[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011161797A1 - 配線構造の形成方法、半導体装置の製造方法、基板処理装置 - Google Patents

配線構造の形成方法、半導体装置の製造方法、基板処理装置 Download PDF

Info

Publication number
WO2011161797A1
WO2011161797A1 PCT/JP2010/060757 JP2010060757W WO2011161797A1 WO 2011161797 A1 WO2011161797 A1 WO 2011161797A1 JP 2010060757 W JP2010060757 W JP 2010060757W WO 2011161797 A1 WO2011161797 A1 WO 2011161797A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
opening
forming
superheated steam
insulating film
Prior art date
Application number
PCT/JP2010/060757
Other languages
English (en)
French (fr)
Inventor
史朗 尾崎
中田 義弘
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012521230A priority Critical patent/JP5537657B2/ja
Priority to PCT/JP2010/060757 priority patent/WO2011161797A1/ja
Publication of WO2011161797A1 publication Critical patent/WO2011161797A1/ja
Priority to US13/608,644 priority patent/US8956967B2/en
Priority to US14/579,605 priority patent/US20150135472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67023Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Embodiments described below relate to a method for manufacturing a semiconductor device.
  • an interlayer insulating film in which a wiring pattern constituting a wiring layer is embedded is laminated, and a lower wiring layer and an upper wiring layer are connected by a via contact formed in the interlayer insulating film.
  • a low dielectric constant film (so-called low-k film) is used as an interlayer insulating film in order to reduce the problem of signal delay (RC delay) in a multilayer wiring structure.
  • a low resistance copper (Cu) pattern is used as a wiring pattern.
  • the bottom surface is covered with a conductive diffusion barrier, a so-called barrier metal film, and a Cu layer is deposited on the barrier metal film.
  • a refractory metal such as tantalum (Ta), titanium (Ti), or ruthenium (Ru), or a conductive nitride of these refractory metals, or a laminated film thereof is generally used. Is called.
  • via holes and wiring grooves are first formed in the interlayer insulating film by dry etching in the form of openings, and the formed openings are formed as barrier metal. It is generally done with a membrane. At this time, the dry etching process is often performed by a plasma etching method using carbon fluoride as an etching gas.
  • the barrier metal film As described above, as the barrier metal film, a Ta film, a Ti film, TaN, TiN or the like, or a conductive nitride film thereof, or an appropriate combination of Ta film, Ti film, TaN film, TiN film, etc. Although a laminated film is used, even if such a barrier metal film is a thermally and chemically stable metal film, the barrier metal film is formed on the side wall surface or bottom surface of the opening formed in the interlayer insulating film immediately before the film formation. It has recently been discovered that the presence of fluorine (F) along with water (H 2 O) significantly promotes oxidation. See Non-Patent Documents 1 and 2.
  • Non-patent Document 1 Non-patent Document 1
  • Non-Patent Document 2 Non-patent Document 2
  • the barrier metal film is a conductive nitride film such as a TaN film or a TiN film
  • these films generally have a non-stoichiometric composition represented by TaxNy or TixNy. Oxidation of metal elements occurs.
  • Similar oxidation of the barrier metal film by moisture and fluorine is considered to occur in other refractory metal elements such as Ru, Pt, Rh, Zr, Hf, V, Nb, Cr, Mo, W, and Mn.
  • the barrier metal film when the barrier metal film is oxidized in the Cu wiring structure, the barrier metal film expands at the oxidized portion to generate cracks, and as a result, the adhesion to the interlayer insulating film is deteriorated.
  • Cu atoms diffuse from the Cu wiring pattern and Cu via plug through the formed crack into the interlayer insulating film, resulting in problems such as deterioration of electrical characteristics and adhesion. End up.
  • a method for forming a wiring structure comprising: a step of forming an opening in an insulating film by dry etching using an etching gas containing fluorine; A cleaning step of exposing to and cleaning, a step of covering the bottom surface and the side wall surface of the opening with a barrier metal film, a conductor film is deposited on the insulating film, and the opening is passed through the barrier metal film.
  • the step of filling with the conductor film, the conductor film and the underlying barrier metal film are polished by a chemical mechanical polishing method until the surface of the insulating film is exposed, and the wiring film is formed in the opening by the conductor film. Forming a process.
  • a substrate processing apparatus is exhausted by an exhaust system and contains a processing container containing a substrate holding table for holding a substrate to be processed, a superheated steam generator for supplying superheated steam to the processing container, A gas supply device for supplying an inert gas or a reducing gas to the processing container, an oxygen concentration measuring device for measuring the oxygen concentration in the processing container, and a substrate to be processed on the substrate holding table provided in the substrate holding table A heating mechanism that heats the substrate to a temperature of superheated steam to which the substrate to be processed is exposed, and the superheated steam generator has a temperature higher than the temperature of the substrate to be processed on the substrate holder. Feed into the processing vessel at temperature.
  • FIG. 6 is a cross-sectional view (part 1) for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 6 is a cross-sectional view (No. 2) for explaining the semiconductor device manufacturing method according to the first embodiment;
  • FIG. 6 is a sectional view (No. 3) for explaining the semiconductor device manufacturing method according to the first embodiment;
  • FIG. 6 is a sectional view (No. 4) for explaining the semiconductor device manufacturing method according to the first embodiment;
  • FIG. 7 is a cross-sectional view (part 5) for explaining the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 6 is a sectional view (No. 6) for explaining the semiconductor device manufacturing method according to the first embodiment;
  • FIG. 7 is a cross-sectional view (No.
  • FIG. 10 is a cross-sectional view (No. 10) for explaining the method of manufacturing the semiconductor device according to the first embodiment; It is sectional drawing (the 11) explaining the manufacturing method of the semiconductor device by 1st Embodiment. It is sectional drawing (the 12) explaining the manufacturing method of the semiconductor device by 1st Embodiment. It is sectional drawing (the 13) explaining the manufacturing method of the semiconductor device by 1st Embodiment.
  • FIG. 22 is a cross-sectional view (No. 22) for explaining the method of manufacturing the semiconductor device according to the first embodiment; It is sectional drawing (the 23) explaining the manufacturing method of the semiconductor device by 1st Embodiment. It is a figure which shows the outline
  • FIG. 4 is a phase equilibrium diagram showing in detail the vicinity of a critical point in the phase equilibrium diagram of FIG. 3.
  • FIG. 6A shows the process of producing the sample of FIG. 6C.
  • FIG. 6D is a diagram (part 2) illustrating a process of creating the sample in FIG. 6C.
  • XPS spectrum figure which shows the mode of the oxide formation performed about 1st Embodiment.
  • an element isolation film 12 is formed on a silicon substrate 10 by a LOCOS (Local Oxidation of Silicon) method, and an element region 14 is defined by the element isolation film 12.
  • LOCOS Local Oxidation of Silicon
  • a gate electrode 18 is formed on the silicon substrate 10 via the gate insulating film 16 in the element region 14, and a side wall insulating film 20 is formed on each side wall surface of the gate electrode 18. Further, by introducing a dopant impurity element into the silicon substrate 10 using the sidewall insulating film 20 and the gate electrode 18 as a mask, a source and drain diffusion layer 22 is formed on each side of the gate electrode 18 in the semiconductor substrate 18. Form. Thereby, the transistor 24 including the gate electrode 18 and the source and drain diffusion layers 22 is formed as shown in FIG. 1A.
  • an interlayer insulating film 26 made of a silicon oxide film is formed on the entire surface of the silicon substrate 21 by, for example, a plasma CVD method so as to cover the gate electrode 16 and the sidewall insulating film 20.
  • a polishing stopper film 28 having a thickness of 50 nm is formed on the interlayer insulating film 26.
  • the polishing stopper film 28 an SiC film formed by plasma CVD is used. However, it is also possible to use a SiN film formed by plasma CVD.
  • the polishing stopper film 28 functions as a stopper when a tungsten film (not shown in FIG. 1B) or the like is polished by a chemical mechanical polishing method in a process described later.
  • the polishing stopper film 28 functions as an etching stopper when a groove is formed in the interlayer insulating film in a process described later.
  • a contact hole 30 reaching the source / drain diffusion layer 22 is formed in the interlayer insulating film 26 by using a photolithography technique, and the structure of FIG. 1B is obtained.
  • an adhesion layer 32 made of a TiN film having a thickness of 50 nm is formed on the entire surface of the structure of FIG. 1B by sputtering.
  • the adhesion layer 32 is for ensuring adhesion to a base of a conductor plug described later.
  • a tungsten film 34 having a thickness of 1 ⁇ m is formed on the entire surface of the structure of FIG. 1B by the plasma CVD method so as to cover the adhesion layer 32. Further, the tungsten film 34 and the adhesion layer below the tungsten film 34 are formed. 32 is polished by CMP until the surface of the polishing stopper film 28 is exposed. As a result, as shown in FIG. 1C, a structure in which a conductor plug 34 made of tungsten is embedded in the contact hole 30 is obtained.
  • an insulating film serving as a diffusion barrier that is, an insulating diffusion barrier film 36 is formed on the structure of FIG. 1C to a film thickness of about 30 nm by using, for example, a SiC film by plasma CVD. Further, an interlayer insulating film 38 is formed thereon.
  • the insulating diffusion barrier film 36 is not limited to a SiC film, and a SiN film can also be used.
  • an interlayer insulating film 38 an interlayer insulating film made of porous silica (porous silica film) can be used.
  • the present embodiment is not limited to this specific material, and includes Si as a component.
  • An organosiloxane film, a hydrogenated siloxane film, or a porous film thereof can be used. Furthermore, an organic polymer film can also be used if Si is included in the film.
  • an interlayer insulating film for example, trade name NCS (manufactured by Catalytic Chemicals), trade name IPS (manufactured by Catalytic Chemicals), trade name Black Diamond (manufactured by Applied Materials), product surface coral (manufactured by Novellus) , Product name LKD series (manufactured by JSR), product name Aurora (manufactured by ASM), product name HSG series (manufactured by Hitachi Chemical Co., Ltd.), product surface Nanoglass (manufactured by Honeywell), product name IPS (manufactured by Catalyst Kasei), Z3MS (manufactured by Dow Corning), product name XLK (manufactured by Dow Corning), product name Orion (manufactured by Trikon
  • an insulating diffusion barrier film 40 similar to the insulating diffusion barrier film 36 is formed to a thickness of, for example, 30 nm by the CVD method. Further, in the step of FIG. 1F, the insulating diffusion barrier film 40 is formed. A photoresist film 42 is formed on the entire surface of the film 40 by spin coating.
  • a photolithography technique is used to form a resist opening 44 in the photoresist film 42, and using the photoresist film 42 as a mask, the insulating diffusion barrier film 40, the interlayer insulating film 38, and the insulating film
  • the diffusion barrier film 36 is sequentially etched to form an opening 46 corresponding to the resist opening 44 in the interlayer insulating film 38.
  • the opening 46 is for forming a first layer wiring (first metal wiring layer) 50, and is formed to have a wiring width of 100 nm and a wiring interval of 100 nm, for example.
  • the etching of FIG. 1G is typically CF 4 gas and CHF 3 gas, or a CF-based gas containing fluorine such as CH 2 F 2 , C 4 F 6 , C 4 F 8 , C 5 F 8 , and CF 3 I.
  • the stopper film 28 is used as an etching stopper by a plasma etching method using as an etching gas.
  • the opening 46 for embedding wiring is formed in the insulating film 40, the interlayer insulating film 38, and the insulating diffusion barrier film 36, and the upper surface of the conductor plug 34 is in the opening 46. Exposed to. Thereafter, the photoresist film 42 is peeled off.
  • etching gas molecules for example, CF 4 molecules may be adsorbed and remain on the side wall surface or bottom surface of the opening 46. Further, since etching is performed using an etching gas containing fluorine (F), the side wall surface and the bottom surface of the opening 46 are terminated with fluorine, particularly the interlayer insulating film 38 and the insulating diffusion barrier film.
  • F fluorine
  • 36 and 40 contain silicon (Si) as a constituent component, Si—F bonds are formed on the side wall surface and bottom surface of the opening 46.
  • the Si—F bond on the surface reacts with the reaction ⁇ SiF + H 2 O ⁇ ⁇ Si-OH + HF (Formula 1)
  • the produced HF becomes a catalyst and may oxidize the barrier metal film formed immediately after.
  • the symbol “ ⁇ Si” indicates that the Si atom is bonded to another atom such as oxygen in the interlayer insulating film.
  • the water remaining on the side wall surface and the bottom surface of the opening 46 is caused by moisture, hydrogen, etc. adsorbed in the interlayer insulating film 38.
  • Such water and fluorine remaining in the etching opening 46 can be removed by being exposed to plasma and conventionally removed by such plasma treatment.
  • the interlayer insulating film is damaged, and the water absorption of the film increases.
  • the relative dielectric constant of the interlayer insulating film made of the low-K dielectric film is increased. There were problems such as rising.
  • FIG. 2A shows an outline of the substrate processing apparatus used for the treatment with the superheated steam in the first embodiment
  • FIGS. 3 and 4 show phase equilibrium diagrams of the superheated steam.
  • the substrate processing apparatus 100 has a processing container 111 evacuated by a turbo molecular pump 112A and a rotary pump 112B through a valve 112C.
  • the processing container 111 includes a resistance heater.
  • a substrate holding base 111A that holds the substrate W to be processed is provided.
  • the processing vessel 111 is provided with an ion gauge 111I that measures the pressure or degree of vacuum of the process space 111S in the processing vessel 111, and an oxygen concentration meter 111O that measures the oxygen concentration.
  • the substrate processing apparatus 110 includes a first gas supply line 115N that supplies nitrogen gas from the nitrogen gas source 113N to the processing vessel 111 via a corresponding MFC (mass flow rate controller) 114N, and helium gas as a helium gas source.
  • a second gas supply line 115He for supplying the processing vessel 111 from the 113He via the corresponding MFC (mass flow rate controller) 114He and an Ar gas from the Ar gas source 113Ar via the corresponding MFC (mass flow rate controller) 114Ar.
  • MFC mass flow rate controller
  • the substrate processing apparatus 110 has a superheated steam generator 116A for supplying superheated steam into the processing vessel 111, and liquid water from a water tank 116C is supplied to the superheated steam generator 116A via a water supply pump 116B. Supplied.
  • FIG. 2B is a cross-sectional view showing a schematic structure of the superheated steam generator 116A.
  • the superheated steam generator 116A includes an electric furnace 116H provided with a heater 116h. Water is passed through a quartz or stainless steel pipe 116Q passed through the electric furnace 116H, and this is heated to obtain a desired temperature. Of superheated steam.
  • FIG. 3 is a well-known phase equilibrium diagram of water, in which a triple point T and a critical point K are shown.
  • the vertical axis represents pressure and the horizontal axis represents temperature.
  • Triple point T is a point where solid phase water, that is, ice and liquid phase water, and further, vapor phase water, that is, water vapor coexists, and is fixed at a temperature of 611.73 Pa and 0.01 ° C.
  • the critical point K is a point on the phase boundary between liquid phase water and gas phase water. If the temperature or pressure is increased beyond this point, the distinction between the liquid phase and the gas phase is lost.
  • the critical point temperature, ie the critical temperature is 374 ° C.
  • the pressure ie the critical pressure
  • FIG. 4 is a phase equilibrium diagram showing the state of water near the critical point K in more detail. However, it should be noted that in FIG. 4, the vertical axis represents temperature and the horizontal axis represents pressure.
  • Table 1 shows physical properties (dielectric constant, density, kinematic viscosity, effective diffusion) of 0.1 MPa, 25 ° C. normal temperature water, 27.6 MPa, 450 ° C. supercritical water, and 1.38 MPa, 450 ° C. superheated water vapor. Coefficients) are shown together.
  • superheated steam has a density of 4.19 ⁇ 10 ⁇ 3 g / cm 3 , which is lower than that of room temperature water and supercritical water, and has a kinematic viscosity of 6.32 ⁇ 10 ⁇ 6 m 2 / sec. In addition, it is an order of magnitude smaller than room temperature water and supercritical water, and has an effective diffusion coefficient of 1.79 ⁇ 10 ⁇ 3 cm 2 / sec, which is small compared to room temperature water and supercritical water. It is a value of dielectric constant, and supercritical water has a relative dielectric constant of approximately 1.0, which is smaller than that of room temperature water or supercritical water. This indicates that superheated steam is substantially nonpolar, unlike room temperature water.
  • FIG. 5 is a graph showing the relationship between the dielectric constant of water and the pressure and temperature.
  • the vertical axis represents the dielectric constant
  • the horizontal axis represents the pressure.
  • the substrate processing apparatus 100 of FIG. 2A is used, superheated steam is used, and CFx molecules caused by the etching gas adhering to the bottom surface and the side wall surface of the opening 46, Fluorine is washed away.
  • a non-polar water vapor having a relative dielectric constant of 1.0 efficiently removes non-polar residual CFx molecules adhering to the bottom surface and the side wall surface, and the terminal fluorine is represented by the formula (1). It can be released in the form of HF by reaction. Further, since the process space 111S is exhausted by the turbo molecular pump 112A and the rotary pump 112B, the generated HF is immediately exhausted from the process space 111S and does not remain.
  • the structure of FIG. 1G is introduced into the processing container 111 of the substrate processing apparatus 100 of FIG. 2A as the substrate W to be processed and held on the substrate holding table 111A. To do.
  • liquid water in the water tank 116C is sent to the superheated steam generator 116A by a feed water pump 116A to generate superheated steam
  • the processing vessel 111 has a pressure (normal pressure) of 0.1 MPa, for example. Supply at a temperature of 250 ° C.
  • the superheated steam generator 116A heats the water fed by the feed water pump 116A to a temperature 50 ° C. higher than the desired temperature. deep.
  • the heating mechanism 111H in the substrate holder 111A is driven, and the temperature of the substrate W to be processed is set to 250 ° C. so that the temperature drop does not occur in the superheated steam.
  • FIGS. 6A and 6B show the results of XPS (X-ray photoelectron spectroscopy) analysis for verifying the effect of fluorine and carbon removal by such superheated steam.
  • XPS X-ray photoelectron spectroscopy
  • FIGS. 6A and 6B XPS spectra are obtained after dry etching with the CF-based etching gas of FIG. 1G, before and after the cleaning with the superheated steam of FIG. 1H.
  • the XPS measurement in FIGS. 6A and 6B is actually performed on the flat sample shown in FIG. 6C instead of the sample in FIG. 1H.
  • an interlayer insulating film 138 corresponding to the interlayer insulating film 38 is formed on the silicon substrate 10 shown in FIG.
  • the interlayer insulating film 138 thus formed is etched by about 30 nm by plasma etching using CF 4 gas as an etching gas, and the resulting structure is similar to that shown in FIG. It was obtained by performing a superheated steam treatment.
  • the vertical axis indicates the photoelectron intensity
  • the horizontal axis indicates the binding energy of the F1s orbit, but it can be seen that the high SiFx peak observed before the cleaning is not detected after the cleaning. Similarly, it can be seen that the CFx peak also drops to the background after washing.
  • the height of the CFx peak dropped to the background as compared to before the cleaning, and the CFx molecules were also removed by the cleaning. Recognize.
  • the oxygen concentration is suppressed to 0.6% by volume or less as will be described in detail later.
  • the Cu wiring layer is exposed at the bottom of the opening 46.
  • the oxidation can be suppressed, and the oxidation of the barrier metal film 48 can be suppressed.
  • the Ta film or Ti film is formed as a barrier metal film 48 over the entire surface of the structure of FIG. 1H in the step of FIG.
  • the barrier metal film 48 is formed to have a thickness of, for example, 5 nm to 30 nm so as to continuously cover the surface of the diffusion barrier film 40 and the bottom and side walls of the opening 46.
  • a Cu seed film (not shown) is formed on the entire surface of the structure of FIG. 1I so as to cover the barrier metal film 48 by a sputtering method to a thickness of, for example, 10 nm.
  • a Cu film 50 is formed to a thickness of, for example, 600 nm so as to fill the groove 46 by electrolytic plating using a seed layer as an electrode.
  • the Cu film 50 and the barrier metal film 48 are polished by CMP until the surface of the insulating diffusion barrier film 40 is exposed.
  • the Cu film 50 forms a Cu wiring pattern 50A in the opening 46, and a wiring layer in which the Cu wiring pattern 50A is embedded in the interlayer insulating film 38 is formed.
  • an insulating diffusion barrier film 52 similar to the insulating diffusion barrier film 40 is formed on the insulating diffusion barrier film 40 by covering the Cu wiring pattern 50A and using plasma CVD.
  • the porous interlayer insulating film 54 is formed to a thickness of, for example, 180 nm over the entire surface of the insulating diffusion barrier film 52 in the step of FIG. 1M.
  • an insulating film similar to the interlayer insulating film 38 can be used.
  • an insulating diffusion barrier film 56 similar to the insulating diffusion barrier film 52 is formed on the porous interlayer insulating film 54 with a film thickness of, for example, 30 nm by plasma CVD.
  • a porous interlayer insulating film 58 similar to the porous interlayer insulating film 38 or 54 is formed on the insulating diffusion barrier film 56 to a thickness of 160 nm, for example.
  • an insulating diffusion barrier film 60 is formed to a thickness of, for example, 30 nm on the porous interlayer insulating film 58 by CVD.
  • a photoresist film 62 is formed on the entire surface of the structure of FIG. 1P by spin coating, and this is patterned by a photolithography technique to form a resist opening 64 in the photoresist film 62. .
  • the insulating diffusion barrier film 60, the interlayer insulating film 58, the insulating diffusion barrier film 56, the interlayer insulating film 54, and the insulating diffusion barrier film 52 are made of CF 4.
  • Etching is performed by plasma etching using a gas and CHF 3 gas as an etching gas to form a contact hole 66 that exposes the Cu wiring pattern 50A corresponding to the resist opening 64.
  • a photoresist film 68 is formed on the entire surface of the insulating diffusion barrier film 60 by spin coating in the step of FIG. 1R.
  • the photoresist film 69 is patterned by a photolithography technique to form a resist opening 70. Further, using the photoresist film 68 as a mask, the insulating diffusion barrier film 60, the interlayer insulating film 58 and the insulating family barrier film 56 are subjected to plasma etching using CF 4 gas and CHF 3 gas as etching gases, and the insulating diffusion barrier A wiring groove 72 is formed in the film 60, the interlayer insulating film 58 and the insulating diffusion barrier film 56 so as to overlap the contact hole 66 corresponding to the resist opening 70.
  • superheated steam is applied to the side wall surface and bottom surface of the contact hole 66 and the side wall surface and bottom surface of the wiring groove 72 in the same manner as in the previous step of FIG. 1H. Cleaning is performed to remove unreacted etching gas molecules CFx and surface-terminated fluorine adhering to the bottom and side walls of the contact hole 66 and the wiring groove 72.
  • the oxygen concentration in the atmosphere is controlled to 0.4% by volume during the cleaning process using superheated steam.
  • nitrogen gas, helium gas, argon gas, or hydrogen gas is supplied from the nitrogen gas source 113N, helium gas source 113H, argon gas source 113Ar, or hydrogen gas source 113H into the processing vessel 111,
  • the process space 111S is filled and further exhausted by the turbo molecular pump 112A and the rotary pump 112B, thereby purging the process space 111S inside the processing vessel 111, and the oxygen concentration in the process space is 0.6% by volume.
  • the volume is reduced to 0.4% by volume.
  • the superheated steam contains hydrogen ions (H +) having a high reduction effect of copper oxide in a high concentration when the HF of the reaction replication product in the formula (1) described above is dissolved. Further, in order to suppress the cleaning atmosphere to an oxygen concentration of 0.6% by volume or less, the oxide formed on the surface of the Cu wiring pattern 50A exposed at the bottom of the contact hole 66 is effectively reduced, As the exposed surface of the Cu wiring pattern 50A, a fresh surface with very little oxide formation can be obtained.
  • the side wall surface and the bottom surface of the wiring groove 72 and the contact hole 66 are covered with a barrier metal film 74 similar to the barrier metal film 48 by sputtering, and in the step of FIG. A seed film (not shown) made of Cu is formed on the barrier metal film 74 by sputtering, for example, to a thickness of 10 nm.
  • the Cu film 76 is formed to a thickness of, for example, 1400 nm so as to fill the contact hole 66 and the wiring groove 72.
  • the Cu film 76 and the barrier metal film 74 thereunder are polished by chemical mechanical polishing until the upper surface of the insulating diffusion barrier film 60 is exposed, and the wiring groove 77 is formed into a Cu wiring pattern.
  • a wiring structure in which the contact hole 66 is filled with a Cu via plug 76b extending from the Cu wiring pattern 76a and the surface is flattened is obtained.
  • the surface of the Cu wiring pattern 76a is covered with an insulating diffusion barrier film (cap film) 78 made of SiC having a film thickness of, for example, 30 nm.
  • a third wiring layer (not shown) can be formed to form a multilayer wiring structure.
  • the contact resistance between the Cu wiring pattern 50A and the Cu via plug 76b suppresses the formation of oxide on the surface of the wiring pattern 50A, and the barrier metal. Since the formation of oxide at the interface between the film 48 and the interlayer insulating film 38 or the SiC etching stopper film 28 under the film 48 and the interface between the interlayer insulating film 54 or 58 and the barrier metal film 74 is suppressed, the contact resistance is reduced. Can be obtained.
  • “Comparative Example 1” uses tantalum (Ta) as the barrier metal films 48 and 74 in the comparative example
  • “Comparative Example 2” uses titanium (Ti) as the barrier metal films 48 and 74 in the comparative example.
  • tantalum (Ta) is used as the barrier metal films 48 and 74 in this embodiment
  • titanium (as the barrier metal films 48 and 74 in the present embodiment is used.
  • Ti titanium
  • ratio of metal oxide at the diffusion barrier / insulating film interface is the relationship between photoelectron intensity and binding energy by XPS measurement for the Ta4f or Ti2p orbit after heat treatment for the sample in FIG. It is derived from the result of seeking.
  • FIG. 7A shows the result of XPS measurement when Ta is used as the barrier metal film 48 in the structure of FIG. 1I
  • FIG. 7B shows that Ti is used as the barrier metal film 48 in the structure of FIG. 1I.
  • the result of XPS measurement in the case of In FIG. 7A “Example 1” corresponds to Example 1 in Table 1, and “Untreated 1” corresponds to the case where the cleaning process with superheated steam in FIG. 1H is omitted.
  • FIG. 7B “Example 2” corresponds to Example 2 in Table 2, and “Untreated 2” corresponds to the case where the cleaning process with superheated steam in FIG. 1H is omitted.
  • FIGS. 1 shows the result of XPS measurement when Ta is used as the barrier metal film 48 in the structure of FIG. 1I
  • FIG. 7B shows that Ti is used as the barrier metal film 48 in the structure of FIG. 1I.
  • a barrier metal film corresponding to the barrier metal film 48 is formed on the measurement sample shown in FIG. 6C, and then 400 in vacuum (1 ⁇ 10 ⁇ 5 Torr).
  • the diffusion barrier was peeled from the interlayer insulating film in a glove box in an N 2 atmosphere, and the peeled surface thus obtained was performed.
  • Example 1 the Ta 2 O 5 peak is lower than in Comparative Example 1, and similarly in Example 2, the TiO 2 peak is lower than in Comparative Example 2. .
  • the “ratio of the metal oxide at the diffusion barrier / insulating film interface” in Table 2 is derived from FIGS. 7A and 7B.
  • 8A and 8B show the results of examining the desorption of fluorine and water by TDS analysis on the sample of FIG. 6D.
  • FIG. 9 is a flowchart summarizing the first embodiment.
  • an interlayer insulating film is deposited on the underlying structure in step 1, and in step 2, the interlayer insulating film is etched by plasma etching using a CF-based etching gas.
  • step 3 the etching surface generated by the etching in step 2 is cleaned with superheated steam to remove residual fluorine and water from the etching surface.
  • step 4 a barrier metal film is formed on the surface thus cleaned.
  • various interlayer insulating films containing Si can be used, and Ta, Ti, Ru, Zr, Hf, V, Nb, Cr, Mo, W can be used as barrier metal films. , Mn, etc., various refractory metal films, conductive nitride films thereof, or laminated films thereof can be used.
  • the oxygen concentration in the atmosphere was set to 0.4% by volume.
  • Table 3 shows the results of examining the discoloration of the surface of the Cu wiring pattern 50A exposed by variously changing the oxygen concentration in the atmosphere in the process of FIG. 1S.
  • the oxygen concentration in the atmosphere is controlled by repeatedly purging the processing vessel 111 with Ar gas, He gas, nitrogen gas, or hydrogen gas, and is confirmed by an oxygen concentration meter 111O provided in the processing vessel 111. .
  • the oxygen concentration is set to 0.4% by volume in the cleaning process using superheated steam in FIG. 1H or FIG. 1S.
  • FIG. 10 is a flowchart showing a second embodiment in which an oxygen purge process is provided before the cleaning process.
  • the steps described above are denoted by the same reference numerals, and description thereof is omitted.
  • the step 21 is performed before the cleaning with the superheated steam in the step 3, and the process space 111S inside the processing vessel 111 is purged.
  • the oxygen concentration is reduced to 0.6% by volume or less.
  • FIG. 11 is a flowchart showing an outline of an example of such an oxygen purge step 21.
  • step 211 an inert gas such as Ar gas, He gas, or nitrogen gas, or a reducing gas such as hydrogen gas is introduced into the processing vessel 111, and the process space 111S is formed in the process vessel 111S. Fill with inert gas or reducing gas.
  • inert gas such as Ar gas, He gas, or nitrogen gas
  • a reducing gas such as hydrogen gas
  • step 212 the valve 112C is opened, the process space 111S is exhausted by the turbo molecular pump 112A and the rotary pump 112B, and oxygen is removed together with the inert gas or the reducing gas.
  • step 213 the oxygen concentration in the process space 111S is measured by the oxygen concentration system 111O, and steps 211 to 213 are repeated until the oxygen concentration in the process space 111S becomes 0.6% by volume or less.
  • the purge process in step 21 is not limited to the purge process using the inert gas or the reducing gas shown in FIG. 11, and although the efficiency is somewhat inferior, for example, a vacuum purge process can also be used.
  • the oxygen concentration in the atmosphere is 0.6 vol% or less in the cleaning process using superheated steam. Although it is preferable to suppress it, it is not essential.
  • the opening cleaned by the superheated steam has the opening 66 exposing the lower wiring pattern, but the opening 72 is a wiring groove, and the opening constituting the contact hole 66.
  • the lower wiring pattern is not exposed except for the portion where 66 is formed, and is not limited to the one that exposes the lower wiring pattern.
  • the cleaning process using superheated steam in FIGS. 1H and 1S is performed at a pressure below normal pressure, it is not necessary to use a pressure vessel as the processing vessel 111, and a normal exhaust system such as the turbo molecular pump 112A or the rotary pump 112B is used. This is advantageous because it can be used.
  • a pressure vessel as the processing vessel 111
  • a normal exhaust system such as the turbo molecular pump 112A or the rotary pump 112B is used.
  • the relative dielectric constant of superheated steam is about 1.0 regardless of the temperature.
  • the temperature of the superheated steam is not limited to 250 ° C., but if the temperature falls below 100 ° C., the cleaning effect becomes insufficient, and if the temperature exceeds 400 ° C., the substrate Since the semiconductor device formed thereon is damaged, the temperature of the superheated steam in the cleaning step is preferably in the range of 100 ° C. to 400 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 配線構造の形成方法は、絶縁膜中に開口部を、フッ素を含むエッチングガスを使ったドライエッチングにより形成する工程と、前記開口部の底面と側壁面を、過熱水蒸気に曝露して洗浄する洗浄工程と、前記開口部の底面と側壁面をバリアメタル膜で覆う工程と、前記絶縁膜上に導体膜を堆積し、前記開口部を、前記バリアメタル膜を介して前記導体膜で充填する工程と、前記導体膜およびその下のバリアメタル膜を、前記絶縁膜の表面が露出するまで化学機械研磨法により研磨し、前記開口部に前記導体膜により、配線パタ―ンを形成する工程を含む。

Description

配線構造の形成方法、半導体装置の製造方法、基板処理装置
 以下に説明する実施形態は、半導体装置の製造方法に関する。
 今日の半導体集積回路装置においては、共通基板上に莫大な数の半導体素子が形成されており、これらを相互接続するために、多層配線構造が使われている。
 多層配線構造では、配線層を構成する配線パターンを埋設した層間絶縁膜が積層され、下層の配線層と上層の配線層とが、層間絶縁膜中に形成されたビアコンタクトにより接続される。
 特に最近の超微細化・超高速半導体装置では、多層配線構造中における信号遅延(RC遅延)の問題を軽減するため、層間絶縁膜として低誘電率膜(いわゆるlow-k膜)が使われる。これと共に、配線パターンとして、低抵抗の銅(Cu)パターンが使われている。
 Cu配線パターンを低誘電率層間絶縁膜中に埋設した多層配線構造においては、Cu層のドライエッチングによるパターニングが困難であるため、層間絶縁膜中に予め配線溝あるいはビアホールを形成し、これをCu層で充填した後、層間絶縁膜上の余剰なCu層を化学機械研磨(CMP)により除去する、いわゆるダマシン法あるいはデュアルダマシン法が使われる。
 その際、Cu配線パターンが層間絶縁膜に直接に接すると、Cu原子が層間絶縁膜中に拡散し、短絡などの問題を惹起するため、Cu配線パターンが形成される配線溝あるいはビアホールの側壁面および底面を、導電性拡散バリア、いわゆるバリアメタル膜により覆い、Cu層を、かかるバリアメタル膜上に堆積することが一般になされている。ここで、バリアメタル膜としては、一般的にタンタル(Ta)やチタン(Ti),ルテニウム(Ru)などの高融点金属、あるいはこれら高融点金属の導電性窒化物、あるいはこれらの積層膜が使われる。
特開平11-16912号公報 特開2007-27680号公報 特開2003-45960号公報 特開2007-149813号公報
Ozaki, S., et al. Microelectronic Engineering 87, (2010) pp.370-372 尾崎史朗他、第14回LSI配線における原子輸送・応力問題研究会予稿集,(2009),pp.33-34 http://wwww.tlv.com/ja/steam_story/0612rinkaisui.html(2010年6月8日検索)
 先にも述べたようにダマシン法、あるいはデュアルダマシン法では、先に層間絶縁膜中にビアホールなり配線溝なりが、開口部の形で、ドライエッチングにより形成され、形成された開口部をバリアメタル膜で覆うことが一般に行われる。またその際、前記ドライエッチングプロセスは、フッ化カーボンをエッチングガスとして使ったプラズマエッチング法により実行されることが多い。
 先にも述べたようにバリアメタル膜としては、Ta膜やTi膜、TaNやTiNなど、それらの導電性窒化物膜、あるいはTa膜,Ti膜,TaN膜,TiN膜などの適当な組み合わせによる積層膜が使われるが、このようなバリアメタル膜は、熱的および化学的に安定な金属膜ではあっても、成膜直前に前記層間絶縁膜に形成された開口部の側壁面や底面に水(H2O)とともにフッ素(F)が存在すると、酸化が著しく促進されることが最近になって発見された。非特許文献1および2を参照。
 一方、前記開口部の形成直後においては、前記開口部の側壁面や底面に水(H2O)が残留しやすく、また前記水に加えてドライエッチングで使われた例えばフッ化カーボン(CFx)などのガス分子が吸着されたまま残留していたり、あるいは開口部の側壁面および底面が、このようなフッ化カーボンエッチングガスに起因するフッ素(F)により終端されていたりする。
 このような開口部の側壁面や底面に存在するフッ素は、水が同時に存在した場合、HFを形成し、形成されたHFが触媒となって、水のpHを変化させ、その結果生じる酸化還元反応により、TaやTiなどの高融点金属元素の酸化が促進されてしまうものと考えられる(非特許文献1および非特許文献2)。なおバリアメタル膜がTaN膜やTiN膜のような導電性窒化膜の場合でも、一般にこれらの膜はTaxNyやTixNyで表される非化学量論組成を有しており、やはりTaやTiなどの金属元素の酸化が生じてしまう。
 同様な水分とフッ素によりバリアメタル膜の酸化は、他の高融点金属元素、例えばRuやPt,Rh、Zr,Hf,V,Nb,Cr,Mo,W,Mnなどにおいても生じると考えられる。
 このようにCu配線構造においてバリアメタル膜が酸化すると、酸化部位においてバリアメタル膜は膨張してクラックなどを発生させ、その結果、層間絶縁膜に対する密着性が劣化してしまう。また形成されたクラックを通してCu配線パタ―ンやCuビアプラグからCu原子が層間絶縁膜中に拡散してしまい、その結果、電気特性を劣化させたり、密着性を劣化させたりする問題が発生してしまう。
 従来は、このようなバリアメタル膜の酸化の問題を回避するために、プラズマ処理により、層間絶縁膜中に形成された開口部の底面や側壁面から水分や終端フッ素(F)を除去することが行われていた。しかし、プラズマ処理では特に低密度のlow-K誘電体よりなる層間絶縁膜の場合、膜にダメージが発生し、その結果、かえって層間絶縁膜表面が親水性に変化し、吸水性が増大して比誘電率が上昇してしまうなどの問題が生じることがある。
 そこで、層間絶縁膜中に形成された開口部に残留する水およびフッ素によるバリアメタル膜の酸化を抑制できる多層配線構造の形成方法および半導体装置の製造方法が求められている。
 第1の側面によれば配線構造の形成方法は、絶縁膜中に開口部を、フッ素を含むエッチングガスを使ったドライエッチングにより形成する工程と、前記開口部の底面と側壁面を、過熱水蒸気に曝露して洗浄する洗浄工程と、前記開口部の底面と側壁面をバリアメタル膜で覆う工程と、前記絶縁膜上に導体膜を堆積し、前記開口部を、前記バリアメタル膜を介して前記導体膜で充填する工程と、前記導体膜およびその下のバリアメタル膜を、前記絶縁膜の表面が露出するまで化学機械研磨法により研磨し、前記開口部に前記導体膜により、配線パタ―ンを形成する工程を含む。
 第2の側面によれば基板処理装置は、排気系により排気され、被処理基板を保持する基板保持台を収容した処理容器と、前記処理容器に過熱水蒸気を供給する過熱水蒸気発生装置と、前記処理容器に不活性ガスまたは還元性ガスを供給するガス供給装置と、前記処理容器中の酸素濃度を測定する酸素濃度測定装置と、前記基板保持台中に設けられ、前記基板保持台上の被処理基板を、前記被処理基板が曝露される過熱水蒸気の温度まで加熱する加熱機構と、を備え、前記過熱水蒸気発生装置は前記過熱水蒸気を、前記基板保持台上の被処理基板の温度よりも高い温度で前記処理容器中に供給する。
 上記第1、第2の側面によれば、バリアメタル膜の成膜に先立って、前記開口部の側壁面および底面からフッ素を含む化合物や終端フッ素を除去することが可能である。
第1の実施形態による半導体装置の製造方法を説明する断面図(その1)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その2)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その3)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その4)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その5)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その6)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その7)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その8)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その9)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その10)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その11)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その12)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その13)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その14)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その15)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その16)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その17)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その18)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その19)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その20)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その21)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その22)である。 第1の実施形態による半導体装置の製造方法を説明する断面図(その23)である。 第1の実施形態で使われる基板処理装置の概要を示す図である。 図2Aの基板処理装置で使われる過熱水蒸気発生装置の概要を示す図である。 水の相平衡図である。 図3の相平衡図のうち、臨界点近傍を詳細に示す相平衡図である。 過熱水蒸気の温度,圧力および比誘電率の関係を示す図である。 過熱水蒸気によるSiFxの除去の様子を示すXPSスペクトル図である。 過熱水蒸気によるCFxの除去の様子を示すXPSスペクトル図である。 図6A,図6BのXPSスペクトルの測定に使われた試料を示す断面図である。 図6Cの試料を作成する工程を示す図(その1)である。 図6Cの試料を作成する工程を示す図(その2)である。 第1の実施形態について行った酸化物形成の様子を示すXPSスペクトル図である。 第1の実施形態について行った別の酸化物形成の様子を示すXPSスペクトル図である。 第1の実施形態について行ったTDS分析の結果を示す図である。 第1の実施形態について行った別のTDS分析の結果を示す図である。 第1の実施形態による過熱水蒸気を使った洗浄工程の概要をまとめて示すフローチャートである。 第2の実施形態による過熱水蒸気を使った洗浄工程の概要をまとめて示すフローチャートである。 図10のフローチャートで使われる酸素パージ工程の例を示すフローチャートである。
 (第1の実施形態)
 以下、第1の実施形態による半導体装置の製造方法を、図1A~図1Sを参照しながら説明する。
 図1Aを参照するに、シリコン基板10上にLOCOS(Local Oxidation of Silicon)法により素子分離膜12を形成し、前記素子分離膜12により素子領域14を画定する。
 次に、前記素子領域14において前記シリコン基板10上に、ゲート絶縁膜16を介してゲート電極18を形成し、前記ゲート電極18のそれぞれの側壁面上に、側壁絶縁膜20を形成する。さらに前記側壁絶縁膜20及びゲート電極18をマスクとして前記シリコン基板10内にドーパント不純物元素を導入することにより、前記半導体基板18中に、前記ゲート電極18のそれぞれの側にソースおよびドレイン拡散層22を形成する。これにより、ゲート電極18とソースおよびドレイン拡散層22を含むトランジスタ24が、図1Aに示すように形成される。
 次に図1Bを参照するに、前記シリコン基板21の全面に例えばプラズマCVD法により、シリコン酸化膜より成る層間絶縁膜26を、前記ゲート電極16および側壁絶縁膜20を覆うように形成する。
 さらに図1Bを参照するに、前記層間絶縁膜26上に、膜厚が50nmの研磨ストッパ膜28を形成する。前記研磨ストッパ膜28としては、プラズマCVD法により形成したSiC膜を用いる。ただしプラズマCVD法により形成したSiN膜を使うことも可能である。前記研磨ストッパ膜28は、後述する工程において化学機械研磨法によりタングステン膜(図1Bには図示せず)等を研磨する際にストッパとして機能する。また前記研磨ストッパ膜28は、後述する工程において層間絶縁膜に溝を形成する際に、エッチングストッパとして機能する。
 次に、フォトリソグラフィ技術を用い、前記層間絶縁膜26中に、前記ソース/ドレイン拡散層22に達するコンタクトホール30を形成し、図1Bの構造が得られる。
 次に図1Cの工程において、前記図1Bの構造の全面にスパッタ法により、膜厚50nmのTiN膜より成る密着層32を形成する。前記密着層32は、後述する導体プラグの下地に対する密着性を確保するためのものである。
 さらに前記図1Cの工程では、前記図1Bの構造上全面に、前記密着層32を覆って膜厚1μmのタングステン膜34をプラズマCVD法により形成し、さらに前記タングステン膜34及びその下の密着層32を、CMP法により、前記研磨ストッパ膜28の表面が露出するまで研磨する。その結果、図1Cに示すように、前記コンタクトホール30内に、タングステンより成る導体プラグ34が埋め込まれた構造が得られる。
  次に図1Dの工程において、前記図1Cの構造上に拡散バリアとなる絶縁膜、すなわち絶縁性拡散バリア膜36を、例えばSiC膜により、プラズマCVD法を使って約30nmの膜厚に形成し、さらにその上に、層間絶縁膜38を形成する。ここで前記絶縁性拡散バリア膜36はSiC膜に限定されるものではなく、SiN膜を使うことも可能である。前記層間絶縁膜38としては、多孔質シリカより成る層間絶縁膜(多孔質シリカ膜)を使うことができるが、本実施形態はこの特定の材料に限定されるものではなく、Siを成分に含むオルガノシロキサン膜や水素化シロキサン膜、あるいはこれらの多孔質膜を使うことができる。さらには有機ポリマ膜も、膜中にSiを含めば使うことが可能である。このような層間絶縁膜としては、例えば商品名NCS(触媒化成社製)、商品名IPS(触媒化成社製)、商品名Black Diamond(アプライドマテリアルズ社製)、商品面コーラル(Novellus社製)、商品名LKDシリーズ(JSR社製)、商品名オーロラ(ASM社製)、商品名HSGシリーズ(日立化成社製)、商品面Nanoglass(Honewell社製)、商品名IPS(触媒化成社製)、Z3MS(Dow Corning社製)、商品名XLK(Dow Corning社製)、商品名Orion(Trikon社製)などを使うことも可能である。前記多孔質層間絶縁膜38は、例えば160nmの膜厚に形成される。前記層間絶縁膜38は、材料によるが、スピンコーティング法あるいはプラズマCVD法により形成される。
 次に図1Eの工程において、前記絶縁性拡散バリア膜36と同様な絶縁性拡散バリア膜40をCVD法により、例えば30nmの厚さに形成し、さらに図1Fの工程において、前記絶縁性拡散バリア膜40の全面にスピンコート法により、フォトレジスト膜42を形成する。
 さらに図1Gの工程において、フォトリソグラフィ技術を用い、前記フォトレジスト膜42にレジスト開口部44を形成し、前記フォトレジスト膜42をマスクとして、絶縁性拡散バリア膜40、層間絶縁膜38及び絶縁性拡散バリア膜36を順次エッチングし、前記層間絶縁膜38中に前記レジスト開口部44に対応して開口部46を形成する。前記開口部46は、第1層目の配線(第1金属配線層)50を形成するためのもので、例えば配線幅が100nm、配線間隔が100nmとなるように形成される。
 図1Gのエッチングは、典型的にはCFガス及びCHFガス、あるいはCH22,C46,C48,C58,CF3Iなどフッ素を含むCF系のガスをエッチングガスとして使ったプラズマエッチング法により、前記ストッパ膜28を、エッチングストッパとして使って実行される。図1Gの工程の結果、前記絶縁膜40、層間絶縁膜38及び絶縁性拡散バリア膜36に、配線を埋め込むための前記開口部46が形成され、前記導体プラグ34の上面が、前記開口部内46に露出する。この後、フォトレジスト膜42が剥離される。
 ところで、図1Gの工程においては、前記開口部46のエッチング後において、前記開口部46の側壁面あるいは底面に、エッチングガスの分子、たとえはCF4分子が吸着して残留する場合がある。またフッ素(F)を含むエッチングガスを使ってエッチングされたため、前記開口部46の側壁面および底面は、フッ素で終端された状態になっており、特に前記層間絶縁膜38や絶縁性拡散バリア膜36,40がシリコン(Si)を構成成分として含んでいる場合、前記開口部46の側壁面や底面にはSi-F結合が形成されていることになる。
 この状態で、前記開口部46の側壁面や底面に水が残留し、かつこのような表面が引き続きバリアメタル膜で覆われてしまった場合、表面のSi-F結合は反応
≡SiF+H2O→≡Si-OH+HF          (式1)
を生じ、また生成したHFが触媒となって、直後に形成されるバリアメタル膜を酸化させてしまう恐れがある。ここで記号「≡Si」は、Si原子が層間絶縁膜中の酸素など、他の原子に結合していることを示している。なおこのような開口部46の側壁面や底面に残留する水は、層間絶縁膜38中に吸着されていた水分や水素などに起因するものである。
 このようなエッチング開口部46に残留する水やフッ素は、プラズマに曝露することで除去することが可能であり、従来、このようなプラズマ処理により除去されている。しかしこのようなプラズマ処理では、先にも述べたように層間絶縁膜にダメージが発生し、膜の吸水性がかえって増大する結果、low-K誘電体膜よりなる層間絶縁膜の比誘電率が上昇するなどの問題が生じていた。
 そこで本実施形態は、図1Hの工程において、このように層間絶縁膜38中にフッ素系エッチングガスを使って形成された開口部46の底面および側壁面において残留するCF系のエッチングガス分子や終端フッ素を、過熱水蒸気を使って除去することを提案する。
 図2Aは、第1の実施形態において、上記過熱水蒸気による処理に使われる基板処理装置の概要を、図3および図4は、過熱水蒸気の相平衡図を示す。
 まず図2Aを参照するに、基板処理装置100はバルブ112Cを介してターボ分子ポンプ112Aおよびロータリポンプ112Bにより排気される処理容器111を有しており、前記処理容器111中には、抵抗加熱ヒータなどの加熱機構111Hを備え、被処理基板Wを保持する基板保持台111Aが設けられている。また前記処理容器111には、前記処理容器111内のプロセス空間111Sの圧力ないし真空度を測定するイオンゲージ111I、および酸素濃度を測定する酸素濃度計111Oが設けられている。
 さらに前記基板処理装置110は、窒素ガスを窒素ガス源113Nから対応するMFC(質量流量コントローラ)114Nを介して前記処理容器111に供給する第1のガス供給ライン115Nと、ヘリウムガスをヘリウムガス源113Heから対応するMFC(質量流量コントローラ)114Heを介して前記処理容器111に供給する第2のガス供給ライン115Heと、ArガスをArガス源113Arから対応するMFC(質量流量コントローラ)114Arを介して処理容器111に供給する第3のガス供給ライン115Arと、水素ガスを水素ガス源113Hから対応するMFC(質量流量コントローラ)114Hを介して前記処理容器111に供給する第4のガス供給ライン115Hと、を備えている。
 さらに前記基板処理装置110は、前記処理容器111中に過熱水蒸気を供給する過熱水蒸気発生装置116Aを有し、前記過熱水蒸気発生装置116Aには水タンク116Cから液状の水が、給水ポンプ116Bを介して供給される。
 図2Bは前記過熱水蒸気発生装置116Aの概略的構造を示す断面図である。
 図2Bを参照するに、過熱水蒸気発生装置116Aはヒータ116hを備えた電気炉116Hを含み、前記電気炉116H中に通した石英あるいはステンレスの配管116Q中に水を通し、これを加熱して所望の過熱水蒸気を発生させる。
 図3は、周知の水の相平衡図であり、三重点Tと臨界点Kが示されている。図3中、縦軸が圧力を表し、横軸が温度を表す。
 三重点Tは固相の水、すなわち氷と液相の水、さらに気相の水、すなわち水蒸気が共存する点であり、611.73Paおよび0.01℃の温度圧力に固定されている。一方臨界点Kは液相の水と気相の水の相境界上の点で、これを超えて温度あるいは圧力が増大すると、液相と気相の区別がなくなる。臨界点の温度、すなわち臨界温度は374℃で、圧力、すなわち臨界圧力は22.1MPaである。
 図4は、前記臨界点K近傍における水の状態をより詳細に示す相平衡図である。ただし図4では縦軸が温度になっており、横軸が圧力になっていることに注意すべきである。
 図4を参照するに、臨界点Kを超えて温度および圧力が増大すると水は「超臨界水」となるのに対し、臨界圧力以下の領域では気相の水、すなわち水蒸気は「加熱蒸気」、あるいは「過熱水蒸気」となる。
 以下の表1は、0.1MPa,25℃の常温水、27.6MPa,450℃の超臨界水、および1.38MPa,450℃の過熱水蒸気の物性(誘電率、密度、動粘度,有効拡散係数)をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照するに、過熱水蒸気は密度が4.19×10-3g/cm3と、常温水や超臨界水に比べて低い他、動粘度が6.32×10-62/秒と、常温水や超臨界水に比べて一桁小さく、さらに有効拡散係数が1.79×10-3cm2/秒と、常温水や超臨界水に比べて小さい特徴があるが、特に比誘電率の値であり、超臨界水では比誘電率がほぼ1.0で、常温水や超臨界水よりも小さい特徴を有している。このことは、過熱水蒸気が常温水と異なり、実質的に無極性であることを示している。
 図5は水の誘電率と圧力および温度の関係を示すグラフである。ただし図5中、縦軸が誘電率を、横軸が圧力を表している。
 図5を参照するに、温度が300℃~500℃の過熱水蒸気は、圧力が10Pa以下において比誘電率がほとんど1.0で、無極性になることがわかる。なお図5において、「飽和曲線」は水蒸気と水の二相分離状態を示しており、この二相分離状態が温度374℃、圧力22.1MPaの臨界点Kにおいて消失することを示している。
 そこで本実施形態では図1Hの工程において、前記図2Aの基板処理装置100中を使い、過熱水蒸気を使い、前記開口部46の底面や側壁面に付着したエッチングガスに起因するCFx分子や、終端フッ素を洗浄して除去する。このような比誘電率が1.0で無極性の水蒸気は、前記底面や側壁面に付着している無極性の残留CFx分子を効率よく離脱させ、また終端フッ素を、前記式(1)の反応によりHFの形で離脱させることができる。また生成したHFは、前記プロセス空間111Sがターボ分子ポンプ112Aおよびロータリポンプ112Bにより排気されているため、ただちにプロセス空間111Sから排気され、残留することはない。
 より具体的には、前記図1Gの構造をレジスト膜42の除去の後、前記図2Aの基板処理装置100の処理容器111中に被処理基板Wとして導入し、前記基板保持台111A上に保持する。
 次に前記水タンク116C中の液体の水を給水ポンプ116Aにて前記過熱水蒸気発生器116Aに送り、過熱水蒸気を発生させ、前記処理容器111中に例えば0.1MPaの圧力(常圧)下、250℃の温度で供給する。その際、前記処理空間111Sにおける膨張による冷却の効果を勘案して、前記過熱水蒸気発生器116Aにおいては前記給水ポンプ116Aにより給送されてきた水を所望温度よりも50℃高い温度に加熱しておく。また前記基板保持台111A中の加熱機構111Hを駆動し、前記過熱水蒸気に温度降下が生じないように前記被処理基板Wの温度を250℃に設定しておく。
 図6Aおよび図6Bは、このような過熱水蒸気によるフッ素および炭素の除去効果を検証するための、XPS(X線光電子スペクトロスコピ)分析の結果を示す。なお図6A,図6BのXPS分析では、図1GのCF系エッチングガスによるドライエッチングの後、図1Hの前記過熱水蒸気による洗浄処理を行う前、および行った後についてXPSスペクトルを求めている。なお図6A,図6BのXPS測定は、実際には図1Hの試料ではなく、図6Cに示す平坦な試料について行っている。ここで前記図6Cの試料は、図6Dに示すシリコン基板10上に層間絶縁膜38に対応した層間絶縁膜138を、前記図1Dの工程に対応して150nmの厚さに形成し、さらにこのようにして形成した層間絶縁膜138を、CFガスをエッチングガスとして使ったプラズマエッチング法により30nm程度エッチングし、得られた構造に対し、図6Eに示すように、先に図1Hと同様にして過熱水蒸気処理を行って得たものである。
 図6Aを参照するに、縦軸は光電子強度、横軸はF1s軌道の束縛エネルギを示しているが、洗浄前に観測された高いSiFxのピークが洗浄後には検出されていないことがわかる。また同様にCFxのピークも、洗浄後にはバックグラウンドまで落ちているのがわかる。
 また図6Bを参照するに、C1s軌道に対応する束縛エネルギにおいても、洗浄前に比較してCFxのピークの高さがバックグラウンドまで落ちており、CFx分子も同様に洗浄により除去されたことがわかる。
 なお図1Hの工程においては、後で詳細に説明するように酸素濃度を0.6体積%以下に抑制しているが、その結果、前記開口部46の底にCu配線層が露出されている場合などにおいて、その酸化を抑制することができ、またバリアメタル膜48の酸化を抑制することができる。
 図1Hの工程において前記開口部46の側壁面および底面を洗浄した後、図1Iの工程において、図1Hの構造上に全面にわたり、Ta膜あるいはTi膜をバリアメタル膜48として、例えばスパッタ法により、前記バリアメタル膜48が前記拡散バリア膜40の表面および前記開口部46の底面および側壁面を連続して覆うように、例えば5nm~30nmの厚さに形成する。
 次に図1Jの工程において、前記図1Iの構造の全面に、前記バリアメタル膜48を覆ってCuシード膜(図示せず)をスパッタ法により、例えば10nmの膜厚に形成し、さらに前記Cuシード層を電極とした電解めっき法によりCu膜50を、前記溝46を充填するように、例えば600nmの膜厚に形成する。
 さらに図1Kの工程においてCMP法により、前記Cu膜50及びバリアメタル膜48を、前記絶縁性拡散バリア膜40の表面が露出するまで研磨する。これにより、前記開口部46内において前記Cu膜50がCu配線パタ―ン50Aを形成し、層間絶縁膜38中に前記Cu配線パタ―ン50Aが埋め込まれた配線層が形成される。
 次に図1Lの工程において、前記絶縁性拡散バリア膜40上に前記Cu配線パタ―ン50Aを覆って、プラズマCVD法により、前記絶縁性拡散バリア膜40と同様な絶縁性拡散バリア膜52を例えば30nmの膜厚に形成し、図1Mの工程において前記絶縁性拡散バリア膜52上に全面にわたり、多孔質層間絶縁膜54を例えば180nmの膜厚に形成する。前記多孔質層間絶縁膜54としては、前記層間絶縁膜38と同様な絶縁膜を使うことができる。さらに図1Nの工程において前記多孔質層間絶縁膜54上にプラズマCVD法により、前記絶縁性拡散バリア膜52と同様な絶縁性拡散バリア膜56を例えば30nmの膜厚に形成する。
 次に図1Oに示すように、前記絶縁性拡散バリア膜56上に、前記多孔質層間絶縁膜38あるいは54と同様な多孔質層間絶縁膜58を、例えば160nmの膜厚に形成し、さらに図1Pの工程において、前記多孔質層間絶縁膜58上にCVD法により、絶縁性拡散バリア膜60を例えば30nmの膜厚に形成する。
 さらに図1Qの工程において、前記図1Pの構造上の全面にスピンコート法によりフォトレジスト膜62を形成し、これをフォトリソグラフィ技術によりパターニングし、前記フォトレジスト膜62にレジスト開口部64を形成する。
 さらに図1Qの工程では、前記フォトレジスト膜62をマスクとして前記絶縁性拡散バリア膜60、層間絶縁膜58、絶縁性拡散バリア膜56、層間絶縁膜54及び絶縁性拡散バリア膜52を、CFガス及びCHFガスをエッチングガスとしたプラズマエッチング法によりエッチングし、前記レジスト開口部64に対応して前記Cu配線パタ―ン50Aを露出するコンタクトホール66を形成する。
 さらに前記フォトレジスト膜62を剥離した後、図1Rの工程において前記絶縁性拡散バリア膜60上の全面にスピンコート法により、フォトレジスト膜68を形成する。
 さらに前記フォトレジスト膜69をフォトリソグラフィ技術によりパターニングし、レジスト開口部70を形成する。さらに前記フォトレジスト膜68をマスクとして、前記絶縁性拡散バリア膜60、層間絶縁膜58及び絶縁性家訓バリア膜56をCFガス及びCHFガスをエッチングガスとしてプラズマエッチングし、前記絶縁性拡散バリア膜60、層間絶縁膜58及び絶縁性拡散バリア膜56に、配線溝72を前記レジスト開口部70に対応して、前記コンタクトホール66に重畳するように形成する。
 次に図1Sの工程において前記レジスト膜68を除去した後、前記コンタクトホール66の側壁面および底面、および前記配線溝72の側壁面および底面を、先の図1Hの工程と同様に過熱水蒸気を使って洗浄し、前記コンタクトホール66および配線溝72の底面や側壁面に付着している未反応のエッチングガス分子CFxや表面終端フッ素を除去する。本実施形態では、この過熱水蒸気による洗浄工程の際、雰囲気中の酸素濃度を0.4体積%に制御している。
 より具体的には、前記処理容器111中に前記窒素ガス源113Nあるいはヘリウムガス源113Hあるいはアルゴンガス源113Arあるいは水素ガス源113Hから、窒素ガスあるいはヘリウムガスあるいはアルゴンガスあるいは水素ガスを供給し、前記プロセス空間111Sを充填し、さらにこれをターボ分子ポンプ112Aおよびロータリポンプ112Bにより排気することにより、前記処理容器111内部のプロセス空間111Sをパージし、前記プロセス空間における酸素濃度を、0.6体積%以下、例えば0.4体積%に低減させる。
 本実施形態では過熱水蒸気は、先に説明した式(1)における反応複製生物のHFを溶解した場合、酸化銅の還元効果の大きい水素イオン(H+)を高濃度で含むことになる。また洗浄時の雰囲気を酸素濃度0.6体積%以下に抑制するため、前記コンタクトホール66の底に露出されたCu配線パタ―ン50A表面に形成された酸化物は効果的に還元され、前記Cu配線パタ―ン50Aの露出表面として、新鮮で酸化物形成の非常に少ない表面が得られる。
 過熱水蒸気による洗浄工程の際の酸素濃度の制御については、次の実施形態において詳細に説明する。
 さらに図1Tの工程において前記配線溝72およびコンタクトホール66のそれぞれの側壁面および底面をスパッタ法により、前記バリアメタル膜48と同様なバリアメタル膜74で覆い、図1Uの工程において前記図1Tのバリアメタル膜74上にスパッタ法により、Cuより成るシード膜(図示せず)を例えば10nmの膜厚に形成する。
 さらに図1Uの工程では、前記Cuシード膜にメッキ浴中において通電することにより、Cu膜76を前記コンタクトホール66および配線溝72を充填するように、たとえば1400nmの膜厚に形成する。
 さらに図1Vの工程において前記Cu膜76およびその下のバリアメタル膜74を、前記絶縁性拡散バリア膜60の上面が露出するまで化学機械研磨により研磨し、前記配線溝77がCu配線パタ―ン76aにより充填され、また前記コンタクトホール66が前記Cu配線パタ―ン76aから延出するCuビアプラグ76bにより充填され、かつ表面が平坦化された配線構造が得られる。
 さらに図1Wの工程において、前記Cu配線パタ―ン76aの表面を、膜厚が例えば30nmのSiCよりなる絶縁性拡散バリア膜(キャップ膜)78により覆う。
 さらにこの後、上記と同様の工程を適宜繰り返すことにより、図示しない第3層目の配線層を形成し、多層配線構造とすることも可能である。
 このようにして形成された多層配線構造では、前記Cu配線パタ―ン50AとCuビアプラグ76bとの間のコンタクト抵抗が、前記配線パタ―ン50Aの表面における酸化物形成が抑制され、またバリアメタル膜48と層間絶縁膜38あるいはその下のSiCエッチングストッパ膜28との界面や、層間絶縁膜54あるいは58とバリアメタル膜74との界面における酸化物形成が抑制されるため低減され、低いコンタクト抵抗を有する多層配線構造を得ることができる。
 このようにして形成された半導体装置について、100万個の導体プラグが電気的に直列に接続されるように配線及び導体プラグを形成し、歩留りを測定したところ、96.1~100%の歩留まりが得られた。これに対し、前記図1Hおよび図1Sの過熱水蒸気による洗浄工程の代わりにプラズマ処理を行った比較例では、歩留まりは51.1~57.6%にしかすぎなかった。また200℃での高温放置試験後の抵抗上昇を確認したところ、本実施形態では168時間後の抵抗上昇は3.2~3.8%であったのに対し、上記比較例では12.3~37.6%に達し、504時間後の抵抗上昇は、本実施形態では3.6~4.5%であったのに対し、前記比較例は26.3~46.2%に達した。
 以下の表2に、上記の結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2において「比較例1」は上記比較例においてバリアメタル膜48,74としてタンタル(Ta)を使った場合、「比較例2」は上記比較例においてバリアメタル膜48,74としてチタン(Ti)を使った場合、「実施例1」は本実施形態においてバリアメタル膜48,74としてタンタル(Ta)を使った場合、「実施例2」は本実施形態においてバリアメタル膜48,74としてチタン(Ti)を使った場合を、それぞれ意味する。
 また表2において「拡散バリア/絶縁膜界面における金属酸化物の割合」は、図1Iの状態の試料について、熱処理後、のTa4f軌道、あるいはTi2p軌道について、XPS測定により光電子強度と束縛エネルギの関係を求めた結果から導かれている。
 図7Aは、前記図1Iの構造において、前記バリアメタル膜48としてTaを使った場合のXPS測定の結果を、また図7Bは、前記図1Iの構造において、前記バリアメタル膜48としてTiを使った場合のXPS測定の結果を示す。図7A中、「実施例1」は表1の実施例1に対応し、「未処理1」は、前記図1Hの過熱水蒸気による洗浄処理を省略した場合に対応する。また図7B中、「実施例2」は表2の実施例2に対応し、「未処理2」は、前記図1Hの過熱水蒸気による洗浄処理を省略した場合に対応する。ただし図7A,図7Bの測定は、実際には前記図6Cに示す測定試料上に前記バリアメタル膜48に対応するバリアメタル膜を形成し、その後真空中(1×10-5Torr)で400℃,60分加熱した試料について、前記加熱処理後、N2雰囲気のグローブボックス内で拡散バリアを層間絶縁膜から剥離し、このようにして得られた剥離面について行っている。
 図7A,7Bを参照するに、実施例1ではTaのピークが比較例1よりも低くなっており、同様に実施例2ではTiOのピークが比較例2よりも低くなっている。前記表2における「拡散バリア/絶縁膜界面における金属酸化物の割合」は、図7A,図7Bより導出されたものである。
 さらに図8Aおよび8Bは、前記図6Dの試料についてTDS分析により、フッ素および水の脱離を調べた結果を示す。
 図8Aを参照するに、「未処理」、すなわち図1Hの過熱水蒸気による洗浄処理を省略し、またプラズマ処理も省略した試料では、加熱に伴い放出されるフッ素(F)の量が最も多く、「従来技術」、すなわち図1Hの過熱水蒸気処理の代わりにプラズマ処理を行った試料がこれに続く。これに対し、「本実施形態」、すなわち図1Hの過熱水蒸気による洗浄処理を行った試料では、フッ素の放出がほとんど生じていないことがわかる。
 また図8Bを参照するに、「未処理」、すなわち図1Hの過熱水蒸気による洗浄処理を省略し、またプラズマ処理も省略した試料、および「従来技術」、すなわち図1Hの過熱水蒸気処理の代わりにプラズマ処理を行った試料では、加熱による水の放出量にほとんど差がなく、多量の水が放出されているのに対し、「本実施形態」、すなわち図1Hの過熱水蒸気による洗浄処理を行った試料では、水の放出が実質的に減少していることがわかる。
 図9は、第1の実施形態を要約して示すフローチャートである。
 図9を参照するに、本実施形態ではステップ1において層間絶縁膜を下地構造上に堆積し、ステップ2において前記層間絶縁膜を、CF系のエッチングガスを使ったプラズマエッチングによりエッチングする。
 さらにステップ3において、前記ステップ2のエッチングにより生じたエッチング面に対し、過熱水蒸気による洗浄を行い、前記エッチング面から残留フッ素および水を除去する。
 さらにステップ4において、このように洗浄された面に、バリアメタル膜を形成する。
 本実施形態では先に説明したように、Siを含む様々な層間絶縁膜を使うことができ、またバリアメタル膜として、Ta,Ti,Ru,Zr,Hf,V,Nb,Cr,Mo,W,Mnなど、様々な高融点金属膜、あるいはそれらの導電性窒化膜、あるいはそれらの積層膜を使うことができる。

 (第2の実施形態)
 先の実施形態では、図1Sの洗浄工程において、雰囲気中の酸素濃度を0.4体積%に設定して行っていた。
 これは、前記洗浄工程において酸素濃度が高いと、例えば前記図1S中、開口部66,72により露出されたCu配線パタ―ン50Aの表面が変色し、前記表面に酸化物の形成が生じていることが示されるためである。
 表3は、図1Sの工程において、雰囲気中の酸素濃度を様々に変化させて露出されたCu配線パタ―ン50A表面の変色を調べた結果を示す。なお雰囲気中の酸素濃度は、前記処理容器111をArガス、Heガス、窒素ガス、あるいは水素ガスで繰り返しパージすることで制御され、前記処理容器111に設けた酸素濃度計111Oにより確認している。
Figure JPOXMLDOC01-appb-T000003
 表3を参照するに、酸素濃度が0.8体積%以上である場合、露出したCu配線パタ―ン50Aに変色が生じており、表面に酸化物が形成されていることが示唆される。これに対し、前記洗浄工程における酸素濃度が0.6体積%以下である場合、Cu配線パタ―ン50Aに変色が生じることはなく、酸化物形成が抑制されていることがわかる。このような理由で、先の実施形態では、図1Hあるいは図1Sの過熱水蒸気を使った洗浄工程において、酸素濃度を0.4体積%に設定している。
 図10は、洗浄工程前に酸素パージ工程を設けた、第2の実施形態を示すフローチャートである。ただし図10中、先に説明した工程には同一の参照符号を付し、説明を省略する。
 図10を参照するに、本実施形態では、工程2の層間絶縁膜のプラズマエッチングの後、工程3の過熱水蒸気により洗浄の前に工程21を行い、前記処理容器111内部のプロセス空間111Sをパージして酸素濃度を0.6体積%以下に低減させる。
 図11は、このような酸素パージ工程21の一例について概略を示すフローチャートである。
 図11を参照するに、工程211において前記処理容器111中にArガスやHeガス、窒素ガスなどの不活性ガス、さらには水素ガスなどの還元性ガスを導入し、前記プロセス空間111Sを、前記不活性ガスあるいは還元性ガスにより充填する。
 さらにステップ212において前記バルブ112Cを開き、前記ターボ分子ポンプ112Aおよびロータリポンプ112Bにより前記プロセス空間111Sを排気し、前記不活性ガスあるいは還元性ガスとともに、酸素を除去する。
 さらにステップ213において前記酸素濃度系111Oにより前記プロセス空間111S中の酸素濃度を測定し、ステップ211~213を、前記プロセス空間111S中の酸素濃度が0.6体積%以下になるまで繰り返す。
 なお前記ステップ21のパージ工程は、図11に示す不活性ガスあるいは還元ガスを使ったパージ工程に限定されるものではなく、効率は多少劣るが、例えば真空パージ工程を使うことも可能である。
 なお先の実施形態において、図1Hの工程では、露出されるのがタングステンプラグであり、Cu配線パタ―ンではないため、過熱水蒸気による洗浄工程において雰囲気中の酸素濃度を0.6体積%以下に抑制することは好ましいものの、必須ではない。
 また図1Sに示すように過熱水蒸気により洗浄される開口部は、開口部66は下層の配線パタ―ンを露出しているが開口部72は配線溝であり、コンタクトホール66を構成する開口部66が形成される部位以外では下層の配線パタ―ンは露出しておらず、下層の配線パタ―ンを露出するものに限定されるわけではない。
 図1Hおよび図1Sの過熱水蒸気による洗浄工程は、常圧以下の圧力で行えば、前記処理容器111として耐圧容器を使う必要がなく、またターボ分子ポンプ112Aやロータリポンプ112Bなど通常の排気系を使うことができることから、有利である。また図5に示すように、常圧以下の圧力においては、過熱水蒸気の比誘電率は、温度如何によらず、約1.0となる。
 また図1Hおよび図1Sの洗浄工程において前記過熱水蒸気の温度は250℃に限定されるものではないが、温度が100℃以下になると洗浄効果が不十分となり、また温度が400℃を超えると基板上に形成された半導体装置がダメージを受けるため、前記洗浄工程における過熱水蒸気の温度は100℃~400℃の範囲とするのが好ましい。
 以上、本発明を好ましい実施例について説明したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
 10 シリコン基板
 12 素子分離領域
 14 素子領域
 16 ゲート絶縁膜
 18 ゲート電極
 20 ゲート側壁絶縁膜
 24 トランジスタ 
 26,38,54,58 層間絶縁膜
 28 研磨ストッパ膜
 30 コンタクトホール
 32 密着層
 34 タングステンプラグ
 36,40,52,56,60,78 絶縁性拡散バリア膜
 42、62,68 レジスト膜
 44,64 レジスト開口部
 46 開口部
 48,74 バリアメタル膜
 50,76 Cu層
 50A,76a Cu配線パタ―ン
 66 ビアホール
 72 配線溝
 76b Cuビアコンタクト
 100 基板処理装置
 111 処理容器
 111A 基板保持台
 111H 加熱機構
 111I 真空ゲージ
 111O 酸素濃度計
 111S プロセス空間
 112A ターボ分子ポンプ
 112B ロータリポンプ
 112C バルブ
 113N 窒素ガス源
 113He ヘリウムガス源
 113Ar アルゴンガス源
 113H 水素ガス源
 114N,114He,114Ar,114H MFC
 115N,115He,115Ar,115H ガス供給ライン
 116A 過熱水蒸気発生装置
 116B 給水ポンプ
 116C 水タンク
 116H 電気炉
 116h ヒータ
 116Q 配管

Claims (17)

  1. 絶縁膜中に開口部を、フッ素を含むエッチングガスを使ったドライエッチングにより形成する工程と、
     前記開口部の底面と側壁面を、過熱水蒸気に曝露して洗浄する洗浄工程と、
     前記開口部の底面と側壁面をバリアメタル膜で覆う工程と、
     前記絶縁膜上に導体膜を堆積し、前記開口部を、前記バリアメタル膜を介して前記導体膜で充填する工程と、
     前記導体膜およびその下のバリアメタル膜を、前記絶縁膜の表面が露出するまで化学機械研磨法により研磨し、前記開口部に前記導体膜により、配線パタ―ンを形成する工程と、
    を含むことを特徴とする配線構造の形成方法。
  2. 前記洗浄工程は、常圧、あるいはそれ以下の圧力で実行されることを特徴とする請求項1記載の配線構造の形成方法。
  3. 前記洗浄工程は、前記開口部の底面と側壁面を、100℃~400℃の温度の過熱水蒸気曝露することにより実行されることを特徴とする請求項1記載の配線構造の形成方法。
  4. 前記洗浄工程では処理容器中に過熱水蒸気が、前記洗浄工程で前記開口部の底面および側壁面が曝露される過熱水蒸気の温度よりも高い温度で導入されることを特徴とする請求項3記載の配線構造の形成方法。
  5. 前記洗浄工程では、前記絶縁膜が、前記開口部の底面および側壁面が曝露される過熱水蒸気の温度まで加熱されることを特徴とする請求項4記載の配線構造の形成方法。
  6. 前記洗浄工程は、0.6体積%以下の酸素濃度の雰囲気中において実行されることを特徴とする請求項1記載の配線構造の形成方法。
  7. 前記雰囲気は、不活性雰囲気あるいは還元性雰囲気であることを特徴とする請求項6記載の配線構造の形成方法
  8. 前記開口部の形成工程の後、前記洗浄工程の前に、前記雰囲気中の酸素濃度を0.6体積%以下に低減する低減工程を含むことを特徴とする請求項6記載の配線構造の形成方法。
  9. 前記低減工程は、前記洗浄工程が行われる処理容器中に不活性ガスまたは還元性ガスを導入し、これを引き続き排気するパージ工程を繰り返すことにより実行されることを特徴とする請求項8記載の配線構造の形成方法。
  10. 前記低減工程では、前記パージ工程毎に酸素濃度が測定されることを特徴とする請求項9記載の配線構造の形成方法。
  11. 前記開口部を形成する工程は、前記開口部が前記絶縁膜の下のCu膜を露出するように実行されることを特徴とする請求項6記載の配線構造の形成方法。
  12. 前記絶縁膜はSiを含むことを特徴とする請求項1記載の配線構造の形成方法。
  13. 前記絶縁膜は、オルガノシロキサン膜、水素化シロキサン膜、Siを含む有機ポリマ膜、およびこれらの多孔質膜のいずれかより選ばれることを特徴とする請求項12記載の配線構造の形成方法。
  14. 前記バリアメタル膜は、Ti,Ta,Ru,Zr,Hf,V,Nb,Cr,Mo,W,Mn、およびこれらの導電性窒化物よりなることを特徴とする請求項1記載の配線構造の形成方法。
  15. 前記バリアメタル膜は、複数の層の積層膜よりなることを特徴とする請求項11記載の配線構造の形成方法。
  16. 絶縁膜中に開口部を、フッ素を含むエッチングガスを使ったドライエッチングにより形成する工程と、
     前記開口部の底面と側壁面を、過熱水蒸気に曝露して洗浄する洗浄工程と、
     前記開口部の底面と側壁面をバリアメタル膜で覆う工程と、
     前記絶縁膜上に導体膜を堆積し、前記開口部を、前記バリアメタル膜を介して前記導体膜で充填する工程と、
     前記導体膜およびその下のバリアメタル膜を、前記絶縁膜の表面が露出するまで化学機械研磨法により研磨し、前記開口部に前記導体膜により、配線パタ―ンを形成することを特徴とする半導体装置の製造方法。
  17. 排気系により排気され、被処理基板を保持する基板保持台を収容した処理容器と、
     前記処理容器に過熱水蒸気を供給する過熱水蒸気発生装置と、
     前記処理容器に不活性ガスまたは還元性ガスを供給するガス供給装置と、
     前記処理容器中の酸素濃度を測定する酸素濃度測定装置と、
     前記基板保持台中に設けられ、前記基板保持台上の被処理基板を、前記被処理基板が曝露される過熱水蒸気の温度まで加熱する加熱機構と、
    を備え、
     前記過熱水蒸気発生装置は前記過熱水蒸気を、前記基板保持台上の被処理基板の温度よりも高い温度で前記処理容器中に供給することを特徴とする基板処理装置。
PCT/JP2010/060757 2010-06-24 2010-06-24 配線構造の形成方法、半導体装置の製造方法、基板処理装置 WO2011161797A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012521230A JP5537657B2 (ja) 2010-06-24 2010-06-24 配線構造の形成方法、半導体装置の製造方法、基板処理装置
PCT/JP2010/060757 WO2011161797A1 (ja) 2010-06-24 2010-06-24 配線構造の形成方法、半導体装置の製造方法、基板処理装置
US13/608,644 US8956967B2 (en) 2010-06-24 2012-09-10 Method of forming an interconnection structure
US14/579,605 US20150135472A1 (en) 2010-06-24 2014-12-22 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060757 WO2011161797A1 (ja) 2010-06-24 2010-06-24 配線構造の形成方法、半導体装置の製造方法、基板処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/608,644 Continuation US8956967B2 (en) 2010-06-24 2012-09-10 Method of forming an interconnection structure

Publications (1)

Publication Number Publication Date
WO2011161797A1 true WO2011161797A1 (ja) 2011-12-29

Family

ID=45371010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060757 WO2011161797A1 (ja) 2010-06-24 2010-06-24 配線構造の形成方法、半導体装置の製造方法、基板処理装置

Country Status (3)

Country Link
US (2) US8956967B2 (ja)
JP (1) JP5537657B2 (ja)
WO (1) WO2011161797A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204777A (ja) * 2011-03-28 2012-10-22 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2015088666A (ja) * 2013-10-31 2015-05-07 富士通株式会社 半導体装置の製造方法及び半導体装置
JP2018046260A (ja) * 2016-09-16 2018-03-22 株式会社Screenホールディングス パターン倒壊回復方法、基板処理方法および基板処理装置
JP2018117038A (ja) * 2017-01-18 2018-07-26 東京エレクトロン株式会社 保護膜形成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219033B2 (en) * 2014-03-21 2015-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Via pre-fill on back-end-of-the-line interconnect layer
US9466488B2 (en) * 2014-05-09 2016-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Metal-semiconductor contact structure with doped interlayer
US9799603B2 (en) * 2016-01-27 2017-10-24 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same
JP6796482B2 (ja) * 2016-12-27 2020-12-09 新光電気工業株式会社 配線基板、配線基板の製造方法
KR102307127B1 (ko) * 2017-06-14 2021-10-05 삼성전자주식회사 반도체 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271192A (ja) * 2000-03-27 2001-10-02 Jun Kikuchi 表面処理方法
JP2008226924A (ja) * 2007-03-08 2008-09-25 Tokyo Electron Ltd 半導体装置の製造方法および記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263727A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd 表面処理方法及びその装置
JPH1116912A (ja) 1997-06-25 1999-01-22 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置の製造装置
JP2003045960A (ja) 2001-08-01 2003-02-14 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003142579A (ja) * 2001-11-07 2003-05-16 Hitachi Ltd 半導体装置の製造方法および半導体装置
JP4738178B2 (ja) 2005-06-17 2011-08-03 富士通セミコンダクター株式会社 半導体装置の製造方法
JP2007149813A (ja) 2005-11-25 2007-06-14 Sony Corp 半導体装置の製造方法
JP2007201070A (ja) * 2006-01-25 2007-08-09 Sharp Manufacturing System Corp 基板上の残留有機物の除去方法とその装置
JP4579181B2 (ja) * 2006-03-24 2010-11-10 富士通セミコンダクター株式会社 多層配線における配線の還元方法、多層配線の製造方法、並びに、半導体装置の製造方法
JP2007329245A (ja) * 2006-06-07 2007-12-20 Tokyo Electron Ltd 処理方法および処理装置
US8186987B2 (en) * 2007-02-21 2012-05-29 Panasonic Corporation Nano-fiber manufacturing apparatus
US8142571B2 (en) * 2008-05-15 2012-03-27 Fsi International, Inc. Process for treatment of semiconductor wafer using water vapor containing environment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271192A (ja) * 2000-03-27 2001-10-02 Jun Kikuchi 表面処理方法
JP2008226924A (ja) * 2007-03-08 2008-09-25 Tokyo Electron Ltd 半導体装置の製造方法および記録媒体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204777A (ja) * 2011-03-28 2012-10-22 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2015088666A (ja) * 2013-10-31 2015-05-07 富士通株式会社 半導体装置の製造方法及び半導体装置
US9660065B2 (en) 2013-10-31 2017-05-23 Fujitsu Limited Semiconductor device and method for producing same having multilayer wiring structure with contact hole having hydrophobic film formed on side surface of the contact hole
US9966463B2 (en) 2013-10-31 2018-05-08 Fujitsu Limited Semiconductor device and method for producing same having multilayer wiring structure with contact hole having hydrophobic film formed on side surface of the contact hole
JP2018046260A (ja) * 2016-09-16 2018-03-22 株式会社Screenホールディングス パターン倒壊回復方法、基板処理方法および基板処理装置
US11373860B2 (en) 2016-09-16 2022-06-28 SCREEN Holdings Co., Ltd. Method of restoring collapsed pattern, substrate processing method, and substrate processing device
JP2018117038A (ja) * 2017-01-18 2018-07-26 東京エレクトロン株式会社 保護膜形成方法

Also Published As

Publication number Publication date
JP5537657B2 (ja) 2014-07-02
US8956967B2 (en) 2015-02-17
US20120325920A1 (en) 2012-12-27
JPWO2011161797A1 (ja) 2013-08-19
US20150135472A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5537657B2 (ja) 配線構造の形成方法、半導体装置の製造方法、基板処理装置
TWI402964B (zh) 層間絕緣膜及配線構造與此等之製造方法
JP5267130B2 (ja) 半導体装置およびその製造方法
KR100516337B1 (ko) 반도체 디바이스 및 그 제조 방법
TWI528454B (zh) 半導體裝置及半導體裝置之製造方法
JP4812838B2 (ja) 多孔質絶縁膜の形成方法
JP5548332B2 (ja) 半導体デバイスの製造方法
JP4788415B2 (ja) 半導体装置の製造方法
JP2008117903A (ja) 半導体装置の製造方法
JP2005094014A (ja) 相互接続構造内での低抵抗バイア・コンタクトの形成
JP2008103586A (ja) 半導体装置の製造方法および半導体装置
US7314828B2 (en) Repairing method for low-k dielectric materials
JP5117755B2 (ja) 半導体装置
JP2010287655A (ja) 半導体装置の製造方法
JP2009289996A (ja) 半導体装置の製造方法および半導体装置
JP4567587B2 (ja) 半導体装置の製造方法
KR101132487B1 (ko) 반도체 장치의 제조 방법 및 기록 매체
JP2006073612A (ja) レジスト除去方法
JP5396837B2 (ja) 半導体装置の製造方法
JP2008010610A (ja) 半導体装置の製造方法
JP3843275B2 (ja) 半導体装置の製造方法
JP2006059848A (ja) レジスト除去方法及び半導体装置の製造方法
JP4889376B2 (ja) 脱水方法および脱水装置、ならびに基板処理方法および基板処理装置
JP2006156518A (ja) 半導体装置の製造方法
JP2008235811A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521230

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853657

Country of ref document: EP

Kind code of ref document: A1