[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011039890A1 - リチウム二次電池および該電池用正極 - Google Patents

リチウム二次電池および該電池用正極 Download PDF

Info

Publication number
WO2011039890A1
WO2011039890A1 PCT/JP2009/067271 JP2009067271W WO2011039890A1 WO 2011039890 A1 WO2011039890 A1 WO 2011039890A1 JP 2009067271 W JP2009067271 W JP 2009067271W WO 2011039890 A1 WO2011039890 A1 WO 2011039890A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
binder
material layer
Prior art date
Application number
PCT/JP2009/067271
Other languages
English (en)
French (fr)
Inventor
富太郎 原
曜 辻子
洋平 進藤
幸恵 湯浅
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011534023A priority Critical patent/JP5445874B2/ja
Priority to PCT/JP2009/067271 priority patent/WO2011039890A1/ja
Priority to KR1020127008478A priority patent/KR101438980B1/ko
Priority to CN200980161314.7A priority patent/CN102484239B/zh
Priority to US13/499,307 priority patent/US9362554B2/en
Publication of WO2011039890A1 publication Critical patent/WO2011039890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery and its use, and more particularly to a positive electrode used in the lithium secondary battery.
  • this invention relates to the positive electrode material which comprises the positive electrode active material layer with which the positive electrode of a lithium secondary battery is equipped, and its manufacturing method.
  • lithium secondary batteries typically lithium ion batteries
  • nickel metal hydride batteries and other secondary batteries
  • a lithium secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • a high rate for example, 10 C or more
  • a high rate is preferable. It is required to be able to charge and discharge.
  • High durability is mentioned as a 2nd request
  • the battery for vehicles is charged and discharged at a high rate (high output) in a harsh environment where there is a drastic temperature change (for example, use in a low temperature range below -20 ° C or a high temperature range above 60 ° C). Used over a long period of time. Therefore, the durability which can suppress the increase in internal resistance of a battery is requested
  • a positive electrode active material and a conductive material partially covered with a conductive material are used.
  • a positive electrode mixture (positive electrode active material layer) is constituted by a positive electrode active material mixture made of an uncoated positive electrode active material and a binder.
  • the active materials are directly bonded by the binder.
  • Patent Document 1 describes that the active material (particles) can be prevented from falling off from the active material layer formed on the positive electrode current collector.
  • Patent Document 2 discloses a technique for improving the adhesion between the negative electrode active material and the negative electrode current collector. However, the technique described in Document 2 cannot be applied well on the positive electrode side.
  • the present invention was created to solve the conventional problems related to the lithium secondary battery for vehicles described above, and one object of the present invention is to excessively increase the content (content ratio) of the binder.
  • An object of the present invention is to provide a positive electrode for a lithium secondary battery that achieves an improvement in durability without being raised.
  • Another object of the present invention is to provide a positive electrode active material and other materials for constituting such a positive electrode.
  • Another object is to provide a method for producing such a positive electrode.
  • this invention provides the lithium secondary battery provided with the positive electrode disclosed here, and its manufacturing method.
  • the present invention provides a vehicle (typically an automobile) provided with a lithium secondary battery including the positive electrode disclosed herein as a power source for driving a motor.
  • the present invention provides a positive electrode for a lithium secondary battery having the following configuration. That is, one positive electrode disclosed here is a positive electrode for a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer includes a granular positive electrode active material composed of a composite oxide containing lithium and at least one transition metal element, and a high-potential material having at least one functional group. And at least one binder composed of molecular compounds.
  • one positive electrode disclosed herein has a conductive carbonaceous film formed on the surface of the positive electrode active material, and carbon atoms constituting the carbonaceous film of at least a part of the positive electrode active material.
  • “Molecularly bonded” in the context of the present invention means that the high molecular compound constituting the binder is bonded (coupled) to the carbon atom constituting the carbonaceous film, thereby bonding (linked) the high molecular compound.
  • a part and the carbon network which comprises the carbonaceous film containing the said carbon atom say that one molecular chain (namely, the composite compound comprised from a carbon network part and a binder constituent part) is formed. Therefore, the term “molecularly bonded” as used herein does not include a bonding mode in which two molecules (compounds) that are bonded to each other exist independently, for example, a physical adsorption phenomenon (for example, van der Waals adsorption). .
  • a conductive carbonaceous film is formed on the surface of the positive electrode active material contained in the positive electrode active material layer, and at least a part of the positive electrode active material contains the carbonaceous material.
  • the binder is molecularly bound to the coating (for example, binding by the condensation reaction via the functional group). Thereby, even if it is a binder with a comparatively low content (content rate), the positive electrode active material particle which exists in a positive electrode active material layer can be hold
  • a lithium secondary battery having a high market value that realizes high durability without excessively increasing the content (content ratio) of the binder and suppresses an increase in internal resistance (typical, a lithium ion battery) can be provided.
  • the positive electrode active material layer includes at least one polymer compound having a hydroxy group and / or a carboxyl group as the binder.
  • a chemical bond via the functional group that is, the molecular bonding described above
  • the polymer compound constituting the dressing can be preferably linked.
  • a good example of such a polymer compound is a vinylidene fluoride polymer into which a hydroxy group and / or a carboxyl group are introduced and whose main monomer component is vinylidene fluoride. Therefore, a positive electrode according to a preferred embodiment is characterized by including the above-mentioned vinylidene fluoride polymer as a binder.
  • the polymer compound is crosslinked with each other in the positive electrode active material layer to form a binder network.
  • the binder in the positive electrode active material layer is cross-linked with each other to form a network (that is, a network structure in which molecules constituting the binder are cross-linked with each other), whereby the positive electrode active material layer
  • the adhesion strength of the positive electrode active material particles present therein can be further improved.
  • the positive electrode active material is used for measurement by an electron microscope (that is, a transmission electron microscope (TEM) or a scanning electron microscope (SEM)). It is comprised with the said granular complex oxide whose average particle diameter of the primary particle based is 1 micrometer or less.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the composite oxide constituting the granular positive electrode active material has a general formula: LiMAO 4 (1) It is a compound shown by these.
  • M in such a formula is one or more elements (typically one or more metals) including at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn. Element). That is, it contains at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn, but allows the presence of other minor additive elements that can be contained in small amounts (even if such minor additive elements are not present). Good.)
  • a in the above formula is one or more elements selected from the group consisting of P, Si, S and V.
  • the present invention provides a method for producing a positive electrode for a lithium secondary battery comprising a positive electrode current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode manufacturing method disclosed here is: A positive electrode active material comprising a composite oxide containing lithium and at least one transition metal element, the surface of which is formed with a conductive carbonaceous film, and a polymer compound having at least one functional group Preparing a composition for forming a positive electrode active material layer, comprising at least one binder comprising: a solvent capable of dissolving or dispersing the binder; Applying the composition to the surface of the positive electrode current collector to form a positive electrode active material layer on the positive electrode current collector; and the binder contained in the positive electrode active material layer and carbon of the positive electrode active material Causing a condensation reaction with the carbonaceous film, and molecularly binding the polymer compound constituting the binder to the carbon atoms constituting the carbonaceous film of the positive electrode active material; It is a method including.
  • a polymer compound having a hydroxy group and / or a carboxyl group is used as the binder.
  • at least one of the polymer compounds to be used is a vinylidene fluoride polymer into which a hydroxy group and / or a carboxyl group are introduced and whose main monomer component is vinylidene fluoride.
  • one preferred embodiment of the positive electrode manufacturing method disclosed herein further includes cross-linking the polymer compounds constituting the binder contained in the positive electrode active material layer.
  • a network of the binder can be formed in the positive electrode active material layer by crosslinking the polymer compounds constituting the binder.
  • the positive electrode active material which consists of the said granular complex oxide whose average particle diameter of the primary particle based on the measurement by an electron microscope (TEM or SEM) is 1 micrometer or less is preferable.
  • the general formula: LiMAO 4 (1) is one or more elements (typically one or more metals) including at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn. Element).
  • a in the above formula is one or more elements selected from the group consisting of P, Si, S and V. Particularly preferably, in the above formula (1), A is P and / or Si.
  • the present invention also provides a lithium secondary battery (typically a lithium ion battery) comprising any of the positive electrodes disclosed herein.
  • a lithium secondary battery typically a lithium ion battery
  • Any of the lithium secondary batteries disclosed herein has a performance suitable as a battery mounted on a vehicle that requires high-rate charge / discharge. Therefore, according to this invention, the vehicle provided with one of the lithium secondary batteries disclosed here is provided.
  • a vehicle for example, an automobile
  • the lithium secondary battery as a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • DSC differential scanning calorimetry
  • the positive electrode disclosed herein is a positive electrode for a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer formed on the current collector.
  • a positive electrode current collector constituting such a positive electrode a metal current collector made of the same material as the current collector used for the positive electrode of a conventional lithium secondary battery (typically a lithium ion battery) is used. can do.
  • an aluminum material or an aluminum-based alloy material is preferable as a constituent material of the positive electrode current collector of this type of battery.
  • an aluminum foil having a thickness of about 5 to 100 ⁇ m is suitably used as a positive electrode current collector of a lithium secondary battery used as a power source for driving a motor for a vehicle.
  • a current collector of a metal species other than aluminum may be used.
  • the positive electrode active material used to constitute the positive electrode active material layer of the positive electrode disclosed herein is not particularly limited in its composition and shape as long as it is a positive electrode active material having a property capable of realizing the object of the present invention. There is no.
  • a typical positive electrode active material includes a composite oxide containing lithium and at least one transition metal element.
  • cobalt lithium composite oxide (LiCoO 2 ), nickel lithium composite oxide (LiNiO 2 ), manganese lithium composite oxide (LiMn 2 O 4 ), or nickel / cobalt-based LiNi x Co 1-x O 2 ( 0 ⁇ x ⁇ 1), cobalt / manganese-based LiCo x Mn 1-x O 2 (0 ⁇ x ⁇ 1), nickel / manganese-based LiNi x Mn 1-x O 2 (0 ⁇ x ⁇ 1) and LiNi x Mn 2-x O 4 (0 ⁇ x ⁇ 2), so-called binary lithium-containing composite oxide containing two kinds of transition metal elements, or nickel, cobalt, containing three kinds of transition metal elements
  • a ternary lithium-containing composite oxide such as manganese may be used.
  • M in such a formula is one or more elements (typically one or more metals) including at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn. Element). That is, it contains at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn, but allows the presence of other minor additive elements that can be contained in small amounts (even if such minor additive elements are not present). Good.)
  • a in the above formula is one or more elements selected from the group consisting of P, Si, S and V. This type of polyanionic compound is preferred because it has a high theoretical energy density and can avoid or reduce the use of expensive metal materials.
  • A is P and / or Si (for example, LiFePO 4 , LiFeSiO 4 , LiCoPO 4 , LiCoSiO 4 , LiFe 0.5 Co 0.5 PO 4 , LiFe 0.5 Co 0. 5 SiO 4, LiMnPO 4, LiMnSiO 4, LiNiPO 4, LiNiSiO 4) can be cited as particularly preferred polyanionic compound.
  • oxygen is immobilized by covalent bonding with P or Si, which are elements other than transition metals, and oxygen release at high temperatures can be suppressed.
  • the composite oxides constituting the various positive electrode active materials as described above are several types of supply appropriately selected according to the constituent elements of the composite oxide and the atomic composition thereof, as in the case of the conventional composite oxides of the same kind. It can be obtained by mixing the source (compound) at a predetermined molar ratio and firing the mixture at a predetermined temperature by an appropriate means. For example, an appropriate lithium source compound, one or more transition metal source compounds, and phosphoric acid or silicic acid (or an appropriate phosphate or silicate) are mixed, fired, pulverized and granulated. By doing so, a polyanionic compound in which A is P or Si in the above formula (1) can be obtained.
  • lithium compounds such as lithium carbonate and lithium hydroxide can be used as the lithium supply source compound.
  • hydroxides, oxides, various salts (for example, carbonates), halides (for example, fluorides) of these constituent metals can be selected as transition metal source compounds such as nickel source and cobalt source.
  • the obtained composite oxide (positive electrode active material) can be pulverized by an appropriate means, and if necessary, granulated to produce a granular positive electrode active material having a desired average particle size. it can.
  • ADVANTAGE OF THE INVENTION According to this invention, the adhesive strength of the positive electrode active material contained in a positive electrode active material layer can be improved. Therefore, the granular positive electrode active material having a small particle diameter can be held in the positive electrode active material layer with high adhesion strength.
  • a granular positive electrode active material having a small particle diameter it is possible to provide a positive electrode for a lithium secondary battery suitable for improving the conductivity of the positive electrode active material layer and charging / discharging at a high rate.
  • the average particle diameter of primary particles is 1 ⁇ m or less, for example, the average particle diameter of primary particles based on electron microscope observation is 0.1 ⁇ m to 1 ⁇ m.
  • the following (more preferably 0.1 ⁇ m or more and 0.8 ⁇ m or less) granular positive electrode active material can be used.
  • the average particle diameter of the secondary particles of the granular positive electrode active material can be easily measured by using an electron microscope observation or a laser diffraction type (light scattering method) particle size distribution measuring apparatus. Since the positive electrode active material having such a small average particle diameter has a large surface area, the conductivity in the positive electrode active material layer is improved.
  • the specific surface area (m 2 / g) based on the BET method is 5 m 2 / g or more, more preferably 10 m 2 / g or more (for example, the specific surface area based on the above method is 5 to 20 m 2 / g, more preferably 10
  • a finely divided positive electrode active material for example, a composite oxide such as the above-mentioned polyanionic compound
  • Such a positive electrode active material having a small average particle diameter for example, a polyanionic compound such as lithium iron phosphate (LiFePO 4 ) or other complex oxides
  • a polyanionic compound such as lithium iron phosphate (LiFePO 4 ) or other complex oxides
  • LiFePO 4 lithium iron phosphate
  • other complex oxides is formed by a general hydrothermal synthesis method. be able to.
  • a conductive carbonaceous film (typically a carbon film) is formed on the surface of the positive electrode active material used to constitute the positive electrode disclosed herein.
  • a carbonaceous film can be preferably formed on the surface of the composite oxide as described above by a method similar to the conventional method.
  • a carbonaceous material is coated on the surface of the particulate compound constituting the positive electrode active material, and the coating material is thermally decomposed to obtain a desired carbonaceous film (typically a carbon composed of a network composed of only carbon atoms). Film) can be formed on the surface of the positive electrode active material.
  • Preferred carbonaceous materials for such purposes include various polymer compounds containing carbon. Examples of organic compounds include various polymers such as (1).
  • Polyolefin resins polyvinyl acetate, polybutadiene, polyvinyl alcohol, other synthetic resins, (2). Styrene, acetylene and other hydrocarbons. Of these, hydrophilic materials are preferred, and hydrophilic resins such as polyvinyl alcohol can be suitably used.
  • the granular positive electrode active material and the carbonaceous material have a predetermined mass ratio, for example, 0.5 to 10 parts by mass (typically 1 to 5 parts by mass) of the carbonaceous material with respect to 100 parts by mass of the positive electrode active material. ), And using a suitable dryer or baking furnace (for example, a device that performs drying and baking in a swirling flow method) to remove the solvent, thereby removing the carbonaceous material / positive electrode. Active material aggregates can be formed. Next, the carbonaceous material / positive electrode active material aggregate is heated to a temperature range in which the used carbonaceous material can be thermally decomposed in vacuum (ultra-low pressure gas) or non-oxidizing (or reducing) atmosphere gas.
  • the carbonaceous material is thermally decomposed, and the surface of the positive electrode active material can be covered with the residual carbon component (thermal decomposition product).
  • the mass ratio of the carbonaceous film to the total mass of the positive electrode active material particles including the carbonaceous film is preferably about 1 to 5% by mass.
  • the thickness and the coating area of the carbonaceous film to be formed are adjusted by appropriately changing the mass ratio of the positive electrode active material to be mixed and the carbonaceous material. be able to.
  • the average thickness of the carbonaceous film based on observation by SEM or the like is 1 ⁇ m or less (typically 50 nm to 1000 nm, particularly 100 nm to 500 nm). With such a film thickness, the conductivity can be improved and the binder can be suitably bonded (coupled) to the coating surface (carbon atoms).
  • At least one kind of binder used together with the positive electrode active material to constitute the positive electrode active material layer is formed of a polymer compound having at least one functional group. It is a binder.
  • the functional group of this type is not particularly limited as long as it is a functional group having reactivity capable of molecularly bonding with the carbonaceous film on the surface of the positive electrode active material, but the surface of the carbonaceous film (typically carbonaceous By reacting (for example, condensing reaction) with the carbon atoms constituting the film itself or a functional group such as a hydroxy group (—OH) introduced into the film, the two are connected to form a single molecular chain (ie, Those capable of constituting a composite compound composed of a carbon network part and a binder constituent part are preferred.
  • Suitable examples of this type of functional group include a hydroxy group and a carboxyl group.
  • a polymer compound having a carboxyl group (—COOH) and / or a hydroxy group (—OH) is preferable.
  • —C—O—C— or —C—O—O—C—
  • a chemical bond is generated, and the polymer compound (binder) can be suitably bonded to any carbon atom constituting the carbonaceous film on the surface of the positive electrode active material.
  • a vinylidene fluoride which is a monomer component of polyvinylidene fluoride (PVdF), which is a conventional polymer compound as a binder contained in the positive electrode active material layer, is used as a main monomer component and a functional group is introduced.
  • PVdF polyvinylidene fluoride
  • a preferred example is a vinylidene fluoride polymer.
  • a vinylidene fluoride polymer having a hydroxy group and / or a carboxyl group introduced as a functional group is particularly preferred.
  • a polymer containing such a functional group can be obtained by copolymerization with an ester (for example, monoester) of a dibasic acid copolymerizable with vinylidene fluoride.
  • a copolymerizable dibasic acid or an ester thereof for example, an ester of a dibasic acid such as maleic acid, fumaric acid, succinic acid, and itaconic acid
  • a copolymerizable dibasic acid or an ester thereof for example, an ester of a dibasic acid such as maleic acid, fumaric acid, succinic acid, and itaconic acid
  • 100 parts by weight of vinylidene fluoride (monomer) and 0.1 to 10 parts by weight of unsaturated dibasic acid ester such as maleic acid monomethyl ester (or maleic acid monoethyl ester) are added to ion-exchanged water.
  • suspension polymerization is carried out at room temperature (for example, 20 to 35 ° C.) for about 12 hours to 72 hours (0.5 days to 3 days).
  • a vinylidene fluoride-based polymer having a functional group derived from a dibasic acid ester can be obtained by performing dehydration treatment after the completion of polymerization, appropriately washing with water, and drying.
  • a functional group derived from a dibasic acid ester for example, a carboxyl group
  • the manufacturing method itself of such a polymer having a functional group is a technique widely known as a conventional technique, further detailed description is omitted.
  • the existing polymer (polymer compound) is appropriately modified.
  • a functional group may be introduced into the molecular chain.
  • a positive electrode active material layer (also referred to as a positive electrode mixture layer) is formed on the positive electrode current collector using the positive electrode active material having the carbonaceous film as described above, using the functional group-containing binder as described above.
  • the method for forming the positive electrode active material layer itself may be the same as the conventional method, and no special treatment is required in particular to carry out the present invention.
  • the positive electrode active material layer forming material (that is, the positive electrode active material layer forming composition) includes the granular positive electrode active material having a carbonaceous film disclosed herein, and at least a functional group-containing high content as a binder.
  • a molecular compound for example, the above-mentioned vinylidene fluoride polymer having a carboxyl group or a hydroxy group
  • a paste including a slurry or an ink.
  • a composition for forming a positive electrode active material layer may be referred to as a “positive electrode active material layer forming paste”.
  • a positive electrode active material layer forming paste may be prepared by adding an appropriate amount of carbon black such as acetylene black or ketjen black or other powdered carbon material (conductive material) such as graphite. .
  • the polymer compound (polymer) constituting the binder is molecularly linked to the carbon atoms constituting the carbonaceous film of the positive electrode active material to form one molecular chain (that is, the carbonaceous film).
  • a composite compound composed of a carbon network part and a binder constituent part), and preferably, a polymer compound (for example, the above-mentioned binder constituent included in the positive electrode active material layer) (Polyvinylidene fluoride polymer) is an intermolecular cross-linked network to form a network (network structure). Therefore, a relatively small amount of binder than before, a positive electrode active material layer with high adhesion strength and excellent structural stability. Can be formed.
  • the mass ratio of the binder to the mass of the entire solid content (100 mass%) of the positive electrode active material layer is approximately 10 mass% or less (for example, 1 to 10 mass%, preferably 2 to 7 mass%). Mass%).
  • an appropriate amount of the prepared positive electrode active material layer forming paste is preferably applied onto a positive electrode current collector composed of aluminum or an aluminum-based alloy, and further dried and pressed.
  • a positive electrode for a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer formed on the current collector can be produced.
  • the granular positive electrode active material having a carbonaceous film contained in the active material layer and the functional group-containing polymer compound are chemically treated. Perform the process of combining.
  • the content of such treatment may vary depending on the type of the functional group, but when the functional group is a carboxyl group or a hydroxy group, it is preferable that the granular positive electrode active material is passed through the functional group by a condensation reaction (particularly preferably a dehydration condensation reaction).
  • a functional group-containing polymer compound that is, a binder
  • the positive electrode active material layer may be heated in a state where the pressure is reduced to an appropriate level (substantially under vacuum) (for example, 100 ° C. to 250 ° C., preferably 150 ° C. to 200 ° C.).
  • an appropriate level for example, 100 ° C. to 250 ° C., preferably 150 ° C. to 200 ° C.
  • the carbonaceous film and the binder can be preferably bonded (linked) by a dehydration condensation reaction.
  • the carbonaceous film formed by the process as described above typically has hydroxy groups or other organic functional groups on the surface thereof.
  • a hydroxyl group is introduced into the carbonaceous film (carbon network) by reacting with water vapor in the air.
  • a functional group-containing polymer compound is molecularly bonded (linked) to the carbonaceous film of the positive electrode active material by causing a dehydration condensation reaction or the like without intentionally performing surface modification treatment such as surface plasma treatment.
  • the dehydration condensation reaction is not only performed between the carbonaceous film of the positive electrode active material and the functional group-containing polymer compound (binder), but also of the molecules constituting the binder. It can also occur between binders depending on the structure. That is, binding between the binding materials (that is, cross-linking between molecules) or intramolecular cross-linking in the molecular chain of the polymer compound (polymer) constituting the binding material can be generated. Therefore, by causing the condensation reaction as described above, the polymer compounds constituting the binder contained in the positive electrode active material layer can be cross-linked with each other.
  • the molecular chain constituting the binder contains multiple bonds such as double bonds
  • cleavage / addition reaction occurs at the part, resulting in intermolecular crosslinking between the binders. Can be generated.
  • a cross-linking reaction it is possible to form a network by bonding between the binders included in the positive electrode active material layer.
  • the adhesion strength of the positive electrode active material layer can be improved with a relatively small amount of the binder.
  • a lithium secondary battery that is excellent in durability and suitable for high-rate charge / discharge can be constructed.
  • the negative electrode for a lithium secondary battery serving as the counter electrode of the positive electrode disclosed here can be produced by a method similar to the conventional one.
  • the negative electrode active material used for the negative electrode of the lithium secondary battery may be any material that can occlude and release lithium ions, such as carbon materials such as graphite, lithium-titanium oxide (Li 4 Ti 5 O 12). ) And the like, and alloy materials composed of alloys such as tin (Sn), aluminum (Al), zinc (Zn), and silicon (Si).
  • a typical example is a powdery carbon material made of graphite or the like.
  • the graphite particles can be a negative electrode active material more suitable for rapid charge / discharge (for example, high-power discharge) because the particle size is small and the surface area per unit volume is large.
  • the powdery material is dispersed in an appropriate dispersion medium together with an appropriate binder and kneaded to obtain a paste-like negative electrode active material layer forming composition (negative electrode active material layer forming paste).
  • a paste-like negative electrode active material layer forming paste can be prepared.
  • a negative electrode current collector preferably made of copper, nickel or an alloy thereof, and further drying and pressing, a negative electrode for a lithium secondary battery can be produced. it can.
  • separator used with a positive electrode and a negative electrode
  • the separator similar to the past can be used.
  • a porous sheet (porous film) made of a polyolefin resin can be used.
  • a polymer solid electrolyte can be used as a separator.
  • the same electrolyte as a non-aqueous electrolyte (typically, an electrolytic solution) conventionally used for lithium secondary batteries can be used without particular limitation.
  • the polymer solid electrolyte is typically a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • the non-aqueous solvent include one or two selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and the like. More than seeds can be used.
  • the supporting salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 , 1 type, or 2 or more types of lithium compounds (lithium salt) selected from LiI etc. can be used.
  • the shape (outer shape and size) of the lithium secondary battery to be constructed is not particularly limited.
  • the outer package may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may be a cylindrical or cuboid battery, or may be a small button shape.
  • a lithium secondary battery having a wound electrode body here, a lithium ion battery using a non-aqueous electrolyte
  • the usage mode of the positive electrode for a lithium secondary battery disclosed herein will be described by way of example, but is not intended to limit the present invention to such an embodiment.
  • symbol is attached
  • the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships.
  • the cell 12 used as a component of the assembled battery 10 is typically a predetermined battery constituent material (positive Each of which includes an active material for each negative electrode, a current collector for each positive and negative electrode, a separator, and the like, and a container for housing the electrode body and an appropriate electrolyte.
  • the assembled battery 10 disclosed herein includes a predetermined number (typically 10 or more, preferably about 10 to 30, for example, 20) of unit cells 12 having the same shape.
  • the unit cell 12 includes a container 14 having a shape (a flat box shape in this embodiment) that can accommodate a flat wound electrode body to be described later.
  • each part of the unit cell 12 may vary due to a dimensional error at the time of manufacturing the container 14 used.
  • the container 14 is provided with a positive electrode terminal 15 electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal 16 electrically connected to the negative electrode of the electrode body. As shown in the figure, one positive terminal 15 and the other negative terminal 16 are electrically connected by a connector 17 between adjacent unit cells 12.
  • the assembled battery 10 of the desired voltage is constructed
  • the container 14 can be provided with a safety valve 13 or the like for venting gas generated inside the container in the same manner as a conventional unit cell container. Since the configuration of the container 14 itself does not characterize the present invention, a detailed description is omitted.
  • the material of the container 14 is not particularly limited as long as it is the same as that used in the conventional unit cell.
  • a container made of metal for example, aluminum, steel, etc.
  • a container made of synthetic resin for example, polyolefin resin such as polypropylene, high melting point resin such as polyethylene terephthalate, polytetrafluoroethylene, polyamide resin, etc.
  • the container 14 according to the present embodiment is made of, for example, aluminum. As shown in FIG. 2 and FIG.
  • the unit cell 12 has a sheet-like positive electrode 32 (hereinafter also referred to as “positive electrode sheet 32”) and a sheet-like negative electrode 34 (hereinafter referred to as “winding electrode body” of a normal lithium ion battery).
  • positive electrode sheet 32 a sheet-like positive electrode 32
  • a sheet-like negative electrode 34 hereinafter referred to as “winding electrode body” of a normal lithium ion battery.
  • separator sheets 36 laminated together with a total of two sheet-like separators 36 (hereinafter also referred to as “separator sheets 36”), and the positive electrode sheet 32 and the negative electrode sheet 34 are wound while being slightly shifted.
  • a flat wound electrode body 30 is provided which is produced by crushing and curling the obtained wound body from the side surface direction.
  • a positive electrode lead terminal 32B and a negative electrode lead terminal 34B are attached to the protruding portion 32A (ie, the non-forming portion of the positive electrode active material layer) 32A and the protruding portion 34A (ie, the non-forming portion of the negative electrode active material layer) 34A.
  • the lead terminals 32B and 34B are electrically connected to the positive electrode terminal 15 and the negative electrode terminal 16, respectively.
  • the materials and members themselves constituting the wound electrode body 30 having the above-described configuration are the conventional ones except that the positive electrode (here, the positive electrode sheet 32) in which the positive electrode active material layer disclosed herein is formed as a positive electrode is employed. It may be the same as the electrode body of the lithium ion battery, and is not particularly limited.
  • the positive electrode sheet 32 is formed by applying a positive electrode active material layer for a lithium ion battery on a long positive electrode current collector (for example, a long aluminum foil).
  • the shape of the positive electrode current collector is not particularly limited because it may vary depending on the shape of the lithium secondary battery, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • a sheet-like positive electrode current collector having a shape that can be preferably used for the lithium secondary battery (unit cell) 12 including the wound electrode body 30 is used.
  • an aluminum foil having a length of 2 m to 4 m (for example, 2.7 m), a width of 8 cm to 12 cm (for example, 10 cm), and a thickness of about 5 ⁇ m to 20 ⁇ m (for example, 15 ⁇ m) is used as a current collector.
  • the prepared positive electrode active material layer forming paste for example, 85 to 95% by mass of a granular positive electrode active material having a conductive carbonaceous film (typically a carbon film formed by thermally decomposing an organic compound), carbon black,
  • a positive electrode active material layer forming paste prepared by mixing 0 to 5% by mass of a conductive material such as acetylene black and 1 to 10% by mass of a functional group-containing polymer compound (binder) in an aqueous solvent
  • a positive electrode active material layer is formed by applying to the body surface.
  • the aqueous solvent is typically water, but any water-based solvent may be used as long as it exhibits aqueous properties as a whole.
  • an aqueous solution containing a lower alcohol methanol, ethanol, etc.
  • the paste can be suitably applied to the surface of the positive electrode current collector by using an appropriate application device such as a gravure coater, a slit coater, a die coater, or a comma coater.
  • the solvent (typically water) contained in the paste is dried and compressed (pressed) to form a positive electrode active material layer.
  • a conventionally known compression method such as a roll press method or a flat plate press method can be employed.
  • the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress the material multiple times until a desired thickness is obtained.
  • the positive electrode current collector with the positive electrode active material layer formed on the surface thereof is housed in a decompression chamber (decompression chamber), preferably under vacuum conditions (for example, 0.01 MPa or less (approximately 1/10 or less of atmospheric pressure)) causes a condensation reaction (typically dehydration condensation reaction) at 0.001 MPa or less (generally 1/100 of atmospheric pressure), although it can also react at room temperature (20 to 35 ° C.), preferably room temperature It is preferable to perform the dehydration condensation reaction under a higher temperature condition (eg, 100 to 200 ° C.).
  • the binder is molecularly bonded to the surface of the carbonaceous film of the positive electrode active material particles to form a composite compound composed of the carbon network part of the carbonaceous film and the binder constituent part.
  • the molecules constituting the binder are preferably cross-linked.
  • the negative electrode sheet 34 can be formed by applying a negative electrode active material layer for a lithium ion battery on a long negative electrode current collector.
  • a conductive member made of a metal having good conductivity is preferably used.
  • copper can be used.
  • the shape of the negative electrode current collector may vary depending on the shape of the lithium secondary battery and the like, and is not particularly limited. In the present embodiment, a sheet-like negative electrode current collector having a shape that can be preferably used for the lithium secondary battery (unit cell) 12 including the wound electrode body 30 is used.
  • a copper foil having a length of 2 m to 4 m (for example, 2.9 m), a width of 8 cm to 12 cm (for example, 10 cm), and a thickness of about 5 ⁇ m to 20 ⁇ m (for example, 10 ⁇ m) is used as the negative electrode current collector.
  • Formation of negative electrode active material layer prepared by adding and dispersing or dissolving a negative electrode active material (typically a carbon material such as graphite) and a binder in an appropriate solvent (water, organic solvent and mixed solvent thereof) It is preferably prepared by applying a paste for use (for example, 94 to 98% by mass of graphite, 1 to 3% by mass of SBR, 1 to 3% by mass of CMC), drying the solvent and compressing. Since the manufacturing method itself is the same as that of the positive electrode side, detailed description is omitted.
  • porous separator sheet 36 used between the positive / negative electrode sheets 32 and 34, what was comprised with the porous polyolefin resin is illustrated.
  • a porous separator sheet made of synthetic resin for example, made of polyolefin such as polyethylene
  • having a length of 2 to 4 m for example, 3.1 m
  • a width of 8 to 12 cm for example, 11 cm
  • a thickness of about 5 to 30 ⁇ m for example, 25 ⁇ m
  • a separator is not necessary (that is, in this case, the electrolyte itself can function as a separator). ) Is possible.
  • a unit cell 12 is constructed by injecting a nonaqueous electrolyte (electrolyte) such as a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1) containing an appropriate amount (for example, concentration 1M) and sealing it. Is done.
  • a nonaqueous electrolyte electrolyte
  • electrolyte such as a mixed solvent of diethyl carbonate and ethylene carbonate (for example, a mass ratio of 1: 1) containing an appropriate amount (for example, concentration 1M) and sealing it. Is done.
  • the plurality of cells 12 having the same shape constructed as described above are inverted one by one so that the positive terminals 15 and the negative terminals 16 are alternately arranged, and the container 14 Wide surfaces (that is, surfaces corresponding to flat surfaces of a wound electrode body 30 to be described later housed in the container 14) are arranged in an opposing direction.
  • a cooling plate 11 having a predetermined shape is disposed in close contact with the wide surface of the container 14 between the arranged unit cells 12 and both outsides in the unit cell arrangement direction (stacking direction).
  • the cooling plate 11 functions as a heat radiating member for efficiently dissipating heat generated in each unit cell during use.
  • the cooling plate 11 is a cooling fluid (typically air) between the unit cells 12. It has a frame shape that can be introduced.
  • a cooling plate 11 made of a metal with good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.
  • a pair of end plates 18 are provided on the outer side of the cooling plate 11 arranged on both outsides of the unit cells 12 and the cooling plates 11 (hereinafter collectively referred to as “single cell group”). , 19 are arranged.
  • One or a plurality of sheet-like spacer members 40 serving as length adjusting means are provided between the cooling plate 11 and the end plate 18 arranged on the outside of one of the unit cell groups (the right end in FIG. 2). It may be sandwiched.
  • the constituent material of the spacer member 40 is not particularly limited, and various materials (metal material, resin material, ceramic material, etc.) can be used as long as the thickness adjusting function described later can be exhibited.
  • a metal material or a resin material is preferably used from the viewpoint of durability against impact or the like.
  • a lightweight polyolefin resin spacer member 40 can be preferably used.
  • the single cell group, the spacer member 40 and the end plates 18 and 19 arranged in the stacking direction of the single cells 12 in this way are attached so as to bridge the end plates 18 and 19.
  • the band 21 is restrained by a predetermined restraining pressure P in the stacking direction. More specifically, as shown in FIG. 1, by tightening and fixing the end of the restraining band 21 to the end plate 18 with screws 22, the unit cell group has a predetermined restraining pressure P (for example, the container 14) in the arrangement direction.
  • the surface pressure received by the wall surface is constrained to be about 0.1 MPa to 10 MPa.
  • the constraining pressure is also applied to the wound electrode body 30 inside the container 14 of each unit cell 12, and the gas generated in the container 14 is generated inside the wound electrode body 30. It is possible to prevent the battery performance from being deteriorated by being stored in (for example, between the positive electrode sheet 32 and the negative electrode sheet 34).
  • a lithium secondary battery (sample battery) was constructed using the positive electrode provided with the positive electrode active material layer disclosed herein, and its performance was evaluated.
  • the reaction product was cooled to room temperature, and the reaction product, ie, lithium iron phosphate (LiFePO 4 ) was recovered. Subsequently, the obtained compound was crushed with a ball mill to obtain a granular positive electrode active material (lithium iron phosphate) having an average primary particle diameter of about 0.7 ⁇ m based on observation with an electron microscope.
  • a granular positive electrode active material lithium iron phosphate
  • Polyvinyl alcohol was used as the carbonaceous material, and a carbonaceous film was formed on the surface of the granular positive electrode active material. Specifically, an amount of polyvinyl alcohol corresponding to 5% by mass of the positive electrode active material is added to a predetermined amount of the granular positive electrode active material (LiFePO 4 ), and the mixture is dispersed in deionized water. A slurry was prepared. The obtained slurry is put in a commercially available swirl flow type dryer (incinerator), and the solvent (here, water) is removed to remove polyvinyl alcohol having an average particle size (secondary particle) of about 20 ⁇ m and a positive electrode active material. Aggregates were formed.
  • the solvent here, water
  • a thermal decomposition treatment was performed at 800 ° C. for about 1.5 hours in a hydrogen gas atmosphere to reduce and carbonize the polyvinyl alcohol.
  • the pulverization treatment is performed again with a ball mill, and a carbonaceous film, which is a pyrolysis product of polyvinyl alcohol having an average primary particle diameter of about 0.7 ⁇ m based on observation with an electron microscope, is formed on the surface.
  • Positive electrode active material particles were prepared.
  • the coating amount of the carbonaceous film calculated from the composition was 2 to 3% by mass of the whole positive electrode active material particles including the carbonaceous film.
  • a vinylidene fluoride-based polymer containing a functional group was prepared by suspension polymerization. Specifically, about 400 g of vinylidene fluoride polymer and about 4 g of maleic acid monomethyl ester are charged in about 1000 ml of ion-exchanged water, and further about 4 g of diisopropyl peroxydicarbonate as a polymerization initiator and chain transfer. About 3 g of ethyl acetate as an agent and about 1 g of methyl cellulose as a suspending agent were added, and suspension polymerization was performed at 28 ° C. for 48 hours.
  • modified polyvinylidene fluoride was about 1 ⁇ 10 ⁇ 4 mol / g.
  • modified polyvinylidene fluoride was used as a binder according to this example.
  • the weight average molecular weight measured by gel permeation chromatography (GPC) of the obtained modified polyvinylidene fluoride was about 1 million.
  • a positive electrode for a lithium secondary battery was produced using the positive electrode active material obtained in Test Example 1 and the binder obtained in Test Example 2. Specifically, 90 parts by mass of a positive electrode active material with a carbonaceous film, 7 parts by mass of a binder (the modified polyvinylidene fluoride), and 3 parts by mass of a conductive material (acetylene black) was added to NMP (N-methyl-2-pyrrolidone) as a dispersion solvent so as to be 60% by mass, and pulverized and mixed using a bead mill to prepare a positive electrode active material layer forming paste.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material layer forming paste is applied to an aluminum foil (thickness 15 ⁇ m) as a positive electrode current collector so that the applied amount of the positive electrode active material per unit area is 40 to 50 mg / cm 2. It was applied to both sides of the electric body and dried. After drying, the sheet was stretched into a sheet with a roller press to form a thickness of about 120 ⁇ m, and a positive electrode sheet was prepared by slitting so that the positive electrode active material layer had a predetermined width.
  • the obtained positive electrode sheet is accommodated in a vacuum furnace, the inside of the furnace is reduced to a vacuum state (that is, the atmospheric pressure is around 0.001 MPa or less) and heated to 180 ° C. to 200 ° C. for about 12 hours of condensation. Reaction treatment was performed. Thereby, the functional group (here, carboxyl group) of the binder present in the positive electrode active material layer can be molecularly bonded to the carbonaceous film (that is, carbon atoms constituting the film) of the positive electrode active material. It was. In addition, the binder (modified polyvinylidene fluoride) present in the positive electrode active material layer could be cross-linked. FIG. 4 shows an IR spectrum chart indicating this.
  • the positive electrode sheet for comparison is referred to as “positive electrode sheet according to comparative example”. That is, in the positive electrode sheet according to the comparative example, since the dehydration condensation reaction treatment is not performed, the bond between the carbonaceous film of the positive electrode active material and the binder (that is, the bond due to the condensation reaction) hardly occurs. It is a positive electrode sheet provided with a positive electrode active material layer in a state where almost no intermolecular cross-linking between binders (modified polyvinylidene fluoride) occurs.
  • the negative electrode sheet used as a counter electrode was produced as follows. That is, the negative electrode active material layer forming paste is composed of 95 parts by mass of graphite as a negative electrode active material, 2.5 parts by mass of a styrene butadiene block copolymer (SBR) as a binder, and carboxymethyl cellulose as a thickener. (CMC) 2.5 parts by mass was prepared by adding to ion exchange water and mixing.
  • SBR styrene butadiene block copolymer
  • CMC carboxymethyl cellulose
  • the negative electrode active material layer forming paste is applied to a copper foil (thickness 10 ⁇ m) as a negative electrode current collector so that the coating amount of the negative electrode active material per unit area is 20 to 25 mg / cm 2. It was applied to both sides of the electric body and dried. After drying, the sheet was stretched into a sheet with a roller press to form a thickness of about 80 ⁇ m, and a negative electrode sheet was prepared by slitting so that the negative electrode active material layer had a predetermined width.
  • capacitance) of each active material layer of positive / negative electrode was prescribed
  • a lithium secondary battery (lithium ion battery) as shown in FIGS. 2 and 3 was constructed using the positive electrode sheet according to the prepared example or the positive electrode sheet and the negative electrode sheet according to the comparative example. That is, a positive electrode sheet and a negative electrode sheet were laminated together with two separators, and this laminated sheet was wound to produce a wound electrode body. Then, this electrode body was crushed into a flat shape, accommodated in a rectangular container having an internal volume of 100 mL together with the electrolyte, and the battery according to this test example having a sealed structure was constructed by sealing the opening. A porous film made of a polypropylene / polyethylene composite was used as the separator.
  • lithium secondary battery according to the example As the electrolyte, a nonaqueous electrolytic solution having a composition in which 1 mol / L LiPF 6 was dissolved in a 1: 1 (volume ratio) mixed solvent of propylene carbonate (PC) and diethyl carbonate (DEC) was used.
  • PC propylene carbonate
  • DEC diethyl carbonate
  • the lithium secondary battery constructed using the positive electrode sheet according to the example is referred to as “lithium secondary battery according to the example”
  • the lithium secondary battery constructed using the positive electrode sheet according to the comparative example is referred to as “comparative example”.
  • the lithium secondary battery according to the present invention The lithium secondary battery according to the present invention.
  • ⁇ Test Example 5 Performance evaluation test of lithium secondary battery> Two types of lithium secondary batteries constructed in Test Example 4 (Examples and Comparative Examples) were evaluated for performance. First, the charging charge is a constant current-constant voltage method, and at room temperature (about 25 ° C.), the charging upper limit is set at a current value that is one fifth of the battery capacity (Ah) predicted from the positive electrode theoretical capacity (ie, 0.2 C). The battery was charged to a voltage (4.2 V), and then charged until the final current value during constant voltage charging was 1/10 of the initial charge current value. Hereinafter, this state is referred to as full charge.
  • Ah battery capacity predicted from the positive electrode theoretical capacity
  • the battery fully charged as described above was discharged to 3 V at a current value (that is, 0.2 C) of 1/5 of the battery capacity (Ah) predicted from the positive electrode theoretical capacity.
  • 0.2 C refers to a current value at which the theoretical capacity can be discharged in 1 / 0.2 hours (that is, 5 hours).
  • the discharge capacity (mAh / g) per unit weight of the positive electrode material (positive electrode mixture) constituting the positive electrode active material layer was calculated. The results are shown in the corresponding places in Table 1. Moreover, the output (W) when it discharged for 10 second from the said full charge state was calculated
  • the lithium secondary battery according to Example 1 was better than the lithium secondary battery according to the comparative example in terms of discharge capacity, output density, and capacity retention rate.
  • the output density and the capacity retention rate that is, durability
  • a vehicle 1 including any lithium secondary battery 12 (assembled battery 10) disclosed herein is provided.
  • a vehicle for example, an automobile
  • the lithium secondary battery 12 as a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • a positive electrode for a lithium secondary battery including a positive electrode active material layer having high adhesion strength of the positive electrode active material. Therefore, by using such a positive electrode, a lithium secondary battery having excellent cycle characteristics and high durability can be provided.
  • a lithium secondary battery for example, a vehicle-mounted lithium secondary battery used as a power source for driving a vehicle
  • a lithium secondary battery that is excellent in high-rate charge / discharge performance over a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明によって提供されるリチウム二次電池用正極は、リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物から成る粒状の正極活物質と、少なくとも1つの官能基を有する高分子化合物から成る少なくとも1種の結着材とを有する正極活物質層を備えており、該正極活物質の表面には導電性の炭素質被膜が形成されている。さらに、少なくとも一部の正極活物質の炭素質被膜を構成する炭素原子には上記結着材を構成する高分子化合物が分子的に結合し、該炭素原子に分子的に結合した高分子化合物と該炭素原子を包含する上記炭素質被膜を構成する炭素ネットワークとから成る複合化合物を有する。

Description

リチウム二次電池および該電池用正極
 本発明は、リチウム二次電池とその利用に関し、詳しくは、該リチウム二次電池に用いられる正極に関する。さらに詳しくは、本発明は、リチウム二次電池の正極に備えられる正極活物質層を構成する正極材料とその製造方法に関する。
 近年、リチウム二次電池(典型的にはリチウムイオン電池)、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。
 ところで、EV(電気自動車)、HV(ハイブリッド車)あるいはPHV(プラグインハイブリッド車)等の車両のモータ駆動電源として用いられるリチウム二次電池では、まず第1にハイレート(例えば10C以上)で好適に充放電が行えることが要求される。かかる第1の要求に対する方策として、正極活物質として使用される化合物の小粒子化が挙げられる。最近では一次粒子の平均粒子径が1μmを下回るような微粒子状の正極活物質が用いられるようになってきた。このような微粒子状正極活物質は比較的大きな比表面積をもつためハイレート充放電に好ましい。また、正極活物質の導電性を向上させるべく、活物質粒子の表面を導電材(カーボンブラック等)で被覆したことを特徴とする正極活物質の使用が提案されている(例えば後述する特許文献1参照)。
 モータ駆動電源として用いられるリチウム二次電池に対する第2の要求として、高い耐久性が挙げられる。即ち、車両用の電池は、激しい温度変化(例えば-20℃を下回る低温域や60℃を上回る高温域での使用)があるような過酷な環境下、ハイレート(高出力)での充放電を行いつつ長期にわたって使用される。従って、そのような使用形態でも電池の内部抵抗の増大を抑制し得る耐久性が要求される。かかる第2の要求に対する方策として、正極活物質粒子を正極集電体上の所定位置(即ち正極活物質層)に高い密着力で保持しておくことが挙げられる。そのためには正極活物質層に含まれる結着材(バインダ)の含有量(含有率)を高めておくことが有効である。
 しかし、その一方において、結着材の含有量(率)を高めることは、その分だけ正極活物質の含有量(率)が低下し、電池の容量低下となるため好ましくない。
 このことに関連して、例えば下記の特許文献1には、正極集電体からの正極活物質の脱落を防止するため、表面の一部が導電材で被覆された正極活物質と導電材で被覆されていない正極活物質からなる正極活物質混合物と結着材とで正極合剤(正極活物質層)を構成したことを特徴とする正極が開示されている。このように表面の一部が導電材で被覆された正極活物質と導電材で被覆されていない正極活物質からなる混合正極活物質を用いることによって、活物質同士が結着材により直接結合される度合いが増し、正極集電体上に形成された活物質層からの活物質(粒子)の脱落を防止できるようになると特許文献1には記載されている。
 なお、特許文献2には、負極活物質と負極集電体との密着性を向上させるための技術が開示されている。しかし、かかる文献2に記載の技術は、正極側ではうまく適用できない。
日本国特許出願公開第2002-231222号公報 日本国特許出願公開第2006-216371号公報
 そこで本発明は、上述した車両用のリチウム二次電池に関する従来の課題を解決すべく創出されたものであり、本発明の一つの目的は、結着材の含有量(含有率)を過度に上昇させることなく耐久性の向上を実現したリチウム二次電池用の正極を提供することである。また、本発明の他の一の目的は、そのような正極を構成するための正極活物質その他の材料を提供することである。また、そのような正極を製造する方法を提供することを他の一の目的とする。
 そして本発明は、ここで開示される正極を備えたリチウム二次電池とその製造方法を提供する。さらに本発明は、ここで開示される正極を備えたリチウム二次電池をモータ駆動用電源として備える車両(典型的には自動車)を提供する。
 本発明によって以下の構成のリチウム二次電池用の正極が提供される。即ち、ここで開示される一つの正極は、正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用の正極である。そして、ここで開示される一つの正極では、上記正極活物質層は、リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物から成る粒状の正極活物質と、少なくとも1つの官能基を有する高分子化合物から成る少なくとも1種の結着材とを有している。また、ここで開示される一つの正極は、該正極活物質の表面に導電性の炭素質被膜が形成されており、且つ、少なくとも一部の正極活物質の炭素質被膜を構成する炭素原子には上記結着材を構成する高分子化合物が分子的に結合し、該炭素原子に分子的に結合した高分子化合物と該炭素原子を包含する上記炭素質被膜を構成する炭素ネットワークとから成る複合化合物を有することを特徴とする。
 本発明に関し「分子的に結合する」とは、上記結着材を構成する高分子化合物が炭素質被膜を構成する炭素原子に結合(連結)することによって、当該結合(連結)した高分子化合物部分と当該炭素原子を包含する炭素質被膜を構成する炭素ネットワークとが、一つの分子鎖(即ち炭素ネットワーク部分と結着材構成部分とから構成される複合化合物)を形成することをいう。従って、ここでいうところの「分子的に結合」には、相互に結合する二つの分子(化合物)が独立に存在する結合形式、例えば物理的な吸着現象(例えばファンデルワールス吸着)は包含されない。
 かかる構成のリチウム二次電池用正極では、正極活物質層中に含まれる正極活物質の表面に導電性の炭素質被膜が形成されているとともに、該正極活物質の少なくとも一部において該炭素質被膜に結着材が分子的に結合している(例えば上記官能基を介した縮合反応による結合)。このことによって、比較的低い含有量(含有率)の結着材であっても正極活物質層中に存在する正極活物質粒子を高い密着強度で保持することができる。
 従って、本発明の正極によると、結着材の含有量(含有率)を過度に上昇させることなく高い耐久性を実現し、内部抵抗の増大が抑制された市場価値の高いリチウム二次電池(典型的にはリチウムイオン電池)を提供することができる。
 ここで開示されるリチウム二次電池用正極の好ましい一態様では、上記正極活物質層は、上記結着材としてヒドロキシ基及び/又はカルボキシル基を有する少なくとも1種の高分子化合物を含む。このような官能基を有する高分子化合物を結着材として有することによって、当該官能基を介する化学結合(即ち上記した分子的に結合すること)により、正極活物質粒子表面の炭素質被膜に結着材を構成する高分子化合物を好ましく連結させることができる。かかる高分子化合物の好例として、ヒドロキシ基及び/又はカルボキシル基が導入され且つフッ化ビニリデンを主モノマー成分とするフッ化ビニリデン系ポリマーが挙げられる。従って、好ましい一態様の正極は、結着材として上記フッ化ビニリデンポリマーを含むことを特徴とする。
 また、ここで開示されるリチウム二次電池用正極の好ましい他の一態様では、 上記正極活物質層において、上記高分子化合物が互いに架橋することによって結着材のネットワークが形成されている。
 このように正極活物質層中の結着材が相互に架橋されてネットワーク(即ち、結着材を構成する分子同士が相互に架橋してなる網目組織)を形成することにより、正極活物質層中に存在する正極活物質粒子の密着強度をより向上させることができる。
 また、ここで開示されるリチウム二次電池用正極の好ましい他の一態様では、 上記正極活物質は、電子顕微鏡(即ち透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM))による測定に基づく一次粒子の平均粒子径が1μm以下であるような粒状の上記複合酸化物により構成されている。
 このような微粒子状の複合酸化物から成る正極活物質が使用されることによって、正極活物質の比表面積を増大する。従って、本態様の正極を使用することによって、導電性に優れハイレート充放電に適するリチウム二次電池を提供することができる。
 また、ここで開示されるリチウム二次電池用正極の好ましい他の一態様では、上記粒状正極活物質を構成する複合酸化物が一般式:
  LiMAO    (1)
で示される化合物である。かかる式中のMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素(典型的には1種又は2種以上の金属元素)である。即ち、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含むが他の少量含有され得るマイナー添加元素の存在を許容する(かかるマイナー添加元素は存在しなくてもよい。)。また、上記式中のAは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。
 かかるポリアニオン型の粒状化合物を正極活物質として採用することによって、ハイレート充放電性能にさらに優れるリチウム二次電池を提供することができる。
 特に好ましくは上記式(1)において、Aは、P及び/又はSiである。
 また、本発明は上記目的を実現するべく、正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用の正極を製造する方法を提供する。
 ここで開示される正極製造方法は、
 リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物から成る正極活物質であって表面に導電性の炭素質被膜が形成されている正極活物質と、少なくとも1つの官能基を有する高分子化合物から成る少なくとも1種の結着材と、該結着材を溶解又は分散可能な溶媒とを含む正極活物質層形成用組成物を用意すること;
 上記組成物を正極集電体の表面に塗布し、該正極集電体上に正極活物質層を形成すること;および
 上記正極活物質層に含まれる上記結着材と上記正極活物質の炭素質被膜との間で縮合反応を生じさせ、少なくとも一部の該正極活物質の炭素質被膜を構成する炭素原子に該結着材を構成する高分子化合物を分子的に結合させること;
を包含する方法である。
 かかる構成の製造方法によって、上述した本発明に係るリチウム二次電池用正極を製造することができる。
 好ましくは、上記結着材としてヒドロキシ基及び/又はカルボキシル基を有する高分子化合物を使用する。また、使用する高分子化合物の少なくとも1種がヒドロキシ基及び/又はカルボキシル基が導入され且つフッ化ビニリデンを主モノマー成分とするフッ化ビニリデン系ポリマーであることが特に好ましい。
 また、ここで開示される正極製造方法の好ましい一つの態様は、上記正極活物質層に含まれる上記結着材を構成する高分子化合物を互いに架橋させることをさらに包含する。このように結着材を構成する高分子化合物同士を架橋することによって、正極活物質層中に結着材のネットワークを形成することができる。
 また、使用する正極活物質としては、電子顕微鏡(TEM又はSEM)による測定に基づく一次粒子の平均粒子径が1μm以下である粒状の上記複合酸化物から成る正極活物質が好ましい。
 例えば、正極活物質を構成する複合酸化物としての好適例として、一般式:
  LiMAO    (1)
で示される化合物が挙げられる。かかる式中のMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素(典型的には1種又は2種以上の金属元素)である。即ち、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含むが他の少量含有され得るマイナー添加元素の存在を許容する(かかるマイナー添加元素は存在しなくてもよい。)。また、上記式中のAは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。
 特に好ましくは、上記式(1)においてAは、P及び/又はSiである。
 また、本発明は、ここに開示される何れかの正極を備えるリチウム二次電池(典型的にはリチウムイオン電池)を提供する。
 ここに開示されるいずれかのリチウム二次電池は、特にハイレート充放電が要求される車両に搭載される電池として適した性能を備える。したがって本発明によると、ここに開示されるいずれかのリチウム二次電池を備えた車両が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
本発明の一実施形態に係る組電池を模式的に示す斜視図である。 捲回電極体の一例を模式的に示す正面図である。 組電池に装備される単電池の構成を模式的に示す断面図である。 一試験例において製造した正極活物質層に含まれる結着材(変性ポリフッ化ビニリデン)の脱水縮合処理前と処理後それぞれのIRスペクトルを示すチャートである。 一試験例において製造した正極活物質層に含まれる結着材(変性ポリフッ化ビニリデン)の脱水縮合処理前と処理後それぞれのDSC(示差走査熱量分析)の結果を示すチャートである。 リチウム二次電池を備えた車両を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここで開示される正極は、正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用の正極である。かかる正極を構成する正極集電体としては、従来のリチウム二次電池(典型的にはリチウムイオン電池)の正極に用いられている集電体と同様の材質の金属製の集電体を使用することができる。例えばアルミニウム材やアルミニウム主体の合金材は、この種の電池の正極集電体の構成材料として好ましい。例えば、車両用のモータ駆動用電源として用いられるリチウム二次電池の正極の集電体としては、厚さが5~100μm程度のアルミニウム箔が好適に用いられる。勿論、アルミニウム以外の金属種の集電体を用いてもよい。
 また、ここで開示される正極の正極活物質層を構成するのに用いられる正極活物質は、本発明の目的を実現し得る性状の正極活物質である限りにおいて、その組成や形状に特に制限はない。典型的な正極活物質として、リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物が挙げられる。例えば、コバルトリチウム複合酸化物(LiCoO)、ニッケルリチウム複合酸化物(LiNiO)、マンガンリチウム複合酸化物(LiMn)、あるいは、ニッケル・コバルト系のLiNiCo1-x(0<x<1)、コバルト・マンガン系のLiCoMn1-x(0<x<1)、ニッケル・マンガン系のLiNiMn1-x(0<x<1)やLiNiMn2-x(0<x<2)で表わされるような、遷移金属元素を2種含むいわゆる二元系リチウム含有複合酸化物、或いは、遷移金属元素を3種含むニッケル・コバルト・マンガン系のような三元系リチウム含有複合酸化物でもよい。
 特に好ましい一態様の正極活物質として、以下の一般式:
  LiMAO    (1)
で示される化合物が挙げられる。かかる式中のMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素(典型的には1種又は2種以上の金属元素)である。即ち、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含むが他の少量含有され得るマイナー添加元素の存在を許容する(かかるマイナー添加元素は存在しなくてもよい。)。また、上記式中のAは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。
 この種のポリアニオン型化合物は、理論エネルギー密度が高く且つ高価な金属材料の使用を回避若しくは低減させることができるため、好ましい。上記式(1)において、AがP及び/又はSiであるもの(例えば、LiFePO、LiFeSiO、LiCoPO、LiCoSiO、LiFe0.5Co0.5PO、LiFe0.5Co0.5SiO、LiMnPO、LiMnSiO、LiNiPO、LiNiSiO)が特に好ましいポリアニオン型化合物として挙げられる。これら化合物では、酸素が遷移金属以外の元素であるPやSiと共有結合して固定化されており、高温時の酸素放出を抑制することができる。
 上述したような各種の正極活物質を構成する複合酸化物は、従来の同種の複合酸化物と同様、当該複合酸化物の構成元素とそれらの原子組成に応じて適宜選択される数種の供給源(化合物)を所定のモル比で混合し、当該混合物を適当な手段で所定温度で焼成することにより得ることができる。
 例えば、適当なリチウム供給源化合物と、1種以上の遷移金属供給源化合物と、リン酸若しくはケイ酸(若しくは適当なリン酸塩やケイ酸塩)とを混合し、焼成し、粉砕・造粒することによって、上記式(1)においてAがP又はSiであるポリアニオン型化合物を得ることができる。
 例えば、リチウム供給源化合物としては、炭酸リチウム、水酸化リチウム等のリチウム化合物を使用することができる。また、ニッケル供給源、コバルト供給源等の遷移金属供給源化合物としてこれら構成金属の水酸化物、酸化物、各種の塩(例えば炭酸塩)、ハロゲン化物(例えばフッ化物)等が選択され得る。
 焼成後、得られた複合酸化物(正極活物質)を適当な手段で粉砕処理、ならびに必要に応じて造粒処理を行うことによって、所望する平均粒子径の粒状正極活物質を製造することができる。
 本発明によれば、正極活物質層に含まれる正極活物質の密着強度を向上させることができる。従って、粒子径の小さい粒状正極活物質を高い密着強度で正極活物質層に保持することができる。換言すれば、本発明によると、粒子径の小さい粒状正極活物質を高い密着強度で正極活物質層に保持した正極を提供することができる。粒子径の小さい粒状正極活物質を使用することにより、正極活物質層の導電性を向上させ、ハイレートで充放電を行うのに好適なリチウム二次電池用正極を提供することができる。
 好ましくは、一次粒子の平均粒子径(例えばSEM或いはTEM等の電子顕微鏡観察に基づく50%メジアン径:d50)が1μm以下、例えば電子顕微鏡観察に基づく一次粒子の平均粒子径が0.1μm以上1μm以下(より好ましくは0.1μm以上0.8μm以下)の粒状正極活物質を使用することができる。なお、粒状正極活物質の二次粒子の平均粒子径は、電子顕微鏡観察或いはレーザ回折式(光散乱法)の粒子径分布測定装置を用いることによって容易に測定することができる。
 このような平均粒子径の小さい正極活物質は、表面積が大きいために正極活物質層における導電性が向上する。好ましくは、BET法に基づく比表面積(m/g)が5m/g以上、さらに好ましくは10m/g以上(例えば上記方法に基づく比表面積が5~20m/g、より好ましくは10~20m/g)となるような微粒状正極活物質(例えば上記ポリアニオン型化合物のような複合酸化物)を使用することができる。このような平均粒子径(一次粒子径)の小さい正極活物質(例えばリン酸鉄リチウム(LiFePO)のようなポリアニオン型化合物その他の複合酸化物)は、一般的な水熱合成法により形成することができる。
 ここで開示される正極を構成するのに使用される正極活物質の表面には導電性の炭素質被膜(典型的にはカーボン膜)が形成されている。かかる炭素質被膜は、上述したような複合酸化物の表面に、従来と同様の方法により好ましく形成することができる。
 例えば、正極活物質を構成する粒状化合物の表面に炭素質材料をコーティングし、該コーティング物質を熱分解することによって所望の炭素質膜(典型的には炭素原子のみから成るネットワークで構成されたカーボン膜)を正極活物質表面に形成することができる。このような目的に好ましい炭素質材料としては、炭素を含む種々の高分子化合物が挙げられる。有機化合物としては、種々のポリマー、例えば、(1).ポリオレフィン系樹脂、ポリ酢酸ビニル、ポリブタジエン、ポリビニルアルコール、その他の合成樹脂類、(2).スチレン、アセチレンその他の炭化水素類、が挙げられる。なかでも親水性の材料が好ましく、ポリビニルアルコール等の親水性樹脂を好適に使用することができる。
 而して、粒状正極活物質と上記炭素質材料とが所定の質量比、例えば正極活物質100質量部に対して炭素質材料0.5~10質量部(典型的には1~5質量部)で混合されたスラリーを調製し、当該スラリーを適当な乾燥機若しくは焼成炉(例えば旋回流動方式で乾燥や焼成を行う装置)を使用して、溶媒を除去することによって、炭素質材料/正極活物質凝集体を形成することができる。次いで、真空(超低圧ガス)中、或いは非酸化性(又は還元性)雰囲気ガス中で、使用した炭素質材料が熱分解可能な温度域まで炭素質材料/正極活物質凝集体を加熱する。これにより、炭素質材料が熱分解し、正極活物質の表面を残留炭素成分(熱分解産物)により被覆することができる。特に限定するものではないが、炭素質被膜を含む正極活物質粒子全体の質量のうちの炭素質被膜の質量割合が1~5質量%程度が好ましい。
 なお、形成する炭素質被膜の厚みや被膜面積(即ち正極活物質粒子の表面全体に占める被覆率)は、上記混合する正極活物質と炭素質材料との質量比を適宜異ならせることによって調整することができる。好ましくは、炭素質被膜のSEM等の観察に基づく平均厚みは1μm以下(典型的には50nm~1000nm、特に100nm~500nm)が好ましい。この程度の膜厚によると、導電性の向上が図れると共に、結着材を好適に被膜表面(炭素原子)に結合(連結)させることができる。
 一方、ここで開示される正極は、正極活物質層を構成するのに上記正極活物質とともに使用される結着材の少なくとも1種類は、少なくとも1つの官能基を有する高分子化合物から構成される結着材である。この種の官能基としては、正極活物質の表面の炭素質被膜と分子的に結合し得る反応性を有する官能基であれば特に限定されないが、炭素質被膜の表面(典型的には炭素質被膜を構成する炭素原子それ自体、或いは該被膜に導入されたヒドロキシ基(-OH)等の官能基)と反応する(例えば縮合反応する)ことにより、両者が連結して一つの分子鎖(即ち炭素ネットワーク部分と結着材構成部分とから構成される複合化合物)を構成し得るものが好ましい。この種の官能基として好適なものにヒドロキシ基、カルボキシル基が挙げられる。例えば、カルボキシル基(-COOH)及び/又はヒドロキシ基(-OH)を有する高分子化合物が好ましい。
 例えば、これら官能基を有する高分子化合物と炭素質被膜を構成する炭素ネットワークとの間で、脱水縮合反応によって-C-O-C-(若しくは-C-O-O-C-)の形態の化学結合が生じ、当該高分子化合物(結着材)を正極活物質の表面の炭素質被膜を構成する何れかの炭素原子に好適に結合させることができる。
 例えば、従来から正極活物質層に含有される結着材として一般的な高分子化合物であるポリフッ化ビニリデン(PVdF)のモノマー成分であるフッ化ビニリデンを主モノマー成分とし且つ官能基が導入されたフッ化ビニリデン系ポリマーが好適例として挙げられる。官能基としてヒドロキシ基及び/又はカルボキシル基が導入されたフッ化ビニリデン系ポリマーが特に好ましい。
 このような官能基を含有するポリマーは、フッ化ビニリデンと共重合可能な二塩基酸のエステル(例えばモノエステル)との共重合によって得ることができる。特に限定することを意図していないが、共重合可能な二塩基酸又はそのエステル(例えばマレイン酸、フマル酸、コハク酸、イタコン酸等の二塩基酸のエステル)を好適に使用することができる。例えば、イオン交換水に、100質量部のフッ化ビニリデン(モノマー)と0.1~10質量部程度のマレイン酸モノメチルエステル(又はマレイン酸モノエチルエステル)等の不飽和二塩基酸エステルを添加し、典型的には室温域(例えば20~35℃)で概ね12時間~72時間(0.5日~3日間)程度の懸濁重合を行う。重合終了後に脱水処理し、適宜水洗を行った後、乾燥することにより、二塩基酸エステル由来の官能基(例えばカルボキシル基)を有するフッ化ビニリデン系ポリマーを得ることができる。なお、このような官能基を有するポリマーの製造方法自体は、従来技術として広く知られた技術であるので、これ以上の詳細な説明は省略する。
 或いはまた、上述したような共重合プロセスによって種々の官能基が導入された目的のポリマー(高分子化合物)を製造することに代えて、既存のポリマー(高分子化合物)に適当な修飾処理を施すことによって官能基を分子鎖中に導入してもよい。
 上記のような官能基含有結着材を使用し、且つ、上記のような炭素質被膜を有する正極活物質を使用して正極集電体上に正極活物質層(正極合剤層ともいう。)を形成するのであるが、かかる正極活物質層形成方法自体は、従来と同様でよく、特に本発明を実施するにあたって特別な処理を要しない。
 典型的には、正極活物質層形成用材料(即ち正極活物質層形成用組成物)は、ここで開示される炭素質被膜を有する粒状正極活物質と、結着材として少なくとも官能基含有高分子化合物(例えば上記のカルボキシル基或いはヒドロキシ基を有するフッ化ビニリデン系ポリマー)とを、適当な分散媒体に分散させて混練することによって、ペースト状(スラリー状またはインク状を含む。以下同じ。)に調製される。以下、かかるペースト状の正極活物質層形成用組成物を「正極活物質層形成用ペースト」という場合がある。なお、必要に応じて、アセチレンブラック、ケッチェンブラック等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料(導電材)を適量添加して正極活物質層形成用ペーストを調製してもよい。
 上述のように、本発明では、結着材を構成する高分子化合物(ポリマー)が正極活物質の炭素質被膜を構成する炭素原子と分子的に連結させて一つの分子鎖(即ち炭素質被膜の炭素ネットワーク部分と結着材構成部分とから構成される複合化合物)を形成させており、また、好ましくは、正極活物質層中に含まれる結着材を構成する高分子化合物(例えば上述のフッ化ビニリデン系ポリマー)同士を分子間架橋してネットワーク(網目組織)を形成しているため、従来よりも比較的少量の結着材によって、密着強度が高く構造安定性に優れる正極活物質層を形成することができる。特に限定するものではないが、正極活物質層の固形分全体(100質量%)の質量に占める結着材の質量割合を概ね10質量%以下(例えば1~10質量%、好ましくは2~7質量%)にすることができる。
 而して、調製された正極活物質層形成用ペーストを、好ましくはアルミニウムまたはアルミニウムを主成分とする合金から構成される正極集電体上に適当量塗布し、さらに乾燥ならびにプレス処理を施すことによって、正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用正極を作製することができる。
 本発明の実施にあたっては、上記のようにして正極活物質層を形成した後、該活物質層に含まれる炭素質被膜を有する粒状正極活物質と、官能基含有高分子化合物とを化学的に結合させる処理を行う。
 かかる処理の内容は官能基の種類に応じて異なり得るが、官能基がカルボキシル基やヒドロキシ基の場合、好ましくは、縮合反応(特に好ましくは脱水縮合反応)によって当該官能基を介して粒状正極活物質の炭素質被膜に官能基含有高分子化合物(即ち結着材)を分子的に結合することができる。
 例えば、正極活物質層を適当レベル(ほぼ真空条件下)まで減圧した状態で加熱する(例えば100℃以上250℃以下、好ましくは150℃以上200℃以下)とよい。このような減圧・加熱処理を行うことにより、脱水縮合反応によって炭素質被膜と結着材の結合(連結)を好ましく行うことができる。
 炭素質被膜と結着材の化学的結合の頻度を向上させるため、例えば、正極活物質の炭素質被膜の表面に何らかの修飾処理を施し、炭素ネットワーク内に官能基を導入することが好ましい。例えば、水蒸気(水分子)の存在下で表面プラズマ処理を施すことにより、正極活物質の炭素質被膜を構成する炭素原子にヒドロキシ基を比較的高率に導入することができる。
 なお、上記のようなプロセスによって形成された炭素質被膜には、典型的にはその表面にヒドロキシ基若しくは他の有機官能基が存在し得る。例えば、空気中の水蒸気と反応して炭素質被膜(炭素ネットワーク)にヒドロキシ基が導入される。このため、敢えて上記表面プラズマ処理等の表面修飾処理を施さなくても、脱水縮合反応等を起こさせることによって、正極活物質の炭素質被膜に官能基含有高分子化合物を分子的に結合(連結)させることができる。
 上記の説明から理解されるように、上記脱水縮合反応は、正極活物質の炭素質被膜と官能基含有高分子化合物(結着材)との間のみならず、結着材を構成する分子の構造に応じて結着材同士でも起こり得る。即ち、結着材相互の結合(即ち分子間架橋)あるいは結着材を構成する高分子化合物(ポリマー)の分子鎖内の分子内架橋を生じさせ得る。従って、上記のような縮合反応を生じさせることにより、正極活物質層に含まれる上記結着材を構成する高分子化合物を互いに架橋させることができる。或いは、結着材を構成する分子鎖に二重結合等の多重結合部分が含まれている場合には、当該部分での開裂・付加反応が起こり、結果、結着材同士の分子間架橋を生じさせることができる。かかる架橋反応により、正極活物質層に含まれる結着材同士の結合によるネットワークを形成することができる。
 このような結着材を構成する高分子化合物の架橋結合によるネットワーク(網目組織)を形成することにより、比較的少ない結着材で正極活物質層の密着強度を向上させることができるため、電池の内部抵抗の上昇を抑制し、耐久性に優れ、ハイレート充放電に適するリチウム二次電池を構築することができる。
 次に、本発明のリチウム二次電池用正極を使用してリチウム二次電池を構築する場合の一形態について説明する。
 ここで開示される正極の対極となるリチウム二次電池用負極は、従来と同様の手法により製造することができる。リチウム二次電池の負極に用いられる負極活物質としては、リチウムイオンを吸蔵且つ放出可能な材料であればよく、黒鉛(グラファイト)等の炭素材料、リチウム・チタン酸化物(LiTi12)等の酸化物材料、スズ(Sn)、アルミニウム(Al)、亜鉛(Zn)、ケイ素(Si)等の合金からなる合金材料、等が挙げられる。典型例として、黒鉛等から成る粉末状の炭素材料が挙げられる。特に黒鉛粒子は、粒径が小さく単位体積当たりの表面積が大きいことからより急速充放電(例えば高出力放電)に適した負極活物質となり得る。
 そして正極と同様、かかる粉末状材料を適当な結着材とともに適当な分散媒体に分散させて混練することによって、ペースト状の負極活物質層形成用組成物(負極活物質層形成用ペースト)を調製することができる。而して、このペーストを、好ましくは銅やニッケル或いはそれらの合金から構成される負極集電体上に適当量塗布しさらに乾燥ならびにプレスすることによって、リチウム二次電池用負極を作製することができる。
 また、正極及び負極とともに使用するセパレータとしては、従来と同様のセパレータを使用することができる。例えばポリオレフィン樹脂から成る多孔質のシート(多孔質フィルム)等を使用することができる。或いはまた、高分子固体電解質をセパレータとして使用することができる。
 電解質としては従来からリチウム二次電池に用いられる非水系の電解質(典型的には電解液)と同様のものを特に限定なく使用することができる。上記の高分子固体電解質典型的には、適当な非水溶媒に支持塩を含有させた組成である。上記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等からなる群から選択された一種又は二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiCSO、LiN(CFSO、LiC(CFSO、LiI等から選択される一種または二種以上のリチウム化合物(リチウム塩)を用いることができる。
 また、ここで開示されるリチウム二次電池用正極が採用される限りにおいて、構築されるリチウム二次電池の形状(外形やサイズ)には特に制限はない。外装がラミネートフィルム等で構成される薄型シートタイプであってもよく、電池外装ケースが円筒形状や直方体形状の電池でもよく、或いは小型のボタン形状であってもよい。
 以下、捲回電極体を備えるリチウム二次電池(ここでは非水電解液を用いたリチウムイオン電池)と該電池を構成パーツ(単電池)として構築される車載用の組電池(バッテリーパック)を例にしてここで開示されるリチウム二次電池用正極の使用態様を説明するが、本発明をかかる実施形態に限定することを意図したものではない。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 図1に示すように、本実施形態に係る組電池10の構成要素として用いられる単電池12は、従来の組電池に装備される単電池と同様、典型的には所定の電池構成材料(正負極それぞれの活物質、正負極それぞれの集電体、セパレータ等)を具備する電極体と、該電極体および適当な電解質を収容する容器とを備える。
 ここで開示される組電池10は、所定数(典型的には10個以上、好ましくは10~30個程度、例えば20個)の同形状の単電池12を備える。単電池12は、後述する扁平形状の捲回電極体を収容し得る形状(本実施形態では扁平な箱形)の容器14を備える。単電池12の各部のサイズ(例えば、積層方向の厚さ等の外形形状)は、使用する容器14の製造時における寸法誤差等によりばらつき得る。
 容器14には、捲回電極体の正極と電気的に接続する正極端子15および該電極体の負極と電気的に接続する負極端子16が設けられている。図示するように、隣接する単電池12間において一方の正極端子15と他方の負極端子16とが接続具17によって電気的に接続される。このように各単電池12を直列に接続することにより、所望する電圧の組電池10が構築される。
 なお、容器14には、容器内部で発生したガス抜きのための安全弁13等が従来の単電池容器と同様に設けられ得る。かかる容器14の構成自体は本発明を特徴付けるものではないため、詳細な説明は省略する。
 容器14の材質は、従来の単電池で使用されるものと同じであればよく特に制限はない。例えば、金属(例えばアルミニウム、スチール等)製の容器、合成樹脂(例えばポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂等)製の容器等を好ましく用いることができる。本実施形態に係る容器14は例えばアルミニウム製である。
 図2および図3に示すように、単電池12は、通常のリチウムイオン電池の捲回電極体と同様、シート状正極32(以下「正極シート32」ともいう。)とシート状負極34(以下「負極シート34」ともいう。)とを計二枚のシート状セパレータ36(以下「セパレータシート36」ともいう。)とともに積層し、さらに当該正極シート32と負極シート34とをややずらしつつ捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体30を備える。
 図2および図3に示すように、かかる捲回電極体30の捲回方向に対する横方向において、上記のとおりにややずらしつつ捲回された結果として、正極シート32および負極シート34の端の一部がそれぞれ捲回コア部分31(即ち正極シート32の正極活物質層形成部分と負極シート34の負極活物質層形成部分とセパレータシート36とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(即ち正極活物質層の非形成部分)32Aおよび負極側はみ出し部分(即ち負極活物質層の非形成部分)34Aには、正極リード端子32Bおよび負極リード端子34Bが付設されており、それらのリード端子32B,34Bがそれぞれ上述の正極端子15および負極端子16と電気的に接続される。
 上記構成の捲回電極体30を構成する材料および部材自体は、正極としてここで開示される正極活物質層が集電体形成された正極(ここでは正極シート32)を採用する以外、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。
 正極シート32は長尺状の正極集電体(例えば長尺状アルミニウム箔)の上にリチウムイオン電池用正極活物質層が付与されて形成される。正極集電体の形状は、リチウム二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。
 本実施形態では、捲回電極体30を備えるリチウム二次電池(単電池)12に好ましく使用され得る形状であるシート状正極集電体が用いられている。例えば、長さ2m~4m(例えば2.7m)、幅8cm~12cm(例えば10cm)、厚さ5μm~20μm(例えば15μm)程度のアルミニウム箔を集電体として使用し、予め上述したようにして調製された正極活物質層形成用ペースト、例えば導電性の炭素質被膜(典型的には有機化合物を熱分解して成るカーボン膜)を有する粒状正極活物質85~95質量%と、カーボンブラックやアセチレンブラック等の導電材0~5質量%と、官能基含有高分子化合物(結着材)1~10質量%とを水系溶媒に混合して調製した正極活物質層形成用ペーストを当該集電体表面に塗布することにより、正極活物質層を形成する。なお、水系溶媒は、典型には水であるが、全体として水性を示すものであればよく、例えば低級アルコール(メタノール、エタノール等)を含む水溶液であってもよい。そして、グラビアコーター、スリットコーター、ダイコーター、コンマコーター等の適当な塗付装置を使用することにより、正極集電体の表面に上記ペーストを好適に塗付することができる。
 上記ペーストを塗布した後、該ペーストに含まれる溶媒(典型的には水)を乾燥させ、圧縮(プレス)することにより正極活物質層を形成する。圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。正極活物質層の層厚を調整するにあたり、膜厚測定器で該厚みを測定し、プレス圧を調整して所望の厚さになるまで複数回圧縮してもよい。
 こうして正極活物質層が表面に形成された状態の正極集電体を減圧室(減圧チャンバー)に収容し、真空条件下(例えば0.01MPa以下(概ね大気圧の10分の1以下)、好ましくは0.001MPa以下(概ね大気圧の100分の1以下)で縮合反応(典型的には脱水縮合反応)を生じさせる。常温域(20~35℃)でも反応し得るが、好ましくは常温域よりも高温条件下(例えば100~200℃)で脱水縮合反応を行うことが好ましい。
 かかる縮合反応を行うことによって正極活物質粒子の炭素質被膜表面に結着材を分子的に結合させて炭素質被膜の炭素ネットワーク部分と結着材構成部分とから構成される複合化合物を形成させると共に、好ましくは結着材を構成する分子同士を架橋させる。このことによって、比較的少ない量の結着材によって密着強度の高い正極活物質層が形成された正極シート32が得られる。
 一方、負極シート34は長尺状の負極集電体の上にリチウムイオン電池用負極活物質層が付与されて形成され得る。負極集電体としては、導電性の良好な金属からなる導電性部材が好ましく用いられる。例えば、銅を用いることができる。負極集電体の形状は、リチウム二次電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。本実施形態では、捲回電極体30を備えるリチウム二次電池(単電池)12に好ましく使用され得る形状であるシート状負極集電体が用いられている。例えば、長さ2m~4m(例えば2.9m)、幅8cm~12cm(例えば10cm)、厚さ5μm~20μm(例えば10μm)程度の銅箔を負極集電体として使用し、その表面に適当な負極活物質(典型的には黒鉛等の炭素材料)と結着材等とを適当な溶媒(水、有機溶媒およびこれらの混合溶媒)に添加し分散または溶解させて調製した負極活物質層形成用ペースト(例えば黒鉛94~98質量%、SBR1~3質量%、CMC1~3質量%)が塗付され、溶媒を乾燥させて圧縮することにより好ましく作製され得る。その作製方法自体は、正極側と同様であるため、詳細な説明は省略する。
 また、正負極シート32,34間に使用される好適なセパレータシート36としては多孔質ポリオレフィン樹脂で構成されたものが例示される。例えば、長さ2m~4m(例えば3.1m)、幅8cm~12cm(例えば11cm)、厚さ5μm~30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)の多孔質セパレータシートを好適に使用し得る。
 なお、電解質として固体電解質若しくはゲル状電解質を使用するリチウム二次電池(いわゆるリチウムイオンポリマー電池)の場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとしても機能し得る。)があり得る。
 得られた扁平形状の捲回電極体30を、図3に示すように捲回軸が横倒しになるようにして容器14内に収容するとともに、適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M)含むジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)のような非水電解質(電解液)を注入して封止することによって単電池12が構築される。
 図1に示すように、上記のようにして構築した同形状の複数の単電池12は、それぞれの正極端子15および負極端子16が交互に配置されるように一つづつ反転させつつ、容器14の幅広な面(即ち容器14内に収容される後述する捲回電極体30の扁平面に対応する面)が対向する方向に配列されている。当該配列する単電池12間ならびに単電池配列方向(積層方向)の両アウトサイドには、所定形状の冷却板11が容器14の幅広面に密接した状態で配置されている。この冷却板11は、使用時に各単電池内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、好ましくは単電池12間に冷却用流体(典型的には空気)を導入可能なフレーム形状を有する。或いは熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板11が好適である。
 上記配列させた単電池12および冷却板11(以下、これらを総称して「単電池群」ともいう。)の両アウトサイドに配置された冷却板11のさらに外側には、一対のエンドプレート18,19が配置されている。また、上記単電池群の一方(図2の右端)のアウトサイドに配置された冷却板11とエンドプレート18との間には、長さ調整手段としてのシート状スペーサ部材40を一枚又は複数枚挟み込んでいてもよい。なお、スペーサ部材40の構成材質は特に限定されず、後述する厚さ調整機能を発揮し得るものであれば種々の材料(金属材料、樹脂材料、セラミック材料等)を使用可能である。衝撃に対する耐久性等の観点から金属材料または樹脂材料の使用が好ましく、例えば軽量なポリオレフィン樹脂性のスペーサ部材40を好ましく使用することができる。
 そして、このように単電池12の積層方向に配列された単電池群、スペーサ部材40およびエンドプレート18,19の全体が、両エンドプレート18,19を架橋するように取り付けられた締め付け用の拘束バンド21によって、該積層方向に所定の拘束圧Pで拘束されている。より詳しくは、図1に示すように、拘束バンド21の端部をビス22によりエンドプレート18に締め付け且つ固定することによって、単電池群がその配列方向に所定の拘束圧P(例えば容器14の壁面が受ける面圧が0.1MPa~10MPa程度)が加わるように拘束されている。かかる拘束圧Pで拘束された組電池10では、各単電池12の容器14の内部の捲回電極体30にも拘束圧がかかり、容器14内で発生したガスが、捲回電極体30内部(例えば正極シート32と負極シート34との間)に貯留して電池性能が低下することを防止することができる。
 以下の試験例において、ここで開示される正極活物質層を備える正極を使用してリチウム二次電池(サンプル電池)を構築し、その性能評価を行った。
<試験例1:正極活物質の作製>
 リチウム供給源として水酸化リチウム(LiOH・HO)、鉄供給源として硫酸鉄(FeSO・7HO)、リン供給源として無機リン酸(HPO)を使用した。具体的には、これら供給源化合物をモル比でLi:Fe:Pが3:1:1となるように脱イオン水に添加し混合した。
 かかる混合溶液をオートクレーブに入れて170~180℃の高温域で約12時間の水熱合成を実施した。反応終了後、室温まで冷却し、反応生成物即ちリン酸鉄リチウム(LiFePO)を回収した。次いで、得られた化合物をボールミルにて解砕処理し、電子顕微鏡観察に基づく一次粒子の平均粒子径が約0.7μmの粒状正極活物質(リン酸鉄リチウム)を得た。
 炭素質材料としてポリビニルアルコールを使用し、上記粒状正極活物質の表面に炭素質被膜を形成した。具体的には、所定量の粒状正極活物質(LiFePO)に対し、該正極活物質の5質量%に相当する量のポリビニールアルコールを添加し、これら混合物が脱イオン水に分散した状態のスラリーを調製した。
 得られたスラリーを市販の旋回流動方式の乾燥機(焼却機)に入れ、溶媒(ここでは水)を除去することによって、平均粒子径(二次粒子)が約20μmのポリビニルアルコールと正極活物質との凝集体を形成した。次いで、水素ガス雰囲気中、800℃で約1.5時間の熱分解処理を行い、ポリビニルアルコールを還元し炭素化した。その後、再びボールミルにて解砕処理を行い、電子顕微鏡観察に基づく一次粒子の平均粒子径が約0.7μmのポリビニルアルコール熱分解産物である炭素質被膜が表面に形成されたことを特徴とする正極活物質粒子を作製した。組成から計算される炭素質被膜のコーティング量は、炭素質被膜を含む正極活物質粒子全体の2~3質量%であった。
<試験例2:官能基含有ポリマー(結着材)の作製>
 懸濁重合により、官能基を含有するフッ化ビニリデン系ポリマーを作製した。具体的には、約1000mlのイオン交換水に、約400gのフッ化ビニリデンポリマーと、約4gのマレイン酸モノメチルエステルとを仕込み、さらに重合開始剤として約4gのジイソプロピルパーオキシジカーボネートと、連鎖移動剤として約3gの酢酸エチルと、懸濁剤として約1gのメチルセルロースとを添加し、28℃で48時間の懸濁重合を行った。重合完了後、得られたスラリーを脱水し、さらに水洗した後、約80℃で20時間の乾燥を行った。
 こうして得られたポリマー(以下、便宜的に「変性ポリフッ化ビニリデン」という。)のカルボキシル基含有量は約1×10-4モル/gであった。かかる変性ポリフッ化ビニリデンを本実施例に係る結着材として使用した。得られた変性ポリフッ化ビニリデンのゲル浸透クロマトグラフィー(GPC)で測定した重量平均分子量は約100万であった。
<試験例3:正極の作製>
 上記試験例1で得られた正極活物質と、試験例2で得られた結着材を使用してリチウム二次電池用正極を作製した。
 具体的には、90質量部の炭素質被膜付き正極活物質と、7質量部の結着材(上記変性ポリフッ化ビニリデン)と、3質量部の導電材(アセチレンブラック)とを、これら固形分が60質量%となるように分散用溶媒たるNMP(N-メチル-2-ピロリドン)に添加し、ビーズミルを用いて粉砕混合し、正極活物質層形成用ペーストを調製した。
 次いで、正極集電体としてのアルミニウム箔(厚さ15μm)に、単位面積あたりの正極活物質の塗工量が40~50mg/cmになるように該正極活物質層形成用ペーストを正極集電体の両面に塗布し乾燥させた。乾燥後、ローラプレス機にてシート状に引き伸ばすことにより厚さを約120μmに成形し、正極活物質層が所定の幅を有するようにスリットして正極シートを作成した。
 得られた正極シートを真空炉内に収容し、炉内を真空状態(即ち、雰囲気圧を0.001MPa付近またはそれ以下)に減圧すると共に180℃~200℃まで加熱し、約12時間の縮合反応処理を行った。これにより、正極活物質層中に存在する結着材の官能基(ここではカルボキシル基)を、正極活物質の炭素質被膜(即ち被膜を構成する炭素原子)に分子的に結合させることができた。併せて、正極活物質層中に存在する結着材(変性ポリフッ化ビニリデン)同士を架橋結合することができた。このことを示すIRスペクトルのチャートを図4に示す。
 縮合反応処理前には明瞭であったカルボニル基(C=O)の伸縮振動に基づく吸収を示す1700cm-1付近のピークが、上記脱水縮合反応処理後に劇的に消失していることが分かる(チャート中の点線で囲んだ部分参照)。このことは、当該結着材が有するカルボキシル基(C=Oを含む)が正極活物質の炭素質被膜との化学結合ならびに結着材(変性ポリフッ化ビニリデン)同士の分子間架橋(又は分子内架橋)に関与していることを示している。また、図5に示すように、上記脱水縮合反応処理後の正極活物質層と上記脱水縮合反応処理前の正極活物質層についてそれぞれ行った示差走査熱量分析(Diffferential Scanning Calorimetry:DSC)の結果から、上記脱水縮合反応処理後の正極活物質層では、上記脱水縮合反応処理前の正極活物質層よりも、存在する結着材の架橋反応が進行していることが確かめられた。図示されるように、吸熱ピークの比較において脱水縮合反応処理後の試料では、処理前の試料よりも当該ピークのブロード化がみられる。このことは架橋に伴う秩序性の低下(即ちエントロピー変化の増大)を示している。また吸熱ピーク温度(Tm)の低下もみられる。ここでTmは、Tm=ΔH(エンタルピー変化)/ΔS(エントロピー変化)である。
 以下、上記縮合反応処理を行って作製した正極シートを「実施例に係る正極シート」という。
 また、比較対照のため、上記脱水縮合反応処理を行わないこと以外は上記実施例に係る正極シートと同様の材料及びプロセスにより別の正極シートを作製した。以下、この比較対照のための正極シートを、「比較例に係る正極シート」という。即ち、比較例に係る正極シートは、上記脱水縮合反応処理を実施していないことにより、正極活物質の炭素質被膜と結着材との結合(即ち縮合反応による結合)が殆ど生じないとともに、結着材(変性ポリフッ化ビニリデン)相互の分子間架橋も殆ど生じていない状態の正極活物質層を備えた正極シートである。
<試験例4:リチウム二次電池の作製>
 次に、上記得られた実施例に係る正極シートを用いてリチウム二次電池を作製した。なお、対極とする負極シートは以下のとおり作製した。
 即ち、負極活物質層形成用ペーストは、負極活物質としての黒鉛95質量部と、結着材としてのスチレンブタジエンブロック共重合体(SBR)2.5質量部と、増粘材としてのカルボキシメチルセルロース(CMC)2.5質量部とを、イオン交換水に加えて混合することにより調製した。そして、負極集電体としての銅箔(厚さ10μm)に、単位面積あたりの負極活物質の塗工量が20~25mg/cmになるように該負極活物質層形成用ペーストを負極集電体の両面に塗布し乾燥させた。乾燥後、ローラプレス機にてシート状に引き伸ばすことにより厚さを約80μmに成形し、負極活物質層が所定の幅を有するようにスリットして負極シートを作成した。なお、使用する正極と負極の理論容量が1(正極):1.5(負極)となるように正負極それぞれの活物質層の塗工量(容量)を規定した。
 上記調製した実施例に係る正極シート或いは比較例に係る正極シートと負極シートとを用いて図2及び図3に示すようなリチウム二次電池(リチウムイオン電池)を構築した。即ち、正極シート及び負極シートを2枚のセパレータとともに積層し、この積層シートを捲回して捲回電極体を作製した。そして、この電極体を扁平形状に拉げさせ、電解質とともに内容積が100mLの角型容器に収容し、開口部を封止して密閉構造の本試験例に係る電池を構築した。なお、セパレータとして、ポリプロピレン/ポリエチレン複合体から成る多孔質膜を使用した。また、電解質として、プロピレンカーボネート(PC)とジエチルカーボネート(DEC)との1:1(体積比)混合溶媒に1mol/LのLiPFを溶解させた組成の非水電解液を使用した。
 以下、実施例に係る正極シートを用いて構築したリチウム二次電池を「実施例に係るリチウム二次電池」といい、比較例に係る正極シートを用いて構築したリチウム二次電池を「比較例に係るリチウム二次電池」という。
<試験例5:リチウム二次電池の性能評価試験>
 上記試験例4で構築した2種類(実施例と比較例)のリチウム二次電池についての性能評価を行った。
 先ず、充電電量は定電流-定電圧方式とし、室温(約25℃)下において、正極理論容量より予測した電池容量(Ah)の5分の1の電流値(即ち0.2C)で充電上限電圧(4.2V)まで充電を行い、そこからは定電圧充電時の最終電流値が充電初期電流値の10分の1になる点まで充電を行った。以下、この状態を満充電という。一方、上記のように満充電された電池を、正極理論容量より予測した電池容量(Ah)の5分の1の電流値(即ち0.2C)で3Vまで放電した。なお、ここで0.2Cとは、理論容量を1/0.2時間(即ち5時間)で放出できる電流値をいう。
 かかる充放電試験に基づき、正極活物質層を構成する正極材料(正極合剤)の単位重量あたりの放電容量(mAh/g)を算出した。結果を表1の該当箇所に記載した。
 また、上記満充電の状態から10秒間放電したときの出力(W)を求め、容器の外容積あたりの出力密度(W/L)を算出した。結果を表1の該当箇所に記載した。
 また、実施例に係るリチウム二次電池及び比較例に係るリチウム二次電池についてのサイクル特性を次のようにして調べた。
 先ず、60℃の温度条件下、3C(理論容量を1/3時間で放出できる電流値)での定電流充電を4.2Vまで行い、次いで4.2Vで2時間ほど定電圧充電を行い、続いて3Cの定電流放電を終止電圧3Vまで行った。この充放電を繰り返して1サイクル目の放電容量と1000サイクル目の放電容量との比から容量維持率(%)を求めた。即ち、
容量維持率(%)=(1000サイクル目の放電容量/1サイクル目の放電容量)×100である。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、実施例1に係るリチウム二次電池は、放電容量、出力密度及び容量維持率のいずれについても比較例に係るリチウム二次電池よりも良好であった。特に、実施例に係るリチウム二次電池では、正極活物質層の密着強度が向上した結果、出力密度ならびにハイレート充放電を行った場合の容量維持率(即ち耐久性)が向上することが認められた。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 ここに開示されるいずれかのリチウム二次電池12および組電池10は、車両に搭載される電池として適した性能、特にハイレート充放電特性に優れたものであり得る。したがって本発明によると、図6に示すように、ここに開示されるいずれかのリチウム二次電池12(組電池10)を備えた車両1が提供される。特に、該リチウム二次電池12を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
 本発明によると、正極活物質の密着強度の高い正極活物質層を備えるリチウム二次電池用正極を提供することができる。従って、かかる正極を利用することによって、サイクル特性に優れ、耐久性の高いリチウム二次電池を提供することができる。特に、長期にわたってハイレート充放電性能に優れるリチウム二次電池(例えば車両を駆動する電源として利用される車載用リチウム二次電池)を提供することができる。

Claims (14)

  1.  正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用の正極であって、
     前記正極活物質層は、リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物から成る粒状の正極活物質と、少なくとも1つの官能基を有する高分子化合物から成る少なくとも1種の結着材と、を有しており、
     ここで前記正極活物質の表面には導電性の炭素質被膜が形成されており、且つ、少なくとも一部の正極活物質の炭素質被膜を構成する炭素原子には前記結着材を構成する高分子化合物が分子的に結合し、該炭素原子に分子的に結合した高分子化合物と該炭素原子を包含する前記炭素質被膜を構成する炭素ネットワークとから成る複合化合物を有する、リチウム二次電池用正極。
  2.  前記正極活物質層は、前記結着材としてヒドロキシ基及び/又はカルボキシル基を有する少なくとも1種の高分子化合物を含む、請求項1に記載の正極。
  3.  前記高分子化合物として、ヒドロキシ基及び/又はカルボキシル基が導入され且つフッ化ビニリデンを主モノマー成分とするフッ化ビニリデン系ポリマーを含む、請求項2に記載の正極。
  4.  前記正極活物質層において、前記高分子化合物が互いに架橋することによって結着材のネットワークが形成されている、請求項1~3のいずれかに記載の正極。
  5.  前記正極活物質は、電子顕微鏡による測定に基づく一次粒子の平均粒子径が1μm以下である粒状の前記複合酸化物により構成されている、請求項1~4のいずれかに記載の正極。
  6.  前記正極活物質を構成する複合酸化物は、一般式:
      LiMAO    (1)
    (ここでMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素であり、Aは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。)
    で示される化合物である、請求項1~5のいずれかに記載の正極。
  7.  正極集電体と該集電体上に形成された正極活物質層とを備えるリチウム二次電池用の正極を製造する方法であって:
     リチウム及び少なくとも1種の遷移金属元素を含む複合酸化物から成る正極活物質であって表面に導電性の炭素質被膜が形成されている正極活物質と、少なくとも1つの官能基を有する高分子化合物から成る少なくとも1種の結着材と、該結着材を溶解又は分散可能な溶媒とを含む正極活物質層形成用組成物を用意すること;
     前記組成物を正極集電体の表面に塗布し、該正極集電体上に正極活物質層を形成すること;および
     前記正極活物質層に含まれる前記結着材と前記正極活物質の炭素質被膜との間で縮合反応を生じさせ、少なくとも一部の該正極活物質の炭素質被膜を構成する炭素原子に該結着材を構成する高分子化合物を分子的に結合させること;
    を包含する、方法。
  8.  前記結着材としてヒドロキシ基及び/又はカルボキシル基を有する高分子化合物を使用する、請求項7に記載の方法。
  9.  前記使用する高分子化合物の少なくとも1種は、ヒドロキシ基及び/又はカルボキシル基が導入され且つフッ化ビニリデンを主モノマー成分とするフッ化ビニリデン系ポリマーである、請求項8に記載の方法。
  10.  前記正極活物質層に含まれる前記結着材を構成する高分子化合物を互いに架橋させること、
    をさらに包含する、請求項7~9のいずれかに記載の方法。
  11.  前記正極活物質は、電子顕微鏡による測定に基づく一次粒子の平均粒子径が1μm以下である粒状の前記複合酸化物により構成されている、請求項7~10のいずれかに記載の方法。
  12.  前記正極活物質を構成する複合酸化物は、一般式:
      LiMAO    (1)
    (ここでMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素であり、Aは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。)
    で示される化合物である、請求項7~11のいずれかに記載の方法。
  13.  請求項1~6のいずれかに記載の正極を備える、リチウム二次電池。
  14.  請求項13に記載のリチウム二次電池を備える、車両。
PCT/JP2009/067271 2009-10-02 2009-10-02 リチウム二次電池および該電池用正極 WO2011039890A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011534023A JP5445874B2 (ja) 2009-10-02 2009-10-02 リチウム二次電池および該電池用正極
PCT/JP2009/067271 WO2011039890A1 (ja) 2009-10-02 2009-10-02 リチウム二次電池および該電池用正極
KR1020127008478A KR101438980B1 (ko) 2009-10-02 2009-10-02 리튬 2차 전지 및 상기 전지용 정극
CN200980161314.7A CN102484239B (zh) 2009-10-02 2009-10-02 锂二次电池和该电池用正极
US13/499,307 US9362554B2 (en) 2009-10-02 2009-10-02 Method of manufacturing a positive electrode with a condensation reaction initiated by heating and reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067271 WO2011039890A1 (ja) 2009-10-02 2009-10-02 リチウム二次電池および該電池用正極

Publications (1)

Publication Number Publication Date
WO2011039890A1 true WO2011039890A1 (ja) 2011-04-07

Family

ID=43825744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067271 WO2011039890A1 (ja) 2009-10-02 2009-10-02 リチウム二次電池および該電池用正極

Country Status (5)

Country Link
US (1) US9362554B2 (ja)
JP (1) JP5445874B2 (ja)
KR (1) KR101438980B1 (ja)
CN (1) CN102484239B (ja)
WO (1) WO2011039890A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216272A (ja) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd 電極材料組成物及びリチウムイオン電池
KR20140092300A (ko) * 2011-10-17 2014-07-23 록우드 리튬 게엠베하 전지용 활물질
WO2016017759A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2775303C (en) 2009-10-02 2016-01-19 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode for the battery
WO2014178590A1 (ko) 2013-04-29 2014-11-06 주식회사 엘지화학 케이블형 이차전지용 패키징 및 그를 포함하는 케이블형 이차전지
WO2014182063A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
CN104466233B (zh) 2013-05-07 2017-04-12 株式会社Lg化学 线缆型二次电池
CN204441379U (zh) 2013-05-07 2015-07-01 株式会社Lg化学 二次电池用电极以及包含其的二次电池和线缆型二次电池
JP6149106B2 (ja) 2013-05-07 2017-06-14 エルジー・ケム・リミテッド 二次電池用電極、その製造方法、それを含む二次電池、及びケーブル型二次電池
KR101465165B1 (ko) 2013-05-07 2014-11-25 주식회사 엘지화학 케이블형 이차전지
JP6038298B2 (ja) 2013-05-07 2016-12-07 エルジー・ケム・リミテッド ケーブル型二次電池及びその製造方法
WO2014182064A1 (ko) 2013-05-07 2014-11-13 주식회사 엘지화학 이차전지용 전극, 그의 제조방법, 그를 포함하는 이차전지 및 케이블형 이차전지
KR102107877B1 (ko) * 2013-10-02 2020-05-07 가부시키가이샤 무라타 세이사쿠쇼 전지, 전해질, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
JP6210144B1 (ja) * 2016-09-30 2017-10-11 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
JP6686970B2 (ja) * 2017-05-31 2020-04-22 トヨタ自動車株式会社 全固体電池
CN107464928B (zh) * 2017-07-17 2020-06-23 上海应用技术大学 用于锂离子电池正极材料的硅酸锰锂材料及制备方法
JP6997943B2 (ja) * 2017-09-22 2022-01-18 トヨタ自動車株式会社 正極材料とこれを用いたリチウム二次電池
JP6981338B2 (ja) * 2018-03-28 2021-12-15 トヨタ自動車株式会社 負極材料、非水電解質二次電池およびそれらの製造方法
CN111370647B (zh) * 2018-12-26 2021-03-30 宁德时代新能源科技股份有限公司 一种正极极片以及锂离子二次电池
US11296386B2 (en) 2019-02-06 2022-04-05 GS Yuasa Lithium Power Inc. Expandable electrochemical cell effluent containment device and corresponding systems and methods
JP7281934B2 (ja) * 2019-03-25 2023-05-26 三洋化成工業株式会社 リチウムイオン電池
EP3916842A1 (en) * 2020-05-29 2021-12-01 Arkema Inc. Electrode binder composition for lithium ion electrical storage devices
CN113903883B (zh) * 2021-09-30 2022-08-12 惠州亿纬锂能股份有限公司 一种电极极片及其制备方法和应用
CN116799151B (zh) * 2022-03-31 2024-08-09 宁德时代新能源科技股份有限公司 正极极片、二次电池及用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2003292308A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2005530676A (ja) * 2002-06-21 2005-10-13 ユミコア カーボン被覆Li含有粉末及びその製造方法
JP2008251497A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 初充電前リチウムイオン二次電池、リチウムイオン二次電池、車両、および電池搭載機器
JP2008270204A (ja) * 2007-03-29 2008-11-06 Mitsubishi Materials Corp 正極形成材、その材料と製造方法、およびリチウムイオン二次電池
JP2008541405A (ja) * 2005-05-17 2008-11-20 スリーエム イノベイティブ プロパティズ カンパニー 再充電可能なリチウム−イオン電池用の置換フェノチアジン酸化還元シャトル物質
JP2009043703A (ja) * 2007-07-18 2009-02-26 Nissan Motor Co Ltd 非水電解液二次電池
JP2009129889A (ja) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd 二次電池用正極およびこれを用いた非水電解液二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817105B2 (ja) 2000-02-23 2006-08-30 新日本製鐵株式会社 疲労特性の優れた高強度鋼およびその製造方法
JP4817505B2 (ja) 2001-01-31 2011-11-16 三洋電機株式会社 リチウム二次電池用正極およびその製造方法ならびにこの正極を用いたリチウム二次電池
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
JP2003203632A (ja) 2002-01-09 2003-07-18 Hitachi Ltd リチウム二次電池用正極活物質とその製造法及びそれを用いたリチウム二次電池並びに組電池モジュール
EP1464620A4 (en) 2002-01-11 2009-04-22 Mikuni Color Works CARBONATED MATERIAL AND THIS DISPERSION
TW200410439A (en) 2002-11-22 2004-06-16 Kureha Chemical Ind Co Ltd Binder composition for electrode of nonaqueous electrolyte battery, and use thereof
JP2004311408A (ja) 2003-03-25 2004-11-04 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
TWI286849B (en) 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN100508256C (zh) 2004-03-23 2009-07-01 株式会社吴羽 非水性电化学元件电极形成用粘合剂、电极合剂、电极结构体及电化学元件
JP2006004631A (ja) 2004-06-15 2006-01-05 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2006216371A (ja) 2005-02-03 2006-08-17 Sony Corp 負極および電池
JP2007035358A (ja) 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びにリチウムイオン二次電池
CN100563047C (zh) * 2006-04-25 2009-11-25 立凯电能科技股份有限公司 适用于制作二次电池的正极的复合材料及其所制得的电池
JP5162945B2 (ja) 2006-10-13 2013-03-13 株式会社Gsユアサ リチウムリン酸遷移金属化合物とカーボンとの混合体、それを備えた電極、その電極を備えた電池、その混合体の製造方法、及び電池の製造方法
JP2008235090A (ja) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池
US7931984B2 (en) * 2007-11-28 2011-04-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
EP2065887A1 (en) 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
JP2009146773A (ja) 2007-12-14 2009-07-02 Agc Seimi Chemical Co Ltd オリビン型リチウム鉄リン複合酸化物およびその製造方法
WO2011036797A1 (ja) 2009-09-28 2011-03-31 トヨタ自動車株式会社 リチウム二次電池及びその製造方法
CA2775303C (en) 2009-10-02 2016-01-19 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode for the battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195419A (ja) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd 非水系電池用電極合剤および非水系電池
JP2003292308A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2003292309A (ja) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2005530676A (ja) * 2002-06-21 2005-10-13 ユミコア カーボン被覆Li含有粉末及びその製造方法
JP2008541405A (ja) * 2005-05-17 2008-11-20 スリーエム イノベイティブ プロパティズ カンパニー 再充電可能なリチウム−イオン電池用の置換フェノチアジン酸化還元シャトル物質
JP2008270204A (ja) * 2007-03-29 2008-11-06 Mitsubishi Materials Corp 正極形成材、その材料と製造方法、およびリチウムイオン二次電池
JP2008251497A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 初充電前リチウムイオン二次電池、リチウムイオン二次電池、車両、および電池搭載機器
JP2009043703A (ja) * 2007-07-18 2009-02-26 Nissan Motor Co Ltd 非水電解液二次電池
JP2009129889A (ja) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd 二次電池用正極およびこれを用いた非水電解液二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216272A (ja) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd 電極材料組成物及びリチウムイオン電池
KR20140092300A (ko) * 2011-10-17 2014-07-23 록우드 리튬 게엠베하 전지용 활물질
KR101972621B1 (ko) * 2011-10-17 2019-04-25 알베마를 저머니 게엠베하 전지용 활물질
US10403885B2 (en) 2011-10-17 2019-09-03 Albemarle Germany Gmbh Active material for batteries
WO2016017759A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
JPWO2016017759A1 (ja) * 2014-07-31 2017-04-27 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法

Also Published As

Publication number Publication date
CN102484239A (zh) 2012-05-30
JPWO2011039890A1 (ja) 2013-02-21
KR20120061952A (ko) 2012-06-13
US9362554B2 (en) 2016-06-07
JP5445874B2 (ja) 2014-03-19
KR101438980B1 (ko) 2014-09-11
US20120189914A1 (en) 2012-07-26
CN102484239B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5445874B2 (ja) リチウム二次電池および該電池用正極
JP5370790B2 (ja) リチウム二次電池及び該電池用正極
JP5445878B2 (ja) 電極活物質の製造方法
WO2016203696A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP5553180B2 (ja) 電極活物質の製造方法
WO2020149079A1 (ja) 非水電解質二次電池用負極活物質及びその製造方法
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
TWI761365B (zh) 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
WO2011036759A1 (ja) リチウム二次電池及びその製造方法
JP6964386B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP5133020B2 (ja) 非水電解液二次電池用正極板の製造方法およびその正極板を用いた非水電解液二次電池
TWI753878B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、及負極活性物質的製造方法
WO2013002162A1 (ja) 非水電解質二次電池及びその製造方法
JP7084849B2 (ja) 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法
JP6749692B2 (ja) リチウム二次電池、電池モジュール、電池パック、及び電池パックを含むデバイス
WO2013057826A1 (ja) 非水電解液二次電池およびその利用
WO2011086690A1 (ja) 正極活物質の評価方法
WO2017150311A1 (ja) 負極活物質およびそれを用いたリチウムイオン二次電池
JP2011204564A (ja) 電極活物質の製造方法
JP5585847B2 (ja) 電極活物質の製造方法
JP5232353B2 (ja) 非水電解質二次電池用電極組成物、これを用いた電極および電池
JP2010146808A (ja) 非水電解液二次電池
JP2024125813A (ja) 正極活物質の製造方法およびリチウムイオン二次電池の製造方法
JP2022551434A (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP2012124181A (ja) 非水電解質二次電池用電極組成物、これを用いた電極および電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161314.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850079

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011534023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499307

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127008478

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850079

Country of ref document: EP

Kind code of ref document: A1