[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011039284A2 - Überwachungssystem und verfahren zum überwachen einer energie-übertragung zwischen einer ersten energieeinheit und einer zweiten energieeinheit - Google Patents

Überwachungssystem und verfahren zum überwachen einer energie-übertragung zwischen einer ersten energieeinheit und einer zweiten energieeinheit Download PDF

Info

Publication number
WO2011039284A2
WO2011039284A2 PCT/EP2010/064502 EP2010064502W WO2011039284A2 WO 2011039284 A2 WO2011039284 A2 WO 2011039284A2 EP 2010064502 W EP2010064502 W EP 2010064502W WO 2011039284 A2 WO2011039284 A2 WO 2011039284A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
unit
power
amount
network
Prior art date
Application number
PCT/EP2010/064502
Other languages
English (en)
French (fr)
Other versions
WO2011039284A3 (de
WO2011039284A4 (de
Inventor
Nico Peterschmidt
Jacob Schmidt-Reindahl
Original Assignee
Inensus Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inensus Gmbh filed Critical Inensus Gmbh
Publication of WO2011039284A2 publication Critical patent/WO2011039284A2/de
Publication of WO2011039284A3 publication Critical patent/WO2011039284A3/de
Publication of WO2011039284A4 publication Critical patent/WO2011039284A4/de

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F15/00Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity
    • G07F15/003Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity for electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/10Analysing; Displaying
    • G01D2204/14Displaying of utility usage with respect to time, e.g. for monitoring evolution of usage or with respect to weather conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • a billing of electrical energy is performed, which is loaded from the grid (power grid) in batteries or battery units of electric vehicles or taken from these and fed back into the electrical grid (power grid).
  • the electric vehicles and the energy network (or its network operator) can thus form a virtual power plant.
  • a household has a meter for charging the electricity purchased (designed as a Ferrari meter or smart meter). If the battery of an electric vehicle is connected to a household power socket, the energy required for this purpose is recorded by the household meter. If the holder of the electric vehicle to be charged is not at the same time the household electricity customer to whom the purchased electrical energy is charged by the energy supply company after the household meter has been read, then a complex charging process between the vehicle maintenance ter and the household electricity customer. The problem occurs in a similar form even when charging via publicly available sockets such as a parking lot or parking garage or at charging stations for electric vehicles.
  • a monitoring system for monitoring an energy transmission between a first energy unit and a second energy unit, the monitoring system comprising: an RFID identification unit for holding RFID identification information of the first energy unit, an RFID identification receiving unit for receiving the RFID identification information at the second power unit, and a control unit for determining power amount information representing the transmitted power amount between the first power unit and the second power unit, and transmitting the power amount information and the RFID identification information to an energy communication unit of a power grid.
  • the invention is based on the idea that sockets (or charging stations) - ie first energy units - are associated with a household counter by sticking RFID tags, which preferably characterize the socket by a lettering as a charging station, the household energy refers to the power grid. If, for example, an electric vehicle - ie the second energy unit - is connected to the socket with a plug containing an RFID reader, the reading device reads out the identifier of the socket. After the charge has been completed, a communication unit or control unit in the e-vehicle transmits, for example via power line communication or mobile network, the identification of the socket and the charged amount of electricity determined in the vehicle to the energy supply company, where the identification of the socket is assigned to the household meter.
  • the determination of the charged amount of electricity is preferably carried out in an electric meter in the electric vehicle (ie the electric vehicle) and / or in the household meter.
  • the electric energy charged into the electric vehicle is charged to the household meter reading.
  • the billing is preferably carried out in a billing unit of the energy grid operator. If a smart meter is used as a household meter, then the Settlement takes place immediately and automatically, ie preferably the household has a settlement unit.
  • the electric vehicle identifies preferably by means of an identification information, first as such, before the charge is released from the socket.
  • a Stromklau be prevented.
  • the invention provides a simple transmission and monitoring of electrical energy that has been loaded by electric vehicles from the electrical network in the vehicle battery (or vice versa).
  • the monitoring system according to the invention the problem of double charging when charging the battery in a conventional socket as a charging station is eliminated.
  • the establishment of the charging station infrastructure can be realized very easily with the monitoring system according to the invention.
  • an area-wide implementation of electric charging stations for electric vehicles is made simple by resorting to already existing infrastructure.
  • the billing of the charged electrical energy according to the invention is largely automated, whereby a double billing is avoided.
  • Another advantage is the reduction of the standardization requirements to a minimum by using known and standardized interfaces.
  • a CAN bus is used to enter the data entered by the user (charging period and minimum energy required for the next trip calculated from the next planned route) and the data provided by the battery management system (battery charge status, battery size and battery care needs) to the communication unit in the vehicle.
  • the in-vehicle communication unit preferably communicates with the headquarters of a virtual power plant via the smart metering infrastructure. This is preferably done via the power line communication or the communication via the mobile network.
  • the monitoring system according to the invention can advantageously prevent a Stromklau public access sockets, characterized in that the electric vehicle as such at the socket identified and the socket releases the current flow only after successful identification.
  • Every car can "fill up” electricity at every socket that is equipped with an RFID tag, which, after consultation between the network operators, can be based on the model of mobile roaming contracts for networks "Foreign" network operators apply.
  • the monitoring system according to the invention is largely tamper-proof, since one can not enrich oneself by stealing an RFID tag and sticking it on its own socket, but rather harms itself: one would pay twice for the stream of electricity; the one to whom the RFID tag is assigned receives for him advantageously a subsidy to his electricity bill from the RFID tag thief.
  • data storage at the headquarters of the Virtual Power Station makes it easy to understand if someone wants to reduce their electricity bills by sticking their own RFID tag on a foreign power outlet.
  • the monitoring system according to the invention is preferably connectable to other systems and methods from the vehicle to grid area. For example, the electric car rider can cheaper electricity tariffs are offered if he stays on the network with his vehicle for a long time. An "online negotiation" of the electricity tariff is conceivable.Unidirectional (charging only) and bidirectional (with feeding back into the network) coupling of electric vehicles to the interconnected grid are possible according to the invention.
  • the second energy unit for receiving a release for energy transmission between the first energy unit and the second energy unit is configured by the energy communication unit of the energy network.
  • the energy communication unit of the power network sends e.g. after an authentication, a release signal to the electric vehicle, which then starts the charging process.
  • the energy communication unit of the energy network is designed to control the energy transmission as a function of the energy transmission time, in particular during the energy transmission.
  • the energy communication unit depends on times at which particularly high or low energy is available in the network (or this Energy is correspondingly expensive or cheap), this accordingly to the e-mobile free.
  • the invention in another aspect, relates to methods for monitoring energy transfer between a first energy unit and a second energy unit.
  • Fig. 1 illustrates a unidirectional charge both regulated and unregulated
  • FIG. 2 shows a schematic representation of the network coupling of electric vehicles according to the invention.
  • V2G Vehicle to Grid
  • V2G Vehicle to Grid
  • the coupling takes place in such a way that network services such as control power and reactive power compensation can be provided or load smoothing can be provided by the use of the battery storage in the electric vehicles.
  • the V2G concept envisages taking e-mails out of the grid and feeding them back in times of high network load.
  • Communication technologies serve the dynamic integration of electric vehicles into the existing power supply networks, which allow uniformly technically addressing decentralized, distributed consumers from a central location in a diverse infrastructure.
  • a "decentralized energy management system” as the headquarters of a virtual power plant is preferred for the respective region in order to be able to introduce these technologies
  • the DEMS undertakes the optimization of the charge (and in the bidirectional V2G also the discharge) of the decentralized distributed battery storage of
  • the storage density shift over the course of the day is predicted and integrated into the grid calculations.
  • ICT information and communication technology
  • the use of information and communication technology (ICT) will on the one hand improve forecasts of decentralized, stochastic feed-in.
  • network management will be optimized through improved power plant deployment planning.
  • the information and communication technology ICT in the electricity sector is explained below.
  • Power electronic elements for network control are controlled to make their network control function meaningful.
  • Networks where decentralized producers and consumers are intelligently controlled to ensure a high level of security of supply and quality of supply, are called smart grids.
  • central control all information of the decentralized producers, including the network status, is sent to a central trust center, which bundles the information, evaluates it and returns commands for suitable measures to the decentralized energy feeders.
  • This centralized control includes the Virtual Power Plant or the Decentralized Energy Management System (DEMS).
  • DEMS Decentralized Energy Management System
  • the use of the smart meter is e.g. supported by the European Commission to give electricity customers more transparency in their electricity bills at shorter intervals. The goal is to stop the user of the power supply by means of short-term feedback on his energy usage behavior for the efficient use of electrical energy.
  • the basis of the smart meter provides a basis on which a communication structure for a smart grid can be built.
  • FIGURE 1 An embodiment of a unidirectional vehicle to grid 50 is shown in FIGURE 1 and connected to the power grid 10 (eg, as a WAN communication network).
  • a unidirectional vehicle to grid according to the invention has, for example, the following units, which may be assembled differently in different embodiments: DEMS 11: The Decentralized Energy Management System is the headquarters of the Virtual Power Plant. From here commands are sent to the micro-power stations, so that the charger "knows" when it should charge as much.
  • the stationary charging station 12 stands for a physical device that is located outside of the electric vehicle at a fixed location and has the task of charging the batteries. This can be realized by a battery changing station or a charging station.
  • the stationary charging station may include a smart metering unit and a charge release unit 13.
  • SMet-E 51 The smart metering unit measures the electrical power, calculates the transmitted energy and provides it as a digital value.
  • Power electronics 52 The inverter rectifies the battery charge.
  • the power electronics can have the control management and the on-board electronics.
  • Energy storage battery 53 There are various embodiments of the arrangement of the battery: in the electric vehicle for charging via a power plug; If the stationary charging station becomes a battery replacement station, the battery can be removed from the E-mobile, mechanically inserted into the battery replacement station and charged there.
  • IP 51 This is the communication unit in the vehicle, which takes over the connection between the user interface, the charging station and the energy management.
  • MSR technology 54 The measurement, control and regulation technology provides measured values from the vehicle and takes over control and regulation tasks in the vehicle.
  • User interface 55 (design, functions): The user interface serves to communicate between technology in the vehicle and the user. It communicates conditions in the vehicle and in the electrical network with the driver (currently available range, price per kWh for certain charging conditions). conditions, etc.). In addition, it serves as an input tool for the user to optionally communicate with the network operator.
  • Energy management 56 The energy management addressed here ensures orderly energy and power flows between the components in the e-mobile. These can be: Super CAPS, battery, electric drive, charger (230 V) 59 etc.
  • Super CAPS 57 Super CAPS are capacitors that can absorb high power quickly and with good efficiency. Batteries are better suited to absorb comparatively low power but large amounts of energy.
  • E-drive 58 drive that electrically sets the electric vehicle in motion.
  • Figure 1 The components are shown in Figure 1 dashed arrows, which stand for the data transmission, or communication between technical components.
  • the arrows are numbered and mean:
  • Communication between the DEMS and the smart metering unit This can e.g. be realized via Powerline Communication or the mobile network.
  • Communication between the user interface and the embedded system This can e.g. be realized via the CAN bus of the vehicle.
  • FIG. 1 represents the power transmission or the energy flow. These are numbered with Roman numerals: I. Charging the battery via a 230 V single-phase charger 59 on the mains.
  • the braking energy is fed back into the batteries / the super-caps (recuperation, indicated in FIG. 1 by arrow A).
  • 1 shows on the one hand a communication structure of the units 11, 13, 51, 55 and 56, and on the other hand an energy flow structure of the units 53, 57, 58, 59 and 60.
  • the vehicle of Figure 1 communicates directly with the DEMS e.g. via Power-Line Communication.
  • the socket identifies itself with the E-mobile, which preferably passes on its own IP with the IP of the socket to the DEMS.
  • Fig. 1 both the regulated (400 V) unidirectional charge as well as the unregulated (230 V) unidirectional charge is shown.
  • the invention equally relates to a bidirectional system of electric vehicle and power supply network.
  • the technical unit for communication between the vehicle and the network can be arranged according to the invention in the vehicle or at the external charging station.
  • the arrangement in the vehicle has the advantage that the charging station network can be inexpensively removed.
  • the arrangement at the external charging station has the advantage that billing and communication via proprietary channels of the respective network operator can take place; furthermore, double settlements do not occur.
  • the task of the communication unit is to carry out the data exchange between vehicle / battery and interconnected network / network operator, conflicts with existing ones To bypass infrastructure for power supply and billing, and to perform according to specifications switching operations, to which it has received commands from the battery management or from the network operator, as well as to make switching operations, can be decided on the decentralized.
  • the in-vehicle communication unit between network and vehicle or in-vehicle power electronics has in the unidirectional grid connection (with active or passive rectifier) the advantage that it can be used in small quantities technically useful, since they can be used anywhere where a signal from the network operator is available , Furthermore, there is less effort for hardware development and a medium standardization requirement in cooperation with several e-mobile manufacturers.
  • the system can also be retrofitted and used economically in large quantities.
  • the network operator receives the following information in its central office: From the vehicle: IP address of the vehicle to charge the vehicle with fueled electricity or to charge the driver can. A nominal load cycle with tolerance bands that can be used for control power provision. Alternative: Battery storage capacity, minimum and maximum charge power, current battery maintenance requirements, current battery state of charge, scheduled next trip time, and / or the minimum amount of energy to charge (based on the power or power that must be transferred through the power plug).
  • E-Mobile should be able to be charged by any user to any sockets.
  • the billing system i. Coupling system
  • a vehicle should also be unregulated and can be loaded without automatic billing outside the EWE area.
  • billing system is adopted by several network operators, automatic billing should also be possible in a "foreign" network area.
  • the billing between the network operators should be automatic, so that the driver receives only one bill from a network operator (similar to roaming from within the network) mobile area).
  • the system preferably works both for e-mobile owned by EWE as a leasing company and for e-mobile owned by other natural or legal persons.
  • EWE electronic commerce
  • e-mobile owned by other natural or legal persons The assignment of automobiles to networks of electricity customers to which they are currently being charged must be clear even if two outlets that belong to different power customer networks are directly adjacent to each other. - Security and privacy policies for digital payments must be respected.
  • EWE E-Mobile Box Each EWE car in the network area of EWE, whose owner wants to buy his electrical energy for battery charging at EWE, will receive a calibrated and sealed "EWE E-Mobile Box" which will be installed in his vehicle. It measures the electrical charging power and calculates the charged energy for billing with the network operator, communicates with the on-board electronics and collects the information required by the vehicle and the driver via the CAN bus of the vehicle via an RFID tag that is affixed to the power outlet , the e-mobile box receives the assignment of the socket to a household / household meter.
  • the RFID tag is preferably designed so that it is self-destructive in an attempt to forcibly remove it from the socket. Day carry the inscription "charging station". The information of the driver is determined according to the method described below.
  • the EWE Mobile Box sends it via Power-Line Communication to the central gateway in the low-voltage network section, which communicates with the DEMS and, if necessary, returns a command to release the load at a specific electricity tariff.
  • the electricity tariff depends on the clearances granted by the driver for the time shift by the network operator.
  • the network operator returns a desired current charging power for the electric vehicle to be charged via the central gateway to the charging station, which gives the electric vehicle the command to obtain this charging power.
  • the E-Mobile implements this command. Due to the inventive identification of the socket as a "charging station", which belongs to a specific household meter, double billing can be avoided by billing.
  • FIG. 2 shows a schematic representation of the network coupling of E-mobiles.
  • the e-mobiles 50 via the EWE E-Mobile Box 83 and a conventional single- or three-phase plug to a conventional outlet 80 of a household 70 or a public outlet 81 z. B. in a parking garage 71, connected. This is made by sticking an RFID tag, which defines the affiliation to a household, to a charging station.
  • the socket identifies itself to the e-mobile box, which communicates with the central gateway 14 through power line communication.
  • the central gateway is available anyway for smart metering in the relevant network section and does not have to be specially installed for the V2G.
  • the E-Mobile Box transmits the user and vehicle data as well as the IP of the socket from the CAN bus 84 to the central gateway. This forwards the information by means of a TCP / IP communication 85 to the DEMS, which returns the release for charging via the central gateway to the E-mobile box.
  • the charge can thus be assigned to a specific e-mobile. After reading the household counter 82, the energy consumed for the e-mobile charge can be offset against the household meter reading. A double billing is thus avoided. Public sockets will only be given a release to charge when an E-Mobile is connected to prevent misuse.
  • the purchase price of electricity will vary due to the success or failure of the standard service tender but also other market mechanisms.
  • the network operator can pass on the risk of energy trading to the end customer and offer a flexible electricity price. On the one hand, this can encourage the e-vehicle user to participate more intensively in the V2G and give the network operator more flexibility to allow the use of the battery storage in the vehicle.
  • a flexible electricity price limits the financial planning security of the vehicle owner / driver. A compromise could be that the driver is guaranteed that the flexible electricity price is always below the fixed household tariff.
  • the determination of possible load profiles and the electricity price can take place in three phases:
  • Step 1 Data input by the driver: The driver indicates to the communication unit when he would like to arrive at which location after the next trip. The navigation device of the vehicle calculates the route and returns the departure time. Speed-dialing options should be provided to the driver, such as: "Go to work tomorrow at the usual time”.
  • Step 2 Calculation of possible load cycles by the battery management system:
  • the E-mobile box / communication unit determines from the entered data and the battery data (battery charge state, battery aging state, battery charge characteristics) the curve of the power demand over time with accepted tolerance bands and transmits these to the network operator.
  • Step 3 Calculation of the electricity tariff for the load: On the basis of the power requirement and its tolerance bands, as well as on the basis of the already available control band sold to the transmission system operator, the network operator automatically calculates the current electricity tariff.
  • Step 4 Confirmation of the electricity tariff or change of the boundary conditions: If the driver agrees with the offered price, he confirms this and the battery charge can begin. If he does not agree, he can change the boundary conditions, repeat step 1 and start the cycle again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Meter Arrangements (AREA)

Abstract

Die Erfindung betrifft ein Überwachungssystem und Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit. Um die Abrechnung von übertragener Energie zu erleichtern, weist das erfindungsgemäße Überwachungssystem auf: eine RFID-Identifikationseinheit zum Bereithalten einer RFID-Identifikationsinformation der ersten Energieeinheit, eine RFI D-Identifikationsempfangseinheit zum Empfangen der RFID-Identifikationsinformation an der zweiten Energieeinheit, und eine Steuereinheit zum Bestimmen einer Energiemengeninformation, die die übertragene Energiemenge zwischen der ersten Energieeinheit und der zweiten Energieeinheit repräsentiert, und zum Senden der Energiemengeninformation und der RFID-Identifikationsinformation an eine Energiekommunikationseinheit eines Energienetzes.

Description

Überwachungssystem und Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit
Die vorliegende Erfindung bezieht sich auf ein Überwachungssystem und ein Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit.
Findet eine Energieübertragung zwischen z.B. einem Elektrofahrzeug und einem Energienetz statt, wird eine Verrechnung von elektrischer Energie ausgeführt, die aus dem Verbundnetz (Energienetz) in Batterien bzw. Akkueinheiten von Elektrofahrzeugen geladen wird bzw. aus diesen entnommen und wieder zurück in das elektrische Netz (Energienetz) gespeist wird. Die Elektrofahrzeuge und das Energienetz (bzw. dessen Netzbetreiber) können so ein Virtuelles Kraftwerk bilden.
Ein Haushalt besitzt zur Abrechnung des bezogenen Stromes einen Zähler (ausgeführt als Ferraris-Zähler oder Smart Meter). Wird zur Ladung der Batterien eines Elektrofahr- zeugs dieses an eine Steckdose des Haushalts angeschlossen, wird die dafür benötigte Energie über den Haushaltszähler erfasst. Ist der Halter des zu ladenden Elektrofahr- zeugs nicht gleichzeitig der Haushaltsstromkunde, dem die bezogene elektrische Energie nach Ablesung des Haushaltszählers vom Energieversorgungsunternehmen in Rechnung gestellt wird, so muss ein aufwendiger Verrechnungsprozess zwischen dem Fahrzeughai- ter und dem Haushaltsstromkunden stattfinden. Das Problem tritt in ähnlicher Form auch bei der Ladung über öffentlich zugängliche Steckdosen z.B. eines Parkplatzes oder Parkhauses oder bei Ladetankstellen für Elektrofahrzeuge auf.
Als allgemeiner Stand der Technik sei auf die Dokumente WO 2007/141543 A2 und JP 002006245983 A verwiesen.
Es ist Aufgabe der Erfindung diese und weitere Nachteile zu überwinden.
Erfindungsgemäß wird die Aufgabe durch ein Überwachungssystem zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit gelöst, wobei das Überwachungssystem aufweist: eine RFID- Identifikationseinheit zum Bereithalten einer RFID-Identifikationsinformation der ersten Energieeinheit, eine RFID-Identifikationsempfangseinheit zum Empfangen der RFID- Identifikationsinformation an der zweiten Energieeinheit, und eine Steuereinheit zum Bestimmen einer Energiemengeninformation, die die übertragene Energiemenge zwischen der ersten Energieeinheit und der zweiten Energieeinheit repräsentiert, und zum Senden der Energiemengeninformation und der RFID-Identifikationsinformation an eine Energiekommunikationseinheit eines Energienetzes.
Die Erfindung basiert auf der Idee, dass Steckdosen (oder auch Stromtankstellen) - d.h. erste Energieeinheiten - durch das Aufkleben von RFID-Tags, die die Steckdose bevor- zugt durch einen Schriftzug als Stromtankstelle kennzeichnen, einem Haushaltszähler zugeordnet sind, wobei der Haushalt Energie aus dem Energienetz bezieht. Wird nun z.B. ein Elektrofahrzeug - d.h. die zweite Energieeinheit - mit einem Stecker, der ein RFI D-Lesegerät enthält, an die Steckdose angeschlossen, so liest das Lesegerät die Kennung der Steckdose aus. Nach abgeschlossener Ladung übermittelt eine Kommuni- kationseinheit bzw. Steuereinheit im E-Fahrzeug z.B. via Power Line Communication oder Mobilfunknetz die Kennung der Steckdose sowie die im Fahrzeug ermittelte geladene Strommenge an das Energieversorgungsunternehmen, wo die Kennung der Steckdose dem Haushaltszähler zugeordnet wird. Die Ermittlung der geladenen Strommenge erfolgt dabei bevorzugt in einem Stromzähler in dem E-Mobil (d.h. dem Elektrofahrzeug) und/oder in dem Haushaltszähler. Bei der nächsten Auslesung des (z.B. Ferraris-) Haushaltszählers wird die ins E-Mobil geladene elektrische Energie mit dem Haushaltszählerstand verrechnet. Die Abrechnung erfolgt bevorzugt in einer Abrechnungseinheit des Energienetzbetreibers. Wird ein Smart Meter als Haushaltszähler eingesetzt, so kann die Verrechnung unmittelbar und automatisch erfolgen, d.h. bevorzugt weist der Haushalt eine Abrechnungseinheit auf. An öffentlich zugänglichen Steckdosen identifiziert sich das Elektrofahrzeug bevorzugt mittels einer Identifikationsinformation zunächst als solches, bevor die Ladung von der Steckdose freigegeben wird. So kann erfindungsgemäß ein Stromklau verhindert werden.
Die Erfindung bewirkt eine einfache Übertragung und Überwachung von elektrischer Energie, die von Elektrofahrzeugen aus dem elektrischen Netz in die Fahrzeugbatterie geladen wurde (oder umgekehrt). Dabei wird mit dem erfindungsgemäßen Überwa- chungssystem insbesondere das Problem der Doppelabrechnung bei Ladung der Batterie an einer konventionellen Steckdose als Stromtankstelle behoben.
Die Einrichtung der Stromtankstelleninfrastruktur kann mit dem erfindungsgemäßen Überwachungssystem sehr einfach realisiert werden. Erfindungsgemäß wird eine flä- chendeckende Implementierung von Stromtankstellen für Elektrofahrzeuge durch einen Rückgriff auf bereits vorhandene Infrastruktur einfach gestaltet. Dabei erfolgt die Abrechnung der geladenen elektrischen Energie erfindungsgemäß weitgehend automatisiert, wodurch eine Doppelabrechnung vermieden wird. Ein weiterer Vorteil liegt in der Reduzierung des Normungsbedarfs auf ein Minimum durch Nutzung bekannter und genormter Schnittstellen. Im Elektrofahrzeug kann z.B. auf einen CAN Bus zurückgegriffen werden, um die vom Nutzer eingegebenen Daten (Ladezeitraum und minimal benötigte Energiemenge für die nächste Fahrt berechnet aus der nächsten geplanten Wegstrecke) sowie die vom Batteriemanagementsystem bereitge- stellten Daten (Batterieladezustand, Batteriegröße und Bedarf an Batteriepflege) an die Kommunikationseinheit im Fahrzeug zu übermitteln. Zum Anschluss des Fahrzeugs an das elektrische Verbundnetz kann auf Standardstecker und Standardsteckdosen abgestellt werden, wobei auch eine Automatisierung des Einsteckens der Stecker in die Steckdose mit demselben Ansatz möglich ist. Die fahrzeuginterne Kommunika- tionseinheit kommuniziert bevorzugt mit der Zentrale eines Virtuellen Kraftwerks über die Smart Metering Infrastruktur. Dies erfolgt bevorzugt über die Powerline Communication bzw. die Kommunikation über das Mobilfunknetz.
Das erfindungsgemäße Überwachungssystem kann vorteilhaft einen Stromklau an öffentlich zugänglichen Steckdosen dadurch verhindern, dass sich das Elektrofahrzeug als solches an der Steckdose identifiziert und die Steckdose den Stromfluss erst nach erfolgreicher Identifikation frei gibt.
Ein weiterer Vorteil besteht darin, dass jedes Automobil an jeder Steckdose, die mit einem RFID-Tag bestückt ist, Strom „tanken" kann. Dies kann nach Abstimmung zwi- sehen den Netzbetreibern bevorzugt nach dem Vorbild der Roaming Verträge aus dem Mobilfunkbereich auch für Netze„fremder" Netzbetreiber gelten.
Das erfindungsgemäße Überwachungssystem ist weitestgehend manipulationssicher, da man sich durch das Stehlen eines RFID-Tags und das Aufkleben auf eine eigene Steckdose nicht bereichern kann, sondern damit selbst schadet: Man selbst würde den getank- ten Strom doppelt bezahlen; derjenige, dem der RFID-Tag zugeordnet ist, erhält für ihn vorteilhaft einen Zuschuss zu seiner Stromrechnung vom RFID-Tag Dieb. Andererseits ist es durch die Datenspeicherung in der Zentrale des Virtuellen Kraftwerks leicht nachvollziehbar, wenn jemand seine Stromrechnung durch das Aufkleben eines eigenen RFID- Tags auf eine fremde Steckdose reduzieren möchte. Das erfindungsgemäße Überwachungssystem ist bevorzugt mit anderen Systemen und Verfahren aus dem Vehicle to Grid Bereich verbindbar. So können dem Elektromobilfahrer z.B. günstigere Stromtarife angeboten werden, wenn er mit seinem Fahrzeug lange Zeit am Netz bleibt. Eine„Online-Aushandlung" des Stromtarifs ist denkbar. Unidirektionale (nur Laden) und bidirektionale (mit Rückspeisung in das Netz) Ankopplung von Elektrofahrzeugen an das Verbundnetz sind erfindungsgemäß möglich.
Weiterhin ist bevorzugt, dass die zweite Energieeinheit zum Empfangen einer Freigabe zur Energieübertragung zwischen der ersten Energieeinheit und der zweiten Energieeinheit von der Energiekommunikationseinheit des Energienetzes ausgestaltet ist. So sendet die Energiekommunikationseinheit des Energienetzes z.B. nach einer Authentifizierung ein Freigabesignal an das E-Mobil, welches daraufhin den Aufladeprozess beginnt.
In einer weiteren bevorzugten Ausführungsform ist die Energiekommunikationseinheit des Energienetzes zum Steuern der Energieübertragung in Abhängigkeit von der Energieübertragungszeit, insbesondere während der Energieübertragung, ausgestaltet. Vor- teilhaft wird erreicht, dass die Energiekommunikationseinheit in Abhängigkeit von Zeiten, zu denen im Netz besonders viel oder wenig Energie zur Verfügung steht (bzw. diese Energie entsprechend teuer oder günstig ist), diese entsprechend an das E-Mobil frei gibt.
In einem weiteren Aspekt bezieht sich die Erfindung auf Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit.
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen erläutert, wobei
Fig. 1 eine unidirektionale Ladung sowohl geregelt als auch ungeregelt illustriert;
und Fig. 2 eine schematische Darstellung der Netzkopplung von erfindungsgemäßen elektrischen Fahrzeugen zeigt.
Mit V2G („Vehicle to Grid", übersetzt ins Deutsche etwa:„Fahrzeug ans Netz") wird ein Konzept zur Kopplung von Elektro- und Hybridfahrzeugen mit Batteriespeichern an das elektrische Verbundnetz bezeichnet. Die Kopplung erfolgt so, dass durch die Nutzung der Batteriespeicher in den E-Mobilen Netzdienstleistungen wie Regelleistung sowie Blindleistungskompensation bereitgestellt werden können oder Lastglättung erfolgen kann. Das V2G Konzept sieht vor, dass E-Mobile Strom aus dem Netz entnehmen und in Zeiten großer Netzlast auch wieder einspeisen. Kommunikationstechnologien dienen der dynamischen Einbindung von Elektrofahrzeugen in die bestehenden Stromversorgungs- netze, die es erlauben, von einer Zentrale aus in einer diversen Infrastruktur dezentrale, räumlich verteilte Verbraucher einheitlich technisch zu adressieren. Ein „Dezentrales Energiemanagementsystem" (DEMS) als Zentrale eines Virtuellen Kraftwerks ist für die jeweilige Region bevorzugt, um diese Technologien einführen zu können. Das DEMS übernimmt die Optimierung der Ladung (und beim bidirektionalen V2G auch der Entla- dung) der dezentral verteilten Batteriespeicher von E-Mobilen. Dabei wird neben der räumlichen Verteilung der Speicher über das Netzgebiet die Speicherdichteverschiebung über den Tagesverlauf prognostiziert und in die Netzberechnungen integriert. So kann im unidirektionalen V2G trotz der wegen der E-Mobile größeren zu liefernden Energiemenge ein stabiler Betrieb kritischer Leitungstrassen gewährleistet werden. Durch den Einsatz von Informations- und Kommunikationstechnologie (IKT) werden zum Einen Prognosen über dezentrale, stochastische Einspeisung verbessert, zum anderen wird das Netzmanagement durch eine verbesserte Kraftwerkseinsatzplanung optimiert. Die Informations- und Kommunikationstechnik IKT im Elektrizitätsbereich ist im Folgen- den erläutert.
Leistungselektronische Elemente zur Netzregelung (z.B. V2G) werden gesteuert, um ihre Funktion der Netzregelung sinnvoll ausführen zu können. Netze, in denen die dezentralen Erzeuger und Verbraucher intelligent gesteuert werden, um eine hohe Versorgungssicherheit und Versorgungsqualität zu gewährleisten, werden Smart Grids genannt. Hierbei unterscheidet man die zentrale und die dezentrale Steuerung. Bei der zentralen Steuerung werden jegliche Informationen der dezentralen Erzeuger inklusive des Netzzustandes an ein zentrales Trustcenter geschickt, das die Informationen bündelt, auswertet und Befehle für geeignete Maßnahmen an die dezentralen Energieeinspeiser zurück gibt. Zu dieser zentralen Steuerung gehören das virtuelle Kraftwerk oder das Dezentrale Energiemanagementsystem (DEMS).
Dem gegenüber steht die dezentrale Steuerung, bei der jeder dezentrale Energieeinspeiser nach zuvor festgelegten Regeln entscheidet, welche Reaktion für die aktuelle Situation geeignet wäre.
Beide Strömungen werden durch den zunehmenden Einsatz des Smart Meters befördert, eines digitalen Energiezählers, der neben Datenlogger-Funktionen in einigen Fällen auch fernausgelesen werden und ggf. Schalthandlungen vornehmen kann. Der Einsatz des Smart Meters wird z.B. von der Europäischen Kommission unterstützt, um dem Stromkunden mehr Transparenz in seiner Stromrechnung in kürzeren zeitlichen Abständen zu gewähren. Ziel ist es, den Stromnutzer durch zeitlich kurzfristige Rückmeldung auf sein Energie-Nutzungsverhalten zum effizienten Umgang mit elektrischer Energie anzuhalten. Die Basis des Smart Meters bietet eine Grundlage, auf der eine Kommunikationsstruktur für ein Smart Grid aufgebaut werden kann.
Eine Ausführungsform eines unidirektionalen Vehicle to Grid 50 ist in Fig. 1 dargestellt und mit dem Stromversorgungsnetz 10 (z. B. als WAN Kommunikationsnetz) verbunden. Ein erfindungsgemäßes unidirektionales Vehicle to Grid weist beispielsweise die folgenden Einheiten auf, die in unterschiedlichen Ausführungsformen unterschiedlich zusammengestellt sein können: DEMS 11 : Das Dezentrale Energie Management System ist die Zentrale des Virtuellen Kraftwerks. Von hier aus werden Befehle an die Mikrokraftwerke geschickt, so dass das Ladegerät„weiß" wann es wie stark laden soll.
Die Stationäre Ladestation 12 steht für ein physisches Gerät, das außerhalb des E-Mobiles an einem festen Ort steht und die Aufgabe hat, die Batterien zu laden. Dies kann durch eine Batteriewechselstation oder eine Stromtankstelle realisiert werden. Die stationäre Ladestation kann eine Smart Metering Einheit und eine Ladefreigabeeinheit 13 aufweisen.
SMet-E 51 : Die Smart Metering Einheit misst die elektrische Leistung, berechnet die übertragene Energie und stellt sie als digitalen Wert zur Verfügung.
Leistungselektronik 52: Der Umrichter dient der Gleichrichtung zur Batterieladung. Zusätzlich kann die Leistungselektronik das Steuermanagement und die Bordelektronik aufweisen.
Energie-Speicher Akku 53: Es gibt verschiedene Ausführungsformen der Anordnung des Akkus: im E-Mobil zur Ladung über einen Netzstecker; wird die stationäre Ladestation zur Batterietauschstation, kann der Akku dem E- Mobil entnommen, in die Batterietauschstation mechanisch eingefügt und dort geladen werden.
Embedded System, Kommunikation, IP 51 : Dies ist die Kommunikationseinheit im Fahrzeug, die die Verbindung zwischen der Nutzerschnittstelle, der Ladestation und dem Energiemanagement übernimmt.
MSR-Technik 54: die Mess-, Steuer- und Regeltechnik stellt Messwerte aus dem Fahrzeug zur Verfügung und übernimmt Steuer- und Regelungsaufgaben im Fahrzeug.
Nutzerschnittstelle 55 (Design, Funktionen): Die Nutzerschnittstelle dient der Kommunikation zwischen Technik im Fahrzeug und Nutzer. Sie kommuniziert Zustände im Fahrzeug und im elektrischen Netz mit den Fahrer (aktuell verfügbare Reichweite, Preis pro kWh bei bestimmten Laderandbedin- gungen, etc.). Zudem dient sie als Eingabetool für den Nutzer, um optional mit den Netzbetreiber zu kommunizieren.
Energiemanagement 56: Das hier adressierte Energiemanagement sorgt für geordnete Energie- und Leistungsflüsse zwischen den Komponenten im E-Mobile. Diese können sein: Super-CAPS, Akku, E-Antrieb, Ladegerät (230 V) 59 etc.
Super-CAPS 57: Super-CAPS sind Kondensatoren, die große Leistungen schnell und mit gutem Wirkungsgrad aufnehmen können. Batterien sind besser geeignet, um vergleichsweise geringe Leistungen, aber große Energiemengen aufzunehmen.
E-Antrieb 58: Antrieb, der das E-Mobil elektrisch in Bewegung versetzt.
Zu den Komponenten sind in Figur 1 gestrichelte Pfeile dargestellt, die für die Datenübertragung, bzw. Kommunikation, zwischen technischen Komponenten stehen. Die Pfeile sind nummeriert und bedeuten:
1. Kommunikation zwischen dem DEMS und der Smart Metering Einheit. Dieser kann z.B. über Powerline Communication oder das Mobilfunknetz realisiert sein.
2. Kommunikation zwischen der Smart Metering Einheit in der Ladestation und dem Embedded System im Fahrzeug. Diese kann je nach Komplexität der übertragenen Daten durch Powerline Communication oder eine spezielle Datenleitung realisiert werden.
3. Kommunikation zwischen der Nutzerschnittstelle und dem Embedded System. Diese kann z.B. über den CAN Bus des Fahrzeugs realisiert werden.
4. Kommunikation zwischen dem Embedded System und dem Energiemanagement. Dies kann ebenfalls z.B. über den CAN Bus realisiert werden.
Zudem sind in Figur 1 Pfeile zu sehen, die für die Leistungsübertragung, bzw. den Ener- giefluss, stehen. Diese sind mit römischen Zahlen nummeriert: I. Ladung der Batterie über ein 230 V einphasiges Ladegerät 59 am Netz.
II. Leistungsaustausch zwischen stationärer Ladestation 12 (z. B. an ~ 400 V Stromnetz) und Leistungselektronik im Fahrzeug.
III. Fahrzeuginterner Leistungsfluss zu und von den Batterien und ggf. den Su- per-Caps und dem aktiven Gleichrichter 60.
IV Leistungsfluss von den Batterien / den Super Caps zum elektrischen Antrieb des Fahrzeugs. Bei der Fahrzeugbremsung wird die Bremsenergie zurück in die Batterien /die Super-Caps gespeist (Rekuperation, angedeutet in Fig. 1 durch Pfeil A). Figur 1 zeigt einerseits eine Kommunikationsstruktur der Einheiten 1 1 , 13, 51 , 55 und 56, und andererseits eine Energieflussstruktur der Einheiten 53, 57, 58, 59 und 60.
Das Fahrzeug der Figur 1 kommuniziert direkt mit dem DEMS z.B. über Power-Line Communication. Um herauszufinden, mit welchem Zähler die Ladeenergie verrechnet wird, identifiziert sich die Steckdose beim E-Mobil, welches bevorzugt seine eigene IP mit der IP der Steckdose an das DEMS weiter gibt.
In Fig. 1 ist sowohl die geregelte (400 V) unidirektionale Ladung wie auch die ungeregelte (230 V) unidirektionale Ladung dargestellt. Die Erfindung bezieht sich gleichermaßen jedoch auch auf ein bidirektionales System von Elektrofahrzeug und Stromversorgungsnetz. Die technische Einheit zur Kommunikation zwischen Fahrzeug und Netz kann erfindungsgemäß im Fahrzeug oder an der externen Stromtankstelle angeordnet sein. Die Anordnung im Fahrzeug weist den Vorteil auf, dass das Stromtankstellennetz kostengünstig ausgebaut werden kann. Die Anordnung an der externen Stromtankstelle weist den Vorteil auf, dass Abrechnung und Kommunikation über proprietäre Kanäle des jeweils zuständigen Netzbetreibers erfolgen kann; ferner treten Doppelabrechnungen nicht auf.
Aufgabe der Kommunikationseinheit ist es, den Datenaustausch zwischen Fahrzeug/Batterie und Verbundnetz/Netzbetreiber durchzuführen, Konflikte mit bestehender Infrastruktur zur Stromversorgung und -abrechnung zu umgehen, sowie nach Vorgaben Schalthandlungen vorzunehmen, zu denen sie Befehle vom Batteriemanagement oder vom Netzbetreiber erhalten hat, sowie Schalthandlungen vorzunehmen, über die dezentral entschieden werden kann. Die fahrzeuginterne Kommunikationseinheit zwischen Netz und Fahrzeug bzw. fahrzeuginterne Leistungselektronik weist bei der unidirektionalen Netzankopplung (mit aktivem oder passivem Gleichrichter) den Vorteil auf, dass sie in kleinen Stückzahlen technisch sinnvoll einsetzbar ist, da sie überall nutzbar sind, wo ein Signal des Netzbetreibers verfügbar ist. Ferner besteht ein geringerer Aufwand für die Hardwareentwicklung und ein mittlerer Normungsbedarf bei Zusammenarbeit mit mehreren E-Mobile-Herstellern. Auch ist das System nachrüstbar und in großen Stückzahlen wirtschaftlich einsetzbar.
Die Verwendung einer externen Kommunikationseinheit zwischen Netz und Fahrzeug bzw. fahrzeugexterne Leistungselektronik (Stromtankstelle) weist in dem System der unidirektionalen Netzankopplung (mit aktivem oder passivem Gleichrichter) den Vorteil auf, dass ein besonders geringer Aufwand für die Hardwareentwicklung erforderlich ist. Je nach Ausführung besteht ein geringer bis sehr geringer Normungsbedarf bei Zusammenarbeit mit mehreren E-Mobil-Herstellern. Auch ist das System einfach nachrüstbar und in großen Stückzahlen wirtschaftlich einsetzbar.
Im Folgenden wird eine Ausführungsform beschrieben, mit der ein unidirektionales Vehic- le to Grid im Netzgebiet eines Netzbetreibers, z.B. EWE, effizient und technisch vorteilhaft umgesetzt werden kann. Insbesondere wird ein technischer Lösungsvorschlag zur Kommunikationsstellenimplementierung bereitgestellt.
Um eine Regelung (und auch Abrechnung) der Batterieladung eines E-Mobils durchführen zu können, erhält der Netzbetreiber in seiner Zentrale folgende Informationen: vom Fahrzeug: IP Adresse des Fahrzeugs, um den getankten Strom dem Fahrzeug besit- zer oder Fahrer in Rechnung stellen zu können. Ein Soll-Ladelastgang mit Toleranzbändern, die für die Regelleistungsbereitstellung genutzt werden können. Alternativ: Batteriespeicherkapazität, minimale und maximale Ladeleistung, aktuelle Batteriewartungsanforderungen, aktueller Batterieladezustand, geplanter Zeitpunkt der nächsten Fahrt, und/oder mindestens zu ladende Energiemenge (jeweils bezogen auf die Energie oder Leistung, die über den Netzstecker übertragen werden muss). vom Haus: Identifikation des Stromkunden, über dessen Zähler der Strom für die Fahrzeugladung bezogen wird, um ggf. eine Verrechnung vorzunehmen, falls dem Stromkunden das zu ladende Fahrzeug nicht gehört; Identifikation ggf. über IP Adresse. vom Smart Meter (Platzierung des Smart Meters ist nicht festgelegt): die bezogene Energiemenge. vom Fahrer: Die Annahme des angebotenen Strompreises sofern dieser flexibel ist, um einen Vertragsschluss zwischen Fahrer und Netzbetreiber herbeizuführen.
Weitere Randbedingungen:
Es sollen E-Mobile von beliebigen Nutzern an beliebigen Steckdosen geladen werden können.
Es sollen mehrere individuell abzurechnende Fahrzeuge an das Netz eines Stromkunden angeschlossen werden können, wie zum Beispiel in einem Parkhaus (— > Smart Meter entweder an der Steckdose oder im Fahrzeug).
Wenn das Abrechnungssystem, d.h. Kopplungssystem, (zunächst) nur im Netzgebiet der EWE installiert wird, soll ein Fahrzeug auch ungeregelt und ohne automatische Abrechnung außerhalb des EWE Gebietes geladen werden können.
Sollte das Abrechnungssystem von mehreren Netzbetreibern übernommen werden, so sollte eine automatische Abrechnung auch in einem„fremden" Netzgebiet stattfinden können. Die Verrechnung zwischen den Netzbetreibern sollte automatisch erfolgen, so dass der Fahrer nur eine Rechnung von einem Netzbetreiber erhält (ähnlich dem Roaming aus dem Mobilfunkbereich).
Das System funktioniert bevorzugt sowohl für E-Mobile im Besitz von EWE als Leasinggesellschaft als auch für E-Mobile im Besitz anderer natürlicher oder juristischer Personen. Die Zuordnung von Automobilen zu Netzen von Stromkunden, an denen sie gerade geladen werden, muss eindeutig sein, selbst wenn zwei Steckdosen, die zu verschiedenen Stromkundennetzen gehören direkt nebeneinander hängen. - Sicherheits- und Datenschutzbestimmungen für den digitalen Zahlungsverkehr müssen eingehalten werden.
Die folgende Konstellation ist ein Vorschlag zur Umsetzung der oben genannten Anforderungen:
Jedes E-Mobil im Netzbereich der EWE, dessen Besitzer seine elektrische Energie zur Batterieladung bei der EWE einkaufen möchte, erhält eine kalibrierte und versiegelte „EWE-E-Mobil-Box", die in seinem Fahrzeug installiert wird. Diese übernimmt die folgenden Funktionen: Sie misst die elektrische Ladeleistung und berechnet die geladene Energie zur Abrechnung mit dem Netzbetreiber, kommuniziert mit der Bordelektronik und sammelt die vom Fahrzeug und vom Fahrer benötigten Informationen leitungsgebunden über den CAN Bus des Fahrzeugs. Über einen RFID-Tag, der auf die Steckdose aufgeklebt ist, erhält die E-Mobil-Box die Zuordnung der Steckdose zu einem Haushalt/Haushaltszähler. Der RFID-Tag ist bevorzugt so gestaltet, dass er bei dem Versuch, ihn gewaltsam von der Steckdose zu entfernen, sich selbst zerstört. Zudem kann der RFID-Tag die Aufschrift„Stromtankstelle" tragen. Die Informationen des Fahrers werden nach der nachfolgend beschriebenen Methode ermittelt.
Sobald alle benötigten Informationen zur Verfügung stehen, schickt die EWE-E-Mobil- Box diese über Power-Line Communication zum zentralen Gateway im Niederspannungsnetzabschnitt, das mit dem DEMS kommuniziert und ggf. einen Befehl zur Freigabe der Ladung zu einem bestimmten Stromtarif zurück gibt. Der Stromtarif ist abhängig von den vom Fahrer eingeräumten Freiräumen zur zeitlichen Ladungsverschiebung durch den Netzbetreiber.
Der Netzbetreiber gibt eine gewünschte aktuelle Ladeleistung für das zu ladende E-Mobil über das zentrale Gateway an die Stromtankstelle zurück, die dem E-Mobil den Befehl gibt, diese Ladeleistung zu beziehen. Das E-Mobil setzt diesen Befehl um. Durch die erfindungsgemäße Identifikation der Steckdose als„Stromtankstelle", die zu einem bestimmten Haushaltszähler gehört, können Doppelabrechnungen durch Verrechnung vermieden werden.
Neben den einfachen gekennzeichneten Steckdosen gibt es öffentliche Steckdosen, die nur dann Spannung (elektrische Energie) bereitstellen, wenn sich ein E-Mobil erfolgreich als solches identifiziert hat. Auf diese Weise wird Stromklau mit anderen Verbrauchern vermieden.
Ein solcher Prozess ist in Figur 2 schematisch dargestellt: Fig. 2 zeigt eine schematische Darstellung der Netzkopplung von E-Mobilen. Die E-Mobile 50 werden über die EWE-E- Mobil-Box 83 und einen konventionellen ein- oder dreiphasigen Stecker an eine konventionelle Steckdose 80 eines Haushaltes 70 oder eine öffentliche Steckdose 81 z. B. in einem Parkhaus 71 , angeschlossen. Diese wird durch das Aufkleben eines RFID-Tags, welche die Zugehörigkeit zu einem Haushalt definiert, zu einer Stromtankstelle. Bei der Ankopplung identifiziert sich die Steckdose bei der E-Mobil-Box, welche mit dem zentra- len Gateway 14 durch Powerline Communication kommuniziert. Das zentrale Gateway steht für das Smart Metering im betreffenden Netzabschnitt ohnehin zur Verfügung und muss nicht speziell für das V2G installiert werden. Die E-Mobil-Box überträgt die Nutzerund Fahrzeugdaten sowie die IP der Steckdose vom CAN-Bus 84 zum zentralen Gateway. Dieses leitet die Informationen mittels einer TCP/IP Kommunikation 85 zum DEMS weiter, welches die Freigabe zur Ladung über das zentrale Gateway an die E-Mobil-Box zurückgibt. Die Ladung kann somit einem spezifischen E-Mobil zugeordnet werden. Nach Auslesung des Haushaltszählers 82 kann die zur E-Mobil-Ladung verbrauchte Energie mit dem Haushaltszählerstand verrechnet werden. Eine Doppelabrechnung wird somit vermieden. An öffentlichen Steckdosen wird nur eine Freigabe zur Ladung erteilt, wenn ein E-Mobil angeschlossen ist, um Missbrauch zu verhindern.
Die Kommunikation zwischen Netz und Fahrer unter Berücksichtigung flexibler Stromtarife findet in einer bevorzugten Ausführungsform wie folgt statt:
Der Einkaufspreis des Stromes wird z.B. aufgrund von Erfolg oder Misserfolg bei der Regelleistungsausschreibung aber auch anderer Marktmechanismen variieren. Das Risiko des Energiehandels kann der Netzbetreiber an den Endkunden durchreichen und einen flexiblen Strompreis anbieten. Einerseits kann dies den E-Fahrzeug-Nutzer dazu anregen, intensiver am V2G teilzunehmen und dem Netzbetreiber mehr Flexibilität bei der Nutzung des Batteriespeichers im Fahrzeug zuzugestehen. Andererseits schränkt ein flexibler Strompreis die finanzielle Planungssicherheit des Fahrzeugbesitzers/Fahrers ein. Ein Kompromiss könnte darin bestehen, dass dem Fahrer garantiert wird, dass der flexible Strompreis immer unterhalb des fixen Haushaltstarifs liegt. Die Ermittlung möglicher Lastgänge und des Strompreises kann in drei Phasen erfolgen:
Schritt 1 : Dateneingabe durch den Fahrer: Der Fahrer gibt der Kommunikationseinheit an, wann er nach der nächsten Fahrt an welchem Ort ankommen möchte. Das Navigationsgerät des Fahrzeugs berechnet die Strecke und gibt den Abfahrtszeitpunkt zurück. Dem Fahrer sollen Schnellwahloptionen zur Verfügung gestellt werden, wie z.B.:„Morgen früh zur gewohnten Zeit zur Arbeit fahren".
Schritt 2: Berechnung möglicher Lastgänge durch das Batteriemanagementsystem: Die E-Mobil-Box/Kommunikationseinheit ermittelt aus den eingegebenen Daten und den Batteriedaten (Batterieladezustand, Batteriealterungszustand, Batterieladecharakteristik) die Kurve des Leistungsbedarfs über der Zeit mit akzeptierten Toleranzbändern und übermittelt diese an den Netzbetreiber.
Schritt 3: Berechnung des Stromtarifs für die Ladung: Auf Grundlage des Leistungsbedarfs und dessen Toleranzbändern sowie auf Grundlage der bereits zur Verfügung stehenden und dem Übertragungsnetzbetreiber verkauften Regelbandes berechnet der Netzbetreiber automatisiert den aktuellen Stromtarif. Schritt 4: Bestätigung des Stromtarifs oder Änderung der Randbedingungen: Ist der Fahrer mit dem angebotenen Preis einverstanden, bestätigt er diesen und die Batterieladung kann beginnen. Ist er nicht einverstanden, kann er die Randbedingungen ändern, Schritt 1 wiederholen und den Kreislauf von neuem starten.

Claims

Ansprüche
1. Überwachungssystem zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit, mit
einer RFID-Identifikationseinheit zum Bereithalten einer RFID- Identifikationsinformation der ersten Energieeinheit,
einer RFID-Identifikationsempfangseinheit zum Empfangen der RFID- Identifikationsinformation an der zweiten Energieeinheit, und
einer Steuereinheit zum Bestimmen einer Energiemengeninformation, die die übertragene Energiemenge zwischen der ersten Energieeinheit und der zweiten Energie- einheit repräsentiert, und zum Senden der Energiemengeninformation und der RFID- Identifikationsinformation an eine Energiekommunikationseinheit eines Energienetzes.
2. Überwachungssystem nach Anspruch 1 , wobei die erste Energieeinheit eine Steckdoseneinheit und/oder eine Stromtankstelleneinheit, insbesondere eines Haushal- tes des Energienetzes, ist.
3. Überwachungssystem nach einem der Ansprüche 1 oder 2, wobei die zweite Energieeinheit ein Elektrofahrzeug, insbesondere eine Akkueinheit eines Elektrofahr- zeugs, ist.
4. Überwachungssystem nach einem der vorhergehenden Ansprüche, wobei die Steuereinheit einen Stromzähler zum Messen der übertragenen Energiemenge aufweist.
5. Überwachungssystem nach einem der vorhergehenden Ansprüche, ferner mit einer Abrechnungseinheit zum Abrechnen der übertragenen Energiemenge auf
Basis der Energiemengeninformation und der RFID-Identifikationsinformation.
6. Überwachungssystem nach einem der vorhergehenden Ansprüche, wobei die zweite Energieeinheit eine Identifikationssendeeinheit zum Senden einer Identifikationsin- formation an das Energienetz aufweist.
7. Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit, mit den Schritten
Bereithalten einer RFID-Identifikationsinformation der ersten Energieeinheit, Empfangen der RFID-Identifikationsinformation an der zweiten Energieeinheit, Übertragen von Energie zwischen der ersten und der zweiten Energieeinheit, Bestimmen einer Energiemengeninformation, die die übertragene Energiemenge zwischen der ersten Energieeinheit und der zweiten Energieeinheit repräsentiert, und
Senden der Energiemengeninformation und der RFID-Identifikationsinformation an eine Energiekommunikationseinheit eines Energienetzes.
8. Verfahren nach Anspruch 7, ferner mit den Schritten
Messen der übertragenen Energiemenge, und
Bestimmen der Energiemengeninformation auf Basis der gemessenen übertragenen Energiemenge.
9. Verfahren nach Anspruch 7 oder 8, ferner mit dem Schritt
Abrechnen der übertragenen Energiemenge auf Basis der Energiemengeninformation und der RFID-Identifikationsinformation.
10. Verfahren nach einem der Ansprüche 7 bis 9, ferner mit dem Schritt
Senden einer Identifikationsinformation der zweiten Energieeinheit an das Energienetz.
1 1. Verfahren nach einem der Ansprüche 7 bis 10, wobei der Schritt des Energieübertragens ein Laden einer Akkueinheit der zweiten Energieeinheit aufweist.
12. Verfahren nach einem der Ansprüche 7 bis 1 1 , ferner mit dem Schritt
Empfangen einer Freigabe zur Energieübertragung zwischen der ersten Energieeinheit und der zweiten Energieeinheit von der Energiekommunikationseinheit des Energienetzes durch die zweite Energieeinheit.
13. Verfahren nach einem der Ansprüche 7 bis 12, ferner mit dem Schritt
Steuern der Energieübertragung in Abhängigkeit von der Energieübertragungszeit, insbesondere während der Energieübertragung, durch die Energiekommunikationseinheit des Energienetzes.
PCT/EP2010/064502 2009-09-29 2010-09-29 Überwachungssystem und verfahren zum überwachen einer energie-übertragung zwischen einer ersten energieeinheit und einer zweiten energieeinheit WO2011039284A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009043306.6 2009-09-29
DE102009043306A DE102009043306A1 (de) 2009-09-29 2009-09-29 Überwachungssystem und Verfahren zum Überwachen einer Energieübertragung zwischen einer ersten Energieeinheit und einer zweiten Energieeinheit

Publications (3)

Publication Number Publication Date
WO2011039284A2 true WO2011039284A2 (de) 2011-04-07
WO2011039284A3 WO2011039284A3 (de) 2011-11-24
WO2011039284A4 WO2011039284A4 (de) 2012-01-26

Family

ID=43662475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/064502 WO2011039284A2 (de) 2009-09-29 2010-09-29 Überwachungssystem und verfahren zum überwachen einer energie-übertragung zwischen einer ersten energieeinheit und einer zweiten energieeinheit

Country Status (2)

Country Link
DE (1) DE102009043306A1 (de)
WO (1) WO2011039284A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201745A1 (de) 2017-02-03 2018-08-09 Robert Bosch Gmbh Verfahren zum Kalibrieren eines Fahrzeugsteuergeräts über eine Spannungsversorgungsleitung und entsprechend kalibrierbares Fahrzeugsteuergerät
CN111357168A (zh) * 2018-10-23 2020-06-30 三菱电机株式会社 充放电装置和充放电系统
US11552507B2 (en) 2020-03-17 2023-01-10 Toyota Motor North America, Inc. Wirelessly notifying a transport to provide a portion of energy
US11571983B2 (en) 2020-03-17 2023-02-07 Toyota Motor North America, Inc. Distance-based energy transfer from a transport
US11571984B2 (en) 2020-04-21 2023-02-07 Toyota Motor North America, Inc. Load effects on transport energy
US11618329B2 (en) 2020-03-17 2023-04-04 Toyota Motor North America, Inc. Executing an energy transfer directive for an idle transport
US11685283B2 (en) 2020-03-17 2023-06-27 Toyota Motor North America, Inc. Transport-based energy allocation
US11724613B2 (en) 2021-05-18 2023-08-15 Toyota Motor North America, Inc. Energy transfer based on intended use
US11890952B2 (en) 2020-03-17 2024-02-06 Toyot Motor North America, Inc. Mobile transport for extracting and depositing energy
US12128785B2 (en) 2020-04-21 2024-10-29 Toyota Motor North America, Inc. Transport charge offload management

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011082623B3 (de) 2011-09-13 2013-02-07 Continental Automotive Gmbh Verfahren zum Laden eines in ein Elektrokraftfahrzeug eingebauten Akkumulators
AT512068B1 (de) * 2011-10-20 2015-02-15 Schitter Volkmar Ladekabel sowie ladesystem für elektrofahrzeuge
DE102012106499B4 (de) 2012-07-18 2015-07-23 Hochschule für Technik und Wirtschaft Dresden Verfahren und System zur Authentifizierung an Ladestationen
DE202012103996U1 (de) 2012-10-18 2013-01-09 Eckhard Schitter Ladekabel sowie Ladesystem für Elektrofahrzeuge
SE1251373A1 (sv) * 2012-12-04 2014-06-05 BAE Systems Hägglunds Aktiebolag Anordning och förfarande för fördelning av elektrisk energi
ITVI20130203A1 (it) * 2013-08-01 2015-02-02 Engineering Ingegneria Informatica S P A Metodo atto a quantificare il prelievo di energia elettrica da una utenza elettrica identificata per effettuare la ricarica di un veicolo elettrico identificato, un primo dispositivo elettronico configurato per eseguire in parte le operazioni di dett
CN103825337B (zh) * 2014-03-12 2015-09-16 上海理工大学 基于v2g恒流放电系统及其控制方法
NL2014273B1 (nl) * 2015-02-11 2016-10-13 Ecotap B V Laadsysteem en werkwijze.
DE102017208691A1 (de) 2017-05-23 2018-11-29 Audi Ag Verfahren, Speichermedium und Servervorrichtung zum Vermitteln einer Ladegelegenheit für ein Kraftfahrzeug
DE102021105491A1 (de) * 2021-03-08 2022-09-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung von Ladeinformation in Bezug auf einen Ladevorgang
DE102022130319A1 (de) * 2022-11-16 2024-05-16 Bayerische Motoren Werke Aktiengesellschaft Laden eines Elektrofahrzeugs an einem Ladepunkt einer Liegenschaft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245983A (ja) 2005-03-03 2006-09-14 Teruya:Kk 通信機能付き電源用プラグ及びコンセント
WO2007141543A2 (en) 2006-06-08 2007-12-13 Elektromotive Ltd. Charging station

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2176935A4 (de) * 2007-07-26 2013-01-23 Silver Spring Networks Inc System und verfahren zum transfer von elektrischem strom zwischen netz und fahrzeug
DE202008014767U1 (de) * 2008-09-16 2010-02-25 EnBW Energie Baden-Württemberg AG System zum ortsunabhängigen Strombezug und/oder zur ortsunabhängigen Stromeinspeisung einer mobilen Speicher- und Verbrauchseinheit
US20100161469A1 (en) * 2008-12-22 2010-06-24 Nathan Bowman Littrell Systems and methods for charging an electric vehicle using a wireless communication link

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245983A (ja) 2005-03-03 2006-09-14 Teruya:Kk 通信機能付き電源用プラグ及びコンセント
WO2007141543A2 (en) 2006-06-08 2007-12-13 Elektromotive Ltd. Charging station

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040678B2 (en) 2017-02-03 2021-06-22 Robert Bosch Gmbh Method for calibrating a vehicle control unit via a voltage supply line, and a correspondingly calibratable vehicle control unit
DE102017201745A1 (de) 2017-02-03 2018-08-09 Robert Bosch Gmbh Verfahren zum Kalibrieren eines Fahrzeugsteuergeräts über eine Spannungsversorgungsleitung und entsprechend kalibrierbares Fahrzeugsteuergerät
CN111357168A (zh) * 2018-10-23 2020-06-30 三菱电机株式会社 充放电装置和充放电系统
CN111357168B (zh) * 2018-10-23 2021-02-23 三菱电机株式会社 充放电装置和充放电系统
US11890952B2 (en) 2020-03-17 2024-02-06 Toyot Motor North America, Inc. Mobile transport for extracting and depositing energy
US11552507B2 (en) 2020-03-17 2023-01-10 Toyota Motor North America, Inc. Wirelessly notifying a transport to provide a portion of energy
US11571983B2 (en) 2020-03-17 2023-02-07 Toyota Motor North America, Inc. Distance-based energy transfer from a transport
US11618329B2 (en) 2020-03-17 2023-04-04 Toyota Motor North America, Inc. Executing an energy transfer directive for an idle transport
US11685283B2 (en) 2020-03-17 2023-06-27 Toyota Motor North America, Inc. Transport-based energy allocation
US11993170B2 (en) 2020-03-17 2024-05-28 Toyota Motor North America, Inc. Distance-based energy transfer from a transport
US11571984B2 (en) 2020-04-21 2023-02-07 Toyota Motor North America, Inc. Load effects on transport energy
US11975626B2 (en) 2020-04-21 2024-05-07 Toyota Motor North America, Inc. Load effects on transport energy
US12128785B2 (en) 2020-04-21 2024-10-29 Toyota Motor North America, Inc. Transport charge offload management
US11724613B2 (en) 2021-05-18 2023-08-15 Toyota Motor North America, Inc. Energy transfer based on intended use

Also Published As

Publication number Publication date
DE102009043306A1 (de) 2011-03-31
WO2011039284A3 (de) 2011-11-24
WO2011039284A4 (de) 2012-01-26

Similar Documents

Publication Publication Date Title
WO2011039284A2 (de) Überwachungssystem und verfahren zum überwachen einer energie-übertragung zwischen einer ersten energieeinheit und einer zweiten energieeinheit
EP2326529B1 (de) Steuervorrichtung für eine stromtankstelle zum strombezug und/oder zur stromeinspeisung einer mobilen speicher- und verbrauchseinheit
EP2324327B1 (de) Mobiler stromzähler zum ortsunabhängigen strombezug und/oder zur ortsunabhängigen stromeinspeisung einer mobilen speicher- und verbrauchseinheit
EP2445745B1 (de) Bestimmen von bezogenen energiemengen
EP3927575B1 (de) Ladeeinrichtung zum laden eines elektrischen energiespeichers eines kraftfahrzeugs, system und verfahren zum steuern einer ladeeinrichtung
AT506911B1 (de) Verfahren und system zum regeln der intensität des ladens einer batterie
WO2019207070A1 (de) DIGITALES ZUGANGSSYSTEM FÜR FAHRZEUGE FÜR VON AUßEN GESTEUERTE LADEVORGÄNGE
EP2366580B1 (de) Verfahren zum ortsunabhängigen Strombezug und/oder zur ortsunabhängigen Stromeinspeisung einer mobilen Speicher- und Verbrauchseinheit an einer ortsfesten Stromtankstelle eines beliebigen Betreibers
DE102009043380A1 (de) Unidirektionales V2G
WO2010031687A1 (de) System zum ortsunabhängigen strombezug und/oder zur ortsunabhängigen stromeinspeisung einer mobilen speicher- und verbrauchseinheit
EP3820011A1 (de) Lastverwaltungssystem und verfahren zur regelung eines solchen lastverwaltungssystems
DE112018007800T5 (de) Elektrofahrzeug-Energiebilanz-Gutschrift-und-Abbuchungssystem und Verfahren dazu
EP2399771B1 (de) Verfahren zum ortsunabhängigen Bezug elektrischer Energie einer mobilen Verbrauchseinheit an einer ortsfesten Stromtankstelle
DE102017207281A1 (de) Verfahren und Ladeeinrichtung zur zeitlichen Koordination der Ladevorgänge mehrerer an einen Verteilnetzstrang angeschlossener elektrischer Verbraucher sowie der Integration von mindestens zwei Ladestationen in den Verteilnetzstrang
EP4292293A1 (de) Verfahren zum übertragen von elektrischer energie über ein elektrisches netz und stromzähler
WO2024132028A1 (de) Verfahren und system zum laden eines elektrofahrzeugs
DE102022126609A1 (de) Laden eines Elektrofahrzeugs an einem Ladepunkt einer Liegenschaft
DE102022130319A1 (de) Laden eines Elektrofahrzeugs an einem Ladepunkt einer Liegenschaft
WO2024109983A1 (de) Bidirektionales laden eines elektrofahrzeugs
DE102022108574A1 (de) Laden eines Elektrofahrzeugs an einem lokalen Stromnetz
WO2024022696A1 (de) Laden eines elektrofahrzeugs an einem ladepunkt einer liegenschaft
EP4203225A1 (de) Verfahren zur regelung einer abgerufenen leistung eines haushalts
WO2024156309A1 (de) Nachhalten einer nutzung vom in einem elektrofahrzeug gespeicherter energie
DE102022133573A1 (de) Bidirektionales Laden eines Elektrofahrzeugs an einem Lokalnetz
DE102022120573A1 (de) Laden einer Batterie eines Elektrofahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10759661

Country of ref document: EP

Kind code of ref document: A2