[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011142329A1 - Complex compound and optical recording medium containing same - Google Patents

Complex compound and optical recording medium containing same Download PDF

Info

Publication number
WO2011142329A1
WO2011142329A1 PCT/JP2011/060695 JP2011060695W WO2011142329A1 WO 2011142329 A1 WO2011142329 A1 WO 2011142329A1 JP 2011060695 W JP2011060695 W JP 2011060695W WO 2011142329 A1 WO2011142329 A1 WO 2011142329A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
complex compound
compound
ring
Prior art date
Application number
PCT/JP2011/060695
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 澤田
崇行 折見
尚志 沖村
聡 森山
Original Assignee
協和発酵ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵ケミカル株式会社 filed Critical 協和発酵ケミカル株式会社
Priority to JP2012514792A priority Critical patent/JPWO2011142329A1/en
Publication of WO2011142329A1 publication Critical patent/WO2011142329A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • G11B7/2495Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds as anions

Definitions

  • the present invention relates to a complex compound used for an optical recording medium or the like.
  • an optical recording medium capable of performing ultra-high density recording using a technique for increasing the numerical aperture NA of the objective lens, a technique for reducing the laser wavelength ⁇ , and the like has been developed.
  • an optical recording medium having the same size as a DVD and a capacity of at least 23 GB is required.
  • a blue-violet laser beam is used, the NA of the objective lens is set to 0.85, and the laser spot diameter is reduced, so that an optical recording medium for recording higher density information, so-called Blu. -Ray Disc (BD) was developed.
  • a dye used for such an optical recording medium is required to have excellent characteristics such as heat and moisture resistance.
  • Known dyes for forming a recording layer of an optical recording medium include a complex composed of a hydrazide compound ligand and a transition metal cation (see Patent Document 1), a metal chelate complex compound composed of a hydrazide compound and a metal atom (see Patent Document 2), and the like. ing. However, these compounds have insufficient characteristics such as resistance to moist heat.
  • An object of the present invention is to provide a complex compound or the like used for an optical recording medium having excellent moisture and heat resistance.
  • R 1 and R 3 are the same or different and each has a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • R 2 May have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, an alkyl group which may have a substituent, or a substituent.
  • An alkenyl group, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic ring which may have a substituent Represents a heterocyclic group optionally having a hydrocarbon group or a substituent
  • R 4 is the formula (II) (In the formula, R 5 has an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent.
  • R 1 is an aryl group which may have a substituent.
  • R 2 is an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • Formula (III) is formula (IV) (In the formula, R 6 has an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent.
  • Ion generated by adding one or more protons to an amine one selected from the group consisting of an ammonium ion and a quaternary ammonium ion is an ion generated by adding one or more protons to an amine
  • One selected from the group consisting of an ion generated by adding one or more protons to an amine, an ammonium ion and a quaternary ammonium ion is a quaternary ammonium ion [1] to [10]
  • An optical recording medium containing the complex compound according to any one of [1] to [13].
  • Compound (I) the compound represented by Formula (I) is referred to as Compound (I). The same applies to the compounds of other formula numbers.
  • examples of the alkyl part of the alkyl group and the alkoxyl group include a linear or branched alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, and the like.
  • alkenyl group examples include linear or branched alkenyl groups having 2 to 20 carbon atoms. Specific examples include a vinyl group, an allyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, 1 -Methyl-2-butenyl group, 1-ethyl-2-propenyl group, octenyl group, nonenyl group, decenyl group, eicocenyl group and the like.
  • aralkyl group examples include aralkyl groups having 7 to 15 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • Examples of the aryl group include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
  • Examples of the alicyclic hydrocarbon in the alicyclic hydrocarbon group include, for example, a cycloalkane having 3 to 8 carbon atoms, a cycloalkene having 3 to 8 carbon atoms, and a bicyclic or tricyclic condensed 3- to 8-membered ring. And alicyclic hydrocarbons.
  • cycloalkane having 3 to 8 carbon atoms include, for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • C3-C8 cycloalkene include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like.
  • bicyclic or tricyclic alicyclic hydrocarbon condensed with a 3- to 8-membered ring include dihydropentalene, dihydroindene, tetrahydronaphthalene, hexahydrofluorene and the like.
  • heterocyclic ring in the heterocyclic group examples include an aromatic heterocyclic ring and an alicyclic heterocyclic ring.
  • aromatic heterocyclic ring for example, a 5- or 6-membered monocyclic aromatic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
  • bicyclic or tricyclic condensed aromatic heterocycles containing at least one atom selected from a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Specific examples include a pyridine ring, a pyrazine ring, and a pyrimidine ring.
  • alicyclic heterocycle for example, a 5- to 8-membered monocyclic alicyclic heterocycle containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed.
  • a bicyclic or tricyclic condensed alicyclic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom specifically, a pyrrolidine ring, a piperidine ring, Piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring, tetrahydrofuran ring, tetrahydropyran ring, dihydrobenzofuran ring, indoline ring, tetrahydrocarbazole ring, 1, And 8-diaza
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Ring A includes, for example, those having —CH ⁇ N— among the heterocyclic rings listed above, and specifically includes a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a quinoline ring, and an isoquinoline ring.
  • Examples of the substituent of the amino group include one or two alkyl groups.
  • the alkyl group has the same meaning as described above.
  • the amino group has two alkyl groups, the two alkyl groups may be the same or different.
  • Examples of the substituent of the alkyl group and the alkoxyl group include 1 to 5 substituents that are the same or different, specifically, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a carbamoyl group, and a substituent.
  • Amino group, alkoxyl group, alkoxyalkoxyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, heterocyclic group and the like may be mentioned. .
  • the halogen atom, the amino group which may have a substituent, the alkoxyl group, and the heterocyclic group are as defined above.
  • the alkyl portions of the alkanoyl group, alkylcarbonyloxy group and alkoxycarbonyl group are as defined above.
  • the two alkoxy moieties of the alkoxyalkoxyl group have the same meaning as the above alkoxyl group, respectively.
  • the aryl part of the aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group has the same meaning as the above aryl group.
  • substituents for the aralkyl group, aryl group, and alicyclic hydrocarbon group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a carbamoyl group.
  • alkyl group optionally having substituent
  • alkoxyl group optionally having substituent
  • alkenyl group aralkyl group
  • alkanoyl group alkylcarbonyloxy Group
  • alkoxycarbonyl group alkoxycarbonyl group
  • aryl group aroyl group
  • aryloxy group arylcarbonyloxy group
  • aryloxycarbonyl group alicyclic hydrocarbon group, heterocyclic group and the like.
  • a halogen atom an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an alkenyl group, an aralkyl group, an alkanoyl group , Alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, alicyclic hydrocarbon group and heterocyclic group are as defined above.
  • substituent for the alkenyl group include the groups listed above as the substituent for the alkyl group, and an aryl group which may have a substituent.
  • the aryl group which may have a substituent is as defined above.
  • Examples of the substituent of the heterocyclic group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, a carbamoyl group, and a substituent.
  • An optionally substituted amino group, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxyl group, an aralkyl group, an alkanoyl group examples thereof include an alkylcarbonyloxy group, an alkoxycarbonyl group, an aryl group which may have a substituent, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, and a heterocyclic group.
  • Alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, optionally substituted aryl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group and heterocyclic group Are as defined above.
  • substituent when ring A further has a substituent examples include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, A carbamoyl group, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent And an aryl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and the like.
  • it may have a halogen atom, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or a substituent.
  • the aralkyl group, the aryl group that may have a substituent, the alicyclic hydrocarbon group that may have a substituent, and the heterocyclic group that may have a substituent have the same meanings as described above.
  • R 1 is preferably an aryl group which may have a substituent.
  • R 2 is preferably an alkyl group which may have a substituent and an aryl group which may have a substituent, and more preferably an alkyl group which may have a substituent.
  • R 3 is preferably a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent, and more preferably an aryl group which may have a substituent.
  • R 5 is preferably an aryl group which may have a substituent and a heterocyclic group which may have a substituent.
  • the ring A of the formula (III) is preferably a tetrazole ring or a benzoxazole ring, and more preferably a tetrazole ring.
  • the formula (III) is preferably the formula (IV).
  • R 6 is preferably an aryl group which may have a substituent.
  • the compound (I) is preferably a compound in which the above-described preferred groups R 1 , R 2 , R 3 and R 4 are combined. Examples of the metal include cobalt, rhodium, iridium, aluminum, gallium, iron and the like, and among these, cobalt is preferable.
  • An amine in an ion generated by adding one or more protons to an amine includes one having a basic nitrogen atom (monoamine) or a basic nitrogen atom.
  • (Polyamine) having two or more can be used.
  • Specific examples of amines include, for example, aliphatic primary amines which may have a substituent and those having 1 to 30 carbon atoms (for example, butylamine, ethanolamine, ethylenediamine, etc.), and those having a substituent.
  • an aliphatic secondary amine having 2 to 30 carbon atoms for example, dibutylamine, diethanolamine, etc.
  • an aliphatic tertiary amine optionally having a substituent having 3 to 30 carbon atoms (for example, Triethylamine, triethanolamine, diisopropylethylamine and the like)
  • an alicyclic amine having 3 to 30 carbon atoms which may have a substituent an aromatic amine which may have
  • May be a basic nitrogen-containing heterocyclic compound for example, pyridine, quinoline, indole, benzothiazole, bipyridine, phenanthroline, 1,8-diazabicyclo [5.4 .0] undec-7-ene), amines containing silicon (for example, heptamethyldisilazane, etc.).
  • a basic nitrogen-containing heterocyclic compound for example, pyridine, quinoline, indole, benzothiazole, bipyridine, phenanthroline, 1,8-diazabicyclo [5.4 .0] undec-7-ene
  • amines containing silicon for example, heptamethyldisilazane, etc.
  • Examples of the alicyclic amine include a 3- to 8-membered monocyclic alicyclic hydrocarbon ring, which may have an aliphatic chain on a basic nitrogen atom, or a basic nitrogen atom. And an amine which may have an aliphatic chain between the monocyclic alicyclic hydrocarbon ring and the like.
  • examples of the aliphatic chain that may be present on the basic nitrogen atom include the groups listed above as the alkyl group.
  • Examples of the aliphatic chain that may be present between the basic nitrogen atom and the monocyclic alicyclic hydrocarbon ring include, for example, 1 hydrogen atom on carbon from the groups listed above as the alkyl group.
  • the alkylene group etc. which arise by removing are illustrated.
  • Specific examples of the alicyclic amine include cyclohexylamine and (cyclohexylmethyl) amine.
  • the aromatic amine examples include an aromatic hydrocarbon ring such as a benzene ring and a naphthalene ring, and may have an aliphatic chain on a basic nitrogen atom. And an amine which may have an aliphatic chain between the aromatic hydrocarbon ring.
  • the aliphatic chain which may be present on the basic nitrogen atom is as defined above.
  • Examples of the aliphatic chain that may be present between the basic nitrogen atom and the aromatic hydrocarbon ring include, for example, between the basic nitrogen atom and the monocyclic alicyclic hydrocarbon ring.
  • Examples of the aliphatic chain that may be included include the groups listed above. Specific examples of the aromatic amine include aniline, naphthylamine, benzylamine, tribenzylamine and the like.
  • Examples of the substituent of the aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine include, for example, the same or different substituents having 1 to 5 substituents, specifically a hydroxyl group, a halogen atom, and a nitro group.
  • the halogen atom, the alkoxyl group, the alkoxyalkoxyl group, the alkanoyl group, the alkylcarbonyloxy group and the alkoxycarbonyl group are respectively as defined above.
  • substituents of alicyclic amine and aromatic amine examples include, for example, aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine.
  • substituent of the amine examples include the groups listed above and an alkyl group which may have a substituent.
  • the alkyl group which may have a substituent is as defined above.
  • Examples of the substituent of the aliphatic chain when the alicyclic amine and the aromatic amine have an aliphatic chain include, for example, the above-mentioned substituents of the aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine. And the like.
  • Examples of the substituent of the basic nitrogen-containing heterocyclic compound include the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, and a carbamoyl group.
  • An alkyl group which may have a substituent an alkenyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyloxy group, an alkoxycarbonyl Group, an aryl group optionally having a substituent, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, and the like.
  • a halogen atom an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyl
  • the oxy group, alkoxycarbonyl group, optionally substituted aryl group, aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group have the same meanings as described above.
  • formula (X) (Wherein L 1 and L 2 are the same or different and are each a halogen atom, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or an aryl which may have a substituent) An oxy group, an optionally substituted amino group or an optionally substituted aroyl group; p and q are the same or different and each represents an integer of 0 to 5, and p is 2 to 5
  • Each of L 1 may be the same or different, and two L 1 and the two adjacent carbon atoms together form a benzene ring which may have a substituent.
  • q is an integer of 2 to 5
  • each of L 2 may be the same or different, and two L 2 and the two adjacent carbon atoms together have a substituent. May form a benzene ring that may be It is below.
  • the halogen atom, the alkyl group that may have a substituent, the alkoxyl group that may have a substituent, the aryloxy group, the amino group that may have a substituent, and the aroyl group, respectively It is synonymous.
  • substituent for the aryloxy group, aroyl group and benzene ring include the groups listed above as the substituents for the aralkyl group, aryl group and alicyclic hydrocarbon group.
  • L 1 and L 2 are preferably a fluorine atom, a fluorine-substituted alkyl group or a fluorine-substituted alkoxyl group.
  • the fluorine-substituted alkyl group include groups in which 1 to 5 hydrogen atoms of the groups listed above as alkyl groups are substituted with fluorine atoms.
  • the fluorine-substituted alkyl part of the fluorine-substituted alkoxyl group has the same meaning as the above-mentioned fluorine-substituted alkyl group.
  • Ph represents a phenyl group.
  • Examples of the complex compound composed of the compound (I), a metal, and one selected from the group consisting of an amine cation, an ammonium ion, and a quaternary ammonium ion include, for example, the formula (Y) (Wherein R 1 , R 2 , R 3 and R 4 are as defined above, M represents a metal, and Q n + represents a group consisting of an amine cation, an ammonium ion and a quaternary ammonium ion. And a compound represented by the formula (n represents an integer of 1 to 3).
  • a metal, an amine, and a quaternary ammonium ion are respectively synonymous with the above.
  • n is preferably 1 or 2.
  • Compound (I) is represented, for example, by reaction formula (1) (Wherein R 1 , R 2 , R 3 and R 4 are as defined above). Specifically, the compound (VII) and the compound (V) are added in a solvent at 10 to 100 ° C. in the presence of 0.1 to 10-fold mol of acetic acid, if necessary, relative to the compound (VII). The compound (I) can be produced by reacting for 5 to 30 hours. The amount of compound (VII) to be used is preferably 0.5 to 5 times the molar amount of compound (V).
  • the solvent examples include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and octanol, hydrocarbon solvents such as hexane, decane, tetradecane, toluene and xylene, diethyl ether, dibutyl ether, methoxybenzene and diphenyl ether.
  • alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and octanol
  • hydrocarbon solvents such as hexane, decane, tetradecane, toluene and xylene, diethyl ether, dibutyl ether, methoxybenzene and diphenyl ether.
  • Ether solvents such as dichloromethane, dichloroethane, chloroform, chlorobenzene, dichlorobenzene and other halogen solvents, N, N-dimethylformamide, amide solvents such as N, N-dimethylacetamide, sulfur-containing solvents such as dimethyl sulfoxide, Examples include acetonitrile.
  • R 3 has an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent.
  • An aryl group that may be substituted, an alicyclic hydrocarbon group that may have a substituent, or a heterocyclic group that may have a substituent may be obtained as a commercial product or publicly known Methods such as “Heterocycles”, 2006, Vol. 68, p. 1825-1835, “Journal of Organic Chemistry”, 2003, Vol. 68, No. 21, p. 7943-7950, “Journal of Medicinal Chemistry”, 1987, Vol. 30, No. 10, p.
  • the compound (V) in which R 4 is the formula (III) can be obtained as a commercial product, or can be obtained by publicly known methods such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20)”, Vol. 4th edition, Maruzen Co., Ltd., 1991, p. 30-46, p. 112-185, p. 279-290, p. 338-342, The Chemical Society of Japan, “Experimental Chemistry Course (Vol. 13)”, 5th edition, Maruzen Co., Ltd., 1991, p. 374-416, The Chemical Society of Japan, “Experimental Chemistry Course (Vol. 14)”, 5th edition, Maruzen Co., Ltd., 2003, p.
  • the compound (V) in which R 4 is the formula (II) can be obtained as a commercial product, or can be obtained by publicly known methods such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20) Synthesis and Reaction II ”, first edition, Maruzen Co., Ltd., 1956, p. 347-389, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Vol. 14) Synthesis and Reaction of Organic Compounds III”, 2nd edition, Maruzen Co., Ltd., 1978, p. 1573-1584, edited by Saul Patai, “The Chemistry of the Hydro, azo, and azoxy group (Vol. 1)”, John Wiley & Sons, 1975, p.
  • Compound (I) wherein R 3 is a hydrogen atom is, for example, reaction formula (2) (Wherein R 1 , R 2 and R 4 are as defined above, and R 7 and R 8 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms, etc.) You can also. Specifically, the compound (V) and the compound (VI) are mixed at 0 to 100 ° C. in a solvent in the presence of 0.1 to 10-fold mol of acetic acid with respect to the compound (VI), if necessary. The compound (Ia) can be produced by reacting for 5 to 30 hours.
  • Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • the amount of compound (VI) used is preferably 0.5 to 5 times the molar amount of compound (V).
  • Examples of the solvent include those listed as solvents that can be used in the reaction formula (1).
  • Compound (VI) can be obtained as a commercial product or can be obtained by a known method, for example, “Heterocycles”, 2003, Vol. 61, p. 197-224, “Journal of Heterocyclic Chemistry”, 2001, Vol. 38, No. 4, p.
  • the compound (Ia) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
  • the complex compound comprising compound (I), cobalt and an amine cation is, for example, compound (I), a cobalt salt or an organic cobalt compound, and an amine in a solvent in the presence of oxygen in the range of 0 to 120. It can be produced by reacting at a temperature of 0.degree. C. for 0.5 to 30 hours (this method is hereinafter referred to as Production Method 1).
  • cobalt salt examples include cobalt acetate (II), cobalt chloride (II), cobalt bromide (II), cobalt iodide (II), cobalt fluoride (II), cobalt fluoride (II), and cobalt carbonate. (II), cobalt cyanide (II), hydrates thereof and the like.
  • organic cobalt compound examples include sodium tris (carbonate) cobalt (III), cobalt (II) acetylacetonate hydrate, cobalt (III) acetylacetonate, and the like.
  • the amine can be obtained as a commercial product or can be obtained by a known method such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20) Synthesis and Reaction of Organic Compounds II”, 1st Edition, Maruzen Co., Ltd. Year, p. 391-582, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Volume 14) Synthesis and Reaction of Organic Compounds III”, 2nd edition, Maruzen Co., Ltd., 1978, p. 1332-1399, edited by The Chemical Society of Japan, “New Experimental Chemistry Course (Volume 20), Organic Synthesis II”, 4th edition, Maruzen Co., Ltd., 1992, p. 299-313, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Vol.
  • the amount of compound (I) used is preferably 0.3 to 4 times the molar amount of the cobalt atom in the cobalt salt or organic cobalt compound.
  • the amount of the amine used is 0.3 / m to 20 / m times the molar amount of the cobalt atom in the cobalt salt or organic cobalt compound. Is preferred.
  • the solvent examples include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran, methyl-
  • alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol
  • halogen solvents such as chloroform and dichloromethane
  • aromatic solvents such as benzene, toluene and xylene
  • tetrahydrofuran methyl-
  • ether solvents such as tert-butyl ether
  • ester solvents such as ethyl acetate
  • ketone solvents such as acetone and methyl ethyl ketone, acetonitrile
  • mixed solvents thereof such as a solvent
  • metal salt or organometallic compound other than cobalt and the metal other than cobalt include, for example, rhodium salt, organic rhodium compound, iridium salt, organic iridium compound, aluminum salt, organoaluminum compound, gallium Salts, organic gallium compounds, iron salts, organic iron compounds, and the like.
  • Examples of the rhodium salt include rhodium acetate (II) dimer, rhodium (III) chloride, and hydrates thereof.
  • Examples of the organic rhodium compound include rhodium (III) acetylacetonate and rhodium (II) hexanonate.
  • Examples of the iridium salt include iridium (III) chloride, iridium (III) bromide, and hydrates thereof.
  • Examples of the organic iridium compound include iridium (III) acetylacetonate.
  • gallium salt examples include gallium chloride (III), gallium bromide (III), gallium iodide (III), and hydrates thereof.
  • organic gallium compound examples include gallium (III) acetylacetonate.
  • iron salts include iron (II) chloride, iron (III) chloride, iron (II) fluoride, iron (III) fluoride, iron (II) bromide, iron (III) bromide, iron acetate (II), hydrates thereof and the like.
  • organic iron compound include iron (II) acetylacetonate, iron (III) acetylacetonate, iron (III) ethoxide, and the like.
  • a complex compound composed of compound (I), cobalt and ammonium ions can be produced by operating in the same manner as in Production Method 1 except that ammonia is used instead of amine.
  • a complex compound composed of compound (I), a metal other than cobalt, and ammonium ions can be produced in the same manner as in Production Method 2, except that ammonia is used instead of amine.
  • the complex compound composed of compound (I), metal and quaternary ammonium ion is, for example, a complex compound composed of compound (I), metal and amine cation, and the corresponding quaternary ammonium salt in a solvent. It can be produced by reacting at 0 to 120 ° C. for 0.5 to 30 hours.
  • the complex compound which consists of compound (I), a metal, and the cation of an amine can be obtained by manufacturing according to the manufacturing method 1 or 2.
  • the anion in the quaternary ammonium salt include fluoride ion, chloride ion, bromide ion, iodide ion, and acetate ion.
  • the quaternary ammonium salt is obtained as a commercial product, or a known method, for example, Saul Patai ed., “The Chemistry of the amino group”, John Wiley & Sons, 1968, p. 161-199, edited by Katritzky & Rees, “Comprehensive Heterocyclic Chemistry”, Pergamon Press, 1984, p. 99-164 and p. It can be obtained by manufacturing according to the method described in 515-528 and the like.
  • a complex compound comprising compound (I), a metal and an amine cation (wherein the amine in the amine cation has m basic nitrogen atoms), and an n-valent quaternary ammonium salt.
  • the molar ratio of the compound (I) to the cation of the amine contained in the complex compound composed of the metal and the cation of amine is 0.3 m / n to 10 m / n (quaternary ammonium ion / amine cation).
  • the solvent examples include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran, methyl-
  • alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol
  • halogen solvents such as chloroform and dichloromethane
  • aromatic solvents such as benzene, toluene and xylene
  • tetrahydrofuran methyl-
  • ether solvents such as tert-butyl ether
  • ester solvents such as ethyl acetate
  • ketone solvents such as acetone and methyl ethyl ketone
  • mixed solvents thereof the complex compound obtained by methods commonly used in organic synthetic
  • the compound of compound number (I-1) is referred to as compound (I-1).
  • the cation represents an amine cation or a quaternary ammonium ion
  • the molar ratio is the molar ratio of each component in the complex compound of the present invention [compound (I): metal: cation].
  • A1 and A2 represent the following amine cations.
  • Et represents an ethyl group
  • i-Pr represents an isopropyl group.
  • the complex compound of the present invention can be used as a dye for optical recording media, an ultraviolet absorber, a two-photon absorbing dye as a three-dimensional recording material, a sensitizing dye for short wavelength laser (for example, blue-violet laser), etc. Can do.
  • the complex compound of the present invention has properties such as excellent solubility, excellent coating properties, excellent light resistance, excellent water resistance, excellent moisture and heat resistance, and excellent storage stability in a solution.
  • the optical recording medium of the present invention contains the complex compound of the present invention and has excellent light resistance, excellent water resistance, excellent moisture and heat resistance, excellent recording / reproducing characteristics, and the like.
  • Examples of the optical recording medium of the present invention include a substrate, a reflective layer, a recording layer, a transparent protective layer, and a cover layer.
  • the reflective layer, the recording layer, the transparent protective layer, and the cover are provided on the substrate. It is preferable that the layers are provided in this order.
  • Examples of the optical recording medium of the present invention include those having a recording layer containing the complex compound of the present invention.
  • the complex compound of the present invention may be used alone or in admixture of two or more.
  • the complex compound of the present invention and other pigments may be used in combination.
  • Other dyes preferably have absorption in the wavelength region of the recording laser light.
  • other dyes that do not hinder the formation of information recording (recording marks, etc. formed at the laser irradiation site due to thermal deformation in the recording layer, reflective layer or transparent protective layer, and cover layer) may be used. preferable.
  • dyes include metal-containing azo dyes other than the complex compounds of the present invention, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes, metal-containing indoaniline dyes, triarylmethanes And dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, and pyrylium dyes. You may use these individually or in mixture of 2 or more types.
  • a dye suitable for recording using a laser beam such as a near infrared laser beam of 770 to 830 nm, a red laser beam of 620 to 690 nm, etc., and the complex compound of the present invention are used in combination.
  • An optical recording medium capable of recording with a laser beam can also be produced.
  • the recording layer may contain a binder as necessary.
  • the binder include polyvinyl alcohol, polyvinyl pyrrolidone, nitrocellulose, cellulose acetate, polyvinyl butyral, ketone resin, polycarbonate resin, and silicone resin. You may use these individually or in mixture of 2 or more types.
  • the recording layer may contain a singlet oxygen quencher, a recording sensitivity improver, or the like in order to improve the stability and light resistance of the recording layer.
  • the singlet oxygen quencher include transition metal chelate compounds (eg, chelate compounds of acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio- ⁇ -diketone, and the like and transition metals). You may use these individually or in mixture of 2 or more types.
  • a compound in which a metal such as a transition metal is contained in a compound in the form of atoms, ions, clusters, etc. for example, an ethylenediamine complex, an azomethine complex, a phenylhydroxyamine complex, a phenanthroline complex, And organic metal compounds such as dihydroxyazobenzene complex, dioxime complex, nitrosoaminophenol complex, pyridyltriazine complex, acetylacetonate complex, metallocene complex and porphyrin complex. You may use these individually or in mixture of 2 or more types.
  • the thickness of the recording layer of the optical recording medium of the present invention is preferably 1 nm to 5 ⁇ m, more preferably 5 to 100 nm, and further preferably 15 to 60 nm.
  • the recording layer can be formed by a known thin film forming method such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, or an immersion method, but the spin coating method is preferable from the viewpoint of mass productivity and cost. .
  • the recording layer is formed by spin coating, it is preferable to use a solution in which the concentration of the complex compound of the present invention is adjusted to 0.3 to 2.5% by weight in order to obtain an appropriate film thickness.
  • the speed is preferably 500 to 10,000 rpm. After applying the solution by a spin coating method, treatment such as heating, drying under reduced pressure, or exposure to solvent vapor may be performed.
  • the solvent of the solution used on the substrate before applying the substrate and the recording layer is as follows. There is no particular limitation as long as it is a solvent that does not attack the formed layer (for example, a reflective layer).
  • ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone
  • cellosolv solvents such as methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, n-hexane, n-octane, cyclohexane
  • Hydrocarbon solvents such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane
  • ether solvents such as diisopropyl ether and dibutyl ether, 2,2,3,3-tetrafluoropropanol (TFP), fluoroalkyl alcohol solvents such as octafluoropentanol, hexafluorobutanol, methyl lactate, ethyl lactate, methyl isobuty
  • the substrate of the optical recording medium of the present invention is preferably such that a guide groove formed in a spiral shape is formed on the surface for recording / reproduction with a laser beam.
  • the substrate those which can easily form fine grooves having a narrow track pitch are preferable, and specific examples thereof include glass and plastic.
  • plastics include acrylic resin, methacrylic resin, polycarbonate resin, vinyl chloride resin, vinyl acetate resin, nitrocellulose, polyester resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, epoxy resin, and alicyclic polyolefin resin.
  • a polycarbonate resin is preferable from the viewpoint of high productivity, cost, moisture absorption resistance, and the like.
  • the substrate is preferably produced by injection molding the plastic.
  • Examples of the method for producing the substrate by injection molding include a method using a stamper made of a metal such as Ni in which a guide groove is formed.
  • the master for producing the stamper is produced, for example, as follows. Polish the surface of the disk-shaped glass substrate to be smooth. A photoresist whose thickness is adjusted according to a desired groove depth is applied on the substrate. Next, the photoresist is exposed using a laser beam or an electron beam having a wavelength shorter than that of the blue-violet laser beam and developed, thereby producing a master having a guide groove.
  • a conductive film such as Ni is vacuum-deposited on the surface of the master, and a stamper made of a metal such as Ni in which a guide groove is formed is produced through a plating process.
  • a substrate having guide grooves formed on the surface is produced by injection molding the plastic using this stamper.
  • the height difference (groove depth) between the top and bottom surfaces of the irregularities is preferably 15 to 80 nm, and more preferably 25 to 50 nm.
  • the ratio of the width of the convex portion to the concave portion is preferably in the range of 40%: 60% to 60%: 40% (convex portion: concave portion).
  • the reflective layer is preferably a metal. Examples of the metal include gold, silver, aluminum, and alloys thereof. From the viewpoint of reflectance with respect to laser light having a wavelength of 550 nm or less and surface smoothness, silver or an alloy containing silver as a main component is preferable.
  • the alloy containing silver as a main component preferably contains about 90% or more of silver, and as a component other than silver, a group of Cu, Pd, Ni, Si, Au, Al, Ti, Zn, Zr, Nb, Bi and Mo What contains 1 or more types chosen from is preferable.
  • the reflective layer can be formed on the substrate by, for example, vapor deposition, sputtering (eg, DC sputtering), ion plating, or the like.
  • An intermediate layer may be provided between the reflective layer and the recording layer for the purpose of improving the recording / reproducing characteristics or adjusting the reflectance. Specific examples of the intermediate layer include metals, metal oxides, and metal nitrides.
  • the thickness of the reflective layer is preferably 5 to 300 nm, more preferably 20 to 100 nm.
  • the transparent protective layer preferably has no or only slight absorption with respect to the laser beam used at the time of recording and reproduction, and the real part of the refractive index is relatively large, about 1.5 to 2.0. What has the value of is preferable.
  • Specific examples of the transparent protective layer include metal oxides, metal nitrides, metal sulfides, and mixtures thereof.
  • the thickness of the transparent protective layer is preferably 5 to 50 nm. When the thickness of the protective layer is 5 nm or more, a recording signal formed by deforming the recording layer can be clearly separated from an unrecorded portion between the recording marks, so that a better signal can be obtained.
  • the transparent protective layer can be formed on the recording layer by sputtering (for example, RF sputtering).
  • sputtering for example, RF sputtering
  • the target material used when forming the transparent protective layer by the sputtering method include ZnS—SiO 2 and indium tin oxide (ITO).
  • the cover layer is made of, for example, a polycarbonate resin sheet having a thickness of about 0.1 mm and having an adhesive layer that is transparent to the recording / reproducing laser beam on the surface, and the sheet is transparent through the adhesive layer. By pressure-bonding to the protective layer, it can be formed on the transparent protective layer.
  • the adhesive layer is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording.
  • the cover layer can also be formed using an ultraviolet curable resin, and the ultraviolet curable resin is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording, like the adhesive layer. It is preferable to form a hard coat on the cover layer.
  • the wavelength of the laser beam used during recording is preferably 350 to 530 nm.
  • the shorter the wavelength of laser light used for recording the higher the density recording possible.
  • Specific examples of the laser light include, for example, blue-violet laser light having a center wavelength of 405 nm, 410 nm, etc., a blue-green high-power semiconductor laser light having a center wavelength of 515 nm, and the center wavelength is 405 nm. Blue-green high-power semiconductor laser light is preferred.
  • Light obtained by wavelength conversion by SHG may be used.
  • SHG any piezoelectric element lacking reflection symmetry may be used, but KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ), BNN (Ba 2 NaNb 5 O 15 ), KN ( KNbO 3 ), LBO (LiB 3 O 5 ), compound semiconductors and the like are preferable.
  • the optical recording medium of the present invention is preferably a BD.
  • BD is an optical recording medium that uses a blue-violet laser with a wavelength of 405 nm and records NA with a smaller laser spot diameter by setting the NA of the objective lens to 0.85.
  • a reflective layer, a recording layer, a transparent protective layer, and a cover layer thinner than the substrate are sequentially laminated on the substrate. Recording and reproduction is performed by irradiating the cover layer side with a blue-violet laser beam.
  • TFP 2,2,3,3-tetrafluoropropanol
  • DMSO dimethyl sulfoxide
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4, 4′-bipyridinium dichloride, 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride, 1,1′-bis (4-benzoylphenyl) -4,4′-bipyridinium dichloride, 1, 1'-bis (3-fluorophenyl) -4,4'-bipyridinium dichloride, 1,1'-bis [4- (trifluoromethoxy) phenyl] -4,4'-bipyridinium dichloride, and 1,1'- Bis (3-methoxyphenyl) -4,4′-bipyridinium dichloride was obtained.
  • Synthesis Example 4 Production of Compound (I-4) 4-acetyl-3-methyl-1-phenyl-5-pyrazolone 0.50 g, 2-hydrazinobenzothiazole (Tokyo Chemical Industry Co., Ltd.) 0.38 g, acetic acid 1 ml and 15 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.52 g (yield 62%) of compound (I-4).
  • Example 1 To a mixture of 1.00 g of compound (I-1), 0.69 g of DBU and 10 ml of methanol was added 0.28 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and dried to give the complex compound (1). 1.09 g (yield 88%) was obtained.
  • Example 2 0.30 g of complex compound (1), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.26 g of complex compound (2) (yield 80%).
  • Example 4 To a mixture of 2.50 g of compound (I-2), 1.48 g of diisopropylethylamine and 25 ml of acetonitrile was added 0.71 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 70 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 37 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and acetonitrile (volume ratio 3: 2), and dried to give a complex compound (4). 2.84 g (94% yield) was obtained.
  • Example 5 0.30 g of complex compound (4), 0.06 g of 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.28 g of complex compound (5) (yield 82%).
  • Example 6 0.30 g of complex compound (4), 0.08 g of 1,1′-bis (4-benzoylphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.30 g of complex compound (6) (yield 90%).
  • Example 7 0.30 g of Complex Compound (4), 0.06 g of 1,1′-bis (3-fluorophenyl) -4,4′-bipyridinium dichloride and 9 ml of ethanol were mixed and stirred at 70 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.26 g of complex compound (7) (yield 85%).
  • Example 8 To a mixture of 0.50 g of compound (I-3), 0.28 g of diisopropylethylamine and 5 ml of acetonitrile was added 0.13 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 70 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 8 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and acetonitrile (volume ratio 3: 2), and dried to give the complex compound (8). 0.58 g (yield 96%) was obtained.
  • Example 9 0.30 g of complex compound (8), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 10 ml of ethanol were mixed and stirred at 70 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.31 g of complex compound (9) (yield 98%).
  • Example 10 0.07 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.20 g of compound (I-4), 0.17 g of DBU and 4 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 8 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (10). 0.22 g (yield 86%) was obtained.
  • Example 12 0.14 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.50 g of compound (I-5), 0.35 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.42 g (yield 79%) of the complex compound (12).
  • Example 13 0.25 g of Complex Compound (12), 0.06 g of 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g of complex compound (13) (yield 78%).
  • Example 15 0.15 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.50 g of compound (I-6), 0.37 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.57 g (yield 93%) of the complex compound (15).
  • Example 16 Complex compound (15) 0.30 g, 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride 0.08 g and methanol 9 ml were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.30 g (yield 90%) of the complex compound (16).
  • Example 17 0.08 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.30 g of compound (I-7), 0.31 g of DBU and 5 ml of methanol, and the mixture was stirred at 50 ° C. for 4 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 2 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 2), and then dried to give the complex compound (17). 0.32 g (yield 86%) was obtained.
  • Example 18 0.30 g of Complex Compound (17), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g of complex compound (18) (yield 73%).
  • Example 19 0.25 g of complex compound (17), 0.06 g of 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and mixed at 50 ° C. with 3 Stir for hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g (yield 79%) of the complex compound (19).
  • Example 20 0.25 g of the complex compound (17), 0.07 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 8 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g of complex compound (20) (yield 75%).
  • Example 21 To a mixture of 0.50 g of compound (I-8), 0.58 g of DBU and 8 ml of methanol was added 0.16 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 4 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 2), and dried to give a complex compound (21). 0.59 g (yield 93%) was obtained.
  • Example 22 0.25 g of the complex compound (21), 0.06 g of 1,1′-bis (3-methoxyphenyl) -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and stirred at 50 ° C. for 4 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g of complex compound (22) (yield 78%).
  • Example 23 To a mixture of 0.30 g of compound (I-9), 0.38 g of DBU and 5 ml of methanol was added 0.10 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (23). 0.33 g (yield 86%) was obtained.
  • Example 24 0.30 g of Complex Compound (23), 0.10 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 10 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, 5 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (24). 0.26 g (yield 75%) was obtained.
  • Example 25 0.19 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.70 g of compound (I-10), 0.69 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.75 g of complex compound (25) (yield 87%).
  • Example 26 0.30 g of the complex compound (25), 0.07 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 8 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.29 g (yield 92%) of the complex compound (26).
  • Example 27 To a mixture of 0.70 g of compound (I-11), 0.82 g of DBU and 5 ml of methanol was added 0.22 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 25 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 4: 1), and dried to give the complex compound (27). 0.86 g (yield 97%) was obtained.
  • Example 28 0.30 g of Complex Compound (27), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.27 g (yield 83%) of the complex compound (28).
  • Example 29 To a mixture of 0.80 g of compound (I-12), 0.61 g of DBU and 6 ml of methanol, 0.25 g of cobalt (II) acetate tetrahydrate was added, and the mixture was stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and then dried to give the complex compound (29). 0.98 g (99% yield) was obtained.
  • Example 30 The complex compound (29) (0.30 g), 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4,4′-bipyridinium dichloride (0.07 g) and methanol (9 ml) were mixed and mixed at 50 ° C. with 3 Stir for hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g (yield 75%) of the complex compound (30).
  • Example 31 0.30 g of complex compound (29), 0.08 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.25 g of complex compound (31) (yield 75%).
  • Example 32 To a mixture of 1.00 g of compound (I-13), 0.69 g of DBU and 7 ml of methanol was added 0.28 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 5 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and dried to give a complex compound (32). 1.16 g (94% yield) was obtained.
  • Example 33 0.30 g of Complex Compound (32), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.27 g (yield 86%) of the complex compound (33).
  • the absorption maximum wavelength after the water resistance test represents the absorption maximum wavelength in the absorption spectrum after the water resistance test.
  • I b / I b 0 is close to 1
  • those ⁇ max (b) is small, indicating that it has excellent water resistance.
  • the thin films of the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) have excellent water resistance, respectively. It can be seen that
  • the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) were measured using a spectrophotometer. ) And (33) were diluted 1250 times, and an ultraviolet-visible absorption spectrum was measured.
  • the ratio of the absorbance (I d ) at the absorption maximum wavelength after the storage stability test (I d / I d 0 ) to the absorbance (I d 0 ) at the absorption maximum wavelength before the storage stability test, and before and after the storage stability test Table 6 shows the change [ ⁇ max (d)] of the absorption maximum wavelength.
  • the absorption maximum wavelength after the storage stability test represents the absorption maximum wavelength in the absorption spectrum after the storage stability test.
  • Example 34 Provide of recording media- As a substrate, a polycarbonate resin disk having an outer diameter of 120 mm and a thickness of 1.1 mm having a guide hole having a through hole in the center and a track pitch of 0.32 ⁇ m, a groove width of 180 nm, and a groove depth of 32 nm on the surface is used. It was. On the surface of the substrate on which the guide groove was formed, an Ag alloy reflective layer having a thickness of 40 to 60 nm was formed by sputtering. 20 mg of complex compound (2) was dissolved in 1980 mg of TFP, and filtered through a Teflon (registered trademark) filter (Whatman, pore size 0.20 ⁇ m) to obtain a solution of complex compound (2).
  • Teflon registered trademark
  • the solution was applied onto the reflective layer by spin coating (1200 rpm to 5000 rpm, 10 seconds, amount of solution used: 1 ml) using Mikasa 1H-SX, and the solution was applied in an oven at 70 ° C. for 30 minutes.
  • the substrate was dried to form a recording layer.
  • a layer was formed.
  • a recording medium (2) was produced by attaching a cover film (D-900) manufactured by the company using a cover film applying apparatus (Opteria MODEL 300m / ST) manufactured by Lintec Corporation on the protective layer.
  • a cover film applying apparatus OEM 300m / ST
  • complex compound (2) Is the same as the manufacturing method of the recording medium (2), and the recording medium (5), (6), (7), (9), (19), (20), (26), (30) or (30) 33) was produced.
  • Test Example 7 -Test of recording / reproduction characteristics of recording media- Recording / reproducing apparatus (Pulstec Industrial Co., Ltd.) for recording media (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33)
  • the dependence of jitter on the recording power was measured when the recording power of the recording laser light was in the range of 3 to 8 mW (measurement conditions: wavelength 405 nm, numerical aperture (NA) 0. 85, recording speed 4.92 m / s].
  • the minimum jitter in the range of 3 to 8 mW of recording power was defined as bottom jitter. Table 7 shows the obtained bottom jitter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

Disclosed is a complex compound, and the like, comprising: the compound represented by formula (I) (wherein: R1 and R3 are the same or different and represent a hydrogen atom, an alkyl group that may have a substituent group, an aryl group that may have a substituent group, or the like; R2 represents an alkyl group that may have a substituent group, an aryl group that may have a substituent group, or the like; and R4 represents formula (III) (wherein ring A may further have a substituent group), or the like) used in an optical recording medium and having excellent resistance to moist heat and the like; a metal; and at least one ion selected from the group consisting of ammonium ions, quaternary ammonium ions, and ions generated by at least one proton being added to an amine.

Description

錯化合物およびそれを含有する光記録媒体Complex compound and optical recording medium containing the same
 本発明は、光記録媒体等に用いられる錯化合物等に関する。 The present invention relates to a complex compound used for an optical recording medium or the like.
 近年、対物レンズの開口数NAを大きくする技術、レーザー波長λを小さくする技術等を用い、さらに超高密度記録が可能となる光記録媒体の開発が進んでいる。例えば、HDTV(高精細度テレビ)の映像情報を2時間以上記録するためには、DVDと同サイズで少なくとも23GB以上の容量をもつ光記録媒体が要望されている。こういった要望に応えるために、青紫色レーザー光を使用し、対物レンズのNAを0.85とし、レーザースポット径を小さくすることによって、より高密度の情報を記録する光記録媒体、いわゆるBlu-ray Disc(BD)が開発された。 In recent years, an optical recording medium capable of performing ultra-high density recording using a technique for increasing the numerical aperture NA of the objective lens, a technique for reducing the laser wavelength λ, and the like has been developed. For example, in order to record video information of HDTV (high definition television) for 2 hours or more, an optical recording medium having the same size as a DVD and a capacity of at least 23 GB is required. In order to meet these demands, a blue-violet laser beam is used, the NA of the objective lens is set to 0.85, and the laser spot diameter is reduced, so that an optical recording medium for recording higher density information, so-called Blu. -Ray Disc (BD) was developed.
 このような光記録媒体に用いられる色素には、優れた耐湿熱性等の特性が求められる。
 光学記録媒体の記録層形成用色素として、ヒドラジド化合物のリガンドと遷移金属カチオンからなる錯体(特許文献1参照)、ヒドラジド化合物と金属原子からなる金属キレート錯体化合物(特許文献2参照)などが知られている。しかし、これらの化合物における耐湿熱性等の特性は十分でない。
A dye used for such an optical recording medium is required to have excellent characteristics such as heat and moisture resistance.
Known dyes for forming a recording layer of an optical recording medium include a complex composed of a hydrazide compound ligand and a transition metal cation (see Patent Document 1), a metal chelate complex compound composed of a hydrazide compound and a metal atom (see Patent Document 2), and the like. ing. However, these compounds have insufficient characteristics such as resistance to moist heat.
特開2007-223289号公報JP 2007-223289 A 特開2008-45092号公報JP 2008-45092 A
 本発明の目的は、優れた耐湿熱性等を有する光記録媒体に用いられる錯化合物等を提供することにある。 An object of the present invention is to provide a complex compound or the like used for an optical recording medium having excellent moisture and heat resistance.
 本発明は、以下の[1]~[14]を提供する。
[1]式(I)
Figure JPOXMLDOC01-appb-C000005
[式中、R及びRは、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表し、Rは、水素原子、ヒドロキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表し、Rは式(II)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)、または式(III)
Figure JPOXMLDOC01-appb-C000007
(式中、環Aはさらに置換基を有していてもよい)を表す]で表される化合物と、金属と、アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種と、からなる錯化合物。
[2]Rが置換基を有していてもよいアリール基である[1]に記載の錯化合物。
[3]Rが置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基である[1]または[2]に記載の錯化合物。
[4]Rが水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基である[1]~[3]のいずれかに記載の錯化合物。
[5]Rが式(II)である[1]~[4]のいずれかに記載の錯化合物。
[6]Rが置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である[5]に記載の錯化合物。
[7]Rが式(III)である[1]~[4]のいずれかに記載の錯化合物。
[8]式(III)が式(IV)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)で表される[7]に記載の錯化合物。
[9]金属がコバルト、ロジウム、イリジウム、アルミニウム、ガリウムまたは鉄である[1]~[8]のいずれかに記載の錯化合物。
[10]金属がコバルトである[1]~[8]のいずれかに記載の錯化合物。
[11]アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種が、アミンに1つ以上のプロトンが付加することにより生じるイオンである[1]~[10]のいずれかに記載の錯化合物。
[12]アミンが置換基を有していてもよい脂肪族第3アミンである[11]に記載の錯化合物。
[13]アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種が、第4級アンモニウムイオンである[1]~[10]のいずれかに記載の錯化合物。
[14][1]~[13]のいずれかに記載の錯化合物を含有する光記録媒体。
The present invention provides the following [1] to [14].
[1] Formula (I)
Figure JPOXMLDOC01-appb-C000005
[Wherein, R 1 and R 3 are the same or different and each has a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Represents an aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent, R 2 May have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, an alkyl group which may have a substituent, or a substituent. An alkenyl group, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic ring which may have a substituent Represents a heterocyclic group optionally having a hydrocarbon group or a substituent, and R 4 is the formula (II)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 5 has an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. An aryl group, an alicyclic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent), or a formula (III)
Figure JPOXMLDOC01-appb-C000007
(Wherein ring A may further have a substituent)], a metal, an ion generated by adding one or more protons to an amine, an ammonium ion, and a A complex compound comprising one kind selected from the group consisting of quaternary ammonium ions.
[2] The complex compound according to [1], wherein R 1 is an aryl group which may have a substituent.
[3] The complex compound according to [1] or [2], wherein R 2 is an alkyl group which may have a substituent or an aryl group which may have a substituent.
[4] The complex compound according to any one of [1] to [3], wherein R 3 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
[5] The complex compound according to any one of [1] to [4], wherein R 4 is formula (II).
[6] The complex compound according to [5], wherein R 5 is an aryl group which may have a substituent or a heterocyclic group which may have a substituent.
[7] The complex compound according to any one of [1] to [4], wherein R 4 is formula (III).
[8] Formula (III) is formula (IV)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 6 has an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. The alicyclic hydrocarbon group or a heterocyclic group which may have a substituent).
[9] The complex compound according to any one of [1] to [8], wherein the metal is cobalt, rhodium, iridium, aluminum, gallium or iron.
[10] The complex compound according to any one of [1] to [8], wherein the metal is cobalt.
[11] Ion generated by adding one or more protons to an amine, one selected from the group consisting of an ammonium ion and a quaternary ammonium ion is an ion generated by adding one or more protons to an amine The complex compound according to any one of [1] to [10].
[12] The complex compound according to [11], wherein the amine is an aliphatic tertiary amine which may have a substituent.
[13] One selected from the group consisting of an ion generated by adding one or more protons to an amine, an ammonium ion and a quaternary ammonium ion is a quaternary ammonium ion [1] to [10] The complex compound in any one of.
[14] An optical recording medium containing the complex compound according to any one of [1] to [13].
 本発明によると、優れた耐湿熱性等を有する光記録媒体に用いられる錯化合物等を提供できる。 According to the present invention, it is possible to provide a complex compound or the like used for an optical recording medium having excellent moisture and heat resistance.
 以下、式(I)で表される化合物を化合物(I)という。他の式番号の化合物についても同様である。 Hereinafter, the compound represented by Formula (I) is referred to as Compound (I). The same applies to the compounds of other formula numbers.
 一般式の各基の定義において、アルキル基およびアルコキシル基のアルキル部分としては、例えば、直鎖または分岐状の炭素数1~20のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、1-メチルブチル基、2-メチルブチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、1-イソプロピル-2-メチルプロピル基、オクチル基、ノニル基、デシル基、エイコシル基等が挙げられ、中でも炭素数が1~10であるものが好ましい。 In the definition of each group in the general formula, examples of the alkyl part of the alkyl group and the alkoxyl group include a linear or branched alkyl group having 1 to 20 carbon atoms, specifically, a methyl group, an ethyl group, and the like. Propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, 1-methylbutyl group, 2-methylbutyl group, tert-pentyl group, hexyl group, heptyl group, A 1-isopropyl-2-methylpropyl group, an octyl group, a nonyl group, a decyl group, an eicosyl group and the like can be mentioned. Among them, those having 1 to 10 carbon atoms are preferable.
 アルケニル基としては、例えば、直鎖または分岐状の炭素数2~20のアルケニル基が挙げられ、具体的には、ビニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、1-メチル-2-ブテニル基、1-エチル-2-プロペニル基、オクテニル基、ノネニル基、デセニル基、エイコセニル基等が挙げられる。
 アラルキル基としては、例えば、炭素数7~15のアラルキル基が挙げられ、具体的には、ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基等が挙げられる。
Examples of the alkenyl group include linear or branched alkenyl groups having 2 to 20 carbon atoms. Specific examples include a vinyl group, an allyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, 1 -Methyl-2-butenyl group, 1-ethyl-2-propenyl group, octenyl group, nonenyl group, decenyl group, eicocenyl group and the like.
Examples of the aralkyl group include aralkyl groups having 7 to 15 carbon atoms, and specific examples include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
 アリール基としては、例えば、炭素数6~14のアリール基が挙げられ、具体的には、フェニル基、ナフチル基、アントリル基、アズレニル基等が挙げられる。
 脂環式炭化水素基における脂環式炭化水素としては、例えば、炭素数3~8のシクロアルカン、炭素数3~8のシクロアルケン、3~8員の環が縮合した二環または三環性の脂環式炭化水素等が挙げられる。
 炭素数3~8のシクロアルカンの具体例としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が挙げられる。
 炭素数3~8のシクロアルケンの具体例としては、例えば、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等が挙げられる。
 3~8員の環が縮合した二環または三環性の脂環式炭化水素の具体例としては、例えば、ジヒドロペンタレン、ジヒドロインデン、テトラヒドロナフタレン、ヘキサヒドロフルオレン等が挙げられる。
Examples of the aryl group include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, and an azulenyl group.
Examples of the alicyclic hydrocarbon in the alicyclic hydrocarbon group include, for example, a cycloalkane having 3 to 8 carbon atoms, a cycloalkene having 3 to 8 carbon atoms, and a bicyclic or tricyclic condensed 3- to 8-membered ring. And alicyclic hydrocarbons.
Specific examples of the cycloalkane having 3 to 8 carbon atoms include, for example, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
Specific examples of the C3-C8 cycloalkene include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene and the like.
Specific examples of the bicyclic or tricyclic alicyclic hydrocarbon condensed with a 3- to 8-membered ring include dihydropentalene, dihydroindene, tetrahydronaphthalene, hexahydrofluorene and the like.
 複素環基における複素環としては、芳香族複素環および脂環式複素環が挙げられる。
 芳香族複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5員または6員の単環性芳香族複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性芳香族複素環等が挙げられ、具体的には、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チオフェン環、フラン環、チアゾール環、オキサゾール環、イソオキサゾール環、インドール環、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾトリアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、カルバゾール環、アクリジン環、フェナジン環、フェノチアジン環、フェノキサジン環、フェナントロリン環等が挙げられる。
Examples of the heterocyclic ring in the heterocyclic group include an aromatic heterocyclic ring and an alicyclic heterocyclic ring.
As the aromatic heterocyclic ring, for example, a 5- or 6-membered monocyclic aromatic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed. Examples include bicyclic or tricyclic condensed aromatic heterocycles containing at least one atom selected from a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples include a pyridine ring, a pyrazine ring, and a pyrimidine ring. , Pyridazine ring, quinoline ring, isoquinoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, cinnoline ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring, triazine ring, tetrazole ring, thiophene ring, furan ring, thiazole Ring, oxazole ring, isoxazole ring, indole ring, isoindole ring, indazole ring, benzimidazole Lumpur ring, benzothiophene ring, benzotriazole ring, benzothiazole ring, benzoxazole ring, purine ring, carbazole ring, acridine ring, phenazine ring, phenothiazine ring, a phenoxazine ring, a phenanthroline ring, and the like.
 脂環式複素環としては、例えば、窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む5~8員の単環性脂環式複素環、3~8員の環が縮合した二環または三環性で窒素原子、酸素原子および硫黄原子から選ばれる少なくとも1個の原子を含む縮環性脂環式複素環等が挙げられ、具体的には、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、ホモピペリジン環、ホモピペラジン環、テトラヒドロピリジン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、テトラヒドロフラン環、テトラヒドロピラン環、ジヒドロベンゾフラン環、インドリン環、テトラヒドロカルバゾール環、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン環等が挙げられる。 As the alicyclic heterocycle, for example, a 5- to 8-membered monocyclic alicyclic heterocycle containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is condensed. A bicyclic or tricyclic condensed alicyclic heterocyclic ring containing at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, specifically, a pyrrolidine ring, a piperidine ring, Piperazine ring, morpholine ring, thiomorpholine ring, homopiperidine ring, homopiperazine ring, tetrahydropyridine ring, tetrahydroquinoline ring, tetrahydroisoquinoline ring, tetrahydrofuran ring, tetrahydropyran ring, dihydrobenzofuran ring, indoline ring, tetrahydrocarbazole ring, 1, And 8-diazabicyclo [5.4.0] undec-7-ene ring.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 環Aとしては、例えば、前記に挙げた複素環のうち-CH=N-を有するもの等が挙げられ、具体的には、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、キノリン環、イソキノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、シンノリン環、ピロール環(2H-ピロール環、3H-ピロール環)、ピラゾール環、イミダゾール環、トリアゾール環、トリアジン環、テトラゾール環、チアゾール環、オキサゾール環、イソオキサゾール環、インドール環(3H-インドール環)、イソインドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、プリン環、テトラヒドロピリジン環(2,3,4,5-テトラヒドロピリジン環)等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Ring A includes, for example, those having —CH═N— among the heterocyclic rings listed above, and specifically includes a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a quinoline ring, and an isoquinoline ring. , Phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, cinnoline ring, pyrrole ring (2H-pyrrole ring, 3H-pyrrole ring), pyrazole ring, imidazole ring, triazole ring, triazine ring, tetrazole ring, thiazole ring, oxazole ring , Isoxazole ring, indole ring (3H-indole ring), isoindole ring, indazole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, purine ring, tetrahydropyridine ring (2,3,4,5-tetrahydropyridine) Ring) and the like.
 アミノ基の置換基としては、1個または2個のアルキル基等が挙げられる。ここで、アルキル基は、前記と同義である。アミノ基が2個のアルキル基を有するとき、該2個のアルキル基は同一でも異なっていてもよい。 Examples of the substituent of the amino group include one or two alkyl groups. Here, the alkyl group has the same meaning as described above. When the amino group has two alkyl groups, the two alkyl groups may be the same or different.
 アルキル基およびアルコキシル基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアミノ基、アルコキシル基、アルコキシアルコキシル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアミノ基、アルコキシル基および複素環基は、それぞれ前記と同義である。アルカノイル基、アルキルカルボニルオキシ基およびアルコキシカルボニル基のアルキル部分は、それぞれ前記のアルキル基と同義である。アルコキシアルコキシル基の2つのアルコキシ部分は、それぞれ前記のアルコキシル基と同義である。アロイル基、アリールオキシ基、アリールカルボニルオキシ基およびアリールオキシカルボニル基のアリール部分は、それぞれ前記のアリール基と同義である。 Examples of the substituent of the alkyl group and the alkoxyl group include 1 to 5 substituents that are the same or different, specifically, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a carbamoyl group, and a substituent. Amino group, alkoxyl group, alkoxyalkoxyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, heterocyclic group and the like may be mentioned. . Here, the halogen atom, the amino group which may have a substituent, the alkoxyl group, and the heterocyclic group are as defined above. The alkyl portions of the alkanoyl group, alkylcarbonyloxy group and alkoxycarbonyl group are as defined above. The two alkoxy moieties of the alkoxyalkoxyl group have the same meaning as the above alkoxyl group, respectively. The aryl part of the aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group has the same meaning as the above aryl group.
 アラルキル基、アリール基および脂環式炭化水素基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、アルケニル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、脂環式炭化水素基、複素環基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、アルケニル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、アリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、脂環式炭化水素基および複素環基は、それぞれ前記と同義である。
 アルケニル基の置換基としては、例えば、アルキル基の置換基として前記に挙げた基、置換基を有してもよいアリール基等が挙げられる。ここで、置換基を有してもよいアリール基は、前記と同義である。
Examples of the substituent for the aralkyl group, aryl group, and alicyclic hydrocarbon group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a carbamoyl group. Group, amino group optionally having substituent, alkyl group optionally having substituent, alkoxyl group optionally having substituent, alkenyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy Group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, alicyclic hydrocarbon group, heterocyclic group and the like. Here, a halogen atom, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an alkenyl group, an aralkyl group, an alkanoyl group , Alkylcarbonyloxy group, alkoxycarbonyl group, aryl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group, alicyclic hydrocarbon group and heterocyclic group are as defined above.
Examples of the substituent for the alkenyl group include the groups listed above as the substituent for the alkyl group, and an aryl group which may have a substituent. Here, the aryl group which may have a substituent is as defined above.
 複素環基の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基、複素環基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基および複素環基は、それぞれ前記と同義である。 Examples of the substituent of the heterocyclic group include the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, a carbamoyl group, and a substituent. An optionally substituted amino group, an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkoxyl group, an aralkyl group, an alkanoyl group, Examples thereof include an alkylcarbonyloxy group, an alkoxycarbonyl group, an aryl group which may have a substituent, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, and a heterocyclic group. Here, a halogen atom, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Alkoxyl group, aralkyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group, optionally substituted aryl group, aroyl group, aryloxy group, arylcarbonyloxy group, aryloxycarbonyl group and heterocyclic group Are as defined above.
 環Aがさらに置換基を有するときの該置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基、置換基を有していてもよい複素環基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシル基、置換基を有してもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有してもよい脂環式炭化水素基および置換基を有してもよい複素環基は、それぞれ前記と同義である。 Examples of the substituent when ring A further has a substituent include, for example, the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, A carbamoyl group, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent And an aryl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and the like. Here, it may have a halogen atom, an amino group which may have a substituent, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or a substituent. The aralkyl group, the aryl group that may have a substituent, the alicyclic hydrocarbon group that may have a substituent, and the heterocyclic group that may have a substituent have the same meanings as described above.
 式(I)の各基において、
 Rとしては、置換基を有していてもよいアリール基が好ましい。
 Rとしては、置換基を有していてもよいアルキル基および置換基を有していてもよいアリール基が好ましく、置換基を有していてもよいアルキル基がより好ましい。
 Rとしては、水素原子、置換基を有していてもよいアルキル基および置換基を有していてもよいアリール基が好ましく、置換基を有していてもよいアリール基がより好ましい。
 Rが式(II)であるとき、Rとしては、置換基を有していてもよいアリール基および置換基を有していてもよい複素環基が好ましい。
 Rが式(III)であるとき、式(III)の環Aとしては、テトラゾール環およびベンゾオキサゾール環が好ましく、テトラゾール環がより好ましい。
 Rが式(III)であるとき、式(III)としては、式(IV)が好ましい。Rとしては、置換基を有していてもよいアリール基が好ましい。
 化合物(I)としては、上記で示した好ましいR、R、RおよびRの基がそれぞれ組み合わされた化合物が好ましい。
 金属としては、例えば、コバルト、ロジウム、イリジウム、アルミニウム、ガリウム、鉄等が挙げられ、中でもコバルトが好ましい。
In each group of formula (I):
R 1 is preferably an aryl group which may have a substituent.
R 2 is preferably an alkyl group which may have a substituent and an aryl group which may have a substituent, and more preferably an alkyl group which may have a substituent.
R 3 is preferably a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent, and more preferably an aryl group which may have a substituent.
When R 4 is the formula (II), R 5 is preferably an aryl group which may have a substituent and a heterocyclic group which may have a substituent.
When R 4 is the formula (III), the ring A of the formula (III) is preferably a tetrazole ring or a benzoxazole ring, and more preferably a tetrazole ring.
When R 4 is the formula (III), the formula (III) is preferably the formula (IV). R 6 is preferably an aryl group which may have a substituent.
The compound (I) is preferably a compound in which the above-described preferred groups R 1 , R 2 , R 3 and R 4 are combined.
Examples of the metal include cobalt, rhodium, iridium, aluminum, gallium, iron and the like, and among these, cobalt is preferable.
 アミンに1つまたはそれ以上のプロトンが付加することにより生じるイオン(以下、アミンの陽イオンという)におけるアミンしては、塩基性の窒素原子を1個有するもの(モノアミン)または塩基性の窒素原子を2個以上有するもの(ポリアミン)を使用することができる。アミンの具体例としては、例えば、置換基を有していてもよい脂肪族第1アミンで炭素数1~30のもの(例えば、ブチルアミン、エタノールアミン、エチレンジアミン等)、置換基を有していてもよい脂肪族第2アミンで炭素数2~30のもの(例えば、ジブチルアミン、ジエタノールアミン等)、置換基を有していてもよい脂肪族第3アミンで炭素数3~30のもの(例えば、トリエチルアミン、トリエタノールアミン、ジイソプロピルエチルアミン等)、置換基を有していてもよい炭素数3~30の脂環式アミン、置換基を有していてもよい芳香族アミン、置換基を有していてもよい塩基性の含窒素複素環化合物(例えば、ピリジン、キノリン、インドール、ベンゾチアゾール、ビピリジン、フェナントロリン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン等)、ケイ素を含有するアミン(例えば、ヘプタメチルジシラザン等)等が挙げられる。 An amine in an ion generated by adding one or more protons to an amine (hereinafter referred to as an amine cation) includes one having a basic nitrogen atom (monoamine) or a basic nitrogen atom. (Polyamine) having two or more can be used. Specific examples of amines include, for example, aliphatic primary amines which may have a substituent and those having 1 to 30 carbon atoms (for example, butylamine, ethanolamine, ethylenediamine, etc.), and those having a substituent. May be an aliphatic secondary amine having 2 to 30 carbon atoms (for example, dibutylamine, diethanolamine, etc.), and an aliphatic tertiary amine optionally having a substituent having 3 to 30 carbon atoms (for example, Triethylamine, triethanolamine, diisopropylethylamine and the like), an alicyclic amine having 3 to 30 carbon atoms which may have a substituent, an aromatic amine which may have a substituent, and a substituent. May be a basic nitrogen-containing heterocyclic compound (for example, pyridine, quinoline, indole, benzothiazole, bipyridine, phenanthroline, 1,8-diazabicyclo [5.4 .0] undec-7-ene), amines containing silicon (for example, heptamethyldisilazane, etc.).
 脂環式アミンとしては、例えば、3~8員の単環性脂環式炭化水素環を有し、塩基性の窒素原子上に脂肪族鎖を有していてもよく、塩基性の窒素原子と該単環性脂環式炭化水素環との間に脂肪族鎖を有していてもよいアミン等が挙げられる。ここで、塩基性の窒素原子上に有していてもよい脂肪族鎖としては、例えば、アルキル基として前記に挙げた基が例示される。塩基性の窒素原子と該単環性脂環式炭化水素環との間に有していてもよい脂肪族鎖としては、例えば、アルキル基として前記に挙げた基から炭素上の水素原子を1個除くことに生じるアルキレン基等が例示される。脂環式アミンの具体例としては、例えば、シクロヘキシルアミン、(シクロへキシルメチル)アミン等が挙げられる。 Examples of the alicyclic amine include a 3- to 8-membered monocyclic alicyclic hydrocarbon ring, which may have an aliphatic chain on a basic nitrogen atom, or a basic nitrogen atom. And an amine which may have an aliphatic chain between the monocyclic alicyclic hydrocarbon ring and the like. Here, examples of the aliphatic chain that may be present on the basic nitrogen atom include the groups listed above as the alkyl group. Examples of the aliphatic chain that may be present between the basic nitrogen atom and the monocyclic alicyclic hydrocarbon ring include, for example, 1 hydrogen atom on carbon from the groups listed above as the alkyl group. The alkylene group etc. which arise by removing are illustrated. Specific examples of the alicyclic amine include cyclohexylamine and (cyclohexylmethyl) amine.
 芳香族アミンとしては、例えば、ベンゼン環、ナフタレン環等の芳香族炭化水素環を有し、塩基性の窒素原子上に脂肪族鎖を有していてもよく、塩基性の窒素原子と該芳香族炭化水素環との間に脂肪族鎖を有していてもよいアミン等が挙げられる。ここで、塩基性の窒素原子上に有していてもよい脂肪族鎖は前記と同義である。塩基性の窒素原子と該芳香族炭化水素環との間に有していてもよい脂肪族鎖としては、例えば、塩基性の窒素原子と該単環性脂環式炭化水素環との間に有していてもよい脂肪族鎖として前記に挙げた基等が例示される。芳香族アミンの具体例としては、例えば、アニリン、ナフチルアミン、ベンジルアミン、トリベンジルアミン等が挙げられる。 Examples of the aromatic amine include an aromatic hydrocarbon ring such as a benzene ring and a naphthalene ring, and may have an aliphatic chain on a basic nitrogen atom. And an amine which may have an aliphatic chain between the aromatic hydrocarbon ring. Here, the aliphatic chain which may be present on the basic nitrogen atom is as defined above. Examples of the aliphatic chain that may be present between the basic nitrogen atom and the aromatic hydrocarbon ring include, for example, between the basic nitrogen atom and the monocyclic alicyclic hydrocarbon ring. Examples of the aliphatic chain that may be included include the groups listed above. Specific examples of the aromatic amine include aniline, naphthylamine, benzylamine, tribenzylamine and the like.
 脂肪族第1アミン、脂肪族第2アミンおよび脂肪族第3アミンの置換基としては、例えば、同一または異なって置換数1~5の置換基、具体的にはヒドロキシル基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、アルコキシル基、アルコキシアルコキシル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基等が挙げられる。ここで、ハロゲン原子、アルコキシル基、アルコキシアルコキシル基、アルカノイル基、アルキルカルボニルオキシ基およびアルコキシカルボニル基は、それぞれ前記と同義である。 Examples of the substituent of the aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine include, for example, the same or different substituents having 1 to 5 substituents, specifically a hydroxyl group, a halogen atom, and a nitro group. Cyano group, carbamoyl group, alkoxyl group, alkoxyalkoxyl group, alkanoyl group, alkylcarbonyloxy group, alkoxycarbonyl group and the like. Here, the halogen atom, the alkoxyl group, the alkoxyalkoxyl group, the alkanoyl group, the alkylcarbonyloxy group and the alkoxycarbonyl group are respectively as defined above.
 脂環式アミンおよび芳香族アミンの置換基のうち、脂環式アミンにおける環および芳香族アミンにおける環の置換基としては、例えば、脂肪族第1アミン、脂肪族第2アミンおよび脂肪族第3アミンの置換基として前記に挙げた基、置換基を有していてもよいアルキル基等が例示される。ここで、置換基を有していてもよいアルキル基は前記と同義である。脂環式アミンおよび芳香族アミンが脂肪族鎖を有するときの該脂肪族鎖の置換基としては、例えば、脂肪族第1アミン、脂肪族第2アミンおよび脂肪族第3アミンの置換基として前記に挙げた基等が例示される。 Among the substituents of alicyclic amine and aromatic amine, examples of the substituent in the ring in alicyclic amine and ring in aromatic amine include, for example, aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine. Examples of the substituent of the amine include the groups listed above and an alkyl group which may have a substituent. Here, the alkyl group which may have a substituent is as defined above. Examples of the substituent of the aliphatic chain when the alicyclic amine and the aromatic amine have an aliphatic chain include, for example, the above-mentioned substituents of the aliphatic primary amine, aliphatic secondary amine, and aliphatic tertiary amine. And the like.
 塩基性の含窒素複素環化合物の置換基としては、例えば、同一または異なって1~5個の置換基、具体的には、ヒドロキシル基、オキソ基、ハロゲン原子、ニトロ基、シアノ基、カルバモイル基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基、アリールオキシカルボニル基等が挙げられる。ここで、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシル基、アラルキル基、アルカノイル基、アルキルカルボニルオキシ基、アルコキシカルボニル基、置換基を有していてもよいアリール基、アロイル基、アリールオキシ基、アリールカルボニルオキシ基およびアリールオキシカルボニル基は、それぞれ前記と同義である。 Examples of the substituent of the basic nitrogen-containing heterocyclic compound include the same or different 1 to 5 substituents, specifically, a hydroxyl group, an oxo group, a halogen atom, a nitro group, a cyano group, and a carbamoyl group. , An alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyloxy group, an alkoxycarbonyl Group, an aryl group optionally having a substituent, an aroyl group, an aryloxy group, an arylcarbonyloxy group, an aryloxycarbonyl group, and the like. Here, a halogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkoxyl group which may have a substituent, an aralkyl group, an alkanoyl group, an alkylcarbonyl The oxy group, alkoxycarbonyl group, optionally substituted aryl group, aroyl group, aryloxy group, arylcarbonyloxy group and aryloxycarbonyl group have the same meanings as described above.
 第4級アンモニウムイオンとしては、例えば、式(X)
Figure JPOXMLDOC01-appb-C000009
(式中、LおよびLは、同一または異なって、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアミノ基または置換基を有してもよいアロイル基を表し、pおよびqは、同一または異なって、0~5の整数を表し、pが2~5の整数のとき、Lのそれぞれは同一または異なってもよく、2つのLとそれらが隣接する2つの炭素原子とが一緒になって置換基を有していてもよいベンゼン環を形成してもよく、qが2~5の整数のとき、Lのそれぞれは同一または異なってもよく、2つのLとそれらが隣接する2つの炭素原子とが一緒になって置換基を有していてもよいベンゼン環を形成してもよい)で表されるイオン等が挙げられる。
As a quaternary ammonium ion, for example, formula (X)
Figure JPOXMLDOC01-appb-C000009
(Wherein L 1 and L 2 are the same or different and are each a halogen atom, an alkyl group which may have a substituent, an alkoxyl group which may have a substituent, or an aryl which may have a substituent) An oxy group, an optionally substituted amino group or an optionally substituted aroyl group; p and q are the same or different and each represents an integer of 0 to 5, and p is 2 to 5 Each of L 1 may be the same or different, and two L 1 and the two adjacent carbon atoms together form a benzene ring which may have a substituent. And when q is an integer of 2 to 5, each of L 2 may be the same or different, and two L 2 and the two adjacent carbon atoms together have a substituent. May form a benzene ring that may be It is below.
 ここで、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシル基、アリールオキシ基、置換基を有してもよいアミノ基およびアロイル基は、それぞれ前記と同義である。アリールオキシ基、アロイル基およびベンゼン環の置換基としては、例えば、アラルキル基、アリール基および脂環式炭化水素基の置換基として前記に挙げた基等が挙げられる。 Here, the halogen atom, the alkyl group that may have a substituent, the alkoxyl group that may have a substituent, the aryloxy group, the amino group that may have a substituent, and the aroyl group, respectively, It is synonymous. Examples of the substituent for the aryloxy group, aroyl group and benzene ring include the groups listed above as the substituents for the aralkyl group, aryl group and alicyclic hydrocarbon group.
 LおよびLとしては、フッ素原子、フッ素置換アルキル基またはフッ素置換アルコキシル基が好ましい。
 フッ素置換アルキル基としては、例えば、前記にアルキル基として挙げた基の1~5個の水素原子が、フッ素原子に置換された基等が挙げられる。
 フッ素置換アルコキシル基のフッ素置換アルキル部分は、前記のフッ素置換アルキル基と同義である。
L 1 and L 2 are preferably a fluorine atom, a fluorine-substituted alkyl group or a fluorine-substituted alkoxyl group.
Examples of the fluorine-substituted alkyl group include groups in which 1 to 5 hydrogen atoms of the groups listed above as alkyl groups are substituted with fluorine atoms.
The fluorine-substituted alkyl part of the fluorine-substituted alkoxyl group has the same meaning as the above-mentioned fluorine-substituted alkyl group.
 第4級アンモニウムイオンの具体例を以下に示す。式中、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000010
Specific examples of quaternary ammonium ions are shown below. In the formula, Ph represents a phenyl group.
Figure JPOXMLDOC01-appb-C000010
 化合物(I)と、金属と、アミンの陽イオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種と、からなる錯化合物としては、例えば、式(Y)
Figure JPOXMLDOC01-appb-C000011
(式中、R、R、RおよびRは、それぞれ前記と同義であり、Mは金属を表し、Qn+はアミンの陽イオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種を表し、nは1~3の整数を表す)で表される化合物等が挙げられる。ここで、金属、アミンおよび第4級アンモニウムイオンは、それぞれ前記と同義である。nは1または2であるのが好ましい。
Examples of the complex compound composed of the compound (I), a metal, and one selected from the group consisting of an amine cation, an ammonium ion, and a quaternary ammonium ion include, for example, the formula (Y)
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above, M represents a metal, and Q n + represents a group consisting of an amine cation, an ammonium ion and a quaternary ammonium ion. And a compound represented by the formula (n represents an integer of 1 to 3). Here, a metal, an amine, and a quaternary ammonium ion are respectively synonymous with the above. n is preferably 1 or 2.
 次に、化合物(I)の製造法について例を挙げて説明する。
 化合物(I)は、例えば、反応式(1)
Figure JPOXMLDOC01-appb-C000012
(式中、R、R、RおよびRは、それぞれ前記と同義である)に従って製造することができる。具体的には、化合物(VII)と化合物(V)とを、要すれば化合物(VII)に対して0.1~10倍モルの酢酸の存在下、溶媒中、10~100℃で、0.5~30時間反応させて化合物(I)を製造することができる。
 化合物(VII)の使用量は、化合物(V)に対して0.5~5倍モル量であるのが好ましい。
Next, an example is given and demonstrated about the manufacturing method of compound (I).
Compound (I) is represented, for example, by reaction formula (1)
Figure JPOXMLDOC01-appb-C000012
(Wherein R 1 , R 2 , R 3 and R 4 are as defined above). Specifically, the compound (VII) and the compound (V) are added in a solvent at 10 to 100 ° C. in the presence of 0.1 to 10-fold mol of acetic acid, if necessary, relative to the compound (VII). The compound (I) can be produced by reacting for 5 to 30 hours.
The amount of compound (VII) to be used is preferably 0.5 to 5 times the molar amount of compound (V).
 溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、オクタノール等のアルコール系溶媒、ヘキサン、デカン、テトラデカン、トルエン、キシレン等の炭化水素系溶媒、ジエチルエーテル、ジブチルエーテル、メトキシベンゼン、ジフェニルエーテル等のエーテル系溶媒、ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、ジメチルスルホキシド等の含硫黄系溶媒、アセトニトリル等が挙げられる。 Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and octanol, hydrocarbon solvents such as hexane, decane, tetradecane, toluene and xylene, diethyl ether, dibutyl ether, methoxybenzene and diphenyl ether. Ether solvents such as dichloromethane, dichloroethane, chloroform, chlorobenzene, dichlorobenzene and other halogen solvents, N, N-dimethylformamide, amide solvents such as N, N-dimethylacetamide, sulfur-containing solvents such as dimethyl sulfoxide, Examples include acetonitrile.
 化合物(VII)のうち、Rが置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基であるものは、市販品として入手するか、公知の方法、例えば、「Heterocycles」,2006年,第68巻,p.1825-1835、「Journal of Organic Chemistry」,2003年,第68巻,第21号,p.7943-7950、「Journal of Medicinal Chemistry」,1987年,第30巻,第10号,p.1807-1812、「Journal of Medicinal Chemistry」,2006年,第49巻,第5号,p.1562-1575等に記載の方法等に準じて製造することにより得ることができる。
 化合物(VII)のうち、Rが水素原子であるものは、市販品として入手するか、公知の方法、例えば、「Tetrahedron Letters」,1999年,第40巻,第18号,p.3535-3538、「Bioorganic and Medicinal Chemistry」,2009年,第17巻,第15号,p.5716-5721等に記載の方法等に準じて製造することにより得ることができる。
Among the compounds (VII), R 3 has an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. An aryl group that may be substituted, an alicyclic hydrocarbon group that may have a substituent, or a heterocyclic group that may have a substituent may be obtained as a commercial product or publicly known Methods such as “Heterocycles”, 2006, Vol. 68, p. 1825-1835, “Journal of Organic Chemistry”, 2003, Vol. 68, No. 21, p. 7943-7950, “Journal of Medicinal Chemistry”, 1987, Vol. 30, No. 10, p. 1807-1812, “Journal of Medicinal Chemistry”, 2006, Vol. 49, No. 5, p. It can be obtained by manufacturing according to the method described in 1562-1575.
Among compounds (VII), those in which R 3 is a hydrogen atom can be obtained as a commercial product or can be obtained by a known method, for example, “Tetrahedron Letters”, 1999, Vol. 40, No. 18, p. 3535-3538, “Bioorganic and Medicinal Chemistry”, 2009, Vol. 17, No. 15, p. It can be obtained by manufacturing according to the method described in 5716-5721.
 化合物(V)のうちRが式(III)であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻)」,第4版,丸善株式会社,1991年,p.30-46,p.112-185,p.279-290,p.338-342、社団法人日本化学会編,「実験化学講座(第13巻)」,第5版,丸善株式会社,1991年,p.374-416、社団法人日本化学会編,「実験化学講座(第14巻)」,第5版,丸善株式会社,2003年,p.289-320、Buehler & Pearson編,「Survey of Organic Synthesis(第1巻)」,Wiley-Interscience,1970年,p.411-512、Buehler & Pearson編,「Survey of Organic Synthesis(第2巻)」,Wiley-Interscience,1977年,p.812-853、Saul Patai編,「The Chemistry of the amino group」,John Wiley & Sons,1968年,p.277-347等に記載の方法等に準じて製造することにより得ることができる。 The compound (V) in which R 4 is the formula (III) can be obtained as a commercial product, or can be obtained by publicly known methods such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20)”, Vol. 4th edition, Maruzen Co., Ltd., 1991, p. 30-46, p. 112-185, p. 279-290, p. 338-342, The Chemical Society of Japan, “Experimental Chemistry Course (Vol. 13)”, 5th edition, Maruzen Co., Ltd., 1991, p. 374-416, The Chemical Society of Japan, “Experimental Chemistry Course (Vol. 14)”, 5th edition, Maruzen Co., Ltd., 2003, p. 289-320, edited by Buehler & Pearson, “Survey of Organic Synthesis (Volume 1)”, Wiley-Interscience, 1970, p. 411-512, edited by Buehler & Pearson, “Survey of Organic Synthesis (Volume 2)”, Wiley-Interscience, 1977, p. 812-853, edited by Saul Patai, “The Chemistry of the amino group”, John Wiley & Sons, 1968, p. It can be obtained by manufacturing according to the method described in 277-347 and the like.
 化合物(V)のうちRが式(II)であるものは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻)有機化合物の合成と反応II」,第1版,丸善株式会社,1956年,p.347-389、社団法人日本化学会編,「新実験化学講座(第14巻) 有機化合物の合成と反応III」,第2版,丸善株式会社,1978年,p.1573-1584、Saul Patai編,「The Chemistry of the hydrazo, azo, and azoxy group(第1巻)」,John Wiley & Sons,1975年,p.69-107、Saul Patai編,「The Chemistry of the hydrazo, azo, and azoxy group(第2巻)」,John Wiley & Sons,1975年,p.599-723、Gilman編,「Organic Syntheses Collective(第1巻)」,Shriner & Shriner,1932年,p.450-453、Blatt編,「Organic Syntheses Collective(第2巻)」,Shriner & Shriner,1943年,p.85-87、Baumgarten編,「Organic Syntheses Collective(第5巻)」,Shriner & Shriner,1973年,p.166-170、Bryan Li他著,「Organic Syntheses(第81巻)」,2005年,p.1108-1111等に記載の方法等に準じて製造することにより得ることができる。
 反応後、必要に応じて、化合物(I)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
The compound (V) in which R 4 is the formula (II) can be obtained as a commercial product, or can be obtained by publicly known methods such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20) Synthesis and Reaction II ”, first edition, Maruzen Co., Ltd., 1956, p. 347-389, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Vol. 14) Synthesis and Reaction of Organic Compounds III”, 2nd edition, Maruzen Co., Ltd., 1978, p. 1573-1584, edited by Saul Patai, “The Chemistry of the Hydro, azo, and azoxy group (Vol. 1)”, John Wiley & Sons, 1975, p. 69-107, edited by Saul Patai, “The Chemistry of the Hydro, azo, and azoxy group (Volume 2)”, John Wiley & Sons, 1975, p. 599-723, edited by Gilman, “Organic Synthesis Collective (Volume 1)”, Shriner & Shriner, 1932, p. 450-453, edited by Blatt, “Organic Synthesis Collective (Volume 2)”, Shriner & Shriner, 1943, p. 85-87, edited by Baumgarten, “Organic Synthesis Collective (Volume 5)”, Shriner & Shriner, 1973, p. 166-170, Bryan Li et al., “Organic Synthesis (Vol. 81)”, 2005, p. It can be obtained by manufacturing according to the method described in 1108-1111.
After the reaction, if necessary, the compound (I) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
 化合物(I)のうちRが水素原子であるもの[化合物(Ia)]は、例えば、反応式(2)
Figure JPOXMLDOC01-appb-C000013
(式中、R、RおよびRは、それぞれ前記と同義であり、RおよびRは、それぞれ同一または異なって、炭素数1~4のアルキル基等を表す)に従って製造することもできる。具体的には、化合物(V)と化合物(VI)とを、要すれば化合物(VI)に対して0.1~10倍モルの酢酸の存在下、溶媒中、10~100℃で、0.5~30時間反応させて化合物(Ia)を製造することができる。
Compound (I) wherein R 3 is a hydrogen atom [Compound (Ia)] is, for example, reaction formula (2)
Figure JPOXMLDOC01-appb-C000013
(Wherein R 1 , R 2 and R 4 are as defined above, and R 7 and R 8 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms, etc.) You can also. Specifically, the compound (V) and the compound (VI) are mixed at 0 to 100 ° C. in a solvent in the presence of 0.1 to 10-fold mol of acetic acid with respect to the compound (VI), if necessary. The compound (Ia) can be produced by reacting for 5 to 30 hours.
 炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
 化合物(VI)の使用量は、化合物(V)に対して0.5~5倍モル量であるのが好ましい。
 溶媒としては、反応式(1)で使用できる溶媒として挙げたもの等が例示される。
 化合物(VI)は、市販品として入手するか、公知の方法、例えば、「Heterocycles」,2003年,第61巻,p.197-224、「Journal of Heterocyclic Chemistry」,2001年,第38巻,第4号,p.989-992等に記載の方法等に準じて製造することにより得ることができる。
 反応後、必要に応じて、化合物(Ia)を有機合成化学で通常用いられる方法(各種クロマトグラフィー法、再結晶法、蒸留法等)で精製してもよい。
Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
The amount of compound (VI) used is preferably 0.5 to 5 times the molar amount of compound (V).
Examples of the solvent include those listed as solvents that can be used in the reaction formula (1).
Compound (VI) can be obtained as a commercial product or can be obtained by a known method, for example, “Heterocycles”, 2003, Vol. 61, p. 197-224, “Journal of Heterocyclic Chemistry”, 2001, Vol. 38, No. 4, p. It can be obtained by manufacturing according to the method described in 989-992.
After the reaction, if necessary, the compound (Ia) may be purified by methods usually used in organic synthetic chemistry (various chromatographic methods, recrystallization methods, distillation methods, etc.).
 次に、本発明の錯化合物の製造法について、例を挙げて説明する。
 化合物(I)とコバルトとアミンの陽イオンとからなる錯化合物は、例えば、化合物(I)と、コバルトの塩または有機コバルト化合物と、アミンとを、溶媒中、酸素の存在下、0~120℃の温度で、0.5~30時間反応させることにより製造することができる(以下、この方法を製造法1という)。
Next, the production method of the complex compound of the present invention will be described with examples.
The complex compound comprising compound (I), cobalt and an amine cation is, for example, compound (I), a cobalt salt or an organic cobalt compound, and an amine in a solvent in the presence of oxygen in the range of 0 to 120. It can be produced by reacting at a temperature of 0.degree. C. for 0.5 to 30 hours (this method is hereinafter referred to as Production Method 1).
 コバルトの塩としては、例えば、酢酸コバルト(II)、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、フッ化コバルト(II)、フッ化コバルト(II)、炭酸コバルト(II)、シアン化コバルト(II)、これらの水和物等が挙げられる。
 有機コバルト化合物としては、例えば、トリス(カルボネート)コバルト(III)酸ナトリウム、コバルト(II)アセチルアセトネート水和物、コバルト(III)アセチルアセトネート等が挙げられる。
Examples of the cobalt salt include cobalt acetate (II), cobalt chloride (II), cobalt bromide (II), cobalt iodide (II), cobalt fluoride (II), cobalt fluoride (II), and cobalt carbonate. (II), cobalt cyanide (II), hydrates thereof and the like.
Examples of the organic cobalt compound include sodium tris (carbonate) cobalt (III), cobalt (II) acetylacetonate hydrate, cobalt (III) acetylacetonate, and the like.
 アミンは、市販品として入手するか、公知の方法、例えば、社団法人日本化学会編,「実験化学講座(第20巻) 有機化合物の合成と反応II」,第1版,丸善株式会社,1956年,p.391-582、社団法人日本化学会編,「新実験化学講座(第14巻)有機化合物の合成と反応III」,第2版,丸善株式会社,1978年,p.1332-1399、社団法人日本化学会編,「新実験化学講座(第20巻) 有機合成II」,第4版,丸善株式会社,1992年,p.299-313、社団法人日本化学会編,「新実験化学講座(第14巻) 有機化合物の合成II」,第5版,丸善株式会社,2005年,p.351-377、Buehler & Pearson編,「Survey of Organic Synthesis(第1巻)」,Wiley-Interscience,1970年,p.411-512、Buehler & Pearson編,「Survey of Organic Synthesis(第2巻)」,Wiley-Interscience,1977年,p.391-459、Saul Patai編,「The Chemistry of the amino group」,John Wiley & Sons,1968年,p.37-69、Barton & Ollis編,「Comprehensive Organic Chemistry The Synthesis and Reactions of Organic Compounds(第2巻)」,Pergamon Press,1979年,p.1-181、Katritzky & Rees編,「Comprehensive Heterocyclic Chemistry」,Pergamon Press,1984年,p.525-528等に記載の方法等に準じて製造することにより得ることができる。 The amine can be obtained as a commercial product or can be obtained by a known method such as the Japan Chemical Society, “Experimental Chemistry Course (Volume 20) Synthesis and Reaction of Organic Compounds II”, 1st Edition, Maruzen Co., Ltd. Year, p. 391-582, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Volume 14) Synthesis and Reaction of Organic Compounds III”, 2nd edition, Maruzen Co., Ltd., 1978, p. 1332-1399, edited by The Chemical Society of Japan, “New Experimental Chemistry Course (Volume 20), Organic Synthesis II”, 4th edition, Maruzen Co., Ltd., 1992, p. 299-313, edited by the Chemical Society of Japan, “New Experimental Chemistry Course (Vol. 14) Synthesis of Organic Compounds II”, 5th Edition, Maruzen Co., Ltd., 2005, p. 351-377, edited by Buehler & Pearson, “Survey of Organic Synthesis (Volume 1)”, Wiley-Interscience, 1970, p. 411-512, edited by Buehler & Pearson, “Survey of Organic Synthesis (Volume 2)”, Wiley-Interscience, 1977, p. 391-459, edited by Saul Patai, “The Chemistry of the amino group”, John Wiley & Sons, 1968, p. 37-69, edited by Barton & Olis, “Comprehensive Organic Chemistry The Synthesis and Reactions of Organic Compounds (Volume 2)”, Pergamon Press, 79. 1-181, Katritzky & Rees, “Comprehensive Heterocyclic Chemistry”, Pergamon Press, 1984, p. It can be obtained by manufacturing according to the method described in 525-528.
 化合物(I)の使用量は、コバルトの塩または有機コバルト化合物におけるコバルト原子に対して0.3~4倍モル量であるのが好ましい。
 塩基性の窒素原子をm個有するアミンを使用するとき、該アミンの使用量は、コバルトの塩または有機コバルト化合物におけるコバルト原子に対して0.3/m~20/m倍モル量であるのが好ましい。
The amount of compound (I) used is preferably 0.3 to 4 times the molar amount of the cobalt atom in the cobalt salt or organic cobalt compound.
When an amine having m basic nitrogen atoms is used, the amount of the amine used is 0.3 / m to 20 / m times the molar amount of the cobalt atom in the cobalt salt or organic cobalt compound. Is preferred.
 溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブタノール等のアルコール系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、メチル-tert-ブチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、アセトニトリル、これらの混合溶媒等が挙げられる。
 反応後、必要に応じて、有機合成化学で通常用いられる方法(各種カラムクロマトグラフィー法、再結晶法、溶媒による洗浄等)で得られた錯化合物を精製してもよい。
Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran, methyl- Examples thereof include ether solvents such as tert-butyl ether, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, acetonitrile, and mixed solvents thereof.
After the reaction, the complex compound obtained by methods commonly used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.) may be purified as necessary.
 コバルトの塩または有機コバルト化合物の代わりに、コバルト以外の金属の塩または有機金属化合物であって金属がコバルト以外であるものを用いる以外は製造法1と同様に操作して、化合物(I)とコバルト以外の金属(例えば、ロジウム、イリジウム、アルミニウム、ガリウム、鉄等)とアミンの陽イオンとからなる錯化合物を製造することができる(以下、この方法を製造法2という)。 In place of the cobalt salt or organocobalt compound, the same procedure as in Production Method 1 except that a metal salt other than cobalt or an organometallic compound wherein the metal is other than cobalt is used, compound (I) and A complex compound comprising a metal other than cobalt (for example, rhodium, iridium, aluminum, gallium, iron, etc.) and an amine cation can be produced (hereinafter, this method is referred to as Production Method 2).
 コバルト以外の金属の塩または有機金属化合物であって金属がコバルト以外であるものとしては、例えば、ロジウムの塩、有機ロジウム化合物、イリジウムの塩、有機イリジウム化合物、アルミニウムの塩、有機アルミニウム化合物、ガリウムの塩、有機ガリウム化合物、鉄の塩、有機鉄化合物等が挙げられる。 Examples of the metal salt or organometallic compound other than cobalt and the metal other than cobalt include, for example, rhodium salt, organic rhodium compound, iridium salt, organic iridium compound, aluminum salt, organoaluminum compound, gallium Salts, organic gallium compounds, iron salts, organic iron compounds, and the like.
 ロジウムの塩としては、例えば、酢酸ロジウム(II)二量体、塩化ロジウム(III)、これらの水和物等が挙げられる。
 有機ロジウム化合物としては、例えば、ロジウム(III)アセチルアセトネート、ロジウム(II)ヘキサノネート等が挙げられる。
 イリジウムの塩としては、例えば、塩化イリジウム(III)、臭化イリジウム(III)、これらの水和物等が挙げられる。
 有機イリジウム化合物としては、例えば、イリジウム(III)アセチルアセトネート等が挙げられる。
Examples of the rhodium salt include rhodium acetate (II) dimer, rhodium (III) chloride, and hydrates thereof.
Examples of the organic rhodium compound include rhodium (III) acetylacetonate and rhodium (II) hexanonate.
Examples of the iridium salt include iridium (III) chloride, iridium (III) bromide, and hydrates thereof.
Examples of the organic iridium compound include iridium (III) acetylacetonate.
 アルミニウムの塩としては、例えば、酢酸アルミニウム(III)、塩化アルミニウム(III)、塩化アルミニウム(III)=テトラヒドロフラン錯体、臭化アルミニウム(III)、ヨウ化アルミニウム(III)、水酸化アルミニウム(III)、これらの水和物等が挙げられる。
 有機アルミニウム化合物としては、例えば、アルミニウム(III)トリス(アセチルアセトネート)、アルミニウム(III)トリス(エチルアセトアセトネート)、アルミニウム(III)イソプロポキシド、アルミニウム(III)エチルアセトアセトネート=ジイソプロポキシド、アルミニウム(III)イソプロポキシド、アルミニウムsec-ブトキシド、アルミニウムエトキシド等が挙げられる。
Examples of the aluminum salt include aluminum acetate (III), aluminum chloride (III), aluminum chloride (III) = tetrahydrofuran complex, aluminum bromide (III), aluminum iodide (III), aluminum hydroxide (III), These hydrates can be mentioned.
Examples of the organoaluminum compound include aluminum (III) tris (acetylacetonate), aluminum (III) tris (ethylacetoacetonate), aluminum (III) isopropoxide, aluminum (III) ethylacetoacetonate = diiso Examples thereof include propoxide, aluminum (III) isopropoxide, aluminum sec-butoxide, and aluminum ethoxide.
 ガリウムの塩としては、例えば、塩化ガリウム(III)、臭化ガリウム(III)、ヨウ化ガリウム(III)、これらの水和物等が挙げられる。
 有機ガリウム化合物としては、例えば、ガリウム(III)アセチルアセトネート等が挙げられる。
Examples of the gallium salt include gallium chloride (III), gallium bromide (III), gallium iodide (III), and hydrates thereof.
Examples of the organic gallium compound include gallium (III) acetylacetonate.
 鉄の塩としては、例えば、塩化鉄(II)、塩化鉄(III)、フッ化鉄(II)、フッ化鉄(III)、臭化鉄(II)、臭化鉄(III)、酢酸鉄(II)、これらの水和物等が挙げられる。
 有機鉄化合物としては、例えば、鉄(II)アセチルアセトネート、鉄(III)アセチルアセトネート、鉄(III)エトキシド等が挙げられる。
Examples of iron salts include iron (II) chloride, iron (III) chloride, iron (II) fluoride, iron (III) fluoride, iron (II) bromide, iron (III) bromide, iron acetate (II), hydrates thereof and the like.
Examples of the organic iron compound include iron (II) acetylacetonate, iron (III) acetylacetonate, iron (III) ethoxide, and the like.
 アミンの代わりにアンモニアを用いる以外は製造法1と同様に操作して、本発明の錯化合物のうち、化合物(I)とコバルトとアンモニウムイオンとからなる錯化合物を製造することができる。
 アミンの代わりにアンモニアを用いる以外は製造法2と同様に操作して、化合物(I)とコバルト以外の金属とアンモニウムイオンとからなる錯化合物を製造することができる。
Of the complex compounds of the present invention, a complex compound composed of compound (I), cobalt and ammonium ions can be produced by operating in the same manner as in Production Method 1 except that ammonia is used instead of amine.
A complex compound composed of compound (I), a metal other than cobalt, and ammonium ions can be produced in the same manner as in Production Method 2, except that ammonia is used instead of amine.
 化合物(I)と金属と第4級アンモニウムイオンとからなる錯化合物は、例えば、化合物(I)と金属とアミンの陽イオンとからなる錯化合物と、対応する第4級アンモニウム塩とを溶媒中、0~120℃で、0.5~30時間反応させることにより製造することができる。ここで、化合物(I)と金属とアミンの陽イオンとからなる錯化合物は、製造法1または2に準じて製造することにより得ることができる。
 第4級アンモニウム塩における陰イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、酢酸イオン等が挙げられる。
 第4級アンモニウム塩は、市販品として入手するか、公知の方法、例えば、Saul Patai編,「The Chemistry of the amino group」,John Wiley & Sons,1968年,p.161-199、Katritzky & Rees編,「Comprehensive Heterocyclic Chemistry」,Pergamon Press,1984年,p.99-164およびp.515-528等に記載の方法等に準じて製造することにより得ることができる。
The complex compound composed of compound (I), metal and quaternary ammonium ion is, for example, a complex compound composed of compound (I), metal and amine cation, and the corresponding quaternary ammonium salt in a solvent. It can be produced by reacting at 0 to 120 ° C. for 0.5 to 30 hours. Here, the complex compound which consists of compound (I), a metal, and the cation of an amine can be obtained by manufacturing according to the manufacturing method 1 or 2.
Examples of the anion in the quaternary ammonium salt include fluoride ion, chloride ion, bromide ion, iodide ion, and acetate ion.
The quaternary ammonium salt is obtained as a commercial product, or a known method, for example, Saul Patai ed., “The Chemistry of the amino group”, John Wiley & Sons, 1968, p. 161-199, edited by Katritzky & Rees, “Comprehensive Heterocyclic Chemistry”, Pergamon Press, 1984, p. 99-164 and p. It can be obtained by manufacturing according to the method described in 515-528 and the like.
 化合物(I)と金属とアミンの陽イオンとからなる錯化合物(ここで、アミンの陽イオンにおけるアミンは、塩基性の窒素原子をm個有する)と、n価の第4級アンモニウム塩とを反応させて、化合物(I)と金属とn価の第4級アンモニウムイオンとからなる錯化合物を製造するとき、使用するn価の第4級アンモニウム塩に含まれる第4級アンモニウムイオンと、使用する化合物(I)と金属とアミンの陽イオンとからなる錯化合物に含まれるアミンの陽イオンとのモル比は、0.3m/n~10m/n(第4級アンモニウムイオン/アミンの陽イオン)であるのが好ましい。
 溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブタノール等のアルコール系溶媒、クロロホルム、ジクロロメタン等のハロゲン系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、テトラヒドロフラン、メチル-tert-ブチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、これらの混合溶媒等が挙げられる。
 反応後、必要に応じて、有機合成化学で通常用いられる方法(各種カラムクロマトグラフィー法、再結晶法、溶媒による洗浄等)で得られた錯化合物を精製してもよい。
A complex compound comprising compound (I), a metal and an amine cation (wherein the amine in the amine cation has m basic nitrogen atoms), and an n-valent quaternary ammonium salt. A quaternary ammonium ion contained in the n-valent quaternary ammonium salt used when producing a complex compound comprising the compound (I), a metal and an n-valent quaternary ammonium ion by reacting, and use The molar ratio of the compound (I) to the cation of the amine contained in the complex compound composed of the metal and the cation of amine is 0.3 m / n to 10 m / n (quaternary ammonium ion / amine cation). ) Is preferred.
Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutanol, halogen solvents such as chloroform and dichloromethane, aromatic solvents such as benzene, toluene and xylene, tetrahydrofuran, methyl- Examples thereof include ether solvents such as tert-butyl ether, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, and mixed solvents thereof.
After the reaction, the complex compound obtained by methods commonly used in organic synthetic chemistry (various column chromatography methods, recrystallization methods, washing with a solvent, etc.) may be purified as necessary.
 以下に、化合物(I)の具体例を例示する。式中、Phはフェニル基を表し、i-Prはイソプロピル基を表し、n-Prはプロピル基を表す。
Figure JPOXMLDOC01-appb-C000014
Specific examples of compound (I) are illustrated below. In the formula, Ph represents a phenyl group, i-Pr represents an isopropyl group, and n-Pr represents a propyl group.
Figure JPOXMLDOC01-appb-C000014
 以下、化合物番号(I-1)の化合物を化合物(I-1)という。その他の化合物番号の化合物についても同様である。
 本発明の錯化合物の具体例を、表1~2に示す。
 表1~2中、陽イオンは、アミンの陽イオンまたは第4級アンモニウムイオンを表し、モル比は、本発明の錯化合物中における各成分のモル比[化合物(I):金属:陽イオン]を表す。
 表1~2中、A1およびA2は以下のアミンの陽イオンを表す。式中、Etはエチル基を表し、i-Prはイソプロピル基を表す。
Figure JPOXMLDOC01-appb-C000015
Hereinafter, the compound of compound number (I-1) is referred to as compound (I-1). The same applies to the compounds with other compound numbers.
Specific examples of the complex compound of the present invention are shown in Tables 1 and 2.
In Tables 1 and 2, the cation represents an amine cation or a quaternary ammonium ion, and the molar ratio is the molar ratio of each component in the complex compound of the present invention [compound (I): metal: cation]. Represents.
In Tables 1 and 2, A1 and A2 represent the following amine cations. In the formula, Et represents an ethyl group, and i-Pr represents an isopropyl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 本発明の錯化合物は、光記録媒体用色素、紫外線吸収剤、三次元記録材料としての二光子吸収用色素、短波長レーザー(例えば青紫色レーザー等)光対応の増感色素等として使用することができる。本発明の錯化合物は優れた溶解性、優れた塗膜性、優れた耐光性、優れた耐水性、優れた耐湿熱性、溶液中での優れた保存安定性等の特性を有する。
 本発明の光記録媒体は本発明の錯化合物を含有し、優れた耐光性、優れた耐水性、優れた耐湿熱性、優れた記録再生特性等を有する。
The complex compound of the present invention can be used as a dye for optical recording media, an ultraviolet absorber, a two-photon absorbing dye as a three-dimensional recording material, a sensitizing dye for short wavelength laser (for example, blue-violet laser), etc. Can do. The complex compound of the present invention has properties such as excellent solubility, excellent coating properties, excellent light resistance, excellent water resistance, excellent moisture and heat resistance, and excellent storage stability in a solution.
The optical recording medium of the present invention contains the complex compound of the present invention and has excellent light resistance, excellent water resistance, excellent moisture and heat resistance, excellent recording / reproducing characteristics, and the like.
 本発明の光記録媒体としては、例えば、基板、反射層、記録層、透明保護層およびカバー層を備えているもの等が挙げられ、基板上に、反射層、記録層、透明保護層およびカバー層がこの順に設けられているものが好ましい。本発明の光記録媒体としては、例えば、本発明の錯化合物を含有する記録層を有するもの等が挙げられる。本発明の錯化合物を用いて該記録層を形成するとき、本発明の錯化合物は単独でまたは2種以上を混合して用いてもよい。 Examples of the optical recording medium of the present invention include a substrate, a reflective layer, a recording layer, a transparent protective layer, and a cover layer. The reflective layer, the recording layer, the transparent protective layer, and the cover are provided on the substrate. It is preferable that the layers are provided in this order. Examples of the optical recording medium of the present invention include those having a recording layer containing the complex compound of the present invention. When the recording layer is formed using the complex compound of the present invention, the complex compound of the present invention may be used alone or in admixture of two or more.
 本発明の錯化合物と他の色素とを併用して用いてもよい。他の色素としては、記録用のレーザー光の波長域に吸収を有するものが好ましい。また、情報記録(記録層、反射層または透明保護層、およびカバー層における熱的変形によりレーザー照射箇所に形成される記録マーク等)の形成が阻害されないようなものを他の色素として用いることが好ましい。他の色素としては、本発明の錯化合物以外の含金属アゾ系色素、フタロシアニン系色素、ナフタロシアニン系色素、シアニン系色素、アゾ系色素、スクアリリウム系色素、含金属インドアニリン系色素、トリアリールメタン系色素、メロシアニン系色素、アズレニウム系色素、ナフトキノン系色素、アントラキノン系色素、インドフェノール系色素、キサンテン系色素、オキサジン系色素、ピリリウム系色素等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。他の色素のうち770~830nmの近赤外レーザー光、620~690nmの赤色レーザー光等のレーザー光を用いた記録に適する色素と本発明の錯化合物とを併用して、複数の波長域のレーザー光での記録が可能である光記録媒体を作製することもできる。 The complex compound of the present invention and other pigments may be used in combination. Other dyes preferably have absorption in the wavelength region of the recording laser light. Also, other dyes that do not hinder the formation of information recording (recording marks, etc. formed at the laser irradiation site due to thermal deformation in the recording layer, reflective layer or transparent protective layer, and cover layer) may be used. preferable. Other dyes include metal-containing azo dyes other than the complex compounds of the present invention, phthalocyanine dyes, naphthalocyanine dyes, cyanine dyes, azo dyes, squarylium dyes, metal-containing indoaniline dyes, triarylmethanes And dyes, merocyanine dyes, azurenium dyes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, xanthene dyes, oxazine dyes, and pyrylium dyes. You may use these individually or in mixture of 2 or more types. Among other dyes, a dye suitable for recording using a laser beam such as a near infrared laser beam of 770 to 830 nm, a red laser beam of 620 to 690 nm, etc., and the complex compound of the present invention are used in combination. An optical recording medium capable of recording with a laser beam can also be produced.
 記録層は、必要に応じてバインダーを含有してもよい。バインダーとしては、ポリビニルアルコール、ポリビニルピロリドン、ニトロセルロース、酢酸セルロース、ポリビニルブチラール、ケトン樹脂、ポリカーボネート樹脂、シリコーン樹脂等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 The recording layer may contain a binder as necessary. Examples of the binder include polyvinyl alcohol, polyvinyl pyrrolidone, nitrocellulose, cellulose acetate, polyvinyl butyral, ketone resin, polycarbonate resin, and silicone resin. You may use these individually or in mixture of 2 or more types.
 また、記録層は、記録層の安定性や耐光性向上のために、一重項酸素クエンチャーや記録感度向上剤等を含有してもよい。
 一重項酸素クエンチャーとしては、遷移金属キレート化合物(例えば、アセチルアセトネート、ビスフェニルジチオール、サリチルアルデヒドオキシム、ビスジチオ-α-ジケトン等と遷移金属とのキレート化合物等)等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。
Further, the recording layer may contain a singlet oxygen quencher, a recording sensitivity improver, or the like in order to improve the stability and light resistance of the recording layer.
Examples of the singlet oxygen quencher include transition metal chelate compounds (eg, chelate compounds of acetylacetonate, bisphenyldithiol, salicylaldehyde oxime, bisdithio-α-diketone, and the like and transition metals). You may use these individually or in mixture of 2 or more types.
 記録感度向上剤としては、遷移金属等の金属が原子、イオン、クラスター等の形で化合物に含まれるものをいい、例えば、エチレンジアミン系錯体、アゾメチン系錯体、フェニルヒドロキシアミン系錯体、フェナントロリン系錯体、ジヒドロキシアゾベンゼン系錯体、ジオキシム系錯体、ニトロソアミノフェノール系錯体、ピリジルトリアジン系錯体、アセチルアセトネート系錯体、メタロセン系錯体、ポルフィリン系錯体等の有機金属化合物等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 As the recording sensitivity improver, a compound in which a metal such as a transition metal is contained in a compound in the form of atoms, ions, clusters, etc., for example, an ethylenediamine complex, an azomethine complex, a phenylhydroxyamine complex, a phenanthroline complex, And organic metal compounds such as dihydroxyazobenzene complex, dioxime complex, nitrosoaminophenol complex, pyridyltriazine complex, acetylacetonate complex, metallocene complex and porphyrin complex. You may use these individually or in mixture of 2 or more types.
 本発明の光記録媒体の記録層の厚みは、1nm~5μmが好ましく、5~100nmがより好ましく、15~60nmが更に好ましい。
 記録層は、真空蒸着法、スパッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等の公知の薄膜形成法で形成することができるが、量産性、コスト面からスピンコート法が好ましい。スピンコート法により記録層を形成する場合、適切な膜厚を得るために、本発明の錯化合物の濃度を0.3~2.5重量%に調整した溶液を用いることが好ましく、回転数を500~10,000rpmにするのが好ましい。スピンコート法により溶液を塗布した後、加熱、減圧乾燥、溶媒蒸気への曝露等の処理を行ってもよい。
The thickness of the recording layer of the optical recording medium of the present invention is preferably 1 nm to 5 μm, more preferably 5 to 100 nm, and further preferably 15 to 60 nm.
The recording layer can be formed by a known thin film forming method such as a vacuum deposition method, a sputtering method, a doctor blade method, a cast method, a spin coating method, or an immersion method, but the spin coating method is preferable from the viewpoint of mass productivity and cost. . When the recording layer is formed by spin coating, it is preferable to use a solution in which the concentration of the complex compound of the present invention is adjusted to 0.3 to 2.5% by weight in order to obtain an appropriate film thickness. The speed is preferably 500 to 10,000 rpm. After applying the solution by a spin coating method, treatment such as heating, drying under reduced pressure, or exposure to solvent vapor may be performed.
 溶液を塗布することにより記録層を形成する場合(例えば、ドクターブレード法、キャスト法、スピンコート法、浸漬法等)に用いる溶液の溶媒としては、基板および記録層を塗布する前に基板上に形成した層(例えば、反射層等)を侵さない溶媒であればよく、特に限定されない。例えば、ジアセトンアルコール、3-ヒドロキシ-3-メチル-2-ブタノン等のケトンアルコール系溶媒、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル等のセロソルブ系溶媒、n-ヘキサン、n-オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン、n-ブチルシクロヘキサン、tert-ブチルシクロヘキサン、シクロオクタン等の炭化水素系溶媒、ジイソプロピルエーテル、ジブチルエーテル等のエーテル系溶媒、2,2,3,3-テトラフルオロプロパノール(TFP)、オクタフルオロペンタノール、ヘキサフルオロブタノール等のフルオロアルキルアルコール系溶媒、乳酸メチル、乳酸エチル、イソ酪酸メチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒等が挙げられる。これらは単独でまたは2種以上を混合して用いてもよい。 When a recording layer is formed by applying a solution (for example, doctor blade method, cast method, spin coating method, dipping method, etc.), the solvent of the solution used on the substrate before applying the substrate and the recording layer is as follows. There is no particular limitation as long as it is a solvent that does not attack the formed layer (for example, a reflective layer). For example, ketone alcohol solvents such as diacetone alcohol and 3-hydroxy-3-methyl-2-butanone, cellosolv solvents such as methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, n-hexane, n-octane, cyclohexane, Hydrocarbon solvents such as methylcyclohexane, ethylcyclohexane, dimethylcyclohexane, n-butylcyclohexane, tert-butylcyclohexane, cyclooctane, ether solvents such as diisopropyl ether and dibutyl ether, 2,2,3,3-tetrafluoropropanol (TFP), fluoroalkyl alcohol solvents such as octafluoropentanol, hexafluorobutanol, methyl lactate, ethyl lactate, methyl isobutyrate, propylene glycol mono Ester solvents such as chill ether acetate. You may use these individually or in mixture of 2 or more types.
 本発明の光記録媒体の基板は、レーザー光による記録再生のため、表面上に螺旋状に形成される案内溝が形成されているものが好ましい。基板としては、狭トラックピッチである微細な溝を形成しやすいものが好ましく、具体的には、ガラス、プラスチック等が挙げられる。プラスチックとしては、アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ニトロセルロース、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、エポキシ樹脂、脂環式ポリオレフィン樹脂等が挙げられるが、高生産性、コスト、耐吸湿性等の点からポリカーボネート樹脂であるのが好ましい。 The substrate of the optical recording medium of the present invention is preferably such that a guide groove formed in a spiral shape is formed on the surface for recording / reproduction with a laser beam. As the substrate, those which can easily form fine grooves having a narrow track pitch are preferable, and specific examples thereof include glass and plastic. Examples of plastics include acrylic resin, methacrylic resin, polycarbonate resin, vinyl chloride resin, vinyl acetate resin, nitrocellulose, polyester resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, epoxy resin, and alicyclic polyolefin resin. However, a polycarbonate resin is preferable from the viewpoint of high productivity, cost, moisture absorption resistance, and the like.
 基板は前記のプラスチックを射出成形して作製するのが好ましい。射出成形により基板を作製する方法としては、案内溝が形成されたNi等の金属からなるスタンパーを用いる方法等が挙げられる。
 該スタンパーを作製するための原盤は、例えば、以下のようにして作製される。円盤状のガラス基板の表面を平滑になるよう研磨する。その基板上に所望の溝深さに応じて厚さを調整したフォトレジストを塗布する。次いで青紫色レーザー光よりも短い波長のレーザー光または電子ビームを用いてフォトレジストを露光し、現像を行うことにより、案内溝が形成された原盤を作製する。
 次いで、この原盤表面にNi等の導電膜を真空製膜し、メッキ工程を経て、案内溝が形成されたNi等の金属からなるスタンパーを作製する。このスタンパーを用いて前記のプラスチックを射出成形することにより、表面上に案内溝が形成された基板を作製する。
The substrate is preferably produced by injection molding the plastic. Examples of the method for producing the substrate by injection molding include a method using a stamper made of a metal such as Ni in which a guide groove is formed.
The master for producing the stamper is produced, for example, as follows. Polish the surface of the disk-shaped glass substrate to be smooth. A photoresist whose thickness is adjusted according to a desired groove depth is applied on the substrate. Next, the photoresist is exposed using a laser beam or an electron beam having a wavelength shorter than that of the blue-violet laser beam and developed, thereby producing a master having a guide groove.
Next, a conductive film such as Ni is vacuum-deposited on the surface of the master, and a stamper made of a metal such as Ni in which a guide groove is formed is produced through a plating process. A substrate having guide grooves formed on the surface is produced by injection molding the plastic using this stamper.
 該案内溝としては、凹凸の頂点面と底辺面の高低差(溝深さ)は15~80nmが好ましく、25~50nmがより好ましい。凸部と凹部の幅の比率としては40%:60%~60%:40%(凸部:凹部)の範囲であるのが好ましい。
 反射層は金属であるのが好ましい。金属としては、金、銀、アルミニウムまたはそれらの合金等が挙げられるが、550nm以下の波長のレーザー光に対する反射率や表面の平滑性の点から、銀または銀を主成分とする合金が好ましい。該銀を主成分とする合金は銀を90%程度以上含むものが好ましく、銀以外の成分としてCu、Pd、Ni、Si、Au、Al、Ti、Zn、Zr、Nb、BiおよびMoの群から選ばれる1種類以上を含むものが好ましい。反射層は、例えば、蒸着法、スパッタリング法(例えば、DCスパッタリング法等)、イオンプレーティング法等によって基板上に形成することができる。記録再生特性を向上させるため、または反射率を調整する等の目的で、反射層と記録層との間に中間層を設けてもよい。中間層としては、具体的には金属、金属酸化物、金属窒化物等が挙げられる。反射層の膜厚は5~300nmが好ましく、20~100nmがより好ましい。
As the guide groove, the height difference (groove depth) between the top and bottom surfaces of the irregularities is preferably 15 to 80 nm, and more preferably 25 to 50 nm. The ratio of the width of the convex portion to the concave portion is preferably in the range of 40%: 60% to 60%: 40% (convex portion: concave portion).
The reflective layer is preferably a metal. Examples of the metal include gold, silver, aluminum, and alloys thereof. From the viewpoint of reflectance with respect to laser light having a wavelength of 550 nm or less and surface smoothness, silver or an alloy containing silver as a main component is preferable. The alloy containing silver as a main component preferably contains about 90% or more of silver, and as a component other than silver, a group of Cu, Pd, Ni, Si, Au, Al, Ti, Zn, Zr, Nb, Bi and Mo What contains 1 or more types chosen from is preferable. The reflective layer can be formed on the substrate by, for example, vapor deposition, sputtering (eg, DC sputtering), ion plating, or the like. An intermediate layer may be provided between the reflective layer and the recording layer for the purpose of improving the recording / reproducing characteristics or adjusting the reflectance. Specific examples of the intermediate layer include metals, metal oxides, and metal nitrides. The thickness of the reflective layer is preferably 5 to 300 nm, more preferably 20 to 100 nm.
 透明保護層としては、記録再生時に使用するレーザー光に対して吸収を有しないか、わずかな吸収しか有しないものが好ましく、屈折率の実数部が比較的大きく、1.5~2.0前後の値を有するものが好ましい。透明保護層としては、具体的には金属酸化物、金属窒化物、金属硫化物およびこれらの混合物等が挙げられる。
 透明保護層の厚さは、5~50nmが好ましい。保護層の厚さが5nm以上の場合には、記録層に変形を生じさせて形成した記録マークがこの記録マーク間の未記録部分と明確に分離できるためより良好な信号が得られる。また、保護層の厚さが50nm以下の場合には、透明保護層の変形が生じやすいためより良好な信号が得られる。透明保護層はスパッタリング法(例えば、RFスパッタリング法等)等によって記録層の上に形成することができる。透明保護層をスパッタリング法で形成する際に用いるターゲット材としては、ZnS-SiO、酸化インジウムスズ(ITO)等が挙げられる。
The transparent protective layer preferably has no or only slight absorption with respect to the laser beam used at the time of recording and reproduction, and the real part of the refractive index is relatively large, about 1.5 to 2.0. What has the value of is preferable. Specific examples of the transparent protective layer include metal oxides, metal nitrides, metal sulfides, and mixtures thereof.
The thickness of the transparent protective layer is preferably 5 to 50 nm. When the thickness of the protective layer is 5 nm or more, a recording signal formed by deforming the recording layer can be clearly separated from an unrecorded portion between the recording marks, so that a better signal can be obtained. Further, when the thickness of the protective layer is 50 nm or less, the transparent protective layer is easily deformed, so that a better signal can be obtained. The transparent protective layer can be formed on the recording layer by sputtering (for example, RF sputtering). Examples of the target material used when forming the transparent protective layer by the sputtering method include ZnS—SiO 2 and indium tin oxide (ITO).
 カバー層は、例えば、表面に記録再生レーザー光に対して透明、かつ、粘着力のある接着層を有する厚さ約0.1mmのポリカーボネート樹脂製のシートを用い、接着層を介してシートを透明保護層に加圧接着することにより、透明保護層の上に形成することができる。接着層としては、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。カバー層は紫外線硬化樹脂を用いて形成することもでき、該紫外線硬化樹脂としては、接着層と同様に、情報記録の際に記録層および透明保護層の変形を阻害しないものが好ましい。
 カバー層の上にハードコートを形成することが好ましい。
The cover layer is made of, for example, a polycarbonate resin sheet having a thickness of about 0.1 mm and having an adhesive layer that is transparent to the recording / reproducing laser beam on the surface, and the sheet is transparent through the adhesive layer. By pressure-bonding to the protective layer, it can be formed on the transparent protective layer. The adhesive layer is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording. The cover layer can also be formed using an ultraviolet curable resin, and the ultraviolet curable resin is preferably one that does not hinder the deformation of the recording layer and the transparent protective layer during information recording, like the adhesive layer.
It is preferable to form a hard coat on the cover layer.
 本発明の光記録媒体は本発明の錯化合物を含有することから、記録時に使用するレーザー光の波長は350~530nmが好ましい。一般的に、記録時に使用するレーザー光の波長が短いほど高密度な記録が可能となる。
 レーザー光の具体例としては、例えば、中心波長が405nm、410nm等である青紫色レーザー光、中心波長が515nmである青緑色の高出力半導体レーザー光等が挙げられ、中でも中心波長が405nmである青緑色の高出力半導体レーザー光が好ましい。
 基本発振波長が740~960nmである連続発振可能な半導体レーザー光、半導体レーザー光によって励起されかつ基本発振波長が740~960nmである連続発振可能な固体レーザー光等を、第二高調波発生素子(SHG)により波長変換することによって得られる光を用いてもよい。SHGとしては、反射対称性を欠くピエゾ素子であればいかなるものでもよいが、KDP(KHPO)、ADP(NHPO)、BNN(BaNaNb15)、KN(KNbO)、LBO(LiB)、化合物半導体等が好ましい。
Since the optical recording medium of the present invention contains the complex compound of the present invention, the wavelength of the laser beam used during recording is preferably 350 to 530 nm. In general, the shorter the wavelength of laser light used for recording, the higher the density recording possible.
Specific examples of the laser light include, for example, blue-violet laser light having a center wavelength of 405 nm, 410 nm, etc., a blue-green high-power semiconductor laser light having a center wavelength of 515 nm, and the center wavelength is 405 nm. Blue-green high-power semiconductor laser light is preferred.
A semiconductor laser beam capable of continuous oscillation having a fundamental oscillation wavelength of 740 to 960 nm, a solid laser beam capable of continuous oscillation having a fundamental oscillation wavelength of 740 to 960 nm that is excited by the semiconductor laser beam, etc. Light obtained by wavelength conversion by SHG) may be used. As SHG, any piezoelectric element lacking reflection symmetry may be used, but KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ), BNN (Ba 2 NaNb 5 O 15 ), KN ( KNbO 3 ), LBO (LiB 3 O 5 ), compound semiconductors and the like are preferable.
 SHGにより波長変換することによって得られる光(第二高調波)の具体例としては、基本発振波長が860nmである半導体レーザー光を波長変換した430nm光、基本発振波長が860nmである半導体レーザー励起の固体レーザー光を波長変換した430nm光等が挙げられる。
 本発明の光記録媒体はBDであるのが好ましい。BDは波長405nmの青紫色レーザーを使用し、対物レンズのNAを0.85とすることによりレーザースポット径を小さくして、より高密度の情報を記録する光記録媒体である。BD-Rでは基板上に反射層と、記録層と、透明保護層と、基板よりも薄いカバー層とが順次積層されている。カバー層側から青紫色レーザー光を照射して記録再生を行う。
Specific examples of light (second harmonic) obtained by wavelength conversion by SHG include 430 nm light obtained by wavelength conversion of semiconductor laser light having a fundamental oscillation wavelength of 860 nm, and semiconductor laser excitation with fundamental oscillation wavelength of 860 nm. Examples thereof include 430 nm light obtained by wavelength conversion of solid laser light.
The optical recording medium of the present invention is preferably a BD. BD is an optical recording medium that uses a blue-violet laser with a wavelength of 405 nm and records NA with a smaller laser spot diameter by setting the NA of the objective lens to 0.85. In the BD-R, a reflective layer, a recording layer, a transparent protective layer, and a cover layer thinner than the substrate are sequentially laminated on the substrate. Recording and reproduction is performed by irradiating the cover layer side with a blue-violet laser beam.
 以下、実施例および試験例により、本発明をさらに具体的に説明する。
 略号の説明を、以下に示す。
TFP:2,2,3,3-テトラフルオロプロパノール
DMSO:ジメチルスルホキシド
DBU:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン
Hereinafter, the present invention will be described more specifically with reference to examples and test examples.
The abbreviations are described below.
TFP: 2,2,3,3-tetrafluoropropanol DMSO: dimethyl sulfoxide DBU: 1,8-diazabicyclo [5.4.0] undec-7-ene
[化合物(I)の原料の製造]
 「Bioorganic and Medicinal Chemistry Letters」,2007年,第17巻,p.1189-1192に記載の方法に準じて、フェニルヒドラジンと4-メトキシベンゾイル酢酸エチルを反応させることにより3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンを得た。3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンの製造方法と同様にして、1-フェニル-3-(トリフルオロメチル)-5-ピラゾロン、3-メチル-1-フェニル-5-ピラゾロン、3-イソプロピル-1-フェニル-5-ピラゾロン、1,3-ジフェニル-5-ピラゾロンおよび1-フェニル-3-プロピル-5-ピラゾロンを得た。
[Production of raw material for compound (I)]
“Bioorganic and Medicinal Chemistry Letters”, 2007, Vol. 17, p. In accordance with the method described in 1189-1192, phenylhydrazine and ethyl 4-methoxybenzoyl acetate were reacted to obtain 3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone. In the same manner as in the production method of 3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone, 1-phenyl-3- (trifluoromethyl) -5-pyrazolone, 3-methyl-1-phenyl-5- Pyrazolone, 3-isopropyl-1-phenyl-5-pyrazolone, 1,3-diphenyl-5-pyrazolone and 1-phenyl-3-propyl-5-pyrazolone were obtained.
 「Heterocycles」,2006年,第68巻,p.1825-1835に記載の方法に準じて、3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンとオルト酢酸トリメチルを反応させることにより4-アセチル-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンを得た。4-アセチル-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンの製造方法と同様にして、4-アセチル-1-フェニル-3-(トリフルオロメチル)-5-ピラゾロン、4-アセチル-3-メチル-1-フェニル-5-ピラゾロン、4-アセチル-3-イソプロピル-1-フェニル-5-ピラゾロン、4-アセチル-1,3-ジフェニル-5-ピラゾロンおよび4-アセチル-1-フェニル-3-プロピル-5-ピラゾロンを得た。 “Heterocycles”, 2006, Vol. 68, p. In accordance with the method described in 1825-1835, 4-acetyl-3- (4-methoxyphenyl) -1 was obtained by reacting 3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone with trimethyl orthoacetate. -Phenyl-5-pyrazolone was obtained. In the same manner as in the production method of 4-acetyl-3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone, 4-acetyl-1-phenyl-3- (trifluoromethyl) -5-pyrazolone, 4- Acetyl-3-methyl-1-phenyl-5-pyrazolone, 4-acetyl-3-isopropyl-1-phenyl-5-pyrazolone, 4-acetyl-1,3-diphenyl-5-pyrazolone and 4-acetyl-1- Phenyl-3-propyl-5-pyrazolone was obtained.
 「Heterocycles」,2003年,第61巻,p.197-224に記載の方法に準じて、N,N-ジメチルホルムアミドジメチルアセタールと1,3-ジフェニル-5-ピラゾロンを反応させることにより4-(N,N-ジメチルアミノメチレン)-1,3-ジフェニル-5-ピラゾロンを得た。4-(N,N-ジメチルアミノメチレン)-1,3-ジフェニル-5-ピラゾロンの製造方法と同様にして、4-(N,N-ジメチルアミノメチレン)-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロンを得た。 “Heterocycles”, 2003, Vol. 61, p. In accordance with the method described in 197-224, 4- (N, N-dimethylaminomethylene) -1,3-reacted by reacting N, N-dimethylformamide dimethyl acetal with 1,3-diphenyl-5-pyrazolone. Diphenyl-5-pyrazolone was obtained. In the same manner as the production method of 4- (N, N-dimethylaminomethylene) -1,3-diphenyl-5-pyrazolone, 4- (N, N-dimethylaminomethylene) -3- (4-methoxyphenyl)- 1-Phenyl-5-pyrazolone was obtained.
 「Journal of Organic Chemisty」,1999年,第64巻,p.5644-5649に記載の方法に準じて、2-クロロピリミジンとヒドラジン水和物とを反応させることにより2-ヒドラジノピリミジンを得た。2-ヒドラジノピリミジンの製造方法と同様にして、5-ヒドラジノ-1-フェニル-1H-テトラゾールを得た。 “Journal of Organic Chemistry”, 1999, Vol. 64, p. 2-Hydrazinopyrimidine was obtained by reacting 2-chloropyrimidine with hydrazine hydrate according to the method described in 5644-5649. In the same manner as the production method of 2-hydrazinopyrimidine, 5-hydrazino-1-phenyl-1H-tetrazole was obtained.
 「Journal of the American Chemical Society」,1953年,第75巻,p.712に記載の方法に準じて2-クロロベンゾオキサゾールとヒドラジン水和物とを反応させることにより2-ヒドラジノベンゾオキサゾールを得た。 "Journal of the American Chemical Society", 1953, Vol. 75, p. 2-Hydrazinobenzoxazole was obtained by reacting 2-chlorobenzoxazole with hydrazine hydrate according to the method described in 712.
 「Bioorganic and Medicinal Chemistry」,2003年,第11巻,p.1381-1387に記載の方法に準じて4-(N,N-ジメチルアミノ)安息香酸エチルとヒドラジン水和物とを反応させることにより4-(N,N-ジメチルアミノ)ベンゾヒドラジドを得た。4-(N,N-ジメチルアミノ)ベンゾヒドラジドの製造方法と同様にして、3-(1-プロピルインドール)カルボヒドラジドを得た。 “Bioorganic and Medicinal Chemistry”, 2003, Vol. 11, p. 4- (N, N-dimethylamino) benzohydrazide was obtained by reacting ethyl 4- (N, N-dimethylamino) benzoate with hydrazine hydrate according to the method described in 1381-1387. 3- (1-Propylindole) carbohydrazide was obtained in the same manner as the production method of 4- (N, N-dimethylamino) benzohydrazide.
[第4級アンモニウム塩の製造]
 「Journal of Materials Chemistry」,2006年,第16巻,p.345-347に記載の方法に準じて、1,1’-ビス(2,4-ジニトロフェニル)-4,4’-ビピリジニウムジクロリドと4-フェノキシアニリンとを反応させることにより1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリドを得た。1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリドの製法方法と同様にして、1,1’-ビス[4-(N,N-ジメチルアミノ)フェニル]-4,4’-ビピリジニウムジクロリド、1,1’-ビス(4-メトキシフェニル)-4,4’-ビピリジニウムジクロリド、1,1’-ビス(4-ベンゾイルフェニル)-4,4’-ビピリジニウムジクロリド、1,1’-ビス(3-フルオロフェニル)-4,4’-ビピリジニウムジクロリド、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド、および1,1’-ビス(3-メトキシフェニル)-4,4’-ビピリジニウムジクロリドを得た。
[Production of quaternary ammonium salt]
“Journal of Materials Chemistry”, 2006, Vol. 16, p. In accordance with the method described in 345-347, 1,1′-bis (2,4-dinitrophenyl) -4,4′-bipyridinium dichloride is reacted with 4-phenoxyaniline. (4-Phenoxyphenyl) -4,4′-bipyridinium dichloride was obtained. In the same manner as the method for producing 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride, 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4, 4′-bipyridinium dichloride, 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride, 1,1′-bis (4-benzoylphenyl) -4,4′-bipyridinium dichloride, 1, 1'-bis (3-fluorophenyl) -4,4'-bipyridinium dichloride, 1,1'-bis [4- (trifluoromethoxy) phenyl] -4,4'-bipyridinium dichloride, and 1,1'- Bis (3-methoxyphenyl) -4,4′-bipyridinium dichloride was obtained.
[化合物(I)の製造]
合成例1:化合物(I-1)の製造
 4-ベンゾイル-3-メチル-1-フェニル-5-ピラゾロン(東京化成工業株式会社製)1.00g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.71g、酢酸0.22gおよびメタノール15mlを混合し、50℃で1時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-1)1.36g(収率86%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:1.41(3H,s),2.92(6H,s),6.62(2H,d,J=8.7Hz),7.13-7.68(10H,m),7.98(2H,d,J=8.7Hz),10.56(1H,s).
[Production of Compound (I)]
Synthesis Example 1: Production of Compound (I-1) 4-Benzoyl-3-methyl-1-phenyl-5-pyrazolone (Tokyo Chemical Industry Co., Ltd.) 1.00 g, 4- (N, N-dimethylamino) benzo 0.71 g of hydrazide, 0.22 g of acetic acid and 15 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 1.36 g (yield 86%) of compound (I-1).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.41 (3H, s), 2.92 (6H, s), 6.62 (2H, d, J = 8.7 Hz), 7 .13-7.68 (10H, m), 7.98 (2H, d, J = 8.7 Hz), 10.56 (1H, s).
合成例2:化合物(I-2)の製造
 4-ベンゾイル-3-メチル-1-フェニル-5-ピラゾロン(東京化成工業株式会社製)5.00g、5-ヒドラジノ-1-フェニル-1H-テトラゾール3.16g、酢酸1.08gおよびメタノール50mlを混合し、50℃で4時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-2)6.68g(収率85%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:1.70(3H,s),7.15-8.00(15H,m),9.85(1H,s).
Synthesis Example 2: Production of Compound (I-2) 4-benzoyl-3-methyl-1-phenyl-5-pyrazolone (Tokyo Chemical Industry Co., Ltd.) 5.00 g, 5-hydrazino-1-phenyl-1H-tetrazole 3.16 g, 1.08 g of acetic acid and 50 ml of methanol were mixed and stirred at 50 ° C. for 4 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 6.68 g (yield 85%) of compound (I-2).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.70 (3H, s), 7.15-8.00 (15H, m), 9.85 (1H, s).
合成例3:化合物(I-3)の製造
 4-アセチル-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロン2.00g、5-ヒドラジノ-1-フェニル-1H-テトラゾール1.14g、酢酸0.39gおよびメタノール20mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-3)1.81g(収率62%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:2.08(3H,s),3.82(3H,s),7.05(2H,d,J=8.5Hz),7.18(1H,t,J=7.6Hz),7.41-7.70(9H,m),8.02(2H,d,J=7.8Hz),10.02(1H,s).
Synthesis Example 3: Production of Compound (I-3) 4-acetyl-3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone 2.00 g, 5-hydrazino-1-phenyl-1H-tetrazole 1.14 g Then, 0.39 g of acetic acid and 20 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 1.81 g (yield 62%) of compound (I-3).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.08 (3H, s), 3.82 (3H, s), 7.05 (2H, d, J = 8.5 Hz), 7 .18 (1H, t, J = 7.6 Hz), 7.41-7.70 (9H, m), 8.02 (2H, d, J = 7.8 Hz), 10.02 (1H, s) .
合成例4:化合物(I-4)の製造
 4-アセチル-3-メチル-1-フェニル-5-ピラゾロン0.50g、2-ヒドラジノベンゾチアゾール(東京化成工業株式会社製)0.38g、酢酸1mlおよびメタノール15mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-4)0.52g(収率62%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:2.35(3H,s),2.54(3H,s),7.05-7.15(3H,m),7.29(1H,t,J=7.3Hz),7.40(2H,t,J=7.6Hz),7.73(1H,d,J=7.8Hz),8.01(2H,d,J=8.8Hz),11.98(1H,bs).
Synthesis Example 4: Production of Compound (I-4) 4-acetyl-3-methyl-1-phenyl-5-pyrazolone 0.50 g, 2-hydrazinobenzothiazole (Tokyo Chemical Industry Co., Ltd.) 0.38 g, acetic acid 1 ml and 15 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.52 g (yield 62%) of compound (I-4).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.35 (3H, s), 2.54 (3H, s), 7.05-7.15 (3H, m), 7.29 (1H, t, J = 7.3 Hz), 7.40 (2H, t, J = 7.6 Hz), 7.73 (1H, d, J = 7.8 Hz), 8.01 (2H, d, J = 8.8 Hz), 11.98 (1 H, bs).
合成例5:化合物(I-5)の製造
 4-アセチル-1-フェニル-3-(トリフルオロメチル)-5-ピラゾロン1.00g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.66g、酢酸0.22gおよびメタノール15mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-5)1.30g(収率82%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:3.02(6H,s),3.18(3H,s),6.79(2H,d,J=8.8Hz),7.29(1H,t,J=7.3Hz),7.47-7.51(2H,m),7.80(2H,d,J=8.8Hz),7.95(2H,d,J=7.8Hz),11.26(1H,bs).
Synthesis Example 5 Production of Compound (I-5) 4-acetyl-1-phenyl-3- (trifluoromethyl) -5-pyrazolone 1.00 g, 4- (N, N-dimethylamino) benzohydrazide 0.66 g , Acetic acid 0.22 g and methanol 15 ml were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 1.30 g (yield 82%) of compound (I-5).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.02 (6H, s), 3.18 (3H, s), 6.79 (2H, d, J = 8.8 Hz), 7 .29 (1H, t, J = 7.3 Hz), 7.47-7.51 (2H, m), 7.80 (2H, d, J = 8.8 Hz), 7.95 (2H, d, J = 7.8 Hz), 11.26 (1H, bs).
合成例6:化合物(I-6)の製造
 4-アセチル-3-イソプロピル-1-フェニル-5-ピラゾロン1.00g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.73g、酢酸0.25gおよびメタノール10mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-6)1.15g(収率69%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:1.29(6H,d,J=6.6Hz),2.45(3H,s),3.15-3.22(1H,m),3.31(6H,s),6.78(2H,d,J=9.0Hz),7.14(1H,t,J=7.3Hz),7.38-7.43(2H,m),7.79(2H,d,J=9.0Hz),8.01(2H,d,J=7.6Hz),10.86(1H,s),12.84(1H,bs).
Synthesis Example 6 Production of Compound (I-6) 1.00 g of 4-acetyl-3-isopropyl-1-phenyl-5-pyrazolone, 0.73 g of 4- (N, N-dimethylamino) benzohydrazide, 0. 25 g and 10 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 1.15 g (yield 69%) of compound (I-6).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.29 (6H, d, J = 6.6 Hz), 2.45 (3H, s), 3.15-3.22 (1H, m), 3.31 (6H, s), 6.78 (2H, d, J = 9.0 Hz), 7.14 (1H, t, J = 7.3 Hz), 7.38-7.43 ( 2H, m), 7.79 (2H, d, J = 9.0 Hz), 8.01 (2H, d, J = 7.6 Hz), 10.86 (1H, s), 12.84 (1H, bs).
合成例7:化合物(I-7)の製造
 4-アセチル-1,3-ジフェニル-5-ピラゾロン1.00g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.65g、酢酸0.22gおよびメタノール10mlを混合し、50℃で1.5時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-7)0.92g(収率58%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:2.05(3H,s),3.00(6H,s),6.76(2H,d,J=9.0Hz),7.18(1H,t,J=7.3Hz),7.41-7.45(2H,m),7.49-7.56(5H,m),7.77(2H,d,J=9.0Hz),8.05(2H,d,J=7.6Hz),10.93(1H,s),12.82(1H,bs).
Synthesis Example 7 Production of Compound (I-7) 1.00 g of 4-acetyl-1,3-diphenyl-5-pyrazolone, 0.65 g of 4- (N, N-dimethylamino) benzohydrazide, 0.22 g of acetic acid and 10 ml of methanol was mixed and stirred at 50 ° C. for 1.5 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.92 g of Compound (I-7) (yield 58%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.05 (3H, s), 3.00 (6H, s), 6.76 (2H, d, J = 9.0 Hz), 7 .18 (1H, t, J = 7.3 Hz), 7.41-7.45 (2H, m), 7.49-7.56 (5H, m), 7.77 (2H, d, J = 9.0 Hz), 8.05 (2H, d, J = 7.6 Hz), 10.93 (1 H, s), 12.82 (1 H, bs).
合成例8:化合物(I-8)の製造
 4-(N,N-ジメチルアミノメチレン)-1,3-ジフェニル-5-ピラゾロン1.00g、2-ヒドラジノベンゾオキサゾール0.52g、酢酸0.21gおよびメタノール10mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-8)0.88g(収率64%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:7.07-7.12(1H,m),7.19-7.21(2H,m),7.44-7.53(7H,m),7.79(2H,d,J=6.8Hz),8.11(2H,d,J=8.1Hz),8.29(1H,s),11.92(1H,bs).
Synthesis Example 8 Production of Compound (I-8) 4- (N, N-dimethylaminomethylene) -1,3-diphenyl-5-pyrazolone 1.00 g, 2-hydrazinobenzoxazole 0.52 g, acetic acid 0. 21 g and 10 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.88 g of Compound (I-8) (yield 64%).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 7.07-7.12 (1H, m), 7.19-7.21 (2H, m), 7.44-7.53 ( 7H, m), 7.79 (2H, d, J = 6.8 Hz), 8.11 (2H, d, J = 8.1 Hz), 8.29 (1H, s), 11.92 (1H, bs).
合成例9:化合物(I-9)の製造
 4-(N,N-ジメチルアミノメチレン)-1,3-ジフェニル-5-ピラゾロン0.70g、2-ヒドラジノピリミジン0.27g、酢酸0.15gおよびメタノール7mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水14mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比2:1)で洗浄後、乾燥することにより化合物(I-9)0.77g(収率90%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:7.39-7.53(7H,m),7.73-7.76(2H,m),8.09(2H,d,J=7.8Hz),8.21(1H,s),8.51(2H,d,J=4.9Hz),10.52(1H,bs).
Synthesis Example 9 Production of Compound (I-9) 4- (N, N-dimethylaminomethylene) -1,3-diphenyl-5-pyrazolone 0.70 g, 2-hydrazinopyrimidine 0.27 g, acetic acid 0.15 g And 7 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, 14 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give compound (I-9). ) 0.77 g (yield 90%) was obtained.
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 7.39-7.53 (7H, m), 7.73-7.76 (2H, m), 8.09 (2H, d, J = 7.8 Hz), 8.21 (1 H, s), 8.51 (2 H, d, J = 4.9 Hz), 10.52 (1 H, bs).
合成例10:化合物(I-10)の製造
 4-アセチル-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロン1.00g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.58g、酢酸0.20gおよびメタノール7mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-10)0.94g(収率62%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:2.07(3H,s),3.00(6H,s),3.82(3H,s),6.76(2H,d,J=9.0Hz),7.05(2H,d,J=8.5Hz),7.15-7.19(1H,m),7.40-7.45(2H,m),7.47(2H,d,J=8.5Hz),7.77(2H,d,J=9.0Hz),8.04(2H,d,J=7.6Hz),10.90(1H,s),12.81(1H,bs).
Synthesis Example 10 Production of Compound (I-10) 1.00 g of 4-acetyl-3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone, 4- (N, N-dimethylamino) benzohydrazide 58 g, 0.20 g of acetic acid and 7 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.94 g (yield 62%) of Compound (I-10).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.07 (3H, s), 3.00 (6H, s), 3.82 (3H, s), 6.76 (2H, d , J = 9.0 Hz), 7.05 (2H, d, J = 8.5 Hz), 7.15-7.19 (1H, m), 7.40-7.45 (2H, m), 7 .47 (2H, d, J = 8.5 Hz), 7.77 (2H, d, J = 9.0 Hz), 8.04 (2H, d, J = 7.6 Hz), 10.90 (1H, s), 12.81 (1H, bs).
合成例11:化合物(I-11)の製造
 4-(N,N-ジメチルアミノメチレン)-3-(4-メトキシフェニル)-1-フェニル-5-ピラゾロン1.00g、2-ヒドラジノピリミジン0.34g、酢酸0.19gおよびメタノール7mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-11)0.88g(収率73%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:6.89-6.93(1H,m),7.04-7.09(2H,m),7.17(1H,t,J=7.3Hz),7.40-7.46(2H,m),7.68(2H,d,J=8.8Hz),8.04-8.09(2H,m),8.16(1H,s),8.50-8.52(2H,m),10.43(1H,bs).
Synthesis Example 11 Production of Compound (I-11) 4- (N, N-dimethylaminomethylene) -3- (4-methoxyphenyl) -1-phenyl-5-pyrazolone 1.00 g, 2-hydrazinopyrimidine 0 .34 g, acetic acid 0.19 g and methanol 7 ml were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to give 0.88 g (yield 73%) of compound (I-11).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 6.89-6.93 (1H, m), 7.04-7.09 (2H, m), 7.17 (1H, t, J = 7.3 Hz), 7.40-7.46 (2H, m), 7.68 (2H, d, J = 8.8 Hz), 8.04-8.09 (2H, m), 8. 16 (1H, s), 8.50-8.52 (2H, m), 10.43 (1H, bs).
合成例12:化合物(I-12)の製造
 4-アセチル-1-フェニル-3-プロピル-5-ピラゾロン0.80g、4-(N,N-ジメチルアミノ)ベンゾヒドラジド0.59g、酢酸0.20gおよびメタノール7mlを混合し、50℃で1時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-12)0.98g(収率73%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:1.00(3H,t,J=7.4Hz),1.67-1.73(2H,m),2.41(3H,s),2.70(2H,t,J=7.6Hz),3.00(6H,s),6.76(2H,d,J=8.8Hz),7.11-7.14(1H,m),7.37-7.41(2H,t,J=7.6Hz),7.78(2H,d,J=8.8Hz),7.99(2H,d,J=7.8Hz),10.86(1H,s),12.64(1H,bs).
Synthesis Example 12 Production of Compound (I-12) 0.80 g of 4-acetyl-1-phenyl-3-propyl-5-pyrazolone, 0.59 g of 4- (N, N-dimethylamino) benzohydrazide, 0. 20 g and 7 ml of methanol were mixed and stirred at 50 ° C. for 1 hour. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.98 g (yield 73%) of Compound (I-12).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.00 (3H, t, J = 7.4 Hz), 1.67-1.73 (2H, m), 2.41 (3H, s), 2.70 (2H, t, J = 7.6 Hz), 3.00 (6H, s), 6.76 (2H, d, J = 8.8 Hz), 7.11-7.14 ( 1H, m), 7.37-7.41 (2H, t, J = 7.6 Hz), 7.78 (2H, d, J = 8.8 Hz), 7.99 (2H, d, J = 7) .8 Hz), 10.86 (1 H, s), 12.64 (1 H, bs).
合成例13:化合物(I-13)の製造
 4-アセチル-1-フェニル-3-プロピル-5-ピラゾロン1.00g、3-(1-プロピルインドール)カルボヒドラジド0.89g、酢酸0.25gおよびメタノール10mlを混合し、50℃で2時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより化合物(I-13)1.45g(収率80%)を得た。
H-NMR(400MHz)δ(DMSO-d)ppm:0.88(3H,t,J=7.3Hz),1.01(3H,t,J=7.3Hz),1.68-1.74(2H,m),1.80-1.86(2H,m),2.46(3H,s),2.71(2H,t,J=7.3Hz),4.23(2H,t,J=7.1Hz),7.11-7.15(1H,m),7.14-7.26(2H,m),7.37-7.42(2H,m),7.61(1H,d,J=8.0Hz),8.00(2H,d,J=7.6Hz),8.10(1H,d,J=7.6Hz),8.19(1H,s),10.69(1H,s),12.71(1H,bs).
Synthesis Example 13 Production of Compound (I-13) 1.00 g of 4-acetyl-1-phenyl-3-propyl-5-pyrazolone, 0.89 g of 3- (1-propylindole) carbohydrazide, 0.25 g of acetic acid and 10 ml of methanol was mixed and stirred at 50 ° C. for 2 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to give 1.45 g (yield 80%) of compound (I-13).
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 0.88 (3H, t, J = 7.3 Hz), 1.01 (3H, t, J = 7.3 Hz), 1.68- 1.74 (2H, m), 1.80-1.86 (2H, m), 2.46 (3H, s), 2.71 (2H, t, J = 7.3 Hz), 4.23 ( 2H, t, J = 7.1 Hz), 7.11-7.15 (1H, m), 7.14-7.26 (2H, m), 7.37-7.42 (2H, m), 7.61 (1H, d, J = 8.0 Hz), 8.00 (2H, d, J = 7.6 Hz), 8.10 (1H, d, J = 7.6 Hz), 8.19 (1H , S), 10.69 (1H, s), 12.71 (1H, bs).
[錯化合物の製造]
(実施例1)
 化合物(I-1)1.00g、DBU 0.69gおよびメタノール10mlの混合物に酢酸コバルト(II)4水和物0.28gを加え、空気雰囲気下、混合物を50℃で3時間攪拌した。反応混合物を室温まで冷却し、反応混合物に水10mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比1:1)で洗浄後、乾燥することにより錯化合物(1)1.09g(収率88%)を得た。
吸収極大波長(TFP):374.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.51(6H,s),1.56-1.87(3H,m),1.87(1H,m),2.59(1H,s),2.82(12H,s),3.20-3.49(11H,m),6.46(4H,d,J=8.8Hz),7.02(2H,t,J=7.3Hz),7.23(4H,t,J=7.8Hz),7.44(4H,d,J=8.8Hz),7.59-7.76(14H,m).
[Production of complex compounds]
Example 1
To a mixture of 1.00 g of compound (I-1), 0.69 g of DBU and 10 ml of methanol was added 0.28 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and dried to give the complex compound (1). 1.09 g (yield 88%) was obtained.
Absorption maximum wavelength (TFP): 374.5nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.51 (6H, s), 1.56-1.87 (3H, m), 1.87 (1H, m), 2.59 (1H, s), 2.82 (12H, s), 3.20-3.49 (11H, m), 6.46 (4H, d, J = 8.8 Hz), 7.02 (2H, t , J = 7.3 Hz), 7.23 (4H, t, J = 7.8 Hz), 7.44 (4H, d, J = 8.8 Hz), 7.59-7.76 (14H, m) .
(実施例2)
 錯化合物(1)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(2)0.26g(収率80%)を得た。
吸収極大波長(TFP):376.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.50(12H,s),2.82(24H,s),6.45(8H,d,J=8.8Hz),7.02(4H,t,J=7.6Hz),7.16-7.32(14H,m),7.44(8H,d,J=8.8Hz),7.52-7.74(36H,m),7.96(4H,bs),9.01(4H,bs),9.62(4H,bs).
(Example 2)
0.30 g of complex compound (1), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.26 g of complex compound (2) (yield 80%).
Absorption maximum wavelength (TFP): 376.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.50 (12H, s), 2.82 (24H, s), 6.45 (8H, d, J = 8.8 Hz), 7 .02 (4H, t, J = 7.6 Hz), 7.16-7.32 (14H, m), 7.44 (8H, d, J = 8.8 Hz), 7.52-7.74 ( 36H, m), 7.96 (4H, bs), 9.01 (4H, bs), 9.62 (4H, bs).
(実施例3)
 錯化合物(1)0.50g、1,1’-ビス[4-(N,N-ジメチルアミノ)フェニル)-4,4‘-ビピリジニウムジクロリド0.11gおよびメタノール15mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(3)0.48g(収率92%)を得た。
吸収極大波長(TFP):375.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.50(12H,s),2.82(24H,s),3.00(12H,s),6.45(8H,d,J=9.0Hz),7.02(8H,m),7.21-7.25(8H,m),7.44(8H,d,J=9.0Hz),7.60-7.75(32H,m),8.61(4H,bs),9.20(4H,bs).
(Example 3)
Complex compound (1) 0.50 g, 1,1′-bis [4- (N, N-dimethylamino) phenyl) -4,4′-bipyridinium dichloride 0.11 g and methanol 15 ml were mixed and mixed at 50 ° C. with 3 Stir for hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.48 g of complex compound (3) (yield 92%).
Absorption maximum wavelength (TFP): 375.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.50 (12H, s), 2.82 (24H, s), 3.00 (12H, s), 6.45 (8H, d , J = 9.0 Hz), 7.02 (8H, m), 7.21-7.25 (8H, m), 7.44 (8H, d, J = 9.0 Hz), 7.60-7 .75 (32H, m), 8.61 (4H, bs), 9.20 (4H, bs).
(実施例4)
 化合物(I-2)2.50g、ジイソプロピルエチルアミン1.48gおよびアセトニトリル25mlの混合物に酢酸コバルト(II)4水和物0.71gを加え、空気雰囲気下、混合物を70℃で3時間攪拌した。反応混合物を室温まで冷却し、反応混合物に水37mlを加え、析出した固体を濾取し、水とアセトニトリルの混合溶媒(体積比3:2)で洗浄後、乾燥することにより錯化合物(4)2.84g(収率94%)を得た。
吸収極大波長(TFP):359.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.22-1.25(15H,m),1.52(6H,s),3.12(2H,m),3.59(2H,m),7.06(2H,t,J=7.6Hz),7.18(2H,t,J=7.6Hz),7.25-7.35(8H,m),7.62-7.78(18H,m),8.13(1H,bs).
Example 4
To a mixture of 2.50 g of compound (I-2), 1.48 g of diisopropylethylamine and 25 ml of acetonitrile was added 0.71 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 70 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 37 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and acetonitrile (volume ratio 3: 2), and dried to give a complex compound (4). 2.84 g (94% yield) was obtained.
Absorption maximum wavelength (TFP): 359.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.22-1.25 (15H, m), 1.52 (6H, s), 3.12 (2H, m), 3.59 (2H, m), 7.06 (2H, t, J = 7.6 Hz), 7.18 (2H, t, J = 7.6 Hz), 7.25-7.35 (8H, m), 7 .62-7.78 (18H, m), 8.13 (1H, bs).
(実施例5)
 錯化合物(4)0.30g、1,1’-ビス(4-メトキシフェニル)-4,4’-ビピリジニウムジクロリド0.06gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(5)0.28g(収率82%)を得た。
吸収極大波長(TFP):356.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.50(12H,s),3.32(6H,bs),7.04(4H,t,J=7.3Hz),7.17(4H,t,J=7.3Hz),7.23-7.34(16H,m),7.61-7.76(40H,m),7.95(4H,bs),9.04(4H,bs),9.68(4H,bs).
(Example 5)
0.30 g of complex compound (4), 0.06 g of 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.28 g of complex compound (5) (yield 82%).
Absorption maximum wavelength (TFP): 356.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.50 (12H, s), 3.32 (6H, bs), 7.04 (4H, t, J = 7.3 Hz), 7 .17 (4H, t, J = 7.3 Hz), 7.23-7.34 (16H, m), 7.61-7.76 (40H, m), 7.95 (4H, bs), 9 .04 (4H, bs), 9.68 (4H, bs).
(実施例6)
 錯化合物(4)0.30g、1,1’-ビス(4-ベンゾイルフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(6)0.30g(収率90%)を得た。
吸収極大波長(TFP):355.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.51(12H,s),7.06(4H,t,J=7.3Hz),7.18(4H,t,J=7.3Hz),7.25-7.34(16H,m),7.63-7.83(50H,m),8.13(4H,bs),9.09(4H,bs),9.77(4H,bs).
(Example 6)
0.30 g of complex compound (4), 0.08 g of 1,1′-bis (4-benzoylphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.30 g of complex compound (6) (yield 90%).
Absorption maximum wavelength (TFP): 355.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.51 (12H, s), 7.06 (4H, t, J = 7.3 Hz), 7.18 (4H, t, J = 7.3 Hz), 7.25-7.34 (16 H, m), 7.63-7.83 (50 H, m), 8.13 (4 H, bs), 9.09 (4 H, bs), 9 .77 (4H, bs).
(実施例7)
 錯化合物(4)0.30g、1,1’-ビス(3-フルオロフェニル)-4,4’-ビピリジニウムジクロリド0.06gおよびエタノール9mlを混合し、70℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(7)0.26g(収率85%)を得た。
吸収極大波長(TFP):357.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.51(12H,s),7.05(4H,t,J=7.3Hz),7.18(4H,t,J=7.3Hz),7.25-7.35(16H,m),7.62-7.93(44H,m),9.08(4H,bs),9.70(4H,bs).
FAB-MS[マトリックス:m-ニトロベンジルアルコール]:(+)346,(-)927
元素分析:実測値(%)C:64.0,H:3.9,N:21.6
(Example 7)
0.30 g of Complex Compound (4), 0.06 g of 1,1′-bis (3-fluorophenyl) -4,4′-bipyridinium dichloride and 9 ml of ethanol were mixed and stirred at 70 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.26 g of complex compound (7) (yield 85%).
Absorption maximum wavelength (TFP): 357.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.51 (12H, s), 7.05 (4H, t, J = 7.3 Hz), 7.18 (4H, t, J = 7.3 Hz), 7.25-7.35 (16H, m), 7.62-7.93 (44H, m), 9.08 (4H, bs), 9.70 (4H, bs).
FAB-MS [matrix: m-nitrobenzyl alcohol]: (+) 346, (−) 927
Elemental analysis: measured value (%) C: 64.0, H: 3.9, N: 21.6
(実施例8)
 化合物(I-3)0.50g、ジイソプロピルエチルアミン0.28gおよびアセトニトリル5mlの混合物に酢酸コバルト(II)4水和物0.13gを加え、空気雰囲気下、混合物を70℃で3時間攪拌した。反応混合物を室温まで冷却し、反応混合物に水8mlを加え、析出した固体を濾取し、水とアセトニトリルの混合溶媒(体積比3:2)で洗浄後、乾燥することにより錯化合物(8)0.58g(収率96%)を得た。
吸収極大波長(TFP):350.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.22-1.25(15H,m),2.75(6H,s),3.12(2H,m),3.60(2H,m),3.87(6H,s),7.04-7.22(12H,m),7.52-7.63(12H,m),8.04-8.10(5H,m).
(Example 8)
To a mixture of 0.50 g of compound (I-3), 0.28 g of diisopropylethylamine and 5 ml of acetonitrile was added 0.13 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 70 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 8 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and acetonitrile (volume ratio 3: 2), and dried to give the complex compound (8). 0.58 g (yield 96%) was obtained.
Absorption maximum wavelength (TFP): 350.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.22-1.25 (15H, m), 2.75 (6H, s), 3.12 (2H, m), 3.60 (2H, m), 3.87 (6H, s), 7.04-7.22 (12H, m), 7.52-7.63 (12H, m), 8.04-8.10 (5H , M).
(実施例9)
 錯化合物(8)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびエタノール10mlを混合し、70℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(9)0.31g(収率98%)を得た。
吸収極大波長(TFP):357.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.74(12H,s),3.86(12H,s),7.02-7.30(34H,m),7.49-7.54(20H,m),7.62(8H,d,J=7.8Hz),8.03-8.05(12H,m),9.01(4H,bs),9.62(4H,bs).
Example 9
0.30 g of complex compound (8), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 10 ml of ethanol were mixed and stirred at 70 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.31 g of complex compound (9) (yield 98%).
Absorption maximum wavelength (TFP): 357.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.74 (12H, s), 3.86 (12H, s), 7.02-7.30 (34H, m), 7.49 −7.54 (20H, m), 7.62 (8H, d, J = 7.8 Hz), 8.03 to 8.05 (12H, m), 9.01 (4H, bs), 9.62 (4H, bs).
(実施例10)
 化合物(I-4)0.20g、DBU 0.17gおよびメタノール4mlの混合物に酢酸コバルト(II)4水和物0.07gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水8mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比2:1)で洗浄後、乾燥することにより錯化合物(10)0.22g(収率86%)を得た。
吸収極大波長(TFP):375.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.59-1.63(6H,m),1.88-191(2H,m),2.40(6H,s),2.60-2.63(2H,m),3.11(6H,s),3.23(2H,t,J=5.6Hz),3.45(2H,t,J=5.6Hz),3.51-3.54(2H,m),6.60-6,63(2H,m),6.78(2H,d,J=8.0Hz),6.92-6.96(2H,m),6.99-7.03(2H,m),7.15(2H,d,J=7.6Hz),7.24(4H,t,J=8.0Hz),7.65(4H,d,J=8.5Hz).
(Example 10)
0.07 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.20 g of compound (I-4), 0.17 g of DBU and 4 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 8 ml of water was added to the reaction mixture, and the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (10). 0.22 g (yield 86%) was obtained.
Absorption maximum wavelength (TFP): 375.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.59-1.63 (6H, m), 1.88-191 (2H, m), 2.40 (6H, s), 2 .60-2.63 (2H, m), 3.11 (6H, s), 3.23 (2H, t, J = 5.6 Hz), 3.45 (2H, t, J = 5.6 Hz) 3.51-3.54 (2H, m), 6.60-6, 63 (2H, m), 6.78 (2H, d, J = 8.0 Hz), 6.92-6.96 ( 2H, m), 6.99-7.03 (2H, m), 7.15 (2H, d, J = 7.6 Hz), 7.24 (4H, t, J = 8.0 Hz), 7. 65 (4H, d, J = 8.5 Hz).
(実施例11)
 錯化合物(10)0.20g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル)-4,4’-ビピリジニウムジクロリド0.06gおよびメタノール6mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(11)0.19g(収率82%)を得た。
吸収極大波長(TFP):374.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.39(12H,s),3.10(12H,s),6.58-6.62(4H,m),6.76(4H,d,J=7.8Hz),6.90-6.95(4H,m),6.97-7.02(4H,m),7.14(4H,d,J=7.6Hz),7.20-7.24(8H,m),7.64(8H,d,J=7.8Hz),7.85(4H,bs),8.10(4H,bs),9.07(4H,bs),9.68(4H,bs).
(Example 11)
Complex compound (10) 0.20 g, 1,1′-bis [4- (trifluoromethoxy) phenyl) -4,4′-bipyridinium dichloride 0.06 g and methanol 6 ml were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.19 g of complex compound (11) (yield 82%).
Absorption maximum wavelength (TFP): 374.5nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.39 (12H, s), 3.10 (12H, s), 6.58-6.62 (4H, m), 6.76 (4H, d, J = 7.8 Hz), 6.90-6.95 (4H, m), 6.97-7.02 (4H, m), 7.14 (4H, d, J = 7. 6 Hz), 7.20-7.24 (8 H, m), 7.64 (8 H, d, J = 7.8 Hz), 7.85 (4 H, bs), 8.10 (4 H, bs), 9 .07 (4H, bs), 9.68 (4H, bs).
(実施例12)
 化合物(I-5)0.50g、DBU 0.35gおよびメタノール7mlの混合物に酢酸コバルト(II)4水和物0.14gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(12)0.42g(収率79%)を得た。
吸収極大波長(TFP):363.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.60-1.64(6H,m),1.88-1.92(2H,m),2.60-2.63(2H,m),2.88(12H,s),3.19(6H,s),3.24(2H,t,J=5.8Hz),3.46(2H,t,J=5.8Hz),3.52-3.54(2H,m),6.56(4H,d,J=8.8Hz),7.15-7.22(6H,m),7.32(4H,d,J=8.1Hz),7.69(4H,d,J=8.8Hz).
(Example 12)
0.14 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.50 g of compound (I-5), 0.35 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.42 g (yield 79%) of the complex compound (12).
Absorption maximum wavelength (TFP): 363.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.60-1.64 (6H, m), 1.88-1.92 (2H, m), 2.60-2.63 ( 2H, m), 2.88 (12H, s), 3.19 (6H, s), 3.24 (2H, t, J = 5.8 Hz), 3.46 (2H, t, J = 5. 8Hz), 3.52-3.54 (2H, m), 6.56 (4H, d, J = 8.8 Hz), 7.15-7.22 (6H, m), 7.32 (4H, d, J = 8.1 Hz), 7.69 (4H, d, J = 8.8 Hz).
(実施例13)
 錯化合物(12)0.25g、1,1’-ビス(4-メトキシフェニル)-4,4’-ビピリジニウムジクロリド0.06gおよびメタノール7mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(13)0.24g(収率78%)を得た。
吸収極大波長(TFP):364.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.88(24H,s),3.18(12H,s),3.91(6H,bs),6.55(8H,d,J=9.0Hz),7.14-7.22(12H,m),7.31-7.33(12H,m),7.69(8H,d,J=9.0Hz),7.92(4H,bs),8.98(4H,bs),9.60(4H,bs).
(Example 13)
0.25 g of Complex Compound (12), 0.06 g of 1,1′-bis (4-methoxyphenyl) -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g of complex compound (13) (yield 78%).
Absorption maximum wavelength (TFP): 364.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.88 (24H, s), 3.18 (12H, s), 3.91 (6H, bs), 6.55 (8H, d , J = 9.0 Hz), 7.14-7.22 (12H, m), 7.31-7.33 (12H, m), 7.69 (8H, d, J = 9.0 Hz), 7 .92 (4H, bs), 8.98 (4H, bs), 9.60 (4H, bs).
(実施例14)
 錯化合物(12)0.30g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド0.09gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(14)0.30g(収率75%)を得た。
吸収極大波長(TFP):360.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.88(24H,s),3.18(12H,s),6.55(8H,d,J=8.8Hz),7.14-7.22(12H,m),7.32(8H,d,J=7.3Hz),7.69(8H,d,J=8.8Hz),7.88(4H,bs),8.12(4H,bs),9.08(4H,bs),9.70(4H,bs).
(Example 14)
Complex compound (12) 0.30 g, 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride 0.09 g and methanol 9 ml were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.30 g (yield 75%) of the complex compound (14).
Absorption maximum wavelength (TFP): 360.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.88 (24H, s), 3.18 (12H, s), 6.55 (8H, d, J = 8.8 Hz), 7 .14-7.22 (12H, m), 7.32 (8H, d, J = 7.3 Hz), 7.69 (8H, d, J = 8.8 Hz), 7.88 (4H, bs) , 8.12 (4H, bs), 9.08 (4H, bs), 9.70 (4H, bs).
(実施例15)
 化合物(I-6)0.50g、DBU 0.37gおよびメタノール7mlの混合物に酢酸コバルト(II)4水和物0.15gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(15)0.57g(収率93%)を得た。
吸収極大波長(TFP):366.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.35(6H,d,J=6.8Hz),1.38(6H,d,J=6.6Hz),1.59-1.64(6H,m),1.86-1.90(2H,m),2.50-2.59(2H,m),2.87(12H,s),3.22(2H,t,J=5.6Hz),3.26(6H,s),3.44(2H,t,J=5.8Hz),3.50-3.55(4H,m),6.54(4H,d,J=9.0Hz),6.93-6.97(2H,m),7.10-7.14(4H,m),7.53(4H,d,J=7.8Hz),7.68(4H,d,J=9.0Hz).
(Example 15)
0.15 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.50 g of compound (I-6), 0.37 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.57 g (yield 93%) of the complex compound (15).
Absorption maximum wavelength (TFP): 366.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.35 (6H, d, J = 6.8 Hz), 1.38 (6H, d, J = 6.6 Hz), 1.59— 1.64 (6H, m), 1.86-1.90 (2H, m), 2.50-2.59 (2H, m), 2.87 (12H, s), 3.22 (2H, t, J = 5.6 Hz), 3.26 (6H, s), 3.44 (2H, t, J = 5.8 Hz), 3.50-3.55 (4H, m), 6.54 ( 4H, d, J = 9.0 Hz), 6.93-6.97 (2H, m), 7.10-7.14 (4H, m), 7.53 (4H, d, J = 7.8 Hz) ), 7.68 (4H, d, J = 9.0 Hz).
(実施例16)
 錯化合物(15)0.30g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(16)0.30g(収率90%)を得た。
吸収極大波長(TFP):365.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.34-1.38(24H,m),2.86(24H,s),3.25(12H,s),3.51-3.55(4H,m),6.53(8H,d,J=9.0Hz),6.92-6.96(4H,m),7.09-7.14(8H,m),7.52(8H,d,J=7.6Hz),7.67(8H,d,J=9.0Hz),7.86(4H,bs),8.11(4H,bs),9.04(4H,bs),9.67(4H,bs).
(Example 16)
Complex compound (15) 0.30 g, 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride 0.08 g and methanol 9 ml were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.30 g (yield 90%) of the complex compound (16).
Absorption maximum wavelength (TFP): 365.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.34-1.38 (24H, m), 2.86 (24H, s), 3.25 (12H, s), 3.51 −3.55 (4H, m), 6.53 (8H, d, J = 9.0 Hz), 6.92-6.96 (4H, m), 7.09-7.14 (8H, m) 7.52 (8H, d, J = 7.6 Hz), 7.67 (8H, d, J = 9.0 Hz), 7.86 (4H, bs), 8.11 (4H, bs), 9 .04 (4H, bs), 9.67 (4H, bs).
(実施例17)
 化合物(I-7)0.30g、DBU 0.31gおよびメタノール5mlの混合物に酢酸コバルト(II)4水和物0.08gを加え、空気雰囲気下、混合物を50℃で4時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水2mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比1:2)で洗浄後、乾燥することにより錯化合物(17)0.32g(収率86%)を得た。
吸収極大波長(TFP):366.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.59-1.66(6H,m),1.87-1.91(2H,m),2.60-2.63(2H,m),2.74(6H,s),2.87(12H,s),3.23(2H,t,J=5.8Hz),3.45(2H,t,J=5.6Hz),3.51-3,53(2H,m),6.54(4H,d,J=9.0Hz),7.00-7.05(2H,m),7.19-7.23(4H,m),7.49-7.53(2H,m),7.54-7.58(4H,m),7.61-7.63(8H,m),7.68(4H,d,J=9.0Hz).
(Example 17)
0.08 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.30 g of compound (I-7), 0.31 g of DBU and 5 ml of methanol, and the mixture was stirred at 50 ° C. for 4 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 2 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 2), and then dried to give the complex compound (17). 0.32 g (yield 86%) was obtained.
Absorption maximum wavelength (TFP): 366.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.59-1.66 (6H, m), 1.87-1.91 (2H, m), 2.60-2.63 ( 2H, m), 2.74 (6H, s), 2.87 (12H, s), 3.23 (2H, t, J = 5.8 Hz), 3.45 (2H, t, J = 5. 6 Hz), 3.51-3, 53 (2H, m), 6.54 (4H, d, J = 9.0 Hz), 7.00-7.05 (2H, m), 7.19-7. 23 (4H, m), 7.49-7.53 (2H, m), 7.54-7.58 (4H, m), 7.61-7.63 (8H, m), 7.68 ( 4H, d, J = 9.0 Hz).
(実施例18)
 錯化合物(17)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(18)0.24g(収率73%)を得た。
吸収極大波長(TFP):367.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.73(12H,s),2.85(24H,s),6.52(8H,d,J=9.0Hz),7.00-7.04(4H,m),7.14-7.22(12H,m),7.26-7.30(6H,m),7.47-7.61(32H,m),7.66(8H,d,J=9.0Hz),7.95(4H,bs),8.98(4H,bs),9.56(4H,bs).
(Example 18)
0.30 g of Complex Compound (17), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g of complex compound (18) (yield 73%).
Absorption maximum wavelength (TFP): 367.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.73 (12H, s), 2.85 (24H, s), 6.52 (8H, d, J = 9.0 Hz), 7 .00-7.04 (4H, m), 7.14-7.22 (12H, m), 7.26-7.30 (6H, m), 7.47-7.61 (32H, m) 7.66 (8H, d, J = 9.0 Hz), 7.95 (4H, bs), 8.98 (4H, bs), 9.56 (4H, bs).
(実施例19)
 錯化合物(17)0.25g、1,1’-ビス[4-(N,N-ジメチルアミノ)フェニル]-4,4’-ビピリジニウムジクロリド0.06gおよびメタノール7mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(19)0.21g(収率79%)を得た。
吸収極大波長(TFP):366.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.72(12H,s),2.85(24H,s),3.05(12H,bs),6.52(8H,d,J=8.3Hz),6.95(4H,bs),7.00-7.21(4H,m),7.17-7.21(8H,m),7.49-7.61(28H,m),7.66(8H,d,J=8.3Hz),7.73(4H,bs),8.80(4H,bs),9.44(4H,bs).
(Example 19)
0.25 g of complex compound (17), 0.06 g of 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and mixed at 50 ° C. with 3 Stir for hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g (yield 79%) of the complex compound (19).
Absorption maximum wavelength (TFP): 366.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.72 (12H, s), 2.85 (24H, s), 3.05 (12H, bs), 6.52 (8H, d , J = 8.3 Hz), 6.95 (4H, bs), 7.00-7.21 (4H, m), 7.17-7.21 (8H, m), 7.49-7.61. (28H, m), 7.66 (8H, d, J = 8.3 Hz), 7.73 (4H, bs), 8.80 (4H, bs), 9.44 (4H, bs).
(実施例20)
 錯化合物(17)0.25g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド0.07gおよびメタノール8mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(20)0.21g(収率75%)を得た。
吸収極大波長(TFP):357.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.74(12H,s),2.86(24H,s),6.54(8H,d,J=8.3Hz),7.01-7.05(4H,m),7.19-7.23(8H,m),7.48-7.62(28H,m),7.67(8H,d,J=8.3Hz),7.84(4H,bs),8.09(4H,bs),9.05(4H,bs),9.67(4H,bs).
(Example 20)
0.25 g of the complex compound (17), 0.07 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 8 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g of complex compound (20) (yield 75%).
Absorption maximum wavelength (TFP): 357.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.74 (12H, s), 2.86 (24H, s), 6.54 (8H, d, J = 8.3 Hz), 7 .01-7.05 (4H, m), 7.19-7.23 (8H, m), 7.48-7.62 (28H, m), 7.67 (8H, d, J = 8. 3 Hz), 7.84 (4H, bs), 8.09 (4H, bs), 9.05 (4H, bs), 9.67 (4H, bs).
(実施例21)
 化合物(I-8)0.50g、DBU 0.58gおよびメタノール8mlの混合物に酢酸コバルト(II)4水和物0.16gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水4mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比1:2)で洗浄後、乾燥することにより錯化合物(21)0.59g(収率93%)を得た。
吸収極大波長(TFP):368.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.58(6H,m),1.88(2H,m),2.59(2H,m),3.22(2H,m),3.43(2H,m),3.50(2H,m),6.66(2H,m),6.74(2H,d,J=6.8Hz),6.92(2H,m),6.97(2H,d,J=7.1Hz),7.06(2H,m),7.27(4H,m),7.50-7.53(2H,m),7.61(4H,m),7.78-7.84(8H,m),8.71(2H,s).
(Example 21)
To a mixture of 0.50 g of compound (I-8), 0.58 g of DBU and 8 ml of methanol was added 0.16 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 4 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 2), and dried to give a complex compound (21). 0.59 g (yield 93%) was obtained.
Absorption maximum wavelength (TFP): 368.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.58 (6H, m), 1.88 (2H, m), 2.59 (2H, m), 3.22 (2H, m ), 3.43 (2H, m), 3.50 (2H, m), 6.66 (2H, m), 6.74 (2H, d, J = 6.8 Hz), 6.92 (2H, m), 6.97 (2H, d, J = 7.1 Hz), 7.06 (2H, m), 7.27 (4H, m), 7.50-7.53 (2H, m), 7 .61 (4H, m), 7.78-7.84 (8H, m), 8.71 (2H, s).
(実施例22)
 錯化合物(21)0.25g、1,1’-ビス(3-メトキシフェニル)-4,4’-ビピリジニウムジクロリド0.06gおよびメタノール7mlを混合し、50℃で4時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(22)0.21g(収率78%)を得た。
吸収極大波長(TFP):368.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:3.91(6H,s),6.66(4H,t,J=7.6Hz),6.74(4H,d,J=7.8Hz),6.89-6.93(4H,m),6.97(4H,d,J=7.8Hz),7.03-7.08(4H,m),7.24-7.29(8H,m),7.36(4H,bs),7.48-7.52(4H,m),7.58-7.62(8H,m),7.70(4H,bs),7.78(8H,d,J=7.8Hz),7.82(8H,d,J=7.1Hz),8.71(4H,s),9.04(4H,bs),9.69(4H,bs).
(Example 22)
0.25 g of the complex compound (21), 0.06 g of 1,1′-bis (3-methoxyphenyl) -4,4′-bipyridinium dichloride and 7 ml of methanol were mixed and stirred at 50 ° C. for 4 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.21 g of complex compound (22) (yield 78%).
Absorption maximum wavelength (TFP): 368.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.91 (6H, s), 6.66 (4H, t, J = 7.6 Hz), 6.74 (4H, d, J = 7.8 Hz), 6.89-6.93 (4H, m), 6.97 (4H, d, J = 7.8 Hz), 7.03-7.08 (4H, m), 7.24- 7.29 (8H, m), 7.36 (4H, bs), 7.48-7.52 (4H, m), 7.58-7.62 (8H, m), 7.70 (4H, bs), 7.78 (8H, d, J = 7.8 Hz), 7.82 (8H, d, J = 7.1 Hz), 8.71 (4H, s), 9.04 (4H, bs) , 9.69 (4H, bs).
(実施例23)
 化合物(I-9)0.30g、DBU 0.38gおよびメタノール5mlの混合物に酢酸コバルト(II)4水和物0.10gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水10mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比2:1)で洗浄後、乾燥することにより錯化合物(23)0.33g(収率86%)を得た。
吸収極大波長(TFP):358.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.59(6H,m),1.87(2H,m),2.58(2H,m),3.22(2H,m),3.42(2H,m),3.48(2H,m),5.86(2H,bs),7.04(4H,m),7.23(4H,m),7.50(2H,m),7.60(4H,m),7.72-7.74(4H,m),7.84(6H,m),8.63(2H,s).
(Example 23)
To a mixture of 0.30 g of compound (I-9), 0.38 g of DBU and 5 ml of methanol was added 0.10 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (23). 0.33 g (yield 86%) was obtained.
Absorption maximum wavelength (TFP): 358.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.59 (6H, m), 1.87 (2H, m), 2.58 (2H, m), 3.22 (2H, m ), 3.42 (2H, m), 3.48 (2H, m), 5.86 (2H, bs), 7.04 (4H, m), 7.23 (4H, m), 7.50 (2H, m), 7.60 (4H, m), 7.72-7.74 (4H, m), 7.84 (6H, m), 8.63 (2H, s).
(実施例24)
 錯化合物(23)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.10gおよびメタノール10mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、反応混合物に水5mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比2:1)で洗浄後、乾燥することにより錯化合物(24)0.26g(収率75%)を得た。
吸収極大波長(TFP):358.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:5.86(4H,s),7.03(8H,m),7.17(4H,d,J=7.8Hz),7.22(8H,t,J=8.0Hz),7.28-7.36(6H,m),7.48-7.54(8H,m),7.57-7.60(8H,m),7.73(8H,d,J=7.8Hz),7.84(12H,d,J=6.8Hz),7.95(4H,bs),8.64(4H,s),9.03(4H,s),9.65(4H,s).
(Example 24)
0.30 g of Complex Compound (23), 0.10 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 10 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, 5 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 2: 1), and dried to give a complex compound (24). 0.26 g (yield 75%) was obtained.
Absorption maximum wavelength (TFP): 358.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 5.86 (4H, s), 7.03 (8H, m), 7.17 (4H, d, J = 7.8 Hz), 7 .22 (8H, t, J = 8.0 Hz), 7.28-7.36 (6H, m), 7.48-7.54 (8H, m), 7.57-7.60 (8H, m), 7.73 (8H, d, J = 7.8 Hz), 7.84 (12H, d, J = 6.8 Hz), 7.95 (4H, bs), 8.64 (4H, s) 9.03 (4H, s), 9.65 (4H, s).
(実施例25)
 化合物(I-10)0.70g、DBU 0.69gおよびメタノール7mlの混合物に酢酸コバルト(II)4水和物0.19gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(25)0.75g(収率87%)を得た。
吸収極大波長(TFP):362.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.59-1.67(6H,m),1.88-1.92(2H,m),2.60-2.63(2H,m),2.76(6H,s),2.87(12H,s),3.24(2H,t,J=5.8Hz),3.46(2H,t,J=5.8Hz),3.52-3.55(2H,m),3.88(6H,s),6.54(4H,d,J=9.3Hz),7.02(2H,t,J=7.3Hz),7.12(4H,d,J=8.8Hz),7.20-7.22(4H,m),7.52(4H,d,J=8.8Hz),7.61(4H,d,J=7.6Hz),7.67(4H,d,J=9.3Hz).
(Example 25)
0.19 g of cobalt (II) acetate tetrahydrate was added to a mixture of 0.70 g of compound (I-10), 0.69 g of DBU and 7 ml of methanol, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.75 g of complex compound (25) (yield 87%).
Absorption maximum wavelength (TFP): 362.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.59-1.67 (6H, m), 1.88-1.92 (2H, m), 2.60-2.63 ( 2H, m), 2.76 (6H, s), 2.87 (12H, s), 3.24 (2H, t, J = 5.8 Hz), 3.46 (2H, t, J = 5. 8Hz), 3.52-3.55 (2H, m), 3.88 (6H, s), 6.54 (4H, d, J = 9.3 Hz), 7.02 (2H, t, J = 7.3 Hz), 7.12 (4H, d, J = 8.8 Hz), 7.20-7.22 (4H, m), 7.52 (4H, d, J = 8.8 Hz), 7. 61 (4H, d, J = 7.6 Hz), 7.67 (4H, d, J = 9.3 Hz).
(実施例26)
 錯化合物(25)0.30g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド0.07gおよびメタノール8mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(26)0.29g(収率92%)を得た。
吸収極大波長(TFP):363.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:2.77(12H,s),2.86(24H,s),3.88(12H,s),6.54(8H,d,J=9.0Hz),7.02(4H,t,J=7.1Hz),7.12(8H,d,J=9.0Hz),7.19-7.21(8H,m),7.51(8H,d,J=9.0Hz),7.60(8H,d,J=7.6Hz),7.67(8H,d,J=9.0Hz),7.98(8H,bs),9.04(4H,bs),9.64(4H,bs).
(Example 26)
0.30 g of the complex compound (25), 0.07 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 8 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.29 g (yield 92%) of the complex compound (26).
Absorption maximum wavelength (TFP): 363.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 2.77 (12H, s), 2.86 (24H, s), 3.88 (12H, s), 6.54 (8H, d) , J = 9.0 Hz), 7.02 (4H, t, J = 7.1 Hz), 7.12 (8H, d, J = 9.0 Hz), 7.19-7.21 (8H, m) 7.51 (8H, d, J = 9.0 Hz), 7.60 (8H, d, J = 7.6 Hz), 7.67 (8H, d, J = 9.0 Hz), 7.98 ( 8H, bs), 9.04 (4H, bs), 9.64 (4H, bs).
(実施例27)
 化合物(I-11)0.70g、DBU 0.82gおよびメタノール5mlの混合物に酢酸コバルト(II)4水和物0.22gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水25mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比4:1)で洗浄後、乾燥することにより錯化合物(27)0.86g(収率97%)を得た。
吸収極大波長(TFP):358.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.58(6H,m),1.87(2H,m),2.58(2H,m),3.22(2H,m),3.42(2H,m),3.48(2H,m),3.86(6H,s),5.85(2H,s),7.01-7.21(12H,m),7.70-7.82(10H,m),8.60(2H,s).
(Example 27)
To a mixture of 0.70 g of compound (I-11), 0.82 g of DBU and 5 ml of methanol was added 0.22 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 25 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 4: 1), and dried to give the complex compound (27). 0.86 g (yield 97%) was obtained.
Absorption maximum wavelength (TFP): 358.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.58 (6H, m), 1.87 (2H, m), 2.58 (2H, m), 3.22 (2H, m ), 3.42 (2H, m), 3.48 (2H, m), 3.86 (6H, s), 5.85 (2H, s), 7.01-7.21 (12H, m) , 7.70-7.82 (10H, m), 8.60 (2H, s).
(実施例28)
 錯化合物(27)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(28)0.27g(収率83%)を得た。
吸収極大波長(TFP):359.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:3.86(12H,s),5.82-5.85(4H,m),6.98-7.03(8H,m),7.12-7.22(20H,m),7.28-7.30(6H,m),7.49-7.52(4H,m),7.69(8H,d,J=8.0Hz),7.75(8H,d,J=8.8Hz),7.81(4H,m),7.95(4H,bs),8.58(4H,s),9.01(4H,bs),9.64(4H,bs).
(Example 28)
0.30 g of Complex Compound (27), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.27 g (yield 83%) of the complex compound (28).
Absorption maximum wavelength (TFP): 359.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 3.86 (12H, s), 5.82-5.85 (4H, m), 6.98-7.03 (8H, m) 7.12-7.22 (20H, m), 7.28-7.30 (6H, m), 7.49-7.52 (4H, m), 7.69 (8H, d, J = 8.0 Hz), 7.75 (8H, d, J = 8.8 Hz), 7.81 (4H, m), 7.95 (4H, bs), 8.58 (4H, s), 9.01 (4H, bs), 9.64 (4H, bs).
(実施例29)
 化合物(I-12)0.80g、DBU 0.61gおよびメタノール6mlの混合物に酢酸コバルト(II)4水和物0.25gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水10mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比1:1)で洗浄後、乾燥することにより錯化合物(29)0.98g(収率99%)を得た。
吸収極大波長(TFP):364.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.05(6H,t,J=7.3Hz),1.58-1.64(6H,m),1.75-1.82(4H,m),1.84-1.88(2H,m),2.58(2H,m),2.78-2.93(16H,m),3.21(8H,m),3.41-3.43(2H,m),3.49(2H,m),6.53(4H,d,J=9.0Hz),6.92-6.96(2H,m),7.12(4H,d,J=7.6Hz),7.51(4H,d,J=7.6Hz),7.66(4H,d,J=9.0Hz).
(Example 29)
To a mixture of 0.80 g of compound (I-12), 0.61 g of DBU and 6 ml of methanol, 0.25 g of cobalt (II) acetate tetrahydrate was added, and the mixture was stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, 10 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and then dried to give the complex compound (29). 0.98 g (99% yield) was obtained.
Absorption maximum wavelength (TFP): 364.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.05 (6H, t, J = 7.3 Hz), 1.58-1.64 (6H, m), 1.75-1. 82 (4H, m), 1.84-1.88 (2H, m), 2.58 (2H, m), 2.78-2.93 (16H, m), 3.21 (8H, m) 3.41-3.43 (2H, m), 3.49 (2H, m), 6.53 (4H, d, J = 9.0 Hz), 6.92-6.96 (2H, m) 7.12 (4H, d, J = 7.6 Hz), 7.51 (4H, d, J = 7.6 Hz), 7.66 (4H, d, J = 9.0 Hz).
(実施例30)
 錯化合物(29)0.30g、1,1’-ビス[4-(N,N-ジメチルアミノ)フェニル]-4,4’-ビピリジニウムジクロリド0.07gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(30)0.24g(収率75%)を得た。
吸収極大波長(TFP):364.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.04(12H,t,J=7.3Hz),1.74-1.82(8H,m),2.76-2.94(32H,m),3.05(12H,bs),3.29(12H,s),6.52(8H,d,J=9.0Hz),6.92-6.95(8H,m),7.09-7.13(8H,m),7.50(8H,d,J=7.6Hz)),7.66(8H,d,J=9.0Hz),7.73(4H,bs),8.81(4H,bs),9.43(4H,bs).
(Example 30)
The complex compound (29) (0.30 g), 1,1′-bis [4- (N, N-dimethylamino) phenyl] -4,4′-bipyridinium dichloride (0.07 g) and methanol (9 ml) were mixed and mixed at 50 ° C. with 3 Stir for hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.24 g (yield 75%) of the complex compound (30).
Absorption maximum wavelength (TFP): 364.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.04 (12H, t, J = 7.3 Hz), 1.74-1.82 (8H, m), 2.76-2. 94 (32H, m), 3.05 (12H, bs), 3.29 (12H, s), 6.52 (8H, d, J = 9.0 Hz), 6.92-6.95 (8H, m), 7.09-7.13 (8H, m), 7.50 (8H, d, J = 7.6 Hz)), 7.66 (8H, d, J = 9.0 Hz), 7.73 (4H, bs), 8.81 (4H, bs), 9.43 (4H, bs).
(実施例31)
 錯化合物(29)0.30g、1,1’-ビス[4-(トリフルオロメトキシ)フェニル]-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(31)0.25g(収率75%)を得た。
吸収極大波長(TFP):361.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:1.04(12H,t,J=7.3Hz),1.74-1.82(8H,m),2.80-2.91(32H,m),3.20(12H,s),6.52(8H,d,J=9.0Hz),6.92-6.96(4H,m),7.09-7.13(8H,m),7.50(8H,d,J=7.6Hz),7.66(8H,d,J=9.0Hz),7.85(4H,bs),8.10(4H,bs),9.03(4H,bs),9.67(4H,bs).
(Example 31)
0.30 g of complex compound (29), 0.08 g of 1,1′-bis [4- (trifluoromethoxy) phenyl] -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. . The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.25 g of complex compound (31) (yield 75%).
Absorption maximum wavelength (TFP): 361.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 1.04 (12H, t, J = 7.3 Hz), 1.74-1.82 (8H, m), 2.80-2. 91 (32H, m), 3.20 (12H, s), 6.52 (8H, d, J = 9.0 Hz), 6.92-6.96 (4H, m), 7.09-7. 13 (8H, m), 7.50 (8H, d, J = 7.6 Hz), 7.66 (8H, d, J = 9.0 Hz), 7.85 (4H, bs), 8.10 ( 4H, bs), 9.03 (4H, bs), 9.67 (4H, bs).
(実施例32)
 化合物(I-13)1.00g、DBU 0.69gおよびメタノール7mlの混合物に酢酸コバルト(II)4水和物0.28gを加え、空気雰囲気下、混合物を50℃で3時間撹拌した。反応混合物を室温まで冷却し、反応混合物に水5mlを加え、析出した固体を濾取し、水とメタノールの混合溶媒(体積比1:1)で洗浄後、乾燥することにより錯化合物(32)1.16g(収率94%)を得た。
吸収極大波長(TFP):352.5nm
H-NMR(400MHz)δ(DMSO-d)ppm:0.71(6H,t,J=7.3Hz),1.07(6H,t,J=7.3Hz),1.59-1.68(10H,m),1.78-1.90(6H,m),2.59-2.62(2H,m),2.85-2.96(4H,m),3.23(2H,t,J=5.6Hz),3.32(6H,s),3.44(2H,t,J=5.6Hz),3.50-3.53(2H,m),4.02(4H,t,J=6.8Hz),6.91-6.94(2H,m),7.09-7.16(8H,m),7.39(2H,d,J=7.3Hz),7.56-7.58(6H,m),8.44(2H,d,J=6.6Hz).
(Example 32)
To a mixture of 1.00 g of compound (I-13), 0.69 g of DBU and 7 ml of methanol was added 0.28 g of cobalt (II) acetate tetrahydrate, and the mixture was stirred at 50 ° C. for 3 hours in an air atmosphere. The reaction mixture was cooled to room temperature, 5 ml of water was added to the reaction mixture, the precipitated solid was collected by filtration, washed with a mixed solvent of water and methanol (volume ratio 1: 1), and dried to give a complex compound (32). 1.16 g (94% yield) was obtained.
Absorption maximum wavelength (TFP): 352.5 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 0.71 (6H, t, J = 7.3 Hz), 1.07 (6H, t, J = 7.3 Hz), 1.59− 1.68 (10H, m), 1.78-1.90 (6H, m), 2.59-2.62 (2H, m), 2.85-2.96 (4H, m), 3. 23 (2H, t, J = 5.6 Hz), 3.32 (6H, s), 3.44 (2H, t, J = 5.6 Hz), 3.50-3.53 (2H, m), 4.02 (4H, t, J = 6.8 Hz), 6.91-6.94 (2H, m), 7.09-7.16 (8H, m), 7.39 (2H, d, J = 7.3 Hz), 7.56-7.58 (6H, m), 8.44 (2H, d, J = 6.6 Hz).
(実施例33)
 錯化合物(32)0.30g、1,1’-ビス(4-フェノキシフェニル)-4,4’-ビピリジニウムジクロリド0.08gおよびメタノール9mlを混合し、50℃で3時間攪拌した。反応混合物を室温まで冷却し、析出した固体を濾取し、メタノールで洗浄後、乾燥することにより錯化合物(33)0.27g(収率86%)を得た。
吸収極大波長(TFP):355.0nm
H-NMR(400MHz)δ(DMSO-d)ppm:0.69(12H,t,J=7.3Hz),1.07(12H,t,J=7.3Hz),1.60-1.67(8H,m),1.76-1.87(8H,m),2.81-2.96(8H,m),3.33(12H,s),4.00(8H,t,J=6.8Hz),6.90-6.94(4H,m),7.09-7.18(20H,m),7.29-7.33(6H,m),7.38(4H,d,J=7.6Hz),7.51-7.57(16H,m),7.93(4H,bs),8.43(4H,d,J=7.4Hz),8.93(4H,bs),9.57(4H,bs).
(Example 33)
0.30 g of Complex Compound (32), 0.08 g of 1,1′-bis (4-phenoxyphenyl) -4,4′-bipyridinium dichloride and 9 ml of methanol were mixed and stirred at 50 ° C. for 3 hours. The reaction mixture was cooled to room temperature, and the precipitated solid was collected by filtration, washed with methanol, and dried to obtain 0.27 g (yield 86%) of the complex compound (33).
Absorption maximum wavelength (TFP): 355.0 nm
1 H-NMR (400 MHz) δ (DMSO-d 6 ) ppm: 0.69 (12H, t, J = 7.3 Hz), 1.07 (12H, t, J = 7.3 Hz), 1.60- 1.67 (8H, m), 1.76-1.87 (8H, m), 2.81-2.96 (8H, m), 3.33 (12H, s), 4.00 (8H, t, J = 6.8 Hz), 6.90-6.94 (4H, m), 7.09-7.18 (20H, m), 7.29-7.33 (6H, m), 7. 38 (4H, d, J = 7.6 Hz), 7.51-7.57 (16H, m), 7.93 (4H, bs), 8.43 (4H, d, J = 7.4 Hz), 8.93 (4H, bs), 9.57 (4H, bs).
(試験例1)
-溶解性試験-
 20mgの錯化合物(1)~(33)のそれぞれに980mgのTFPを加え、室温で3分間超音波振動を加えた。20mgの錯化合物(1)~(33)が980mgのTFPに完全に溶解していることを目視により確認した。
(Test Example 1)
-Solubility test-
980 mg of TFP was added to each of 20 mg of the complex compounds (1) to (33), and ultrasonic vibration was applied at room temperature for 3 minutes. It was visually confirmed that 20 mg of complex compounds (1) to (33) were completely dissolved in 980 mg of TFP.
(試験例2)
-塗膜性試験-
 20mgの錯化合物(1)~(33)のそれぞれを980mgのTFPに溶解し、テフロン(登録商標)製フィルター(Whatman社製、孔径0.20μm)で濾過し、錯化合物(1)~(33)の溶液をそれぞれ得た。基板としてポリカーボネート樹脂製の板(太佑機材社製;直径2インチ、厚さ1mm)を用いて、ミカサ社製1H-SXを用いてスピンコート法(3000rpm、30秒間、溶液の使用量;0.25~0.30g)にて該溶液を基板上に塗布し、該基板を70℃で30分間オーブン中にて乾燥して、錯化合物の薄膜をそれぞれ得た。得られた錯化合物(1)~(33)の薄膜にはむらがなく、均質に製膜されていることを目視により確認した。
(Test Example 2)
-Coating property test-
Each of 20 mg of the complex compounds (1) to (33) was dissolved in 980 mg of TFP, and filtered through a Teflon (registered trademark) filter (Whatman, pore size 0.20 μm) to obtain the complex compounds (1) to (33). ) Solution was obtained. Using a plate made of polycarbonate resin (made by Dazai Equipment Co., Ltd .; diameter 2 inches, thickness 1 mm) as a substrate, spin coating method (3000 rpm, 30 seconds, amount of solution used) using Mikasa 1H-SX; The solution was applied onto a substrate at 25 to 0.30 g), and the substrate was dried in an oven at 70 ° C. for 30 minutes to obtain complex compound thin films, respectively. It was confirmed by visual observation that the thin films of the obtained complex compounds (1) to (33) were uniform and formed uniformly.
(試験例3)
-耐光性試験-
 基板としてポリカーボネート樹脂製の板の代わりにガラス板(太佑機材社製;2cm×2cm、厚さ2mm)を用いる以外は塗膜性試験と同様にして、錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜をそれぞれ得た。紫外線蛍光燈(スガ試験機社製、SUGA-FS40:ピーク波長313nm、照度分布282~373nm)を備えたスガ試験機社製デューパネル光コントロールウェザーメーターDPWL-5R型を用いて、該薄膜に15W/mの光量にて45℃で10時間光照射した。耐光性試験の前後の薄膜において、分光光度計を用いて紫外可視吸収スペクトルを測定した。耐光性試験前の吸収極大波長における吸光度(I )に対する耐光性試験後の吸収極大波長における吸光度(I)の比(I/I )を表3に示す。ここで、耐光性試験後の吸収極大波長は、耐光性試験後の吸収スペクトルにおける吸収極大波長を表す。I/I が大きいものほど、優れた耐光性を有することを表す。
 錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜は、それぞれ優れた耐光性を有することがわかる。
(Test Example 3)
-Light resistance test-
The complex compounds (2), (5), (5), (5), (5) and (5) were used in the same manner as in the coating property test except that a glass plate (manufactured by Dazai Equipment Co., Ltd .; 2 cm × 2 cm, thickness 2 mm) was used instead of the polycarbonate resin plate. 6), (7), (9), (19), (20), (26), (30), and (33) thin films were obtained, respectively. Using a Dew panel light control weather meter DPWL-5R manufactured by Suga Test Instruments Co., Ltd. equipped with an ultraviolet fluorescent lamp (Suga Test Instruments Co., Ltd., SUGA-FS40: peak wavelength 313 nm, illuminance distribution 282 to 373 nm) Irradiated with light of / m 2 at 45 ° C. for 10 hours. In the thin film before and after the light resistance test, an ultraviolet-visible absorption spectrum was measured using a spectrophotometer. Table 3 shows the ratio (I a / I a 0 ) of the absorbance (I a ) at the absorption maximum wavelength after the light resistance test to the absorbance (I a 0 ) at the absorption maximum wavelength before the light resistance test. Here, the absorption maximum wavelength after the light resistance test represents the absorption maximum wavelength in the absorption spectrum after the light resistance test. A larger value of I a / I a 0 represents better light resistance.
The thin films of the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) have excellent light resistance, respectively. It can be seen that
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(試験例4)
-耐水性試験-
 塗膜性試験と同様にして、錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜をそれぞれ得た。該薄膜を75℃の水に30分間浸した。耐水性試験の前後の薄膜において、分光光度計を用いて紫外可視吸収スペクトルを測定した。耐水性試験前の吸収極大波長における吸光度(I )に対する耐水性試験後の吸収極大波長における吸光度(I)の比(I/I )、および耐水性試験前後の吸収極大波長の変化[Δλmax(b)]を表4に示す。ここで、耐水性試験後の吸収極大波長は、耐水性試験後の吸収スペクトルにおける吸収極大波長を表す。I/I が1に近いものほど、また、Δλmax(b)が小さいものほど、優れた耐水性を有することを表す。
 錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜は、それぞれ優れた耐水性を有することがわかる。
(Test Example 4)
-Water resistance test-
Similar to the coating property test, the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) Each thin film was obtained. The thin film was immersed in 75 ° C. water for 30 minutes. In the thin film before and after the water resistance test, an ultraviolet-visible absorption spectrum was measured using a spectrophotometer. Absorbance at the absorption maximum wavelength before water resistance test ratio (I b 0) the absorbance at the absorption maximum wavelength after the water resistance test for (I b) (I b / I b 0), and the absorption maximum wavelength before and after the water resistance test Table 4 shows the change [Δλmax (b)]. Here, the absorption maximum wavelength after the water resistance test represents the absorption maximum wavelength in the absorption spectrum after the water resistance test. As those I b / I b 0 is close to 1, also as those Δλmax (b) is small, indicating that it has excellent water resistance.
The thin films of the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) have excellent water resistance, respectively. It can be seen that
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(試験例5)
-耐湿熱性試験-
 塗膜性試験と同様にして、錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜をそれぞれ得た。サタケ化学機械工業社製恒温恒湿槽KHWII-40HPを用いて、該薄膜を温度80℃、相対湿度80%の雰囲気に100時間曝露した。耐湿熱性試験の前後の薄膜において、分光光度計を用いて紫外可視吸収スペクトルを測定した。耐湿熱性試験前の吸収極大波長における吸光度(I )に対する耐湿熱性試験後の吸収極大波長における吸光度(I)の比(I/I )、および耐湿熱性試験前後の吸収極大波長の変化[Δλmax(c)]を表5に示す。ここで、耐湿熱性試験後の吸収極大波長は、耐湿熱性試験後の吸収スペクトルにおける吸収極大波長を表す。I/I が1に近いほど、また、Δλmax(c)が小さいほど、優れた耐湿熱性を有することを表す。
 錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の薄膜は、それぞれ優れた耐湿熱性を有することがわかる。
(Test Example 5)
-Moist heat resistance test-
Similar to the coating property test, the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) Each thin film was obtained. Using a constant temperature and humidity chamber KHWII-40HP manufactured by Satake Chemical Machinery Co., Ltd., the thin film was exposed to an atmosphere having a temperature of 80 ° C. and a relative humidity of 80% for 100 hours. In the thin film before and after the wet heat resistance test, the ultraviolet-visible absorption spectrum was measured using a spectrophotometer. Absorbance at the absorption maximum wavelength before moist heat resistance test ratio (I C 0) absorbance at the absorption maximum wavelength after wet heat resistance test for (I c) (I C / I C 0), and wet heat resistance test maximum absorption wavelength around Table 5 shows the change [Δλmax (c)]. Here, the absorption maximum wavelength after the moist heat resistance test represents the absorption maximum wavelength in the absorption spectrum after the moist heat resistance test. As I C / I C 0 is closer to 1 and Δλmax (c) is smaller, it indicates that the heat and heat resistance is excellent.
The thin films of the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30), and (33) each have excellent moisture and heat resistance. It can be seen that
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(試験例6)
-溶液中での保存安定性試験-
 13mgの錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)のそれぞれを1mlのTFPに溶解し、テフロン(登録商標)製フィルター(Whatman社製、孔径0.20μm)で濾過して、錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の溶液をそれぞれ得た。得られた溶液のそれぞれを蓋の付いた褐色瓶に移して、25℃で3日間保存した。保存安定性試験前後において、分光光度計を用いて、錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)の溶液を1250倍に希釈したものの紫外可視吸収スペクトルを測定した。保存安定性試験前の吸収極大波長における吸光度(I )に対する保存安定性試験後の吸収極大波長における吸光度(I)の比(I/I )、および保存安定性試験前後の吸収極大波長の変化[Δλmax(d)]を表6に示す。ここで、保存安定性試験後の吸収極大波長は、保存安定性試験後の吸収スペクトルにおける吸収極大波長を表す。I/I が1に近いほど、また、Δλmax(d)が小さいほど、溶液中での優れた保存安定性を有することを表す。
 錯化合物(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)は、それぞれ溶液中での優れた保存安定性を有することがわかる。
(Test Example 6)
-Storage stability test in solution-
13 mg of each of the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) was added to 1 ml of TFP. Dissolved and filtered through a Teflon (registered trademark) filter (Whatman, pore size 0.20 μm), and complex compounds (2), (5), (6), (7), (9), (19) , (20), (26), (30) and (33) were obtained, respectively. Each of the resulting solutions was transferred to a brown bottle with a lid and stored at 25 ° C. for 3 days. Before and after the storage stability test, the complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) were measured using a spectrophotometer. ) And (33) were diluted 1250 times, and an ultraviolet-visible absorption spectrum was measured. The ratio of the absorbance (I d ) at the absorption maximum wavelength after the storage stability test (I d / I d 0 ) to the absorbance (I d 0 ) at the absorption maximum wavelength before the storage stability test, and before and after the storage stability test Table 6 shows the change [Δλmax (d)] of the absorption maximum wavelength. Here, the absorption maximum wavelength after the storage stability test represents the absorption maximum wavelength in the absorption spectrum after the storage stability test. As I d / I d 0 is close to 1, also, as the Δλmax (d) is small, indicating that it has excellent storage stability in solution.
Complex compounds (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) are excellent in solution, respectively. It can be seen that it has storage stability.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(実施例34)
-記録媒体の製造-
 基板として、中央に貫通孔を有し、かつ表面にトラックピッチ0.32μm、溝幅180nm、溝深さ32nmの案内溝を有する外径120mm、厚さ1.1mmのポリカーボネート樹脂製の円盤を用いた。該基板の案内溝が形成された面の上に、スパッタリング法により40~60nmの厚さのAg合金の反射層を形成した。
 20mgの錯化合物(2)を1980mgのTFPに溶解し、テフロン(登録商標)製フィルター(Whatman社製、孔径0.20μm)で濾過して、錯化合物(2)の溶液を得た。該溶液をミカサ社製1H-SXを用いてスピンコート法(1200rpmから5000rpm、10秒間、溶液の使用量;1ml)により該反射層の上に塗布し、70℃、30分間オーブン中にて該基板を乾燥して、記録層を形成した。次いで、該記録層の上に、ZnS-SiO(組成比;ZnS/SiO=80重量%/20重量%)をターゲット材として用いたRFスパッタリング法により、10~15nmの厚さの透明保護層を形成した。次いで、該保護層の上に、リンテック社製カバーフィルム貼付装置(Opteria MODEL300m/ST)を用い、同社製カバーフィルム(D-900)を貼付けることにより、記録媒体(2)を製造した。
 錯化合物(2)を用いる代わりに、錯化合物(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)または(33)を用いる以外は、記録媒体(2)の製造法と同様にして、記録媒体(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)または(33)を製造した。
(Example 34)
-Production of recording media-
As a substrate, a polycarbonate resin disk having an outer diameter of 120 mm and a thickness of 1.1 mm having a guide hole having a through hole in the center and a track pitch of 0.32 μm, a groove width of 180 nm, and a groove depth of 32 nm on the surface is used. It was. On the surface of the substrate on which the guide groove was formed, an Ag alloy reflective layer having a thickness of 40 to 60 nm was formed by sputtering.
20 mg of complex compound (2) was dissolved in 1980 mg of TFP, and filtered through a Teflon (registered trademark) filter (Whatman, pore size 0.20 μm) to obtain a solution of complex compound (2). The solution was applied onto the reflective layer by spin coating (1200 rpm to 5000 rpm, 10 seconds, amount of solution used: 1 ml) using Mikasa 1H-SX, and the solution was applied in an oven at 70 ° C. for 30 minutes. The substrate was dried to form a recording layer. Next, a transparent protective film having a thickness of 10 to 15 nm is formed on the recording layer by RF sputtering using ZnS—SiO 2 (composition ratio: ZnS / SiO 2 = 80 wt% / 20 wt%) as a target material. A layer was formed. Next, a recording medium (2) was produced by attaching a cover film (D-900) manufactured by the company using a cover film applying apparatus (Opteria MODEL 300m / ST) manufactured by Lintec Corporation on the protective layer.
Other than using complex compound (5), (6), (7), (9), (19), (20), (26), (30) or (33) instead of using complex compound (2) Is the same as the manufacturing method of the recording medium (2), and the recording medium (5), (6), (7), (9), (19), (20), (26), (30) or (30) 33) was produced.
(試験例7)
-記録媒体の記録再生特性評価試験-
 記録媒体(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)について、記録再生装置(パルステック工業社製、ODU-1000)を用いて、記録用レーザー光の記録パワーが3~8mWの範囲で、記録パワーにおけるジッタの依存性を測定した[測定条件:波長405nm、開口数(NA)0.85、記録速度4.92m/s]。得られた記録パワーにおけるジッタの依存性において、記録パワーが3~8mWの範囲で最小のジッタをボトムジッタとした。得られたボトムジッタを表7に示す。ボトムジッタが小さいほど優れた記録再生特性を有することを表す。
 記録媒体(2)、(5)、(6)、(7)、(9)、(19)、(20)、(26)、(30)および(33)は、それぞれ優れた記録再生特性を有することがわかる。中でも、記録媒体(5)、(6)、(7)、(9)、(20)および(26)は、より優れた記録再生特性を有することがわかる。
(Test Example 7)
-Test of recording / reproduction characteristics of recording media-
Recording / reproducing apparatus (Pulstec Industrial Co., Ltd.) for recording media (2), (5), (6), (7), (9), (19), (20), (26), (30) and (33) The dependence of jitter on the recording power was measured when the recording power of the recording laser light was in the range of 3 to 8 mW (measurement conditions: wavelength 405 nm, numerical aperture (NA) 0. 85, recording speed 4.92 m / s]. With regard to the dependency of the obtained recording power on jitter, the minimum jitter in the range of 3 to 8 mW of recording power was defined as bottom jitter. Table 7 shows the obtained bottom jitter. The smaller the bottom jitter, the better the recording / reproducing characteristics.
Recording media (2), (5), (6), (7), (9), (19), (20), (26), (30), and (33) each have excellent recording / reproduction characteristics. It turns out that it has. Among these, it can be seen that the recording media (5), (6), (7), (9), (20) and (26) have more excellent recording / reproducing characteristics.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明により、優れた耐湿熱性等を有する光記録媒体に用いられる錯化合物等を提供できる。 According to the present invention, it is possible to provide a complex compound or the like used for an optical recording medium having excellent moisture and heat resistance.

Claims (14)

  1.  式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、同一または異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表し、Rは、水素原子、ヒドロキシル基、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよいアミノ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表し、Rは式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)、または式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、環Aはさらに置換基を有していてもよい)を表す]で表される化合物と、金属と、アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種と、からなる錯化合物。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 and R 3 are the same or different and each has a hydrogen atom, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Represents an aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent, R 2 May have a hydrogen atom, a hydroxyl group, a halogen atom, a nitro group, a cyano group, an amino group which may have a substituent, an alkyl group which may have a substituent, or a substituent. An alkenyl group, an alkoxyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, an alicyclic ring which may have a substituent Represents a heterocyclic group optionally having a hydrocarbon group or a substituent, and R 4 is the formula (II)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 5 has an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an aralkyl group which may have a substituent, and a substituent. An aryl group, an alicyclic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent), or a formula (III)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein ring A may further have a substituent)], a metal, an ion generated by adding one or more protons to an amine, an ammonium ion, and a A complex compound comprising one kind selected from the group consisting of quaternary ammonium ions.
  2.  Rが置換基を有していてもよいアリール基である請求項1に記載の錯化合物。 The complex compound according to claim 1, wherein R 1 is an aryl group which may have a substituent.
  3.  Rが置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基である請求項1または2に記載の錯化合物。 The complex compound according to claim 1, wherein R 2 is an alkyl group which may have a substituent or an aryl group which may have a substituent.
  4.  Rが水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいアリール基である請求項1~3のいずれかに記載の錯化合物。 The complex compound according to any one of claims 1 to 3, wherein R 3 is a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  5.  Rが式(II)である請求項1~4のいずれかに記載の錯化合物。 The complex compound according to any one of claims 1 to 4, wherein R 4 is the formula (II).
  6.  Rが置換基を有していてもよいアリール基または置換基を有していてもよい複素環基である請求項5に記載の錯化合物。 The complex compound according to claim 5, wherein R 5 is an aryl group which may have a substituent or a heterocyclic group which may have a substituent.
  7.  Rが式(III)である請求項1~4のいずれかに記載の錯化合物。 The complex compound according to any one of claims 1 to 4, wherein R 4 is the formula (III).
  8.  式(III)が式(IV)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい脂環式炭化水素基または置換基を有していてもよい複素環基を表す)で表される請求項7に記載の錯化合物。
    Formula (III) is formula (IV)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 6 has an alkyl group which may have a substituent, an aralkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. The complex compound of Claim 7 represented by the alicyclic hydrocarbon group which may be sufficient, or the heterocyclic group which may have a substituent.
  9.  金属がコバルト、ロジウム、イリジウム、アルミニウム、ガリウムまたは鉄である請求項1~8のいずれかに記載の錯化合物。 The complex compound according to any one of claims 1 to 8, wherein the metal is cobalt, rhodium, iridium, aluminum, gallium or iron.
  10.  金属がコバルトである請求項1~8のいずれかに記載の錯化合物。 The complex compound according to any one of claims 1 to 8, wherein the metal is cobalt.
  11.  アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種が、アミンに1つ以上のプロトンが付加することにより生じるイオンである請求項1~10のいずれかに記載の錯化合物。 One selected from the group consisting of an ion generated by adding one or more protons to an amine, an ammonium ion and a quaternary ammonium ion is an ion generated by adding one or more protons to the amine Item 11. The complex compound according to any one of Items 1 to 10.
  12.  アミンが置換基を有していてもよい脂肪族第3アミンである請求項11に記載の錯化合物。 The complex compound according to claim 11, wherein the amine is an aliphatic tertiary amine which may have a substituent.
  13.  アミンに1つ以上のプロトンが付加することにより生じるイオン、アンモニウムイオンおよび第4級アンモニウムイオンからなる群から選ばれる1種が、第4級アンモニウムイオンである請求項1~10のいずれかに記載の錯化合物。 The quaternary ammonium ion is one selected from the group consisting of an ion generated by adding one or more protons to an amine, an ammonium ion, and a quaternary ammonium ion. Complex compounds.
  14.  請求項1~13のいずれかに記載の錯化合物を含有する光記録媒体。 An optical recording medium containing the complex compound according to any one of claims 1 to 13.
PCT/JP2011/060695 2010-05-13 2011-05-10 Complex compound and optical recording medium containing same WO2011142329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012514792A JPWO2011142329A1 (en) 2010-05-13 2011-05-10 Complex compound and optical recording medium containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010110769 2010-05-13
JP2010-110769 2010-05-13

Publications (1)

Publication Number Publication Date
WO2011142329A1 true WO2011142329A1 (en) 2011-11-17

Family

ID=44914385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060695 WO2011142329A1 (en) 2010-05-13 2011-05-10 Complex compound and optical recording medium containing same

Country Status (3)

Country Link
JP (1) JPWO2011142329A1 (en)
TW (1) TW201206892A (en)
WO (1) WO2011142329A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069545A1 (en) * 2011-11-11 2013-05-16 Khネオケム株式会社 Complex compound and optical recording medium containing same
JP2016538325A (en) * 2013-09-17 2016-12-08 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Electrochromic mononuclear and binuclear viologens and optical articles containing them
CN116375635A (en) * 2023-03-06 2023-07-04 湖北大学 Symmetrical ion type viologen compound and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334205A (en) * 1998-05-27 1999-12-07 Mitsubishi Chemical Corp Optical recording medium
JP2001158862A (en) * 1999-12-02 2001-06-12 Mitsubishi Chemicals Corp Metal chelate coloring matter and optical recording medium
WO2006001460A1 (en) * 2004-06-23 2006-01-05 Fujifilm Corporation Novel oxonol dye compound and optical information recording medium
WO2006053834A2 (en) * 2004-11-22 2006-05-26 Clariant International Ltd Monosubstituted squaric acid metal complex dyes and their use in optical layers for optical data recording
JP2007216439A (en) * 2006-02-15 2007-08-30 Mitsubishi Chemicals Corp Coloring matter for forming recording layer of optical recording medium, optical recording medium and its recording method
JP2007223289A (en) * 2006-02-27 2007-09-06 Mitsubishi Chemicals Corp Coloring matter for recording layer forming optical recording medium and optical recording medium using coloring matter, and recording method of optical recording medium
JP2008045092A (en) * 2006-08-21 2008-02-28 Mitsubishi Chemicals Corp Hydrazide compound, metal chelate complex compound and dye for forming recording layer of optical recording medium produced by using the compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334205A (en) * 1998-05-27 1999-12-07 Mitsubishi Chemical Corp Optical recording medium
JP2001158862A (en) * 1999-12-02 2001-06-12 Mitsubishi Chemicals Corp Metal chelate coloring matter and optical recording medium
WO2006001460A1 (en) * 2004-06-23 2006-01-05 Fujifilm Corporation Novel oxonol dye compound and optical information recording medium
WO2006053834A2 (en) * 2004-11-22 2006-05-26 Clariant International Ltd Monosubstituted squaric acid metal complex dyes and their use in optical layers for optical data recording
JP2007216439A (en) * 2006-02-15 2007-08-30 Mitsubishi Chemicals Corp Coloring matter for forming recording layer of optical recording medium, optical recording medium and its recording method
JP2007223289A (en) * 2006-02-27 2007-09-06 Mitsubishi Chemicals Corp Coloring matter for recording layer forming optical recording medium and optical recording medium using coloring matter, and recording method of optical recording medium
JP2008045092A (en) * 2006-08-21 2008-02-28 Mitsubishi Chemicals Corp Hydrazide compound, metal chelate complex compound and dye for forming recording layer of optical recording medium produced by using the compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069545A1 (en) * 2011-11-11 2013-05-16 Khネオケム株式会社 Complex compound and optical recording medium containing same
JP2016538325A (en) * 2013-09-17 2016-12-08 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Electrochromic mononuclear and binuclear viologens and optical articles containing them
CN116375635A (en) * 2023-03-06 2023-07-04 湖北大学 Symmetrical ion type viologen compound and application thereof

Also Published As

Publication number Publication date
TW201206892A (en) 2012-02-16
JPWO2011142329A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP3659922B2 (en) Optical recording material
JP4065403B2 (en) Metal complex-type squarylium compound and optical recording medium using the same
US20090054652A1 (en) Cyanine Compound and Optical Recording Material
JPH11334207A (en) Optical recording medium
US20100173114A1 (en) Optical recording medium and azacyanine dye
JP5323993B2 (en) Complex compound and optical recording medium containing the same
WO2001044375A1 (en) Squarylium compounds and optical recording media made by using the same
WO2011142329A1 (en) Complex compound and optical recording medium containing same
WO2001044233A1 (en) Squarylium compound and optical recording medium containing the same
JP2011126815A (en) Complex compound and optical recording medium containing the same
JP4093807B2 (en) Optical recording material
JP3716856B2 (en) Optical recording medium
WO2013069545A1 (en) Complex compound and optical recording medium containing same
JP4190352B2 (en) Optical recording material
US20090135706A1 (en) Optical recording medium, and optical recording method and optical recording apparatus thereof
WO2010047341A1 (en) Metal complexes of squarylium compounds and optical recording media containing same
WO2006103254A1 (en) Betaines of squaric acid for use in optical layers for optical data recording
WO2007018015A1 (en) Indole compound, optical filter and optical recording material
WO2011162190A1 (en) Metal complexes of squarylium compounds and optical recording media comprising same
WO2010041691A1 (en) Optical recording medium containing metal complex of squarylium compound
US20060019198A1 (en) Optical recording materials
EP2033798B1 (en) Optical recording material, chalcone type compounds and metal complexes
JP2010100669A (en) Metal complex of squarilium compound, and optical recording medium using the same
JP4557286B2 (en) Squalilium compound and optical recording medium containing the squarilium compound
TWI457403B (en) An organic salt compound, an optical recording material using the organic salt compound, and an optical recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514792

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780586

Country of ref document: EP

Kind code of ref document: A1