[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011157048A1 - 一种快速暂态过电压的生成装置 - Google Patents

一种快速暂态过电压的生成装置 Download PDF

Info

Publication number
WO2011157048A1
WO2011157048A1 PCT/CN2011/000388 CN2011000388W WO2011157048A1 WO 2011157048 A1 WO2011157048 A1 WO 2011157048A1 CN 2011000388 W CN2011000388 W CN 2011000388W WO 2011157048 A1 WO2011157048 A1 WO 2011157048A1
Authority
WO
WIPO (PCT)
Prior art keywords
steepening
gap
voltage
electrode
measuring unit
Prior art date
Application number
PCT/CN2011/000388
Other languages
English (en)
French (fr)
Inventor
张翠霞
陈维江
殷禹
时卫东
张侨根
李志兵
刘石
张璐
Original Assignee
中国电力科学研究院
国家电网公司
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司, 西安交通大学 filed Critical 中国电力科学研究院
Publication of WO2011157048A1 publication Critical patent/WO2011157048A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the present invention relates to a fast transient over-voltage (VFTO) generation technique, and more particularly to a VFTO generation apparatus.
  • Background technique VFTO
  • VFTO is often required as an auxiliary voltage.
  • GIS Insulated Electrical Equipment
  • the VFTO is generally generated by an analog method. Specifically, the surge voltage is outputted by a common surge voltage generator, and then the surge voltage is steepened by the steepening gap to obtain a desired VFTO.
  • the technical problem to be solved by the present invention is to provide a device for generating a fast transient overvoltage, which can achieve a better steepening effect.
  • An embodiment of the present invention provides a fast transient overvoltage generating apparatus, including: a surge voltage generator, an overhead line, a high voltage bushing, a casing, a first busbar section, a first modulating resistor, and a steepening gap;
  • the impulse voltage generator is sequentially connected to one end of the first busbar section through an overhead line and a high voltage bushing; the other end of the first busbar section is connected to the first end of the steepening gap by the first modulation resistor; The second end is the output for outputting VFTOo
  • the connecting unit is configured to respectively connect the output end of the steepening gap and the device under test, and transmit the VFTO outputted by the sharpening gap to the device under test.
  • the connecting unit includes: a second modulating resistor, a second bus bar segment, and a test terminal; wherein
  • One end of the second modulating resistor is connected to the output end of the steepening gap; the other end of the second modulating resistor is connected to the test terminal through the second busbar section.
  • the method further includes: the first bus bar segment, the first end and the second end of the steepening gap, and the second bus bar segment respectively connected with a basin insulator; the adjacent basin insulators cooperate with each other to form the outer casing to form a sealed
  • the space is divided into five confined spaces that are independent of each other.
  • the SF6 gas is added to the sealed space corresponding to the steepening gap;
  • the sealed space corresponding to the steepening gap is: a closed space formed by the first end of the steepening gap and the two basin insulators connected to the second end .
  • the method further includes: a first voltage measuring unit, a second voltage measuring unit, and a control adjusting unit, wherein
  • the first voltage measuring unit and the second voltage measuring unit are respectively disposed in a closed space adjacent to the sealed space corresponding to the steepening gap; the voltage measuring unit is respectively configured to: detect a voltage in the corresponding closed space Waveform
  • control adjustment unit configured to compare a voltage waveform measured by the first voltage measuring unit with a voltage waveform measured by the second voltage measuring unit, and adjust a pressure of the SF6 gas in the sealed space corresponding to the steepening gap according to the comparison result, so as to adjust the steepening Breakdown voltage and breakdown timing of the gap.
  • An electrode rod and an electrode rod adjusting unit are disposed in the first sub-electrode of the electrode of the steepening gap;
  • the electrode rod portion is located outside the first sub-electrode and partially inside the first sub-electrode;
  • the electrode rod adjusting unit is configured to adjust a length of the electrode rod outside the first sub-electrode.
  • a first bus bar segment and a first modulating resistor are added between the high voltage bushing and the steepening gap, and the energy of the VFTO wave head portion is temporarily stored when the first bus bar segment is steepened, and is stored when the gap is broken. Energy release, first modulation resistance adjustment
  • FIG. 1 is a schematic structural diagram of a VFTO generating apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of an electrode in a steepening gap according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a VFTO generating device according to an embodiment of the present invention.
  • the device includes: a surge voltage generator 11, an overhead line 12, a high voltage bushing 13, a first bus bar segment 14, and a first wave regulating resistor 15
  • the surge voltage generator 11 is connected to one end of the first bus bar segment 14 through the overhead wire 12 and the high voltage bushing 13 in sequence; the other end of the first bus bar segment 14 is connected to one end of the first wave regulating resistor 15;
  • the other end of the first modulating resistor 15 is connected to the first end of the steepening gap 16; the second end of the steepening gap 16 is an output end, and the VFTO is output.
  • first bus bar section 14, the modulating resistor 15 and the steepening gap 16 are all located inside the casing 10 of the VFTO device, and the casing 10 is a closed space.
  • the output end of the steepening gap 16 can generally be connected to the device under test through the connection unit, thereby realizing the detection of the device under test, for example, the GIS insulation characteristic detection of the GIS insulator.
  • the connecting unit is also located inside the outer casing 10. Specifically, in a practical application, the connecting unit can be implemented by using the structure shown in FIG. 1. As shown in FIG. 1, the connecting unit includes: a second modulating resistor 171, a second bus bar segment 172, and a test terminal 173.
  • One end of the second modulating resistor 171 is connected to the second end of the steepening gap 16 (ie, the output end), the other end is connected to one end of the second bus bar segment 172, and the other end of the second bus bar segment 172 is connected.
  • Test terminal 173. The test terminal 173 can be connected to a corresponding device under test to perform corresponding detection on the device under test.
  • the surge voltage generator 11 generates a surge voltage which is transmitted via the overhead line 12 and the high voltage bushing 13 to the first busbar section 14, which is used for intermediate energy storage, and the surge voltage wave is applied during the steepening.
  • the energy of the head portion is temporarily stored; when the steepening gap 16 is broken down, the first bus segment 14 releases the stored energy, thereby generating VFTO at the output of the steepening gap 16.
  • the generated VFTO is sequentially propagated through the second modulating resistor 171 and the second bus segment 172 to the device under test connected to the test terminal, and the corresponding detection by the device is performed.
  • the first busbar section and the first-order modulation resistor are added between the Gaozhuang casing and the steepening gap, and the energy of the VFTO wavehead portion is temporarily stored when the first busbar section is steepened, and the steepness is steep.
  • the gap is broken, the stored energy is released, and the chirping resistor adjusts the head and tail time of the VFTO, so that the VFTO outputted from the output of the steeping gap obtains a better steepening effect than the prior art.
  • the first busbar section 14, the first end and the second end of the steepening gap 16, and the second busbar section 172 are respectively connected with a basin insulator 18; adjacent basin insulators cooperate with each other,
  • the sealed space formed by the outer casing 10 is divided into five sealed spaces that are independent of each other.
  • SF6 gas may be added to the sealed space corresponding to the steepening gap; the steep
  • the sealed space corresponding to the gap is: a closed space formed by two basin insulators disposed on the steepening gap.
  • a first voltage measuring unit 201 and a second voltage measuring unit 202 are respectively disposed in the closed space adjacent to the sealed space corresponding to the steepening gap; the voltage measuring unit is respectively configured to: detect a voltage in the corresponding closed space Waveform
  • the VFTO generating device further includes: a control adjusting unit (not shown) for comparing the voltage waveform measured by the first voltage measuring unit 201 with the voltage waveform measured by the second voltage measuring unit 202, and adjusting according to the comparison result
  • a control adjusting unit for comparing the voltage waveform measured by the first voltage measuring unit 201 with the voltage waveform measured by the second voltage measuring unit 202, and adjusting according to the comparison result
  • the pressure of the SF6 gas in the confined space corresponding to the steepening gap in order to adjust the breakdown voltage and the breakdown time of the steepening gap, thereby ensuring the VFTO production efficiency and the appropriate waveform, and also satisfying the requirements for researching different samples. Different test voltages.
  • the outer portion when the basin insulator is connected with the bus bar segment or the steepening gap, the outer portion may be flanged, and the inner portion may be electrically connected through the plug.
  • the specific connection manner will not be described herein.
  • the steepening gap of the device can be steepened by using a hemispherical head gap, and, as shown in FIG. 2, the electrode rod 211 is added to the first sub-electrode 21 of the electrode in the steepening gap.
  • the structure of the electrode rod is the same as that of the first sub-electrode except that the electrode rod 211 is partially located outside the first sub-electrode 21 and partially located inside the first sub-electrode 21.
  • an electrode rod adjusting unit (not shown) is disposed in the steepening gap for adjusting the length of the electrode rod 211 outside the first electrode, thereby limiting the jitter of the VFTO during the switching operation, and reducing the steepening gap breakdown. The dispersion makes the VFTO waveform output from the steep gap more stable.
  • the VFTO generating device can also be used to generate a lightning wave.
  • the electrode of the sharpening gap is short-circuited and steepened by pneumatic or remote control by using an adjusting electrode rod added on one side of the switch electrode.
  • the resistance before and after the gap can be kept basically unchanged, and only the wave head resistance in the surge voltage generator can be changed.
  • the VFTO generating device of the embodiment of the present invention can perform different Tests, such as lOOOOkVGIS insulators, 500kV GIS insulators, SF6 gaps, etc., can be changed as long as the wave impedance of the device is changed accordingly.
  • VFTO generator shown in Figure 1 can be used: 6MV open impulse voltage generator + overhead line +6m length 2.5MV high voltage bushing + impedance 91
  • Busbar section + first modulating resistor + steeping gap structure at this time, the voltage amplitude of the generated VFTO can reach 2.5MV.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

公开了一种快速暂态过电压(VFTO)的生成装置,其包括:冲击电压发生器(11)、架空线(12)、高压套管(13)、外壳(10)、第一母线段(14)、第一调波电阻(15)以及陡化间隙(16);其中,冲击电压发生器(11)依次通过架空线(12)以及高压套管(13)与所述第一母线段(14)的一端连接;第一母线段(14)的另一端通过第一调波电阻(15)与陡化间隙(16)的第一端连接;陡化间隙(16)的第二端为输出端,用于输出VFTO。该快速暂态过电压的生成装置能够达到更好的陡化效果。

Description

一种快速暂态过电压的生成装置 技术领域
本发明涉及快速暂态过电压( VFTO )生成技术, 尤其涉及一 种 VFTO的生成装置。 背景技术
现有技术中, 在进行设备等的测量研究时, 时常需要 VFTO 作为辅助电压, 例如, 对 GIS (气体绝缘组合电器设备) 绝缘子 进行 GIS绝缘特性研究时, 即需要使用 VFTO。
现有技术中, 一般通过模拟方式产生 VFTO, 具体的, 通过 普通冲击电压发生器输出沖击电压, 然后由陡化间隙对所述沖击 电压进行陡化, 得到所需的 VFTO。
但是, 这种方法产生的 VFTO陡化效果差。 发明内容
有鉴于此, 本发明要解决的技术问题是, 提供一种快速暂态 过电压的生成装置, 能够达到更好的陡化效果。
为此, 本发明实施例采用如下技术方案:
本发明实施例提供一种快速暂态过电压的生成装置, 包括: 冲击电压发生器、 架空线、 高压套管、 外壳、 第一母线段、 第一 调波电阻以及陡化间隙; 其中,
冲击电压发生器依次通过架空线以及高压套管与所述第一 母线段的一端连接; 第一母线段的另一端通过第一调波电阻与陡 化间隙的第一端连接; 陡化间隙的第二端为输出端, 用于输出 VFTOo
其中, 还包括: 连接单元, 用于分别连接陡化间隙的输出端以及被测设备, 将陡化间隙输出的 VFTO传输给被测设备。
所述连接单元包括: 第二调波电阻、 第二母线段以及试验终 端; 其中,
所述第二调波电阻的一端连接所述陡化间隙的输出端; 第二 调波电阻的另一端通过第二母线段连接试验终端。
还包括: 所述第一母线段、 陡化间隙的第一端和第二端以及 第二母线段上分别连接有盆式绝缘子; 相邻的盆式绝缘子相互配 合,将所述外壳形成的密闭空间划分为相互独立的五个密闭空间。
所述陡化间隙对应的密闭空间中添加有 SF6气体;所述陡化 间隙对应的密闭空间为: 陡化间隙的第一端和第二端上连接的两 个盆式绝缘子对应形成的密闭空间。
还包括: 第一电压测量单元、 第二电压测量单元以及控制调 整单元, 其中,
所述第一电压测量单元和第二电压测量单元分别设置于与 所述陡化间隙对应的密闭空间相邻的密闭空间中; 所述电压测量 单元分别用于: 检测对应的密闭空间中的电压波形;
控制调整单元, 用于比较第一电压测量单元测量到的电压波 形与第二电压测量单元测量到的电压波形, 根据比较结果调整陡 化间隙对应的密闭空间中 SF6气体的压强, 以便调节陡化间隙的 击穿电压和击穿时刻。
所述陡化间隙的电极中的第一子电极中设置电极棒以及电 极棒调节单元;
所述电极棒部分位于第一子电极的外部,部分位于第一子电 极的内部;
所述电极棒调节单元用于:调节所述电极棒位于第一子电极 外部的长度。 对于上述技术方案的技术效果分析如下:
在高压套管与陡化间隙之间增加第一母线段以及第一调波 电阻, 第一母线段在陡化时将 VFTO波头部分的能量进行暂时存 储, 陡化间隙击穿时, 将存储的能量释放, 第一调波电阻调节
VFTO 的波头和波尾时间, 从而使得陡化间隙输出端输出的 VFTO相对于现有技术产生的 VFTO具有更好的陡化效果。 附图说明
图 1为本发明实施例 VFTO生成装置结构示意图;
图 2为本发明实施例陡化间隙中的电极结构示意图。 具体实施方式
以下,结合附图详细说明本发明实施例 VFTO生成装置的实 现。
图 1 为本发明实施例 VFTO生成装置结构示意图, 如图 1 所示, 该装置包括: 冲击电压发生器 11、 架空线 12、 高压套管 13、 第一母线段 14、 第一调波电阻 15、 陡化间隙 16; 其中, 冲击电压发生器 11依次通过架空线 12和高压套管 13连接 第一母线段 14的一端; 第一母线段 14的另一端连接第一调波电 阻 15的一端;第一调波电阻 15的另一端连接陡化间隙 16的第一 端; 陡化间隙 16的第二端为输出端, 输出 VFTO。
另外, 所述第一母线段 14、 调波电阻 15以及陡化间隙 16 都位于 VFTO装置的外壳 10内部, 所述外壳 10为密闭空间。
在实际应用中, 陡化间隙 16的输出端一般可以通过连接单 元连接被测设备, 从而实现对被测设备的检测, 例如对 GIS绝缘 子进行 GIS绝缘特性检测等。所述连接单元同样位于所述外壳 10 的内部。 具体的, 在实际应用中, 所述连接单元可以使用如图 1所示 的结构实现, 如图 1所示, 该连接单元包括: 第二调波电阻 171、 第二母线段 172以及试验终端 173; 其中, 所述第二调波电阻 171 的一端连接所述陡化间隙 16的第二端(即输出端), 另一端连接 第二母线段 172的一端, 第二母线段 172的另一端连接试验终端 173。 所述试验终端 173可以连接相应的被测设备, 以便对被测设 备进行对应的检测。
图 1所示的 VFTO生成装置的实现原理如下:
冲击电压发生器 11产生冲击电压, 该冲击电压经架空线 12 和高压套管 13传输至第一母线段 14, 该第一母线段 14用于进行 中间储能, 在陡化时将冲击电压波头部分的能量进行暂时储存; 陡化间隙 16击穿时, 笫一母线段 14将储存的能量释放, 从而在 陡化间隙 16的输出端产生 VFTO。
进而,如果所述 VFTO生成装置连接了被测设备,则产生的 VFTO依次通过第二调波电阻 171、 第二母线段 172传播至与试 验终端连接的被测设备, 进行被 设备的相应检测。
以上的 VFTO生成装置,在高庄套管与陡化间隙之间增加第 一母线段以及笫一调波电阻, 通过第一母线段在陡化时将 VFTO 波头部分的能量进行暂时存储, 陡化间隙击穿时, 将存储的能量 释放, 笫一调波电阻调节 VFTO的波头和波尾时间, 从而使得陡 化间隙输出端输出的 VFTO 获得相对于现有技术更好的陡化效 果。
优选地, 所述第一母线段 14、 陡化间隙 16的第一端和第二 端以及第二母线段 172上分别连接有盆式绝缘子 18; 相邻的盆式 绝缘子相互配合,将所述外壳 10形成的密闭空间划分为相互独立 的五个密闭空间。
所述陡化间隙对应的密闭空间中可以添加 SF6气体;所述陡 化间隙对应的密闭空间为: 陡化间隙上设置的两个盆式绝缘子对 应形成的密闭空间。
与所述陡化间隙对应的密闭空间相邻的密闭空间中分别设 置有第一电压测量单元 201和第二电压测量单元 202; 所述电压 测量单元分别用于: 检测对应的密闭空间中的电压波形;
所述 VFTO生成装置进一步包括:控制调整单元(图中未示 出) , 用于比较第一电压测量单元 201测量到的电压波形与第二 电压测量单元 202测量到的电压波形, 根据比较结果调整陡化间 隙对应的密闭空间中 SF6气体的压强, 以便调节陡化间隙的击穿 电压和击穿时刻, 从而保证 VFTO的产生效率和合适的波形, 同 时也满足了研究不同试品时所需要的不同试验电压。
其中, 所述盆式绝缘子与母线段或者陡化间隙等连接时, 外 部可以采用法兰连接, 内部可以通过插子进行电连接, 具体的连 接方式这里不再赘述。
优选地, 如图 2所示, 本装置陡化间隙可以采用半球头间隙 进行陡化, 并且, 如图 2所示, 在陡化间隙中电极的第一子电极 21中增加电极棒 211,所述电极棒的结构与所述第一子电极相同, 区别仅在于, 所述电极棒 211部分位于第一子电极 21的外部, 部 分位于第一子电极 21的内部。并且,在陡化间隙中设置电极棒调 节单元 (图中未示出) , 用于调节电极棒 211位于第一电极外部 的长度, 进而限制开关动作时 VFTO出现抖动, 降低了陡化间隙 击穿的分散性, 使得陡化间隙输出的 VFTO波形更为稳定。
另外,本发明实施例所述 VFTO生成装置还可以用于产生雷 电波, 此时, 利用开关电极一侧增加的调节电极棒, 通过气动或 遥控实现陡化间隙中电极的短接, 而且陡化间隙前后电阻基本可 以保持不变, 仅改变冲击电压发生器中的波头电阻即可。
而且,本发明实施例的所述 VFTO生成装置可以进行不同的 试验, 例如 lOOOkVGIS绝缘子、 500kVGIS绝缘子、 SF6间隙等 的试验, 只要相应改变该装置的波阻抗即可。
对于本发明实施例的 VFTO生成装置 ^实例说明:
在实际应用中,图 1所示的 VFTO生成装置可以使用: 6MV 开放式冲击电压发生器 +架空线 +6m长 2.5MV高压套管 +阻抗 91
母线段 +第一调波电阻 +陡化间隙的结构实现, 此时, 所产 生的 VFTO的电压幅值可以达到 2.5MV。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技 术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还 可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保 护范围。

Claims

权 利 要 求
1. 一种快速暂态过电压的生成装置, 其特征在于, 包括: 冲击电压发生器、 架空线、 高压套管、 外壳、 第一母线段、 第一 调波电阻以及陡化间隙; 其中,
冲击电压发生器依次通过架空线以及高压套管与所述第一母 线段的一端连接; 第一母线段的另一端通过第一调波电阻与陡化 间隙的第一端连接; 陡化间隙的第二端为输出端, 用于输出快速 暂态过电压 VFTO。
2. 如权利要求 1所述的装置, 其特征在于, 还包括:
连接单元, 用于分别连接陡化间隙的输出端以及被测设备, 将陡化间隙输出的 VFTO传输给被测设备。
3. 如权利要求 2所述的装置, 其特征在于, 所述连接单元 包括: 第二调波电阻、 第二母线段以及试验终端; 其中,
所述第二调波电阻的一端连接所述陡化间隙的输出端; 第二 调波电阻的另一端通过第二母线段连接试验终端。
4. 如权利要求 3所述的装置, 其特征在于, 还包括:
所述第一母线段、 陡化间隙的第一端和第二端以及第二母线 段上分别连接有盆式绝缘子; 相邻的盆式绝缘子相互配合, 将所 述外壳形成的密闭空间划分为相互独立的五个密闭空间。
5. 如权利要求 4所述的装置, 其特征在于, 所述陡化间隙 对应的密闭空间中添加有 SF6气体; 所述陡化间隙对应的密闭空 间为: 陡化间隙的第一端和第二端上连接的两个盆式绝缘子对应 形成的密闭空间。
6. 如权利要求 5所述的装置, 其特征在于, 还包括: 第一 电压测量单元、 第二电压测量单元以及控制调整单元, 其中, 所述第一电压测量单元和第二电压测量单元分别设置子与所 述陡化间隙对应的密闭空间相邻的密闭空间中; 所述电压测量单 元分别用于: 检测对应的密闭空间中的电压波形;
控制调整单元, 用于比较第一电压测量单元测量到的电压波 形与第二电压测量单元测量到的电压波形, 根据比较结果调整陡 化间隙对应的密闭空间中 SF6气体的压强, 以便调节陡化间隙的 击穿电压和击穿时刻。
7. 如权利要求 1至 6任一项所述的装置, 其特征在于, 所 述陡化间隙的电极中的第一子电极中设置电极棒以及电极棒调节 单元 ^
所述电极棒部分位于第一子电极的外部, 部分位于第一子电 极的内部;
所述电极棒调节单元用于: 调节所述电极棒位于第一子电极 外部的长度。
PCT/CN2011/000388 2010-06-17 2011-03-11 一种快速暂态过电压的生成装置 WO2011157048A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102046586A CN101865939B (zh) 2010-06-17 2010-06-17 一种快速暂态过电压的生成装置
CN201010204658.6 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011157048A1 true WO2011157048A1 (zh) 2011-12-22

Family

ID=42957741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000388 WO2011157048A1 (zh) 2010-06-17 2011-03-11 一种快速暂态过电压的生成装置

Country Status (2)

Country Link
CN (1) CN101865939B (zh)
WO (1) WO2011157048A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931954A (zh) * 2012-10-22 2013-02-13 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲峰化和前沿整形装置
CN116663435A (zh) * 2023-08-01 2023-08-29 华中科技大学 一种阻尼母线结构参数优化方法、装置及存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865939B (zh) * 2010-06-17 2012-04-11 中国电力科学研究院 一种快速暂态过电压的生成装置
CN102005963B (zh) * 2010-10-26 2013-03-13 西安交通大学 陡化间隙装置
CN102158116B (zh) * 2011-01-20 2013-02-06 西安交通大学 触发多通道放电气体火花开关用冲击电压发生器
CN102928470B (zh) * 2012-10-16 2014-12-31 云南电力试验研究院(集团)有限公司电力研究院 一种移动式vfto绝缘油循环试验系统
CN102901917B (zh) * 2012-10-22 2015-04-01 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲的现场生成装置
CN102998556B (zh) * 2012-10-29 2016-02-24 中国电力科学研究院 金属氧化物限压器的特快速暂态过电压仿真装置及其方法
CN103235164B (zh) * 2013-04-25 2016-02-17 国家电网公司 陡前沿冲击与雷电冲击电压交互产生装置
CN103401536B (zh) * 2013-07-03 2016-02-10 国家电网公司 纳秒脉冲整形与前沿锐化装置
CN103941166B (zh) * 2014-04-23 2016-07-06 沈阳工业大学 一种vfto下高温气体击穿特性检测装置及方法
CN105759186B (zh) * 2016-03-31 2018-10-19 西安交通大学 一种gis现场行波试验方法和系统
CN106841713A (zh) * 2016-12-30 2017-06-13 平高集团有限公司 一种特快速瞬态过电压产生装置
CN108957265B (zh) * 2018-08-27 2024-04-09 云南电网有限责任公司电力科学研究院 高凝露地区瓷套vfto闪络特性下降率试验装置及方法
CN109061419B (zh) * 2018-08-27 2020-11-20 云南电网有限责任公司电力科学研究院 复合vfto作用下绝缘油绝缘强度试验系统及方法
CN109270415B (zh) * 2018-08-27 2021-01-29 云南电网有限责任公司电力科学研究院 复合绝缘子表面脉冲占比率的vfto检验方法及系统
CN110346711B (zh) * 2019-07-09 2021-04-20 国网陕西省电力公司电力科学研究院 一种隔离开关动态放电过程模拟装置及其试验装置和方法
CN111044856B (zh) * 2019-12-13 2022-04-29 中国电力科学研究院有限公司 一种盘型绝缘子陡波试验装置
CN113945766B (zh) * 2021-09-23 2022-07-12 西安交通大学 一种变压器内嵌式传感器的电磁兼容性测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199604A (ja) * 1990-11-29 1992-07-20 Tohoku Oki Denki Kk ソレノイド
CN1258923A (zh) * 2000-01-25 2000-07-05 清华大学 抑制全封闭组合电器特快速暂态过电压的方法
CN101799488A (zh) * 2010-02-23 2010-08-11 清华大学 一种标定电压的产生装置和方法
CN101865939A (zh) * 2010-06-17 2010-10-20 中国电力科学研究院 一种快速暂态过电压的生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142111A (en) * 1981-02-27 1982-09-02 Tokyo Shibaura Electric Co Gas insulated switching device
CN2687923Y (zh) * 2004-02-12 2005-03-23 中国电力科学研究院 架空线路并联间隙防雷保护装置
CN100386833C (zh) * 2005-03-28 2008-05-07 西安杉瑞机电科技有限责任公司 限制气体绝缘开关内部快速暂态过电压的方法
CN101001005A (zh) * 2007-01-05 2007-07-18 西安电力机械制造公司 气体绝缘开关装置
CN101446617B (zh) * 2008-05-27 2011-04-20 中国电力科学研究院 用于直流气体绝缘金属封闭输电线路(gil)的试验研究装置
CN101718824B (zh) * 2009-12-07 2012-07-18 中国电力科学研究院 一种用于特高压交直流气体绝缘金属封闭输电线路试验装置
CN102005963B (zh) * 2010-10-26 2013-03-13 西安交通大学 陡化间隙装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199604A (ja) * 1990-11-29 1992-07-20 Tohoku Oki Denki Kk ソレノイド
CN1258923A (zh) * 2000-01-25 2000-07-05 清华大学 抑制全封闭组合电器特快速暂态过电压的方法
CN101799488A (zh) * 2010-02-23 2010-08-11 清华大学 一种标定电压的产生装置和方法
CN101865939A (zh) * 2010-06-17 2010-10-20 中国电力科学研究院 一种快速暂态过电压的生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, WENYI ET AL.: "Research on VFTO Generation during Disconnector Operation in 1100 KV GIS", ELECTRICAL MANUFACTURING, vol. 2, 29 February 2008 (2008-02-29), pages 42 - 46 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931954A (zh) * 2012-10-22 2013-02-13 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲峰化和前沿整形装置
CN116663435A (zh) * 2023-08-01 2023-08-29 华中科技大学 一种阻尼母线结构参数优化方法、装置及存储介质
CN116663435B (zh) * 2023-08-01 2023-10-20 华中科技大学 一种阻尼母线结构参数优化方法、装置及存储介质

Also Published As

Publication number Publication date
CN101865939A (zh) 2010-10-20
CN101865939B (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2011157048A1 (zh) 一种快速暂态过电压的生成装置
US8816699B2 (en) Voltage source for calibrating a fast transient voltage measurement system and calibration method
MY152277A (en) High-voltage insulator and high-voltage electric power line using said insulator
CN103308736B (zh) 小型一体化陡前沿脉冲发生装置
WO2011157047A1 (zh) 快速暂态过电压测量用电容传感器标定系统
CN202903954U (zh) 绝缘子串工频任意相角叠加雷电冲击试验装置
CN103558527B (zh) 超高压gis标准雷电冲击电压耐压试验仿真模拟方法
WO2014048340A1 (zh) 金属氧化物试品在陡前沿脉冲下响应特性测试装置
Ran et al. Spacer flashover characteristics in SF 6 under repetitive nanosecond pulses
WO2004102594A3 (en) Method and testing equipment for checking the operation of a lightning arrester
CN201440567U (zh) 一种用于避雷器与放电计数器的连接装置
CN103997007B (zh) 一种输电线路防风偏闪络保护装置
CN105427970A (zh) 一种防雷装置
Ali et al. Effects of impulse polarity on grounding systems
CN204010854U (zh) 一种放电间隙装置
CN203310862U (zh) 一种氧化锌测试仪的机械结构
Chisholm Transmission system transients: grounding
RU2523690C2 (ru) Разрядник для защиты от перенапряжений и электрическое устройство с газовой изоляцией
CN203660276U (zh) 间隙防雷保护装置
Yu et al. Arc characteristics of parallel gap for composite insulator
Stanchev Modeling approaches for externally gapped line arrester through ATP-EMTP model study
Hopf et al. Dielectric strength of alternative insulation gases at high pressure
He et al. Test device of power frequency voltage imposed with impulse voltage
RU2015100249A (ru) Подземная высоковольтная электрическая линия
CN205724803U (zh) 架空绝缘线路过电压保护器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795015

Country of ref document: EP

Kind code of ref document: A1