WO2011152063A1 - Polybenzoxazole resin, and precursor resin thereof - Google Patents
Polybenzoxazole resin, and precursor resin thereof Download PDFInfo
- Publication number
- WO2011152063A1 WO2011152063A1 PCT/JP2011/003130 JP2011003130W WO2011152063A1 WO 2011152063 A1 WO2011152063 A1 WO 2011152063A1 JP 2011003130 W JP2011003130 W JP 2011003130W WO 2011152063 A1 WO2011152063 A1 WO 2011152063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- precursor resin
- resin
- polybenzoxazole precursor
- formula
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/22—Polybenzoxazoles
Definitions
- the present invention relates to a polybenzoxazole precursor resin obtained by reacting a dicarboxylic acid triazine active ester with a bisaminophenol compound, and a polybenzoxazole resin obtained by dehydrating and cyclizing the precursor resin.
- a polycondensation reaction between a dicarboxylic acid compound and a diamine compound is widely performed, and a condensing agent, a catalyst, an additive, and a by-product added to advance this reaction. From these, it is known that ionic impurities derived from these are generated.
- Patent Document 1 proposes a technique for reducing impurities by reducing the phosphorus content in the aromatic polyamide resin, but this still uses the polyamide resin for electric and electronic parts. In that case, the remaining ionic impurities may cause a decrease in electrical characteristics.
- polybenzoxazole precursor resins and aromatic polyamide resins synthesized by the methods disclosed in these documents cannot obtain a high molecular weight body due to decomposition of the condensing agent during the reaction, Chlorine ions derived from the condensing agent are likely to remain in the resin, and the resulting resin does not have good film formability, so that the characteristics cannot be fully exhibited, or the electrical characteristics are reduced when used for electrical and electronic parts. There was a risk of causing.
- An object of the present invention is to provide a polybenzoxazole precursor resin having a reduced content of ionic impurities, which is particularly useful for electric / electronic component applications, and a polybenzoxazole resin obtained by dehydrating and cyclizing the precursor resin. Is to provide.
- the present inventors have polymerized a specific dicarboxylic acid triazine active ester and a bisaminophenol compound, thereby producing a polybenzoxazole precursor resin having a low content of ionic impurities. Has been found, and the present invention has been completed.
- the polybenzoxazole precursor resin of the present invention has the following formula (A):
- R 1 is a divalent aromatic residue containing one or more elements selected from O, N, S, F and Si in its structure, or a divalent group having 1 to 12 carbon atoms.
- R 2 represents an alkyl group having 1 to 4 carbon atoms or an aromatic residue having 6 to 8 carbon atoms), and a dicarboxylic acid triazine active ester represented by It is obtained by a polymerization reaction and has a weight average molecular weight in the range of 10,000 to 1,000,000, and a content of ionic impurities of 10 ppm or less.
- R 2 is more preferably an alkyl group having 1 to 4 carbon atoms.
- R 1 is represented by the following formula (1): (In the formula, R 4 is H, O, N, S, F or Si, or a carbon number of 1 to 1 containing at least one element selected from the group consisting of O, N, S, F and Si in the structure) And X represents a direct bond, O, N, S, F or Si, or a carbon number of 1 to 6 containing an element selected from the group consisting of O, N, S, F and Si in the structure
- a, b, c and d are the average number of substituents, a, b and c are each an integer of 0 to 4, and d is an integer of 0 to 6. It is a divalent aromatic residue selected from the group represented.
- R 4 is a hydrogen atom and X is a direct bond, O, SO 2 or CO.
- the above-mentioned polybenzoxazole precursor resin can be made into a polybenzoxazole resin by dehydrating and ring-closing.
- the polybenzoxazole precursor resin of the present invention and the polybenzoxazole resin obtained by dehydrating and ring-closing the precursor resin have a lower content of ionic impurities than these resins obtained by a conventionally known method. -Useful for electronic parts.
- the polybenzoxazole precursor resin of the present invention is obtained by a polymerization reaction of a dicarboxylic acid triazine active ester represented by the following formula (A) and a bisaminophenol compound.
- R 1 of the dicarboxylic acid triazine active ester represented by the formula (A) is one or more selected from O, N, S, F and Si in its structure. It can be a divalent aromatic residue containing an element.
- the divalent aromatic residue means a residue obtained by removing two hydrogen atoms from an aromatic ring.
- the divalent aromatic residue include residues of benzene, biphenyl, biphenyl ether, biphenyl sulfone, biphenyl ketone, and naphthalene.
- R 1 in the formula (A) can be a divalent organic group having 1 to 12 carbon atoms. Specific examples include a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, dodecylene group, and xylylene group.
- R 1 in the formula (A) is preferably a divalent aromatic residue selected from the group represented by the following formula (1).
- R 4 in formula (1) is H, O, N, S, F, or Si, or a carbon number that includes one or more elements selected from the group consisting of O, N, S, F, and Si in the structure.
- a, b, c and d are the average number of substituents, a, b and c each represent an integer of 0 to 4, d represents an integer of 0 to 6, Includes an alkyl group having 1 to 6 carbon atoms and an alkoxy group, and more preferably a hydrogen atom.
- X in the formula (1) is a direct bond, O, N, S, F or Si, or 2 having 1 to 6 carbon atoms containing an element selected from the group consisting of O, N, S, F and Si in the structure
- a valent linking group is shown. Specific examples include O, S, CO, SO 2 , an alkylene group having 1 to 6 carbon atoms, an alkylene oxide having 1 to 6 carbon atoms, and more preferably a direct bond, O, SO 2 or CO. Yes, more preferably O.
- R 1 in formula (A) is more preferably a residue obtained by removing two hydrogen atoms from benzene, biphenyl, biphenyl ether, biphenyl sulfone, biphenyl ketone and naphthalene, and more preferably a residue of benzene and biphenyl ether. Particularly preferred are residues obtained by removing a hydrogen atom from positions 1 and 3 of benzene and positions 4 and 4 'of biphenyl ether.
- R 2 in the formula (A) can be an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. Is mentioned.
- R 2 in the formula (A) can be an aromatic residue having 6 to 8 carbon atoms, and specific examples thereof include residues such as benzene, toluene and xylene.
- the aromatic residue having 6 to 8 carbon atoms means a residue obtained by removing one hydrogen atom from an aromatic aromatic ring having 6 to 8 carbon atoms.
- R 2 in formula (A) is preferably a residue of a methyl group, an ethyl group and benzene, more preferably a methyl group and an ethyl group, and further preferably a methyl group.
- the production method of the dicarboxylic acid triazine active ester which is the raw material of the polybenzoxazole precursor resin of the present invention is not particularly limited.
- the reaction is performed by adding a chlorotriazine compound, a tertiary amine compound and a dicarboxylic acid compound in an organic solvent. And then purified by recrystallization or the like.
- chlorotriazine compound examples include 2-chloro-4,6-dimethoxy-1,3,5-triazine, 2-chloro-4,6-diethoxy-1,3,5-triazine, and 2-chloro-4. , 6-dipropoxy-1,3,5-triazine, 2-chloro-4,6-diisopropoxymethoxy-1,3,5-triazine, 2-chloro-4,6-dibutoxy-1,3,5- And triazine, 2-chloro-4,6-diphenoxy-1,3,5-triazine, and the like.
- 2-chloro-4,6-dimethoxy-1,3,5-triazine, 2-chloro-4,6 -Diethoxy-1,3,5-triazine, 2-chloro-4,6-diphenoxy-1,3,5-triazine and the like are preferable.
- the amount used is usually 2 to 4 mol, preferably 2 to 2.6 mol, per 1 mol of the dicarboxylic acid compound used in the reaction.
- tertiary amine compound examples include triethylamine, N-methylmorpholine, N-ethylmorpholine, N-isobutylmorpholine, pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 1,8- Examples thereof include diazabicyclo [5.4.0] -7-undenecene, among which triethylamine, N-methylmorpholine, pyridine and the like are preferable.
- the amount used is usually 0.5 to 6 mol, preferably 1 to 5 mol, per 1 mol of the dicarboxylic acid compound used in the reaction.
- dicarboxylic acid compound examples include phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, thiodibenzoic acid, dithiodibenzoic acid, carbonyldibenzoic acid, sulfonyldibenzoic acid, and methylenedibenzoic acid.
- Isopropylidenedibenzoic acid hexafluoroisopropylidenedibenzoic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc.
- examples thereof include isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, oxydibenzoic acid, carbonyldibenzoic acid, sulfonyldibenzoic acid, and naphthalenedicarboxylic acid.
- the organic solvent that can be used in this synthesis reaction is preferably a good solvent for the dicarboxylic acid.
- a solvent is not particularly limited, but alcohols such as water, methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide N, N-dimethylformamide, N-methylcaprolactam, N, N-dimethylimidazolidone, dimethyl sulfoxide, tetramethylurea, N-methylmorpholine, pyridine, aprotic polar solvents such as ⁇ -butyrolactone, toluene, hexane And nonpolar solvents such as heptane, ether solvents such as tetrahydrofuran, diglyme, dioxane and trioxane, or a mixed solvent thereof.
- a specific method for producing a dicarboxylic acid triazine active ester is, for example, first by stirring and dissolving a dicarboxylic acid compound in an organic solvent, adding a triazine compound and a tertiary amine compound, reacting them, A dicarboxylic acid triazine active ester can be obtained by crystal or the like.
- the reaction temperature is usually ⁇ 10 ° C. to 80 ° C., preferably 0 to 30 ° C.
- the reaction time is 5 minutes to 24 hours, preferably 15 minutes to 3 hours.
- reaction mixture is poured into a poor solvent such as water or methanol to separate the product, and then purified by recrystallization or the like to remove by-products, thereby increasing the dicarboxylic acid triazine active ester. Can be obtained in purity.
- a poor solvent such as water or methanol
- the dicarboxylic acid triazine active ester can be obtained, for example, by adding a hydroxytriazine compound, a tertiary amine compound and a dicarboxylic acid dichloride compound in an organic solvent and reacting them, followed by purification by recrystallization or the like.
- hydroxytriazine compound examples include 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 2-hydroxy-4,6-diethoxy-1,3,5-triazine, and 2-hydroxy-4. , 6-Dipropoxy-1,3,5-triazine, 2-hydroxy-4,6-diisopropoxy-1,3,5-triazine, 2-hydroxy-4,6-dibutoxy-1,3,5-triazine 2-hydroxy-4,6-diphenoxy-1,3,5-triazine and the like, among which 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 2-hydroxy-4,6- Diethoxy-1,3,5-triazine, 2-hydroxy-4,6-diphenoxy-1,3,5-triazine and the like are preferable.
- the amount used is usually 2 to 4 mol, preferably 2 to 2.6 mol, per 1 mol of the dicarboxylic acid dichloride compound used in the reaction.
- tertiary amine compound examples include triethylamine, N-methylmorpholine, N-ethylmorpholine, N-isobutylmorpholine, pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 1,8 -Diazabicyclo [5.4.0] -7-undenecene and the like, among which triethylamine, N-methylmorpholine, pyridine and the like are preferable.
- the amount used is usually 0.5 to 6 mol, preferably 1 to 5 mol, per 1 mol of the dicarboxylic acid dichloride compound used in the reaction.
- dicarboxylic acid dichloride compound examples include phthalic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, oxydibenzoic acid dichloride, thiodibenzoic acid dichloride, dithiodibenzoic acid dichloride, and carbonyl dibenzoic acid.
- the organic solvent that can be used for this reaction is preferably an inert solvent for dicarboxylic acid dichloride.
- solvents include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N-methylcaprolactam, N, N-dimethylimidazo.
- Aprotic polar solvents such as lidone, tetramethylurea, pyridine, ⁇ -butyrolactone, nonpolar solvents such as toluene, hexane, heptane, ether solvents such as tetrahydrofuran, diglyme, dioxane, trioxane, etc., or a mixed solvent thereof Etc.
- the bisaminophenol compound that is a raw material for the polybenzoxazole precursor resin of the present invention is not particularly limited as long as it is a compound having at least two amino groups and at least one phenolic hydroxyl group in one molecule.
- bisaminophenol compound examples include 4,6-diaminoresorcinol, 2,5-diaminohydroquinone, 3,3′-dihydroxybenzidine, 4,4′-diamino-3,3′-dihydroxybiphenyl ether, 3, 3'-diamino-4,4'-dihydroxybiphenyl ether, 3,3'-diamino-4,4'-dihydroxybiphenylmethane, 4,4'-diamino-3,3'-dihydroxybiphenylmethane, 3,3 ' -Diamino-4,4'-dihydroxydiphenylsulfone, 3,3'-diamino-4,4'-dihydroxybiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2-bis (3- Amino-4-hydroxyphenyl) propane, 1,3-hexafluoro-2,2-bis (3-amino 4-
- the reaction between the dicarboxylic acid triazine active ester and the bisaminophenol compound is generally carried out in an inert solvent.
- this inert solvent does not substantially react with the dicarboxylic acid triazine active ester, and the above bisaminophenol compound.
- the reaction product is a good solvent for the polybenzoxazole precursor resin.
- Such an inert solvent is not particularly limited, but N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methylcaprolactam, N, N-dimethylimidazolidone, dimethyl Aprotic polar solvents such as sulfoxide, tetramethylurea, N-methylmorpholine, pyridine, ⁇ -butyrolactone, sulfolane, nonpolar solvents such as toluene, hexane, heptane, ethers such as tetrahydrofuran, diglyme, dioxane, and trioxane Examples thereof include a solvent, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, or a mixed solvent thereof.
- the amount of these solvents to be used is generally 0 to 1000 mL, preferably 50 to 800 mL, relative to 0.1 mol
- inorganic salts such as lithium chloride and calcium chloride may be added.
- the amount of these inorganic salts used is usually 10% by mass or less, preferably 5% by mass or less, based on the amount of solvent used.
- a bisaminophenol compound is dissolved in an inert solvent, and the dicarboxylic acid triazine active ester component 0.5 is added to 1 mol of the bisaminophenol compound.
- a polybenzoxazole precursor resin can be obtained by adding .about.2.0 mol and then reacting with heating and stirring under an inert atmosphere such as nitrogen.
- the reaction temperature is usually ⁇ 10 to 80 ° C., preferably 20 to 60 ° C.
- the reaction time is usually 5 minutes to 24 hours, preferably 30 minutes to 15 hours.
- the reaction mixture is poured into a poor solvent such as water or methanol to separate the polymer, and then purified by a reprecipitation method or the like.
- a polybenzoxazole precursor resin having an ionic impurity content of 10 ppm or less can be obtained.
- the polybenzoxazole precursor resin of the present invention does not use a conventionally known phosphorus compound and has a low chloride ion content of the dicarboxylic acid triazine active ester of the present invention, which is a raw material, so that it is a conventionally known one. As compared with the above, a highly pure polybenzoxazole precursor resin can be obtained.
- the polybenzoxazole precursor resin of the present invention has a weight average molecular weight of 10,000 to 1,000,000.
- weight average molecular weight is less than 10,000, the film formability is poor and the expression of the properties as a polybenzoxazole precursor resin is insufficient.
- molecular weight is low. If it is too high, solvent solubility may be deteriorated, and molding processability may be deteriorated.
- a simple method for adjusting the molecular weight of the polybenzoxazole precursor resin there can be mentioned a method in which either one of the dicarboxylic acid triazine active ester component or the bisaminophenol compound component is used in excess.
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) mean values calculated in terms of polystyrene based on GPC measurement results.
- the polybenzoxazole precursor resin of the present invention undergoes dehydration ring closure between the amide structure and the phenolic hydroxyl group by heating, and can be made into a polybenzoxazole resin.
- the heating conditions are not particularly limited, but are usually 150 to 400 ° C. for 30 minutes to 24 hours, preferably 170 to 350 ° C. for 1 hour to 12 hours.
- the heating temperature of the hydroxytriazine compound as a by-product is More preferably, the decomposition temperature is 170 ° C. or higher.
- the polybenzoxazole precursor resin and the polybenzoxazole resin of the present invention contain an ionic impurity as small as 10 ppm or less, there is no deterioration in electrical characteristics when used for electrical / electronic parts. It can be applied to the semiconductor field such as parts, heat-resistant bag filters, secondary battery separators, heat insulating materials, various filters, food packaging and clothes.
- reaction solution was poured into 1000 parts of ion-exchanged water, and the precipitated product was filtered off, recrystallized with a mixed solvent of ethyl acetate and n-hexane, dried, and dried with a white dicarboxylic acid triazine active ester.
- a powdery crystalline resin powder 1 was obtained (23% yield).
- the reaction solution was poured into 500 parts of ion-exchanged water, and the precipitated product was separated by filtration, recrystallized with a mixed solvent of ethyl acetate and n-hexane, and dried to obtain a white powder of dicarboxylic acid triazine active ester. Crystalline resin powder 3 was obtained (yield 60%).
- Example 1 ⁇ Synthesis of polybenzoxazole precursor resin> A flask equipped with a thermometer, a nitrogen inlet tube, and a stirrer was purged with nitrogen gas, and 22 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl and 205 parts of N-methylpyrrolidone were stirred and dissolved. 54 parts of the resin powder 2 of the resulting dicarboxylic acid triazine active ester was added and reacted at 20 ° C. for 12 hours to obtain a reaction solution of a polybenzoxazole precursor resin. The resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol.
- Comparative Example 1 ⁇ Synthesis of polybenzoxazole precursor resin by a conventionally known method> A flask equipped with a thermometer, nitrogen inlet tube and stirrer was purged with nitrogen gas, and 16 parts of isophthalic acid, 21 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl, 1 part of lithium chloride, N-methylpyrrolidone After 108 parts and 23 parts of pyridine were added and dissolved by stirring, 50 parts of triphenyl phosphite was added and reacted at 90 ° C. for 8 hours to obtain a reaction solution of polybenzoxazole precursor resin.
- the resin deposited in 1000 parts of methanol was filtered off, washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 1 was obtained (yield 82%).
- the molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 3,800 and 2.4, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
- Comparative Example 2 ⁇ Synthesis of polybenzoxazole precursor resin by a conventionally known method> A reaction solution and Comparative Example resin powder 2 were obtained in the same manner except that the isophthalic acid in Comparative Example resin powder 1 was changed to 25 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
- the molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 5,000 and 2.6, respectively.
- 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
- the resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 3 was obtained (yield 93%).
- the molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 4,100 and 2.2, respectively. Further, 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
- Comparative Example 4 ⁇ Synthesis of polybenzoxazole precursor resin by a conventionally known method> A reaction solution and a comparative resin powder 4 were obtained in the same manner except that the isophthalic acid of the comparative resin powder 3 was changed to 13 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
- the molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 6,300 and 2.3, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
- the polybenzoxazole precursor resin of the present invention and the polybenzoxazole resin obtained by dehydrating and ring-closing the precursor resin have a low content of ionic impurities, so that they can be used in semiconductor fields such as electric / electronic parts and heat-resistant bugs. It can be applied to filters, secondary battery separators, heat insulating materials, various filters, food packaging, clothes, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Provided are a polybenzoxazole precursor resin in which the amount of ionic impurities contained therein is reduced and which is useful when used for electric and electronic components, and a polybenzoxazole resin which is obtained by the cyclic dehydration of the aforementioned precursor resin. The polybenzoxazole precursor resin is obtained by the polymerization reaction between a dicarboxylic acid triazine-activated ester represented by formula (A) and a bis aminophenol compound, has a weight average molecular weight in the range of 10,000-1,000,000, and contains no more than 10ppm of ionic impurities. (In formula (A), R1 represents a divalent aromatic residue containing at least one element selected from O, N, S, F and Si in the structure thereof, or a C1-12 divalent organic group. R2 represents a C1-4 alkyl group, or a C6-8 aromatic residue.)
Description
本発明は、ジカルボン酸トリアジン活性エステルとビスアミノフェノール化合物とを反応させて得られるポリベンゾオキサゾール前駆体樹脂、及び該前駆体樹脂を脱水閉環して得られるポリベンゾオキサゾール樹脂に関するものである。
The present invention relates to a polybenzoxazole precursor resin obtained by reacting a dicarboxylic acid triazine active ester with a bisaminophenol compound, and a polybenzoxazole resin obtained by dehydrating and cyclizing the precursor resin.
ポリベンゾオキサゾール前駆体樹脂の合成法としては、ジカルボン酸ジクロリドとビスアミノフェノール化合物とを反応させる酸クロリド法が知られているが、この方法で得られる前駆体樹脂中には、合成反応に由来する塩素イオンが、樹脂中に残留し、電気・電子部品用として使用する場合に、残存するイオン性不純物が電気特性低下の原因となるおそれがあった。
As a method for synthesizing a polybenzoxazole precursor resin, an acid chloride method in which a dicarboxylic acid dichloride and a bisaminophenol compound are reacted is known, but the precursor resin obtained by this method is derived from a synthesis reaction. When chlorine ions remain in the resin and are used for electric / electronic parts, the remaining ionic impurities may cause a decrease in electrical characteristics.
また、ポリアミド樹脂の合成法としては、ジカルボン酸化合物とジアミン化合物との重縮合反応が広く行われているが、この反応を進行させるために加えられる縮合剤、触媒、添加剤や、副生成物等からは、これらに由来するイオン性の不純物が発生することが知られている。例えば、ジカルボン酸化合物とジアミン化合物を芳香族亜リン酸エステル及びピリジン誘導体の存在下で重縮合させる方法では、得られたポリアミド樹脂中に芳香族亜リン酸エステルに由来するリン系のイオン性不純物が大量に残留することで、得られたポリアミド樹脂の電気特性が低下するため、電気的絶縁性が求められる用途への使用が制限されている。
As a method for synthesizing a polyamide resin, a polycondensation reaction between a dicarboxylic acid compound and a diamine compound is widely performed, and a condensing agent, a catalyst, an additive, and a by-product added to advance this reaction. From these, it is known that ionic impurities derived from these are generated. For example, in the method of polycondensation of a dicarboxylic acid compound and a diamine compound in the presence of an aromatic phosphite ester and a pyridine derivative, phosphorus-based ionic impurities derived from the aromatic phosphite ester in the obtained polyamide resin Since the electrical properties of the obtained polyamide resin deteriorate due to a large amount of remaining, use in applications where electrical insulation is required is limited.
そこで、例えば、特許文献1では、芳香族ポリアミド樹脂中のリンの含有量を低減して、不純物を低減する技術が提案されているが、これでもなお、ポリアミド樹脂を電気・電子部品用として使用する場合に、残存するイオン性不純物が電気特性低下の原因となるおそれがあった。
Thus, for example, Patent Document 1 proposes a technique for reducing impurities by reducing the phosphorus content in the aromatic polyamide resin, but this still uses the polyamide resin for electric and electronic parts. In that case, the remaining ionic impurities may cause a decrease in electrical characteristics.
また近年、ペプチド合成用縮合剤として、非リン系化合物である4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドのトリアジン系縮合剤が開発された。
このトリアジン系縮合剤は安価に合成できるうえに、副生成物が水溶性のヒドロキシトリアジン化合物であることから、反応後の後処理が容易であり、リサイクルが可能であることなどの利点により注目されており、例えば特許文献2及び非特許文献1ではポリベンゾオキサゾール前駆体樹脂や芳香族ポリアミド樹脂の合成への適用も検討されている。 Recently, as a condensing agent for peptide synthesis, a triazine condensing agent of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride which is a non-phosphorus compound. Was developed.
This triazine-based condensing agent can be synthesized at low cost, and since the by-product is a water-soluble hydroxytriazine compound, it is attracting attention because of its advantages such as easy post-treatment after reaction and recyclability. For example, in Patent Document 2 and Non-Patent Document 1, application to the synthesis of polybenzoxazole precursor resins and aromatic polyamide resins is also being studied.
このトリアジン系縮合剤は安価に合成できるうえに、副生成物が水溶性のヒドロキシトリアジン化合物であることから、反応後の後処理が容易であり、リサイクルが可能であることなどの利点により注目されており、例えば特許文献2及び非特許文献1ではポリベンゾオキサゾール前駆体樹脂や芳香族ポリアミド樹脂の合成への適用も検討されている。 Recently, as a condensing agent for peptide synthesis, a triazine condensing agent of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride which is a non-phosphorus compound. Was developed.
This triazine-based condensing agent can be synthesized at low cost, and since the by-product is a water-soluble hydroxytriazine compound, it is attracting attention because of its advantages such as easy post-treatment after reaction and recyclability. For example, in Patent Document 2 and Non-Patent Document 1, application to the synthesis of polybenzoxazole precursor resins and aromatic polyamide resins is also being studied.
しかしながら、これらの文献に開示されている方法で合成されたポリベンゾオキサゾール前駆体樹脂及び芳香族ポリアミド樹脂は、反応中に縮合剤が分解すること等によって高分子量体を得ることができなかったり、縮合剤由来の塩素イオンが樹脂中に残存し易く、得られる樹脂の成膜性がよくないことにより特性を充分に発現できなかったり、また、電気・電子部品用として使用する場合に電気特性低下の原因となるおそれがあった。
However, polybenzoxazole precursor resins and aromatic polyamide resins synthesized by the methods disclosed in these documents cannot obtain a high molecular weight body due to decomposition of the condensing agent during the reaction, Chlorine ions derived from the condensing agent are likely to remain in the resin, and the resulting resin does not have good film formability, so that the characteristics cannot be fully exhibited, or the electrical characteristics are reduced when used for electrical and electronic parts. There was a risk of causing.
本発明の目的は、特に電気・電子部品用途に有用な、イオン性不純物の含有量の低減されたポリベンゾオキサゾール前駆体樹脂、及び該前駆体樹脂を脱水閉環して得られるポリベンゾオキサゾール樹脂を提供することである。
An object of the present invention is to provide a polybenzoxazole precursor resin having a reduced content of ionic impurities, which is particularly useful for electric / electronic component applications, and a polybenzoxazole resin obtained by dehydrating and cyclizing the precursor resin. Is to provide.
本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のジカルボン酸トリアジン活性エステルとビスアミノフェノール化合物とを重合させることにより、イオン性不純物の含有量の少ないポリベンゾオキサゾール前駆体樹脂が得られることを見出し、本発明を完成させるに至った。
As a result of intensive studies to solve the above problems, the present inventors have polymerized a specific dicarboxylic acid triazine active ester and a bisaminophenol compound, thereby producing a polybenzoxazole precursor resin having a low content of ionic impurities. Has been found, and the present invention has been completed.
すなわち本発明のポリベンゾオキサゾール前駆体樹脂は、下記式(A)
(式(A)中、R1は、その構造中にO、N、S、F及びSiから選ばれる1種以上の元素を含む2価の芳香族残基または炭素数1~12の2価の有機基を示す。R2は炭素数1~4のアルキル基または、炭素数6~8の芳香族残基を示す。)で表されるジカルボン酸トリアジン活性エステルと、ビスアミノフェノール化合物との重合反応により得られ、重量平均分子量が10,000~1,000,000の範囲であり、かつ、イオン性不純物の含有量が10ppm以下であることを特徴とするものである。 That is, the polybenzoxazole precursor resin of the present invention has the following formula (A):
(In the formula (A), R 1 is a divalent aromatic residue containing one or more elements selected from O, N, S, F and Si in its structure, or a divalent group having 1 to 12 carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms or an aromatic residue having 6 to 8 carbon atoms), and a dicarboxylic acid triazine active ester represented by It is obtained by a polymerization reaction and has a weight average molecular weight in the range of 10,000 to 1,000,000, and a content of ionic impurities of 10 ppm or less.
(式(A)中、R1は、その構造中にO、N、S、F及びSiから選ばれる1種以上の元素を含む2価の芳香族残基または炭素数1~12の2価の有機基を示す。R2は炭素数1~4のアルキル基または、炭素数6~8の芳香族残基を示す。)で表されるジカルボン酸トリアジン活性エステルと、ビスアミノフェノール化合物との重合反応により得られ、重量平均分子量が10,000~1,000,000の範囲であり、かつ、イオン性不純物の含有量が10ppm以下であることを特徴とするものである。 That is, the polybenzoxazole precursor resin of the present invention has the following formula (A):
(In the formula (A), R 1 is a divalent aromatic residue containing one or more elements selected from O, N, S, F and Si in its structure, or a divalent group having 1 to 12 carbon atoms. R 2 represents an alkyl group having 1 to 4 carbon atoms or an aromatic residue having 6 to 8 carbon atoms), and a dicarboxylic acid triazine active ester represented by It is obtained by a polymerization reaction and has a weight average molecular weight in the range of 10,000 to 1,000,000, and a content of ionic impurities of 10 ppm or less.
このようなポリベンゾオキサゾール前駆体樹脂においてより好ましくは、R2が、炭素数1~4のアルキル基である。
In such a polybenzoxazole precursor resin, R 2 is more preferably an alkyl group having 1 to 4 carbon atoms.
また好ましくは、R1が、下記式(1)
(式中、R4は、H、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる1種以上の元素を含む炭素数1~6の置換基を示す。Xは、直接結合、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる元素を含む炭素数1~6の2価の結合基を示す。a、b、c及びdは平均置換基数であって、a、b及びcはそれぞれ0~4の整数を、dは0~6の整数を示す。)で表される群から選ばれる2価の芳香族残基である。 Preferably, R 1 is represented by the following formula (1):
(In the formula, R 4 is H, O, N, S, F or Si, or a carbon number of 1 to 1 containing at least one element selected from the group consisting of O, N, S, F and Si in the structure) And X represents a direct bond, O, N, S, F or Si, or a carbon number of 1 to 6 containing an element selected from the group consisting of O, N, S, F and Si in the structure Wherein a, b, c and d are the average number of substituents, a, b and c are each an integer of 0 to 4, and d is an integer of 0 to 6. It is a divalent aromatic residue selected from the group represented.
(式中、R4は、H、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる1種以上の元素を含む炭素数1~6の置換基を示す。Xは、直接結合、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる元素を含む炭素数1~6の2価の結合基を示す。a、b、c及びdは平均置換基数であって、a、b及びcはそれぞれ0~4の整数を、dは0~6の整数を示す。)で表される群から選ばれる2価の芳香族残基である。 Preferably, R 1 is represented by the following formula (1):
(In the formula, R 4 is H, O, N, S, F or Si, or a carbon number of 1 to 1 containing at least one element selected from the group consisting of O, N, S, F and Si in the structure) And X represents a direct bond, O, N, S, F or Si, or a carbon number of 1 to 6 containing an element selected from the group consisting of O, N, S, F and Si in the structure Wherein a, b, c and d are the average number of substituents, a, b and c are each an integer of 0 to 4, and d is an integer of 0 to 6. It is a divalent aromatic residue selected from the group represented.
そしてまた好ましくは、式(1)の、R4が水素原子であり、Xが直接結合、O、SO2又はCOである。
Also preferably, in formula (1), R 4 is a hydrogen atom and X is a direct bond, O, SO 2 or CO.
ところで、上述のポリベンゾオキサゾール前駆体樹脂は、脱水閉環させることにより、ポリベンゾオキサゾール樹脂とすることができる。
By the way, the above-mentioned polybenzoxazole precursor resin can be made into a polybenzoxazole resin by dehydrating and ring-closing.
本発明のポリベンゾオキサゾール前駆体樹脂、及び該前駆体樹脂を脱水閉環して得られるポリベンゾオキサゾール樹脂は、従来公知の方法により得られるこれら樹脂に比べてイオン性不純物の含有量が少なく、電気・電子部品用途に有用である。
The polybenzoxazole precursor resin of the present invention and the polybenzoxazole resin obtained by dehydrating and ring-closing the precursor resin have a lower content of ionic impurities than these resins obtained by a conventionally known method. -Useful for electronic parts.
本発明のポリベンゾオキサゾール前駆体樹脂は、下記式(A)で表されるジカルボン酸トリアジン活性エステルとビスアミノフェノール化合物との重合反応により得られるものである。
The polybenzoxazole precursor resin of the present invention is obtained by a polymerization reaction of a dicarboxylic acid triazine active ester represented by the following formula (A) and a bisaminophenol compound.
本発明のポリベンゾオキサゾール前駆体樹脂の原料として、式(A)で示されるジカルボン酸トリアジン活性エステルのR1は、その構造中にO、N、S、F及びSiから選ばれる1種以上の元素を含む2価の芳香族残基であることができる。
ここで、2価の芳香族残基とは、芳香族環から2つの水素原子を除いた残基を意味し、例えば、ビフェニルエーテル等の複数の芳香族環を有する化合物において、異なる芳香族環から2つの水素原子を除いた残基も2価の芳香族残基の範疇に含むことができる。
具体的には、2価の芳香族残基は、ベンゼン、ビフェニル、ビフェニルエーテル、ビフェニルスルホン、ビフェニルケトン及びナフタレンの残基等が挙げられる。 As a raw material for the polybenzoxazole precursor resin of the present invention, R 1 of the dicarboxylic acid triazine active ester represented by the formula (A) is one or more selected from O, N, S, F and Si in its structure. It can be a divalent aromatic residue containing an element.
Here, the divalent aromatic residue means a residue obtained by removing two hydrogen atoms from an aromatic ring. For example, in a compound having a plurality of aromatic rings such as biphenyl ether, different aromatic rings. Residues obtained by removing two hydrogen atoms from can also be included in the category of divalent aromatic residues.
Specifically, examples of the divalent aromatic residue include residues of benzene, biphenyl, biphenyl ether, biphenyl sulfone, biphenyl ketone, and naphthalene.
ここで、2価の芳香族残基とは、芳香族環から2つの水素原子を除いた残基を意味し、例えば、ビフェニルエーテル等の複数の芳香族環を有する化合物において、異なる芳香族環から2つの水素原子を除いた残基も2価の芳香族残基の範疇に含むことができる。
具体的には、2価の芳香族残基は、ベンゼン、ビフェニル、ビフェニルエーテル、ビフェニルスルホン、ビフェニルケトン及びナフタレンの残基等が挙げられる。 As a raw material for the polybenzoxazole precursor resin of the present invention, R 1 of the dicarboxylic acid triazine active ester represented by the formula (A) is one or more selected from O, N, S, F and Si in its structure. It can be a divalent aromatic residue containing an element.
Here, the divalent aromatic residue means a residue obtained by removing two hydrogen atoms from an aromatic ring. For example, in a compound having a plurality of aromatic rings such as biphenyl ether, different aromatic rings. Residues obtained by removing two hydrogen atoms from can also be included in the category of divalent aromatic residues.
Specifically, examples of the divalent aromatic residue include residues of benzene, biphenyl, biphenyl ether, biphenyl sulfone, biphenyl ketone, and naphthalene.
また式(A)のR1は、炭素数1~12の2価の有機基であることができる。
具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、ドデシレン基およびキシリレン基等が挙げられる。 In addition, R 1 in the formula (A) can be a divalent organic group having 1 to 12 carbon atoms.
Specific examples include a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, dodecylene group, and xylylene group.
具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、ドデシレン基およびキシリレン基等が挙げられる。 In addition, R 1 in the formula (A) can be a divalent organic group having 1 to 12 carbon atoms.
Specific examples include a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, dodecylene group, and xylylene group.
式(A)のR1は好ましくは、下記式(1)で表される群から選ばれる2価の芳香族残基である。
R 1 in the formula (A) is preferably a divalent aromatic residue selected from the group represented by the following formula (1).
式(1)のR4は、H、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる1種以上の元素を含む炭素数1~6の置換基であり、a、b、c及びdは平均置換基数であって、a、b及びcはそれぞれ0~4の整数を、dは0~6の整数を示し、具体的には、炭素数1~6のアルキル基やアルコキシ基等が挙げられるが、より好ましくは水素原子である。
R 4 in formula (1) is H, O, N, S, F, or Si, or a carbon number that includes one or more elements selected from the group consisting of O, N, S, F, and Si in the structure. Wherein a, b, c and d are the average number of substituents, a, b and c each represent an integer of 0 to 4, d represents an integer of 0 to 6, Includes an alkyl group having 1 to 6 carbon atoms and an alkoxy group, and more preferably a hydrogen atom.
式(1)のXは、直接結合、O、N、S、F若しくはSi、又は構造中にO、N、S、F及びSiからなる群から選ばれる元素を含む炭素数1~6の2価の結合基を示す。具体的にはO、S、CO、SO2、炭素数1~6のアルキレン基、炭素数1~6のアルキレンオキサイド等を挙げることができ、より好ましくは直接結合、O、SO2またはCOであり、さらに好ましくはOである。
X in the formula (1) is a direct bond, O, N, S, F or Si, or 2 having 1 to 6 carbon atoms containing an element selected from the group consisting of O, N, S, F and Si in the structure A valent linking group is shown. Specific examples include O, S, CO, SO 2 , an alkylene group having 1 to 6 carbon atoms, an alkylene oxide having 1 to 6 carbon atoms, and more preferably a direct bond, O, SO 2 or CO. Yes, more preferably O.
そして式(A)のR1は、より好ましくはベンゼン、ビフェニル、ビフェニルエーテル、ビフェニルスルホン、ビフェニルケトン及びナフタレンから2つの水素原子を除いた残基であり、さらに好ましくはベンゼン及びビフェニルエーテルの残基であり、特に好ましくはベンゼンの1及び3位、ビフェニルエーテルの4及び4’位から水素原子を除いた残基である。
R 1 in formula (A) is more preferably a residue obtained by removing two hydrogen atoms from benzene, biphenyl, biphenyl ether, biphenyl sulfone, biphenyl ketone and naphthalene, and more preferably a residue of benzene and biphenyl ether. Particularly preferred are residues obtained by removing a hydrogen atom from positions 1 and 3 of benzene and positions 4 and 4 'of biphenyl ether.
また、式(A)のR2は炭素数1~4のアルキル基であることができ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基及びイソブチル基等が挙げられる。
In addition, R 2 in the formula (A) can be an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. Is mentioned.
式(A)のR2は、炭素数6~8の芳香族残基であることができ、その具体例としては、ベンゼン、トルエン、キシレン等の残基が挙げられる。
ここで、炭素数6~8の芳香族残基とは、炭素数6~8からなる芳香族の芳香族環から1つの水素原子を除いた残基を意味するものとする。 R 2 in the formula (A) can be an aromatic residue having 6 to 8 carbon atoms, and specific examples thereof include residues such as benzene, toluene and xylene.
Here, the aromatic residue having 6 to 8 carbon atoms means a residue obtained by removing one hydrogen atom from an aromatic aromatic ring having 6 to 8 carbon atoms.
ここで、炭素数6~8の芳香族残基とは、炭素数6~8からなる芳香族の芳香族環から1つの水素原子を除いた残基を意味するものとする。 R 2 in the formula (A) can be an aromatic residue having 6 to 8 carbon atoms, and specific examples thereof include residues such as benzene, toluene and xylene.
Here, the aromatic residue having 6 to 8 carbon atoms means a residue obtained by removing one hydrogen atom from an aromatic aromatic ring having 6 to 8 carbon atoms.
そして式(A)のR2は、好ましくはメチル基、エチル基及びベンゼンの残基であり、より好ましくはメチル基及びエチル基であり、さらに好ましくはメチル基である。
R 2 in formula (A) is preferably a residue of a methyl group, an ethyl group and benzene, more preferably a methyl group and an ethyl group, and further preferably a methyl group.
本発明のポリベンゾオキサゾール前駆体樹脂の原料であるジカルボン酸トリアジン活性エステルの製造方法は特に限定されないが、例えば、有機溶媒中にクロロトリアジン化合物、3級アミン化合物及びジカルボン酸化合物を添加して反応させた後、再結晶等により精製して得ることができる。
The production method of the dicarboxylic acid triazine active ester which is the raw material of the polybenzoxazole precursor resin of the present invention is not particularly limited. For example, the reaction is performed by adding a chlorotriazine compound, a tertiary amine compound and a dicarboxylic acid compound in an organic solvent. And then purified by recrystallization or the like.
前記クロロトリアジン化合物としては、例えば、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジエトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジプロポキシ-1,3,5-トリアジン、2-クロロ-4,6-ジイソプロポキシメトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジブトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジフェノキシ-1,3,5-トリアジン等が挙げられ、中でも2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジエトキシ-1,3,5-トリアジン、2-クロロ-4,6-ジフェノキシ-1,3,5-トリアジン等が好ましい。その使用量は、反応に用いるジカルボン酸化合物1モルに対して、通常2~4モル、好ましくは2~2.6モルである。
Examples of the chlorotriazine compound include 2-chloro-4,6-dimethoxy-1,3,5-triazine, 2-chloro-4,6-diethoxy-1,3,5-triazine, and 2-chloro-4. , 6-dipropoxy-1,3,5-triazine, 2-chloro-4,6-diisopropoxymethoxy-1,3,5-triazine, 2-chloro-4,6-dibutoxy-1,3,5- And triazine, 2-chloro-4,6-diphenoxy-1,3,5-triazine, and the like. Among them, 2-chloro-4,6-dimethoxy-1,3,5-triazine, 2-chloro-4,6 -Diethoxy-1,3,5-triazine, 2-chloro-4,6-diphenoxy-1,3,5-triazine and the like are preferable. The amount used is usually 2 to 4 mol, preferably 2 to 2.6 mol, per 1 mol of the dicarboxylic acid compound used in the reaction.
前記3級アミン化合物としては、例えばトリエチルアミン、N-メチルモルホリン、N-エチルモルホリン、N-イソブチルモルホリン、ピリジン、2-ピコリン、3-ピコリン、4-ピコリン、2,4-ルチジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデンセン等が挙げられ、中でもトリエチルアミン、N-メチルモルホリン、ピリジン等が好ましい。その使用量は、反応に用いるジカルボン酸化合物1モルに対して、通常0.5~6モル、好ましくは1~5モルである。
Examples of the tertiary amine compound include triethylamine, N-methylmorpholine, N-ethylmorpholine, N-isobutylmorpholine, pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 1,8- Examples thereof include diazabicyclo [5.4.0] -7-undenecene, among which triethylamine, N-methylmorpholine, pyridine and the like are preferable. The amount used is usually 0.5 to 6 mol, preferably 1 to 5 mol, per 1 mol of the dicarboxylic acid compound used in the reaction.
前記ジカルボン酸化合物としては、例えばフタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、ナフタレンジカルボン酸、オキシジ安息香酸、チオジ安息香酸、ジチオジ安息香酸、カルボニルジ安息香酸、スルホニルジ安息香酸、メチレンジ安息香酸、イソプロピリデンジ安息香酸や、ヘキサフルオロイソプロピリデンジ安息香酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等のジカルボン酸などが挙げられ、中でもイソフタル酸、テレフタル酸、ビフェニルジカルボン酸、オキシジ安息香酸、カルボニルジ安息香酸、スルホニルジ安息香酸、ナフタレンジカルボン酸等が好ましい。
Examples of the dicarboxylic acid compound include phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, thiodibenzoic acid, dithiodibenzoic acid, carbonyldibenzoic acid, sulfonyldibenzoic acid, and methylenedibenzoic acid. , Isopropylidenedibenzoic acid, hexafluoroisopropylidenedibenzoic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc. Examples thereof include isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, oxydibenzoic acid, carbonyldibenzoic acid, sulfonyldibenzoic acid, and naphthalenedicarboxylic acid.
この合成反応に用い得る有機溶媒としては、ジカルボン酸に対して良溶媒であることが望ましい。このような溶媒として、特に限定されないが、水やメタノール、エタノール、イソプロピルアルコール等のアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルカプロラクタム、N,N-ジメチルイミダゾリドン、ジメチルスルホキシド、テトラメチル尿素、N-メチルモルホリン、ピリジン、γ-ブチロラクトンのような非プロトン性極性溶媒、トルエン、ヘキサン、ヘプタン等の無極性溶媒、テトラヒドロフラン、ジグライム、ジオキサンや、トリオキサン等のエーテル系溶媒など、またはこれらの混合溶媒などが挙げられる。
The organic solvent that can be used in this synthesis reaction is preferably a good solvent for the dicarboxylic acid. Such a solvent is not particularly limited, but alcohols such as water, methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide N, N-dimethylformamide, N-methylcaprolactam, N, N-dimethylimidazolidone, dimethyl sulfoxide, tetramethylurea, N-methylmorpholine, pyridine, aprotic polar solvents such as γ-butyrolactone, toluene, hexane And nonpolar solvents such as heptane, ether solvents such as tetrahydrofuran, diglyme, dioxane and trioxane, or a mixed solvent thereof.
具体的なジカルボン酸トリアジン活性エステルの製造方法は、例えばまず、有機溶媒中で、ジカルボン酸系化合物を攪拌溶解させた後、トリアジン系化合物、3級アミン化合物を添加して反応させた後、再結晶等によりジカルボン酸トリアジン活性エステルを得ることができる。反応温度は通常-10℃~80℃、好ましくは0~30℃である。反応時間は5分間~24時間、好ましくは15分間~3時間である。
反応終了後、反応混合物を水やメタノールなどの貧溶媒中に投じて生成物を分離した後、再結晶等によって精製を行って副生成物などを除去することにより、ジカルボン酸トリアジン活性エステルを高純度で得ることができる。 A specific method for producing a dicarboxylic acid triazine active ester is, for example, first by stirring and dissolving a dicarboxylic acid compound in an organic solvent, adding a triazine compound and a tertiary amine compound, reacting them, A dicarboxylic acid triazine active ester can be obtained by crystal or the like. The reaction temperature is usually −10 ° C. to 80 ° C., preferably 0 to 30 ° C. The reaction time is 5 minutes to 24 hours, preferably 15 minutes to 3 hours.
After completion of the reaction, the reaction mixture is poured into a poor solvent such as water or methanol to separate the product, and then purified by recrystallization or the like to remove by-products, thereby increasing the dicarboxylic acid triazine active ester. Can be obtained in purity.
反応終了後、反応混合物を水やメタノールなどの貧溶媒中に投じて生成物を分離した後、再結晶等によって精製を行って副生成物などを除去することにより、ジカルボン酸トリアジン活性エステルを高純度で得ることができる。 A specific method for producing a dicarboxylic acid triazine active ester is, for example, first by stirring and dissolving a dicarboxylic acid compound in an organic solvent, adding a triazine compound and a tertiary amine compound, reacting them, A dicarboxylic acid triazine active ester can be obtained by crystal or the like. The reaction temperature is usually −10 ° C. to 80 ° C., preferably 0 to 30 ° C. The reaction time is 5 minutes to 24 hours, preferably 15 minutes to 3 hours.
After completion of the reaction, the reaction mixture is poured into a poor solvent such as water or methanol to separate the product, and then purified by recrystallization or the like to remove by-products, thereby increasing the dicarboxylic acid triazine active ester. Can be obtained in purity.
また、前記ジカルボン酸トリアジン活性エステルは、例えば、有機溶媒中にヒドロキシトリアジン化合物、3級アミン化合物及びジカルボン酸ジクロリド化合物を添加して反応させた後、再結晶等により精製して得ることができる。
The dicarboxylic acid triazine active ester can be obtained, for example, by adding a hydroxytriazine compound, a tertiary amine compound and a dicarboxylic acid dichloride compound in an organic solvent and reacting them, followed by purification by recrystallization or the like.
前記ヒドロキシトリアジン化合物としては、例えば、2-ヒドロキシ-4,6-ジメトキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジエトキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジプロポキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジイソプロポキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジブトキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジフェノキシ-1,3,5-トリアジン等が挙げられ、中でも2-ヒドロキシ-4,6-ジメトキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジエトキシ-1,3,5-トリアジン、2-ヒドロキシ-4,6-ジフェノキシ-1,3,5-トリアジン等が好ましい。その使用量は、反応に用いるジカルボン酸ジクロリド化合物1モルに対して、通常2~4モル、好ましくは2~2.6モルである。
Examples of the hydroxytriazine compound include 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 2-hydroxy-4,6-diethoxy-1,3,5-triazine, and 2-hydroxy-4. , 6-Dipropoxy-1,3,5-triazine, 2-hydroxy-4,6-diisopropoxy-1,3,5-triazine, 2-hydroxy-4,6-dibutoxy-1,3,5-triazine 2-hydroxy-4,6-diphenoxy-1,3,5-triazine and the like, among which 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 2-hydroxy-4,6- Diethoxy-1,3,5-triazine, 2-hydroxy-4,6-diphenoxy-1,3,5-triazine and the like are preferable. The amount used is usually 2 to 4 mol, preferably 2 to 2.6 mol, per 1 mol of the dicarboxylic acid dichloride compound used in the reaction.
前記3級アミン化合物としては、例えば、トリエチルアミン、N-メチルモルホリン、N-エチルモルホリン、N-イソブチルモルホリン、ピリジン、2-ピコリン、3-ピコリン、4-ピコリン、2,4-ルチジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデンセン等が挙げられ、中でもトリエチルアミン、N-メチルモルホリン、ピリジン等が好ましい。その使用量は、反応に用いるジカルボン酸ジクロリド化合物1モルに対して、通常0.5~6モル、好ましくは1~5モルである。
Examples of the tertiary amine compound include triethylamine, N-methylmorpholine, N-ethylmorpholine, N-isobutylmorpholine, pyridine, 2-picoline, 3-picoline, 4-picoline, 2,4-lutidine, 1,8 -Diazabicyclo [5.4.0] -7-undenecene and the like, among which triethylamine, N-methylmorpholine, pyridine and the like are preferable. The amount used is usually 0.5 to 6 mol, preferably 1 to 5 mol, per 1 mol of the dicarboxylic acid dichloride compound used in the reaction.
前記ジカルボン酸ジクロリド化合物としては、例えば、フタル酸ジクロリド、イソフタル酸ジクロリド、テレフタル酸ジクロリド、ビフェニルジカルボン酸ジクロリド、ナフタレンジカルボン酸ジクロリド、オキシジ安息香酸ジクロリド、チオジ安息香酸ジクロリド、ジチオジ安息香酸ジクロリド、カルボニルジ安息香酸ジクロリド、スルホニルジ安息香酸ジクロリド、メチレンジ安息香酸ジクロリド、イソプロピリデンジ安息香酸ジクロリド、ヘキサフルオロイソプロピリデンジ安息香酸ジクロリド、マロン酸ジクロリド、コハク酸ジクロリド、グルタル酸ジクロリド、アジピン酸ジクロリド、ピメリン酸ジクロリド、スベリン酸ジクロリド、アゼライン酸ジクロリド、セバシン酸ジクロリド、ウンデカンジカルボン酸ジクロリド、ドデカンジカルボン酸ジクロリド等のジカルボン酸ジクロリドなどが挙げられ、中でもイソフタル酸ジクロリド、テレフタル酸ジクロリド、ビフェニルジカルボン酸ジクロリド、オキシジ安息香酸ジクロリド、カルボニルジ安息香酸ジクロリド、スルホニルジ安息香酸ジクロリド、ナフタレンジカルボン酸ジクロリド等が好ましい。
Examples of the dicarboxylic acid dichloride compound include phthalic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, oxydibenzoic acid dichloride, thiodibenzoic acid dichloride, dithiodibenzoic acid dichloride, and carbonyl dibenzoic acid. Acid dichloride, sulfonyl dibenzoic acid dichloride, methylene dibenzoic acid dichloride, isopropylidene dibenzoic acid dichloride, hexafluoroisopropylidene dibenzoic acid dichloride, malonic acid dichloride, succinic acid dichloride, glutaric acid dichloride, adipic acid dichloride, pimelic acid dichloride Suberic acid dichloride, azelaic acid dichloride, sebacic acid dichloride, undecane dicarboxylic acid dichloride, dode And dicarboxylic acid dichlorides such as isophthalic acid dichloride, among others, isophthalic acid dichloride, terephthalic acid dichloride, biphenyldicarboxylic acid dichloride, oxydibenzoic acid dichloride, carbonyldibenzoic acid dichloride, sulfonyldibenzoic acid dichloride, naphthalene dicarboxylic acid dichloride, etc. Is preferred.
この反応に用い得る有機溶媒としては、ジカルボン酸ジクロリドに対して不活性溶媒であることが望ましい。このような溶媒として、特に限定されないが、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N-メチルカプロラクタム、N,N-ジメチルイミダゾリドン、テトラメチル尿素、ピリジン、γ-ブチロラクトンのような非プロトン性極性溶媒、トルエン、ヘキサン、ヘプタン等の無極性溶媒、テトラヒドロフラン、ジグライム、ジオキサン、トリオキサン等のエーテル系溶媒など、またはこれらの混合溶媒などが挙げられる。
The organic solvent that can be used for this reaction is preferably an inert solvent for dicarboxylic acid dichloride. Examples of such solvents include, but are not limited to, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N-methylcaprolactam, N, N-dimethylimidazo. Aprotic polar solvents such as lidone, tetramethylurea, pyridine, γ-butyrolactone, nonpolar solvents such as toluene, hexane, heptane, ether solvents such as tetrahydrofuran, diglyme, dioxane, trioxane, etc., or a mixed solvent thereof Etc.
また、本発明のポリベンゾオキサゾール前駆体樹脂の原料であるビスアミノフェノール化合物としては、1分子中に少なくとも2つのアミノ基と少なくとも1つのフェノール性水酸基を有する化合物であれば特に限定されない。
The bisaminophenol compound that is a raw material for the polybenzoxazole precursor resin of the present invention is not particularly limited as long as it is a compound having at least two amino groups and at least one phenolic hydroxyl group in one molecule.
ビスアミノフェノール化合物の具体例としては、4,6-ジアミノレゾルシノール、2,5-ジアミノハイドロキノン、3,3’-ジヒドロキシベンジジン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニルメタン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニルメタン、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、1,3-ヘキサフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、9,9’-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン及び、1,3-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン等があるがこれらに限定されるものではない。これらは1種又は2種以上混合して用いても良い。その使用量は、ジカルボン酸トリアジン活性エステル成分1モルに対して、通常0.5~2.0モル、好ましくは0.9~1.1モルである。
Specific examples of the bisaminophenol compound include 4,6-diaminoresorcinol, 2,5-diaminohydroquinone, 3,3′-dihydroxybenzidine, 4,4′-diamino-3,3′-dihydroxybiphenyl ether, 3, 3'-diamino-4,4'-dihydroxybiphenyl ether, 3,3'-diamino-4,4'-dihydroxybiphenylmethane, 4,4'-diamino-3,3'-dihydroxybiphenylmethane, 3,3 ' -Diamino-4,4'-dihydroxydiphenylsulfone, 3,3'-diamino-4,4'-dihydroxybiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,2-bis (3- Amino-4-hydroxyphenyl) propane, 1,3-hexafluoro-2,2-bis (3-amino 4-hydroxyphenyl) propane, 9,9′-bis (3-amino-4-hydroxyphenyl) fluorene, 1,3-bis (4-amino-3-hydroxyphenoxy) benzene, and the like, but are not limited thereto. It is not something. You may use these 1 type or in mixture of 2 or more types. The amount used is usually 0.5 to 2.0 mol, preferably 0.9 to 1.1 mol, per mol of the dicarboxylic acid triazine active ester component.
ジカルボン酸トリアジン活性エステルとビスアミノフェノール化合物との反応は不活性溶媒中で行うのが一般的であるが、この不活性溶媒は、ジカルボン酸トリアジン活性エステルと実質的に反応せず、かつ上記ビスアミノフェノール化合物を良好に溶解させる性質を有する他、反応生成物であるポリベンゾオキサゾール前駆体樹脂に対して良溶媒であることが望ましい。
The reaction between the dicarboxylic acid triazine active ester and the bisaminophenol compound is generally carried out in an inert solvent. However, this inert solvent does not substantially react with the dicarboxylic acid triazine active ester, and the above bisaminophenol compound. In addition to having a property of dissolving the aminophenol compound satisfactorily, it is desirable that the reaction product is a good solvent for the polybenzoxazole precursor resin.
このような不活性溶媒として、特に限定はされないが、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルカプロラクタム、N,N-ジメチルイミダゾリドン、ジメチルスルホキシド、テトラメチル尿素、N-メチルモルホリン、ピリジン、γ-ブチロラクトン、スルホランのような非プロトン性極性溶媒、トルエン、ヘキサン、ヘプタン等の無極性溶媒、テトラヒドロフラン、ジグライム、ジオキサンや、トリオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒など、またはこれらの混合溶媒などが挙げられる。これら溶媒の使用量は、使用するビスアミノフェノール化合物0.1モルに対して、通常0~1000mL、好ましくは50~800mLである。
Such an inert solvent is not particularly limited, but N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methylcaprolactam, N, N-dimethylimidazolidone, dimethyl Aprotic polar solvents such as sulfoxide, tetramethylurea, N-methylmorpholine, pyridine, γ-butyrolactone, sulfolane, nonpolar solvents such as toluene, hexane, heptane, ethers such as tetrahydrofuran, diglyme, dioxane, and trioxane Examples thereof include a solvent, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, or a mixed solvent thereof. The amount of these solvents to be used is generally 0 to 1000 mL, preferably 50 to 800 mL, relative to 0.1 mol of the bisaminophenol compound used.
また、重合度の大きいポリベンゾオキサゾール前駆体樹脂を得るために、塩化リチウム、塩化カルシウムなどの無機塩類を添加してもよい。これら無機塩類の使用量は、使用溶媒量に対して、通常10質量%以下、好ましくは質量5%以下である。
In order to obtain a polybenzoxazole precursor resin having a high degree of polymerization, inorganic salts such as lithium chloride and calcium chloride may be added. The amount of these inorganic salts used is usually 10% by mass or less, preferably 5% by mass or less, based on the amount of solvent used.
ポリベンゾオキサゾール前駆体樹脂の具体的な製造方法としては、例えば、不活性溶媒中にビスアミノフェノール化合物を溶解し、ビスアミノフェノール化合物1モルに対して、前記ジカルボン酸トリアジン活性エステル成分0.5~2.0モルを添加し、次いで窒素などの不活性雰囲気下で加熱撹拌しながら、反応させることによりポリベンゾオキサゾール前駆体樹脂を得ることができる。反応温度は通常-10~80℃、好ましくは20~60℃である。反応時間は通常5分間~24時間、好ましくは30分間~15時間である。
反応終了後、副生成物のヒドロキシトリアジン化合物が水溶性であるため、反応混合物を水やメタノールなどの貧溶媒中に投じて重合体を分離した後、再沈殿法等によって精製を行って副生成物や無機塩類などを容易に除去することにより、イオン性不純物の含有量が10ppm以下のポリベンゾオキサゾール前駆体樹脂を得ることができる。 As a specific method for producing the polybenzoxazole precursor resin, for example, a bisaminophenol compound is dissolved in an inert solvent, and the dicarboxylic acid triazine active ester component 0.5 is added to 1 mol of the bisaminophenol compound. A polybenzoxazole precursor resin can be obtained by adding .about.2.0 mol and then reacting with heating and stirring under an inert atmosphere such as nitrogen. The reaction temperature is usually −10 to 80 ° C., preferably 20 to 60 ° C. The reaction time is usually 5 minutes to 24 hours, preferably 30 minutes to 15 hours.
After completion of the reaction, since the by-product hydroxytriazine compound is water-soluble, the reaction mixture is poured into a poor solvent such as water or methanol to separate the polymer, and then purified by a reprecipitation method or the like. By easily removing substances and inorganic salts, a polybenzoxazole precursor resin having an ionic impurity content of 10 ppm or less can be obtained.
反応終了後、副生成物のヒドロキシトリアジン化合物が水溶性であるため、反応混合物を水やメタノールなどの貧溶媒中に投じて重合体を分離した後、再沈殿法等によって精製を行って副生成物や無機塩類などを容易に除去することにより、イオン性不純物の含有量が10ppm以下のポリベンゾオキサゾール前駆体樹脂を得ることができる。 As a specific method for producing the polybenzoxazole precursor resin, for example, a bisaminophenol compound is dissolved in an inert solvent, and the dicarboxylic acid triazine active ester component 0.5 is added to 1 mol of the bisaminophenol compound. A polybenzoxazole precursor resin can be obtained by adding .about.2.0 mol and then reacting with heating and stirring under an inert atmosphere such as nitrogen. The reaction temperature is usually −10 to 80 ° C., preferably 20 to 60 ° C. The reaction time is usually 5 minutes to 24 hours, preferably 30 minutes to 15 hours.
After completion of the reaction, since the by-product hydroxytriazine compound is water-soluble, the reaction mixture is poured into a poor solvent such as water or methanol to separate the polymer, and then purified by a reprecipitation method or the like. By easily removing substances and inorganic salts, a polybenzoxazole precursor resin having an ionic impurity content of 10 ppm or less can be obtained.
また、本発明のポリベンゾオキサゾール前駆体樹脂は、従来公知のリン系化合物を用いておらず、かつ原料である本発明のジカルボン酸トリアジン活性エステルの塩素イオン含有量が少ないため、従来公知のものと比べて高純度なポリベンゾオキサゾール前駆体樹脂を得ることができる。
In addition, the polybenzoxazole precursor resin of the present invention does not use a conventionally known phosphorus compound and has a low chloride ion content of the dicarboxylic acid triazine active ester of the present invention, which is a raw material, so that it is a conventionally known one. As compared with the above, a highly pure polybenzoxazole precursor resin can be obtained.
本発明のポリベンゾオキサゾール前駆体樹脂は、10,000~1,000,000の重量平均分子量を有するものである。
重量平均分子量が10,000未満の場合には、成膜性が悪くポリベンゾオキサゾール前駆体樹脂としての特性の発現が不十分であり、一方、1,000,000を超える場合には、分子量が高すぎて溶剤溶解性が悪くなり、かつ成形加工性が悪くなるおそれがある。
ポリベンゾオキサゾール前駆体樹脂の分子量を調節する簡便な方法としては、ジカルボン酸トリアジン活性エステル成分あるいはビスアミノフェノール化合物成分のどちらか一方を過剰に使用する方法を挙げることができる。
ここで重量平均分子量(Mw)及び数平均分子量(Mn)とは、GPCの測定結果を基にポリスチレン換算で算出した値を意味する。 The polybenzoxazole precursor resin of the present invention has a weight average molecular weight of 10,000 to 1,000,000.
When the weight average molecular weight is less than 10,000, the film formability is poor and the expression of the properties as a polybenzoxazole precursor resin is insufficient. On the other hand, when it exceeds 1,000,000, the molecular weight is low. If it is too high, solvent solubility may be deteriorated, and molding processability may be deteriorated.
As a simple method for adjusting the molecular weight of the polybenzoxazole precursor resin, there can be mentioned a method in which either one of the dicarboxylic acid triazine active ester component or the bisaminophenol compound component is used in excess.
Here, the weight average molecular weight (Mw) and the number average molecular weight (Mn) mean values calculated in terms of polystyrene based on GPC measurement results.
重量平均分子量が10,000未満の場合には、成膜性が悪くポリベンゾオキサゾール前駆体樹脂としての特性の発現が不十分であり、一方、1,000,000を超える場合には、分子量が高すぎて溶剤溶解性が悪くなり、かつ成形加工性が悪くなるおそれがある。
ポリベンゾオキサゾール前駆体樹脂の分子量を調節する簡便な方法としては、ジカルボン酸トリアジン活性エステル成分あるいはビスアミノフェノール化合物成分のどちらか一方を過剰に使用する方法を挙げることができる。
ここで重量平均分子量(Mw)及び数平均分子量(Mn)とは、GPCの測定結果を基にポリスチレン換算で算出した値を意味する。 The polybenzoxazole precursor resin of the present invention has a weight average molecular weight of 10,000 to 1,000,000.
When the weight average molecular weight is less than 10,000, the film formability is poor and the expression of the properties as a polybenzoxazole precursor resin is insufficient. On the other hand, when it exceeds 1,000,000, the molecular weight is low. If it is too high, solvent solubility may be deteriorated, and molding processability may be deteriorated.
As a simple method for adjusting the molecular weight of the polybenzoxazole precursor resin, there can be mentioned a method in which either one of the dicarboxylic acid triazine active ester component or the bisaminophenol compound component is used in excess.
Here, the weight average molecular weight (Mw) and the number average molecular weight (Mn) mean values calculated in terms of polystyrene based on GPC measurement results.
ところで、本発明のポリベンゾオキサゾール前駆体樹脂は、加熱によりアミド構造とフェノール性水酸基との間で脱水閉環が起こり、ポリベンゾオキサゾール樹脂とすることができる。
加熱条件には特に制限はないが、通常150~400℃で30分間~24時間、好ましくは、170~350℃で1時間~12時間であり、加熱温度を副生成物であるヒドロキシトリアジン化合物の分解温度である170℃以上とすることがより好ましい。 By the way, the polybenzoxazole precursor resin of the present invention undergoes dehydration ring closure between the amide structure and the phenolic hydroxyl group by heating, and can be made into a polybenzoxazole resin.
The heating conditions are not particularly limited, but are usually 150 to 400 ° C. for 30 minutes to 24 hours, preferably 170 to 350 ° C. for 1 hour to 12 hours. The heating temperature of the hydroxytriazine compound as a by-product is More preferably, the decomposition temperature is 170 ° C. or higher.
加熱条件には特に制限はないが、通常150~400℃で30分間~24時間、好ましくは、170~350℃で1時間~12時間であり、加熱温度を副生成物であるヒドロキシトリアジン化合物の分解温度である170℃以上とすることがより好ましい。 By the way, the polybenzoxazole precursor resin of the present invention undergoes dehydration ring closure between the amide structure and the phenolic hydroxyl group by heating, and can be made into a polybenzoxazole resin.
The heating conditions are not particularly limited, but are usually 150 to 400 ° C. for 30 minutes to 24 hours, preferably 170 to 350 ° C. for 1 hour to 12 hours. The heating temperature of the hydroxytriazine compound as a by-product is More preferably, the decomposition temperature is 170 ° C. or higher.
本発明のポリベンゾオキサゾール前駆体樹脂及びポリベンゾオキサゾール樹脂は、その含有するイオン性不純物が10ppm以下と少量のため、電気・電子部品用として使用する場合に電気特性低下することなく、電気・電子部品等の半導体分野や耐熱性バグフィルター、二次電池セパレーター、断熱材料、各種フィルター、食品包装および衣服等へ適応することができる。
Since the polybenzoxazole precursor resin and the polybenzoxazole resin of the present invention contain an ionic impurity as small as 10 ppm or less, there is no deterioration in electrical characteristics when used for electrical / electronic parts. It can be applied to the semiconductor field such as parts, heat-resistant bag filters, secondary battery separators, heat insulating materials, various filters, food packaging and clothes.
以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
合成例1〈ジカルボン酸トリアジン活性エステルの合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに、イソフタル酸4.2部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン9.7部及びN-メチル-2-ピロリドン100部を加え0℃に冷却した。その後、N-メチルモルホリン7.6部を攪拌下で滴下し、15分間反応させ、下記式(2)
で表されるジカルボン酸トリアジン活性エステルの反応液を得た。この反応液を1000部のイオン交換水に投入し、析出した生成物を濾別し、酢酸エチルとn-ヘキサンの混合溶媒で再結晶を行い、乾燥させて、ジカルボン酸トリアジン活性エステルの白色の粉末状結晶の樹脂粉末1を得た(収率23%)。
Synthesis Example 1 <Synthesis of dicarboxylic acid triazine active ester>
In a flask equipped with a thermometer, nitrogen inlet tube, and stirrer, 4.2 parts of isophthalic acid, 9.7 parts of 2-chloro-4,6-dimethoxy-1,3,5-triazine, and N-methyl-2- 100 parts of pyrrolidone was added and cooled to 0 ° C. Thereafter, 7.6 parts of N-methylmorpholine was added dropwise with stirring and allowed to react for 15 minutes.
The reaction liquid of the dicarboxylic acid triazine active ester represented by these was obtained. The reaction solution was poured into 1000 parts of ion-exchanged water, and the precipitated product was filtered off, recrystallized with a mixed solvent of ethyl acetate and n-hexane, dried, and dried with a white dicarboxylic acid triazine active ester. A powdery crystalline resin powder 1 was obtained (23% yield).
温度計、窒素導入管、撹拌器を取り付けたフラスコに、イソフタル酸4.2部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン9.7部及びN-メチル-2-ピロリドン100部を加え0℃に冷却した。その後、N-メチルモルホリン7.6部を攪拌下で滴下し、15分間反応させ、下記式(2)
In a flask equipped with a thermometer, nitrogen inlet tube, and stirrer, 4.2 parts of isophthalic acid, 9.7 parts of 2-chloro-4,6-dimethoxy-1,3,5-triazine, and N-methyl-2- 100 parts of pyrrolidone was added and cooled to 0 ° C. Thereafter, 7.6 parts of N-methylmorpholine was added dropwise with stirring and allowed to react for 15 minutes.
合成例2〈ジカルボン酸トリアジン活性エステルの合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに、ジフェニルエーテル-4,4’-ジカルボン酸6.5部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン9.7部及びN-メチル-2-ピロリドン100部を加え0℃に冷却した。その後、N-メチルモルホリン7.6部を攪拌下で滴下し、15分間反応させ、下記式(3)
で表されるジカルボン酸トリアジン活性エステルの反応液を得た。この反応液を1000部のイオン交換水に投入し、析出した生成物を濾別し、酢酸エチルとn-ヘキサンの混合溶媒で再結晶を行い、乾燥させてジカルボン酸トリアジン活性エステルの白色粉末状結晶の樹脂粉末2を得た(収率43%)。
Synthesis Example 2 <Synthesis of dicarboxylic acid triazine active ester>
In a flask equipped with a thermometer, a nitrogen inlet tube, and a stirrer, 6.5 parts of diphenyl ether-4,4′-dicarboxylic acid, 9.7 parts of 2-chloro-4,6-dimethoxy-1,3,5-triazine And 100 parts of N-methyl-2-pyrrolidone was added and cooled to 0 ° C. Thereafter, 7.6 parts of N-methylmorpholine was added dropwise with stirring and allowed to react for 15 minutes.
The reaction liquid of the dicarboxylic acid triazine active ester represented by these was obtained. The reaction solution was poured into 1000 parts of ion-exchanged water, and the precipitated product was filtered off, recrystallized with a mixed solvent of ethyl acetate and n-hexane, and dried to give a white powder of dicarboxylic acid triazine active ester. Crystalline resin powder 2 was obtained (43% yield).
温度計、窒素導入管、撹拌器を取り付けたフラスコに、ジフェニルエーテル-4,4’-ジカルボン酸6.5部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン9.7部及びN-メチル-2-ピロリドン100部を加え0℃に冷却した。その後、N-メチルモルホリン7.6部を攪拌下で滴下し、15分間反応させ、下記式(3)
In a flask equipped with a thermometer, a nitrogen inlet tube, and a stirrer, 6.5 parts of diphenyl ether-4,4′-dicarboxylic acid, 9.7 parts of 2-chloro-4,6-dimethoxy-1,3,5-triazine And 100 parts of N-methyl-2-pyrrolidone was added and cooled to 0 ° C. Thereafter, 7.6 parts of N-methylmorpholine was added dropwise with stirring and allowed to react for 15 minutes.
合成例3〈ジカルボン酸トリアジン活性エステルの合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに、2-ヒドロキシ-4,6-ジメトキシ-1,3,5-トリアジン3.1部、N-メチル-2-ピロリドン50部及びトリエチルアミン2.0部を加え0℃に冷却した。その後、イソフタル酸ジクロリド2.0部を添加し、20分間反応させ、下記式(2)
で表される本発明のジカルボン酸トリアジン活性エステルの反応液を得た。この反応液を500部のイオン交換水に投入し、析出した生成物を濾別し、酢酸エチルとn-ヘキサンの混合溶媒で再結晶を行い、乾燥させてジカルボン酸トリアジン活性エステルの白色粉末状結晶の樹脂粉末3を得た(収率60%)。
Synthesis Example 3 <Synthesis of dicarboxylic acid triazine active ester>
To a flask equipped with a thermometer, nitrogen inlet tube, and stirrer, 3.1 parts of 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 50 parts of N-methyl-2-pyrrolidone and 2. 0 parts were added and cooled to 0 ° C. Thereafter, 2.0 parts of isophthalic acid dichloride was added and reacted for 20 minutes to obtain the following formula (2).
The reaction liquid of the dicarboxylic acid triazine active ester of this invention represented by these was obtained. The reaction solution was poured into 500 parts of ion-exchanged water, and the precipitated product was separated by filtration, recrystallized with a mixed solvent of ethyl acetate and n-hexane, and dried to obtain a white powder of dicarboxylic acid triazine active ester. Crystalline resin powder 3 was obtained (yield 60%).
温度計、窒素導入管、撹拌器を取り付けたフラスコに、2-ヒドロキシ-4,6-ジメトキシ-1,3,5-トリアジン3.1部、N-メチル-2-ピロリドン50部及びトリエチルアミン2.0部を加え0℃に冷却した。その後、イソフタル酸ジクロリド2.0部を添加し、20分間反応させ、下記式(2)
To a flask equipped with a thermometer, nitrogen inlet tube, and stirrer, 3.1 parts of 2-hydroxy-4,6-dimethoxy-1,3,5-triazine, 50 parts of N-methyl-2-pyrrolidone and 2. 0 parts were added and cooled to 0 ° C. Thereafter, 2.0 parts of isophthalic acid dichloride was added and reacted for 20 minutes to obtain the following formula (2).
実施例1〈ポリベンゾオキサゾール前駆体樹脂の合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル22部、N-メチルピロリドン205部を攪拌溶解し、上記で得られたジカルボン酸トリアジン活性エステルの樹脂粉末2を54部加え、20℃で12時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール2000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させてポリベンゾオキサゾール前駆体樹脂粉末1を得た(収率98%)。
ゲル浸透クロマトグラフィー(以下、GPC)を用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ114,000および2.4であった。また、この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Example 1 <Synthesis of polybenzoxazole precursor resin>
A flask equipped with a thermometer, a nitrogen inlet tube, and a stirrer was purged with nitrogen gas, and 22 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl and 205 parts of N-methylpyrrolidone were stirred and dissolved. 54 parts of the resin powder 2 of the resulting dicarboxylic acid triazine active ester was added and reacted at 20 ° C. for 12 hours to obtain a reaction solution of a polybenzoxazole precursor resin. The resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the polybenzoxazole precursor resin powder 1 was obtained (yield 98%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined from gel conversion using gel permeation chromatography (hereinafter referred to as GPC) were 114,000 and 2.4, respectively. Further, 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル22部、N-メチルピロリドン205部を攪拌溶解し、上記で得られたジカルボン酸トリアジン活性エステルの樹脂粉末2を54部加え、20℃で12時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール2000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させてポリベンゾオキサゾール前駆体樹脂粉末1を得た(収率98%)。
ゲル浸透クロマトグラフィー(以下、GPC)を用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ114,000および2.4であった。また、この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Example 1 <Synthesis of polybenzoxazole precursor resin>
A flask equipped with a thermometer, a nitrogen inlet tube, and a stirrer was purged with nitrogen gas, and 22 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl and 205 parts of N-methylpyrrolidone were stirred and dissolved. 54 parts of the resin powder 2 of the resulting dicarboxylic acid triazine active ester was added and reacted at 20 ° C. for 12 hours to obtain a reaction solution of a polybenzoxazole precursor resin. The resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the polybenzoxazole precursor resin powder 1 was obtained (yield 98%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined from gel conversion using gel permeation chromatography (hereinafter referred to as GPC) were 114,000 and 2.4, respectively. Further, 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例1〈従来公知の方法によるポリベンゾオキサゾール前駆体樹脂の合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、イソフタル酸16部、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル21部、塩化リチウム1部、N-メチルピロリドン108部、ピリジン23部を加え撹拌溶解させた後、亜リン酸トリフェニル50部を加えて90℃で8時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール1000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させて比較例樹脂粉末1を得た(収率82%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ3,800及び2.4であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Comparative Example 1 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A flask equipped with a thermometer, nitrogen inlet tube and stirrer was purged with nitrogen gas, and 16 parts of isophthalic acid, 21 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl, 1 part of lithium chloride, N-methylpyrrolidone After 108 parts and 23 parts of pyridine were added and dissolved by stirring, 50 parts of triphenyl phosphite was added and reacted at 90 ° C. for 8 hours to obtain a reaction solution of polybenzoxazole precursor resin. The resin deposited in 1000 parts of methanol was filtered off, washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 1 was obtained (yield 82%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 3,800 and 2.4, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、イソフタル酸16部、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル21部、塩化リチウム1部、N-メチルピロリドン108部、ピリジン23部を加え撹拌溶解させた後、亜リン酸トリフェニル50部を加えて90℃で8時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール1000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させて比較例樹脂粉末1を得た(収率82%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ3,800及び2.4であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Comparative Example 1 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A flask equipped with a thermometer, nitrogen inlet tube and stirrer was purged with nitrogen gas, and 16 parts of isophthalic acid, 21 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl, 1 part of lithium chloride, N-methylpyrrolidone After 108 parts and 23 parts of pyridine were added and dissolved by stirring, 50 parts of triphenyl phosphite was added and reacted at 90 ° C. for 8 hours to obtain a reaction solution of polybenzoxazole precursor resin. The resin deposited in 1000 parts of methanol was filtered off, washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 1 was obtained (yield 82%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 3,800 and 2.4, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例2〈従来公知の方法によるポリベンゾオキサゾール前駆体樹脂の合成〉
比較例樹脂粉末1のイソフタル酸をジフェニルエーテル-4,4’-ジカルボン酸、25部に変更した以外は同様にして、反応液と比較例樹脂粉末2を得た(収率85%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ5,000及び2.6であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。結果を表1に示した。 Comparative Example 2 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A reaction solution and Comparative Example resin powder 2 were obtained in the same manner except that the isophthalic acid in Comparative Example resin powder 1 was changed to 25 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 5,000 and 2.6, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例樹脂粉末1のイソフタル酸をジフェニルエーテル-4,4’-ジカルボン酸、25部に変更した以外は同様にして、反応液と比較例樹脂粉末2を得た(収率85%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ5,000及び2.6であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。結果を表1に示した。 Comparative Example 2 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A reaction solution and Comparative Example resin powder 2 were obtained in the same manner except that the isophthalic acid in Comparative Example resin powder 1 was changed to 25 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 5,000 and 2.6, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例3〈従来公知の方法によるポリベンゾオキサゾール前駆体樹脂の合成〉
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、イソフタル酸8部、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル11部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン19部、及びN-メチル-2-ピロリドン200部を加えた。その後、N-メチルモルホリン15部を攪拌下で滴下し、20℃で12時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール2000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させて比較例樹脂粉末3を得た(収率93%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ4,100及び2.2であった。また、この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Comparative Example 3 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A flask equipped with a thermometer, nitrogen inlet tube and stirrer was purged with nitrogen gas, and 8 parts of isophthalic acid, 11 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2-chloro-4,6-dimethoxy 19 parts of -1,3,5-triazine and 200 parts of N-methyl-2-pyrrolidone were added. Thereafter, 15 parts of N-methylmorpholine was added dropwise with stirring and reacted at 20 ° C. for 12 hours to obtain a polybenzoxazole precursor resin reaction solution. The resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 3 was obtained (yield 93%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 4,100 and 2.2, respectively. Further, 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
温度計、窒素導入管、撹拌器を取り付けたフラスコに窒素ガスパージを施し、イソフタル酸8部、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル11部、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン19部、及びN-メチル-2-ピロリドン200部を加えた。その後、N-メチルモルホリン15部を攪拌下で滴下し、20℃で12時間反応させ、ポリベンゾオキサゾール前駆体樹脂の反応液を得た。メタノール2000部に投入し析出した樹脂を濾別し、更にメタノール200部で洗浄した後、メタノール還流して精製した。次いで室温まで冷却した後濾過し、濾過物を乾燥させて比較例樹脂粉末3を得た(収率93%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ4,100及び2.2であった。また、この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。その結果を表1に示す。 Comparative Example 3 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A flask equipped with a thermometer, nitrogen inlet tube and stirrer was purged with nitrogen gas, and 8 parts of isophthalic acid, 11 parts of 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2-chloro-4,6-dimethoxy 19 parts of -1,3,5-triazine and 200 parts of N-methyl-2-pyrrolidone were added. Thereafter, 15 parts of N-methylmorpholine was added dropwise with stirring and reacted at 20 ° C. for 12 hours to obtain a polybenzoxazole precursor resin reaction solution. The resin deposited in 2000 parts of methanol was separated by filtration, further washed with 200 parts of methanol, and purified by refluxing with methanol. Subsequently, after cooling to room temperature, it filtered, and the filtrate was dried and the comparative example resin powder 3 was obtained (yield 93%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 4,100 and 2.2, respectively. Further, 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例4〈従来公知の方法によるポリベンゾオキサゾール前駆体樹脂の合成〉
比較例樹脂粉末3のイソフタル酸をジフェニルエーテル-4,4’-ジカルボン酸、13部に変更した以外は同様にして、反応液と比較例樹脂粉末4を得た(収率85%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ6,300及び2.3であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。結果を表1に示した。 Comparative Example 4 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A reaction solution and a comparative resin powder 4 were obtained in the same manner except that the isophthalic acid of the comparative resin powder 3 was changed to 13 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 6,300 and 2.3, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
比較例樹脂粉末3のイソフタル酸をジフェニルエーテル-4,4’-ジカルボン酸、13部に変更した以外は同様にして、反応液と比較例樹脂粉末4を得た(収率85%)。
GPCを用いてポリスチレン換算より求めた分子量(Mw)及び分子量分布(Mw/Mn)は、それぞれ6,300及び2.3であった。この樹脂粉末4gとミリポア水40gを121℃、20時間で処理し、抽出水をイオンクロマトグラムにてイオン性不純物(P系イオン、Clイオン)を分析した。結果を表1に示した。 Comparative Example 4 <Synthesis of polybenzoxazole precursor resin by a conventionally known method>
A reaction solution and a comparative resin powder 4 were obtained in the same manner except that the isophthalic acid of the comparative resin powder 3 was changed to 13 parts of diphenyl ether-4,4′-dicarboxylic acid (yield 85%).
The molecular weight (Mw) and molecular weight distribution (Mw / Mn) determined by polystyrene conversion using GPC were 6,300 and 2.3, respectively. 4 g of this resin powder and 40 g of Millipore water were treated at 121 ° C. for 20 hours, and the extracted water was analyzed for ionic impurities (P-based ions and Cl ions) by an ion chromatogram. The results are shown in Table 1.
本発明のポリベンゾオキサゾール前駆体樹脂、及び該前駆体樹脂を脱水閉環して得られるポリベンゾオキサゾール樹脂は、イオン性不純物の含有量が少ないため、電気・電子部品等の半導体分野や耐熱性バグフィルター、二次電池セパレーター、断熱材料及び、各種フィルター、食品包装及び衣服等への適応が可能である。
The polybenzoxazole precursor resin of the present invention and the polybenzoxazole resin obtained by dehydrating and ring-closing the precursor resin have a low content of ionic impurities, so that they can be used in semiconductor fields such as electric / electronic parts and heat-resistant bugs. It can be applied to filters, secondary battery separators, heat insulating materials, various filters, food packaging, clothes, and the like.
Claims (5)
- 下記式(A)
で表されるジカルボン酸トリアジン活性エステルと、ビスアミノフェノール化合物との重合反応により得られるポリベンゾオキサゾール前駆体樹脂であって、
重量平均分子量が10,000~1,000,000の範囲であり、かつ、イオン性不純物の含有量が10ppm以下であるポリベンゾオキサゾール前駆体樹脂。 The following formula (A)
A polybenzoxazole precursor resin obtained by a polymerization reaction of a dicarboxylic acid triazine active ester represented by a bisaminophenol compound,
A polybenzoxazole precursor resin having a weight average molecular weight in the range of 10,000 to 1,000,000 and an ionic impurity content of 10 ppm or less. - 式(A)のR2が、炭素数1~4のアルキル基である請求項1に記載のポリベンゾオキサゾール前駆体樹脂。 The polybenzoxazole precursor resin according to claim 1, wherein R 2 in the formula (A) is an alkyl group having 1 to 4 carbon atoms.
- 式(A)のR1が、下記式(1)
- 式(1)の、R4が水素原子であり、Xが直接結合、O、SO2又はCOである請求項3に記載のポリベンゾオキサゾール前駆体樹脂。 The polybenzoxazole precursor resin according to claim 3, wherein R 4 in formula (1) is a hydrogen atom, and X is a direct bond, O, SO 2 or CO.
- 請求項1~4のいずれかに記載のポリベンゾオキサゾール前駆体樹脂を、脱水閉環して得られるポリベンゾオキサゾール樹脂。 A polybenzoxazole resin obtained by dehydrating and ring-closing the polybenzoxazole precursor resin according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-129410 | 2010-06-04 | ||
JP2010129410A JP2011256219A (en) | 2010-06-04 | 2010-06-04 | Polybenzoxazole resin, and precursor resin thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011152063A1 true WO2011152063A1 (en) | 2011-12-08 |
Family
ID=45066454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003130 WO2011152063A1 (en) | 2010-06-04 | 2011-06-02 | Polybenzoxazole resin, and precursor resin thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011256219A (en) |
TW (1) | TW201200538A (en) |
WO (1) | WO2011152063A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6986446B2 (en) * | 2014-12-23 | 2021-12-22 | クロッシング エスアールエル | Industrial production methods of 2-halo-4,6-dialkoxy-1,3,5-triazine and their use in the presence of amines |
US11548983B2 (en) | 2017-09-15 | 2023-01-10 | Daikin Industries, Ltd. | Polybenzimidazole, precursor polyamide thereof, and method for producing same |
CN117940487A (en) | 2021-08-17 | 2024-04-26 | 大金工业株式会社 | Fluorine-containing polyamide compound and fluorine-containing polybenzoxazole |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000143639A (en) * | 1998-09-09 | 2000-05-26 | Sumitomo Bakelite Co Ltd | Production of dicarboxylic acid derivative and production of polybenzoxazole precursor using the derivative |
JP2002069187A (en) * | 2000-08-25 | 2002-03-08 | Sumitomo Bakelite Co Ltd | Interlayer insulating film for multilayer wiring and method of producing resin used therefor |
JP2002371133A (en) * | 2001-06-14 | 2002-12-26 | Nitto Denko Corp | Method for producing polybenzoxazole precursor, polybenzoxazole precursor obtained thereby and photosensitive polybenzoxazole precursor composition |
JP2003221444A (en) * | 2001-11-26 | 2003-08-05 | Kansai Paint Co Ltd | Polybenzoxazole precursor and coating composition using the same |
JP2008297342A (en) * | 2007-05-29 | 2008-12-11 | Asahi Kasei Electronics Co Ltd | Polyamide and positive photosensitive resin composition |
JP2009013378A (en) * | 2007-07-09 | 2009-01-22 | Sekisui Chem Co Ltd | Polybenzoxazole, its precursor, solution containing the precursor, method for producing precursor, and method for producing polybenzoxazole |
WO2009031602A1 (en) * | 2007-09-06 | 2009-03-12 | Toray Industries, Inc. | Method for producing polyamide and resin composition |
JP2009074038A (en) * | 2007-08-29 | 2009-04-09 | Sumitomo Bakelite Co Ltd | Process for producing polybenzoxazole precursor |
JP2009114266A (en) * | 2007-11-02 | 2009-05-28 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor copolymer, positive photosensitive resin composition, polybenzoxazole copolymer, protective film and semiconductor device |
JP2009185255A (en) * | 2008-02-08 | 2009-08-20 | Asahi Kasei E-Materials Corp | Polycondensation compound and positive photosensitive resin composition |
-
2010
- 2010-06-04 JP JP2010129410A patent/JP2011256219A/en active Pending
-
2011
- 2011-06-02 WO PCT/JP2011/003130 patent/WO2011152063A1/en active Application Filing
- 2011-06-03 TW TW100119541A patent/TW201200538A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000143639A (en) * | 1998-09-09 | 2000-05-26 | Sumitomo Bakelite Co Ltd | Production of dicarboxylic acid derivative and production of polybenzoxazole precursor using the derivative |
JP2002069187A (en) * | 2000-08-25 | 2002-03-08 | Sumitomo Bakelite Co Ltd | Interlayer insulating film for multilayer wiring and method of producing resin used therefor |
JP2002371133A (en) * | 2001-06-14 | 2002-12-26 | Nitto Denko Corp | Method for producing polybenzoxazole precursor, polybenzoxazole precursor obtained thereby and photosensitive polybenzoxazole precursor composition |
JP2003221444A (en) * | 2001-11-26 | 2003-08-05 | Kansai Paint Co Ltd | Polybenzoxazole precursor and coating composition using the same |
JP2008297342A (en) * | 2007-05-29 | 2008-12-11 | Asahi Kasei Electronics Co Ltd | Polyamide and positive photosensitive resin composition |
JP2009013378A (en) * | 2007-07-09 | 2009-01-22 | Sekisui Chem Co Ltd | Polybenzoxazole, its precursor, solution containing the precursor, method for producing precursor, and method for producing polybenzoxazole |
JP2009074038A (en) * | 2007-08-29 | 2009-04-09 | Sumitomo Bakelite Co Ltd | Process for producing polybenzoxazole precursor |
WO2009031602A1 (en) * | 2007-09-06 | 2009-03-12 | Toray Industries, Inc. | Method for producing polyamide and resin composition |
JP2009114266A (en) * | 2007-11-02 | 2009-05-28 | Sumitomo Bakelite Co Ltd | Polybenzoxazole precursor copolymer, positive photosensitive resin composition, polybenzoxazole copolymer, protective film and semiconductor device |
JP2009185255A (en) * | 2008-02-08 | 2009-08-20 | Asahi Kasei E-Materials Corp | Polycondensation compound and positive photosensitive resin composition |
Also Published As
Publication number | Publication date |
---|---|
TW201200538A (en) | 2012-01-01 |
JP2011256219A (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598466B2 (en) | Polyimide precursor composition containing polyamic acid alkyl ester | |
JP3538689B2 (en) | Polyamine resin and method for producing the same | |
Rezania et al. | Synthesis and characterization of soluble aromatic polyamides containing double sulfide bond and thiazole ring | |
JPS6172022A (en) | Production of polyamide | |
JP5564684B2 (en) | Aromatic diamine, method for producing the same, and resin | |
WO2011152063A1 (en) | Polybenzoxazole resin, and precursor resin thereof | |
Zhao et al. | Preparation and properties of three novel poly (phosphazene‐aryl amide) s containing cyclotriphosphazene structures | |
JP5669174B2 (en) | Crystals of dicarboxylic acid triazine active ester | |
JP7085737B2 (en) | Polybenzimidazole, its precursor polyamide and their production method | |
JP2009074038A (en) | Process for producing polybenzoxazole precursor | |
WO2014057973A1 (en) | Thermosetting resin and thermosetting resin composition | |
JP5777126B2 (en) | Method for producing polyamide resin | |
JP2005120001A (en) | Fluorinated dinitro monomer, fluorinated diamine monomer, and fluorinated polyamide and fluorinated polyimide prepared from fluorinated diamine monomer | |
JP5979420B2 (en) | Hydroxy group-containing aromatic diamine, polyamide resin, resin composition, and uses thereof | |
JP2004035638A (en) | Novel rubber modified polyamide and its manufacturing method | |
JPS59115331A (en) | Production of polyphenylene sulfide polymer | |
EP0457419B1 (en) | Method of producing an aromatic polythiazole | |
Shockravi et al. | Synthesis and properties of novel fluorinated polyamides based on noncoplanar sulfoxide containing aromatic bis (ether amine) | |
Banihashemi et al. | Synthesis and characterization of new aromatic poly (amide-imide) s derived from bis (3-trimellitimidophenyl) phenyl phosphine oxide and various aromatic diamines | |
Agrawal et al. | Facile synthesis of new thermally stable and organosoluble polyamide-imides based on non-coplaner phosphorus and silicon containing amines | |
JP7184135B2 (en) | Polymerizable s-triazine derivative, curable composition using the same, and cured product and molding material using the same | |
JP7575974B2 (en) | Polyphenylene sulfide resin and its manufacturing method | |
JP4514037B2 (en) | Method for producing aromatic polyamide resin | |
JP4518853B2 (en) | Method for producing polyamide resin | |
JP4947680B2 (en) | Novel curable polyamide and polymerizable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789476 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11789476 Country of ref document: EP Kind code of ref document: A1 |