値SOCuの中間値が、制御中心値SOCrである。上述のように、SOCが制御範囲よりも低下すると、車両走行中の蓄電装置10の充電が要求される。 Referring to FIG. 6, in hybrid vehicle 5, at the start of vehicle travel (time t1), power storage device 10 is externally charged to the vicinity of SOC upper limit value Smax. When the ignition switch is turned on and the traveling of the hybrid vehicle 5 is disclosed, the EV mode is selected because the SOC estimation value (#SOC) is higher than the mode determination value Sth. The SOC control range at each timing is a range from a control lower limit value SOCl to a control upper limit value SOCu. An intermediate value between the control lower limit SOCl and the control upper limit SOCu is the control center value SOCr. As described above, when the SOC falls below the control range, charging of the power storage device 10 while the vehicle is traveling is required.
 EVモードでの走行によって、蓄電装置10のSOCは徐々に低下する。EVモードの間は、SOC制御範囲の制御中心値SOCrは、現時点のSOC推定値(♯SOC)に対応して設定される。すなわち、EVモードでは、SOCの低下に伴ってSOC制御範囲も低下することになる。この結果、EVモードの間は、蓄電装置10の充電を目的としてエンジン18が始動されることはない。 The SOC of the power storage device 10 gradually decreases due to running in the EV mode. During the EV mode, the control center value SOCr of the SOC control range is set corresponding to the current SOC estimated value (#SOC). That is, in the EV mode, the SOC control range also decreases as the SOC decreases. As a result, during the EV mode, engine 18 is not started for the purpose of charging power storage device 10.
 そして、SOC推定値(♯SOC)が、モード判定値Sthまで低下すると(時刻t2)、走行モードはEVモードからHVモードに移行する。HVモードに移行すると、制御中心値SOCrは、HVモード用の一定値に設定される。これにより、制御下限値SOClも一定に維持される。この結果、HVモードでは、SOCが低下すると、エンジン18(図1)が作動を開始して、モータジェネレータMG1による発電電力によって蓄電装置10が充電される。この結果、SOCは増加し始めて、SOC制御範囲内(SOCl~SOCu)に維持される。 When the estimated SOC value (#SOC) decreases to the mode determination value Sth (time t2), the traveling mode shifts from the EV mode to the HV mode. When shifting to the HV mode, the control center value SOCr is set to a constant value for the HV mode. Thereby, the control lower limit SOCl is also kept constant. As a result, in the HV mode, when the SOC decreases, engine 18 (FIG. 1) starts to operate, and power storage device 10 is charged with the electric power generated by motor generator MG1. As a result, the SOC starts to increase and is maintained within the SOC control range (SOCl to SOCu).
 なお、EVモード中(♯SOC>Sth)に選択スイッチ26の操作によって、強制的にHVモードが選択された場合には、その時点でのSOCを維持するように、蓄電装置10の充放電が制御される。すなわち、制御中心値SOCrを、選択スイッチ26の操作時におけるSOC推定値(♯SOC)に固定するように、SOC制御範囲が設定される。 When the HV mode is forcibly selected by operating the selection switch 26 during the EV mode (#SOC> Sth), the power storage device 10 is charged / discharged so as to maintain the SOC at that time. Be controlled. That is, the SOC control range is set such that control center value SOCr is fixed to the estimated SOC value (#SOC) when selector switch 26 is operated.
 そして、ハイブリッド車5の走行が終了すると、運転者がコネクタ部3(図1)をハイブリッド車5に連結することで、外部充電が開始される(時刻t3)。これにより、蓄電装置10のSOCは上昇する。 And when driving | running | working of the hybrid vehicle 5 is complete | finished, a driver | operator connects the connector part 3 (FIG. 1) to the hybrid vehicle 5, and external charging is started (time t3). As a result, the SOC of power storage device 10 increases.
 再び図4を参照して、走行モード選択部205は、状態推定部110によるSOC推定値(♯SOC)がモード判定値Sthより高い期間にはEVモードを選択する。一方、EVモードの実行中にSOC推定値がモード判定値Sthまで低下すると、走行モード選択部205は、走行モードをEVモードからHVモードに切換える。ただし、走行モード選択部205は、選択スイッチ26がユーザによって操作されているときは、ユーザ操作に従ってHVモードまたはEVモードを強制的に選択する。走行モード選択部205は、EVモードおよびHVモードのいずれが選択されているかを示す走行モード信号MDを出力する。 Referring to FIG. 4 again, traveling mode selection unit 205 selects the EV mode during a period in which the SOC estimation value (#SOC) by state estimation unit 110 is higher than mode determination value Sth. On the other hand, when the estimated SOC value decreases to the mode determination value Sth during execution of the EV mode, traveling mode selection unit 205 switches the traveling mode from the EV mode to the HV mode. However, when the selection switch 26 is operated by the user, the traveling mode selection unit 205 forcibly selects the HV mode or the EV mode according to the user operation. The travel mode selection unit 205 outputs a travel mode signal MD indicating which one of the EV mode and the HV mode is selected.
 充放電制御部150は、蓄電装置10の状態に基づいて、入力電力上限値Winおよび出力電力上限値Woutを設定する。一般的な充放電制御として、SOC推定値(♯SOC)が低下すると出力電力上限値Woutがデフォルト値よりも制限される一方で、SOC推定値(♯SOC)が上昇すると入力電力上限値Winがデフォルト値よりも制限される。また、バッテリ温度Tbが低温あるいは高温となると、常温時と比較して、入力電力上限値Winおよび出力電力上限値Woutが抑制される。 The charge / discharge control unit 150 sets the input power upper limit value Win and the output power upper limit value Wout based on the state of the power storage device 10. As a general charge / discharge control, when the SOC estimated value (#SOC) decreases, the output power upper limit value Wout is limited from the default value, whereas when the SOC estimated value (#SOC) increases, the input power upper limit value Win becomes smaller. More limited than the default value. Further, when the battery temperature Tb is low or high, the input power upper limit value Win and the output power upper limit value Wout are suppressed as compared to the normal temperature.
 さらに、充放電制御部150は、電流負荷推定部120による電流負荷パラメータMPをさらに反映して、入力電力上限値Winおよび出力電力上限値Woutを設定する。たとえば、充放電制御部150は、電流負荷パラメータMPが判定値(閾値)Mpより小さいときは、電流負荷(電流による熱負荷)の面からは出力電力上限値Woutを制限しないが、電流負荷パラメータMPが判定値Mpを超えると、出力電力上限値Woutを制限する。 Furthermore, the charge / discharge control unit 150 further sets the input power upper limit value Win and the output power upper limit value Wout, further reflecting the current load parameter MP by the current load estimation unit 120. For example, when the current load parameter MP is smaller than the determination value (threshold value) Mp, the charge / discharge control unit 150 does not limit the output power upper limit value Wout from the viewpoint of the current load (thermal load due to current). When MP exceeds determination value Mp, output power upper limit Wout is limited.
 電流負荷パラメータMPを算出するための式(1)から理解されるように、バッテリ電流Ibの低下が電流負荷パラメータMPに反映されるまでには、一定の時間遅れを要する。したがって。電流負荷パラメータMPが判定値Mpを一旦超えてしまうと、蓄電装置10からの出力電力制限によりバッテリ電流Ibが減少しても、電流負荷パラメータMPが低下するまでには、一定の時間を要する。そして、この間、出力電力上限値Woutの制限が継続される。 As is understood from the equation (1) for calculating the current load parameter MP, a certain time delay is required until the decrease in the battery current Ib is reflected in the current load parameter MP. Therefore. Once the current load parameter MP exceeds the determination value Mp, a certain time is required until the current load parameter MP decreases even if the battery current Ib decreases due to output power limitation from the power storage device 10. During this time, the output power upper limit value Wout is continuously limited.
 なお、入力電力上限値Winおよび出力電力上限値Woutの設定に、蓄電装置10のSOC、バッテリ温度Tbおよびバッテリ電流Ib(電流負荷パラメータMP)の全部を用いることは必須ではない。充放電制御部150は、蓄電装置10のSOCと、電流負荷パラメータMPに反映されるバッテリ電流Ibとの少なくとも一方に基づいて、入力電力上限値Winおよび出力電力上限値Woutを可変に設定するように構成される。 Note that it is not essential to use all of the SOC of the power storage device 10, the battery temperature Tb, and the battery current Ib (current load parameter MP) for setting the input power upper limit value Win and the output power upper limit value Wout. Charging / discharging control unit 150 variably sets input power upper limit value Win and output power upper limit value Wout based on at least one of SOC of power storage device 10 and battery current Ib reflected in current load parameter MP. Configured.
 また、充放電制御部150は、車両走行中における蓄電装置10の充電要否を判定する。上述のように、EVモードでは、蓄電装置10の充電要求は発生されない。HVモードでは、SOC推定値(♯SOC)とSOC制御範囲内(SOCl~SOCu)との関係に応じて、蓄電装置10の充電要求が発生される。 Further, the charge / discharge control unit 150 determines whether or not the power storage device 10 needs to be charged while the vehicle is traveling. As described above, in the EV mode, a charge request for the power storage device 10 is not generated. In the HV mode, a charge request for power storage device 10 is generated according to the relationship between the estimated SOC value (#SOC) and the SOC control range (SOCl to SOCu).
 モータ走行上限車速設定部210は、走行モード信号MDと、蓄電装置10の電流負荷パラメータMPおよびSOC推定値(♯SOC)とに基づいて、モータジェネレータMG2の出力のみによるモータ走行における上限車速VMmaxを設定する。上限車速VMmaxの設定の詳細については、後程説明する。 Based on travel mode signal MD, current load parameter MP of power storage device 10 and estimated SOC value (#SOC), motor travel upper limit vehicle speed setting unit 210 sets upper limit vehicle speed VMmax in motor travel based only on the output of motor generator MG2. Set. Details of the setting of the upper limit vehicle speed VMmax will be described later.
 走行制御部200は、ハイブリッド車5の車両状態およびドライバ操作に応じて、ハイブリッド車5全体で必要な車両駆動力や車両制動力を算出する。ドライバ操作には、アクセルペダル(図示せず)の踏込み量、シフトレバー(図示せず)のポジション、ブレーキペダル(図示せず)の踏込み量等が含まれる。 The traveling control unit 200 calculates a vehicle driving force and a vehicle braking force necessary for the entire hybrid vehicle 5 according to a vehicle state of the hybrid vehicle 5 and a driver operation. The driver operation includes an amount of depression of an accelerator pedal (not shown), a position of a shift lever (not shown), an amount of depression of a brake pedal (not shown), and the like.
 そして、走行制御部200は、要求された車両駆動力あるいは車両制動力を実現するように、モータジェネレータMG1,MG2およびエンジン18の間での出力配分を制御する。この出力配分制御に従って、モータジェネレータMG1,MG2への出力要求およびエンジン18への出力要求が決定される。出力配分制御の一環として、モータ走行およびエンジン走行のいずれかが選択されることになる。さらに、モータジェネレータMG1,MG2への出力要求は、蓄電装置10の充放電可能な電力範囲内(Win~Wout)で蓄電装置10の充放電が実行されることがないように制限した上で設定される。すなわち、蓄電装置10の出力電力が確保できないときには、モータジェネレータMG2による出力が制限されることになる。 The traveling control unit 200 controls output distribution between the motor generators MG1 and MG2 and the engine 18 so as to realize the requested vehicle driving force or vehicle braking force. According to this output distribution control, an output request to motor generators MG1 and MG2 and an output request to engine 18 are determined. As part of the output distribution control, either motor traveling or engine traveling is selected. Furthermore, the output request to motor generators MG1 and MG2 is set after restricting charging / discharging of power storage device 10 within a power range (Win to Wout) where power storage device 10 can be charged / discharged. Is done. That is, when the output power of power storage device 10 cannot be secured, the output from motor generator MG2 is limited.
 配分部250は、走行制御部200によって設定されたモータジェネレータMG1,MG2への出力要求に応じて、モータジェネレータMG1,MG2のトルクや回転速度を演算する。そしてトルクや回転速度についての制御指令をインバータ制御部260へ出力すると同時に、直流電圧Vhの制御指令値をコンバータ制御部270へ出力する。 The distribution unit 250 calculates the torque and rotation speed of the motor generators MG1 and MG2 in response to the output request to the motor generators MG1 and MG2 set by the travel control unit 200. A control command for torque and rotation speed is output to inverter control unit 260, and at the same time, a control command value for DC voltage Vh is output to converter control unit 270.
 一方、配分部250は、走行制御部200によって決定されたエンジンパワーおよびエンジン目標回転速度を示すエンジン制御指示を生成する。このエンジン制御指示に従って、図示しないエンジン18の燃料噴射、点火時期、バルブタイミング等が制御される。 Meanwhile, the distribution unit 250 generates an engine control instruction indicating the engine power and the engine target rotational speed determined by the travel control unit 200. In accordance with this engine control instruction, fuel injection, ignition timing, valve timing, etc. of the engine 18 (not shown) are controlled.
 インバータ制御部260は、配分部250からの制御指令に応じて、モータジェネレータMG1およびMG2を駆動するためのスイッチング指令PWM1およびPWM2を生成する。このスイッチング指令PWM1およびPWM2は、それぞれインバータ8-1および8-2へ出力される。 Inverter control unit 260 generates switching commands PWM1 and PWM2 for driving motor generators MG1 and MG2 in accordance with a control command from distribution unit 250. The switching commands PWM1 and PWM2 are output to inverters 8-1 and 8-2, respectively.
 コンバータ制御部270は、配分部250からの制御指令に従って直流電圧Vhが制御されるように、スイッチング指令PWCを生成する。このスイッチング指令PWCに従ったコンバータ6の電圧変換によって、蓄電装置10の充放電電力が制御されることになる。 Converter control unit 270 generates switching command PWC such that DC voltage Vh is controlled according to the control command from distribution unit 250. The charge / discharge power of power storage device 10 is controlled by voltage conversion of converter 6 in accordance with switching command PWC.
 このようにして、車両状態およびドライバ操作に応じて、エネルギ効率を高めたハイブリッド車5の走行制御が実現される。 In this way, traveling control of the hybrid vehicle 5 with improved energy efficiency is realized in accordance with the vehicle state and driver operation.
 図7を用いて、走行制御部200によるモータ走行およびハイブリッド走行の選択について詳細に説明する。 The selection of motor travel and hybrid travel by the travel control unit 200 will be described in detail with reference to FIG.
 図7を参照して、横軸はハイブリッド車5の車速Vを示し、縦軸は駆動トルクTを示す。車速Vおよび駆動トルクTによって、ハイブリッド車5の最大出力線300が定義される。 Referring to FIG. 7, the horizontal axis indicates the vehicle speed V of the hybrid vehicle 5, and the vertical axis indicates the drive torque T. The maximum output line 300 of the hybrid vehicle 5 is defined by the vehicle speed V and the drive torque T.
 最大出力線300は、T=Tmax(上限トルク)の直線、V=Vmax(上限車速)の直線、および、T<TmaxかつV<Vmaxの領域での曲線から構成される。最大出力線300の曲線部分は、上限出力パワーに対応する。 The maximum output line 300 includes a straight line T = Tmax (upper limit torque), a straight line V = Vmax (upper limit vehicle speed), and a curve in a region where T <Tmax and V <Vmax. The curved portion of the maximum output line 300 corresponds to the upper limit output power.
 HVモードおよびEVモードのそれぞれについて、モータ走行の最大出力線340および350が規定される。最大出力線340および350の各々は、最大出力線300と同様に、モータ走行での上限トルクTMmaxおよび上限車速VMmaxを規定する直線部分と、上限出力パワーを規定する曲線部分から構成される。 For each of the HV mode and the EV mode, maximum output lines 340 and 350 for motor travel are defined. Similarly to maximum output line 300, each of maximum output lines 340 and 350 includes a straight line portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax in motor travel, and a curve portion that defines upper limit output power.
 HVモードでは、ハイブリッド車5の動作点(車速,トルク)が、最大出力線340の内側であるときには、モータ走行が選択されて、モータジェネレータMGの出力のみによって車両駆動力が確保される。一方、ハイブリッド車5の動作点が最大出力線340の外側である場合には、エンジン18を始動したハイブリッド走行により車両駆動力が確保される。 In the HV mode, when the operating point (vehicle speed, torque) of the hybrid vehicle 5 is inside the maximum output line 340, the motor driving is selected, and the vehicle driving force is ensured only by the output of the motor generator MG. On the other hand, when the operating point of the hybrid vehicle 5 is outside the maximum output line 340, the vehicle driving force is ensured by the hybrid travel that starts the engine 18.
 SOCを維持するHVモードでは、エンジン高効率領域ではエンジン18を駆動させるために、モータ走行の領域は相対的に狭く設定される。これに対して、EVモードでは、モータ走行を積極的に選択するために、最大出力線350は、相対的に広く設定される。 In the HV mode in which the SOC is maintained, the motor travel region is set relatively narrow in order to drive the engine 18 in the engine high efficiency region. On the other hand, in the EV mode, the maximum output line 350 is set relatively wide in order to positively select motor travel.
 たとえば、HVモードでは、動作点302~306の各々において、ハイブリッド走行が選択される。一方、EVモードでは、動作点302では、モータ走行が選択される。ただし、EVモードにおいても、動作点302から出力トルクの要求が高まった動作点304では、最大出力線350の外側になるので、ハイブリッド走行が選択される。すなわち、エンジン18が始動される。 For example, in the HV mode, hybrid travel is selected at each of the operating points 302 to 306. On the other hand, in the EV mode, at the operating point 302, motor travel is selected. However, even in the EV mode, at the operating point 304 where the output torque demand has increased from the operating point 302, the hybrid vehicle is selected because it is outside the maximum output line 350. That is, the engine 18 is started.
 また、動作点302から、車速が上昇して動作点306に移行すると、V>VMmaxとなるので最大出力線350の外側となることから、ハイブリッド走行が選択される。すなわち、車速Vがモータ走行上限車速VMmaxを超えると、エンジン18の始動が指示されて、ハイブリッド走行が選択される。この結果、モータ走行上限車速VMmaxを超えた領域でのモータ走行が回避される。すなわち、モータジェネレータMG2の出力をさらに増加させたモータ走行の継続が禁止される。 Further, when the vehicle speed increases from the operating point 302 to the operating point 306, V> VMmax is satisfied, and the vehicle is outside the maximum output line 350, so that hybrid travel is selected. That is, when vehicle speed V exceeds motor travel upper limit vehicle speed VMmax, start of engine 18 is instructed and hybrid travel is selected. As a result, motor travel in a region exceeding the motor travel upper limit vehicle speed VMmax is avoided. That is, the continuation of the motor running with the output of motor generator MG2 further increased is prohibited.
 モータジェネレータMG1,MG2(回転電機)は、高回転速度領域では、鉄損が大きくなるため効率が低下する。また、高車速時には走行抵抗が高まるため、高負荷状態となり易い。このため、高車速でのモータ走行では、ハイブリッド車5のエネルギ効率(燃費)が悪化するとともに、同一出力を得るための電流、すなわちバッテリ電流Ibが増加する。このため、モータ走行上限車速VMmaxを設定することによって、高速領域での継続的なモータ走行を回避するように車両走行が制御される。 Motor generators MG1 and MG2 (rotary electric machines) have low efficiency because iron loss increases in the high rotation speed region. In addition, since the running resistance increases at high vehicle speeds, it is likely to be in a high load state. For this reason, in motor driving at a high vehicle speed, the energy efficiency (fuel consumption) of the hybrid vehicle 5 deteriorates, and the current for obtaining the same output, that is, the battery current Ib increases. Therefore, by setting the motor travel upper limit vehicle speed VMmax, the vehicle travel is controlled so as to avoid continuous motor travel in the high speed region.
 図8は、実施の形態1による電動車両におけるモータ走行上限車速の設定を説明する概念図である。 FIG. 8 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment.
 図8を参照して、EVモードでのモータ走行の最大出力線350は、上限トルクTMmaxおよび上限車速VMmaxを規定する直線部分と、T<TMmaxかつV<VMmaxの範囲で上限出力パワーを規定する曲線部分から構成される。そして、曲線部分は、蓄電装置10の出力電力上限値Woutに応じて変化する。詳細には、出力電力上限値Woutが制限されると、最大出力線350の内側の領域、すなわち、モータ走行が選択される領域が狭くなる。 Referring to FIG. 8, a maximum output line 350 for motor travel in the EV mode defines a linear portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax, and an upper limit output power in a range of T <TMmax and V <VMmax. Consists of curved parts. The curved portion changes according to output power upper limit value Wout of power storage device 10. Specifically, when the output power upper limit value Wout is limited, a region inside the maximum output line 350, that is, a region where motor travel is selected is narrowed.
 特に、電流負荷パラメータMPの増大によって出力電力上限値Woutが制限されると、SOCには余裕があるためEVモードが選択される一方で、エンジン18が頻繁に始動される可能性がある。これにより、ハイブリッド車5のエネルギ効率低下が懸念される。 Particularly, when the output power upper limit value Wout is limited due to an increase in the current load parameter MP, there is a possibility that the engine 18 is started frequently while the EV mode is selected because the SOC has a margin. Thereby, there is a concern about a decrease in energy efficiency of the hybrid vehicle 5.
 実施の形態1による電動車両(プラグインハイブリッド車)では、モータ走行上限車速設定部210によって、モータ走行上限車速VMmaxを、蓄電装置10の状態に応じて変化させる。これにより、出力電力上限値Woutが制限される頻度の低減を図る。 In the electric vehicle (plug-in hybrid vehicle) according to the first embodiment, the motor travel upper limit vehicle speed setting unit 210 changes the motor travel upper limit vehicle speed VMmax according to the state of the power storage device 10. As a result, the frequency with which the output power upper limit Wout is limited is reduced.
 図9は、電流負荷パラメータに対するモータ走行上限車速の設定を説明する概念図である。 FIG. 9 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed with respect to the current load parameter.
 図9を参照して、横軸ΔMPは、電流負荷パラメータMPについての出力電力上限値Woutの制限が開始される閾値Mtに対する差分である。すなわち、ΔMP=Mt-MPで示される。 Referring to FIG. 9, the horizontal axis ΔMP is a difference with respect to the threshold value Mt at which the limitation of the output power upper limit value Wout for the current load parameter MP is started. That is, ΔMP = Mt−MP.
 ΔMP>M1のとき、すなわち電流負荷パラメータMPが十分に小さいときには、上限車速VMmaxは、デフォルト値に設定される。一方、電流負荷パラメータMPが上昇して閾値Mtに近づいていくに従って、モータ走行上限車速VMmaxは段階的に下げられる。図9に対応するマップを予め作成することにより、電流負荷パラメータMPに対応して、モータ走行上限車速VMmaxを設定できる。あるいは、ΔMPの低下に対応して連続的にモータ走行上限車速VMmaxを低下させてもよい。 When ΔMP> M1, that is, when the current load parameter MP is sufficiently small, the upper limit vehicle speed VMmax is set to a default value. On the other hand, as the current load parameter MP increases and approaches the threshold value Mt, the motor travel upper limit vehicle speed VMmax is decreased stepwise. By creating a map corresponding to FIG. 9 in advance, the motor travel upper limit vehicle speed VMmax can be set corresponding to the current load parameter MP. Alternatively, the motor travel upper limit vehicle speed VMmax may be decreased continuously corresponding to the decrease in ΔMP.
 図10は、蓄電装置10のSOCに対するモータ走行上限車速の設定を説明する概念図である。 FIG. 10 is a conceptual diagram illustrating the setting of the motor traveling upper limit vehicle speed with respect to the SOC of the power storage device 10.
 図10を参照して、横軸は、状態推定部110によって算出されたSOC推定値(♯SOC)である。SOCが高い領域(♯SOC>S1)では、上限車速VMmaxはデフォルト値に設定される。一方で、♯SOCが判定値S1よりも低下すると、SOCの低下に対応して、モータ走行上限車速VMmaxは段階的に下げられる。図10に対応するマップを予め作成することにより、SOC推定値(♯SOC)に対応してモータ走行上限車速VMmaxを設定できる。なお、SOCの低下に対して、連続的にモータ走行上限車速VMmaxを低下させてもよい。 Referring to FIG. 10, the horizontal axis represents the estimated SOC value (#SOC) calculated by state estimation unit 110. In a region where SOC is high (#SOC> S1), upper limit vehicle speed VMmax is set to a default value. On the other hand, when #SOC is lower than determination value S1, motor traveling upper limit vehicle speed VMmax is decreased stepwise in response to the decrease in SOC. By creating a map corresponding to FIG. 10 in advance, motor traveling upper limit vehicle speed VMmax can be set corresponding to the estimated SOC value (#SOC). Note that the motor travel upper limit vehicle speed VMmax may be continuously decreased with respect to the decrease in the SOC.
 図11には、EVモードでの継続的なモータ走行の際のハイブリッド車5の車速制限の一例が示される。 FIG. 11 shows an example of the vehicle speed limit of the hybrid vehicle 5 during continuous motor travel in the EV mode.
 図11を参照して、モータ走行が継続されることによって、SOC推定値(♯SOC)は、時間経過と共に徐々に低下する。モータ走行に伴う蓄電装置10の継続的な放電により、バッテリ電流Ibに応じて電流負荷パラメータMPも徐々に上昇する。 Referring to FIG. 11, as the motor travel continues, the estimated SOC value (#SOC) gradually decreases with time. Due to the continuous discharge of the power storage device 10 as the motor travels, the current load parameter MP also gradually increases according to the battery current Ib.
 図9に示されたマップに従って、電流負荷パラメータMPに応じたモータ走行上限車速VMmax(1)が逐次設定される。同様に、図10に示されたマップに従って、SOC推定値(♯SOC)に応じたモータ走行上限車速VMmax(2)が逐次設定される。そして、各制御周期において、VMmax(1)およびVMmax(2)のうちの最小値が、モータ走行上限車速VMmaxに設定される。 The motor traveling upper limit vehicle speed VMmax (1) corresponding to the current load parameter MP is sequentially set according to the map shown in FIG. Similarly, motor traveling upper limit vehicle speed VMmax (2) corresponding to the estimated SOC value (#SOC) is sequentially set according to the map shown in FIG. In each control cycle, the minimum value of VMmax (1) and VMmax (2) is set to the motor travel upper limit vehicle speed VMmax.
 電流負荷パラメータMPの上昇に応じて、時刻t1,t3,t4,t5のそれぞれでVMmax(1)が低下する。一方、SOC推定値(♯SOC)の低下に応じて、時刻t2,t6のそれぞれでVMmax(2)が低下する。VMmax(1)またはVMmax(2)の低下によってモータ走行上限車速VMmaxが低下するので、ハイブリッド車5の車速も徐々に制限されて低下する。 The VMmax (1) decreases at each of the times t1, t3, t4, and t5 according to the increase in the current load parameter MP. On the other hand, VMmax (2) decreases at times t2 and t6 in accordance with the decrease in estimated SOC value (#SOC). Since the motor travel upper limit vehicle speed VMmax decreases due to the decrease in VMmax (1) or VMmax (2), the vehicle speed of the hybrid vehicle 5 is also gradually limited and decreases.
 そして、時刻t7で電流負荷パラメータMPが閾値Mtに達すると出力電力上限値Woutが引き下げられる。この結果、エンジン18が始動されて、モータ走行からハイブリッド走行へ移行する。ハイブリッド走行では、モータジェネレータMG2による出力が減少する。この結果、蓄電装置10からの出力電力およびバッテリ電流Ibも低下する。この結果、電流負荷パラメータMPが低下し始めることになる。 When the current load parameter MP reaches the threshold value Mt at time t7, the output power upper limit value Wout is lowered. As a result, the engine 18 is started and a transition is made from motor travel to hybrid travel. In hybrid travel, the output from motor generator MG2 decreases. As a result, the output power from the power storage device 10 and the battery current Ib also decrease. As a result, the current load parameter MP starts to decrease.
 なお、エンジン18の始動および停止が頻繁に繰返されることを防止するために、再びモータ走行へ移行するための判定には、ヒステリシスが設けられる。そして、電流負荷パラメータMPが十分低下して、出力電力上限値Woutの制限が解除されるか、ハイブリッド車5の車速および/または駆動トルクが低下するまで、ハイブリッド走行が選択される。 In order to prevent the engine 18 from starting and stopping frequently, a hysteresis is provided in the determination for shifting to the motor running again. Then, the hybrid travel is selected until the current load parameter MP is sufficiently decreased and the limitation of the output power upper limit value Wout is released or the vehicle speed and / or drive torque of the hybrid vehicle 5 is decreased.
 モータ走行上限車速VMmaxが固定される走行制御では、図11に示した例と比較して、早期に電流負荷パラメータMPが閾値Mtに達することが予測される。一旦、出力電力上限値Woutが制限されると、以降ではエンジン18の始動頻度が上昇する虞がある。すなわち、本実施の形態によるハイブリッド車5では、モータ走行上限車速VMmaxを蓄電装置10の状態に応じて変化(低下)させていくことにより、蓄電装置10からの出力電力を確保できる期間を長くできていることが理解される。 In the traveling control in which the motor traveling upper limit vehicle speed VMmax is fixed, it is predicted that the current load parameter MP reaches the threshold value Mt earlier than the example illustrated in FIG. Once the output power upper limit value Wout is limited, the starting frequency of the engine 18 may increase thereafter. That is, in hybrid vehicle 5 according to the present embodiment, by changing (decreasing) motor traveling upper limit vehicle speed VMmax according to the state of power storage device 10, the period during which output power from power storage device 10 can be secured can be extended. It is understood that
 図12は、本発明の実施の形態における電動車両(ハイブリッド車5)における走行制御の処理手順が示される。図12に示した各ステップの処理は、制御装置100が、予め記憶された所定プログラムを実行、あるいは、専用の電子回路を動作させることによって実現できる。図12に示した一連の制御処理は、一定の制御周期毎に繰返し実行される。 FIG. 12 shows a processing procedure of travel control in the electric vehicle (hybrid vehicle 5) according to the embodiment of the present invention. The processing of each step shown in FIG. 12 can be realized by the control device 100 executing a predetermined program stored in advance or operating a dedicated electronic circuit. The series of control processes shown in FIG. 12 are repeatedly executed at regular control cycles.
 図12を参照して、制御装置100は、ステップS100により、蓄電装置10のSOCを推定する。すなわち、ステップS100では、図4の状態推定部110と同様の機能により、SOC推定値(♯SOC)が算出される。これにより、制御装置100は、蓄電装置10の充電状態を取得する。 Referring to FIG. 12, control device 100 estimates the SOC of power storage device 10 in step S100. That is, in step S100, the estimated SOC value (#SOC) is calculated by the same function as that of state estimation unit 110 in FIG. Thereby, control device 100 acquires the state of charge of power storage device 10.
 制御装置100は、ステップS110では、バッテリ電流Ibを取得する。さらに、ステップS110では、上記(1)に従って、バッテリ電流Ibに基づく電流負荷パラメータMPが算出される。すなわち、ステップS110による処理は、図4の電流負荷推定部120の機能に対応する。 In step S110, the control device 100 acquires the battery current Ib. Further, in step S110, a current load parameter MP based on the battery current Ib is calculated according to the above (1). That is, the processing in step S110 corresponds to the function of the current load estimation unit 120 in FIG.
 制御装置100は、ステップS120により、蓄電装置10の入力電力上限値Winおよび出力電力上限値Woutを設定する。すなわち、ステップS120では、図4の充放電制御部150と同様の機能により、入力電力上限値Winおよび出力電力上限値Woutが可変に設定される。上述のように、電流負荷パラメータMPが閾値Mtを超えると、入力電力上限値Winおよび出力電力上限値Woutが制限される。さらに、制御装置100は、ステップS140により、蓄電装置10のSOCに主に基づいて、ハイブリッド車5の走行モードをHVモードおよびEVモードのいずれかに選択する。 Control device 100 sets input power upper limit value Win and output power upper limit value Wout of power storage device 10 in step S120. That is, in step S120, the input power upper limit value Win and the output power upper limit value Wout are variably set by the same function as the charge / discharge control unit 150 in FIG. As described above, when the current load parameter MP exceeds the threshold value Mt, the input power upper limit value Win and the output power upper limit value Wout are limited. Further, in step S140, control device 100 selects the travel mode of hybrid vehicle 5 as either the HV mode or the EV mode based mainly on the SOC of power storage device 10.
 制御装置100は、ステップS150により、ハイブリッド車5のモータ走行上限車速VMmaxを、蓄電装置10の状態に応じて設定する。 Control device 100 sets motor travel upper limit vehicle speed VMmax of hybrid vehicle 5 according to the state of power storage device 10 in step S150.
 図13は、図12のステップS150の処理を詳細に説明するフローチャートである。
 図13を参照して、制御装置100は、ステップS152では、走行モードがEVモードであるかどうかを判定する。EVモードのとき(S152のYES判定時)には、制御装置100は、ステップS154に処理を進める。ステップS154では、図9の特性に従って、電流負荷パラメータMPに応じてモータ走行上限車速VMmax(1)が設定される。さらに、制御装置100は、ステップS155では、図10の特性に従って、SOC推定値(♯SOC)に応じてモータ走行上限車速VMmax(2)を設定する。
FIG. 13 is a flowchart for explaining in detail the processing in step S150 of FIG.
Referring to FIG. 13, in step S152, control device 100 determines whether or not the traveling mode is the EV mode. When in the EV mode (YES in S152), control device 100 advances the process to step S154. In step S154, the motor travel upper limit vehicle speed VMmax (1) is set according to the current load parameter MP according to the characteristics of FIG. Further, in step S155, control device 100 sets motor travel upper limit vehicle speed VMmax (2) according to the estimated SOC value (#SOC) in accordance with the characteristics of FIG.
 そして、制御装置100は、ステップS156により、モータ走行上限車速VMmax(1)およびVMmax(2)のうちの最小値を、モータ走行上限車速VMmaxとして設定する。 Then, in step S156, control device 100 sets the minimum value of motor travel upper limit vehicle speed VMmax (1) and VMmax (2) as motor travel upper limit vehicle speed VMmax.
 一方で、HVモードのとき(S152のNO判定時)には、制御装置100は、ステップS158により、HVモード用のモータ走行上限車速VMmaxを設定する。上述のように、HVモードでは、蓄電装置10のSOCを一定に維持するように、すなわち積極的にバッテリ電力を用いることなく車両走行を行なう。したがって、一般的には、HVモードでのモータ走行上限車速VMmaxは、蓄電装置10の状態に対しては一定値に固定される。 On the other hand, when in the HV mode (when NO is determined in S152), control device 100 sets motor travel upper limit vehicle speed VMmax for HV mode in step S158. As described above, in the HV mode, the vehicle travels so as to keep the SOC of power storage device 10 constant, that is, without actively using battery power. Therefore, in general, motor travel upper limit vehicle speed VMmax in HV mode is fixed to a constant value with respect to the state of power storage device 10.
 再び図12を参照して、制御装置100は、ステップS160により、図4の走行制御部200と同様の機能により、モータジェネレータMG1,MG2およびエンジン18の間での出力配分を制御する。ステップS160での出力配分制御では、ステップS150で設定したモータ走行上限車速VMmaxを反映して、モータ走行の最大出力線350が設定される。そして、最大出力線340,350に従って、モータ走行およびエンジン走行の選択、すなわち、エンジン18の作動要否が判定される。さらに、モータジェネレータMG1,MG2への出力要求およびエンジン18への出力要求が決定される。これにより、モータ走行上限車速VMmaxを超えた領域でのモータ走行を回避するための、上述した走行制御が実現される。 Referring to FIG. 12 again, in step S160, control device 100 controls output distribution between motor generators MG1, MG2 and engine 18 by the same function as travel control unit 200 in FIG. In the output distribution control in step S160, the motor output maximum output line 350 is set reflecting the motor drive upper limit vehicle speed VMmax set in step S150. Then, according to the maximum output lines 340 and 350, selection of motor travel and engine travel, that is, whether or not the engine 18 is required to be operated is determined. Further, an output request to motor generators MG1 and MG2 and an output request to engine 18 are determined. Thus, the above-described travel control for avoiding motor travel in a region exceeding the motor travel upper limit vehicle speed VMmax is realized.
 制御装置100は、ステップS170では、ステップS160での出力配分制御に従う、エンジンの制御指令、MG1の制御指令およびMG2の制御指令に従って、エンジン18およびモータジェネレータMG1,MG2をそれぞれ制御する。 In step S170, control device 100 controls engine 18 and motor generators MG1 and MG2 in accordance with the engine control command, MG1 control command, and MG2 control command, respectively, according to the output distribution control in step S160.
 このように、実施の形態1による電動車両(ハイブリッド車5)では、蓄電装置10の電力を積極的に使用するEVモードにおいて、モータ走行の上限車速VMmaxを蓄電装置10の状態(SOCおよび電流負荷パラメータMP)に応じて可変に設定することができる。これにより、モータ走行上限車速VMmaxを固定する走行制御と比較して、SOCおよび/または電流負荷パラメータMPによる出力電力上限値Woutの制限を受けることなく走行できる期間を長く確保できる。 As described above, in the electric vehicle (hybrid vehicle 5) according to the first embodiment, in the EV mode in which the electric power of power storage device 10 is actively used, upper limit vehicle speed VMmax of motor travel is set to the state of power storage device 10 (SOC and current load). it can be variably set according to the parameter MP). This ensures a longer period during which the vehicle can travel without being limited by the output power upper limit value Wout by the SOC and / or the current load parameter MP, as compared with the travel control that fixes the motor travel upper limit vehicle speed VMmax.
 この結果、ドライバの加速要求に対してモータ走行で対応できる領域が相対的に広くなるので、エンジン18の始動を抑制してモータ走行を長期間適用できる。すなわち、EVモードにおけるエンジン18の動作頻度を減らすことができるので、エミッションの悪化を回避してエネルギ効率の高い走行を行なうことができる。 As a result, the area that can be handled by the motor running relative to the driver's acceleration request is relatively wide, so that the engine running can be suppressed and the motor running can be applied for a long time. That is, since the operation frequency of the engine 18 in the EV mode can be reduced, it is possible to avoid the deterioration of the emission and to travel with high energy efficiency.
 なお、本実施の形態では、モータ走行上限車速VMmaxは、蓄電装置10のSOCおよび電流負荷パラメータMPの両方を用いて設定する例を説明した。機器保護の観点から、出力電力上限値Woutの制限は、電流負荷パラメータMPによる制限の方が厳しくなる傾向にある。また、電流負荷パラメータMPによる出力制限が開始されると、バッテリ電流Ibが減少しても、出力制限が解除されるまでには一定の時間遅れが生じる。したがって、電流負荷パラメータMPのみに応じてモータ走行上限車速VMmaxを設定することも可能である。この場合には、図13のフローチャートにおいてステップS155の処理を省略するとともに、ステップS156においてVHmax=VHmax(1)と設定すればよい。 In the present embodiment, the motor travel upper limit vehicle speed VMmax has been described as being set using both the SOC of the power storage device 10 and the current load parameter MP. From the viewpoint of device protection, the limitation on the output power upper limit value Wout tends to be stricter due to the limitation by the current load parameter MP. In addition, when the output restriction based on the current load parameter MP is started, even if the battery current Ib decreases, a certain time delay occurs until the output restriction is released. Therefore, it is possible to set motor traveling upper limit vehicle speed VMmax only in accordance with current load parameter MP. In this case, the process of step S155 is omitted in the flowchart of FIG. 13, and VHmax = VHmax (1) may be set in step S156.
 但し、上述のようにSOCについても考慮してモータ走行上限車速VMmaxを設定することとすれば、出力電力上限値Woutが制限される場面をより少なくすることが期待される。すなわち、より確実に本実施の形態による効果を享受することができる。 However, if the motor travel upper limit vehicle speed VMmax is set in consideration of the SOC as described above, it is expected that the number of scenes where the output power upper limit value Wout is limited is reduced. That is, the effect of this embodiment can be enjoyed more reliably.
 図14には、実施の形態1による電動車両におけるモータ走行上限車速の好ましい設定例が示される。 FIG. 14 shows a preferable setting example of the motor traveling upper limit vehicle speed in the electric vehicle according to the first embodiment.
 図14を参照して、EVモードにおけるモータ走行上限車速VMmax(EV)と、HVモードにおけるモータ走行上限車速VMmax(HV)との関係は、図7とは逆転するように設定してもよい。 Referring to FIG. 14, the relationship between the motor travel upper limit vehicle speed VMmax (EV) in the EV mode and the motor travel upper limit vehicle speed VMmax (HV) in the HV mode may be set so as to be reversed from FIG.
 すなわち、蓄電装置10の状態に応じて可変に設定される、EVモードにおけるモータ走行上限車速VMmax(EV)は、HVモードにおけるモータ走行上限車速VMmax(HV)よりも低く設定することが好ましい。 That is, the motor travel upper limit vehicle speed VMmax (EV) in the EV mode, which is variably set according to the state of the power storage device 10, is preferably set lower than the motor travel upper limit vehicle speed VMmax (HV) in the HV mode.
 このようにすると、元々エンジン18の作動頻度が高いHVモードでは、エンジン効率が高い領域では、蓄電装置10を充電する機会が設けられるので、高車速領域までモータ走行を許容することで、ハイブリッド車5全体のエネルギ効率を高めることができる。 In this way, in the HV mode where the operating frequency of the engine 18 is originally high, an opportunity to charge the power storage device 10 is provided in a region where the engine efficiency is high. Therefore, by allowing the motor to travel to the high vehicle speed region, the hybrid vehicle 5 can increase the overall energy efficiency.
 一方で、SOCの回復が見込めないEVモードでは、モータ走行上限車速VMmaxを相対的に低く設定することで、出力電力上限値Woutが制限されるのを予防することを狙う。これにより、EVモードにおけるエンジン18の動作頻度を減らすことができるので、エミッションの低減や燃費向上といったEVモードのメリットを確実に享受することができる。 On the other hand, in the EV mode where recovery of the SOC cannot be expected, the motor traveling upper limit vehicle speed VMmax is set to be relatively low so as to prevent the output power upper limit value Wout from being limited. Thereby, since the operation frequency of the engine 18 in EV mode can be reduced, the merit of EV mode, such as emission reduction and fuel consumption improvement, can be enjoyed reliably.
 [実施の形態2]
 実施の形態2では、本発明の実施の形態による電動車両の他の例として電気自動車が示される。
[Embodiment 2]
In the second embodiment, an electric vehicle is shown as another example of the electric vehicle according to the embodiment of the present invention.
 図15は、本発明の実施の形態2による電動車両(電気自動車)5♯の概略構成を示す概略ブロック図である。 FIG. 15 is a schematic block diagram showing a schematic configuration of an electric vehicle (electric vehicle) 5 # according to the second embodiment of the present invention.
 図15を参照して、電気自動車5♯は、図1に示したハイブリッド車5の構成と比較して、エンジン18および動力分割機構22の配置が省略されるとともに、モータジェネレータMGおよびインバータ8が1個ずつ設けられる点が異なる。モータジェネレータMGの出力は駆動輪24Fの駆動に使用される。モータジェネレータMGと駆動輪24Fとの間に、図示しない減速機がさらに設けられてもよい。このように、図15に示した電気自動車5♯は、蓄電装置10からの電力を用いたモータ走行のみによって走行する。 Referring to FIG. 15, in the electric vehicle 5 #, the arrangement of the engine 18 and the power split mechanism 22 is omitted and the motor generator MG and the inverter 8 are compared with the configuration of the hybrid vehicle 5 shown in FIG. one by one is provided points. The output of motor generator MG is used to drive drive wheel 24F. A reduction gear (not shown) may be further provided between motor generator MG and drive wheel 24F. Thus, electric vehicle 5 # shown in FIG. 15 travels only by motor travel using the electric power from power storage device 10.
 図16には、電気自動車5♯の最大出力線300が示される。最大出力線300は、モータジェネレータMGの最大出力線と同一である。最大出力線300は、モータジェネレータMGの上限トルクTMmaxおよび上限車速VMmaxを規定する直線部分と、上限出力パワーを規定する曲線部分から構成される。 FIG. 16 shows the maximum output line 300 of the electric vehicle 5 #. Maximum output line 300 is the same as the maximum output line of motor generator MG. Maximum output line 300 includes a straight line portion that defines upper limit torque TMmax and upper limit vehicle speed VMmax of motor generator MG, and a curve portion that defines the upper limit output power.
 したがって、電気自動車5♯では、蓄電装置10の出力電力が制限、すなわち、出力電力上限値Woutが通常値よりも低下されると、車両駆動トルクの確保が困難になる。このため、ドライバの加速要求(アクセル操作)に応えた加速性能が低下して、ドライバビリティが低下する虞がある。 Therefore, in electric vehicle 5 #, when the output power of power storage device 10 is limited, that is, when output power upper limit value Wout is lower than the normal value, it becomes difficult to ensure vehicle driving torque. For this reason, the acceleration performance in response to the driver's acceleration request (accelerator operation) may be reduced, and drivability may be reduced.
 このため、電気自動車5♯では、実施の形態1におけるモータ走行上限車速VMmaxと同様にして、蓄電装置10の状態(SOCおよび電流負荷パラメータMP)に応じて、上限車速Vmaxを変化させる。すなわち、図4に示したモータ走行上限車速設定部210によって、電気自動車5♯の上限車速Vmax(=VMmax)が可変に設定される。 Therefore, in electric vehicle 5 #, similarly to motor traveling upper limit vehicle speed VMmax in the first embodiment, upper limit vehicle speed Vmax is changed according to the state of power storage device 10 (SOC and current load parameter MP). That is, upper limit vehicle speed Vmax (= VMmax) of electric vehicle 5 # is variably set by motor travel upper limit vehicle speed setting unit 210 shown in FIG.
 電気自動車5♯における上限車速Vmax(=VMmax)は、速度リミッタとして作用する。すなわち、車速V>Vmaxのときは、モータジェネレータMG2の出力をさらに増加した車両走行の継続が禁止される。好ましくは、モータジェネレータMGによる車両駆動力の出力が禁止される。これにより、モータ走行上限車速VMmaxを超えた領域でのモータ走行を回避することができる。 The upper limit vehicle speed Vmax (= VMmax) in the electric vehicle 5 # acts as a speed limiter. That is, when the vehicle speed V> Vmax, the continuation of the vehicle traveling with the output of motor generator MG2 further increased is prohibited. Preferably, output of vehicle driving force by motor generator MG is prohibited. As a result, motor traveling in a region exceeding the motor traveling upper limit vehicle speed VMmax can be avoided.
 この結果、車速V>Vmaxの領域では、蓄電装置10からの出力電力およびバッテリ電流が絞られる。したがって、電流負荷パラメータMPを減少させることができる。すなわち、蓄電装置10の負荷が高まったときには、速度リミッタをかける対応によって、蓄電装置10の負荷を軽減することにより、出力電力上限値Woutが制限されるのを回避できる。この結果、上限車速Vmax(=VMmax)を固定する走行制御と比較して、出力電力上限値Woutの制限を受けることなく走行できる期間を長く確保することが期待できる。 As a result, in the region where the vehicle speed V> Vmax, the output power and the battery current from the power storage device 10 are reduced. Therefore, it is possible to reduce the current load parameter MP. That is, when the load on power storage device 10 increases, it is possible to avoid limiting output power upper limit value Wout by reducing the load on power storage device 10 in response to applying a speed limiter. As a result, it can be expected to ensure a longer period during which the vehicle can travel without being limited by the output power upper limit value Wout, as compared with the travel control that fixes the upper limit vehicle speed Vmax (= VMmax).
 実施の形態2においても、電気自動車5♯の上限車速Vmax(=VMmax)は、電流負荷パラメータMPのみに応じてモータ走行上限車速VMmaxを設定することも可能である。 Also in the second embodiment, the upper limit vehicle speed Vmax (= VMmax) of the electric vehicle 5 # can be set to the motor travel upper limit vehicle speed VMmax according to only the current load parameter MP.
 また、実施の形態2の電動車両(電気自動車5♯)の走行制御は、図4において、本質的に不要となる、走行モード選択部205および配分部250を削除した構成で実現できる。実施の形態2の電動車両(電気自動車5♯)では、走行制御部200は、モータ走行上限車速設定部210によって設定された上限車速VMmaxを反映した最大出力線300に従って、モータジェネレータMGの制御指令を生成する。この際に、蓄電装置10の入出力電力が、入力電力上限値Win~出力電力上限値Woutの範囲内に収まるように、制御指令は生成される。 Further, the traveling control of the electric vehicle (electric vehicle 5 #) of the second embodiment can be realized with a configuration in which the traveling mode selection unit 205 and the distribution unit 250 that are essentially unnecessary in FIG. 4 are deleted. In electrically powered vehicle (electric vehicle 5 #) of the second embodiment, traveling control unit 200 follows control command for motor generator MG in accordance with maximum output line 300 reflecting upper limit vehicle speed VMmax set by motor traveling upper limit vehicle speed setting unit 210. to generate. At this time, the control command is generated so that the input / output power of power storage device 10 falls within the range of input power upper limit value Win to output power upper limit value Wout.
 さらに、インバータ制御部260は、モータジェネレータMGの制御指令に従って、インバータ8のスイッチング指令を生成する。コンバータ制御部270は、直流電圧Vhを電圧指令値に従って制御することを通じて、蓄電装置10の充放電電力を制御するように、コンバータ6のスイッチング指令を生成する。 Furthermore, inverter control unit 260 generates a switching command for inverter 8 in accordance with the control command for motor generator MG. Converter control unit 270 generates a switching command for converter 6 so as to control charge / discharge power of power storage device 10 by controlling DC voltage Vh according to the voltage command value.
 あるいは、実施の形態2の電動車両(電気自動車5♯)の走行制御は、図12のフローチャートにおいて、ステップS140の処理を省略するとともに、ステップS150により、モータ走行上限車速VMmaxに従って電気自動車5♯の上限車速Vmaxを設定することで実現できる。さらに、ステップS160では、上限車速VMmaxを反映した最大出力線300に従って、モータジェネレータMGの制御指令を生成するとともに、ステップS170では、この制御指令に従ってモータジェネレータMGを制御することができる。 Alternatively, in the travel control of the electric vehicle (electric vehicle 5 #) of the second embodiment, the process of step S140 is omitted in the flowchart of FIG. 12, and the electric vehicle 5 # is controlled according to the motor travel upper limit vehicle speed VMmax by step S150. This can be realized by setting the upper limit vehicle speed Vmax. Furthermore, in step S160, a control command for motor generator MG is generated according to maximum output line 300 reflecting upper limit vehicle speed VMmax. In step S170, motor generator MG can be controlled in accordance with this control command.
 なお、電力制御ユニット20の構成は、図1,15で例示した構成に限定されるものではなく、蓄電装置10の電力によってモータジェネレータMG,MG2を駆動するための構成であれば、任意の構成を適用可能である点について確認的に記載する。また、ハイブリッド車両5および電気自動車5♯の駆動系の構成についても、図1および図15の例示に限定されないことを確認的に記載する。同様に、ハイブリッド車両5では、エンジン出力によって蓄電装置の充電電力を発生するように構成されていれば、図1のモータジェンレータMG1とは異なる「発電機構」を適用することも可能である。 The configuration of power control unit 20 is not limited to the configuration illustrated in FIGS. 1 and 15, and may be any configuration as long as it is a configuration for driving motor generators MG and MG2 by the power of power storage device 10. check to describe that it is applicable to. Further, it will be described in a definite manner that the configuration of the drive systems of hybrid vehicle 5 and electric vehicle 5 # is not limited to the examples shown in FIGS. Similarly, if the hybrid vehicle 5 is configured to generate the charging power of the power storage device by the engine output, a “power generation mechanism” different from the motor generator MG1 of FIG. 1 can be applied.
 また、電流負荷パラメータMPに代えて、バッテリ電流Ibが反映された他の任意のパラメータを適用することも可能である。要は、出力電力上限値Woutの制限に反映される、蓄電装置10に係る状態量またはパラメータであれば、電流負荷パラメータMPに代えて用いることが可能である。このようなパラメータに応じて、回転電機(モータジェネレータMG,MG2)のみを用いた車両走行での上限車速を変化させることによって、上述した電動車両の走行制御と同様に、出力電力上限値Woutが制限される期間を減少させることが可能だからである。 In addition, any other parameter reflecting the battery current Ib can be applied instead of the current load parameter MP. In short, any state quantity or parameter relating to the power storage device 10 that is reflected in the limitation of the output power upper limit value Wout can be used instead of the current load parameter MP. By changing the upper limit vehicle speed during vehicle travel using only the rotating electrical machine (motor generators MG, MG2) in accordance with such parameters, the output power upper limit value Wout is similar to the travel control of the electric vehicle described above. This is because the limited period can be reduced.
 また、本実施の形態によるモータ走行上限車速VMmaxの可変設定が適用される電動車両において、モータ走行上限車速VMmaxを超えた領域でのモータ走行を回避することが可能であれば、実施の形態1および2で例示した走行制御とは異なる走行制御を適用できる点についても、確認的に記載する。 Further, in the electric vehicle to which the variable setting of the motor travel upper limit vehicle speed VMmax according to the present embodiment is applied, if it is possible to avoid motor travel in a region exceeding the motor travel upper limit vehicle speed VMmax, the first embodiment. Also, the fact that the travel control different from the travel control exemplified in 2 and 2 can be applied will be described in a confirming manner.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、車載蓄電装置の電力を使用した回転電機の出力のみで走行することが可能な電動車両に適用することができる。 The present invention can be applied to an electric vehicle that can travel only with the output of a rotating electrical machine that uses the electric power of the in-vehicle power storage device.
 3 コネクタ部,5 ハイブリッド車,5♯ 電気自動車,6 コンバータ,7 システムメインリレー,8 インバータ,10 蓄電装置,11 監視ユニット,12 温度センサ,13,16 電圧センサ,14 電流センサ,18 エンジン,20 電力制御ユニット,22 動力分割機構,24F 駆動輪,26 選択スイッチ,30 外部充電部,30a 電流制御部,30b 電圧変換部,35 コネクタ受入部,35a 連結検出センサ,95 減速機,100 制御装置(ECU),110 状態推定部,120 電流負荷推定部,150 充放電制御部,200 走行制御部,202 サンギヤ,204 ピニオンギヤ,205 走行モード選択部,206 キャリア,208 リングギヤ,210 モータ走行上限車速設定部,250 配分部,260 インバータ制御部,270 コンバータ制御部,300 最大出力線(車両),302,304,306 動作点,340 最大出力線(モータ走行/HVモード),350 最大出力線(モータ走行/EVモード),C 平滑コンデンサ,CNL 負充電線,CON 連結信号,CPL 正充電線,Ib バッテリ電流,K なまし係数,MD 走行モード信号,MG,MG2 モータジェネレータ(回転電機),MG1 モータジェネレータ(発電機構),MP 電流負荷パラメータ,Mt 閾値、,PWC,PWM1,PWM2 スイッチング指令,SE リレー制御信号,SOCl~SOCu SOC制御範囲,SOCr 制御中心値,Smax SOC上限値,Smin SOC下限値,Sth モード判定値,T 車両駆動トルク,TMmax 上限トルク(モータ走行),Tb バッテリ温度,V 車速,VMmax モータ走行上限車速,Vb バッテリ電圧,Vh システム電圧,Vmax 上限車速(車両),Win 入力電力上限値,Wout 出力電力上限値。 3 connector part, 5 hybrid vehicle, 5 # electric vehicle, 6 converter, 7 system main relay, 8 inverter, 10 power storage device, 11 monitoring unit, 12 temperature sensor, 13, 16 voltage sensor, 14 current sensor, 18 engine, 20 Power control unit, 22 power split mechanism, 24F drive wheel, 26 selection switch, 30 external charging unit, 30a current control unit, 30b voltage conversion unit, 35 connector receiving unit, 35a connection detection sensor, 95 speed reducer, 100 control device ( ECU), 110 state estimation unit, 120 current load estimation unit, 150 charge / discharge control unit, 200 travel control unit, 202 sun gear, 204 pinion gear, 205 travel mode selection unit, 206 carrier, 208 ring gear, 210 motor travel upper limit car Setting unit, 250 distribution unit, 260 inverter control unit, 270 converter control unit, 300 maximum output line (vehicle), 302, 304, 306 operating point, 340 maximum output line (motor running / HV mode), 350 maximum output line ( Motor running / EV mode), C smoothing capacitor, CNL negative charging line, CON connection signal, CPL positive charging line, Ib battery current, K annealing factor, MD running mode signal, MG, MG2 motor generator (rotary electric machine), MG1 Motor generator (power generation mechanism), MP current load parameter, Mt threshold, PWC, PWM1, PWM2 switching command, SE relay control signal, SOCl to SOCu SOC control range, SOCr control center value, Smax SOC upper limit value, Smin SOC lower limit value , St Mode judgment value, T vehicle drive torque, TMmax upper limit torque (motor driving), Tb battery temperature, V vehicle speed, VMmax motor driving upper limit vehicle speed, Vb battery voltage, Vh system voltage, Vmax upper limit vehicle speed (vehicle), Win input power upper limit value , Wout Output power upper limit value.

Claims (16)

  1.  車両駆動力を発生するための回転電機(MG2,MG)と、
     車両に搭載された蓄電装置(10)と、
     前記蓄電装置および前記回転電機の間で電力変換を行なうための電力制御ユニット(20)と、
     車両走行を制御するための制御装置(100)とを備え、
     前記制御装置は、
     前記蓄電装置の充電状態(SOC)および前記蓄電装置の出力電流(Ib)の少なくとも一方に基づいて、前記回転電機の出力のみによる車両走行の上限車速(VMmax)を可変に設定するための上限車速設定部(210)を含む、電動車両。
    A rotating electrical machine (MG2, MG) for generating vehicle driving force;
    A power storage device (10) mounted on the vehicle;
    A power control unit (20) for performing power conversion between the power storage device and the rotating electrical machine;
    A control device (100) for controlling vehicle travel,
    The controller is
    An upper limit vehicle speed for variably setting a vehicle upper limit vehicle speed (VMmax) based only on the output of the rotating electrical machine based on at least one of the state of charge (SOC) of the power storage device and the output current (Ib) of the power storage device An electric vehicle including a setting unit (210).
  2.  前記上限車速設定部(210)は、前記充電状態を示すSOCに基づいて前記上限車速(VMmax)を可変に設定する場合には、前記SOCが低いときには、前記SOCが高いときに比べて前記上限車速を低く設定し、前記出力電流(Ib)に基づいて前記上限車速(VMmax)を可変に設定する場合には、前記出力電流が大きいときには、前記出力電流が小さいときに比べて前記上限車速を低く設定する、請求の範囲第1項に記載の電動車両。 When the upper limit vehicle speed (VMmax) is variably set based on the SOC indicating the state of charge, the upper limit vehicle speed setting unit (210) is configured such that when the SOC is low, the upper limit vehicle speed setting unit (210) is higher than when the SOC is high. When the vehicle speed is set low and the upper limit vehicle speed (VMmax) is variably set based on the output current (Ib), the upper limit vehicle speed is set when the output current is large compared to when the output current is small. The electric vehicle according to claim 1, wherein the electric vehicle is set low.
  3.  前記制御装置は、
     車速(V)が前記上限車速を超えたときには、前記回転電機の出力をさらに増加した、前記回転電機の出力のみによる車両走行の継続を禁止するように車両走行を制御するための走行制御部(200)をさらに含む、請求の範囲第1項または第2項に記載の電動車両。
    The controller is
    When the vehicle speed (V) exceeds the upper limit vehicle speed, a travel control unit for controlling the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine further increasing the output of the rotating electrical machine ( 200). The electric vehicle according to claim 1 or 2, further comprising: 200).
  4.  前記制御装置(100)は、
     前記蓄電装置(10)に配置されたセンサ(12-14)の出力に基づいて、前記蓄電装置のSOC推定値(♯SOC)を算出するための充電状態推定部(110)と、
     前記蓄電装置の前記出力電流(Ib)に基づいて、前記出力電流の通過による機器の熱負荷を示す電流負荷パラメータ(MP)を算出するための電流負荷推定部(120)と、
     算出された前記SOC推定値および前記電流負荷パラメータに基づいて、前記蓄電装置の出力電力上限値(Wout)を可変に設定するための充放電制御部(150)とをさらに含み、
     前記上限車速設定部(210)は、算出された前記電流負荷パラメータに少なくとも基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第1項に記載の電動車両。
    The control device (100)
    A charge state estimation unit (110) for calculating an estimated SOC value (#SOC) of the power storage device based on an output of a sensor (12-14) disposed in the power storage device (10);
    A current load estimation unit (120) for calculating a current load parameter (MP) indicating a thermal load of the device due to the passage of the output current, based on the output current (Ib) of the power storage device;
    A charge / discharge control unit (150) for variably setting an output power upper limit value (Wout) of the power storage device based on the calculated SOC estimated value and the current load parameter;
    The electric vehicle according to claim 1, wherein the upper limit vehicle speed setting unit (210) variably sets the upper limit vehicle speed (VMmax) based on at least the calculated current load parameter.
  5.  前記上限車速設定部(210)は、前記電流負荷パラメータ(MP)に応じて可変に設定される第1の上限速度(VMmax(1))および、前記SOC推定値(♯SOC)に応じて可変に設定される第2の上限速度(VMmax(2))の最小値に従って、前記上限車速(VMmax)を設定する、請求の範囲第4項に記載の電動車両。 The upper limit vehicle speed setting unit (210) is variable according to the first upper limit speed (VMmax (1)) set variably according to the current load parameter (MP) and the estimated SOC value (#SOC). The electric vehicle according to claim 4, wherein the upper limit vehicle speed (VMmax) is set in accordance with a minimum value of a second upper limit speed (VMmax (2)) set to.
  6.  車両駆動力を発生するための内燃機関(18)と、
     前記内燃機関の出力によって前記蓄電装置(10)の充電電力を発生するように構成された発電機構(MG1)と、
     車両外部の電源によって前記蓄電装置を充電するための外部充電部(30)とをさらに備え、
     前記制御装置(100)は、
     前記蓄電装置の充電状態に応じて、前記蓄電装置のSOCにかかわらず主に前記回転電機(MG2)の出力によって走行するように前記内燃機関および前記回転電機を使用する第1の走行モードと、前記蓄電装置のSOCを所定の制御範囲内に維持して走行するように前記内燃機関および前記回転電機を使用する第2の走行モードとの一方を選択するための走行モード選択部(205)と、
     前記第1の走行モードでは、前記電動車両のトルクおよび車速が第1の領域(350)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第1の領域の外部であるときは前記回転電機および前記内燃機関の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御するための走行制御部(200)とをさらに含み、
     前記第1の領域は、前記上限車速設定部(210)による前記上限車速(VMmax)を反映して設定される、請求の範囲第1項、第2項、第4項および第5項のいずれか1項に記載の電動車両。
    An internal combustion engine (18) for generating vehicle driving force;
    A power generation mechanism (MG1) configured to generate charging power for the power storage device (10) by the output of the internal combustion engine;
    An external charging unit (30) for charging the power storage device with a power source external to the vehicle;
    The control device (100)
    A first traveling mode in which the internal combustion engine and the rotating electrical machine are used to travel mainly by the output of the rotating electrical machine (MG2) regardless of the SOC of the power storage device, depending on the state of charge of the power storage device; A travel mode selection unit (205) for selecting one of the second travel mode using the internal combustion engine and the rotating electrical machine so as to travel while maintaining the SOC of the power storage device within a predetermined control range; ,
    In the first traveling mode, when the torque and the vehicle speed of the electric vehicle are within the first region (350), the vehicle travels only with the output of the rotating electrical machine (MG2), while in the first region, A travel control unit (200) for controlling the rotating electrical machine and the internal combustion engine so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine when external,
    The first region is set to reflect the upper limit vehicle speed (VMmax) by the upper limit vehicle speed setting unit (210), and any one of claims 1, 2, 4 and 5 The electric vehicle according to claim 1.
  7.  前記制御装置(100)は、前記第2の走行モードでは、前記電動車両のトルクおよび車速が第2の領域(340)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第2の領域の外部であるときは前記回転電機および前記内燃機関(18)の両方の出力によって走行するとともに、前記蓄電装置のSOCが前記制御範囲よりも低下したときには前記発電機構によって前記蓄電装置の充電電力を発生するように、前記回転電機および前記内燃機関を制御し、
     前記第2の領域の上限車速は、前記蓄電装置の状態とは無関係に設定される、請求の範囲第6項に記載の電動車両。
    In the second travel mode, the control device (100) travels by the output of only the rotating electrical machine (MG2) when the torque and vehicle speed of the electric vehicle are within the second region (340). Thus, when it is outside the second region, it travels by the outputs of both the rotating electrical machine and the internal combustion engine (18), and when the SOC of the power storage device falls below the control range, the power generation mechanism Controlling the rotating electrical machine and the internal combustion engine to generate charging power for the power storage device;
    The electric vehicle according to claim 6, wherein an upper limit vehicle speed of said second region is set regardless of a state of said power storage device.
  8.  前記電動車両は、前記回転電機(MG)のみを前記車両駆動力の発生源とする電気自動車(5♯)であり、
     前記制御装置(100)は、
     車速(V)が、前記上限車速設定部(210)による前記上限車速(VMmax)を超えている間、前記回転電機による車両駆動力の出力を禁止するための走行制御部(200)をさらに含む、請求の範囲第1項、第2項、第4項および第5項のいずれか1項に記載の電動車両。
    The electric vehicle is an electric vehicle (5 #) that uses only the rotating electrical machine (MG) as a generation source of the vehicle driving force,
    The control device (100)
    The vehicle further includes a travel control unit (200) for prohibiting the output of the vehicle driving force by the rotating electrical machine while the vehicle speed (V) exceeds the upper limit vehicle speed (VMmax) by the upper limit vehicle speed setting unit (210). The electric vehicle according to any one of claims 1, 2, 4, and 5.
  9.  車両駆動力を発生するための回転電機(MG2,MG)と、蓄電装置(10)と、前記蓄電装置および前記回転電機の間で電力変換を行なうための電力制御ユニット(20)とを備えた電動車両(5,5♯)の制御方法であって、
     前記蓄電装置の充電状態および前記蓄電装置の出力電流(Ib)を取得するステップ(S100,S110)と、
     前記充電状態および前記出力電流の少なくとも一方に基づいて、前記回転電機の出力のみによる車両走行の上限車速(VMmax)を可変に設定するステップ(S150)とを備える、電動車両の制御方法。
    A rotating electrical machine (MG2, MG) for generating vehicle driving force, a power storage device (10), and a power control unit (20) for performing power conversion between the power storage device and the rotating electrical machine. A method for controlling an electric vehicle (5, 5 #),
    Acquiring the state of charge of the power storage device and the output current (Ib) of the power storage device (S100, S110);
    And a step (S150) of variably setting an upper limit vehicle speed (VMmax) for vehicle travel based only on the output of the rotating electrical machine based on at least one of the state of charge and the output current.
  10.  前記設定するステップ(S150)は、前記充電状態に基づいて前記上限車速(VMmax)を可変に設定する場合には、SOCが低いときには、前記SOCが高いときに比べて前記上限車速を低く設定し、前記出力電流(Ib)に基づいて前記上限車速(VMmax)を可変に設定する場合には、前記出力電流が大きいときには、前記出力電流が小さいときに比べて前記上限車速を低く設定する、請求の範囲第9項に記載の電動車両の制御方法。 In the setting step (S150), when the upper limit vehicle speed (VMmax) is variably set based on the state of charge, the upper limit vehicle speed is set lower when the SOC is lower than when the SOC is high. When the upper limit vehicle speed (VMmax) is variably set based on the output current (Ib), the upper limit vehicle speed is set lower when the output current is larger than when the output current is small. The method for controlling an electric vehicle according to claim 9.
  11.  車速(V)が前記上限車速を超えた場合には、前記回転電機の出力をさらに増加した、前記回転電機の出力のみによる車両走行の継続を禁止するように車両走行を制御するステップ(S160)をさらに備える、請求の範囲第9項または第10項に記載の電動車両の制御方法。 When the vehicle speed (V) exceeds the upper limit vehicle speed, a step of controlling the vehicle travel so as to prohibit the continuation of the vehicle travel only by the output of the rotating electrical machine, further increasing the output of the rotating electrical machine (S160). The method for controlling an electric vehicle according to claim 9 or 10, further comprising:
  12.  前記取得するステップ(S100,S110)は、
     前記蓄電装置(10)に配置されたセンサ(12-14)の出力に基づいて、前記蓄電装置のSOC推定値(♯SOC)を算出するステップ(S100)と、
     前記蓄電装置の前記出力電流(Ib)に基づいて、前記出力電流の通過による機器の熱負荷を示す電流負荷パラメータ(MP)を算出するステップ(S110)とを含み、
     前記制御方法は、
     算出された前記SOC推定値および前記電流負荷パラメータに基づいて、前記蓄電装置の出力電力上限値(Wout)を可変に設定するステップ(S120)をさらに備え、
     前記上限車速を設定するステップ(S150)は、算出された前記電流負荷パラメータに少なくとも基づいて、前記上限車速(VMmax)を可変に設定する、請求の範囲第9項に記載の電動車両の制御方法。
    The obtaining step (S100, S110) includes:
    Calculating an estimated SOC value (#SOC) of the power storage device based on the output of the sensor (12-14) disposed in the power storage device (10);
    Calculating a current load parameter (MP) indicating a thermal load of the device due to the passage of the output current based on the output current (Ib) of the power storage device (S110),
    The control method is:
    Based on the calculated SOC estimated value and the current load parameter, the method further includes a step (S120) of variably setting an output power upper limit value (Wout) of the power storage device,
    The method for controlling an electric vehicle according to claim 9, wherein the step of setting the upper limit vehicle speed (S150) variably sets the upper limit vehicle speed (VMmax) based on at least the calculated current load parameter. .
  13.  前記上限車速を設定するステップ(S150)は、
     前記電流負荷パラメータ(MP)に応じて第1の上限速度(VMmax(1))を可変に設定するステップ(S154)と、
     前記SOC推定値(♯SOC)に応じて第2の上限速度(VMmax(2))を可変に設定するステップ(S155)と、
     前記第1の上限速度および前記第2の上限速度の最小値に従って、前記上限車速(VMmax)を設定するステップ(S156)とを含む、請求の範囲第12項に記載の電動車両の制御方法。
    The step of setting the upper limit vehicle speed (S150) includes:
    A step of variably setting the first upper limit speed (VMmax (1)) according to the current load parameter (MP) (S154);
    Setting the second upper limit speed (VMmax (2)) to be variable in accordance with the estimated SOC value (#SOC) (S155);
    The method for controlling an electric vehicle according to claim 12, further comprising a step (S156) of setting the upper limit vehicle speed (VMmax) according to a minimum value of the first upper limit speed and the second upper limit speed.
  14.  前記電動車両(5)は、車両駆動力を発生するための内燃機関(18)と、前記内燃機関の出力によって前記蓄電装置(10)の充電電力を発生するように構成された発電機構(MG1)と、車両外部の電源によって前記蓄電装置を充電するための外部充電部(30)とをさらに備え、
     前記制御方法は、
     前記蓄電装置の充電状態に応じて、前記蓄電装置のSOCにかかわらず主に前記回転電機(MG2)の出力によって走行するように前記内燃機関および前記回転電機を使用する第1の走行モードと、前記蓄電装置のSOCを所定の制御範囲内に維持して走行するように前記内燃機関および前記回転電機を使用する第2の走行モードとの一方を選択するステップ(S140)と、
     前記第1の走行モードでは、前記電動車両のトルクおよび車速が第1の領域(350)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第1の領域の外部であるときは前記回転電機および前記内燃機関の両方の出力によって走行するように、前記回転電機および前記内燃機関を制御するステップ(S160)とをさらに備え、
     前記第1の領域は、可変に設定された前記上限車速(VMmax)を反映して設定される、請求の範囲第9項、第10項、第12項および第13項のいずれか1項に記載の電動車両の制御方法。
    The electric vehicle (5) includes an internal combustion engine (18) for generating vehicle driving force, and a power generation mechanism (MG1) configured to generate charging power for the power storage device (10) by the output of the internal combustion engine. And an external charging unit (30) for charging the power storage device with a power source external to the vehicle,
    The control method is:
    A first traveling mode in which the internal combustion engine and the rotating electrical machine are used to travel mainly by the output of the rotating electrical machine (MG2) regardless of the SOC of the power storage device, depending on the state of charge of the power storage device; Selecting one of the second traveling mode using the internal combustion engine and the rotating electrical machine so as to travel while maintaining the SOC of the power storage device within a predetermined control range (S140);
    In the first traveling mode, when the torque and the vehicle speed of the electric vehicle are within the first region (350), the vehicle travels only with the output of the rotating electrical machine (MG2), while in the first region, A step (S160) of controlling the rotating electrical machine and the internal combustion engine so as to travel by the outputs of both the rotating electrical machine and the internal combustion engine when the engine is external;
    The first region according to any one of claims 9, 10, 12, and 13, wherein the first region is set to reflect the upper limit vehicle speed (VMmax) that is variably set. The control method of the electric vehicle as described.
  15.  前記制御するステップ(S160)は、前記第2の走行モードでは、前記電動車両のトルクおよび車速が第2の領域(340)の内部であるときは前記回転電機(MG2)のみの出力によって走行する一方で、前記第2の領域の外部であるときは前記回転電機および前記内燃機関(18)の両方の出力によって走行するとともに、前記蓄電装置の残容量が前記制御範囲よりも低下したときには前記発電機構によって前記蓄電装置の充電電力を発生するように、前記回転電機および前記内燃機関を制御し、
     前記第2の領域の上限車速は、前記蓄電装置の状態とは無関係に設定される、請求の範囲第14項に記載の電動車両の制御方法。
    In the control step (S160), in the second traveling mode, when the torque and the vehicle speed of the electric vehicle are within the second region (340), the vehicle travels by the output of only the rotating electrical machine (MG2). On the other hand, when the vehicle is outside the second region, the vehicle travels by the outputs of both the rotating electrical machine and the internal combustion engine (18), and when the remaining capacity of the power storage device falls below the control range, the power generation Controlling the rotating electrical machine and the internal combustion engine so as to generate charging power for the power storage device by a mechanism;
    The electric vehicle control method according to claim 14, wherein an upper limit vehicle speed of the second region is set regardless of a state of the power storage device.
  16.  前記電動車両は、前記回転電機(MG)のみを前記車両駆動力の発生源とする電気自動車(5♯)であり、
     前記制御方法は、
     車速(V)が、前記上限車速(VMmax)を超えているときは、前記回転電機による車両駆動力の出力を禁止するように車両走行を制御するステップ(S160)をさらに備える、請求の範囲第9項、第10項、第12項および第13項のいずれか1項に記載の電動車両の制御方法。
    The electric vehicle is an electric vehicle (5 #) that uses only the rotating electrical machine (MG) as a generation source of the vehicle driving force,
    The control method is:
    The vehicle further includes a step (S160) of controlling vehicle travel so as to prohibit the output of vehicle driving force by the rotating electrical machine when the vehicle speed (V) exceeds the upper limit vehicle speed (VMmax). 14. The method for controlling an electric vehicle according to any one of items 9, 10, 12, and 13.
PCT/JP2010/060852 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof WO2011161814A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/806,420 US8755963B2 (en) 2010-06-25 2010-06-25 Electrically-powered vehicle and control method therefor
EP10853674.9A EP2586644B1 (en) 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof
PCT/JP2010/060852 WO2011161814A1 (en) 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof
JP2012521241A JP5418676B2 (en) 2010-06-25 2010-06-25 Electric vehicle and control method thereof
CN201080067707.4A CN102958740B (en) 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060852 WO2011161814A1 (en) 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof

Publications (1)

Publication Number Publication Date
WO2011161814A1 true WO2011161814A1 (en) 2011-12-29

Family

ID=45371026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060852 WO2011161814A1 (en) 2010-06-25 2010-06-25 Electrically driven vehicle and method of controlling thereof

Country Status (5)

Country Link
US (1) US8755963B2 (en)
EP (1) EP2586644B1 (en)
JP (1) JP5418676B2 (en)
CN (1) CN102958740B (en)
WO (1) WO2011161814A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157157A1 (en) * 2011-10-31 2013-06-20 Plug Power Inc. Fuel cell-vehicle communications systems and methods
JP2013154718A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Hybrid vehicle
WO2014080804A1 (en) * 2012-11-26 2014-05-30 日産自動車株式会社 Control device for vehicle
JP2014121962A (en) * 2012-12-21 2014-07-03 Mitsubishi Motors Corp Travel mode switchover control device for hybrid vehicle
CN104080641A (en) * 2012-01-31 2014-10-01 丰田自动车株式会社 Vehicle velocity control device and vehicle equipped with same
JP2015020651A (en) * 2013-07-22 2015-02-02 トヨタ自動車株式会社 Vehicle
JP2020142618A (en) * 2019-03-06 2020-09-10 株式会社クボタ Work vehicle
US20220304240A1 (en) * 2021-03-24 2022-09-29 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418676B2 (en) * 2010-06-25 2014-02-19 トヨタ自動車株式会社 Electric vehicle and control method thereof
JP5656736B2 (en) * 2011-05-16 2015-01-21 トヨタ自動車株式会社 Vehicle and vehicle control method
EP2752330B1 (en) * 2013-01-04 2018-03-07 Visedo Oy A mobile working machine with intermediate circuit voltage control
DE102013207680A1 (en) * 2013-04-26 2014-10-30 Deere & Company Operating strategy for hybrid vehicles for realizing a load point shift, a recuperation and a boost
JP5967051B2 (en) 2013-10-21 2016-08-10 トヨタ自動車株式会社 Movement support device, movement support method, and driving support system
JP6183244B2 (en) * 2014-02-24 2017-08-23 トヨタ自動車株式会社 Movement support apparatus and movement support method
JP6003943B2 (en) * 2014-04-28 2016-10-05 トヨタ自動車株式会社 Hybrid vehicle and control method of hybrid vehicle
ES2552364B1 (en) * 2014-05-26 2016-11-03 Jofemar, S.A. Electronic management system for monitoring and control of lithium batteries
CN104002697B (en) * 2014-05-28 2016-08-24 广东亿纬赛恩斯新能源系统有限公司 A kind of method of the control of discharge of extended-range electric vehicle
CN104833923B (en) * 2014-12-18 2018-02-23 北汽福田汽车股份有限公司 The determination methods of electrokinetic cell overheat, device and there is its automobile
JP6241427B2 (en) * 2015-01-27 2017-12-06 トヨタ自動車株式会社 Hybrid vehicle
JP6281540B2 (en) * 2015-08-20 2018-02-21 トヨタ自動車株式会社 Electric car
JP6456809B2 (en) * 2015-11-30 2019-01-23 株式会社Subaru Vehicle power supply
FR3059857B1 (en) * 2016-12-07 2019-05-10 Moteurs Leroy-Somer METHOD FOR CONTROLLING THE SPEED OF AN ENGINE
US10693401B2 (en) 2017-05-22 2020-06-23 Ford Global Technoiogies, LLC Electrified vehicle off-board load power management
JP6812903B2 (en) * 2017-05-26 2021-01-13 トヨタ自動車株式会社 Hybrid vehicle
WO2019030985A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Control device, control method, and computer program
JP6801627B2 (en) * 2017-10-25 2020-12-16 トヨタ自動車株式会社 vehicle
MX2020006234A (en) * 2017-12-15 2020-08-24 Nissan Motor Vehicle control method and vehicle control device.
JP6947002B2 (en) * 2017-12-20 2021-10-13 トヨタ自動車株式会社 Hybrid car
JP6741645B2 (en) * 2017-12-22 2020-08-19 株式会社Subaru Vehicle control device and vehicle control method
JP6788621B2 (en) * 2018-01-31 2020-11-25 株式会社Subaru Vehicle driving force control device
CN108263212A (en) * 2018-02-05 2018-07-10 上海义赫文化传媒有限公司 A kind of electronic racing car maintenance area speed limit control system and control method
JP2023001690A (en) * 2021-06-21 2023-01-06 スズキ株式会社 Travel control device of hybrid vehicle
CN114394034A (en) * 2022-01-29 2022-04-26 重庆长安新能源汽车科技有限公司 Power-saving mode control method and system and electric automobile
DE102022126235A1 (en) 2022-10-11 2022-12-08 Daimler Truck AG Fuel cell vehicle and method for its operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025483A (en) * 2004-07-06 2006-01-26 Nissan Motor Co Ltd Controller of hybrid vehicle
JP2006109650A (en) 2004-10-07 2006-04-20 Nissan Motor Co Ltd Vehicle control unit and vehicle control method
JP2006166693A (en) * 2004-10-28 2006-06-22 Textron Inc Ac drive system for electric vehicle
JP2008306865A (en) * 2007-06-08 2008-12-18 Nippon Yusoki Co Ltd Travel controller of vehicle
JP2009044887A (en) * 2007-08-09 2009-02-26 Toyota Motor Corp Vehicle
JP2009140931A (en) * 2001-06-15 2009-06-25 Toyota Motor Corp Power output device having fuel cell and its method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3200885B2 (en) * 1991-10-21 2001-08-20 株式会社日立製作所 Battery-compatible electric vehicle controller
JP2002165380A (en) * 2000-11-24 2002-06-07 Tokyo R & D Co Ltd Charging system of battery set
JP4348891B2 (en) 2001-06-15 2009-10-21 トヨタ自動車株式会社 Power output apparatus having fuel cell and method thereof
JP4165481B2 (en) 2004-09-08 2008-10-15 三菱ふそうトラック・バス株式会社 Control device for hybrid electric vehicle
JP4458100B2 (en) 2007-02-20 2010-04-28 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4240128B2 (en) 2007-02-28 2009-03-18 トヨタ自動車株式会社 Control device for hybrid drive
JP2008285011A (en) 2007-05-17 2008-11-27 Toyota Motor Corp Controller of hybrid vehicle
JP2009113706A (en) 2007-11-08 2009-05-28 Toyota Motor Corp Hybrid vehicle
JP5418676B2 (en) * 2010-06-25 2014-02-19 トヨタ自動車株式会社 Electric vehicle and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140931A (en) * 2001-06-15 2009-06-25 Toyota Motor Corp Power output device having fuel cell and its method
JP2006025483A (en) * 2004-07-06 2006-01-26 Nissan Motor Co Ltd Controller of hybrid vehicle
JP2006109650A (en) 2004-10-07 2006-04-20 Nissan Motor Co Ltd Vehicle control unit and vehicle control method
JP2006166693A (en) * 2004-10-28 2006-06-22 Textron Inc Ac drive system for electric vehicle
JP2008306865A (en) * 2007-06-08 2008-12-18 Nippon Yusoki Co Ltd Travel controller of vehicle
JP2009044887A (en) * 2007-08-09 2009-02-26 Toyota Motor Corp Vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2586644A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673462B2 (en) * 2011-10-31 2017-06-06 Plug Power Inc. Fuel cell-vehicle communications systems and methods
US20130157157A1 (en) * 2011-10-31 2013-06-20 Plug Power Inc. Fuel cell-vehicle communications systems and methods
JP2013154718A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Hybrid vehicle
CN104080641A (en) * 2012-01-31 2014-10-01 丰田自动车株式会社 Vehicle velocity control device and vehicle equipped with same
JP5900645B2 (en) * 2012-11-26 2016-04-06 日産自動車株式会社 Vehicle control device
WO2014080804A1 (en) * 2012-11-26 2014-05-30 日産自動車株式会社 Control device for vehicle
JP2014121962A (en) * 2012-12-21 2014-07-03 Mitsubishi Motors Corp Travel mode switchover control device for hybrid vehicle
CN105392651A (en) * 2013-07-22 2016-03-09 丰田自动车株式会社 Vehicle and control method for vehicle
JP2015020651A (en) * 2013-07-22 2015-02-02 トヨタ自動車株式会社 Vehicle
US9868434B2 (en) 2013-07-22 2018-01-16 Toyota Jidosha Kabushiki Kaisha Vehicle and control method for vehicle
CN105392651B (en) * 2013-07-22 2019-03-08 丰田自动车株式会社 Vehicle and control method for vehicle
JP2020142618A (en) * 2019-03-06 2020-09-10 株式会社クボタ Work vehicle
JP7266427B2 (en) 2019-03-06 2023-04-28 株式会社クボタ work vehicle
US20220304240A1 (en) * 2021-03-24 2022-09-29 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods
US12017633B2 (en) * 2021-03-24 2024-06-25 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods

Also Published As

Publication number Publication date
EP2586644A4 (en) 2015-07-08
EP2586644B1 (en) 2016-11-30
EP2586644A1 (en) 2013-05-01
CN102958740B (en) 2014-11-12
US20130096764A1 (en) 2013-04-18
CN102958740A (en) 2013-03-06
JPWO2011161814A1 (en) 2013-08-19
JP5418676B2 (en) 2014-02-19
US8755963B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP5418676B2 (en) Electric vehicle and control method thereof
JP5278614B2 (en) Hybrid vehicle and control method thereof
JP5716693B2 (en) Hybrid vehicle
JP5730501B2 (en) Electric vehicle and control method thereof
EP2719572B1 (en) Electric vehicle and method for controlling electric vehicle
US8571734B2 (en) Power supply system for electrically powered vehicle and method for controlling the same
WO2012131864A1 (en) Electric vehicle and control method therefor
JP6028328B2 (en) Hybrid vehicle
WO2013018221A1 (en) Vehicle, and vehicle control method
JP5733198B2 (en) Hybrid vehicle
JP2007215293A (en) Secondary battery controller mounted in vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067707.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853674

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012521241

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13806420

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010853674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010853674

Country of ref document: EP