WO2011038649A1 - 一种下行调度信息的配置方法及装置 - Google Patents
一种下行调度信息的配置方法及装置 Download PDFInfo
- Publication number
- WO2011038649A1 WO2011038649A1 PCT/CN2010/077140 CN2010077140W WO2011038649A1 WO 2011038649 A1 WO2011038649 A1 WO 2011038649A1 CN 2010077140 W CN2010077140 W CN 2010077140W WO 2011038649 A1 WO2011038649 A1 WO 2011038649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- carrier
- downlink
- pdcch
- uplink
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0064—Rate requirement of the data, e.g. scalable bandwidth, data priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0096—Indication of changes in allocation
- H04L5/0098—Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method and a device for configuring downlink scheduling information. Background technique
- a terminal In a Long Term Evolution (LTE) system, a terminal (UE) needs to simultaneously perform blind detection on a physical downlink control channel (PDCCH) of a common search space and a UE-specific search space, and a CCE (Control Channel Element, PDCCH) Control channel unit)
- the aggregation level can be 1, 2, 4, 8.
- the number of candidate PDCCHs that need to be blindly checked is different under each CCE aggregation level.
- Table 1 shows the UEs in 9.3.1 of 3GPP (3rd Generation Partnership Project, TS36.213). A description of the monitored candidate PDCCHs is shown in Table 1.
- DCI Downlink Control Information
- Different DCIs are distinguished by length.
- the DCI format format
- Check 44 times including 12 public search spaces and 32 user-specific search spaces.
- the DCI grid under different system bandwidth conditions The bit lengths of the formulas are different.
- the UE realizes the size of the system bandwidth when blindly checking the DCI format, so that the number of blind detections due to different system bandwidths is not increased.
- the UE needs to blindly check the DCI of different formats in different transmission modes, which is specifically defined in the 36.213 protocol, and takes C-RNTI (Cell Radio Network Temporary Identity) as an example.
- C-RNTI Cell Radio Network Temporary Identity
- LTE-Advanced Long Term Evolution
- LTE-A For advanced Long Term Evolution (LTE-Advanced) systems, in order to support a wider system bandwidth than the LTE system, such as 100 MHz, it is necessary to connect resources of multiple LTE carriers (also called component carriers), in two ways. : Aggregate multiple consecutive LTE carriers to provide greater transmission bandwidth for LTE-A; aggregate multiple discrete LTE carriers to provide greater transmission bandwidth for LTE-A.
- the research orientation of the standardization organization is that the consensus on the design of the carrier aggregation system is that the design on each carrier remains as consistent as possible with LTE R8, thus ensuring that the terminal of LTE R8 can work normally on each component carrier.
- each carrier independently transmits a PDCCH, and the PDCCH can only schedule the physical resources of the carrier, which is also called the carrier scheduling.
- Solution 2 Referring to FIG. 2, multiple carrier resources are scheduled by using multiple independent PDCCHs carried on one or more carriers.
- This scheme is an improvement to scheme 1.
- each PDCCH A resource of one carrier can be scheduled, and a plurality of PDCCHs are carried by a carrier wave, that is, a plurality of independent PDCCHs that are carried on a certain carrier are used to schedule multiple carrier resources, which is also called cross-carrier scheduling.
- the current standard has accepted a carrier identifier of 1-3 bits in the original R8 scheduling signaling format, and is used to indicate which scheduling carrier signaling is the physical resource of which component carrier is scheduled. .
- the standard discussion has accepted that the UE allocates a downlink member carrier set (UE DL Component Carrier Set) through dedicated signaling, and the UE will be in the DL CC in the set. Receive downlink data on.
- UE DL Component Carrier Set UE DL Component Carrier Set
- the number of blind detections caused by the feature increases, and it can be seen that the capability requirements for the LTE-A UE are relatively high.
- the UE Based on the second scheme, if the UE configures more than one PDCCH carrier, it will further increase the number of blind detections.
- the number of blind detections of the UE may be increased to an unacceptable level, which is disadvantageous to the implementation cost and system scheduling of the UE.
- the downlink control channel adopts a blind detection method, that is, the downlink control channel decoding of the UE in each subframe depends on resource positions of different control channels, different control channel coding rates, and different The control signaling format, etc., is tried multiple times until the correct control signaling is correctly decoded.
- the blind detection capability of the R8 UE in one subframe is defined as 44 times, and the blind detection capability is related to terminal implementation complexity and cost.
- the present invention provides a downlink scheduling configuration method and apparatus for controlling the number of blind detections in a multi-carrier aggregation system.
- the number of PDCCH blind detections does not exceed the maximum number of blind detections per subframe supported by the terminal in the terminal type information.
- a carrier allocation unit configured to allocate a downlink carrier set to the terminal according to the currently received channel quality information fed back by the terminal, the obtained terminal type information, and the service request of the terminal;
- a PDCCH-activated carrier allocation unit configured to use, according to bandwidth information of each carrier of the system, the obtained terminal type information, and channel quality information that is currently received by the terminal, for each of the downlink carrier set and the uplink carrier set Selecting a transmission mode of the component carrier allocation and determining the carrier scheduling mode of the terminal, selecting at least one member carrier wave from the downlink carrier set as a member carrier wave of the PDCCH activation carrier set, and using the PDCCH activation carrier set
- the number of times of PDCCH blind detection provided to the terminal for uplink and downlink scheduling does not exceed the terminal type The maximum number of blind detections per subframe supported by the terminal in the message.
- the bandwidth information of each carrier of the system, the obtained terminal type information, and the currently received channel quality information fed back by the terminal may be used as the downlink carrier set and the uplink carrier set.
- a transmission mode of each component carrier allocation and a determined carrier scheduling mode of the terminal, selecting at least one component carrier from the downlink carrier set as a component carrier of the PDCCH activation carrier set, and the terminal activating the carrier set in the PDCCH The number of times the PDCCH blind detection is performed for the uplink and downlink scheduling does not exceed the maximum number of blind detections per subframe supported by the terminal in the terminal type information, and the number of blind detections is controlled.
- 1 is a schematic diagram of the present carrier scheduling in a multi-carrier system
- FIG. 2 is a schematic diagram of cross-carrier scheduling in a multi-carrier system
- FIG. 3 is a schematic flowchart of a method for configuring downlink scheduling information according to an embodiment of the present invention
- FIG. 4 is a schematic flowchart of a specific embodiment of a method according to the present invention
- FIG. 5 is a schematic structural diagram of an apparatus for configuring downlink scheduling information according to an embodiment of the present invention. detailed description
- a method for configuring downlink scheduling information includes the following steps:
- Step 301 The base station allocates a downlink carrier set and an uplink carrier set for the terminal that sends the service request.
- the base station allocates a downlink carrier set to the terminal according to the currently received channel shield information fed back by the terminal, the obtained terminal type information, and the service request of the terminal.
- the base station may allocate an uplink carrier set to the terminal according to the received uplink channel measurement result of the terminal, the obtained terminal type information, and the uplink service request of the terminal.
- the base station may also directly allocate an uplink carrier set including one or more uplink subcarriers according to the obtained terminal type information and the downlink service request.
- the base station may obtain the terminal type information by receiving a Radio Resource Control (RRC) message during the access process of the terminal, and the manner of acquiring the terminal type information may be display or may be Implicit way.
- RRC Radio Resource Control
- Step 302 According to the bandwidth information of each carrier of the system, the obtained terminal type information, and the currently received channel quality information fed back by the terminal, the carrier wave is set for each member of the downlink carrier set and the uplink carrier set. And the determined transmission mode and the determined carrier scheduling mode of the terminal, selecting at least one component carrier from the downlink carrier set as a component carrier of the PDCCH activation carrier set, and using the terminal in the PDCCH activation carrier set The number of PDCCH blind detections for uplink and downlink scheduling does not exceed the maximum number of blind detections per subframe supported by the terminal in the terminal type information.
- step 302 a transmission mode is allocated for each component carrier in the downlink carrier set according to the currently received channel quality information fed back by the terminal.
- step 302 a transmission mode is allocated for each component carrier in the uplink carrier set according to the uplink channel quality information measured by the current terminal.
- step 302 the downlink carrier scheduling mode of the terminal is determined according to the currently received feedback information of the terminal and the current system interference level information.
- step 302 the downlink carrier scheduling mode of the terminal is determined according to the following manner:
- the downlink carrier scheduling mode of the terminal is determined according to the determined level of the terminal, the channel shield information that is currently received by the terminal, and the current system interference level information.
- the base station obtains the terminal type information by receiving an RRC message during the terminal access process.
- the carrier scheduling mode of the terminal may be determined according to the currently received information of the information fed back by the terminal and the current system interference level information.
- step 302 the scheduling mode of the terminal can be determined according to the following manner:
- the channel quality information currently received by the terminal determines the carrier scheduling mode of the terminal.
- step 302 can be implemented as follows:
- the N component carriers with the best channel shields in the downlink carrier set are used as the member carriers of the PDCCH active carrier set, where N is a natural number and is not greater than the number of component carriers of the downlink component carrier set;
- B12. Determine downlink configuration of the terminal according to bandwidth information of each carrier of the system, the terminal type information, channel quality information that is currently received by the terminal, and a transmission mode for each component carrier in the downlink carrier set.
- the wave scheduling mode and the number of component carriers included in the PDCCH active carrier set according to the bandwidth information of each uplink carrier in the system, the type information of the terminal, and the currently received uplink channel measurement result of the terminal, the uplink carrier a transmission mode allocated by each component carrier in the set, determining an uplink carrier scheduling mode of the terminal;
- M may be a fixed value set for all terminals, or may be a value set for the maximum number of blind detections per sub-frame supported by the terminal.
- step 302 can also be implemented as follows:
- B20 Determine a level of the terminal according to the terminal type information, and obtain a determined number of downlink member carriers corresponding to the level of the terminal by using a correspondence between the set level of the terminal and the maximum number of supported downlink carriers.
- the downlink component carrier is selected from the downlink carrier set, and the selected number is smaller than the maximum downlink carrier number.
- the transmission mode of 10 077140 determines the carrier scheduling mode of the terminal and the number of member carriers included in the PDCCH activation carrier set, according to the bandwidth information of each uplink wave in the system, the type information of the terminal, and the current received
- the uplink channel measurement result of the terminal and the number of component carriers included in the PDCCH activation carrier set are the transmission modes allocated by each member of the uplink wave set, and the determined uplink wave scheduling mode of the terminal;
- B23 Calculate whether the number of PDCCH blind detections used by the terminal to perform uplink and downlink scheduling by using the PDCCH activation carrier set exceeds the maximum number of blind detections per subframe supported by the terminal in the terminal type information. If not, the The PDCCH active carrier set is allocated to the terminal; if yes, the number of member carriers of the set of the PDCCH is activated according to the PDCCH corresponding to the next level, and the corresponding number of selected member carriers are selected as the PDCCH activation from the downlink carrier set. The carrier set, continue to perform the calculation (ie repeat step B23).
- the terminal downlink carrier set (DL CC Set ) and the PDCCH active camp set ( PDCCH Active CC Set ) are configured on the terminal according to the maximum number of blind detections per subframe supported by the terminal.
- a reasonable design in the LTE-A system is to define different terminal type levels. Low-level terminals only support less component carrier aggregation (even supporting only single carrier) and fewer blind detection times per subframe, higher-level terminals support more component carrier aggregation, and more blind detection per subframe. frequency.
- the base station allocates at most N the component carriers in the terminal DL CC Set allocated to the terminal;
- the carrier bandwidth and transmission mode the following principles must be met when scheduling the PDCCH Active Set to the terminal:
- the scheduling mode of the scheme 1 in a member carrier wave in one transmission mode requires the terminal to perform K times blind detection per subframe.
- the N member carriers scheduled by the terminal include A different bandwidth carrier resources (1 ⁇ A ⁇ N ), and the N member carriers are configured with B (1 ⁇ BN) different transmission modes.
- the PDCCH Active Set scheduled for the terminal is included C member carriers (1 ⁇ C ⁇ N), the following relationship should be satisfied:
- the PDCCH Active CC Set set should be included in or equal to the terminal DLCCSet set.
- the CC1 bandwidth is 20M
- the CC2 bandwidth is 5M. The following configurations are allowed:
- downlink carrier set CC 1 and CC 2
- PDCCH active carrier set CCl, scheme 2, that is, cross-carrier scheduling mode
- downlink carrier set CCl and CC2
- PDCCH active carrier set CC 1 and CC 2
- CI scheme one that is, the carrier scheduling mode
- downlink carrier set CC2
- PDCCH active carrier set CC2, scheme one;
- Downstream carrier set CCl and CC2
- PDCCH active carrier set CCl and CC2, scheme 2 (out of blind detection design capability).
- Step 401 The base station sends the bandwidth information of each member to the terminal, for example, by means of cell broadcasting.
- Step 402 The terminal reports the terminal type information to the base station in the access process, where the terminal includes the maximum number of working carriers supported by the terminal and the maximum number of blind detection times per subframe.
- the maximum number of working carriers supported by the terminal and the maximum number of blind detections per subframe may be implicitly reported by the terminal type, or a separate signaling report may be used.
- the base station After receiving the terminal type information reported by the terminal, the base station determines, according to the service requirement, that the terminal needs to use several carriers for transmission, the number of the carrier does not exceed the maximum working capacity of the terminal, and allocates a downlink carrier set for the terminal.
- the base station allocates a downlink carrier set to the terminal according to the channel shield amount fed back by the terminal, the load in the system, and the scheduling status, and notifies the terminal through the terminal-specific high layer signaling.
- Step 404 The base station sends a nitrate transmission mode to each member in the downlink carrier set allocated in step 403 according to the channel quality feedback information of the terminal.
- Step 405 The base station determines the scheduling mode according to the system interference level and the channel quality feedback by the terminal, that is, whether the terminal is scheduled by using the carrier scheduling mode or the cross-carrier scheduling mode, and the determination result is notified to the terminal exclusive high layer signaling by the terminal. terminal.
- Step 406 The base station determines, according to the channel shield quantity fed back by the terminal, which carriers in the downlink carrier set are used to form a PDCCH activation carrier set, for example, using a carrier wave with better channel quality.
- the base station determines, according to the bandwidth information of each carrier of the system, the terminal type information, the currently received channel quality information fed back by the terminal, and the transmission mode allocated for each member wave in the downlink carrier set, the determined
- the carrier scheduling mode of the terminal and the number of component carriers included in the PDCCH activation carrier set calculate and determine whether the capability of exceeding the maximum number of blind detections per subframe of the terminal is exceeded, and if yes, reselecting the carrier to form a PDCCH activation carrier set, The final selection result is sent to the terminal through terminal-specific signaling.
- the embodiment of the present invention further provides a configuration apparatus for downlink scheduling information. Since the principle of solving the problem of these devices is similar to the configuration method of the downlink scheduling information, the implementation of the devices can be implemented by referring to the method. It will not be repeated here.
- an apparatus for configuring downlink scheduling information includes:
- the carrier allocation unit 51 is configured to allocate a downlink carrier set to the terminal according to the currently received channel quality information fed back by the terminal, the obtained terminal type information, and the service request of the terminal.
- the PDCCH activation carrier allocation unit 52 is configured to use the bandwidth information of each carrier of the system, the obtained terminal type information, and the currently received channel quality information fed back by the terminal, and the downlink information is 77140: a carrier set and a transmission mode allocated by each component carrier in the uplink carrier set, and a determined carrier scheduling mode of the terminal, selecting at least one member carrier wave from the downlink carrier set as
- the PDCCH activates a component carrier of the carrier set, and the PDCCH activation carrier set is used to provide the terminal with the PDCCH blind detection for the uplink and downlink scheduling, and the number of times the subframe is supported by the terminal is the largest blind. Number of tests.
- the PDCCH activation carrier allocation unit 52 is configured to use, as the component carrier of the PDCCH activation carrier set, the N component carriers with the best channel quality in the downlink carrier set, where N is a natural number and is not greater than the downlink component carrier.
- the number of members of the set; the bandwidth information of each carrier of the system, the terminal type information, the currently received channel quality information fed back by the terminal, and the allocation of each member wave in the downlink carrier set a transmission mode, the downlink carrier scheduling mode of the terminal is determined; the bandwidth information of each uplink carrier in the system, the type information of the terminal, the currently received uplink channel measurement result of the terminal, and the second PDCCH activated carrier set are included.
- the number of member carriers is a transmission mode allocated by each member of the uplink wave set, determining an uplink carrier scheduling mode of the terminal; determining a number of component carriers included in the PDCCH activated carrier set, and calculating the terminal Using the PDCCH to activate the carrier set to perform PDCCH blind detection for uplink and downlink scheduling Whether the maximum number of blind detections per subframe supported by the terminal in the terminal type information is exceeded, and if not, the PDCCH active carrier set is allocated to the terminal; if yes, the NM members are selected from the downlink carrier set
- the carrier acts as a component carrier of the PDCCH active carrier set, where M is a natural number less than N, and the calculation is performed again. M is the fixed difference set for all terminals, or the difference set for the maximum number of blind detections per subframe supported by the terminal.
- the PDCCH activation carrier allocation unit 52 is configured to determine a level of the terminal according to the terminal type information, and obtain a determined level of the terminal by using a correspondence between the set terminal level and the supported maximum number of downlink carriers. Corresponding downlink member carrier number; selecting a downlink member carrier wave from the downlink carrier wave set, and selecting a number that is smaller than the maximum downlink carrier wave number; selecting a determined number of selections from the downlink carrier set Corresponding uplink component carrier and downlink component carrier; according to bandwidth information of each carrier of the system, the terminal type information, and the currently received feedback of the terminal Channel quality information and a transmission mode allocated for each member of the downlink carrier set, determining a carrier scheduling mode of the terminal and a number of component carriers included in the PDCCH activation carrier set, according to each uplink carrier in the system
- the bandwidth information, the type information of the terminal, the currently received uplink channel measurement result of the terminal, and the number of component carriers included in the second PDCCH activation carrier set are allocated for each component carrier in
- a transmission mode determining an uplink carrier scheduling mode of the terminal; calculating whether the number of blind detections by the terminal using the first PDCCH active carrier set and the second PDCCH active carrier set exceeds a maximum of each subframe supported by the terminal in the terminal type information If the number of blind detections is not exceeded, the PDCCH active carrier set is allocated to the terminal; if yes, the number of component carriers of the carrier set is activated according to the PDCCH corresponding to the next level, from the downlink carrier The set selects the corresponding number of selected component carriers as the PDCCH active carrier set, and proceeds again. Calculation.
- the PDCCH activation carrier allocation unit 52 is configured to: according to the currently received channel quality information fed back by the terminal, a transmission mode allocated to each member of the downlink carrier set; and an uplink channel shield information measured according to the current terminal. A transmission mode is allocated for each member of the uplink carrier set.
- the PDCCH activation carrier allocation unit 52 is configured to determine a downlink carrier scheduling manner of the terminal according to the currently received channel shield information and the current system interference level information.
- the PDCCH activation carrier allocation unit 52 is configured to determine a level of the terminal according to the terminal type information, and determine, according to the determined level of the terminal, the currently received channel quality information fed back by the terminal, and current system interference level information.
- the downlink carrier scheduling mode of the terminal is configured to determine a level of the terminal according to the terminal type information, and determine, according to the determined level of the terminal, the currently received channel quality information fed back by the terminal, and current system interference level information.
- the device allocation unit 51 is configured to obtain the terminal type information by receiving an RRC message during the terminal access process.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- the present invention has been described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
- These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- the base station may allocate a downlink carrier set to the terminal according to the currently received channel shield information fed back by the terminal, the obtained terminal type information, and the service request of the terminal; The bandwidth information of each carrier of the system, the terminal type information, the currently received channel shield information fed back by the terminal, the transmission mode allocated for each component carrier in the downlink carrier set, and the determined terminal
- the carrier scheduling mode one or more member carriers are selected as the component carriers of the PDCCH active carrier set, and the number of times that the terminal uses the PDCCH active carrier set to perform PDCCH blind detection does not exceed the terminal type information.
- the maximum number of blind detections per subframe supported by the terminal is controlled.
- the terminal level may be determined according to the terminal type information, and the terminals of different levels support different maximum blind detection times, so it may be further determined by referring to different terminal levels.
- the PDCCH scheduling mode and the PDCCH Active CC Set set scheme implement the configuration of the downlink scheduling information in the carrier aggregation system to control the number of blind detections in the multi-carrier aggregation system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Description
一种下行调度信息的配置方法及装置 本申请要求在 2009年 09月 29日提交中国专利局、 申请号为 200910235253.6、发明名称为
"一种下行调度信息的配置方法及装置"的中国专利申请的优先权,其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及通信技术领域, 特别是指一种下行调度信息的配置方法及装 置。 背景技术
在长期演进(LTE )系统中, 终端(UE )需要对公共搜索空间和 UE专属 的搜索空间的物理下行控制信道( Physical downlink control channel, PDCCH ) 同时进行盲检测, PDCCH的 CCE ( Control Channel Element, 控制信道单元) 聚合等级可以为 1、 2、 4、 8。每种 CCE聚合等级下, 需要盲检的候选 PDCCH 的个数是不同的, 表 1为在 3GPP ( 3rd Generation Partnership Project, 第三 代移动通信标准化组织) TS36.213的 9.1.1中给出 UE监控的候选 PDCCH的 描述, 参见表 1所示。
表 1
同时对于每种传输模式需要盲检两种 DCI( Downlink Control Information, 下行控制信息)格式, 不同的 DCI之间是靠长度来区分, 在用户端根据不同 的聚合等级, DCI格式(format )最多盲检 44次, 其中公共搜索空间 12次, 用户专属搜索空间 32次。 同时, 在 R8系统中, 不同系统带宽情况下 DCI格
式的比特长度是不相同的, UE在盲检 DCI格式时实现获知了系统带宽的大 小, 从而不会导致由于不同系统带宽带来的盲检次数增加。 此外, 在 R8系统 中, 不同传输模式下, UE需要盲检不同格式的 DCI, 具体在 36.213协议中已 经进行了定义, 以 C-RNTI ( Cell Radio Network Temporary Identity, 小区无线 网络临时标识)为例, 具体的规定如下:
对于先进的长期演进(LTE-Advanced ) 系统, 为支持比 LTE系统更宽的 系统带宽, 比如 100MHz, 需要通过将多个 LTE载波(又称成员载波) 的资 源连接起来使用, 具体有两种方式: 将多个连续的 LTE 栽波进行聚合, 为 LTE-A提供更大的传输带宽; 将多个不连续的 LTE栽波进行聚合, 为 LTE-A 提供更大的传输带宽。
目前标准化组织的研究倾向为, 对于载波聚合系统设计的共识是每个载 波上的设计保持与 LTE R8尽量一致, 从而保证 LTE R8的终端能够在每一个 成员载波上正常工作。
当前 LTE-A的标准讨论中, 考虑到 PDCCH设计的复杂度, 调度的灵活 性, 以及上下行非对称载波聚合情况, 对栽波聚合系统的物理下行控制信道 的设计有下面两种候选方案:
方案一: 参见图 1所示, 每个栽波独立发送 PDCCH, 该 PDCCH仅能调 度本载波的物理资源, 也称为本载波调度。
方案二: 参见图 2 所示, 使用承载于某一个或多个载波上的多个独立 PDCCH调度多个栽波资源, 该方案是对方案一的一个改进, 在这种情况下, 每条 PDCCH只能调度一个载波的资源, 以一个栽波承栽多个 PDCCH为例, 即使用承栽于某一载波上的多个独立 PDCCH调度多个栽波资源,也称为跨载 波调度。
在方案二的情况下, 目前标准已经接受在原有的 R8调度信令格式中增加 1-3比特的载波编号指示(Carrier Indicator ), 用于指示该条调度信令是调度哪 个成员载波的物理资源。并且标准讨论已经接受对于 UE通过专属信令分配下 行成员载波集合( UE DL Component Carrier Set ), UE会在该集合内的 DL CC
上接收下行数据。 一些已经提出的方案中建议再定义一种 PDCCH Active CC Set, UE需要在该集合内进行 PDCCH的盲检测。图 3所示可以理解为, UE DL CC Set={CCl,CC2,CC3,CC4,CC5} , PDCCH Active Set = {CC3}的情况。
基于如上的方案一, UE需要在每个载波上独立完成与 R8类似的盲检, 即每个子帧每个载波 44次盲检, 总计 44*5=220次, 这里没有考虑 LTE-A其 他新特性导致的盲检次数增加, 可以看到对 LTE-A UE的能力要求是比较高 的。
基于如上的方案二, 如果各个成员栽波的带宽相同并且具有相同的传输 模式, 那么当 UE仅分配了一个载波作为 PDCCH承载栽波 (如图 3所示)时, UE的盲检次数可以控制在与 R8情况相同, 即每个子帧 44次盲检,这里没有 考虑 LTE-A其他新特性导致的盲检次数增加。
基于如上的方案二, 如果每个成员载波具有互不相同的传输带宽时, 由 于不同传输带宽情况下相同的 DCI格式具有不同的比特长度, 因此基于图 3 所示的情况下, UE在一个子帧内需要进行 44*5=220次盲检。 考虑到各个载 波可能具有不同的传输模式,此时可能导致 UE的盲检次数进一步增加,最多 达到 44*5*5=1100次盲检。
基于方案二, 如果 UE配置了多于一个的 PDCCH栽波, 那么也会进一步 导致盲检次数的增加。
因此, 基于方案二, 如果对 UE的 DL CC Set和 PDCCH Active CC set的 调度没有任何限制, 会导致 UE的盲检次数增长至不可接受的程度, 对 UE的 实现成本和系统调度不利。
综上所述, 在 LTE系统中, 下行控制信道采用盲检测的方法, 即 UE在 每个子帧内的下行控制信道解码是依靠对不同的控制信道的资源位置, 不同 的控制信道编码速率以及不同的控制信令格式等进行多次尝试, 直到正确解 码出正确的控制信令。 R8 UE在一个子帧内的盲检测能力规定为 44次, 该盲 检能力与终端实现复杂度和成本相关。
在 LTE-A系统中, 在下行方向, 由于多天线技术和传输技术的增强, 可
能定义多种不同的传输模式, 因此不可避免地出现多种新的控制信令格式; 在上行方向, 由于多天线技术的引入, 也会使得系统中定义多种上行传输模 式, 每种传输模式可能对应不同的上行调度信令格式。 这会直接导致 LTE-A 终端需要支持更多的盲检次数。 同时, 由于载波聚合技术的引入, 并且每个 载波的控制信令单独编码, 又会导致终端盲检次数的增加。 因此控制盲检次 数是一个正在考虑的问题。 发明内容
本发明提供一种下行调度的配置方法及装置, 用以控制多栽波聚合系统 中盲检测的次数。
本发明实施例提供的一种下行调度信息的配置方法, 包括:
为发送业务请求的终端分配下行载波集合和上行栽波集合;
根据系统各个载波的带宽信息、 获得的该终端类型信息、 当前收到的该 终端反馈的信道质量信息、 为所述下行栽波集合和所述上行栽波集合中每个 成员载波分配的传输模式以及确定的该终端的载波调度方式, 从所述下行载 波集合中选择出至少一个成员栽波作为 PDCCH激活载波集合的成员载波且 终端在所述 PDCCH激活载波集合中进行用于上行和下行调度的 PDCCH盲检 测的次数不超过该终端类型信息中该终端支持的每子帧最大盲检测次数。
本发明实施例提供的一种下行调度信息的配置装置, 包括:
载波分配单元, 用于根据当前收到的该终端反馈的信道质量信息、 获得 的该终端类型信息以及该终端的业务请求, 为该终端分配下行栽波集合;
PDCCH激活载波分配单元, 用于根据系统各个载波的带宽信息、 获得 的该终端类型信息、 当前收到的该终端反馈的信道质量信息、 为所述下行载 波集合和所述上行栽波集合中每个成员载波分配的传输模式以及确定的该终 端的载波调度方式, 从所述下行载波集合中选择出至少一个成员栽波作为 PDCCH激活栽波集合的成员栽波, 且所述 PDCCH激活载波集合用于提供给 该终端进行用于上行和下行调度的 PDCCH盲检测的次数不超过该终端类型
信息中该终端支持的每子帧最大盲检测次数。
在本发明实施例中, 可以根据系统各个栽波的带宽信息、 获得的该终端 类型信息、 当前收到的该终端反馈的信道质量信息、 为所述下行栽波集合和 所述上行栽波集合中每个成员载波分配的传输模式以及确定的该终端的载波 调度方式, 从所述下行载波集合中选择出至少一个成员载波作为 PDCCH激 活载波集合的成员载波且终端在所述 PDCCH激活栽波集合中进行用于上行 和下行调度的 PDCCH盲检测的次数不超过该终端类型信息中该终端支持的 每子帧最大盲检测次数, 实现控制盲检测次数。 附图说明
图 1为多载波系统中本载波调度的示意图;
图 2为多栽波系统中跨栽波调度的示意图;
图 3为本发明实施例提供的一种下行调度信息的配置方法的流程示意图; 图 4为本发明方法的一具体实施例的流程示意图;
图 5为本发明实施例提供的一种下行调度信息的配置装置的结构示意图。 具体实施方式
参见图 3 所示, 本发明实施例提供的一种下行调度信息的配置方法包括 以下步骤:
步骤 301 : 基站为发送业务请求的终端分配下行栽波集合和上行载波集 合。
这里, 基站根据当前收到的该终端反馈的信道盾量信息、 获得的该终端 类型信息以及该终端的业务请求, 为该终端分配下行栽波集合。 基站可以根 据接收到的终端的上行信道测量结果、 获得的该终端类型信息以及该终端的 上行业务请求, 为该终端分配上行栽波集合。 基站也可以根据获得的该终端 类型信息、 下行业务请求直接分配包括一个或多个上行子栽波的上行栽波集 合。
40 这里, 基站可以是在该终端接入过程中, 通过接收无线资源控制 (Radio Resource Control, RRC ) 消息获得所述该终端类型信息, 具体获取该终端类 型信息的方式可以是显示, 也可以是隐式方式。
步骤 302:根据系统各个栽波的带宽信息、 获得的该终端类型信息、 当前 收到的该终端反馈的信道质量信息、 为所述下行载波集合和所述上行栽波集 合中每个成员栽波分配的传输模式以及确定的该终端的载波调度方式, 从所 述下行载波集合中选择出至少一个成员载波作为 PDCCH激活栽波集合的成 员载波, 且终端在所述 PDCCH激活栽波集合中进行用于上行和下行调度的 PDCCH盲检测的次数不超过该终端类型信息中该终端支持的每子帧最大盲 检测次数。
步骤 302 中根据当前收到的该终端反馈的信道质量信息为所述下行栽波 集合中每个成员载波分配传输模式。
步驟 302 中根据当前终端测量的上行信道质量信息为所述上行栽波集合 中每个成员载波分配传输模式。
步骤 302 中根据当前收到的该终端反馈的信 量信息以及当前系统干 扰水平信息确定该终端的下行载波调度方式。
步骤 302中根据如下方式确定该终端的下行载波调度方式:
根据该终端类型信息确定该终端的等级;
根据确定的该终端的等级、 当前收到的该终端反馈的信道盾量信息以及 当前系统干扰水平信息确定该终端的下行栽波调度方式。
基站是在该终端接入过程中, 通过接收 RRC消息获得所述该终端类型信 息。
步驟 302 中可以根据当前收到的该终端反馈的信½量信息以及当前系 统干扰水平信息确定该终端的栽波调度方式。
步骤 302中可以根据如下方式确定该终端的栽波调度方式:
根据该终端类型信息确定该终端的等级;
根据确定的该终端的等级、 当前收到的该终端反馈的信道质量信息以及
当前系统干扰水平信息确定该终端的载波调度方式。
作为一种实施方式, 步骤 302可以这样实现:
B11、 将所述下行载波集合中信道盾量最好的 N个成员载波作为 PDCCH 激活载波集合的成员栽波, N为自然数, 且不大于所述下行成员载波集合的 成员载波个数;
B12、 根据系统各个载波的带宽信息、 所述该终端类型信息、 当前收到 的该终端反馈的信道质量信息以及为所述下行载波集合中每个成员载波分配 传输模式,确定该终端的下行栽波调度方式以及 PDCCH激活载波集合中包括 的成员载波个数; 根据系统中各个上行载波的带宽信息、 所述该终端的类型 信息以及当前收到的该终端的上行信道测量结果为所述上行载波集合中每个 成员载波分配的传输模式, 确定该终端的上行载波调度方式;
B13、 计算该终端在 PDCCH激活栽波集合进行用于上行和下行调度的 PDCCH 盲检测的次数是否超过该终端类型信息中该终端支持的每子帧最大 盲检测次数, 如果不超过, 则将所述 PDCCH激活栽波集合分配给该终端; 如果超过, 则从所述下行栽波集合选择 N-M个成员栽波作为 PDCCH激活载 波集合的成员载波, 其中, M为小于 N的自然数, 继续执行计算(即重复步 骤 B13 ) 。
M可以为针对所有终端设定的固定值, 也可以为针对该终端支持的每子 帧最大盲检测次数设定的值。
作为另一种实施方式, 步骤 302还可以这样实现:
B20、 根据该终端类型信息确定该终端的等级, 利用设置的终端的等级 与支持的最大下行载波个数的对应关系, 获得确定的该终端的等级对应的下 行成员载波个数;
B21、 从所述下行载波集合选择出下行成员载波, 并且选择的个数小于 所述最大下行载波个数;
B22、 居系统各个栽波的带宽信息、 所述该终端类型信息、 当前收到 的该终端反馈的信道质量信息以及为所述下行载波集合中每个成员栽波分配
10 077140 的传输模式,确定该终端的载波调度方式以及 PDCCH激活栽波集合中包括的 成员栽波个数, 根据系统中各个上行栽波的带宽信息、 所述该终端的类型信 息以及当前收到的该终端的上行信道测量结果以及 PDCCH激活栽波集合中 包括的成员载波个数为所述上行栽波集合中每个成员栽波分配的传输模式, 确定的该终端的上行栽波调度方式;
B23、 计算该终端利用 PDCCH激活载波集合进行用于上行和下行调度的 PDCCH盲检测的次数是否超过该终端类型信息中该终端支持的每子帧最大 盲检测次数, 如果不超过, 则将所述 PDCCH激活栽波集合分配给该终端; 如果超过, 则按照下一等级对应的 PDCCH激活栽波集合的成员栽波个数, 从所述下行载波集合选择出相应个数选择成员栽波作为 PDCCH激活载波集 合, 继续执行计算(即重复步骤 B23 ) 。
以下举具体实施例详细说明本发明的技术方案。
本发明实施例是根据终端支持的每子帧最大盲检测次数对终端配置终端 下行载波集合( DL CC Set )和 PDCCH激活栽波集合( PDCCH Active CC Set )。
考虑到终端的每子帧盲检测次数、 终端支持的聚合载波个数跟终端基带 处理能力以及终端成本成正比关系, 在 LTE-A系统中一种合理的设计是定义 不同的终端类型等级。 等级低的终端仅支持较少的成员载波聚合 (甚至仅支持 单载波)以及较少的每子帧盲检测次数、 等级高的终端支持较多的成员载波聚 合和较多的每子帧盲检测次数。
例如某种等级的终端支持最大聚合成员栽波数为 N、 最大每子帧盲检测 次数为 M,则基站最多为该终端分配的终端 DL CC Set中包含 N个成员载波; 同时假设系统中存在不同的载波带宽和传输模式, 向该终端调度 PDCCH Active Set时需要满足如下的原则:
假定 LTE-A系统设计中, 一种传输模式下一个成员栽波内采用方案一的 调度方式需要终端每子帧进行 K次盲检。 那么假设为终端调度的 N个成员栽 波中包含 A种不同带宽的载波资源( 1 < A < N ), 同时这 N个成员栽波上配置 了 B(1 < B N)种不同的传输模式,为终端调度的 PDCCH Active Set中包含了
C个成员载波(1 <C<N), 此时应满足如下关系:
K*A*B*C<M
同时, 为了使得终端在尽量少的带宽上工作, PDCCH Active CC Set集合 应该包含于或等于终端 DLCCSet集合。
例如终端支持 N=2个 CC,盲检次数设计能力是每子帧 M=88次, 系统中 有两个 CC聚合, CC1带宽为 20M, CC2带宽为 5M, 如下的配置被允许:
1 ) 下行载波集合 = CC 1 and CC 2, PDCCH激活载波集合 = CCl, 方案 二, 即跨载波调度方式;
2 ) 下行载波集合 = CC 1 and CC2, PDCCH激活栽波集合 = CC2, 方案二;
3 ) 下行载波集合 = CCl and CC2, PDCCH激活载波集合 = CC 1 and CC 2, CI方案一, 即本栽波调度方式;
4) 下行栽波集合-CCl, PDCCH激活栽波集合 =CC 1, 方案一;
5)下行载波集合 =CC2,PDCCH激活载波集合 =CC2, 方案一;
如下的配置不允许:
1 )下行载波集合 = CCl, PDCCH激活栽波集合 = CC 2„ 方案二(不合理 配置);
2 )下行载波集合 = CC2, PDCCH激活栽波集合 = CC 1, 方案二(不合理 配置 );
3 ) 下行载波集合 = CCl and CC2, PDCCH激活栽波集合 = CCl and CC2, 方案二(超出盲检次数设计能力)。
参见图 4所示, 本发明方法的一具体实施例的过程, 具体如下: 步骤 401: 基站将各个成员栽波的带宽信息发送给终端, 例如通过小区广 播的方式。
步骤 402: 终端在接入过程中向基站上报终端类型信息, 其中含有终端支 持的最大工作栽波个数和最大每子帧盲检测次数。
这里, 终端支持的最大工作载波个数和最大每子帧盲检测次数可以通过 终端类型隐含上报, 也可以使用单独的信令上报。
10 077140 步骤 403: 基站收到该终端上报的终端类型信息后,根据业务需求判断该 终端需要使用几个载波进行传输, 该载波数不超出终端的最大工作能力, 并 为终端分配下行载波集合。
这里, 基站根据终端反馈的信道盾量和系统中的负载以及调度状况等为 终端分配下行载波集合, 并通过终端专属高层信令通知给终端。
步骤 404:基站根据终端的信道质量反馈信息为步骤 403分配的下行载波 集合中的每个成员栽波硝定传输模式。
步骤 405:基站根据系统干扰水平以及终端反馈的信道质量等信息决定调 度方式, 即是采用本栽波调度方式还是跨载波调度方式对终端进行调度, 并 将判决结果通过终端专属高层信令通知给终端。
步骤 406:基站根据终端反馈的信道盾量决定使用下行载波集合中的哪些 载波组成 PDCCH激活栽波集合, 例如使用信道质量较好的栽波组成。 同时 根据系统各个栽波的带宽信息、 所述该终端类型信息、 当前收到的该终端反 馈的信道质量信息、 为所述下行栽波集合中每个成员栽波分配的传输模式、 确定的该终端的载波调度方式以及 PDCCH激活栽波集合中包括的成员载波 个数, 计算并判断是否会导致超出终端的每子帧最大盲检测次数能力, 如果 超出, 则重新选择载波组成 PDCCH激活载波集合, 并将最终的选择结果通 过终端专属信令发送给该终端。
基于同一发明构思, 本发明实施例中还提供了一种下行调度信息的配置 装置, 由于这些设备解决问题的原理与下行调度信息的配置方法相似, 因此 这些设备的实施可以参见方法的实施, 重复之处不再赘述。
参见图 5所示, 本发明实施例提供的一种下行调度信息的配置装置, 包 括:
载波分配单元 51, 用于根据当前收到的该终端反馈的信道质量信息、 获 得的该终端类型信息以及该终端的业务请求, 为该终端分配下行栽波集合;
PDCCH激活栽波分配单元 52, 用于才艮据系统各个载波的带宽信息、 荻 得的该终端类型信息、 当前收到的该终端反馈的信道质量信息、 为所述下行
77140 载波集合和所述上行栽波集合中每个成员载波分配的传输模式以及确定的该 终端的栽波调度方式, 从所述下行载波集合中选择出至少一个成员栽波作为
PDCCH激活载波集合的成员载波, 且所述 PDCCH激活载波集合用于提供给 该终端进行用于上行和下行调度的 PDCCH盲检测的次数不超过该终端类型 信息中该终端支持的每子帧最大盲检测次数。
所述 PDCCH激活载波分配单元 52, 用于将所述下行栽波集合中的信道 质量最好的 N个成员载波作为 PDCCH激活载波集合的成员载波, N为自然 数, 且不大于所述下行成员载波集合的成员栽波个数; 根据系统各个栽波的 带宽信息、 所述该终端类型信息、 当前收到的该终端反馈的信道质量信息以 及为所述下行载波集合中每个成员栽波分配的传输模式, 确定该终端的下行 载波调度方式; 根据系统中各个上行载波的带宽信息、 所述该终端的类型信 息、 当前收到的该终端的上行信道测量结果以及第二 PDCCH激活载波集合 中包括的成员栽波个数为所述上行栽波集合中每个成员栽波分配的传输模 式,确定该终端的上行栽波调度方式; 确定 PDCCH激活载波集合中包括的成 员载波个数, 计算该终端利用 PDCCH激活栽波集合进行用于上行和下行调 度的 PDCCH盲检测的次数是否超过该终端类型信息中该终端支持的每子帧 最大盲检测次数, 如果不超过, 则将所述 PDCCH激活载波集合分配给该终 端; 如果超过, 则从所述下行载波集合选择 N-M个成员载波作为 PDCCH激 活载波集合的成员载波, 其中, M为小于 N的自然数, 再次进行计算。 M为 针对所有终端设定的固定差值, 或为针对该终端支持的每子帧最大盲检测次 数设定的差值。
所述 PDCCH激活栽波分配单元 52, 用于 4艮据该终端类型信息确定该终 端的等级, 利用设置的终端的等级与支持的最大下行载波个数的对应关系, 获得确定的该终端的等级对应的下行成员载波个数; 从所述下行栽波集合选 择出下行成员栽波, 并且选择的个数小于所述最大下行栽波个数; 从所述下 行载波集合选择出确定的个数选择对应的上行成员载波和下行成员载波; 根 据系统各个栽波的带宽信息、 所述该终端类型信息、 当前收到的该终端反馈
的信道质量信息以及为所述下行载波集合中每个成员栽波分配的传输模式, 确定该终端的载波调度方式以及 PDCCH激活栽波集合中包括的成员载波个 数, 根据系统中各个上行载波的带宽信息、 所述该终端的类型信息、 当前收 到的该终端的上行信道测量结果以及第二 PDCCH激活栽波集合中包括的成 员载波个数为所述上行载波集合中每个成员载波分配的传输模式, 确定该终 端的上行栽波调度方式; 计算该终端利用第一 PDCCH激活载波集合和第二 PDCCH激活载波集合进行盲检测的次数是否超过该终端类型信息中该终端 支持的每子帧最大盲检测次数, 如果不超过, 则将所述 PDCCH激活载波集 合分配给该终端; 如果超过, 则按照下一等级对应的 PDCCH激活栽波集合 的成员载波个数, 从所述所述下行栽波集合选择出相应个数选择成员载波作 为 PDCCH激活载波集合, 再次进行计算。
所述 PDCCH激活载波分配单元 52, 用于根据当前收到的该终端反馈的 信道质量信息为所述下行载波集合中每个成员栽波分配的传输模式; 根据当 前终端测量的上行信道盾量信息为所述上行载波集合中每个成员栽波分配传 输模式。
所述 PDCCH激活栽波分配单元 52, 用于根据当前收到的该终端反馈的 信道盾量信息以及当前系统干扰水平信息确定该终端的下行载波调度方式。
所述 PDCCH激活载波分配单元 52, 用于才艮据该终端类型信息确定该终 端的等级; 根据确定的该终端的等级、 当前收到的该终端反馈的信道质量信 息以及当前系统干扰水平信息确定该终端的下行载波调度方式。
所述栽波分配单元 51, 用于在该终端接入过程中, 通过接收 RRC消息获 得所述该终端类型信息。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统) 、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流 程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算 机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使 得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。 - 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
在本发明实施例中, 基站可以根据当前收到的该终端反馈的信道盾量信 息、 获得的该终端类型信息以及该终端的业务请求, 为该终端分配下行栽波 集合; 然后, 才艮据系统各个栽波的带宽信息、 所述该终端类型信息、 当前收 到的该终端反馈的信道盾量信息、 为所述下行栽波集合中每个成员载波分配 的传输模式以及确定的该终端的栽波调度方式, 从所述下行载波集合中选择 出一个以上成员栽波作为 PDCCH激活载波集合的成员载波, 且该终端利用 所述 PDCCH激活载波集合进行 PDCCH盲检测的次数不超过该终端类型信息
中该终端支持的每子帧最大盲检测次数, 实现控制。
进一步地, 可以根据终端类型信息确定终端等级, 不同的等级的终端对 应支持不同的最大盲检测次数, 因此可以进一步参考不同的终端等级来决定
PDCCH调度方式和 PDCCH Active CC Set集合的方案, 实现在载波聚合系统 下行调度信息的配置, 以控制多载波聚合系统中盲检测的次数。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种下行调度信息的配置方法, 其特征在于, 该方法包括以下步 骤:
为发送业务请求的终端分配下行载波集合和上行载波集合;
根据系统各个载波的带宽信息、 获得的该终端类型信息、 当前收到的该 终端反馈的信道质量信息、 为所述下行栽波集合和所述上行栽波集合中每个 成员载波分配的传输模式以及确定的该终端的载波调度方式, 从所述下行栽 波集合中选择出至少一个成员栽波作为物理下行控制信道 PDCCH激活栽波 集合的成员载波且终端在所述 PDCCH激活栽波集合中进行用于上行和下行 调度的 PDCCH盲检测的次数不超过该终端类型信息中该终端支持的每子帧 最大盲检测次数。
2、 根据权利要求 1所述的方法, 其特征在于, 所述从所述下行载波集合 中选择出至少一个成员载波作为 PDCCH激活栽波集合的成员载波包括: 将所述下行载波集合中信道盾量最好的 N个成员栽波作为 PDCCH激活 载波集合的成员载波;
根据系统各个栽波的带宽信息、 所述该终端类型信息、 当前收到的该终 端反馈的信道质量信息以及为所述下行栽波集合中每个成员栽波分配的传输 模式,确定该终端的下行载波调度方式以及 PDCCH激活载波集合中包括的成 员载波个数, 根据系统中各个上行载波的带宽信息、 所述该终端的类型信息 以及当前收到的该终端的上行信道测量结果为所述上行栽波集合中每个成员 载波分配的传输模式, 确定该终端的上行载波调度方式;
计算该终端在 PDCCH激活载波集合进行用于上行和下行调度的 PDCCH 盲检测的次数是否超过该终端类型信息中该终端支持的每子帧最大盲检测次 数, 如果不超过, 则将所述 PDCCH激活栽波集合分配给该终端; 如果超 过, 则从所述下行载波集合选择 N-M个成员栽波作为 PDCCH激活栽波集合 的成员栽波, 继续执行计算; 其中, N为自然数, 且不大于所述下行成员载波集合的成员载波个数, M 为小于 N的自然数。
3、 根据权利要求 2所述的方法, 其特征在于, M为针对所有终端设定的 固定差值, 或为针对该终端支持的每子帧最大盲检测次数设定的差值。
4、 根据权利要求 1所述的方法, 其特征在于, 所述从所述下行载波集合 中选择出至少一个成员载波作为 PDCCH激活栽波集合的成员栽波包括: 根据该终端类型信息确定该终端的等级, 利用设置的终端的等级与支持 的最大下行载波个数的对应关系, 获得确定的该终端的等级对应的下行成员 载波个数;
从所述下行载波集合选择出下行成员载波, 并且选择的个数小于所述最 大下行载波个数;
根据系统各个载波的带宽信息、 所述该终端类型信息、 当前收到的该终 端反馈的信道盾量信息以及为所述下行载波集合中每个成员栽波分配的传输 模式,确定该终端的栽波调度方式以及 PDCCH激活栽波集合中包括的成员栽 波个数, 根据系统中各个上行栽波的带宽信息、 所述该终端的类型信息以及 当前收到的该终端的上行信道测量结果以及 PDCCH激活栽波集合中包括的 成员载波个数为所述上行栽波集合中每个成员载波分配的传输模式, 确定该 终端的上行载波调度方式;
计算该终端利用 PDCCH 激活载波集合进行用于上行和下行调度的 PDCCH盲检测的次数是否超过该终端类型信息中该终端支持的每子帧最大 盲检测次数, 如果不超过, 则将所述 PDCCH激活载波集合分配给该终端; 如果超过, 则按照下一等级对应的 PDCCH激活栽波集合的成员栽波个数, 从所述所述下行载波集合选择出相应个数选择成员载波作为 PDCCH激活载 波集合, 继续执行计算。
5、 根据权利要求 1所述的方法, 其特征在于, 根据当前收到的该终端反 馈的信道质量信息为所述下行载波集合中每个成员栽波分配传输模式;
根据当前终端测量的上行信道质量信息为所述上行栽波集合中每个成员 载波分配传输模式。
6、 根据权利要求 1所述的方法, 其特征在于, 根据当前收到的该终端反 馈的信道质量信息以及当前系统干扰水平信息确定该终端的下行载波调度方 式。
7、 根据权利要求 6所述的方法, 其特征在于, 根据如下方式确定该终端 的下行栽波调度方式:
根据该终端类型信息确定该终端的等级;
根据确定的该终端的等级、 当前收到的该终端反馈的信道盾量信息以及 当前系统干扰水平信息确定该终端的下行载波调度方式。
8、 根据权利要求 1所述的方法, 其特征在于, 在该终端接入过程中, 通 过接收无线资源控制 RRC消息获得所述该终端类型信息。
9、 一种下行调度信息的配置装置, 其特征在于, 包括:
载波分配单元, 用于根据当前收到的该终端反馈的信道质量信息、 获得 的该终端类型信息以及该终端的业务请求, 为该终端分配下行载波集合;
PDCCH 激活栽波分配单元, 用于根据系统各个栽波的带宽信息、 获得 的该终端类型信息、 当前收到的该终端反馈的信道盾量信息、 为所述下行载 波集合和所述上行栽波集合中每个成员栽波分配的传输模式以及确定的该终 端的载波调度方式, 从所述下行载波集合中选择出至少一个成员载波作为 PDCCH激活栽波集合的成员载波, 且所述 PDCCH激活栽波集合用于提供给 该终端进行用于上行和下行调度的 PDCCH盲检测的次数不超过该终端类型 信息中该终端支持的每子帧最大盲检测次数。
10、 根据权利要求 9所述的装置, 其特征在于, 所述 PDCCH激活载波分 配单元具体用于:
将所述下行载波集合中的信道质量最好的 N个成员栽波作为 PDCCH激 活载波集合的成员栽波, 且不大于所述下行成员载波集合的成员载波个数; 根据系统各个载波的带宽信息、 所述该终端类型信息、 当前收到的该终端反 馈的信道盾量信息以及为所述下行栽波集合中每个成员栽波分配的传输模 式, 确定该终端的下行载波调度方式; 根据系统中各个上行载波的带宽信 息、 所述该终端的类型信息、 当前收到的该终端的上行信道测量结果以及第 二 PDCCH激活栽波集合中包括的成员载波个数为所述上行栽波集合中每个 成员载波分配的传输模式,确定该终端的上行载波调度方式; 确定 PDCCH激 活栽波集合中包括的成员载波个数, 计算该终端利用 PDCCH激活载波集合 进行用于上行和下行调度的 PDCCH盲检测的次数是否超过该终端类型信息 中该终端支持的每子帧最大盲检测次数, 如果不超过, 则将所述 PDCCH激 活载波集合分配给该终端; 如果超过, 则从所述下行载波集合选择 N-M个成 员载波作为 PDCCH激活载波集合的成员载波, 再次进行计算;
其中, N为自然数, 且不大于所述下行成员栽波集合的成员栽波个数, M 为小于 N的自然数。
11、 根据权利要求 10所述的装置, 其特征在于, M为针对所有终端设定 的固定差值, 或为针对该终端支持的每子帧最大盲检测次数设定的差值。
12、 根据权利要求 9所述的装置, 其特征在于, 所述 PDCCH激活载波分 配单元具体用于:
根据该终端类型信息确定该终端的等级, 利用设置的终端的等级与支持 的最大下行载波个数的对应关系, 获得确定的该终端的等级对应的下行成员 载波个数; 从所述下行载波集合选择出下行成员载波, 并且选择的个数小于 所述最大下行载波个数; 从所述下行载波集合选择出确定的个数选择对应的 上行成员载波和下行成员载波; 根据系统各个栽波的带宽信息、 所述该终端 类型信息、 当前收到的该终端反馈的信道质量信息以及为所述下行载波集合 中每个成员栽波分配的传输模式,确定该终端的栽波调度方式以及 PDCCH激 活栽波集合中包括的成员载波个数, 根据系统中各个上行栽波的带宽信息、 所述该终端的类型信息、 当前收到的该终端的上行信道测量结果以及第二 PDCCH激活载波集合中包括的成员栽波个数为所述上行栽波集合中每个成 员栽波分配的传输模式, 确定该终端的上行载波调度方式; 计算该终端利用 第一 PDCCH激活载波集合和第二 PDCCH激活载波集合进行盲检测的次数是 否超过该终端类型信息中该终端支持的每子帧最大盲检测次数, 如果不超 过, 则将所述 PDCCH激活栽波集合分配给该终端; 如果超过, 则按照下一 等级对应的 PDCCH激活栽波集合的成员栽波个数, 从所述所述下行栽波集 合选择出相应个数选择成员栽波作为 PDCCH激活栽波集合, 再次进行计 算。
13、 根据权利要求 9所述的装置, 其特征在于, 所述 PDCCH激活栽波分 配单元具体用于:
根据当前收到的该终端反馈的信道质量信息为所述下行栽波集合中每个 成员载波分配的传输模式; 根据当前终端测量的上行信道盾量信息为所述上 行载波集合中每个成员栽波分配传输模式。
14、 根据权利要求 9所述的装置, 其特征在于, 所述 PDCCH激活载波分 配单元具体用于:
根据当前收到的该终端反馈的信道质量信息以及当前系统干扰水平信息 确定该终端的下行载波调度方式。
15、 根据权利要求 14所述的装置, 其特征在于, 所述 PDCCH激活载波 分配单元具体用于:
根据该终端类型信息确定该终端的等级; 根据确定的该终端的等级、 当 前收到的该终端反馈的信道盾量信息以及当前系统干扰水平信息确定该终端 的下行栽波调度方式。
16、 根据权利要求 14所述的装置, 其特征在于, 所述栽波分配单元具体 用于:
在该终端接入过程中, 通过接收 RRC消息获得所述该终端类型信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/499,262 US8934916B2 (en) | 2009-09-29 | 2010-09-20 | Method and device for configuring downlink scheduling information |
EP10819878.9A EP2485549B1 (en) | 2009-09-29 | 2010-09-20 | Method and apparatus for configuring downlink scheduling information |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910235253.6 | 2009-09-29 | ||
CN200910235253.6A CN102014494B (zh) | 2009-09-29 | 2009-09-29 | 一种下行调度信息的配置方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011038649A1 true WO2011038649A1 (zh) | 2011-04-07 |
Family
ID=43825554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/077140 WO2011038649A1 (zh) | 2009-09-29 | 2010-09-20 | 一种下行调度信息的配置方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8934916B2 (zh) |
EP (1) | EP2485549B1 (zh) |
CN (1) | CN102014494B (zh) |
WO (1) | WO2011038649A1 (zh) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102170649B (zh) * | 2011-04-19 | 2015-05-20 | 中兴通讯股份有限公司 | Pdcch盲检测方法及装置 |
CN102186250B (zh) * | 2011-04-26 | 2014-01-22 | 北京邮电大学 | 一种分配成员载波的方法及装置 |
CN102164416B (zh) * | 2011-05-03 | 2014-04-16 | 电信科学技术研究院 | 一种数据传输的方法、系统和设备 |
CN102404076B (zh) * | 2011-11-07 | 2014-12-10 | 电信科学技术研究院 | 信息发送及盲检方法和设备 |
CN102368871B (zh) * | 2011-11-10 | 2014-06-04 | 电信科学技术研究院 | 一种pdcch资源的配置应用方法及装置 |
HUE029363T2 (en) | 2011-11-17 | 2017-02-28 | Huawei Tech Co Ltd | Drive aggregation scheduler, carrier aggregation scheduling process, and base station |
CN103546233B (zh) * | 2012-07-12 | 2016-12-28 | 电信科学技术研究院 | 一种盲检方式确定方法、盲检方法及装置 |
US9240870B2 (en) * | 2012-10-25 | 2016-01-19 | Telefonaktiebolaget L M Ericsson (Publ) | Queue splitting for parallel carrier aggregation scheduling |
KR101689999B1 (ko) * | 2012-11-02 | 2016-12-26 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 제어 채널 후보들의 개수 및 블라인드 검출 횟수를 할당하는 방법, 기지국, 및 사용자 장비 |
CN104837209A (zh) * | 2014-02-11 | 2015-08-12 | 上海朗帛通信技术有限公司 | 一种双连接通信中的随机接入方法和装置 |
EP3213577B1 (en) * | 2014-10-30 | 2020-05-20 | Telefonaktiebolaget LM Ericsson (publ) | Frequency selective scheduling |
CN106455070B (zh) * | 2015-08-12 | 2022-03-15 | 中兴通讯股份有限公司 | 一种控制面下行信令的传输方法及系统 |
US12010534B2 (en) * | 2016-09-29 | 2024-06-11 | Ntt Docomo, Inc. | User terminal and radio communication method |
JP2019501543A (ja) * | 2016-11-05 | 2019-01-17 | アップル インコーポレイテッドApple Inc. | 非対称帯域幅サポート及び動的帯域幅調節 |
WO2018212509A1 (en) * | 2017-05-15 | 2018-11-22 | Samsung Electronics Co., Ltd. | Method and apparatus for control resource set configuration and monitoring of downlink control channel in wireless communication system |
CN109089316B (zh) | 2017-06-14 | 2020-11-17 | 华为技术有限公司 | 调度方法及相关装置 |
EP4114058A1 (en) * | 2017-09-07 | 2023-01-04 | Beijing Xiaomi Mobile Software Co., Ltd. | Method and device for realizing signaling detection, user equipment, and base station |
CN113037432A (zh) * | 2017-09-08 | 2021-06-25 | 华为技术有限公司 | 通信方法、终端设备和网络设备 |
WO2019079997A1 (zh) * | 2017-10-25 | 2019-05-02 | Oppo广东移动通信有限公司 | 数据传输模式的确定方法、网络设备及计算机存储介质 |
CN110139364B (zh) * | 2018-02-02 | 2024-05-31 | 中兴通讯股份有限公司 | 数据传输方法、装置、存储介质、基站及终端 |
CN113541907B (zh) * | 2018-02-08 | 2022-07-26 | 展讯通信(上海)有限公司 | 下行控制信息的检测方法、装置及用户设备 |
US10863582B2 (en) * | 2018-02-16 | 2020-12-08 | Apple Inc. | Methods to signal antenna panel capability of user equipment (UE) for carrier aggregation (CA) in millimeter-wave (MMWAVE) frequency bands |
WO2019192304A1 (zh) * | 2018-04-03 | 2019-10-10 | 电信科学技术研究院有限公司 | 信道盲检方法、信号传输方法和相关设备 |
CN110351010B (zh) | 2018-04-03 | 2021-04-30 | 电信科学技术研究院有限公司 | 一种信道盲检方法、信号传输方法和相关设备 |
CN110602725A (zh) * | 2018-06-13 | 2019-12-20 | 维沃移动通信有限公司 | 数据业务处理方法、网络侧设备、终端设备及存储介质 |
US11831426B2 (en) * | 2018-08-09 | 2023-11-28 | Panasonic Intellectual Property Corporation Of America | Terminal and communication method for blind-decoding scheduling information |
CN110830216B (zh) * | 2018-08-10 | 2021-03-30 | 华为技术有限公司 | 确定载波聚合下监控pdcch候选数目的方法和装置 |
CN111182636B (zh) * | 2019-01-11 | 2023-06-06 | 维沃移动通信有限公司 | 下行控制信息检测方法、网络侧设备及终端设备 |
US11317379B2 (en) * | 2019-07-30 | 2022-04-26 | Mediatek Inc. | Blind detection and CCE allocation for carrier aggregation |
US10659978B1 (en) * | 2019-08-23 | 2020-05-19 | Sprint Spectrum L.P. | Use of UE type as basis to control whether to use blind addition or rather threshold-based addition when configuring dual connectivity |
CN112825592B (zh) * | 2019-11-21 | 2022-03-08 | 成都鼎桥通信技术有限公司 | 载波调度方法、装置、基站及存储介质 |
US11265943B1 (en) | 2020-10-13 | 2022-03-01 | Sprint Spectrum L.P. | Use of fading as basis to control whether to use blind addition or rather threshold-based addition when configuring dual connectivity |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389106A (zh) * | 2007-09-11 | 2009-03-18 | 中兴通讯股份有限公司 | 一种控制信道资源分配及盲检测方法 |
WO2009095369A1 (en) * | 2008-01-31 | 2009-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | Detection of time division duplex downlink / uplink configuration |
CN101505498A (zh) * | 2009-03-17 | 2009-08-12 | 中兴通讯股份有限公司 | 下行控制信息发送方法及相关系统、装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9344259B2 (en) * | 2007-06-20 | 2016-05-17 | Google Technology Holdings LLC | Control channel provisioning and signaling |
KR101448309B1 (ko) * | 2007-09-28 | 2014-10-08 | 엘지전자 주식회사 | 무선통신 시스템에서 하향링크 제어채널 모니터링 방법 |
CN101483828B (zh) * | 2008-01-11 | 2010-10-27 | 大唐移动通信设备有限公司 | 终端设备与网络侧之间实现通信的方法、通信系统及装置 |
CN101404526B (zh) * | 2008-11-03 | 2013-05-01 | 中兴通讯股份有限公司 | 下行控制信息处理方法 |
-
2009
- 2009-09-29 CN CN200910235253.6A patent/CN102014494B/zh active Active
-
2010
- 2010-09-20 EP EP10819878.9A patent/EP2485549B1/en active Active
- 2010-09-20 WO PCT/CN2010/077140 patent/WO2011038649A1/zh active Application Filing
- 2010-09-20 US US13/499,262 patent/US8934916B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389106A (zh) * | 2007-09-11 | 2009-03-18 | 中兴通讯股份有限公司 | 一种控制信道资源分配及盲检测方法 |
WO2009095369A1 (en) * | 2008-01-31 | 2009-08-06 | Telefonaktiebolaget L M Ericsson (Publ) | Detection of time division duplex downlink / uplink configuration |
CN101505498A (zh) * | 2009-03-17 | 2009-08-12 | 中兴通讯股份有限公司 | 下行控制信息发送方法及相关系统、装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2485549A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN102014494A (zh) | 2011-04-13 |
EP2485549A1 (en) | 2012-08-08 |
EP2485549A4 (en) | 2013-06-19 |
US8934916B2 (en) | 2015-01-13 |
EP2485549B1 (en) | 2018-07-11 |
US20120190395A1 (en) | 2012-07-26 |
CN102014494B (zh) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011038649A1 (zh) | 一种下行调度信息的配置方法及装置 | |
JP7313699B2 (ja) | ワイヤレス通信システムにおけるアップリンク制御情報を送信するための方法、およびそれを使用する装置 | |
CN113424474B (zh) | 在无线通信系统中发送上行链路控制信道的装置和方法 | |
CN110383729B (zh) | 用于在无线通信系统中发送或接收信号的方法及其装置 | |
JP7345196B2 (ja) | ワイヤレス通信システムのためのチャネル多重化方法および多重化チャネル送信方法、ならびにそれらを使用するデバイス | |
CN110474737B (zh) | 参数确定的方法、监控方法、通信装置 | |
US9877278B2 (en) | Monitoring a narrowband control channel for a wideband system to reduce power consumption | |
JP2023118896A (ja) | 無線通信システムにおけるデータチャネル及び制御チャネルの送受信方法、装置、及びシステム | |
RU2491780C2 (ru) | Способ беспроводной связи и используемые в нем станция мобильной связи и базовая станция | |
CN109921889B (zh) | 用于通信系统中的公共控制信道的系统和方法 | |
WO2016119455A1 (zh) | 下行控制信息dci的配置、下行数据的接收方法及装置 | |
WO2013023541A1 (zh) | 一种下行控制信息传输方法及装置 | |
WO2011136957A1 (en) | Method and apparatus for scheduling a control channel in an orthogonal frequency division multiplexing communication system | |
US11212707B2 (en) | Allocation of resources to a wireless device | |
JP5073779B2 (ja) | 基地局装置及びユーザ端末 | |
WO2020088423A1 (zh) | 一种通信方法及装置 | |
WO2014124679A1 (en) | Allocation of uplink control channel resources from mapped resource region | |
WO2013029419A1 (zh) | 一种配置分片载波后rbg大小和编号的确定方法和装置 | |
WO2017193382A1 (zh) | 控制信息发送、接收方法和设备 | |
CN106550471B (zh) | 一种参数调整方法及装置 | |
WO2019095339A1 (zh) | 一种反馈方法及装置 | |
JP2014204415A (ja) | スケジューリング設定方法、無線基地局装置及びスケジューリング設定プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10819878 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13499262 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010819878 Country of ref document: EP |