[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011155083A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2011155083A1
WO2011155083A1 PCT/JP2010/065215 JP2010065215W WO2011155083A1 WO 2011155083 A1 WO2011155083 A1 WO 2011155083A1 JP 2010065215 W JP2010065215 W JP 2010065215W WO 2011155083 A1 WO2011155083 A1 WO 2011155083A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
reference unit
slot
coil
loop
Prior art date
Application number
PCT/JP2010/065215
Other languages
English (en)
French (fr)
Inventor
貴志 山田
渡辺 敦
北村 学
橋本 伸吾
睦之 川崎
Original Assignee
トヨタ自動車株式会社
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, アイシン・エィ・ダブリュ株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020127001704A priority Critical patent/KR101279336B1/ko
Priority to EP10852918.1A priority patent/EP2582017A4/en
Priority to CN201080036683.6A priority patent/CN102474144B/zh
Priority to US13/499,665 priority patent/US8884489B2/en
Publication of WO2011155083A1 publication Critical patent/WO2011155083A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K15/045
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in the machines
    • H02K15/062Windings in slots; Salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils or waves
    • H02K15/066Windings consisting of complete sections, e.g. coils or waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a motor having a stator including a distributed winding coil using a flat wire and a stator core, and a rotor having a central axis.
  • Patent Document 2 a coil is configured by overlappingly winding a conductive wire inserted into a slot, mounting the coil on an insertion jig, and placing the insertion jig in the stator core.
  • a method for inserting a coil into a slot is disclosed.
  • Patent Document 3 discloses that in a distributed winding coil, a distal end portion to be inserted is bent toward the axial center side.
  • the conventional method of inserting a coil into a stator core has the following problems. That is, as in Patent Document 1, in the method of inserting a coil separately for each tooth, insertion has to be performed a number of times corresponding to the number of teeth, and there is a problem that it takes time to insert. In addition, there is a problem that the insertion device becomes complicated and large. Further, as in Patent Document 2, when an insertion jig is used, even if the insertion is successful, the coil is spring-loaded after the coil that has been elastically deformed in the insertion jig is inserted into the slot. There was a problem that a part of the conductive wire jumped out of the slot due to deformation by the back.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a low-cost motor in which a distributed winding coil using a flat wire can be easily inserted into a slot from the axial direction. .
  • a motor has the following configuration.
  • (1) In a motor having a stator including a distributed winding coil using a rectangular conductor, a stator core having slots formed between teeth, and a rotor having a central axis, (a) the slot is a U-phase first slot , U-phase second slot, V-phase first slot, V-phase second slot, W-phase first slot, and W-phase second slot are sequentially formed as a set block. A second set block is formed adjacent to the first set block; and (b) the rectangular wire in the U-phase first slot of the first set block is connected to the flat wire and the first loop in the U-phase second slot of the second set block.
  • the rectangular conductor in the U-phase second slot of the first set block forms a second loop with the rectangular conductor in the U-phase first slot of the second set block.
  • the second loop is the first loop
  • the coil end portion at one end of the second loop and the coil end portion at one end of the first loop are bent toward the rotor side with respect to the in-slot conductor portion of the stator core.
  • the coil end portion at one end of the second loop and the coil end portion at one end of the first loop are located on the axial center side of the rotor from the inner peripheral surface of the stator core.
  • the first loop and the second loop are formed by a reference unit obtained by simultaneously bending a predetermined number of rectangular conductors. .
  • a plurality of the rectangular conducting wires of the reference unit are overlapped in the axial direction of the rotor, and the coil end at the other end In the section, it is preferable that the plurality of rectangular conducting wires of the reference unit are overlapped in the radial direction of the rotor.
  • the coil end portion of the one end of the second loop is connected to the rotor of the rotor from the coil end portion of the one end of the first loop.
  • the coil end portion of the second loop is overlapped with the outer periphery in the radial direction, and the coil end portion of the other end of the second loop is arranged in the inner circumference direction of the rotor in the axial direction of the rotor. It is preferable to be superimposed on each other.
  • the R radius of the R portion that is a connection portion with the in-slot conductor portion on one side is bent.
  • the reference unit constituting the coil end portion at the one end is in a shifted state before being bent, and is bent. It is preferable that the flat conducting wires of the reference unit are in a state of overlapping in the radial direction.
  • a motor having a stator including a distributed winding coil using a rectangular conductor, a stator core having slots formed between teeth, and a rotor having a central axis (a) the slot is a U-phase first slot , U-phase second slot, V-phase first slot, V-phase second slot, W-phase first slot, and W-phase second slot are sequentially formed as a set block. A second set block is formed adjacent to the first set block; and (b) the rectangular wire in the U-phase first slot of the first set block is connected to the flat wire and the first loop in the U-phase second slot of the second set block.
  • the rectangular conductor in the U-phase second slot of the first set block forms a second loop with the rectangular conductor in the U-phase first slot of the second set block.
  • the second loop is the first loop
  • the coil end portion at one end of the second loop and the coil end portion A side at one end of the first loop are bent toward the rotor side with respect to the in-slot conductor portion of the stator core.
  • the coil end portion A side at one end of the second loop and the coil end portion A side at one end of the first loop are positioned on the axial center side of the rotor from the inner peripheral surface of the stator core.
  • the coil end A side at one end is the inner side of the inner peripheral surface of the stator core. Therefore, the coil can be easily inserted into the slot from the axial direction. Since the coil is not elastically deformed when inserted, a part of the coil does not jump out of the slot by the spring back.
  • the rectangular conducting wire by making the rectangular conducting wire a double coil having a first loop and a second loop, it is possible to increase a margin of the lane change portion.
  • the flat conductor is arranged in a plane on the end face of the stator core.
  • the end face of the stator core has a limited area, it is difficult to increase the number of rectangular conductors in order to increase the number of turns of the coil.
  • a lane change part is required in a coil end part. In this lane change section, the width of the coil tends to be a problem.
  • the end face of the stator core can be used three-dimensionally by adopting a double coil structure in which the second loop is formed on the inner peripheral side of the first loop as in the configuration of the present invention.
  • a double coil structure in which the second loop is formed on the inner peripheral side of the first loop as in the configuration of the present invention.
  • the lane change is essential as long as concentric winding is adopted for the coil and a distributed winding stator is formed.
  • the concentric winding coil is inserted across a plurality of slots, so that there is a portion where adjacent coils interfere with each other, which must be avoided.
  • a rectangular conductor inserted into a slot is defined as an in-slot conductor portion
  • the first of the U-phase coils in which one in-slot conductor portion is inserted into the first set of U-phase first slots.
  • the other in-slot conductor is inserted into the second set of U-phase second slots.
  • one in-slot conductor is inserted into the first set of V-phase first slots, and the other in-slot conductor is inserted into the second set of V-phase second slots. It is the 1st loop of a coil of a phase.
  • the first loop of the V-phase coil is inserted into the first set of U-phase first slots, and the second set of U-phase second slots below the first loop of the U-phase coil. It is necessary to come above the first loop of the U-phase coil at the portion inserted into the U-phase coil.
  • the first loop and the second loop have a double structure, one of the U-phase first loop, the U-phase second loop, the V-phase first loop, and the V-phase first in order from the top.
  • the other is a V-phase first loop, a V-phase second loop, a U-phase first loop, and a U-phase second loop in order from the top.
  • the lane change portion required in this way can be used only for one slot when a flat conductor is disposed in a plane on the end face of the stator core.
  • the double coil is used in the present invention, it is possible to use the double lane change portion for two slots, and it is preferable to prepare a wide width as much as possible in relation to the bending radius.
  • the “region for two slots” here refers to the width of two slots and two teeth, with one slot and one tooth. This is because it is effective to increase the cross-sectional area of the rectangular conductor in order to increase the space factor, and as the cross-sectional area increases, the bending radius also increases relatively. For this reason, it becomes possible to constitute a stator with a high space factor according to the present invention.
  • the first loop and the second loop are formed by a reference unit in which a predetermined number of rectangular conductors are bent at the same time. Since a plurality of flat conductors (reference unit) are bent at the same time in a state of being wound in an overlapping manner, the manufacturing process can be simplified and the cost can be reduced.
  • the coil end part B side of the other end is overlapped in the radial direction. Therefore, the dimension of the coil end in the axial center direction can be reduced, and at the same time, the coil end portion A at one end is overlapped in the axial center direction. The dimensions can be reduced.
  • the coil end portion A side of the one end of the second loop is more than the coil end portion A side of the one end of the first loop.
  • the coil end portion B side of the other end of the second loop is more than the coil end portion B side of the other end of the first loop. Since it is superimposed on the inner circumference in the center direction, on the coil end part B side at the other end, since it is overlapped in the axial direction, the radial dimension can be reduced, At the same time, on the coil end A side at one end, since it is superimposed in the radial direction, the dimension in the axial direction can be reduced.
  • the rectangular conducting wires are overlapped in the radial direction, and a plurality of reference units are overlapped in the axial direction.
  • the volume of the coil end at the other end can be reduced.
  • the reference unit superimposes the flat conducting wires in the axial direction and superimposes a plurality of reference units in the radial direction.
  • the volume of the coil end at the other end can be reduced.
  • the R radius of the R part which is a connection part with the in-slot conductor part on one side is Since it is characterized in that it is different for each rectangular conductor before being bent, after folding the rectangular conductor of the reference unit at the same time, a plurality of rectangular conductors on the coil end part A side at one end are overlapped, They can be matched in the radial direction.
  • the reference unit constituting the coil end portion at the one end is in a shifted state before being bent, and is bent.
  • the rectangular conductors of the reference unit coincide with each other in the radial direction and overlap each other, the rectangular conductors of the reference unit are bent at the same time, and then a plurality of rectangular conductors on the coil end portion A side at one end are formed. Conductive wires can be overlapped and matched in the radial direction.
  • the coil end part A side at one end and the coil end part B side at the other end are denoted by symbols A and B for easy reading of the above description.
  • FIG. 1 shows the 1st intermediate coil of the manufacturing process of a reference
  • FIG. 1 which shows a bending process among the manufacturing processes of a reference
  • FIG. 2 which shows a bending process among the manufacturing processes of a reference
  • FIG. 1 shows the insertion process which inserts a part of coil cage into a stator core.
  • FIG. 2 shows the insertion process which inserts a part of coil cage into a stator core.
  • FIG. 3 shows the insertion process which inserts a part of coil cage into a stator core.
  • FIG. 10 is a fourth diagram illustrating an insertion process for inserting a part of the coil cage into the stator core. It is FIG. 1 which shows the insertion process which inserts a rotor in a stator. It is FIG. 2 which shows the insertion process which inserts a rotor in a stator. It is a figure which shows the positional relationship of a double reference
  • FIG. 1 is a perspective view of an outer peripheral reference unit 11 in which five flat conductors are simultaneously formed.
  • 2 shows a front view of the outer periphery reference unit 11 of FIG. 1
  • FIG. 3 shows a plan view of FIG. 2 viewed from above
  • FIG. 4 shows a right side view of FIG.
  • the outer periphery reference unit 11 includes an in-slot conductor part SA and an in-slot conductor part SB arranged in the slot. As shown in FIG.
  • the in-slot conductor portion SA is obtained by superposing five flat conductor wires with their long side surfaces (flatwise surfaces) in contact with each other, and in the first slot conductor portion SA1 and the second slot.
  • An assembly of the conductor portion SA2, the third slot conductor portion SA3, the fourth slot conductor portion SA4, and the fifth slot conductor portion SA5 is shown.
  • the in-slot conductor SB is formed by superposing five flat conductors with the long side surfaces (flatwise surfaces) in contact with each other, and the first in-slot conductor SB1, An assembly of the in-slot conductor SB2, the third slot conductor SB3, the fourth slot conductor SB4, and the fifth slot conductor SB5 is shown.
  • a convex portion G is formed at the center of the coil end portion located on the upper side of FIG.
  • the convex part G includes a lane change part GA and a lane change part GB.
  • the lane change part GA is an assembly of four rectangular conductors. One is missing because an inclined portion EA5 described later is connected to the terminal M and protrudes to the outside.
  • the lane change part GB is an assembly of four flat conductors. The reason for the lack of one is that an inclined portion EB1 described later is connected to the terminal N and protrudes to the outside.
  • the convex part G is an aggregate of four flat conducting wires.
  • a bent portion IA is formed at the upper end of the in-slot conductor portion SA.
  • the flat conducting wire is bent at the bent portion IA in the direction of the convex portion G as shown in FIG.
  • An inclined portion EA is formed between the convex portion G and the in-slot conductor portion SA.
  • the bent portion IA indicates an assembly of bent portions IA1, IA2, IA3, IA4, and IA5 of five flat conductors.
  • the inclined portion EA indicates an aggregate of inclined portions EA1, EA2, EA3, EA4, and EA5 of five flat conductors.
  • the inclined portion EB, and the convex portion G as shown in FIG. 4, five rectangular conductors are overlapped in the radial direction (the left-right direction in FIG. 4) in the same manner as the in-slot conductor portion SA. Has been.
  • a bent portion IB is formed at the upper end of the in-slot conductor portion SB.
  • the flat conductive wire is bent at the bent portion IB in the direction of the convex portion G as shown in FIG.
  • An inclined portion EB is formed between the convex portion G and the in-slot conductor portion SB.
  • the bent portion IB indicates an aggregate of bent portions IB1, IB2, IB3, IB4, and IB5 of five flat conductors.
  • the inclined portion EB indicates an aggregate of inclined portions EB1, EB2, EB3, EB4, and EB5 of five flat conductors.
  • five flat conductors are overlapped in the radial direction (vertical direction in FIG. 3) in the same manner as the in-slot conductor SB.
  • the terminal M of EA5 located in the outermost periphery part of the inclination part EA is bend
  • the terminal N of EB1 located in the innermost periphery of the inclination part EB is bend
  • a bent portion JA is formed at the lower end of the in-slot conductor portion SA.
  • the flat conducting wire is bent 90 degrees on the inner peripheral side (left direction in the drawing) at the bent portion JA.
  • the bent portion JA indicates an aggregate of bent portions JA1, JA2, JA3, JA4, and JA5 of five flat conductor wires.
  • a bent portion JB is formed at the lower end of the in-slot conductor SB.
  • the flat conducting wire is bent at a bent portion JB by 90 degrees on the inner peripheral side (left direction in the figure).
  • an assembly of bent portions JB1, JB2, JB3, JB4, and JB5 of five rectangular conductors is shown.
  • a semicircular portion H is formed in the central portion on the inner peripheral side. As shown in FIG. 2, a horizontal portion FA is formed between the bent portion JA and the semicircular portion H. A horizontal portion FB is formed between the bent portion JB and the semicircular portion H. As shown in FIGS. 1 and 2, the semicircular portion H indicates an aggregate of semicircular portions H1, H2, H3, H4, and H5 of five flat conductors. As shown in FIG. 3 (plan view), the semicircular portion H shows a semicircular shape when viewed from above, and when viewed from the front as shown in FIG. 2 (front view), the horizontal portion FB and the horizontal portion. A step connecting FA is formed.
  • the size of the step is formed larger than the thickness of the horizontal portion FA (horizontal portion FB).
  • the horizontal portion FA indicates an aggregate of horizontal portions FA1, FA2, FA3, FA4, and FA5 of five rectangular conductors.
  • the horizontal part FB has shown the aggregate
  • the horizontal part FA, the horizontal part FB, and the semicircular part H are in the axial direction (vertical direction in FIG. 2) as shown in FIG. ).
  • FIG. 5 is a perspective view of the inner peripheral reference unit 12 in which five flat conductors are simultaneously formed.
  • 6 shows a front view of the inner reference unit 12 of FIG. 5
  • FIG. 7 shows a plan view of FIG. 6 viewed from above
  • FIG. 8 shows a right side view of FIG.
  • the structure of the inner periphery reference unit 12 is the same as that of the outer periphery reference unit 11, and since the inner periphery reference unit 12 is disposed inside the outer periphery reference unit 11, only the overall dimensions are reduced. Parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the manufacturing method of the outer periphery reference unit 11 is demonstrated.
  • the manufacturing method of the inner periphery reference unit 12 is the same as the manufacturing method of the outer periphery reference unit 11.
  • the manufacturing method of the reference units 11 and 12 includes a winding process, an outer periphery forming process, an arc forming process, a lane change portion forming process, and a bending process.
  • FIG. 9 the top view of the coil 21 wound by the winding process among the manufacturing processes of the reference units 11 and 12 is shown.
  • the flat rectangular wire used has a cross section of about 1 mm ⁇ about 10 mm.
  • the material of the flat conducting wire is copper, and a nichrome plating layer is formed on the outer periphery.
  • the coil 21 has both terminals M and N, and the convex portion G is wound in an overlapping manner in the flatwise direction.
  • the in-slot conducting wire part SA and the in-slot conducting wire part SB are wound slightly shifted outward as they go downward.
  • the semicircular portion H, the horizontal portion FA, and the horizontal portion FB are wound with a length (about 10 mm) in the flatwise direction of the flat wire.
  • FIG. 11 and FIG. 12 show the outer periphery forming process among the manufacturing processes of the reference units 11 and 12.
  • FIG. 12 is a right side view of FIG.
  • the first intermediate coil 21 obtained by winding the flat conductor wire for five turns is set at the outer peripheral position of the mold 30 shown in FIG.
  • a jig 34 is disposed at a position facing the inclined portion EA.
  • a jig 37 is disposed at a position facing the convex portion G.
  • a jig 33 is disposed at a position facing the inclined portion EB.
  • a jig 32 is arranged at a position facing the in-slot conductor portion SA.
  • a jig 31 is arranged at a position facing the in-slot conductor SB.
  • a jig 35 is disposed at a position facing the horizontal portion FB.
  • a jig 36 is disposed at a position facing the semicircular portion H and the horizontal portion FA.
  • the jigs 31, 32, 33, 34, 35, 36, and 37 are moved to the positions shown in FIGS. 11 and 12, whereby the second intermediate coil 22 shown in FIG. 10 is formed.
  • the semicircular part H and the horizontal part FA are formed so that each flat wire is shifted in the length (about 10 mm) in the flatwise direction, as shown in FIG. 10.
  • the arc forming process will be described.
  • the coil 22 is sandwiched between the lower mold 38 and the pair of upper molds 39, and a gentle bend is formed so as to form an arc shape.
  • the third intermediate coil 23 shown in FIG. 13 is formed.
  • the lane change portion forming process will be described. In this step, the lane change portion GA and the lane change portion GB are formed on the convex portion G of the third intermediate coil 23 shown in FIG.
  • the lane change portion GA and the lane change portion GB are formed simultaneously by sandwiching the coil 23 between the lower die 41 and the lower die 44 and the upper die 42 and the upper die 43 having steps. .
  • FIG. 15 shows the coil 24 in which the lane change portions GA and GB are formed.
  • the coil 24 is gripped by the movable mold 51.
  • the movable mold 51 is held so as to be movable with respect to the fixed mold 52.
  • a bent portion JA and a bent portion JB are formed as shown in FIG.
  • the semicircular portion H and the horizontal portion FA are shifted by the length of the flat width.
  • the angle formed between the in-slot conductor portion SA and the horizontal portion FA is different for each rectangular conductor wire. Due to these deviations and different angles, after the bent portions JA and JB are formed, as shown in FIGS. 1 to 4, the semicircular portion H and the horizontal portion FA are overlapped with each other in the radial direction. At the same position.
  • FIG. 19 is a perspective view of the double reference unit 13.
  • 20 is a front view of the double reference unit 13
  • FIG. 21 is a plan view of FIG. 20
  • FIG. 22 is a right side view of FIG.
  • the inner circumference reference unit 12 is located inside the outer circumference reference unit 11. That is, the convex portion 12G, the inclined portion 12EA, and the inclined portion 12EB of the inner peripheral reference unit 12 are arranged inwardly in the axial direction of the convex portion 11G, the inclined portion 11EA, and the inclined portion 11EB of the outer peripheral reference unit 11 (the one closer to the stator core). ).
  • the in-slot conductor 12SA and the in-slot conductor 12SB of the inner circumference reference unit 12 are located on the inner circumference side of the in-slot conductor 11SA and the in-slot conductor 11SB of the outer circumference reference unit 11.
  • the semicircular portion 12H, the horizontal portion 12FA, and the horizontal portion 12FB of the inner peripheral reference unit 12 are in the radial direction of the semicircular portion 11H, the horizontal portion 11FA, and the horizontal portion 11FB of the outer peripheral reference unit 11. It is located on the outer peripheral side (inner side with respect to the stator core).
  • FIG. 23 shows the assembly 16 in a state where the U, V, W, and three-phase dual reference units 13U, 13V, and 13W are combined. That is, the U-phase first outer circumference reference unit 11 (U1), the U-phase first inner circumference reference unit 12 (U1), the V-phase first outer circumference reference unit 11 (V1), the V-phase first inner circumference reference unit.
  • the assembly 16 in which the unit 12 (V1), the W-phase first outer circumference reference unit 11 (W1), and the W-phase first inner circumference reference unit 12 (W1) are overlapped is shown in a perspective view.
  • the inclined portion 12 (U1) EB of the U-phase first inner peripheral reference unit 12 (U1) is axially oriented with respect to the inclined portion 11 (U1) EB of the U-phase first outer peripheral reference unit 11 (U1). And overlapped on the lower side (direction of the stator core 15).
  • the inclined portion 11 (V1) EB of the V-phase first outer periphery reference unit 11 (V1) is in the axial direction of the inclined portion 12 (U1) EB of the U-phase first inner periphery reference unit 12 (U1). It is superimposed on the lower side.
  • V-phase first inner circumference reference unit 12 (V1), W-phase first outer circumference reference unit 11 (W1), W-phase first inner circumference reference unit 12 (W1) inclined portion 11 (U1) EB, 12 (U1) EB, 11 (V1) EB, 12 (V1) EB, 11 (W1) EB, and 12 (W1) EB are clockwise and sequentially positioned downward in the axial direction of the immediately preceding inclined portion EB. Are superimposed.
  • the unit 12 (V1), the W-phase first outer circumference reference unit 11 (W1), and the W-phase first inner circumference reference unit 12 (W1) five rectangular wires (EA1 to EA5) are connected to the stator core 13 ( The rotor is overlapped in the radial direction.
  • the inclined portion 12 (U1) EA of the U-phase first inner circumference reference unit 12 (U1) is axially oriented with respect to the inclined portion 11 (U1) EA of the U-phase first outer circumference reference unit 11 (U1).
  • the inclined portion 11 (V1) EA of the V-phase first outer periphery reference unit 11 (V1) is in the axial direction of the inclined portion 12 (U1) EA of the U-phase first inner periphery reference unit 12 (U1). It is superimposed on the upper side. That is, the U-phase first outer circumference reference unit 11 (U1), the U-phase first inner circumference reference unit 12 (U1), and the V-phase first outer circumference reference unit 11 (V1) arranged in adjacent slots.
  • V-phase first inner circumference reference unit 12 (V1), W-phase first outer circumference reference unit 11 (W1), W-phase first inner circumference reference unit 12 (W1) inclined portion 11 (U1) EA, 12 (U1) EA, 11 (V1) EA, 12 (V1) EA, 11 (W1) EA, and 12 (W1) EA are positioned clockwise in the axial direction of the immediately preceding inclined portion EA. Are superimposed.
  • FB1 to FB5 stator cores. 15 (rotor) is overlapped in the axial direction.
  • the horizontal portion 12 (U1) FB of the U-phase first inner circumference reference unit 12 (U1) is radial with respect to the horizontal portion 11 (U1) FB of the U-phase first outer circumference reference unit 11 (U1).
  • the horizontal portion 11 (V1) FB of the V-phase first outer periphery reference unit 11 (V1) is a radial clock relative to the horizontal portion 12 (U1) FB of the U-phase first inner periphery reference unit 12 (U1). It is overlapped around the outer periphery. That is, as shown in FIGS.
  • the horizontal portions 11 (U1) FB, 12 (U1) FB, 11 (V1) FB, 12 (V1) FB, 11 (W1) FB, 12 (W1) FB are clockwise and sequentially In the radial direction of the portion FB, they are overlapped in the clockwise direction at the outer peripheral position (inner side with respect to the stator core).
  • U phase first outer circumference reference unit 11 (U1), U phase first inner circumference reference unit 12 (V1), V phase first inner circumference reference unit 12 (V1) In the horizontal portion FA of the W-phase first outer circumference reference unit 11 (W1) and the W-phase first inner circumference reference unit 12 (W1), five rectangular conductors (FA1 to FA5) are connected to the stator core. 15 (rotor) is overlapped in the axial direction.
  • the horizontal portion 12 (U1) FA of the U-phase first inner circumference reference unit 12 (U1) is radially in the direction of the horizontal portion 11 (U1) FA of the U-phase first outer circumference reference unit 11 (U1). It is superimposed in the clockwise direction at the position of the inner circumference.
  • the horizontal portion 11 (V1) FA of the V-phase first outer circumference reference unit 11 (V1) is a radial clock relative to the horizontal portion 12 (U1) FA of the U-phase first inner circumference reference unit 12 (U1). It is overlapped around the inner circumference. That is, as shown in FIGS.
  • the horizontal portions 11 (U1) FA, 12 (U1) FA, 11 (V1) FA, 12 (V1) FA, 11 (W1) FA, 12 (W1) FA In the radial direction of the part FA, they are overlapped at the position of the inner periphery in the clockwise direction.
  • the U-phase first outer circumference reference unit 11 (U1), the U-phase first inner circumference reference unit 12 (U1), the V-phase first outer circumference reference unit 11 (V1), the V-phase first In the convex portion G of the first inner circumference reference unit 12 (V1), the W phase first outer circumference reference unit 11 (W1), and the W phase first inner circumference reference unit 12 (W1), four rectangular conductors (G2 to G5) are superposed in the radial direction of the stator core 15 (rotor). As shown in FIG.
  • standard unit 11 (W1) of W phase is arrange
  • the semicircular portion 11 (W1) H of the first outer circumference reference unit 11 (W1) is disposed at a position shifted in the radial direction.
  • the configuration of the coil cage 14 is shown in a perspective view in FIG.
  • the stator core of the stator of the motor according to the present embodiment has 48 slots and 48 teeth.
  • the outer periphery reference unit 11 and the inner periphery reference unit 12 each have two in-slot conductor portions SA and SB, and the in-slot conductor portion SA and the in-slot conductor portion SB are as shown in FIG.
  • the lane is changed by the thickness of five flat conductors in the radial direction.
  • the slot S includes eight set blocks of a first set block B1, a second set block B2,.
  • Each set block B includes six U-phase first slots SU1, U-phase second slots SU2, V-phase first slots SV1, V-phase second slots SV2, W-phase first slots SW1, and W-phase second slots SW2.
  • the U-phase first slot SU1, the U-phase second slot SU2, the V-phase first slot SV1, the V-phase second slot SV2, the W-phase first slot SW1, and the W-phase second slot SW2 are collectively referred to as a slot S. .
  • the in-slot conductor portion 11 (U1) SB of the U-phase first outer periphery reference unit 11 (U1) is inserted on the inner periphery side of the U-phase first slot SU1 of the first set block B1.
  • the in-slot conductor 12 (U1) SB of the U-phase first inner reference unit 12 (U1) is inserted on the inner periphery side of the U-phase second slot SU2.
  • the in-slot conductor 11 (V1) SB of the V-phase first outer reference unit 11 (V1) is inserted into the inner periphery of the V-phase first slot SV1 of the first set block B1.
  • the in-slot conductor portion 12 (V1) SB of the V-phase first inner circumference reference unit 12 (V1) is inserted on the inner circumference side of the V-phase second slot SV2.
  • the in-slot conductor 11 (W1) SB of the W-phase first outer reference unit 11 (W1) is inserted on the inner peripheral side of the W-phase first slot SW1 of the first set block B1.
  • the in-slot conductor portion 12 (W1) SB of the W-phase first inner reference unit 12 (W1) is inserted on the inner periphery side of the W-phase second slot SW2.
  • the in-slot conductor 12 (U1) SA of the U-phase first inner reference unit 12 (U1) is inserted on the outer peripheral side of the U-phase first slot SU1 of the second set block B2. Further, the in-slot conductor portion 11 (U1) SA of the U-phase first outer reference unit 11 (U1) is inserted on the outer peripheral side of the U-phase second slot SU2. Similarly, the in-slot conductor 12 (V1) SA of the V-phase first inner reference unit 12 (V1) is inserted on the outer peripheral side of the V-phase first slot SV1 of the second set block B2.
  • the in-slot conductor 11 (V1) SA of the V-phase first outer reference unit 11 (V1) is inserted on the outer peripheral side of the V-phase second slot SV2.
  • the in-slot conductor 12 (W1) SA of the W-phase first inner reference unit 12 (W1) is inserted on the outer peripheral side of the W-phase first slot SW1 of the second set block B2.
  • the in-slot conductor portion 11 (W1) SA of the W-phase first outer reference unit 11 (W1) is inserted on the outer peripheral side of the W-phase second slot SW2.
  • the in-slot conductors SA and SB are sequentially inserted into the slots of the third set block B3, the fourth set block B4, the fifth set block B5, the sixth set block B6, and the seventh set block B7.
  • the in-slot conductor 11 (U8) SB of the U-phase eighth outer reference unit 11 (U8) is inserted into the inner periphery of the U-phase first slot SU1 of the eighth set block B8.
  • the in-slot conductor portion 12 (U8) SB of the U-phase eighth inner reference unit 12 (U8) is inserted on the inner periphery side of the U-phase second slot SU2.
  • the in-slot conductor 11 (V8) SB of the V-phase eighth outer reference unit 11 (V8) is inserted into the inner periphery of the V-phase first slot SV1 of the eighth set block B8. Further, the in-slot conductor 12 (V8) SB of the V-phase eighth inner reference unit 12 (V8) is inserted on the inner periphery side of the V-phase second slot SV2. Similarly, the in-slot conductor 11 (W8) SB of the W-phase eighth outer reference unit 11 (W8) is inserted into the inner peripheral side of the W-phase first slot SW1 of the eighth set block B8. Further, in-slot conductor portion 12 (W8) SB of W-phase eighth inner reference unit 12 (W8) is inserted on the inner periphery side of W-phase second slot SW2.
  • the in-slot conductor 12 (U8) SA of the U-phase eighth inner reference unit 12 (U8) is inserted into the outer periphery of the U-phase first slot SU1 of the first set block B1. Further, the in-slot conductor portion 11 (U8) SA of the U-phase eighth outer reference unit 11 (U8) is inserted on the outer peripheral side of the U-phase second slot SU2. Similarly, the in-slot conductor 12 (V8) SA of the V-phase eighth inner reference unit 12 (V8) is inserted on the outer peripheral side of the V-phase first slot SV1 of the first set block B1.
  • the in-slot conductor 11 (V8) SA of the V-phase eighth outer reference unit 11 (V8) is inserted on the outer peripheral side of the V-phase second slot SV2.
  • the in-slot conductor 12 (W8) SA of the W-phase eighth inner reference unit 12 (W8) is inserted on the outer peripheral side of the W-phase first slot SW1 of the first set block B1.
  • the in-slot conductor portion 11 (W8) SA of the W-phase eighth outer reference unit 11 (W8) is inserted on the outer peripheral side of the W-phase second slot SW2. Since there are a total of 16 reference units of 8 outer reference units 11 and 8 inner reference units 12 each in three phases of U, V, and W, a total of 48 reference units are provided. ing. In one slot, one set of five flat conductors is inserted in two sets (a total of ten).
  • 24 and 25 show a state where the lower side portion of the coil cage 14 is inserted into the stator core 15 by half.
  • FIG. 25 since it becomes difficult to understand when the entire coil cage 14 is described, in a state where the U, V, W, and three-phase double reference units 13U, 13V, and 13W, which are part of the coil cage 14, are combined. Only one assembly 16 (same as shown in FIG. 23) is described. Here, the insertion operation of the assembly 16 that is a part of the coil rod 14 will be described, but the entire coil rod 14 has the same insertion operation as described here.
  • the cage coil 14 into the slot S of the stator core 15.
  • the five in-slot conductors 11 (U1) SB (SB1) of the U-phase first outer reference unit 11 (U1) To SB5) are inserted.
  • the other in-slot conductor portion 11 (U1) SA (SA1 to SA5) is inserted on the outer peripheral side of the U-phase second slot SU2 of the second set block B2.
  • the U-phase second slot SU2 of the second set block B2 has a total of the in-slot conductor 11 (U1) SA (SA1 to SA5) and the in-slot conductor 12 (U2) SB (SB1 to SB5). Ten flat conductors are inserted.
  • FIG. 26 shows a state where the coil rod 14 is inserted to the stator core 15 up to a predetermined position.
  • FIG. 27 is a plan view of FIG. 26 when the stator core 15 is viewed from above along the axis.
  • FIG. 28 is a front view of FIG. As shown in FIG. 28, the positions of the semicircular part H, the horizontal part FB, and the horizontal part FA are spaced from the end face of the stator core 15 so that the rotor is not affected by the coil rod 14. Because. Although only a part of the coil rod 14 is shown in FIG. 26, the assembly of the coil rod 14 to the stator core 15 is completed by inserting the coil rod 14 up to the state of FIG.
  • FIG. 29 shows a central sectional view of the stator 10.
  • a coil rod 14 is incorporated in the stator core 15. In this state, the coil rod 14 does not exist on the inner side of the inner peripheral surface 15b of the teeth 15a of the stator core 15 on the upper side of the stator 10 in FIG.
  • the semicircular portion H, the horizontal portion FA, and the horizontal portion FB, which are bent portions of the coil rod 14 are located inside the inner peripheral surface 15 b of the teeth 15 a of the stator core 15. ing.
  • the rotor 42 of the motor has a rotor portion 43 formed on the outer periphery of the central shaft 41.
  • the rotor 42 cannot be inserted from the lower side of the stator 10, but can be inserted along the axis from the upper side of the stator.
  • FIG. 30 shows a state in which the rotor 42 is inserted into the stator 10. As shown in FIG. 30, the central shaft 41 of the rotor 42 protrudes outward from a central hole formed by the inner peripheral surface of the semicircular portion H of the coil rod 14.
  • the lane change portions G of the outer reference unit 11 and the inner reference unit 12 both occupy an angle of two slots.
  • the “region for two slots” here refers to the width of two slots and two teeth, with one slot and one tooth.
  • this lane change portion can be used twice as many as two slots, and it is possible to cope with a flat rectangular conductor that is preferably as wide as possible in relation to the bending radius. . That is, in order to increase the space factor, it is effective to increase the cross-sectional area of the flat conductor, and as the cross-sectional area increases, the bending radius increases relatively. For this reason, it becomes possible to comprise a stator with a high space factor by a present Example.
  • the stator 10 including the distributed winding coil rod 14 using the flat wire and the stator core 15 in which the slot is formed between the teeth, and the central axis are provided.
  • the slots are the U-phase first slot SU1, the U-phase second slot SU2, the V-phase first slot SV1, the V-phase second slot SV2, the W-phase first slot SW1, W.
  • a set block B having the phase second slot SW2 as a set is sequentially formed, a second set block B2 is formed next to the first set block B1, and (b) the U phase of the first set block B1
  • the rectangular conductor in the first slot SU1 forms the outer peripheral reference unit 11 (first loop) with the rectangular conductor in the U-phase second slot SU2 of the second set block B2, and (c) the first set.
  • the rectangular conductor in the U-phase second slot SU2 of the lock B1 forms the inner peripheral reference unit 12 (second loop) with the rectangular conductor in the U-phase first slot SU1 of the second set block B1, (D)
  • the inner circumference reference unit 12 is disposed inside the outer circumference reference unit 11, (e) the coil end portion at one end of the inner circumference reference unit 12, and the coil end portion A at one end of the outer circumference reference unit 11.
  • the side is bent to the rotor 42 side with respect to the in-slot conductors SA and SB of the stator core 15, (f) the coil end part A side at one end of the inner circumference reference unit 12, and one end of the outer circumference reference unit 11.
  • the coil end portion A side of the stator core 15 is positioned closer to the axial center side of the rotor 42 than the inner peripheral surface of the stator core 15.
  • the coil end A side at one end passes through the inside of the inner peripheral surface of the stator core 15. It can be easily inserted into the slot. Since the coil is not elastically deformed when inserted, a part of the coil does not jump out of the slot by the spring back.
  • the rectangular conducting wire a double coil having the outer periphery reference unit 11 and the inner periphery reference unit 12, it is possible to increase a margin of the lane change portion G.
  • the flat conductor is arranged in a plane on the end face of the stator core 15.
  • the end face of the stator core 15 has a limited area, it is difficult to increase the number of rectangular conductors in order to increase the number of turns of the coil.
  • the lane change part G is required in a coil end part.
  • the end face of the stator core can be used three-dimensionally by adopting a double coil structure in which the inner peripheral reference unit 12 is formed on the inner peripheral side of the outer peripheral reference unit 11 as in the configuration of the present embodiment.
  • the stator core 15 having a deep slot can be adopted without increasing the thickness of the coil end so much. As a result, it is possible to satisfy the requirements for improvement of the space factor of the stator and size reduction.
  • the lane change portion G is indispensable as long as concentric winding is adopted for the coil and a distributed winding stator is formed. This is because the concentric winding coil is inserted across a plurality of slots, so that there is a portion where adjacent coils interfere with each other, which must be avoided.
  • the double coil (the outer circumference reference unit 11 and the inner circumference reference unit 12) is used, so that the lane change portion G can be used for two slots as shown in FIG. It is preferable to prepare a wide width as much as possible in relation to the radius. This is because it is effective to increase the cross-sectional area of the rectangular conductor in order to increase the space factor, and as the cross-sectional area increases, the bending radius also increases relatively. For this reason, it becomes possible to comprise a stator with a high space factor by a present Example.
  • outer periphery reference unit 11 and the inner periphery reference unit 12 are formed by a reference unit obtained by simultaneously bending a predetermined number of rectangular conductors, a plurality of rectangular conductors are wound in layers. Since a plurality of pieces (reference unit) are bent at the same time in a state of being overwrapped, the manufacturing process can be simplified and the cost can be reduced.
  • the coil end part A side at one end of the inner circumference reference unit 12 is overlapped with the outer circumference in the radial direction of the rotor 42 from the coil end part A side at one end of the outer circumference reference unit 11.
  • the other end of the coil end portion B is overlapped with the inner periphery in the axial direction of the rotor 42 from the coil end portion B side of the other end of the outer periphery reference unit 11. Since the coil end portion B is overlapped in the axial direction, the radial dimension can be reduced. At the same time, the coil end A at one end is overlapped in the radial direction. The direction dimension can be reduced.
  • the rectangular conductor wires are superposed in the radial direction, and a plurality of reference units are superposed in the axial direction.
  • Flat conductors can be gathered in three dimensions, and the volume of the coil end at the other end can be reduced.
  • the outer circumference reference unit 11 and the inner circumference reference unit 12 superimpose the rectangular conductor wires in the axial direction and superimpose a plurality of reference units in the radial direction. Accordingly, the rectangular conductor wires can be integrated together, and the volume of the coil end at the other end can be reduced.
  • the R radius of the R portion (bending portion JA, JB) that is a connection portion with the slot inner wire portion on one side is Since it is characterized in that it is different for each rectangular conductor before being bent, after folding the rectangular conductor of the reference unit at the same time, a plurality of rectangular conductors on the coil end part A side at one end are overlapped, They can be matched in the radial direction. Further, the outer circumference reference unit 11 and the inner circumference reference unit 12 constituting the coil end portion at one end are in a shifted state before being bent, and the outer circumference reference unit 11 and the inner circumference reference unit are bent by being bent.
  • the coil end portion at one end is formed after the rectangular conductors of the outer circumference reference unit 11 and the inner circumference reference unit 12 are bent at the same time.
  • a plurality of rectangular conductors on the A side can be overlapped and matched in the radial direction.
  • the coil end part A side of one end and the coil end part B side of the other end are not illustrated respectively, in order to make it easy to read in the above, the code
  • the motor and the motor manufacturing method of the present invention are not limited to the above embodiments, and various applications are possible.
  • a motor having 48 slots S has been described, but the number of slots S may be changed.
  • the present invention is used for, for example, a motor for a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

第1組ブロック(B1)のU相第1スロット(SU1)内の平角導線が、第2組ブロック(B2)のU相第2スロット(SU2)内の平角導線と外周基準ユニット(11)を形成し、第1組ブロック(B1)のU相の第2スロット(SU2)内の平角導線が、第2組ブロック(B1)のU相第1スロット(SU1)内の平角導線と内周基準ユニット(12)を形成し、内周基準ユニット(12)が、外周基準ユニット(11)の内側に配置され、内周基準ユニット(12)の一端のコイルエンド部、及び外周基準ユニット(11)の一端のコイルエンド部(A)側が、ステータコア(15)のスロット内導線部(SA、SB)に対して、ロータ(42)側に折り曲げられており、内周基準ユニット(12)の一端のコイルエンド部(A)側、及び外周基準ユニット(11)の一端のコイルエンド部(A)側が、ステータコア(15)の内周面よりロータ(42)の軸心側に位置する。

Description

モータ
 本発明は、平角導線を用いた分布巻きコイルとステータコアとを備えるステータと、中心軸を備えるロータとを有するモータに関する。
 例えば、断面が約1mm×約10mmの平角導線を用いた分布巻きコイルを、ステータコアのスロット内に挿入して組み付けることは、丸細線と違って平角導線が強い剛性を持ち、変形しにくいため、困難であった。その問題を解決するために、色々な提案がなされている。
 特許文献1においては、ティースの周りに形成されたスロット内に、導線を巻回したコイルを、径方向の内側から外側に向かって挿入するときに、挿入しやすくするため、導線の幅やコイル傾斜角度を工夫することが提案されている。
 一方、特許文献2においては、スロット内に挿入される導線を重ね巻きしてコイルを構成し、それを挿入治具に装着し、挿入治具をステータコア内に配置し、挿入治具からステータコアのスロットに、コイルを挿入する方法が開示されている。
 また、特許文献3には、分布巻きコイルにおいて、挿入する先端部を軸心側に折り曲げることが開示されている。
特開2002-051489号公報 特開2008-167567号公報 国際公開公報WO 92/01327
 しかしながら、従来のステータコアへコイルを挿入する方法には、次のような問題があった。
 すなわち、特許文献1のように、各ティースに対して、各別にコイルを挿入する方法では、ティース数に応じた回数の挿入を行わなければならず、挿入に時間がかかる問題があった。また、挿入装置が複雑化し、大型化する問題があった。
 また、特許文献2のように、挿入治具を用いた場合には、挿入はうまくいったとしても、挿入治具内で弾性変形されていたコイルをスロット内に挿入した後で、コイルがスプリングバックにより変形し、導線の一部がスロットから外に飛び出す問題があった。
 特許文献1、2の技術では、いずれも、ティース・スロットに対して、径方向の内側から外側に向かって、コイルを挿入するものであるから、上記問題が発生するのであり、コイルを軸心方向からスロット内に挿入できれば、上記問題を解決できるということに、本出願人は思い至った。
 しかし、集中巻きのコイルならば、挿入する先端部を軸心側に折り曲げれば、残りの部分をスロット内に挿入することは容易であるが、分布巻きコイルでは、折り曲げる部分の形状が複雑であり、折り曲げること自体が困難であるという問題があった。
 分布巻きコイルで、挿入する先端部を折り曲げる技術として、特許文献3の技術が開示されているが、特許文献3の技術では、折り曲げ箇所の異なる複数の導体を、個別に製造して、組み合わせていくため、製造に時間がかかり、コストが高い問題があった。
 本発明は、上記問題点を解決するためになされたものであり、平角導線を用いた分布巻きコイルを軸心方向から容易にスロット内に挿入できる低コストのモータを提供することを目的とする。
 上記課題を解決するために、本発明の一態様におけるモータは、次のような構成を有している。
(1)平角導線を用いた分布巻きコイルと、ティース間にスロットが形成されたステータコアとを備えるステータと、中心軸を備えるロータとを有するモータにおいて、(a)スロットは、U相第1スロット、U相第2スロット、V相第1スロット、V相第2スロット、W相第1スロット、W相第2スロットを一組とする組ブロックが、順次形成されており、第1組ブロックの隣に第2組ブロックが形成され、(b)第1組ブロックのU相第1スロット内の前記平角導線が、第2組ブロックのU相第2スロット内の前記平角導線と第1ループを形成していること、(c)第1組ブロックのU相の第2スロット内の平角導線が、第2組ブロックのU相第1スロット内の平角導線と第2ループを形成していること、(d)第2ループが、第1ループの内側に配置されていること、(e)第2ループの一端のコイルエンド部、及び第1ループの一端のコイルエンド部が、ステータコアのスロット内導線部に対して、ロータ側に折り曲げられていること、(f)第2ループの一端のコイルエンド部、及び第1ループの一端のコイルエンド部が、ステータコアの内周面よりロータの軸心側に位置すること、を特徴とする。
(2)(1)に記載するモータにおいて、前記第1ループ、及び前記第2ループが、所定数の平角導線を同時に折り曲げ加工した基準ユニットにより形成されていること、を特徴とするのが好ましい。
(3)(2)に記載するモータにおいて、前記一端のコイルエンド部では、前記基準ユニットの複数の前記平角導線が、前記ロータの軸心方向に重ね合わされていること、前記他端のコイルエンド部では、前記基準ユニットの複数の前記平角導線が、前記ロータの径方向に重ね合わされていること、を特徴とするのが好ましい。
(4)(1)乃至(3)に記載するモータのいずれか1つにおいて、前記第2ループの前記一端のコイルエンド部が、前記第1ループの前記一端のコイルエンド部より、前記ロータの径方向で、外周に重ね合わされていること、前記第2ループの前記他端のコイルエンド部が、前記第1ループの前記他端のコイルエンド部より、前記ロータの軸心方向で、内周に重ね合わされていること、を特徴とするのが好ましい。
(5)(2)または(3)に記載するモータにおいて、前記一端のコイルエンド部を構成する基準ユニットでは、片側の前記スロット内導線部との接続部であるR部のR半径が、折り曲げられる前には、平角導線毎に相違すること、を特徴とするのが好ましい。
(6)(2)、(3)、または(5)に記載するモータにおいて、前記一端のコイルエンド部を構成する基準ユニットが、折り曲げられる前には、ずれた状態であり、折り曲げられることにより、前記基準ユニットの平角導線が、径方向に一致して重なり合う状態となること、を特徴とするのが好ましい。
 次に、本発明に係るモータ、及びモータ製造方法の作用及び効果について説明する。
(1)平角導線を用いた分布巻きコイルと、ティース間にスロットが形成されたステータコアとを備えるステータと、中心軸を備えるロータとを有するモータにおいて、(a)スロットは、U相第1スロット、U相第2スロット、V相第1スロット、V相第2スロット、W相第1スロット、W相第2スロットを一組とする組ブロックが、順次形成されており、第1組ブロックの隣に第2組ブロックが形成され、(b)第1組ブロックのU相第1スロット内の前記平角導線が、第2組ブロックのU相第2スロット内の前記平角導線と第1ループを形成していること、(c)第1組ブロックのU相の第2スロット内の平角導線が、第2組ブロックのU相第1スロット内の平角導線と第2ループを形成していること、(d)第2ループが、第1ループの内側に配置されていること、(e)第2ループの一端のコイルエンド部、及び第1ループの一端のコイルエンド部A側が、ステータコアのスロット内導線部に対して、ロータ側に折り曲げられていること、(f)第2ループの一端のコイルエンド部A側、及び第1ループの一端のコイルエンド部A側が、ステータコアの内周面よりロータの軸心側に位置すること、を特徴とするので、一端のコイルエンド部A側を先頭として、ステータのスロットに対して、軸心側からコイルを挿入しようとするときに、一端のコイルエンドA側は、ステータコアの内周面の内側を通過するため、コイルを軸心方向からスロット内に容易に挿入することができる。挿入するときに、コイルを弾性変形させることがないので、スプリングバックにより、コイルの一部がスロット内から飛び出すことがない。
 また、平角導線を第1ループと第2ループを有する2重コイルとすることで、レーンチェンジ部分の余裕を多くとることが可能となる。
 平角導体でループを形成したコイルをステータコアに挿入する場合、平角導体をステータコアの端面に平面的に並べることになる。この場合、ステータコアの端面は面積が限られる為、コイルのターン数を多くする為に平角導体の数を増やすことは難しい。そして、コイルを分布巻きとして構成する場合、同心巻きのコイル同士が干渉する為、コイルエンド部にレーンチェンジ部分を必要とする。このレーンチェンジ部で、コイルの幅は問題となりやすい。
 そこで、本発明の構成のように第1ループの内周側に第2ループを形成する2重コイルの構造とすることで、ステータコアの端面を立体的に利用することができる。この結果、コイルのターン数を増やすことが可能で、ターン数が増えた場合にもレーンチェンジ部において隣り合うコイル同士の干渉を防ぐことが可能となる。
 コイルの第1ループと第2ループを重ねて2重のコイルを形成しているため、コイルエンドの厚みをそれ程増やすことなく、スロットの深いステータコアを採用することが可能となる。その結果、ステータの占積率の向上と小型化の要求を満足することが可能となる。
 一方、レーンチェンジは、コイルに同心巻きを採用し、分布巻きステータを構成する以上、必須となる。これは、同心巻きコイルを複数のスロットを跨いで挿入する為、隣り合うコイル同士で干渉する部分ができ、それを回避する必要がある為である。
 具体的に言えば、スロット内に挿入される平角導体をスロット内導線部と定義すると、一方のスロット内導線部が第1組のU相第1スロットに挿入されるU相のコイルの第1ループは、他方のスロット内導線部が第2組のU相第2スロットに挿入される。そして、その隣に来るのは、一方のスロット内導線部が第1組のV相第1スロットに挿入され、他方のスロット内導線部が第2組のV相第2スロットに挿入されたV相のコイルの第1ループである。
 また、V相のコイルの第1ループは、第1組のU相第1スロットに挿入される部分において、U相のコイルの第1ループの下側に、第2組のU相第2スロットに挿入される部分において、U相コイルの第1ループの上側に来る必要がある。
更に細かく言えば、第1ループと第2ループは2重構造となっているので、一方は、上から順に、U相第1ループ、U相第2ループ、V相第1ループ、V相第2ループとなり、他方は上から順にV相第1ループ、V相第2ループ、U相第1ループ、U相第2ループとなる。
 このように必要となるレーンチェンジ部分は、ステータコアの端面に平面的に平角導体が配置されると1スロット分しか使用できない。しかし、本発明では2重コイルとしていることで、このレーンチェンジ部分が2倍の2スロット分使用することが可能であり、曲げ半径の関係で極力広い幅を用意することが好ましい。
 ここでいう「2スロット分の領域」とは、スロットとティースを1スロット分としてスロット2つとティース2つ分の幅のことを指している。
 これは、占積率を上げる為には平角導体の断面積を大きくすることが有効であるためで、断面積が大きくなれば相対的に曲げ半径も大きくなるからである。このため、本発明によって占積率の高いステータを構成することが可能となる。
(2)(1)に記載するモータにおいて、前記第1ループ、及び前記第2ループが、所定数の平角導線を同時に折り曲げ加工した基準ユニットにより形成されていること、を特徴とするので、複数の平角導線を重ね巻きしたものを、重ね巻きした状態で複数本(基準ユニット)同時に折り曲げるため、製造工程を単純化でき、コストを低減することができる。
(3)(2)に記載するモータにおいて、前記一端のコイルエンド部A側では、前記基準ユニットの複数の前記平角導線が、前記ロータの軸心方向に重ね合わされていること、前記他端のコイルエンド部B側では、前記基準ユニットの複数の前記平角導線が、前記ロータの径方向に重ね合わされていること、を特徴とするので、他端のコイルエンド部B側では、径方向に重ね合わされているため、コイルエンドの軸心方向の寸法を小さくすることができ、同時に、一端のコイルエンド部A側では、軸心方向に重ね合わされているため、折り曲げられたコイルエンドの径方向の寸法を小さくすることができる。
(4)(1)乃至(3)に記載するモータのいずれか1つにおいて、前記第2ループの前記一端のコイルエンド部A側が、前記第1ループの前記一端のコイルエンド部A側より、前記ロータの径方向で、外周に重ね合わされていること、前記第2ループの前記他端のコイルエンド部B側が、前記第1ループの前記他端のコイルエンド部B側より、前記ロータの軸心方向で、内周に重ね合わされていること、を特徴とするので、他端のコイルエンド部B側では、軸心方向に重ね合わされているため、径方向の寸法を小さくすることができ、同時に、一端のコイルエンドA側では、径方向に重ね合わされているため、軸心方向の寸法を小さくすることができる。
 すなわち、他端のコイルエンド部B側では、基準ユニットでは、平角導線を径方向に重ね合わせると共に、複数の基準ユニットを軸心方向に重ね合わせているため、立体的に平角導線をまとめることができ、他端のコイルエンドの体積を小さくすることができる。
 同時に、一端のコイルエンド部A側では、基準ユニットでは、平角導線を軸心方向に重ね合わせると共に、複数の基準ユニットを径方向に重ね合わせているため、立体的に平角導線をまとめることができ、他端のコイルエンドの体積を小さくすることができる。
(5)(2)または(3)に記載するモータにおいて、前記一端のコイルエンド部A側を構成する基準ユニットでは、片側の前記スロット内導線部との接続部であるR部のR半径が、折り曲げられる前には、平角導線毎に相違すること、を特徴とするので、基準ユニットの平角導線を同時に折り曲げた後で、一端のコイルエンド部A側の複数の平角導線を重ね合わせて、径方向において一致させることができる。
(6)(2)、(3)、または(5)に記載するモータにおいて、前記一端のコイルエンド部を構成する基準ユニットが、折り曲げられる前には、ずれた状態であり、折り曲げられることにより、前記基準ユニットの平角導線が、径方向に一致して重なり合う状態となること、を特徴とするので、基準ユニットの平角導線を同時に折り曲げた後で、一端のコイルエンド部A側の複数の平角導線を重ね合わせて、径方向において一致させることができる。尚、上記において一端のコイルエンド部A側及び他端のコイルエンド部B側は上記説明を読みやすくするためにA,Bの符号を付している。
外周基準ユニットの斜視図である。 外周基準ユニットの正面図である。 外周基準ユニットの平面図である。 外周基準ユニットの右側面図である。 内周基準ユニットの斜視図である。 内周基準ユニットの正面図である。 内周基準ユニットの平面図である。 内周基準ユニットの右側面図である。 基準ユニットの製造工程の第1中間コイルを示す図である。 基準ユニットの製造工程の第2中間コイルを示す第1図である。 基準ユニットの製造工程のうち、外周形成工程を示す平面図である。 図11の右側面図である。 基準ユニットの製造工程の第3中間コイルを示す図である。 基準ユニットの製造工程のうち、円弧形成工程を示す図である。 基準ユニットの製造工程の第4中間コイルを示す図である。 基準ユニットの製造工程のうち、レーンチェンジ部形成工程を示す図である。 基準ユニットの製造工程のうち、折り曲げ工程を示す第1図である。 基準ユニットの製造工程のうち、折り曲げ工程を示す第2図である。 二重基準ユニットの斜視図である。 二重基準ユニットの正面図である。 二重基準ユニットの平面図である。 二重基準ユニットの右側面図である。 U、V、W、3相の二重基準ユニットを組み合わせた状態である一部組立体を示す図である。 コイル籠の全体を示す平面図である。 コイル籠の一部をステータコアに挿入する挿入工程を示す第1図である。 コイル籠の一部をステータコアに挿入する挿入工程を示す第2図である。 コイル籠の一部をステータコアに挿入する挿入工程を示す第3図である。 コイル籠の一部をステータコアに挿入する挿入工程を示す第4図である。 ロータをステータに挿入する挿入工程を示す第1図である。 ロータをステータに挿入する挿入工程を示す第2図である。 二重基準ユニットとステータコアとの位置関係を示す図である。
 次に、本発明の一実施形態のモータ、及びモータ製造方法について図面を参照して説明する。
 図1に、5本の平角導線を同時に成形した外周基準ユニット11の斜視図を示す。図2に、図1の外周基準ユニット11の正面図を示し、図3に図2を上から見た平面図を示し、図4に図2の右側面図を示す。
 外周基準ユニット11は、スロット内に配置されるスロット内導線部SA、スロット内導線部SBを備える。
 図1に示すように、スロット内導線部SAは、5本の平角導線が長辺面(フラットワイズ面)を接触させて重ね合わされたもので、第1スロット内導線部SA1、第2スロット内導線部SA2、第3スロット内導線部SA3、第4スロット内導線部SA4、及び第5スロット内導線部SA5の集合体を示している。また、図4に示すように、スロット内導線部SBは、5本の平角導線が長辺面(フラットワイズ面)を接触させて重ね合わされたもので、第1スロット内導線部SB1、第2スロット内導線部SB2、第3スロット内導線部SB3、第4スロット内導線部SB4、及び第5スロット内導線部SB5の集合体を示している。
 図1の上側に位置するコイルエンド部の中央には、凸状部Gが形成されている。図3に示すように、凸状部Gは、レーンチェンジ部GAとレーンチェンジ部GBとを備えている。レーンチェンジ部GAは、の4本の平角導線の集合体である。1本足りないのは、後で説明する傾斜部EA5が端子Mに接続して、外部に突出しているためである。また、レーンチェンジ部GBは、4本の平角導線の集合体である。1本足りないのは、後で説明する傾斜部EB1が端子Nに接続して、外部に突出しているためである。このように、凸状部Gは、4本の平角導線の集合体である。
 スロット内導線部SAの上端には、折り曲げ部IAが形成されている。平角導線は、折り曲げ部IAで、図2に示すように、凸状部Gの方向に折り曲げられている。凸状部Gとスロット内導線部SAとの間には、傾斜部EAが形成されている。折り曲げ部IAは、図3に示すように、5本の平角導線の折り曲げ部IA1、IA2、IA3、IA4、IA5の集合体を示している。傾斜部EAは、図4に示すように、5本の平角導線の傾斜部EA1、EA2、EA3、EA4、EA5の集合体を示している。
 傾斜部EA、傾斜部EB、及び凸状部Gにおいては、5本の平角導線が、図4に示すように、スロット内導線部SAと同様に、径方向(図4の左右方向)に重ね合わされている。
 スロット内導線部SBの上端には、折り曲げ部IBが形成されている。平角導線は、折り曲げ部IBで、図2に示すように、凸状部Gの方向に折り曲げられている。凸状部Gとスロット内導線部SBとの間には、傾斜部EBが形成されている。折り曲げ部IBは、図3に示すように、5本の平角導線の折り曲げ部IB1、IB2、IB3、IB4、IB5の集合体を示している。傾斜部EBは、図3に示すように、5本の平角導線の傾斜部EB1、EB2、EB3、EB4、EB5の集合体を示している。
 傾斜部EBにおいては、5本の平角導線が、図3に示すように、スロット内導線部SBと同様に、径方向(図3の上下方向)に重ね合わされている。
 図4に示すように、傾斜部EAの最外周部に位置するEA5の端子Mは、折り曲げられて外部に突出している。また、傾斜部EBの最内周に位置するEB1の端子Nは、折り曲げられて外部に突出している。
 スロット内導線部SAの下端には、折り曲げ部JAが形成されている。平角導線は、折り曲げ部JAで、図4に示すように、90度内周側(図の左方向)に折り曲げられている。折り曲げ部JAは、図1示すように、5本の平角導線の折り曲げ部JA1、JA2、JA3、JA4、JA5の集合体を示している。
 また、スロット内導線部SBの下端には、折り曲げ部JBが形成されている。平角導線は、折り曲げ部JBで、図4に示すように、90度内周側(図の左方向)に折り曲げられている。図4に示すように、5本の平角導線の折り曲げ部JB1、JB2、JB3、JB4、JB5の集合体を示している。
 内周側中央部には、半円部Hが形成されている。図2に示すように、折り曲げ部JAと半円部Hとの間には、水平部FAが形成されている。折り曲げ部JBと半円部Hとの間には、水平部FBが形成されている。
 半円部Hは、図1、図2に示すように、5本の平角導線の半円部H1、H2、H3、H4、H5の集合体を示している。半円部Hは、図3(平面図)に示すように、上から見ると、半円形状を示し、図2(正面図)に示すように、正面から見ると、水平部FBと水平部FAをつなぐ段差を形成している。この段差の大きさは、水平部FA(水平部FB)の厚みよりも大きく形成されている。
 水平部FAは、図2に示すように、5本の平角導線の水平部FA1、FA2、FA3、FA4、FA5の集合体を示している。また、水平部FBは、図2に示すように、5本の平角導線の水平部FB1、FB2、FB3、FB4、FB5の集合体を示している。
ここで、水平部FA、水平部FB、及び半円部Hは、5本の平角導線がフラットワイズ面を密着させた状態で、図2に示すように、軸心方向(図2の上下方向)に重ね合わされている。
 次に、内周基準ユニット12について説明する。図5に、5本の平角導線を同時に成形した内周基準ユニット12の斜視図を示す。図6に、図5の内周基準ユニット12の正面図を示し、図7に図6を上から見た平面図を示し、図8に図6の右側面図を示す。
 内周基準ユニット12の構造は、外周基準ユニット11と同じであり、内周基準ユニット12は、外周基準ユニット11の内側に配置されるため、寸法が全体的に小さくされているのみなので、同じ部分には、同じ符号を付して、詳細な説明を省略する。
 次に、外周基準ユニット11の製造方法を説明する。内周基準ユニット12の製造方法は、外周基準ユニット11の製造方法と同じである。基準ユニット11,12の製造方法は、巻取り工程、外周形成工程、円弧形成工程、レーンチェンジ部形成工程、及び折り曲げ工程を有している。
 図9に、基準ユニット11,12の製造工程のうち、巻取り工程により巻き取られたコイル21の平面図を示す。使用している平角導線は、断面が約1mm×約10mmである。平角導線の材質は、銅であり、外周にニクロムメッキ層が形成されている。
 コイル21は、両端子M、Nを有し、凸状部Gは、フラットワイズ方向に重ね合わされて巻かれている。スロット内導線部SA及びスロット内導線部SBは、下に行くほど、少し外側にずれて巻かれている。半円部H、水平部FA、及び水平部FBは、平角導線のフラットワイズ方向の長さ(約10mm)づつ、ずらせて巻かれている。
 次に、外周形成工程について説明する。
 図11、図12に、基準ユニット11,12の製造工程のうち、外周形成工程を示す。
図12は、図11の右側面図である。
 巻取り工程で、平角導線を5周分巻き取った第1中間コイル21を、図11に示す金型30の外周位置にセットする。傾斜部EAに対向する位置に、治具34が配置されている。凸状部Gに対向する位置に、治具37が配置されている。傾斜部EBに対抗する位置に、治具33が配置されている。
 また、スロット内導線部SAに対向する位置に、治具32が配置されている。スロット内導線部SBに対向する位置に、治具31が配置されている。水平部FBに対向する位置に、治具35が配置されている。半円部Hと水平部FAに対向する位置に、治具36が配置されている。
 次に、図11、図12に示す位置まで、治具31、32、33、34、35、36、37が移動することにより、図10に示す第2中間コイル22が形成される。第2中間コイル22においては、半円部H及び水平部FAは、図10に示すように、各平角導線が、フラットワイズ方向の長さ(約10mm)ずれて形成される。
 次に、円弧形成工程について説明する。
 図14に示すように、下型38と一対の上型39に、コイル22を挟み込んで、円弧状となるように緩やかな曲げを形成する。これにより、図13に示す第3中間コイル23が形成される。
 次に、レーンチェンジ部形成工程について説明する。図13に示す第3中間コイル23の凸状部Gに、レーンチェンジ部GA、レーンチェンジ部GBを形成する工程である。図16に示すように、下型41、下型44と、段差のある上型42、上型43とで、コイル23を挟み込むことにより、レーンチェンジ部GAとレーンチェンジ部GBとを同時に形成する。すなわち、下型41と上型42とで挟持されたコイル23部分に対して、下型44と上型43とで挟持されたコイル23部分を上下方向に移動することにより、レーンチェンジ部GA、GBが形成される。
図15にレーンチェンジ部GA、GBが形成されたコイル24を示す。
 次に、折り曲げ工程について説明する。
 図17に示すように、移動型51に、コイル24を把持させる。移動型51は、固定型52に対して、移動可能に保持されている。次に移動型51が固定型52に対して移動することにより、図18に示すように、折り曲げ部JAと折り曲げ部JBが形成される。
 図15に示すコイル24においては、半円部Hと水平部FAとは、フラットワイズの長さ分ずれている。また、スロット内導線部SAと水平部FAとのなす角度は、平角導線毎に異なる角度で形成されている。
 これらのずれ、異なる角度があることにより、折り曲げ部JA、JBが形成された後では、図1-図4に示すように、半円部Hと水平部FAとは、重ね合わされて、径方向において一致した位置に形成される。
 次に、外周基準コイル11と内周基準ユニット12とを組み合わせた二重基準ユニット13について説明する。図19に、二重基準ユニット13を斜視図で示す。図20は、二重基準ユニット13の正面図であり、図21は、図20の平面図であり、図22は、図20の右側面図である。
 図19、20に示すように、内周基準ユニット12は、外周基準ユニット11の内側に位置している。すなわち、内周基準ユニット12の凸状部12G、傾斜部12EA、傾斜部12EBは、外周基準ユニット11の凸状部11G、傾斜部11EA、傾斜部11EBの軸心方向で内側(ステータコアに近い方)に位置している。また、内周基準ユニット12のスロット内導線部12SA、スロット内導線部12SBは、外周基準ユニット11のスロット内導線部11SA、スロット内導線部11SBの内周側に位置している。
 また、図21に示すように、内周基準ユニット12の半円部12H、水平部12FA、水平部12FBは、外周基準ユニット11の半円部11H、水平部11FA、水平部11FBの径方向で外周側(ステータコアを基準にすると、内側)に位置している。
 次に、製造された二重基準ユニット13を複数重ね合わせる。
 図23に、U、V、W、3相の二重基準ユニット13U、13V、13Wを組み合わせた状態である組立体16を示す。すなわち、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)を重ね合わせた組立体16を斜視図で示す。
 U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の傾斜部11(U1)EB、12(U1)EB、11(V1)EB、12(V1)EB、11(W1)EB、12(W1)EBにおいては、5本の平角導線(EB1~EB5)が、ステータコア15(ロータ)の径方向に重ね合わされている。
U相の第1内周基準ユニット12(U1)の傾斜部12(U1)EBは、U相の第1外周基準ユニット11(U1)の傾斜部11(U1)EBに対して、軸心方向で下側(ステータコア15の方向)に重ね合わされている。同様に、V相第1外周基準ユニット11(V1)の傾斜部11(V1)EBは、U相の第1内周基準ユニット12(U1)の傾斜部12(U1)EBの軸心方向の下側に重ね合わされている。
 すなわち、隣り合うスロット内に配置される、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の傾斜部11(U1)EB、12(U1)EB、11(V1)EB、12(V1)EB、11(W1)EB、12(W1)EBは、時計回りで、順次直前の傾斜部EBの軸心方向で下側に位置して重ね合わされている。
 また、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)においては、5本の平角導線(EA1~EA5)が、ステータコア13(ロータ)の径方向に重ね合わされている。
 U相の第1内周基準ユニット12(U1)の傾斜部12(U1)EAは、U相の第1外周基準ユニット11(U1)の傾斜部11(U1)EAに対して、軸心方向で上側(ステータコア15の反対方向)に重ね合わされている。同様に、V相第1外周基準ユニット11(V1)の傾斜部11(V1)EAは、U相の第1内周基準ユニット12(U1)の傾斜部12(U1)EAの軸心方向の上側に重ね合わされている。
 すなわち、隣り合うスロット内に配置される、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の傾斜部11(U1)EA、12(U1)EA、11(V1)EA、12(V1)EA、11(W1)EA、12(W1)EAは、時計回りで、順次直前の傾斜部EAの軸心方向で上側に位置して重ね合わされている。
 U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の水平部FBにおいては、5本の平角導線(FB1~FB5)が、ステータコア15(ロータ)の軸心方向に重ね合わされている。
 U相の第1内周基準ユニット12(U1)の水平部12(U1)FBは、U相の第1外周基準ユニット11(U1)の水平部11(U1)FBに対して、径方向で時計回りに外周の位置(ステータコアを基準にすると、内側)で重ね合わされている。V相第1外周基準ユニット11(V1)の水平部11(V1)FBは、U相の第1内周基準ユニット12(U1)の水平部12(U1)FBに対して、径方向で時計回りに外周の位置で重ね合わされている。
 すなわち、図23、27に示すように、隣り合うスロット内に配置される、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)においては、水平部11(U1)FB、12(U1)FB、11(V1)FB、12(V1)FB、11(W1)FB、12(W1)FBは、時計回りで、順次直前の水平部FBの径方向で時計回りに外周の位置(ステータコアを基準にすると、内側)で重ね合わされている。
 U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の水平部FAにおいては、5本の平角導線(FA1~FA5)が、ステータコア15(ロータ)の軸心方向に重ね合わされている。
 U相の第1内周基準ユニット12(U1)の水平部12(U1)FAは、U相の第1外周基準ユニット11(U1)の水平部11(U1)FAに対して、径方向で時計回りに内周の位置で重ね合わされている。V相第1外周基準ユニット11(V1)の水平部11(V1)FAは、U相の第1内周基準ユニット12(U1)の水平部12(U1)FAに対して、径方向で時計回りに内周の位置で重ね合わされている。
 すなわち、図23、27に示すように、隣り合うスロット内に配置される、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)においては、水平部11(U1)FA、12(U1)FA、11(V1)FA、12(V1)FA、11(W1)FA、12(W1)FAは、時計回りで、順次直前の水平部FAの径方向で時計回りに内周の位置で重ね合わされている。
 図23に示すように、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の凸状部Gにおいては、4本の平角導線(G2~G5)が、ステータコア15(ロータ)の径方向に重ね合わされている。
 図23に示すように、U相の第1外周基準ユニット11(U1)の凸状部11(U1)G、V相の第1外周基準ユニット11(V1)の凸状部11(V1)G、及びW相の第1外周基準ユニット11(W1)の凸状部11(W1)Gは、径方向にずれた位置に配置されている。
 また、U相の第1外周基準ユニット11(U1)の半円部11(U1)H、V相の第1外周基準ユニット11(V1)の半円部11(V1)H、及びW相の第1外周基準ユニット11(W1)の半円部11(W1)Hは、径方向にずれた位置に配置されている。
 外周基準ユニット11と内周基準ユニット12を合計24個重ね合わせると、半円形状となる。これらを2組製造して、合体させることにより、24個の外周基準ユニット11と24個の内周基準ユニット12を重ね合わせた円形状のコイル籠14が完成する。
 コイル籠14の構成を、図24に斜視図で示す。本実施の形態のモータのステータのステータコアは、48個のスロット、48個のティースを有している。
 外周基準ユニット11及び内周基準ユニット12は、各々2個のスロット内導線部SA、SBを有しており、スロット内導線部SAとスロット内導線部SBとは、図27に示すように、径方向で5本の平角導線の厚み分レーンチェンジして位置している。
 図24、27に示すように、ステータコア15には、48個のスロットSが形成されている。スロットSは、順次、第1組ブロックB1、第2組ブロックB2・・・第8組ブロックB8の8個の組ブロックを備える。各組ブロックBは、U相第1スロットSU1、U相第2スロットSU2、V相第1スロットSV1、V相第2スロットSV2、W相第1スロットSW1、W相第2スロットSW2の6個のスロットを備えている。以下、U相第1スロットSU1、U相第2スロットSU2、V相第1スロットSV1、V相第2スロットSV2、W相第1スロットSW1、W相第2スロットSW2をまとめてスロットSと称する。
第1組ブロックB1のU相第1スロットSU1の内周側には、U相の第1外周基準ユニット11(U1)のスロット内導線部11(U1)SBが挿入される。また、U相第2スロットSU2の内周側には、U相の第1内周基準ユニット12(U1)のスロット内導線部12(U1)SBが挿入される。
 同様に、第1組ブロックB1のV相第1スロットSV1の内周側には、V相の第1外周基準ユニット11(V1)のスロット内導線部11(V1)SBが挿入される。また、V相第2スロットSV2の内周側には、V相の第1内周基準ユニット12(V1)のスロット内導線部12(V1)SBが挿入される。
 同様に、第1組ブロックB1のW相第1スロットSW1の内周側には、W相の第1外周基準ユニット11(W1)のスロット内導線部11(W1)SBが挿入される。また、W相第2スロットSW2の内周側には、W相の第1内周基準ユニット12(W1)のスロット内導線部12(W1)SBが挿入される。
 続いて、第2組ブロックB2のU相第1スロットSU1の外周側には、U相の第1内周基準ユニット12(U1)のスロット内導線部12(U1)SAが挿入される。また、U相第2スロットSU2の外周側には、U相の第1外周基準ユニット11(U1)のスロット内導線部11(U1)SAが挿入される。
 同様に、第2組ブロックB2のV相第1スロットSV1の外周側には、V相の第1内周基準ユニット12(V1)のスロット内導線部12(V1)SAが挿入される。また、V相第2スロットSV2の外周側には、V相の第1外周基準ユニット11(V1)のスロット内導線部11(V1)SAが挿入される。
 同様に、第2組ブロックB2のW相第1スロットSW1の外周側には、W相の第1内周基準ユニット12(W1)のスロット内導線部12(W1)SAが挿入される。また、W相第2スロットSW2の外周側には、W相の第1外周基準ユニット11(W1)のスロット内導線部11(W1)SAが挿入される。
 続いて、第3組ブロックB3、第4組ブロックB4、第5組ブロックB5、第6組ブロックB6、第7組ブロックB7のスロット内に順次スロット内導線部SA、SBが挿入される。
 最後は、第8組ブロックB8のU相第1スロットSU1の内周側には、U相の第8外周基準ユニット11(U8)のスロット内導線部11(U8)SBが挿入される。また、U相第2スロットSU2の内周側には、U相の第8内周基準ユニット12(U8)のスロット内導線部12(U8)SBが挿入される。
 同様に、第8組ブロックB8のV相第1スロットSV1の内周側には、V相の第8外周基準ユニット11(V8)のスロット内導線部11(V8)SBが挿入される。また、V相第2スロットSV2の内周側には、V相の第8内周基準ユニット12(V8)のスロット内導線部12(V8)SBが挿入される。
 同様に、第8組ブロックB8のW相第1スロットSW1の内周側には、W相の第8外周基準ユニット11(W8)のスロット内導線部11(W8)SBが挿入される。また、W相第2スロットSW2の内周側には、W相の第8内周基準ユニット12(W8)のスロット内導線部12(W8)SBが挿入される。
 そして、第1組ブロックB1のU相第1スロットSU1の外周側には、U相の第8内周基準ユニット12(U8)のスロット内導線部12(U8)SAが挿入される。また、U相第2スロットSU2の外周側には、U相の第8外周基準ユニット11(U8)のスロット内導線部11(U8)SAが挿入される。
 同様に、第1組ブロックB1のV相第1スロットSV1の外周側には、V相の第8内周基準ユニット12(V8)のスロット内導線部12(V8)SAが挿入される。また、V相第2スロットSV2の外周側には、V相の第8外周基準ユニット11(V8)のスロット内導線部11(V8)SAが挿入される。
 同様に、第1組ブロックB1のW相第1スロットSW1の外周側には、W相の第8内周基準ユニット12(W8)のスロット内導線部12(W8)SAが挿入される。また、W相第2スロットSW2の外周側には、W相の第8外周基準ユニット11(W8)のスロット内導線部11(W8)SAが挿入される。
 U、V、Wの3相で各8個の外周基準ユニット11と、各8個の内周基準ユニット12の、計各16個の基準ユニットを有するため、合計48個の基準ユニットを有している。
 1つのスロット内には、1組5本の平角導線が、2組(計10本)挿入されている。
 次に、コイル籠14をステータコア15に挿入する方法について説明する。図24、25に、コイル籠14下側部をステータコア15に半分ほど挿入した状態を示す。図25では、コイル籠14の全体を記載すると、わかりにくくなるため、コイル籠14の一部である、U、V、W、3相の二重基準ユニット13U、13V、13Wを組み合わせた状態である組立体16(図23に示すものと同じ。)のみを記載している。ここでは、コイル籠14の一部である組立体16の挿入作用について説明するが、コイル籠14全体もここでの説明と同じ挿入作用である。また、インシュレータの記載を省略しているが、コイル籠14を挿入する前に、ステータコア15の各スロット部Sにインシュレータを装着しておくと良い。
 図25に示すように、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)の、半円部11(U1)H、12(U1)H、11(V1)H、12(V1)H、11(W1)H、12(W1)H、水平部11(U1)FB、12(U1)FB、11(V1)FB、12(V1)FB、11(W1)FB、12(W1)FB、及び水平部11(U1)FA、12(U1)FA、11(V1)FA、12(V1)FA、11(W1)FA、12(W1)FAは、ステータコア15のティース15a先端の内周面15bよりも、ステータ10の中心線側に位置している。
 したがって、U相の第1外周基準ユニット11(U1)、U相の第1内周基準ユニット12(U1)、V相の第1外周基準ユニット11(V1)、V相の第1内周基準ユニット12(V1)、W相の第1外周基準ユニット11(W1)、W相の第1内周基準ユニット12(W1)のスロット内導線部11(U1)SA、12(U1)SA、11(V1)SA、12(V1)SA、11(W1)SA、12(W1)SA、及びスロット内導線部11(U1)SB、12(U1)SB、11(V1)SB、12(V1)SB、11(W1)SB、12(W1)SBを、図25の上側からステータコア15の中心軸の軸心方向に下向きに、スロットSに挿入するときに、半円部H、水平部FB、及び水平部FAがステータコア15と干渉することがないため、コイル籠14をステータコア15のスロットSに挿入することができる。
 ここで、例えば、第1組ブロックB1のU相第1スロットSU1の内周側に、U相の第1外周基準ユニット11(U1)の5本のスロット内導線部11(U1)SB(SB1~SB5)が挿入される。もう一方のスロット内導線部11(U1)SA(SA1~SA5)は、第2組ブロックB2のU相第2スロットSU2の外周側に挿入される。
 第1組ブロックB1のU相第1スロットSU1の内周側には、図示しない第8組のU相の内周基準ユニット12(U8)の5本のスロット内導線部12(U8)SB(SB1~SB5)が挿入される。これにより、第1組ブロックB1のU相第1スロットSU1には、スロット内導線部11(U1)SAとスロット内導線部12(U8)SBの計10本の平角導線が挿入される。
 同様に、第2組ブロックB2のU相第2スロットSU2の内周側には、図示しない第2組のU相の内周基準ユニット12(U2)の5本のスロット内導線部12(U2)SB(SB1~SB5)が挿入される。これにより、第2組ブロックB2のU相第2スロットSU2には、スロット内導線部11(U1)SA(SA1~SA5)と、スロット内導線部12(U2)SB(SB1~SB5)の計10本の平角導線が挿入される。
 図26に、コイル籠14がステータコア15に対して、所定の位置まで挿入された状態を示す。図27に、図26を、ステータコア15を上方向から軸心に沿って見た平面図を示す。図28に、図26の正面図を示す。
 図28に示すように、半円部H、水平部FB、及び水平部FAの位置が、ステータコア15の端面から距離を設けてあるのは、コイル籠14の影響をロータが受けないようにするためである。
 図26には、コイル籠14の一部のみを示しているが、図26の状態まで、コイル籠14が挿入されることにより、ステータコア15へのコイル籠14の組立が完了する。その後、スロットS内にスロット内導線部SA、SBが挿入されている状態における空間部に、伝熱性能に優れた樹脂をモールドする。また、端子M、NをU相、V相、W相毎に順次バスバーで接続する。これにより、ステータ10が完成する。
 次に、完成したステータ10にモータのロータ42を組み付ける方法を説明する。
 図29に、ステータ10の中央断面図を示す。ステータコア15にコイル籠14が組み込まれている。この状態で、ステータ10の図29の上側では、ステータコア15のティース15aの内周面15bより内側には、コイル籠14は、存在しない。一方、ステータ10の図29の下側では、コイル籠14の折り曲げ部である半円部H、水平部FA、及び水平部FBが、ステータコア15のティース15aの内周面15bより内側に位置している。
 一方、モータのロータ42は、中心軸41の外周にロータ部43が形成されている。
 ロータ42は、ステータ10の下側から挿入することはできないが、ステータの上側から軸心に沿って挿入することが可能である。ロータ42をステータ10に挿入した状態を図30に示す。
 図30に示すように、ロータ42の中心軸41は、コイル籠14の半円部Hの内周面で形成される中心孔から外に突出している。
 一方、図31に示すように、二重基準ユニット13をステータコア15に挿入したときに、外周基準ユニット11と内周基準ユニット12のレーンチェンジ部Gは共に、2スロット分の角度を占有している。
 ここでいう「2スロット分の領域」とは、スロットとティースを1スロット分としてスロット2つとティース2つ分の幅のことを指している。
 本実施例では2重コイルとしていることで、このレーンチェンジ部分が2倍の2スロット分使用することが可能であり、曲げ半径の関係で極力広い幅を用意することが好ましい平角導線に対応できる。すなわち、占積率を上げる為には平角導体の断面積を大きくすることが有効であるためで、断面積が大きくなれば相対的に曲げ半径も大きくなるからである。このため、本実施例によって占積率の高いステータを構成することが可能となる。
 以上詳細に説明したように、本実施例のモータによれば、平角導線を用いた分布巻きコイル籠14と、ティース間にスロットが形成されたステータコア15とを備えるステータ10と、中心軸を備えるロータ42とを有するモータにおいて、(a)スロットは、U相第1スロットSU1、U相第2スロットSU2、V相第1スロットSV1、V相第2スロットSV2、W相第1スロットSW1、W相第2スロットSW2を一組とする組ブロックBが、順次形成されており、第1組ブロックB1の隣に第2組ブロックB2が形成され、(b)第1組ブロックB1のU相第1スロットSU1内の平角導線が、第2組ブロックB2のU相第2スロットSU2内の平角導線と外周基準ユニット11(第1ループ)を形成していること、(c)第1組ブロックB1のU相の第2スロットSU2内の平角導線が、第2組ブロックB1のU相第1スロットSU1内の平角導線と内周基準ユニット12(第2ループ)を形成していること、(d)内周基準ユニット12が、外周基準ユニット11の内側に配置されていること、(e)内周基準ユニット12の一端のコイルエンド部、及び外周基準ユニット11の一端のコイルエンド部A側が、ステータコア15のスロット内導線部SA、SBに対して、ロータ42側に折り曲げられていること、(f)内周基準ユニット12の一端のコイルエンド部A側、及び外周基準ユニット11の一端のコイルエンド部A側が、ステータコア15の内周面よりロータ42の軸心側に位置すること、を特徴とするので、一端のコイルエンド部A側を先頭として、ステータコア15のスロットに対して、軸心側からコイル籠14を挿入しようとするときに、一端のコイルエンドA側は、ステータコア15の内周面の内側を通過するため、コイルを軸心方向からスロット内に容易に挿入することができる。挿入するときに、コイルを弾性変形させることがないので、スプリングバックにより、コイルの一部がスロット内から飛び出すことがない。
 また、平角導線を外周基準ユニット11と内周基準ユニット12を有する2重コイルとすることで、レーンチェンジ部分Gの余裕を多くとることが可能となる。
 平角導体でループを形成したコイルをステータコア15に挿入する場合、平角導体をステータコア15の端面に平面的に並べることになる。この場合、ステータコア15の端面は面積が限られる為、コイルのターン数を多くする為に平角導体の数を増やすことは難しい。そして、コイルを分布巻きとして構成する場合、同心巻きのコイル同士が干渉する為、コイルエンド部にレーンチェンジ部分Gを必要とする。このレーンチェンジ部Gで、コイルの幅は問題となりやすい。
 そこで、本実施例の構成のように外周基準ユニット11の内周側に内周基準ユニット12を形成する2重コイルの構造とすることで、ステータコアの端面を立体的に利用することができる。この結果、コイルのターン数を増やすことが可能で、ターン数が増えた場合にもレーンチェンジ部Gにおいて隣り合うコイル同士の干渉を防ぐことが可能となる。
 コイルの外周基準ユニット11と内周基準ユニット12を重ねて2重のコイルを形成しているため、コイルエンドの厚みをそれ程増やすことなく、スロットの深いステータコア15を採用することが可能となる。その結果、ステータの占積率の向上と小型化の要求を満足することが可能となる。
 一方、レーンチェンジ部Gは、コイルに同心巻きを採用し、分布巻きステータを構成する以上、必須となる。これは、同心巻きコイルを複数のスロットを跨いで挿入する為、隣り合うコイル同士で干渉する部分ができ、それを回避する必要がある為である。
本実施例では2重コイル(外周基準ユニット11と内周基準ユニット12)としていることで、このレーンチェンジ部分Gが、図27に示すように、2スロット分使用することが可能であり、曲げ半径の関係で極力広い幅を用意することが好ましい。
 これは、占積率を上げる為には平角導体の断面積を大きくすることが有効であるためで、断面積が大きくなれば相対的に曲げ半径も大きくなるからである。このため、本実施例によって占積率の高いステータを構成することが可能となる。
 また、外周基準ユニット11、及び内周基準ユニット12が、所定数の平角導線を同時に折り曲げ加工した基準ユニットにより形成されていること、を特徴とするので、複数の平角導線を重ね巻きしたものを、重ね巻きした状態で複数本(基準ユニット)同時に折り曲げるため、製造工程を単純化でき、コストを低減することができる。
 また、一端のコイルエンド部A側では、外周基準ユニット11、及び内周基準ユニット12の複数の平角導線が、ロータ42の軸心方向に重ね合わされていること、他端のコイルエンド部B側では、外周基準ユニット11、及び内周基準ユニット12の複数の平角導線が、ロータ42の径方向に重ね合わされていること、を特徴とするので、他端のコイルエンド部B側では、径方向に重ね合わされているため、コイルエンドの軸心方向の寸法を小さくすることができ、同時に、一端のコイルエンド部A側では、軸心方向に重ね合わされているため、折り曲げられたコイルエンドの径方向の寸法を小さくすることができる。
 また、内周基準ユニット12の一端のコイルエンド部A側が、外周基準ユニット11の一端のコイルエンド部A側より、ロータ42の径方向で、外周に重ね合わされていること、内周基準ユニット12の他端のコイルエンド部B側が、外周基準ユニット11の他端のコイルエンド部B側より、ロータ42の軸心方向で、内周に重ね合わされていること、を特徴とするので、他端のコイルエンド部B側では、軸心方向に重ね合わされているため、径方向の寸法を小さくすることができ、同時に、一端のコイルエンドA側では、径方向に重ね合わされているため、軸心方向の寸法を小さくすることができる。
 すなわち、他端のコイルエンド部B側では、外周基準ユニット11、及び内周基準ユニット12では、平角導線を径方向に重ね合わせると共に、複数の基準ユニットを軸心方向に重ね合わせているため、立体的に平角導線をまとめることができ、他端のコイルエンドの体積を小さくすることができる。
 同時に、一端のコイルエンド部A側では、外周基準ユニット11、及び内周基準ユニット12では、平角導線を軸心方向に重ね合わせると共に、複数の基準ユニットを径方向に重ね合わせているため、立体的に平角導線をまとめることができ、他端のコイルエンドの体積を小さくすることができる。
 また、一端のコイルエンド部A側を構成する外周基準ユニット11、及び内周基準ユニット12では、片側のスロット内導線部との接続部であるR部(折り曲げ部JA,JB)のR半径が、折り曲げられる前には、平角導線毎に相違すること、を特徴とするので、基準ユニットの平角導線を同時に折り曲げた後で、一端のコイルエンド部A側の複数の平角導線を重ね合わせて、径方向において一致させることができる。
 また、一端のコイルエンド部を構成する外周基準ユニット11、及び内周基準ユニット12が、折り曲げられる前には、ずれた状態であり、折り曲げられることにより、外周基準ユニット11、及び内周基準ユニット12の平角導線が、径方向に一致して重なり合う状態となること、を特徴とするので、外周基準ユニット11、及び内周基準ユニット12の平角導線を同時に折り曲げた後で、一端のコイルエンド部A側の複数の平角導線を重ね合わせて、径方向において一致させることができる。
 尚、上記において、一端のコイルエンド部A側及び他端のコイルエンド部B側はそれぞれ図示はしていないが、上記において読みやすくするために便宜上A,Bの符号を付している。
 なお、本発明のモータ、及びモータ製造方法は、上記実施例に限定されることなく、色々な応用が可能である。
 例えば、本実施例では、スロットSが48個あるモータについて説明したが、スロットSの数は変更しても良い。
 本発明は、例えば、ハイブリッド自動車用のモータに使用される。
10 ステータ
11 外周基準ユニット
12 内周基準ユニット
13 二重基準ユニット
14 コイル籠
15 ステータコア
16 組立体
41 中心軸
42 ロータ
43 ロータ部
11Un 第n組ブロックのU相の外周基準ユニット
11Vn 第n組ブロックのV相の外周基準ユニット
11Wn 第n組ブロックのW相の外周基準ユニット
12Un 第n組ブロックのU相の内周基準ユニット
12Vn 第n組ブロックのV相の内周基準ユニット
12Wn 第n組ブロックのW相の内周基準ユニット
G  凸状部
H  半円部
SA、SB スロット内導線部
EA、EB 傾斜部
FA、FB 水平部
JA、JB 折り曲げ部

Claims (6)

  1.  平角導線を用いた分布巻きコイルと、ティース間にスロットが形成されたステータコアとを備えるステータと、中心軸を備えるロータとを有するモータにおいて、
     前記スロットは、U相第1スロット、U相第2スロット、V相第1スロット、V相第2スロット、W相第1スロット、W相第2スロットを一組とする組ブロックが、順次形成されており、第1組ブロックの隣に第2組ブロックが形成され、
    前記第1組ブロックのU相第1スロット内の前記平角導線が、前記第2組ブロックのU相第2スロット内の前記平角導線と第1ループを形成していること、
    前記第1組ブロックのU相の第2スロット内の前記平角導線が、前記第2組ブロックのU相第1スロット内の前記平角導線と第2ループを形成していること、
    前記第2ループが、前記第1ループの内側に配置されていること、
     前記第2ループの一端のコイルエンド部、及び前記第1ループの一端のコイルエンド部が、前記ステータコアのスロット内導線部に対して、前記ロータ側に折り曲げられていること、
    前記第2ループの前記一端のコイルエンド部、及び前記第1ループの前記一端のコイルエンド部が、前記ステータコアの内周面より前記ロータの軸心側に位置すること、
    を特徴とするモータ。
  2.  請求項1に記載するモータにおいて、
     前記第1ループ、及び前記第2ループが、所定数の平角導線を同時に折り曲げ加工した基準ユニットにより形成されていること、
    を特徴とするモータ。
  3.  請求項2に記載するモータにおいて、
     前記一端のコイルエンド部では、前記基準ユニットの複数の前記平角導線が、前記ロータの軸心方向に重ね合わされていること、
     前記他端のコイルエンド部では、前記基準ユニットの複数の前記平角導線が、前記ロータの径方向に重ね合わされていること、
    を特徴とするモータ。
  4.  請求項1乃至請求項3に記載するモータのいずれか1つにおいて、
     前記第2ループの前記一端のコイルエンド部が、前記第1ループの前記一端のコイルエンド部より、前記ロータの径方向で、外周に重ね合わされていること、
     前記第2ループの前記他端のコイルエンド部が、前記第1ループの前記他端のコイルエンド部より、前記ロータの軸心方向で、内周に重ね合わされていること、
    を特徴とするモータ。
  5.  請求項2または請求項3に記載するモータにおいて、
     前記一端のコイルエンド部を構成する基準ユニットでは、片側の前記スロット内導線部との接続部であるR部のR半径が、折り曲げられる前には、平角導線毎に相違すること、を特徴とするモータ。
  6.  請求項2、請求項3、または請求項5に記載するモータにおいて、
     前記一端のコイルエンド部を構成する基準ユニットが、折り曲げられる前には、ずれた状態であり、折り曲げられることにより、前記基準ユニットの平角導線が、径方向に一致して重なり合う状態となること、
    を特徴とするモータ。
PCT/JP2010/065215 2010-06-10 2010-09-06 モータ WO2011155083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127001704A KR101279336B1 (ko) 2010-06-10 2010-09-06 모터
EP10852918.1A EP2582017A4 (en) 2010-06-10 2010-09-06 ENGINE
CN201080036683.6A CN102474144B (zh) 2010-06-10 2010-09-06 电动机
US13/499,665 US8884489B2 (en) 2010-06-10 2010-09-06 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133067A JP5292360B2 (ja) 2010-06-10 2010-06-10 モータ
JP2010-133067 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155083A1 true WO2011155083A1 (ja) 2011-12-15

Family

ID=45097710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065215 WO2011155083A1 (ja) 2010-06-10 2010-09-06 モータ

Country Status (6)

Country Link
US (1) US8884489B2 (ja)
EP (1) EP2582017A4 (ja)
JP (1) JP5292360B2 (ja)
KR (1) KR101279336B1 (ja)
CN (1) CN102474144B (ja)
WO (1) WO2011155083A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102961A1 (ja) * 2012-09-28 2013-07-11 株式会社林工業所 誘導モータ用のバスバー
KR20140109997A (ko) * 2012-02-28 2014-09-16 아이신에이더블류 가부시키가이샤 코일의 제조 방법
WO2014157218A1 (ja) * 2013-03-29 2014-10-02 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
JPWO2020195312A1 (ja) * 2019-03-27 2020-10-01

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385166B2 (ja) * 2010-01-22 2014-01-08 日立オートモティブシステムズ株式会社 回転電機
JP5363403B2 (ja) * 2010-04-19 2013-12-11 トヨタ自動車株式会社 モータ
WO2012120646A1 (ja) * 2011-03-08 2012-09-13 トヨタ自動車株式会社 モータ製造方法
JP5278555B2 (ja) * 2011-03-08 2013-09-04 トヨタ自動車株式会社 モータ製造方法
JP5674693B2 (ja) * 2012-03-01 2015-02-25 アイシン・エィ・ダブリュ株式会社 巻線成形装置および巻線成形方法
JP5785117B2 (ja) * 2012-03-02 2015-09-24 アイシン・エィ・ダブリュ株式会社 巻線装置および巻線方法
WO2013179477A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
CN104756377B (zh) * 2012-09-26 2017-02-22 三菱电机株式会社 电力机械用电枢绕组的制造方法
JP5474166B1 (ja) * 2012-11-15 2014-04-16 三菱電機株式会社 固定子
JP5920258B2 (ja) * 2013-03-19 2016-05-18 株式会社安川電機 コイル製造用巻線部材、コイル、回転電機およびコイルの製造方法
JP6140566B2 (ja) * 2013-07-31 2017-05-31 アイシン・エィ・ダブリュ株式会社 コイル装着方法及びコイル装着治具
CN105432000B (zh) 2013-08-26 2018-06-08 三菱电机株式会社 旋转电机
JP5681250B1 (ja) * 2013-08-27 2015-03-04 本田技研工業株式会社 導線片セット成形方法及び導線片セット成形装置
JP6206052B2 (ja) * 2013-09-30 2017-10-04 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
JP6206051B2 (ja) * 2013-09-30 2017-10-04 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
FR3019948B1 (fr) 2014-04-10 2017-12-22 Moteurs Leroy-Somer Rotor de machine electrique tournante.
JP6257470B2 (ja) * 2014-08-06 2018-01-10 三菱電機株式会社 回転電機の固定子コイルおよび回転電機の固定子コイルの製造方法
JP6414339B2 (ja) * 2015-09-30 2018-10-31 アイシン・エィ・ダブリュ株式会社 コイルの成形方法およびコイルの成形装置
DE102015225798A1 (de) * 2015-12-09 2017-06-14 Robert Bosch Gmbh Stator für eine elektrische Maschine
JP6107990B2 (ja) * 2016-03-02 2017-04-05 株式会社安川電機 コイル製造用巻線部材
CN106300716B (zh) * 2016-06-17 2018-08-03 浙江方正电机股份有限公司 三相电机定子
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
CN113972807B (zh) 2017-07-21 2023-10-27 株式会社电装 旋转电机
JP6430599B1 (ja) * 2017-08-04 2018-11-28 株式会社小田原エンジニアリング コイルセグメント成形装置、コイルセグメント成形方法及び回転電機の製造装置
CN111512519B (zh) 2017-12-28 2022-10-11 株式会社电装 旋转电机
JP6922868B2 (ja) 2017-12-28 2021-08-18 株式会社デンソー 回転電機システム
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
JP6939750B2 (ja) 2017-12-28 2021-09-22 株式会社デンソー 回転電機
DE112018006717T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
DE112018006699T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7346892B2 (ja) * 2019-04-19 2023-09-20 株式会社デンソー 回転電機
DE102019220415A1 (de) * 2019-12-20 2021-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Vorrichtung und Verfahren zum Biegen von elektrisch leitenden Profilen für Elektromotoren (Hairpin)
CN113692690B (zh) 2020-03-05 2024-08-23 株式会社电装 旋转电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289744A (ja) * 1991-03-18 1992-10-14 Toshiba Corp 三相6極電機子巻線
WO2010007950A1 (ja) * 2008-07-14 2010-01-21 アイシン・エィ・ダブリュ株式会社 ステータ及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122076A1 (de) 1990-07-07 1992-01-09 Zahnradfabrik Friedrichshafen Verfahren zur herstellung einer statorwicklung mit profilleitern fuer elektrische maschinen
JP3928297B2 (ja) * 1999-03-26 2007-06-13 日産自動車株式会社 電動機及びその製造方法
JP2001320845A (ja) 2000-05-10 2001-11-16 Mitsubishi Electric Corp 回転電機の固定子
JP2002051489A (ja) 2000-08-02 2002-02-15 Aisin Aw Co Ltd 回転電機及びその製造方法
JP3798968B2 (ja) * 2001-11-08 2006-07-19 三菱電機株式会社 回転電機の固定子の製造方法
JP3786059B2 (ja) * 2002-06-25 2006-06-14 株式会社デンソー 回転電機のセグメント順次接合ステータコイルおよびその製造方法
US7190101B2 (en) * 2003-11-03 2007-03-13 Light Engineering, Inc. Stator coil arrangement for an axial airgap electric device including low-loss materials
JP4546112B2 (ja) * 2004-03-02 2010-09-15 日立オートモティブシステムズ株式会社 回転電機
JP5040303B2 (ja) 2006-12-28 2012-10-03 株式会社日立製作所 回転電機
JP2010104145A (ja) * 2008-10-23 2010-05-06 Aisin Aw Co Ltd 回転電機
JP2010200596A (ja) * 2009-01-28 2010-09-09 Aisin Aw Co Ltd 回転電機用電機子及びその製造方法
JP5370491B2 (ja) 2009-11-05 2013-12-18 トヨタ自動車株式会社 ステータ及びステータ製造方法
CN102577035B (zh) * 2010-10-14 2015-10-07 丰田自动车株式会社 马达

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289744A (ja) * 1991-03-18 1992-10-14 Toshiba Corp 三相6極電機子巻線
WO2010007950A1 (ja) * 2008-07-14 2010-01-21 アイシン・エィ・ダブリュ株式会社 ステータ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2582017A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140109997A (ko) * 2012-02-28 2014-09-16 아이신에이더블류 가부시키가이샤 코일의 제조 방법
CN104067491A (zh) * 2012-02-28 2014-09-24 爱信艾达株式会社 线圈的制造方法
EP2782224A4 (en) * 2012-02-28 2016-01-06 Aisin Aw Co COIL METHOD
KR101593861B1 (ko) 2012-02-28 2016-02-12 아이신에이더블류 가부시키가이샤 코일의 제조 방법
US9570966B2 (en) 2012-02-28 2017-02-14 Aisin Aw Co., Ltd. Method for manufacturing a coil
WO2013102961A1 (ja) * 2012-09-28 2013-07-11 株式会社林工業所 誘導モータ用のバスバー
WO2014157218A1 (ja) * 2013-03-29 2014-10-02 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
JP2014209833A (ja) * 2013-03-29 2014-11-06 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
US9859775B2 (en) 2013-03-29 2018-01-02 Aisin Aw Co., Ltd. Method for forming a concentric winding coil
JPWO2020195312A1 (ja) * 2019-03-27 2020-10-01

Also Published As

Publication number Publication date
US20120181891A1 (en) 2012-07-19
JP2011259636A (ja) 2011-12-22
KR20120042853A (ko) 2012-05-03
EP2582017A4 (en) 2016-12-14
KR101279336B1 (ko) 2013-06-26
EP2582017A1 (en) 2013-04-17
CN102474144A (zh) 2012-05-23
US8884489B2 (en) 2014-11-11
JP5292360B2 (ja) 2013-09-18
CN102474144B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5292360B2 (ja) モータ
JP5363403B2 (ja) モータ
JP5234173B2 (ja) ステータ及びそれに使用される単位コイルの製造方法
JP5167939B2 (ja) 回転電機のコイル組立体製造方法
JP4577588B2 (ja) 回転電機のコイル組立体製造方法
CN102457149B (zh) 定子、无刷电动机以及它们的制造方法
JP5201400B2 (ja) 回転電機のコイル組立体製造方法
JP4873261B2 (ja) 回転電機のコイル組立体製造方法
JP5850878B2 (ja) セグメントコンダクタ型の回転電機のステータ及びその製造方法
JP5789570B2 (ja) ステータ
JP6261809B2 (ja) 固定子および回転電機
JP5278555B2 (ja) モータ製造方法
CN107078611B (zh) 具有插接的扁平的卷绕头的转子或定子
JP5278553B2 (ja) モータ製造方法
JP5152578B2 (ja) 回転電機のコイル組立体製造方法
JP5483111B2 (ja) 回転電機用固定子巻線の製造方法
JP2012235544A (ja) モータ製造方法、モータ
JP2012235573A (ja) モータ、及びモータ製造方法
CN109586432A (zh) 旋转电机用线圈及插入方法
JP2015216752A (ja) ステータ及びステータの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036683.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127001704

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010852918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499665

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE