WO2011037196A1 - ラクリチン遺伝子の転写調節因子のスクリーニング方法 - Google Patents
ラクリチン遺伝子の転写調節因子のスクリーニング方法 Download PDFInfo
- Publication number
- WO2011037196A1 WO2011037196A1 PCT/JP2010/066578 JP2010066578W WO2011037196A1 WO 2011037196 A1 WO2011037196 A1 WO 2011037196A1 JP 2010066578 W JP2010066578 W JP 2010066578W WO 2011037196 A1 WO2011037196 A1 WO 2011037196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polynucleotide
- seq
- base sequence
- lacritin
- vector
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/16—Ophthalmology
Definitions
- the present invention relates to a method for screening a transcriptional regulatory factor of a lacritin gene.
- Lacritin is a protein identified as a lacrimal secretion promoting factor or growth factor-like protein (Patent Document 1 and Non-Patent Document 1).
- lacritin the following 1) -5) have been reported: 1) Lacritin has activity as a growth factor for corneal epithelial cells and lacrimal gland acinar cells; 2) Lacritin has an effect of promoting tear protein secretion; 3) Lacritin is expressed in cells derived from tissues such as lacrimal gland, parotid gland, minor salivary gland, submandibular gland, thyroid gland, mammary gland and corneal epithelium; 4) Eye drops containing lacritin may be used for the treatment of eye diseases such as dry eye syndrome, Sjogren's syndrome or corneal epithelial wounds; 5) The ability to search for lacritin or a compound capable of binding to the lacritin receptor by using a cell expressing the lacritin receptor and using a calcium signal dependent on lacritin as an index.
- Patent Document 1 describes a prediction that transcription is initiated at a single site located 69 or 62 bases upstream of the ATG translation start site, based on a lacritin promoter analysis by computer.
- the basic transcription factor requires a TATA box and / or “initiator” (“Inr”) element of the core promoter in order to establish the start site of transcription.
- Inr initiator
- the presence of a TATA box has also been reported in lacritin.
- Patent Document 2 describes cells that highly express lacritin.
- Patent Document 2 has no description regarding the transcriptional regulatory region of the lacritin gene.
- Lacritin is a glycoprotein, and it has been very difficult to artificially produce the same lacritin that is present in the human body.
- An object of the present invention is to provide means for searching for a transcriptional regulator of lacritin that has not been known so far.
- the present inventors have comprehensively analyzed the upstream base sequence of the gene encoding lacritin, and the region important for lacritin promoter activity is about 60 bp out of the base sequence of about 6000 bp. As a result, the present invention has been completed. That is, the present invention provides the following.
- a polynucleotide comprising a base sequence of 10 to 66 bases selected from the base sequences represented by SEQ ID NO: 6 and comprising the base sequence represented by any of SEQ ID NOs: 1 to 5, 16; b) a vector containing the polynucleotide; c) a reporter plasmid containing the polynucleotide and a reporter gene; or d) a screening method for a transcriptional regulatory factor of a lacritin gene, comprising using a transformant introduced with the vector or reporter plasmid.
- [8] The screening method according to [1] above, comprising the following steps: (A) contacting the polynucleotide, vector, reporter plasmid or transformant with a test substance; (B) examining the binding between the test substance and the polynucleotide in the polynucleotide, vector, reporter plasmid or transformant contacted with the test substance, and comparing it with a control not contacting the test substance, and (c) the comparison Selecting a factor that binds to the polynucleotide based on the result. [9] The method according to [8] above, wherein the polynucleotide is a DNA probe to which biotin is bound, and the test substance is a nucleoprotein extract.
- a polynucleotide comprising a base sequence of 10 to 66 bases selected from the base sequences represented by SEQ ID NO: 6 and comprising the base sequence represented by any of SEQ ID NOs: 1 to 5, 16; b) a vector containing the polynucleotide; c) A reporter plasmid containing the polynucleotide and reporter gene; or d) a kit for screening a transcriptional regulator of the lacritin gene, comprising a transformant into which the vector or reporter plasmid has been introduced.
- a screening method for a prophylactic or therapeutic drug for dry eye comprising: A) A reporter plasmid, comprising a base sequence of 10 to 66 bases selected from the base sequence represented by SEQ ID NO: 6 and the base represented by any one of SEQ ID NOs: 1 to 5 and 16 A reporter plasmid containing a polynucleotide comprising a sequence and a reporter gene; or B) using a transformant introduced with the reporter plasmid.
- a polynucleotide comprising a base sequence of 10 to 66 bases selected from the base sequences represented by SEQ ID NO: 6 and comprising the base sequence represented by any of SEQ ID NOs: 1 to 5, 16; b) a vector containing the polynucleotide; c) a reporter plasmid containing the polynucleotide and a reporter gene; or d) a screening kit for a prophylactic or therapeutic agent for dry eye, comprising a transformant introduced with the vector or reporter plasmid.
- a polymorph comprising a base sequence of 10 to 66 bases selected from the base sequence represented by SEQ ID NO: 6 and comprising the base sequence represented by any of SEQ ID NOs: 1 to 5 and 16 nucleotide.
- the screening method of the present invention by using a polynucleotide group that was first discovered by the present inventors and contains a minimal (necessary) and sufficient region to which a transcriptional regulatory factor of lacritin binds, the transcription of lacritin is specified. Can be efficiently screened.
- the polynucleotide group can be used for screening as a vector, a reporter plasmid, and a transformant introduced with them, depending on the screening assay system, so that various screening designs are possible. It is.
- the screening method of the present invention uses the polynucleotide selected from the polynucleotide group according to the purpose of screening to screen for a factor that promotes the transcriptional activity of lacritin, and a factor that suppresses the transcription of lacritin.
- Targeted screening such as screening for, screening for promoters and inhibitors, or screening for candidate substances to prevent or treat dry eye.
- a convenient tool for carrying out the screening method of the present invention can be provided.
- the transcriptional regulator of the lacritin gene identified by the screening method of the present invention can be used to promote the expression of lacritin.
- Lacritin is a glycoprotein, and it has been very difficult to artificially produce the same lacritin that exists in the living body.
- the screening method of the present invention has made it possible to identify a transcriptional regulator of the lacritin gene. Furthermore, if the identified transcriptional regulatory factor is used, it is possible to easily induce the expression of lacritin exactly the same as lacritin present in the living body, and it becomes possible to easily solve the above problems.
- FIG. 1 shows a comparison result of transcription activity in Example 3 using a region of 0.12 to 1 kb upstream of the translation start point (ATG) of the lacritin gene.
- the horizontal axis indicates the transcriptional regulatory region of added lacritin.
- the vertical axis shows the relative activity when the transcriptional activity of 0.22 kb is taken as 100.
- FIG. 2A shows a comparison result of transcription activity in Example 3 using a region of 0.12-0.22 kb upstream of the translation start point (ATG) of the lacritin gene.
- the horizontal axis indicates the transcriptional regulatory region of added lacritin.
- the vertical axis shows the relative activity when the transcriptional activity of 0.22 kb is taken as 100.
- FIG. 1 shows a comparison result of transcription activity in Example 3 using a region of 0.12 to 1 kb upstream of the translation start point (ATG) of the lacritin gene.
- the horizontal axis indicates the transcriptional regulatory region of added lacritin.
- 2B shows the analysis result of lacritin transcription activity by the luciferase method in Example 3.
- the right table shows the relative activity of each group when the transcriptional activity of pSLG-test (0.149 kb) is taken as 100.
- pSLG-test (0.220 kb): a vector containing 220 bases upstream of ATG;
- pSLG-test (0.169 kb) a vector containing 169 bases upstream of ATG;
- pSLG-test (0.149 kb) 149 bases upstream of ATG
- PSLG-test (0.120 kb): vector containing 120 bases upstream of ATG;
- pSLG-test vector only;
- pSLG-test (0.13 kb-mutA): vector containing 139 bases upstream of ATG;
- pSLG -Test (0.13 kb-mutB): a vector containing 129 bases upstream of ATG and 10 bases from 140 to 149;
- FIG. 3 shows the results of gel shift assay using the lacritin promoter in Example 4.
- the dashed arrow on the right side of the panel indicates the position of the protein component (transcription factor / binding protein) that binds to the linker sequence, and the solid line arrow on the left side indicates the position of the protein component (transcription factor / binding protein) that specifically binds to the lacritin promoter. Indicates.
- 10b a group to which a nucleotide (SEQ ID NO: 3) binding a linker sequence was added as a lacritin probe
- 20b a group to which a nucleotide (SEQ ID NO: 2) binding a linker sequence was added as a lacritin probe
- 29b a lacritin probe as Group added with nucleotide (SEQ ID NO: 1) binding linker sequence
- Linker group added with linker sequence only
- ( ⁇ ) group added with probe only
- (+) probe and CRL-1500 nuclear extract Added group.
- lacritin refers to a glycoprotein having a lacrimal secretion promoting effect or a growth factor activity of lacrimal acinar cells and corneal epithelial cells.
- lacritin examples include, but are not limited to, lacritin derived from animals such as mammals such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, humans, and birds such as chickens.
- animals such as mammals such as mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, humans, and birds such as chickens.
- human lacritin see, eg, GenBank / EBI Data Bank Accession Nos. NM — 033277 (cDNA) and ay005150 (genomic) is preferred.
- the base sequence of the human lacritin gene is shown in SEQ ID NO: 7.
- Lacritin has a lacrimal secretion promoting effect or growth factor activity of lacrimal acinar cells and corneal epithelial cells, and promoting the expression of lacritin is an eye disease such as dry eye syndrome, Sjogren's syndrome or corneal epithelial wound It is useful for prevention or treatment.
- the “transcriptional regulatory factor” refers to a protein having an action such as transcription promotion or transcriptional repression of a gene linked downstream of the polynucleotide used in the present invention.
- polynucleotide refers to a polymer of nucleotides of any length. This polynucleotide may be natural or non-natural.
- dry eye is a general term for diseases that cause damage to the keratoconjunctival epithelium due to quantitative and qualitative abnormalities of tears due to various factors, and is accompanied by eye discomfort and / or abnormal visual function It refers to a disease.
- a medically strong decrease in tear secretion and a clear objective finding of the keratoconjunctiva is also referred to as “dry cornea”.
- a prophylactic agent for dry eye refers to a drug that prevents the onset of dry eye in a patient who may develop dry eye.
- therapeutic agent for dry eye refers to an agent that prevents deterioration of dry eye symptoms, preferably maintains the current status, more preferably improves, and even more preferably eliminates the symptoms.
- Screening method (I) In one aspect, the present invention provides a screening method (screening method (I)) for a transcriptional regulator of a lacritin gene.
- the screening method (I) is characterized by using a polynucleotide selected from the following polynucleotide group, a vector or reporter plasmid containing the polynucleotide, and a transformant introduced with the vector or reporter plasmid.
- the polynucleotide group used in the screening method of the present invention is as follows: AGAAGGGGAG GAGGATGCGG AAGTCACACC TCTCCAGGCT TGGTTCCCAT TGGCCCTTGA TATCCT Consisting of a base sequence of 10 to 66 bases selected from the base sequence represented by (SEQ ID NO: 6), and AGAAGGGGAG GAGGATGCGG AAGTCACAC (SEQ ID NO: 1), G GAGGATGCGG AAGTCACAC (SEQ ID NO: 2), G AAGTCACAC (SEQ ID NO: 3), GAGGATGCGG (SEQ ID NO: 4), AGAAGGGGAG (SEQ ID NO: 5) or AGAAGGGGAG G AAGTCACAC (SEQ ID NO: 16) A polynucleotide comprising the base sequence represented by any of the above.
- the polynucleotide includes a base sequence having 80% or more, more preferably 90% or more, and even more preferably 95% or more identity with the base sequence represented by any of SEQ ID NOs: 1 to 5 and 16. Even so long as it has substantially the same transcription activity, it can be used in the screening method of the present invention.
- the identity (%) can be determined using a homology search program (for example, BLAST, FASTA, etc.) commonly used in this field by default.
- identity is calculated by aligning two types of base sequences to be compared and dividing the number of base sequences matched by the alignment by the total number of base sequences. It is the number which showed the ratio which was done in%. Note that the gap generated by the alignment is calculated as a mismatch.
- the determination of whether or not “substantially the same” is made by comparing the expression level of the reporter between the polynucleotides containing two kinds of base sequences to be compared by the reporter assay described later, and confirming that the expression level is comparable. This can be done by using an index.
- the DNA consisting of the base sequence represented by SEQ ID NO: 1 is a transcriptional regulatory region derived from the lacritin gene, and not only the transcriptional activity of the lacritin gene but also operably linked to other genes including the reporter gene Also has transcriptional activity of the gene.
- “operably linked” means that expression (operation) of a desired sequence (eg, lacritin gene) is a transcriptional regulatory sequence (eg, a promoter) or a translational regulatory sequence. To be placed under control. In order for a promoter to be operably linked to a gene, the promoter is usually placed immediately upstream of the gene, but need not necessarily be adjacent.
- the region having the base sequence represented by SEQ ID NO: 1 is a site that regulates the transcriptional activity of the lacritin gene. Transcriptional regulators that promote transcription bind to this region. From this, the polynucleotide containing the base sequence represented by SEQ ID NO: 1 can be used to identify the transcriptional regulatory factor of the lacritin gene.
- transcriptional regulatory region refers to a region on DNA that regulates the transcription of a gene, and includes, for example, promoters, enhancers, core promoters, initiator elements, and the like.
- promoter refers to a sequence that determines a transcription start site of a gene and binds a basic transcription factor and a transcription factor acting in the vicinity thereof.
- the lacritin gene binds to DNA containing the base sequence represented by SEQ ID NO: 3 (see Example 2 and FIG. 2B). Further, by analysis using the prediction software TRANSFAC (Biobase), the lacritin gene has an ATG translation start site (starting from “A” at position 5194 of SEQ ID NO: 7; this position may be referred to as +1). Since a TATA box ("TAAAAA" at positions 5111 to 5115 of SEQ ID NO: 7) is predicted to exist upstream of the base, the nucleotide sequence represented by SEQ ID NO: 5 is used as a polynucleotide for screening a transcriptional regulatory factor.
- TRANSFAC Biobase
- the region 149 to 85 bases upstream from the ATG translation start site (positions 5045 to 5110 of SEQ ID NO: 7).
- Polynucleotides can be used as those of maximum length.
- a polynucleotide that can be used in the screening method comprises a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 as a core, and a 10-66 nucleotide polynucleotide consisting of the sequence of a continuous portion of SEQ ID NO: 6 It is.
- a polynucleotide having a nucleotide sequence of 29 to 35 nucleotides comprising the nucleotide sequence represented by the nucleotide sequence of SEQ ID NO: 6.
- a substance capable of binding to such a polynucleotide can be a candidate drug having an action of promoting lacritin transcriptional activity and promoting tear secretion. Therefore, the screening method using such a polynucleotide can be suitably used for prevention of dry eye or selection of a therapeutic agent, as will be described later.
- the base sequence represented by SEQ ID NO: 1 can be divided into three regions of the base sequence represented by SEQ ID NO: 5, SEQ ID NO: 4 and SEQ ID NO: 3 from the 5 'end toward the 3' end. There is a high possibility that a transcriptional regulator having a different action binds to each of these regions.
- the base sequence represented by SEQ ID NO: 2 includes two regions of the base sequence represented by SEQ ID NO: 4 and SEQ ID NO: 3 from the 5 'end to the 3' end.
- the base sequence represented by SEQ ID NO: 16 includes two regions of the base sequence represented by SEQ ID NO: 5 and SEQ ID NO: 3 from the 5 'end toward the 3' end. Therefore, the screening method of the present invention can select the base sequence represented by any of SEQ ID NOs: 1 to 5 and 16 as the core sequence depending on the purpose of screening.
- the screening method of the present invention comprises, instead of the polynucleotide, a vector containing the polynucleotide, a reporter plasmid containing the polynucleotide and a reporter gene, or a character into which the vector or reporter plasmid has been introduced.
- a converter can also be used. This is because the transcription factor of lacritin can bind to the polynucleotide and be selected as long as the polynucleotide and any test substance can be brought into contact with each other. Those skilled in the art can appropriately select and use these according to the purpose.
- vector refers to a vector that can carry a target polynucleotide into a target cell.
- the vector is suitable for amplifying a polynucleotide or introducing a polynucleotide into a cell.
- the vector serving as the basic skeleton is not particularly limited as long as it is capable of self-replication in a cell to be transformed (for example, E. coli).
- a cell to be transformed for example, E. coli
- pBR322, pUC, pBluescript, pGL2, pGL3, pGL4 can be used.
- a vector can be obtained by cloning a polynucleotide into the vector serving as the basic skeleton by a well-known and commonly used method. In the vector thus obtained, it can be confirmed by sequencing or the like that the polynucleotide is cloned in a desired direction at a desired position.
- reporter gene refers to a marker gene incorporated for examining the transcriptional activity of a polynucleotide in the present invention, and any known reporter gene can be used without limitation. From the viewpoint of easy detection and quantification, the reporter gene is preferably a photoprotein gene or a fluorescent protein gene.
- reporter plasmid refers to a reporter gene incorporated into circular DNA.
- a reporter plasmid containing an arbitrary polynucleotide for example, those represented by SEQ ID NOs: 1 to 5 and 16
- the reporter plasmid used in the present invention may contain a promoter sequence before the reporter gene sequence.
- the reporter plasmid can be prepared by linking a polynucleotide and a reporter gene capable of operating the polynucleotide in order to examine the transcription activity of the polynucleotide.
- photoprotein examples include firefly-derived luciferase, Renilla (Renilla) -derived luciferase, railway worm-derived luciferase, and the like. These photoproteins and nucleic acids encoding the proteins are known.
- fluorescent protein examples include green fluorescent protein (GFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), blue fluorescent protein (Blue Fluorescent Protein B), and blue fluorescent protein (Blue Fluorescent Protein; B).
- GFP green fluorescent protein
- YFP yellow fluorescent protein
- CFP cyan fluorescent protein
- Blue Fluorescent Protein B blue fluorescent protein
- Blue Fluorescent Protein; B blue fluorescent protein
- Coral-derived fluorescent proteins such as Venus and other analogs, and Renilla-derived fluorescent proteins and analogs thereof; Renilla-derived fluorescent proteins and analogs thereof; But not limited toThese fluorescent proteins and analogs thereof and nucleic acids encoding the proteins are known, and those skilled in the art can appropriately select and use these fluorescent proteins according to the purpose.
- the reporter gene can be prepared by a conventional method based on a known base sequence, and is commercially available in the form of a plasmid for a reporter assay.
- the constituent polynucleotide and reporter gene may be directly linked, and an arbitrary base sequence may be inserted as long as the object of the present invention can be achieved.
- an insertion sequence include, but are not limited to, a base sequence generated from a restriction enzyme cleavage site added during the cloning process. Usually, those having a length of about 1 to 100 bases can be used.
- the plasmid serving as the basic skeleton of the reporter plasmid is not particularly limited as long as it is capable of self-replication in cells to be transformed (for example, E. coli).
- E. coli for example, commercially available pBR322, pUC, pBluescript, pGL2, pGL3, pGL4 (Promega) can be used.
- the reporter plasmid can be obtained by cloning the polynucleotide and the reporter gene into the plasmid serving as the basic skeleton by a well-known and conventional method.
- the reporter plasmid thus obtained can be confirmed by sequencing or the like that the polynucleotide and the reporter gene are cloned at a desired position in a desired direction.
- the term “transformant” refers to a product produced by transforming a host using the thus constructed vector or reporter plasmid (for example, all or one of living organisms such as E. coli). Part).
- Escherichia bacteria for example, Escherichia bacteria, Bacillus bacteria, yeast, animal cells and the like can be used.
- Escherichia can be used exclusively for preparing the nucleotide, vector or reporter plasmid of the present invention, and other hosts can be used for examining the activity of the nucleotide of the present invention.
- Escherichia Escherichia coli K12 / DH1, JM103, JA221, HB101, C600 and the like can be used.
- Bacillus genus for example, Bacillus subtilis MI114 can be used.
- yeast examples include Saccharomyces cerevisiae AH22, AH22R ⁇ , NA87-11A, DKD-5D, 20B-12, Schizosaccharomyces pombe NC Can be, but is not limited to.
- animal cells include monkey cell COS-7, Vero, Chinese hamster cell CHO, dhfr gene-deficient Chinese hamster cells CHO (CHO (dhfr -)) , mouse L cells, mouse AtT-20, mouse myeloma cells, rat GH3 , Human FL cells, human breast cancer cells (eg, ZR-75-1) and the like can be used, but are not limited thereto.
- Transformation of the genus Escherichia is described in, for example, Proc. Natl. Acad. Sci. USA), 69, 2110 (1972) or Gene, 17, 107 (1982). Transformation of Bacillus can be performed, for example, according to the method described in Molecular & General Genetics, 168, 111 (1979). Transformation of yeast is described in, for example, Methods in Enzymology, 194, 182-187 (1991), Proc. Natl. Acad. Sci. USA, Vol. 75, 1929 (1978). The transformation of animal cells is, for example, cell engineering separate volume 8, new cell engineering experiment protocol. 263-267 (1995) (published by Shujunsha), Virology, Vol. 52, 456 (1973).
- the screening method of the present invention comprises: a) a continuous 10-66 base sequence selected from the base sequence represented by SEQ ID NO: 6, and SEQ ID NOS: 1-5, 16 A polynucleotide comprising the nucleotide sequence represented by any of the above; b) a vector containing the polynucleotide; c) a reporter plasmid containing the polynucleotide and a reporter gene; or d) transformation into which the vector or reporter plasmid has been introduced. It may be characterized by using a body.
- the screening method (I) may specifically include the following steps: (A) contacting the polynucleotide, vector, reporter plasmid or transformant with a test substance; (B) examining the binding between the test substance and the polynucleotide in the polynucleotide, vector, reporter plasmid or transformant contacted with the test substance, and comparing it with a control not contacting the test substance, and (c) the comparison Selecting a factor that binds to the polynucleotide based on the results;
- the polynucleotide comprises a base sequence of 10 to 66 bases selected from the base sequence represented by SEQ ID NO: 6, and the base represented by any one of SEQ ID NOs: 1 to 5 and 16 A polynucleotide containing a sequence;
- the vector is a vector containing the polynucleotide;
- the reporter plasmid is a reporter plasmid containing the polynucleotide and a reporter gene;
- test substance may be any known substance or novel substance, such as a protein, peptide, random peptide library prepared by solid phase synthesis or phage display method, Escherichia coli, yeast or animal.
- a protein peptide
- random peptide library prepared by solid phase synthesis or phage display method
- Escherichia coli yeast or animal.
- examples include, but are not limited to, disrupted cells (preferably a cell nucleus extract).
- the reporter gene containing the polynucleotide is transiently or stably introduced into a desired cell so that the reporter gene can be expressed. It is desirable to cultivate in the same medium and culture conditions.
- the cell or transformant is placed in a suitable medium, allowed to survive or culture in an incubator at about 25 to about 40 ° C., and then the test substance is placed in the medium. Contact can be made by adding and continuing the incubation.
- the polynucleotide, vector or reporter plasmid can be contacted with the test substance by mixing in a predetermined binding buffer at about 4 to about 40 ° C. for about 1 minute to about 24 hours. Can be made.
- the polynucleotide can be bound to a solid phase carrier and contacted with a test substance dissolved in a binding solution in a solid-liquid system.
- the polynucleotide used in the screening method of the present invention can be a biotin-bound DNA probe, and the test substance can be a nucleoprotein extract.
- the binding between the test substance and the polynucleotide in the polynucleotide, vector, reporter plasmid or transformant contacted with the test substance is examined and compared with a control which does not contact the test substance.
- the presence or absence of binding of the test substance to the polynucleotide in contact with the test substance in the polynucleotide, vector, reporter plasmid or transformant and the polynucleotide for example, gel shift assay, pull-down method, One Hybrid method, reporter gene assay, etc. Can be used to investigate.
- examples of the assay that can be used in this step include, but are not limited to, a gel shift assay, a pull-down method, a purification method using the One Hybrid method, and the like. Those skilled in the art can appropriately select such a method and determine conditions and the like. Hereinafter, each assay will be specifically described.
- a sample in which contact between a target polynucleotide or vector and a test substance is completed is subjected to gel electrophoresis, transferred from the gel after electrophoresis to a membrane such as a nylon membrane, and the polynucleotide is transferred on the membrane.
- This is a method of detecting the degree.
- the polynucleotide or vector is labeled (for example, radioisotope, hapten, etc.) so as to facilitate detection.
- the pull-down method is a method in which a tag is bound to a target polynucleotide or vector in advance, and a transcription factor complex that binds to the target polynucleotide or vector is recovered by using the binding to the tag.
- tag recognition not only antibodies but also other specific bonds (for example, a combination of His tag and nickel chelate, a combination of GST tag and glutathione, a combination of avidin and biotin, etc.) may also be used. it can.
- the pull-down method is described in, for example, Flajorlet S.M. et al. , J Immunol.
- RREB-1 is a transactional repressor of HLA-G. Wang C .; et al. , Mol Cell Biochem. 2006 Nov; 292 (1-2): 79-88. Epub 2006 Jun 20. , Identification of USF2 as a key regu- lator of Runx2 expression in mouse plentient messengercial D1 cells. Etc. can be performed according to the method described in the above.
- the One-hybrid method is a method for examining the interaction between a specific DNA sequence and a protein using cells.
- the presence or strength of an interaction between a specific DNA sequence (known decoy sequence / bait) and a protein can be tested using the expression of a reporter gene in cells such as E. coli and yeast as an index.
- bait can be inserted upstream of a reporter gene, and any protein can be simultaneously expressed as a fusion protein with a transcriptional activator, whereby a transcriptional activator that binds to bait can be identified.
- the One-hybrid method can be performed, for example, according to the method described in Michael Sieweke, Transcription Factor Protocols, Methods in Molecular Biology, 2000, Volume 130, 59-77, and the like.
- the reporter gene assay is a method for measuring transcriptional activity by fluorescence measurement by substituting a gene that emits fluorescence instead of directly looking at gene expression. Using the reporter gene assay, comparing the test substance contacted group with the control group not contacted with the test substance, the reporter gene expression increases in the test substance contacted group and the test substance is not contacted. It can be expected to emit more fluorescence than the control group.
- step (c) a test substance that can bind to the polynucleotide is selected based on the comparison result obtained in step (b).
- the criteria to be selected can be appropriately selected according to the individual measurement method in step (b).
- the test substance is isolated or purified by dissociating the binding between the polynucleotide and the test substance by a conventional method.
- a candidate substance selected from the test substance group using a polynucleotide consisting of the base sequence represented by SEQ ID NO: 1 and a polynucleotide consisting of the base sequence represented by SEQ ID NO: 3 for the same test substance group Differences between each candidate substance selected by screening separately using a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 4 or a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 5 are compared with each other. It is also possible to do.
- test substance selected in this way can be further used for analysis of the transcriptional regulatory mechanism as a candidate for the transcriptional regulatory factor of the lacritin gene.
- the present invention provides a screening method (screening method (II)) for a preventive or therapeutic agent for dry eye.
- This screening method (II) is characterized in that the above-described A) reporter plasmid containing a polynucleotide and a reporter gene, or B) a transformant into which the reporter plasmid is introduced, and reporter expression is used as an indicator. .
- Any form described in the screening method (I) can be used for the screening method for a prophylactic or therapeutic agent for dry eye.
- A) a reporter plasmid comprising a base sequence of 10 to 66 bases selected from the base sequence represented by SEQ ID NO: 6, And a reporter plasmid containing a polynucleotide comprising the nucleotide sequence represented by any of SEQ ID NOs: 1 to 5 and 16, and a reporter gene; or B) a transformant introduced with the reporter plasmid can be used.
- the screening method (II) of the present invention may specifically comprise the following steps: (A) contacting the reporter plasmid or transformant with the test substance; (B) a step of examining the expression level of the reporter in the reporter plasmid or transformant contacted with the test substance, and comparing it with a control not contacting the test substance, and (C) reporter expression based on the comparison result Selecting a substance to significantly increase.
- the test substance may be any known substance or novel substance, for example, prepared using nucleic acid, carbohydrate, lipid, protein, peptide, low-molecular-weight organic compound, combinatorial chemistry technique.
- examples include compound libraries, random peptide libraries prepared by solid phase synthesis or phage display methods, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
- the mixture of 2 or more types of these compounds can also be provided as a sample.
- a test substance in the case of a reporter plasmid, it is transiently introduced into a desired cell so that the reporter gene can be expressed, and in the case of a transformant, a medium and culture conditions suitable for the host. It is preferable to culture in The type of cell or host used may preferably be a human cell line (eg, human breast cancer cell line ZR-75-1, human breast cancer cell line BT-474) and the like.
- a method of contacting with a test substance for example, the cell or transformant is placed in an appropriate medium, allowed to survive or culture in an incubator at about 25 to 40 ° C., and then the test substance is added to the medium. And a method of contacting by continuing the incubation.
- Such contact methods with a test substance are well known in the art, and those skilled in the art can select and use an appropriate method as appropriate.
- test substance can be appropriately set by those skilled in the art depending on the type of active ingredient, solubility in a medium, sensitivity of cells or transformants, and the like.
- step (B) the expression level of the reporter gene in the cell or transformant contacted with the test substance can be examined by a known method according to each reporter gene.
- a known method for example, in the case of a fluorescent protein, there is a method performed by measuring fluorescence detected by irradiating an excitation wavelength corresponding to each fluorescent protein.
- the expression level of the reporter gene in a cell or transformant that is not contacted with the test substance is also examined simultaneously or separately, and the result of the contact and the result of the contact are determined. Can be compared.
- a test substance that can promote the expression of lacritin can be selected based on the comparison result obtained in the step (B).
- the criteria for selection may be based on an increase in the expression of the reporter. Setting such criteria is within the skill of the artisan.
- test substance selected can be expected to have an effect of promoting lacritin expression and secretion and enhancing tear secretion. Therefore, the test substance selected by the screening method of the present invention can be a candidate for a prophylactic or therapeutic drug for dry eye with a clear mechanism of action that functions by acting on the transcriptional regulatory mechanism of lacritin.
- the present invention provides a screening kit for a transcriptional regulatory factor of a lacritin gene.
- This screening kit comprises a base sequence of 10 to 66 bases selected from a) the base sequence represented by SEQ ID NO: 6 and is represented by any one of SEQ ID NOS: 1 to 5 and 16.
- the kit may further contain a solvent used for screening, a reagent such as a fluorescent dye for detection, and the like. Any form described in the above screening method can be used for this screening kit.
- the screening kit can be used as a screening kit for a prophylactic or therapeutic agent for dry eye.
- the kit preferably contains a polynucleotide, a reporter plasmid containing the polynucleotide and the reporter gene, or a transformant introduced with the reporter plasmid.
- the present invention consists of a continuous base sequence of 10 to 66 bases selected from the base sequence represented by SEQ ID NO: 6, and is represented by any one of SEQ ID NOs: 1 to 5 and 16 A polynucleotide comprising a base sequence is provided.
- Example 1 Cloning of a DNA sequence of 6 kb upstream of the translation start point of human lacritin 1.1 Sequence design Target gene using search service of transcription start point search site DBTSS (http://dbtsss.hgc.jp/) A 6-kb upstream DNA sequence (K17225_design) was obtained from the translation start point of Human lacritin (NM_033277). Based on the obtained sequence information, the following two types of PCR primers for cloning were designed and synthesized by consigning to Toyobo Co., Ltd.
- PCR PCR was performed using KOD FX (Toyobo, # KFX-101) using Human Genomic DNA (Roche, # 16911112) as a template. PCR reaction conditions were 94 ° C. for 2 minutes once, followed by 15 cycles of 98 ° C. for 10 seconds and then 68 ° C. for 20 seconds. Then, the obtained amplification product was purified using MagExtractor-PCR & Gel Cleanup- (Toyobo, # NPK-601) according to the method attached to the kit.
- the amplification product 50 ⁇ L
- 10 ⁇ buffer 5 ⁇ L, Toyobo, # SPE-101
- SpeI 1 ⁇ L, Toyobo, # SPE-101
- reaction solutions were reacted at 37 ° C. for 3 hours to treat the pSLG-test vector and the amplification product with a restriction enzyme.
- MagExtractor-PCR & Gel Cleanup- Toyobo, # NPK-601
- the collected solution (about 44 ⁇ L) is mixed with 10 ⁇ buffer (5 ⁇ L, Toyobo, # SAL-111) and SalI (1 ⁇ L, Toyobo, # SAL-111) and reacted at 37 ° C. for 3 hours. Then, purification was performed again using MagExtractor-PCR & Gel Cleanup- (Toyobo, # NPK-601) according to the method attached to the kit. Thereafter, the purified vector and the PCR product were mixed, and Ligation high ver. 2 (Toyobo, # LGK-201) was used for ligation reaction at 16 ° C. for 30 minutes.
- coli transformant was added to a Luria-Bertani medium (LB) plate (Becton Dickinson, Bacto tryptone (# 217055), Bacto Yeast Extract (50 ⁇ g / mL ampicillin (Nacalai Tesque, # 02738-84)). # 221750)) and cultured overnight at 37 ° C. The colonies of the obtained E. coli transformants were collected and subjected to colony direct PCR (30 cycles of 94 ° C. for 30 seconds, 68 ° C. for 20 seconds, and then 74 ° C. for 20 seconds). Clones were selected.
- LB Luria-Bertani medium
- Plasmid DNA Extraction 100 ⁇ L of the candidate clone E. coli transformant was added to an LB liquid medium containing 50 ⁇ g / mL ampicillin (Becton Dickinson, Bacto tryptone (# 211705), Bacto Yeast Extract (# 212750)) at 37 ° C. Cultured overnight. Subsequently, plasmid DNA was extracted using MagExtractor-Plasmid- (Toyobo, # NPK-301) according to the method attached to the kit. The obtained plasmid DNA was subjected to sequence analysis of the entire length of the insert, and compared with the designed sequence (K17225_design), and it was confirmed that there was no mismatched sequence. Sequence analysis was performed using the cycle sequence method.
- Example 2 0.12 kb, 0.149 kb, 0.169 kb, 0.22 kb, 0.5 kb and 1 kb DNA sequences upstream of the translation start point of human lacritin, and 0.13 kb-mutA, 0.13 kb-mutB, and Cloning of DNA sequence of 0.13 kb-mutC 2.1 Sequence design and PCR In order to analyze the transcriptional regulatory region necessary for the transcriptional control of lacritin, DNA sequences of 0.12 kb, 0.149 kb, 0.169 kb, 0.22 kb, 0.5 kb and 1 kb upstream of the translation start point, and 0.13 kb- An attempt was made to clone the DNA sequences of mutA, 0.13 kb-mutB, and 0.13 kb-mutC.
- pSLG-R was used as a primer complementary to the 3 ′ side, and PCR was performed using KOD FX (Toyobo, # KFX-101) and pSLG- (6 kb) as a template. The reaction was performed once at 94 ° C. for 2 minutes, followed by 15 cycles of 98 ° C. for 10 seconds and then 68 ° C. for 20 seconds. Then, the obtained amplification product was purified using MagExtractor-PCR & Gel Cleanup- (Toyobo, # NPK-601) according to the method attached to the kit.
- MagExtractor-PCR & Gel Cleanup- Toyobo, # NPK-601
- reaction solutions were reacted at 37 ° C. for 3 hours to treat the pSLG-test vector and the amplification product with a restriction enzyme. Then, using MagExtractor-PCR & Gel Cleanup- (Toyobo, # NPK-601), purification was performed according to the method attached to the kit. Subsequently, the collected solution (about 44 ⁇ L) is mixed with 10 ⁇ buffer (5 ⁇ L, Toyobo, # SAL-111) and SalI (1 ⁇ L, Toyobo, # SAL-111) and reacted at 37 ° C. for 3 hours.
- Transformation 2 ⁇ L of the ligation reaction product obtained in the above-mentioned 2.2 was added to 50 ⁇ L of E. coli DH5 ⁇ competent cell (Toyobo, # DNA-903) for transformation. Specifically, it was carried out as follows. Competent cells were removed from the freezer, rapidly thawed on ice, plasmid DNA to be transformed was added, and gently agitated with the tip of a pipette. The mixture was allowed to stand on ice for 20 minutes, incubated at 42 ° C. for 30 seconds, and then rapidly cooled on ice. 450 ⁇ L of the SOC medium attached to the competent cell was added and cultured with shaking at 37 ° C. for 1 hour.
- E. coli transformant 100 ⁇ L was added to a Luria-Bertani medium (LB) plate (Becton Dickinson, Bacto tryptone (# 211705), Bacto Yeast Extract (50 ⁇ g / mL ampicillin (Nacalai Tesque, 02738-84)). # 221750)) and cultured overnight at 37 ° C.
- a colony of the obtained E. coli transformant was collected and subjected to colony direct PCR (30 cycles of 94 ° C. for 30 seconds, 68 ° C. for 20 seconds, and then 74 ° C. for 20 seconds), Candidate clones were selected.
- Example 3 Evaluation of Transcriptional Activity A breast cancer cell line (ZR-75-1, ATCC, # CRL-1500) was used at 37 ° C. using RPMI 1640 medium (ATCC, # 30-2001) supplemented with 10% FBS. Cultured. The day before the transfection, the breast cancer cell line was seeded in a 24 well plate (Sumitomo Bakelite, # MS-80240) at 2.0 ⁇ 10 5 cells.
- Tables 1-1, 1-2 and 1-3 a cell line was transfected with a mixture of a plasmid containing a transcriptional regulatory region and pSLR-SV40 (red light emitting luciferase expression vector: Toyobo).
- Table 1-1 is a group of plasmids used in the experiment shown in Fig. 1
- Table 1-2 is a group of plasmids used in the experiment shown in Fig. 2A
- Table 1-3 is shown in Fig. 2B. It is the plasmid group used for experiment.
- pSLG-SV40 Toyobo, # MRV-201
- pSLR-SV40 Toyobo, # MRV-203
- pSLG-test had no transcription activity, and pSLG-test (0.12 kb) showed transcription activity even though it was low. From this, it was confirmed that the binding sequence of the basic transcription factor of the lacritin gene exists at 1 to 120 bases upstream of the translation region.
- the transcriptional activity of pSLG-test (0.22 kb), pSLG-test (0.5 kb) and pSLG-test (1 kb) is about 10 times higher than that of pSLG-test (0.12 kb). (FIG. 1 and Table 2).
- Example 4 Gel Shift Assay The gel shift assay is performed using a method such as Pierce's Light Shift Chemiluminescent EMAS kit (# 20148), but any similar method can be used.
- the obtained single-stranded biotinylated oligonucleotide (+) and ( ⁇ ) strands were heat denatured at 95 ° C. for 15 minutes and then gradually cooled to 25 ° C. over 1 hour to obtain double-stranded DNA. A probe was made. Finally, the double-stranded DNA probe was purified using polyacrylamide electrophoresis with a gel concentration of 20%.
- the reaction was performed in 20 ⁇ L of 1 ⁇ Binding Buffer (Pierce (# 20148)) with 50 ng / ⁇ L of Poly (dI ⁇ dC) (Pierce (# 20148)) to suppress non-specific binding, Nucleoprotein extract (2-4 ⁇ g) and biotin-conjugated DNA probe (20 pmol) were added, and the reaction was carried out at room temperature for 20 minutes.
- Example 5 Screening Kit A screening kit for lacritin gene transcription factor or prophylactic or therapeutic drug for dry eye is produced by storing the following reagents used in Example 2 in 1.5 ml polypropylene centrifuge tubes, respectively. . 1. pSLG-test (0.149 kb) 50 ⁇ g 2. pSLG-test (negative control) 50 ⁇ g 3. pSLR-SV40 (internal standard) 50 ⁇ g
- Example 6 Identification of Lacritin Gene Transcription Factor 6.1 Buffer Replacement by Ultrafiltration Membrane
- the nucleoprotein extract is concentrated using an ultrafiltration membrane of Microcon Ultracel YM-10 (Millipore, # 42421).
- the concentrate is diluted in the following binding buffer, and the solution is replaced with the binding buffer by repeating the centrifugal concentration twice.
- the nucleoprotein extract is then centrifuged at 20000 ⁇ g for 10 minutes and the supernatant is used for binding experiments.
- washing buffer 20 mM HEPES (pH 7.9) 80 mM KCl (washing buffer is 300 mM) 1 mM MgCl2 0.2 mM EDTA 0.1% Triton X-100 0.5 mM DTT 10% glycerol Protease inhibitor (Complete, Mini EDTA-free, Roche)
- the adsorbed sample is electrophoretically separated by SDS polyacrylamide gel electrophoresis according to a conventional method. Subsequently, the adsorbed protein band is detected by silver staining. Thereafter, the detected band is cut out, in-gel digested with trypsin, and the extracted peptide is measured with a mass spectrometer ultraflex TOF / TOF (Bruker Daltonics).
- the adsorbed protein can be identified by performing MS / MS Ion search analysis on the registered human sequence of NCBInr using the measured spectral data.
- a transcriptional regulatory factor for a lacritin gene can be efficiently selected.
- the selected transcriptional regulator can be used to promote the expression of lacritin. Since lacritin is a glycoprotein, it is difficult to artificially produce the same lacritin that exists in the living body. Such a problem can be easily solved by promoting the expression of lacritin using a transcriptional regulatory factor of the lacritin gene.
- SEQ ID NO: 1 Partial base sequence of transcription regulatory region of human lacritin gene
- SEQ ID NO: 2 Partial base sequence of transcription regulatory region of human lacritin gene
- SEQ ID NO: 3 Partial base sequence of transcription regulatory region of human lacritin gene 4: Partial base sequence of transcription regulatory region of human lacritin gene
- SEQ ID NO: 5 Partial base sequence of transcription regulatory region of human lacritin gene
- SEQ ID NO: 6 Partial base sequence of transcription regulatory region of human lacritin gene SEQ ID NO: 7
- SEQ ID NO: 8 PCR primer for cloning used in Example 1
- SEQ ID NO: 9 PCR primer for cloning used in Example 1
- SEQ ID NO: 10 PCR primer sequence for cloning used in Example 2 Number 11: PCR primer sequence number for cloning used in Example 2 12: PCR primer for cloning used in Example 2
- SEQ ID NO: 13 PCR primer for cloning used in Example 2 SEQ ID
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
これまでに知られていないラクリチンの転写調節因子を探索するための手段を提供する。 a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;b)当該ポリヌクレオチドを含有するベクター;c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;またはd)当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることを特徴とする、ラクリチン遺伝子の転写調節因子のスクリーニング方法。
Description
本発明は、ラクリチン遺伝子の転写調節因子のスクリーニング方法に関する。
ラクリチン(Lacritin)は、涙液分泌促進因子あるいは成長因子様タンパク質として同定されたタンパク質である(特許文献1および非特許文献1)。ラクリチンについては、以下1)~5)が報告されている:
1)ラクリチンは、角膜上皮細胞および涙腺腺房細胞の成長因子としての活性を有していること;
2)ラクリチンは、涙液タンパク質分泌促進効果を有していること;
3)ラクリチンは、涙腺、耳下腺、小唾液腺、顎下腺、甲状腺、乳腺および角膜上皮等の組織に由来する細胞で発現していること;
4)ラクリチンを含有する点眼剤が、ドライアイ症候群、シェーグレン症候群または角膜上皮創傷等の眼疾患の治療に利用できる可能性があること;
5)ラクリチン受容体を発現させた細胞を用い、ラクリチンに依存するカルシウムのシグナルを指標とすることで、ラクリチンまたはラクリチン受容体に結合し得る化合物を探索できること。
1)ラクリチンは、角膜上皮細胞および涙腺腺房細胞の成長因子としての活性を有していること;
2)ラクリチンは、涙液タンパク質分泌促進効果を有していること;
3)ラクリチンは、涙腺、耳下腺、小唾液腺、顎下腺、甲状腺、乳腺および角膜上皮等の組織に由来する細胞で発現していること;
4)ラクリチンを含有する点眼剤が、ドライアイ症候群、シェーグレン症候群または角膜上皮創傷等の眼疾患の治療に利用できる可能性があること;
5)ラクリチン受容体を発現させた細胞を用い、ラクリチンに依存するカルシウムのシグナルを指標とすることで、ラクリチンまたはラクリチン受容体に結合し得る化合物を探索できること。
また、特許文献1には、コンピューターによるラクリチンのプロモーター分析に基づいて、転写が、ATG翻訳開始部位の69塩基あるいは62塩基上流に位置する単一部位で開始されるという予測が記載されている。
一般的に、高度に発現される遺伝子において、基本転写因子が転写の開始部位を確立するためには、コアプロモーターのTATAボックスおよび/または「イニシエーター」(「Inr」)エレメントが必要である。ラクリチンにおいても、TATAボックスの存在が報告されている。しかしながら、ラクリチン遺伝子の基本転写因子が結合するTATAボックスがどこに存在するかは特定されていない。また、基本転写因子以外のラクリチンの転写因子の存在についても何ら報告されていない。
特許文献2には、ラクリチンを高発現する細胞が記載されている。しかし、特許文献2には、ラクリチン遺伝子の転写調節領域に関する記載はない。
ラクリチンは糖タンパクであり、ヒトの生体内に存在するラクリチンと同じものを人工的に産生することは、これまで非常に困難であった。しかし、ヒトの眼疾患への適用には、ヒトの生体内に存在するラクリチンと同一のものを用いることが最も好ましいことは、種特異性、安全性などの面からも明らかである。
したがって、ヒトの生体内に存在するラクリチンと同じもの提供することが早急に必要である。
一般的に、高度に発現される遺伝子において、基本転写因子が転写の開始部位を確立するためには、コアプロモーターのTATAボックスおよび/または「イニシエーター」(「Inr」)エレメントが必要である。ラクリチンにおいても、TATAボックスの存在が報告されている。しかしながら、ラクリチン遺伝子の基本転写因子が結合するTATAボックスがどこに存在するかは特定されていない。また、基本転写因子以外のラクリチンの転写因子の存在についても何ら報告されていない。
特許文献2には、ラクリチンを高発現する細胞が記載されている。しかし、特許文献2には、ラクリチン遺伝子の転写調節領域に関する記載はない。
ラクリチンは糖タンパクであり、ヒトの生体内に存在するラクリチンと同じものを人工的に産生することは、これまで非常に困難であった。しかし、ヒトの眼疾患への適用には、ヒトの生体内に存在するラクリチンと同一のものを用いることが最も好ましいことは、種特異性、安全性などの面からも明らかである。
したがって、ヒトの生体内に存在するラクリチンと同じもの提供することが早急に必要である。
Sanghi,S.et al.,Journal of Molecular Biology 310,pp.127-139(2001)
本発明の目的は、これまでに知られていないラクリチンの転写調節因子を探索するための手段を提供することにある。
本発明者らは、上記観点から鋭意検討した結果、ラクリチンをコードする遺伝子の上流の塩基配列を網羅的に解析し、約6000bpの塩基配列の中からラクリチンプロモーター活性に重要な領域が約60bpであることを見出し、本発明を完成するに至った。即ち、本発明は、以下を提供する。
〔1〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を用いることを特徴とする、ラクリチン遺伝子の転写調節因子のスクリーニング方法。
〔2〕前記ポリヌクレオチドが配列番号1で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔3〕前記ポリヌクレオチドが配列番号2で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔4〕前記ポリヌクレオチドが配列番号3で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔5〕前記ポリヌクレオチドが配列番号4で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔6〕前記ポリヌクレオチドが配列番号5で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔7〕前記ポリヌクレオチドが配列番号16で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔8〕前記〔1〕記載のスクリーニング方法であって、以下の工程:
(a)前記ポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(b)前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する工程、および
(c)前記比較結果に基づいて、ポリヌクレオチドに結合する因子を選択する工程
を包含する、方法。
〔9〕前記ポリヌクレオチドが、ビオチンが結合したDNAプローブであり、そして前記被験物質が核タンパク質抽出液である、前記〔8〕記載の方法。
〔10〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ラクリチン遺伝子の転写調節因子のスクリーニング用キット。
〔11〕ドライアイの予防または治療薬のスクリーニング方法であって、以下:
A)レポータープラスミドであって、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドおよびレポーター遺伝子を含有する、レポータープラスミド;または
B)当該レポータープラスミドを導入した形質転換体
を用いることを特徴とする、方法。
〔12〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ドライアイの予防または治療薬のスクリーニングキット。
〔13〕配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含む、ポリヌクレオチド。
以下に、本発明の好ましい実施形態を示すが、当業者は本発明の説明および添付の図面、ならびに当該分野における周知慣用技術からその実施形態などを適宜実施することができ、本発明が奏する作用および効果を容易に理解することが認識されるべきである。
〔1〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を用いることを特徴とする、ラクリチン遺伝子の転写調節因子のスクリーニング方法。
〔2〕前記ポリヌクレオチドが配列番号1で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔3〕前記ポリヌクレオチドが配列番号2で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔4〕前記ポリヌクレオチドが配列番号3で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔5〕前記ポリヌクレオチドが配列番号4で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔6〕前記ポリヌクレオチドが配列番号5で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔7〕前記ポリヌクレオチドが配列番号16で表される塩基配列からなるものである、前記〔1〕記載のスクリーニング方法。
〔8〕前記〔1〕記載のスクリーニング方法であって、以下の工程:
(a)前記ポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(b)前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する工程、および
(c)前記比較結果に基づいて、ポリヌクレオチドに結合する因子を選択する工程
を包含する、方法。
〔9〕前記ポリヌクレオチドが、ビオチンが結合したDNAプローブであり、そして前記被験物質が核タンパク質抽出液である、前記〔8〕記載の方法。
〔10〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ラクリチン遺伝子の転写調節因子のスクリーニング用キット。
〔11〕ドライアイの予防または治療薬のスクリーニング方法であって、以下:
A)レポータープラスミドであって、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドおよびレポーター遺伝子を含有する、レポータープラスミド;または
B)当該レポータープラスミドを導入した形質転換体
を用いることを特徴とする、方法。
〔12〕以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ドライアイの予防または治療薬のスクリーニングキット。
〔13〕配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含む、ポリヌクレオチド。
以下に、本発明の好ましい実施形態を示すが、当業者は本発明の説明および添付の図面、ならびに当該分野における周知慣用技術からその実施形態などを適宜実施することができ、本発明が奏する作用および効果を容易に理解することが認識されるべきである。
本発明のスクリーニング方法によると、本発明者らにより初めて見出された、ラクリチンの転写調節因子が結合する領域を最小(必要)かつ十分に含むポリヌクレオチド群を用いることにより、ラクリチンの転写を特異的に調節する因子を効率的に選別することができる。
本発明のスクリーニング方法では、前記ポリヌクレオチド群は、スクリーニングのアッセイ系に応じて、ベクター、レポータープラスミドおよびそれらを導入した形質転換体としてもスクリーニングに供することができるので、様々なスクリーニングの設計が可能である。
また、本発明のスクリーニング方法は、前記ポリヌクレオチド群の中から、スクリーニングの目的に応じて選択したポリヌクレオチドを用いることにより、ラクリチンの転写活性を促進させる因子のスクリーニング、ラクリチンの転写を抑制する因子のスクリーニング、促進因子および抑制因子の同時スクリーニング、またはドライアイの予防または治療候補物質のスクリーニングなど、標的を絞ったスクリーニングが可能である。さらに、本発明のスクリーニングキットによると、本発明のスクリーニング方法を行うために便利なツールを提供することができる。
本発明のスクリーニング方法により同定されたラクリチン遺伝子の転写調節因子は、ラクリチンの発現を促進させるために使用することができる。ラクリチンは糖タンパクであり、生体内に存在するラクリチンと同じものを人工的に産生することは、これまで非常に困難であった。しかしながら、本発明のスクリーニング方法により、ラクリチン遺伝子の転写調節因子を同定することが可能となった。さらに、同定された転写調節因子を用いれば、生体内に存在するラクリチンと全く同じラクリチンを容易に発現誘導させることができ、上記の問題点を容易に解決することが可能となった。
本発明のスクリーニング方法では、前記ポリヌクレオチド群は、スクリーニングのアッセイ系に応じて、ベクター、レポータープラスミドおよびそれらを導入した形質転換体としてもスクリーニングに供することができるので、様々なスクリーニングの設計が可能である。
また、本発明のスクリーニング方法は、前記ポリヌクレオチド群の中から、スクリーニングの目的に応じて選択したポリヌクレオチドを用いることにより、ラクリチンの転写活性を促進させる因子のスクリーニング、ラクリチンの転写を抑制する因子のスクリーニング、促進因子および抑制因子の同時スクリーニング、またはドライアイの予防または治療候補物質のスクリーニングなど、標的を絞ったスクリーニングが可能である。さらに、本発明のスクリーニングキットによると、本発明のスクリーニング方法を行うために便利なツールを提供することができる。
本発明のスクリーニング方法により同定されたラクリチン遺伝子の転写調節因子は、ラクリチンの発現を促進させるために使用することができる。ラクリチンは糖タンパクであり、生体内に存在するラクリチンと同じものを人工的に産生することは、これまで非常に困難であった。しかしながら、本発明のスクリーニング方法により、ラクリチン遺伝子の転写調節因子を同定することが可能となった。さらに、同定された転写調節因子を用いれば、生体内に存在するラクリチンと全く同じラクリチンを容易に発現誘導させることができ、上記の問題点を容易に解決することが可能となった。
以下、本発明を説明する。本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。
本明細書において「ラクリチン」とは、涙液分泌促進効果または涙液腺房細胞および角膜上皮細胞の成長因子活性を有する糖タンパク質をいう。
本明細書において「ラクリチン」とは、涙液分泌促進効果または涙液腺房細胞および角膜上皮細胞の成長因子活性を有する糖タンパク質をいう。
ラクリチンとしては、例えば、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、サル、ヒト等の哺乳動物、ニワトリ等の鳥類などの動物に由来するラクリチンが挙げられるが、これらに限定されない。ヒトへの使用を意図する場合には、ヒトラクリチン(例えば、GenBank/EBIデータバンクのアクセッション番号NM_033277(cDNA)及びay005150(ゲノミック)参照)が好ましい。ヒトのラクリチン遺伝子の塩基配列を、配列番号7に示す。ラクリチンは、涙液分泌促進効果または涙腺腺房細胞および角膜上皮細胞の成長因子活性を有しており、ラクリチンの発現を促進させることは、ドライアイ症候群、シェーグレン症候群または角膜上皮創傷等の眼疾患の予防または治療に有用である。
本明細書において「転写調節因子」とは、本発明で用いるポリヌクレオチドの下流に連結させる遺伝子の転写促進または転写抑制などの作用を有するタンパク質をいう。
本明細書において「ポリヌクレオチド」とは、任意の長さのヌクレオチドのポリマーをいう。このポリヌクレオチドは、天然のものでも非天然のものでもよい。
本明細書において「ドライアイ」とは、さまざまな要因による涙液の量的、質的異常によって角結膜上皮に障害をきたした疾患の総称であり、眼不快感および/または視機能異常を伴う疾患をいう。ドライアイの中で、医学的に涙液の分泌低下が強く、明確な角結膜の他覚所見が認められるものは、「角膜乾燥症」とも称される。
本明細書において「ドライアイの予防薬」とは、ドライアイを発症する可能性のある患者において、そのドライアイの発症を未然に防ぐものをいう。
本明細書において「ドライアイの治療薬」とは、ドライアイの症状の悪化を防止、好ましくは、現状維持、より好ましくは、改善、さらに好ましくは消失させるものをいう。
本明細書において「ポリヌクレオチド」とは、任意の長さのヌクレオチドのポリマーをいう。このポリヌクレオチドは、天然のものでも非天然のものでもよい。
本明細書において「ドライアイ」とは、さまざまな要因による涙液の量的、質的異常によって角結膜上皮に障害をきたした疾患の総称であり、眼不快感および/または視機能異常を伴う疾患をいう。ドライアイの中で、医学的に涙液の分泌低下が強く、明確な角結膜の他覚所見が認められるものは、「角膜乾燥症」とも称される。
本明細書において「ドライアイの予防薬」とは、ドライアイを発症する可能性のある患者において、そのドライアイの発症を未然に防ぐものをいう。
本明細書において「ドライアイの治療薬」とは、ドライアイの症状の悪化を防止、好ましくは、現状維持、より好ましくは、改善、さらに好ましくは消失させるものをいう。
(好ましい実施形態の説明)
以下に本発明の最良の形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。
1.スクリーニング方法(I)
1つの局面において、本発明は、ラクリチン遺伝子の転写調節因子のスクリーニング方法(スクリーニング方法(I))を提供する。スクリーニング方法(I)は、以下のポリヌクレオチド群から選ばれるポリヌクレオチドそのもの、当該ポリヌクレオチドを含有するベクターもしくはレポータープラスミド、当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることを特徴とする。
以下に本発明の最良の形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。
1.スクリーニング方法(I)
1つの局面において、本発明は、ラクリチン遺伝子の転写調節因子のスクリーニング方法(スクリーニング方法(I))を提供する。スクリーニング方法(I)は、以下のポリヌクレオチド群から選ばれるポリヌクレオチドそのもの、当該ポリヌクレオチドを含有するベクターもしくはレポータープラスミド、当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることを特徴とする。
1つの実施形態において、本発明のスクリーニング方法で用いるポリヌクレオチド群は、以下の通りである:
AGAAGGGGAG GAGGATGCGG AAGTCACACC TCTCCAGGCT TGGTTCCCAT TGGCCCTTGA TATCCT
(配列番号6)で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ
AGAAGGGGAG GAGGATGCGG AAGTCACAC (配列番号1)、
G GAGGATGCGG AAGTCACAC (配列番号2)、
G AAGTCACAC (配列番号3)、
GAGGATGCGG (配列番号4)、
AGAAGGGGAG (配列番号5)または
AGAAGGGGAG G AAGTCACAC (配列番号16)
のいずれかで表される塩基配列を含むポリヌクレオチド。前記ポリヌクレオチドは、配列番号1~5、16のいずれかで表される塩基配列と80%以上、より好ましくは90%以上、さらに好ましくは95%以上の同一性を有する塩基配列を含むものであっても、実質的に同一の転写活性を有する限り、本発明のスクリーニング方法に使用することができる。
AGAAGGGGAG GAGGATGCGG AAGTCACACC TCTCCAGGCT TGGTTCCCAT TGGCCCTTGA TATCCT
(配列番号6)で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ
AGAAGGGGAG GAGGATGCGG AAGTCACAC (配列番号1)、
G GAGGATGCGG AAGTCACAC (配列番号2)、
G AAGTCACAC (配列番号3)、
GAGGATGCGG (配列番号4)、
AGAAGGGGAG (配列番号5)または
AGAAGGGGAG G AAGTCACAC (配列番号16)
のいずれかで表される塩基配列を含むポリヌクレオチド。前記ポリヌクレオチドは、配列番号1~5、16のいずれかで表される塩基配列と80%以上、より好ましくは90%以上、さらに好ましくは95%以上の同一性を有する塩基配列を含むものであっても、実質的に同一の転写活性を有する限り、本発明のスクリーニング方法に使用することができる。
同一性(%)は、当該分野で慣用のホモロジー検索プログラム(例えば、BLAST、FASTA等)を初期設定で用いて決定することができる。本明細書において、塩基配列の「同一性」とは、比較する2種の塩基配列を整列(アラインメント)させ、整列により一致した塩基配列の数を基準となる塩基配列の総数で除して算出した割合を%で示した数字である。なお、整列により生じたギャップは、不一致と見なして算出する。
ここで「実質的に同一」か否かの判断は、後述するレポーターアッセイによって比較する2種の塩基配列を含むポリヌクレオチド間のレポーターの発現量を比較し、同程度の発現量であることを指標にすることにより行うことができる。
配列番号1で表される塩基配列からなるDNAは、ラクリチン遺伝子に由来する転写調節領域であり、ラクリチン遺伝子の転写活性のみならず、レポーター遺伝子を始めとする他の遺伝子と作動可能に連結した場合には、当該遺伝子の転写活性も有している。ここで、本明細書において「作動可能に連結した(する)」とは、所望の配列(例えば、ラクリチン遺伝子)の発現(作動)が、転写調節配列(例えば、プロモーターなど)または翻訳調節配列の制御下に配置されることをいう。プロモーターが遺伝子に作動可能に連結されるためには、通常、その遺伝子のすぐ上流にプロモーターが配置されるが、必ずしも隣接して配置される必要はない。
配列番号1で表される塩基配列を持つ領域はラクリチン遺伝子の転写活性を調節する部位である。この領域には、転写を促進させる転写調節因子が結合する。このことから、配列番号1で表される塩基配列を含むポリヌクレオチドは、ラクリチン遺伝子の転写調節因子を同定するために使用することができる。
本明細書において「転写調節領域」とは、ある遺伝子の転写を調節するDNA上の領域をいい、例えば、プロモーター、エンハンサー、コアプロモーター、イニシエーターエレメントなどが挙げられる。
本明細書において「プロモーター」とは、遺伝子の転写の開始部位を決定し、基本転写因子およびその近傍で働く転写因子が結合する配列をいう。
配列番号1で表される塩基配列を持つ領域はラクリチン遺伝子の転写活性を調節する部位である。この領域には、転写を促進させる転写調節因子が結合する。このことから、配列番号1で表される塩基配列を含むポリヌクレオチドは、ラクリチン遺伝子の転写調節因子を同定するために使用することができる。
本明細書において「転写調節領域」とは、ある遺伝子の転写を調節するDNA上の領域をいい、例えば、プロモーター、エンハンサー、コアプロモーター、イニシエーターエレメントなどが挙げられる。
本明細書において「プロモーター」とは、遺伝子の転写の開始部位を決定し、基本転写因子およびその近傍で働く転写因子が結合する配列をいう。
ラクリチン遺伝子の転写調節因子の少なくとも1つは、配列番号3で表される塩基配列を含むDNAへ結合することを示した(実施例2および図2Bを参照)。また、予測ソフトTRANSFAC(Biobase社)を用いた解析により、ラクリチン遺伝子にはATG翻訳開始部位(配列番号7の5194位の「A」から開始する。当該位置を+1と称する場合がある)の83塩基上流にTATAボックス(配列番号7の5111~5115位の「TAAAA」)が存在すると予測されることから、転写調節因子をスクリーニングするためのポリヌクレオチドとしては、配列番号5で表される塩基配列を最上流として含み、TATAボックス直前までの領域、すなわち、ATG翻訳開始部から149~85塩基上流の領域(配列番号7の5045~5110位)に相当する配列番号6で表される66塩基のポリヌクレオチドを、最大長のものとして使用することができる。
好ましい態様として、スクリーニング方法に使用可能なポリヌクレオチドは、配列番号3で表される塩基配列からなるヌクレオチドをコアとして含み、かつ配列番号6の連続する一部分の配列からなる10~66塩基のポリヌクレオチドである。好ましくは配列番号3で表される塩基配列を含む20~55塩基のポリヌクレオチド、より好ましくは配列番号3で表される塩基配列を含む29~45塩基のポリヌクレオチド、さらに好ましくは配列番号3で表される塩基配列を含む29~35塩基のポリヌクレオチドであって、配列番号6の連続する一部分の塩基配列からなるポリヌクレオチドである。かかるポリヌクレオチドに結合可能な物質は、ラクリチンの転写活性を促進させ、涙液の分泌を促進させる作用を有する候補薬ともなり得る。よって、かかるポリヌクレオチドを用いるスクリーニング方法は、後述するように、ドライアイの予防または治療薬の選別に好適に使用することができる。
配列番号1で表される塩基配列は、その5’末端から3’末端に向かって、配列番号5、配列番号4および配列番号3で表される塩基配列の3つの領域に分けることができる。これらの各領域にはそれぞれ異なる作用を有する転写調節因子が結合する可能性が高い。また、配列番号2で表される塩基配列は、その5’末端から3’末端に向かって、配列番号4および配列番号3で表される塩基配列の2つの領域を含む。また、配列番号16で表される塩基配列は、その5’末端から3’末端に向かって、配列番号5および配列番号3で表される塩基配列の2つの領域を含む。よって、本発明のスクリーニング方法は、スクリーニングの目的に応じて、配列番号1~5、16のいずれかで表される塩基配列をコアの配列として選択することができる。
他の実施形態において、本発明のスクリーニング方法は、前記ポリヌクレオチドの代わりに、当該ポリヌクレオチドを含有するベクター、前記ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド、または当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることもできる。なぜなら、上記ポリヌクレオチドと任意の被験物質とが接触することができさえすれば、ラクリチンの転写因子が該ポリヌクレオチドに結合し、選択されることができるからである。このようなものを当業者は適宜目的に応じて選択し、使用することができる。
本明細書において「ベクター」とは、目的のポリヌクレオチドを目的の細胞へと運び込ませることができるものをいう。前記ベクターは、ポリヌクレオチドを増幅させる場合またはポリヌクレオチドを細胞に導入する場合に好適である。
基本骨格となるベクターは特に限定されず、形質転換を行う細胞(例えば、大腸菌)中で自己複製可能なものであればよい。例えば、市販のpBR322、pUC、pBluescript、pGL2、pGL3、pGL4(プロメガ社)等が使用可能である。
ベクターは、ポリヌクレオチドを周知慣用の方法により前記基本骨格となるベクターにクローニングすることにより得られる。このようにして得られたベクターは、シークエンス等により所望の位置に所望の方向でポリヌクレオチドがクローニングされていることを確認することができる。
本明細書において「レポーター遺伝子」とは、本発明におけるポリヌクレオチドの転写活性を調べるために組み込まれる目印用の遺伝子をいい、公知のあらゆるレポーター遺伝子を制限なく用いることができる。検出が簡単で定量化も可能であるという観点から、レポーター遺伝子は発光タンパク質遺伝子または蛍光タンパク質遺伝子が好ましい。
本明細書において「レポータープラスミド」とは、環状DNAにレポーター遺伝子を組み込んだものをいう。本発明のスクリーニング方法では、レポーター遺伝子の上流に任意のポリヌクレオチド(例えば、配列番号1~5、16により示されるもの)を含むレポータープラスミドが好ましい。また、本発明において使用されるレポータープラスミドは、レポーター遺伝子の配列の前に、プロモーター配列を含んでも良い。前記レポータープラスミドは、ポリヌクレオチドの転写活性を調べるため、ポリヌクレオチドおよび当該ポリヌクレオチドが作動可能なレポーター遺伝子を連結して調製することができる。
前記発光タンパク質としては、ホタル由来のルシフェラーゼ、Renilla(ウミシイタケ)由来のルシフェラーゼ、鉄道虫由来のルシフェラーゼなどがあげられる。これら発光タンパク質および当該タンパク質をコードする核酸は、公知である。
前記蛍光タンパク質としては、緑色蛍光タンパク質(Green Fluorescent Protein;GFP)、黄色蛍光タンパク質(Yellow fluorescent protein;YFP)、シアン蛍光タンパク質(Cyan Fruorecent Protein;CFP)、青色蛍光タンパク質(Blue Fluorescent Protein;BFP)、Venusなどのオワンクラゲ由来蛍光タンパク質およびそれらの類似体、ウミシイタケ由来蛍光タンパク質およびその類似体、DsRed、HcRed、AsRed、ZsGreen、ZsYellow、AmCyan、AcGFP、Kaedeなどのサンゴ由来蛍光タンパク質およびそれらの類似体などがあげられるが、これらに限定されない。これら蛍光タンパク質およびそれらの類似体ならびに当該タンパク質をコードする核酸は、公知であり、当業者は目的に応じてこれらの蛍光タンパク質を適宜選択し、使用することができる。
前記レポーター遺伝子は、公知の塩基配列に基づいて、常法により調製することができ、レポーターアッセイ用にプラスミドの形で市販されている。
レポータープラスミドにおいて、構成要素であるポリヌクレオチドおよびレポーター遺伝子は、直接結合していてもよく、本発明の目的を達成しうる限りにおいて、任意の塩基配列が挿入されていてもよい。かかる挿入配列としては、例えば、クローニングの過程で付加される制限酵素切断部位から生じる塩基配列などがあげられるが、これらに限定されない。通常、1~100塩基程度の長さを有するものが使用され得る。
レポータープラスミドの基本骨格となるプラスミドは特に限定されず、形質転換を行う細胞(例えば、大腸菌)中で自己複製可能なものであればよい。例えば、市販のpBR322、pUC、pBluescript、pGL2、pGL3、pGL4(プロメガ社)等が使用可能である。
レポータープラスミドは、前記ポリヌクレオチドおよび前記レポーター遺伝子を周知慣用な方法により前記基本骨格となるプラスミドにクローニングすることにより得ることができる。このようにして得られたレポータープラスミドは、シークエンス等によりポリヌクレオチドおよびレポーター遺伝子が所望の位置に所望の方向でクローニングされていることを確認することができる。
本明細書において「形質転換体」とは、このようにして構築されたベクターまたはレポータープラスミドを用いて宿主を形質転換させることにより、製造されるもの(例えば、大腸菌などの生命体の全部または一部)をいう。
宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、動物細胞などが用いられ得る。エシェリヒア属菌は、本発明のヌクレオチド、ベクターまたはレポータープラスミドを調製するためにもっぱら用いられ、その他の宿主は本発明のヌクレオチドの活性等を調べるために用いられ得る。
エシェリヒア属菌としては、エシェリヒア・コリ(Escherichia coli)K12・DH1、JM103、JA221、HB101、C600などが用いられ得る。
バチルス属菌としては、例えば、バチルス・ズブチルス(Bacillus subtilis)MI114などが用いられ得る。
酵母としては、例えば、サッカロマイセス セレビシエ(Saccharomyces cerevisiae)AH22、AH22R-、NA87-11A、DKD-5D、20B-12、シゾサッカロマイセス ポンベ(Schizosaccharomyces pombe)NCYC1913、NCYC2036、ピキア パストリス(Pichia pastoris)などが用いられ得るが、これらに限定されない。
動物細胞としては、例えば、サル細胞COS-7、Vero、チャイニーズハムスター細胞CHO、dhfr遺伝子欠損チャイニーズハムスター細胞CHO(CHO(dhfr-))、マウスL細胞、マウスAtT-20、マウスミエローマ細胞、ラットGH3、ヒトFL細胞、ヒト乳癌細胞(例、ZR-75-1)などが用いられ得るが、これらに限定されない。
エシェリヒア属菌としては、エシェリヒア・コリ(Escherichia coli)K12・DH1、JM103、JA221、HB101、C600などが用いられ得る。
バチルス属菌としては、例えば、バチルス・ズブチルス(Bacillus subtilis)MI114などが用いられ得る。
酵母としては、例えば、サッカロマイセス セレビシエ(Saccharomyces cerevisiae)AH22、AH22R-、NA87-11A、DKD-5D、20B-12、シゾサッカロマイセス ポンベ(Schizosaccharomyces pombe)NCYC1913、NCYC2036、ピキア パストリス(Pichia pastoris)などが用いられ得るが、これらに限定されない。
動物細胞としては、例えば、サル細胞COS-7、Vero、チャイニーズハムスター細胞CHO、dhfr遺伝子欠損チャイニーズハムスター細胞CHO(CHO(dhfr-))、マウスL細胞、マウスAtT-20、マウスミエローマ細胞、ラットGH3、ヒトFL細胞、ヒト乳癌細胞(例、ZR-75-1)などが用いられ得るが、これらに限定されない。
エシェリヒア属菌の形質転換は、例えば、Proc.Natl.Acad.Sci.USA),69巻,2110(1972)またはGene,17巻,107(1982)などに記載の方法に従って行うことができる。
バチルス属菌の形質転換は、例えば、Molecular & General Genetics,168巻,111(1979)などに記載の方法に従って行うことができる。
酵母の形質転換は、例えば、Methods in Enzymology,194巻,182-187(1991)、Proc.Natl.Acad.Sci.USA,75巻,1929(1978)などに記載の方法に従って行うことができる。
動物細胞の形質転換は、例えば、細胞工学別冊8、新細胞工学実験プロトコール.263-267(1995)(秀潤社発行)、Virology,52巻,456(1973)に記載の方法に従って行うことができる。
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、新遺伝子工学ハンドブック(改訂第3版)(1999)(羊土社発行)などに記載されており、これらは本明細書において関連する部分が参考として援用される。
人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えば、核酸化学(上、下)(1970)(朝倉書店発行)などに記載されており、これらは本明細書において関連する部分が参考として援用される。
他の実施形態において、本発明のスクリーニング方法は、a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;b)当該ポリヌクレオチドを含有するベクター;c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;またはd)当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることを特徴とし得る。
バチルス属菌の形質転換は、例えば、Molecular & General Genetics,168巻,111(1979)などに記載の方法に従って行うことができる。
酵母の形質転換は、例えば、Methods in Enzymology,194巻,182-187(1991)、Proc.Natl.Acad.Sci.USA,75巻,1929(1978)などに記載の方法に従って行うことができる。
動物細胞の形質転換は、例えば、細胞工学別冊8、新細胞工学実験プロトコール.263-267(1995)(秀潤社発行)、Virology,52巻,456(1973)に記載の方法に従って行うことができる。
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、新遺伝子工学ハンドブック(改訂第3版)(1999)(羊土社発行)などに記載されており、これらは本明細書において関連する部分が参考として援用される。
人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えば、核酸化学(上、下)(1970)(朝倉書店発行)などに記載されており、これらは本明細書において関連する部分が参考として援用される。
他の実施形態において、本発明のスクリーニング方法は、a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;b)当該ポリヌクレオチドを含有するベクター;c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;またはd)当該ベクターもしくはレポータープラスミドを導入した形質転換体を用いることを特徴とし得る。
スクリーニング方法(I)は、具体的には、下記工程を含み得る:
(a)ポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(b)前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する工程、および
(c)前記比較結果に基づいて、ポリヌクレオチドに結合する因子を選択する工程、
ここで、上記ポリヌクレオチドは、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドであり;上記ベクターは、当該ポリヌクレオチドを含有するベクターであり;上記レポータープラスミドは、当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミドであり;上記形質転換体は、当該ベクターもしくはレポータープラスミドを導入した形質転換体である。
(a)ポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(b)前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する工程、および
(c)前記比較結果に基づいて、ポリヌクレオチドに結合する因子を選択する工程、
ここで、上記ポリヌクレオチドは、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドであり;上記ベクターは、当該ポリヌクレオチドを含有するベクターであり;上記レポータープラスミドは、当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミドであり;上記形質転換体は、当該ベクターもしくはレポータープラスミドを導入した形質転換体である。
前記(a)において、被験物質とは、いかなる公知物質および新規物質であってもよく、例えば、タンパク質、ペプチド、固相合成もしくはファージディスプレイ法により作製されたランダムペプチドライブラリー、大腸菌、酵母もしくは動物細胞の破砕物(好ましくは細胞核抽出液)などが挙げられるが、これらに限定されるものではない。
被験物質と接触させる前に、レポータープラスミドの場合は、当該ポリヌクレオチドを含有するレポーター遺伝子が発現できるように所望の細胞に一過性または安定的に導入し、形質転換体の場合は宿主に適した培地および培養条件で培養しておくことが望ましい。被験物質との接触方法としては、例えば、前記細胞または形質転換体を適当な培地中に入れ、約25~約40℃のインキュベーター中で生存または培養させ、次に、前記培地中に被験物質を添加し、インキュベートを続けることで接触がなされうる。無細胞系の場合、ポリヌクレオチド、ベクターまたはレポータープラスミドと被験物質との接触方法としては、所定の結合緩衝液中、約4~約40℃で約1分~約24時間混合させることで接触がなされうる。ポリヌクレオチドの場合、ポリヌクレオチドを固相担体に結合させ、結合溶液に溶解させた被験物質と固-液系で接触させることも可能である。
1つの実施形態において、本発明のスクリーニング方法において使用されるポリヌクレオチドは、ビオチンが結合したDNAプローブであり得、そして前記被験物質は核タンパク質抽出液であり得る。
1つの実施形態において、本発明のスクリーニング方法において使用されるポリヌクレオチドは、ビオチンが結合したDNAプローブであり得、そして前記被験物質は核タンパク質抽出液であり得る。
工程(b)において、前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する。この被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質と、ポリヌクレオチドとの結合の有無は、例えば、ゲルシフトアッセイ、pull-down法、One Hybrid法、レポーター遺伝子アッセイなどを用いて調べることができる。スクリーニングにおいて使用したポリヌクレオチド等を考慮して、この結合の有無を評価する方法を選択することは、当業者の技術範囲内である。
1つの実施形態において、本工程で利用可能なアッセイとしては、ゲルシフトアッセイ、pull-down法、One Hybrid法などを用いた精製法などが挙げられるが、これらに限定されない。当業者は、このような手法を適宜選択し、条件等を決定することができる。以下、各アッセイについて具体的に説明する。
1つの実施形態において、本工程で利用可能なアッセイとしては、ゲルシフトアッセイ、pull-down法、One Hybrid法などを用いた精製法などが挙げられるが、これらに限定されない。当業者は、このような手法を適宜選択し、条件等を決定することができる。以下、各アッセイについて具体的に説明する。
ゲルシフトアッセイ法は、目的のポリヌクレオチドまたはベクターと被験物質との接触が完了した試料をゲル電気泳動に供し、泳動後のゲルからナイロンメンブレン等の膜に転写し、当該膜上でポリヌクレオチドの移動度を検出する方法である。この場合、ポリヌクレオチドまたはベクターは、検出が容易になるように標識(例えば、ラジオアイソトープ、ハプテンなど)されていることが望ましい。被験物質を接触させない対照に比べて、被験物質を接触させたポリヌクレオチドまたはベクターの電気泳動度がシフトしている場合、当該ポリヌクレオチドに結合している因子の存在が確認される。なお、非特異的結合を除くため、当該ポリヌクレオチドを含まないDNAを対照として置くことも望ましい。ゲルシフトアッセイでは、リンカー配列を含んだポリヌクレオチドを使用することができる。ゲルシフトアッセイは、例えば、Ausubel,F.et al.(1989)In:Current Protocols in Molecular Biology,Volume 1,Green Publishing Associates and Wiley-Interscience,Unit 12.2.などに記載の方法に従って行うことができる。
pull-down法は、予め目的のポリヌクレオチドまたはベクターにタグを結合しておき、タグとの結合を利用して、目的のポリヌクレオチドまたはベクターに結合する転写因子複合体を回収する方法である。タグ認識のために、抗体に限らず、その他の特異的結合(例えば、Hisタグとニッケルキレートとの組合せ、GSTタグとグルタチオンとの組合せ、アビジンとビオチンとの組合せ等)もまた、用いることができる。なお、非特異的結合を除くため、当該ポリヌクレオチドを含まないDNAを対照として置くことも望ましい。pull-down法は、例えば、Flajollet S.et al.,J Immunol. 2009 Dec 1;183(11):6948-59.Epub 2009 Nov 4.,RREB-1 is a transcriptional repressor of HLA-G.;Wang C.et al.,Mol Cell Biochem.2006 Nov;292(1-2):79-88.Epub 2006 Jun 20.,Identification of USF2 as a key regulator of Runx2 expression in mouse pluripotent mesenchymal D1 cells.などに記載の方法に従って行うことができる。
One-hybrid法とは、細胞を用いて、特異的なDNA配列とタンパク質との相互作用を調べる方法である。この方法では、大腸菌・酵母等の細胞内におけるレポーター遺伝子の発現を指標とし、特異的DNA配列(既知のおとり配列/bait)とタンパク質間の相互作用の有無あるいは強度を検定することができる。具体的には、baitをレポーター遺伝子の上流に挿入し、任意のタンパク質を転写活性化因子との融合タンパク質として同時に発現させ、baitに結合する転写活性化因子を同定することができる。One-hybrid法は、例えば、Michael Sieweke,Transcription Factor Protocols,Methods in Molecular Biology,2000,Volume 130,59-77などに記載の方法に従って行うことができる。
レポーター遺伝子アッセイとは、遺伝子の発現を直接見る代わりに、蛍光を発する遺伝子に置き換えることで、蛍光測定により、転写活性の測定を行なう方法である。レポーター遺伝子アッセイを用いて、被験物質を接触させた群と、被験物質を接触させない対照群とを比較すると、被験物質を接触させた群では、レポーター遺伝子の発現が増加し、被験物質を接触させない対照群よりも強い蛍光を発することが期待され得る。
前記工程(c)において、工程(b)で得られた比較結果に基づき、ポリヌクレオチドに結合しうる被験物質を選択する。選択する基準は、工程(b)での個々の測定方法によって適宜選択することができる。被験物質の単離または精製は、ポリヌクレオチドと被験物質との結合を常法により解離することによって行われる。
例えば、配列番号1で表される塩基配列からなるポリヌクレオチドを用いて被験物質群から選択された候補物質と、同じ被験物質群に対して配列番号3で表される塩基配列からなるポリヌクレオチド、配列番号4で表される塩基配列からなるポリヌクレオチドまたは配列番号5で表される塩基配列からなるポリヌクレオチドを用いて別々にスクリーニングして選択される各候補物質との間の異同を相互に比較することも可能である。
このようにして選択された被験物質は、ラクリチン遺伝子の転写調節因子の候補として、その転写調節機構の解析にさらに供することができる。
2.スクリーニング方法(II)
別の局面において、本発明は、ドライアイの予防または治療薬のスクリーニング方法(スクリーニング方法(II))を提供する。このスクリーニング方法(II)は、前述したA)ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド、またはB)当該レポータープラスミドを導入した形質転換体を用い、レポーターの発現を指標とすることを特徴とする。このドライアイの予防または治療薬のスクリーニング方法には、スクリーニング方法(I)において記載した任意の形態が使用され得る。
1つの実施形態において、本発明のスクリーニング方法(II)では、A)レポータープラスミドであって、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドおよびレポーター遺伝子を含有する、レポータープラスミド;またはB)当該レポータープラスミドを導入した形質転換体が使用され得る。
別の局面において、本発明は、ドライアイの予防または治療薬のスクリーニング方法(スクリーニング方法(II))を提供する。このスクリーニング方法(II)は、前述したA)ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド、またはB)当該レポータープラスミドを導入した形質転換体を用い、レポーターの発現を指標とすることを特徴とする。このドライアイの予防または治療薬のスクリーニング方法には、スクリーニング方法(I)において記載した任意の形態が使用され得る。
1つの実施形態において、本発明のスクリーニング方法(II)では、A)レポータープラスミドであって、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドおよびレポーター遺伝子を含有する、レポータープラスミド;またはB)当該レポータープラスミドを導入した形質転換体が使用され得る。
1つの実施形態において、本発明のスクリーニング方法(II)は、具体的には、下記工程を含み得る:
(A)レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(B)前記被験物質を接触させたレポータープラスミドまたは形質転換体におけるレポーターの発現量を調べ、被験物質を接触させない対照と比較する工程、および
(C)前記比較結果に基づいて、レポーターの発現を有意に増加させる物質を選択する工程。
(A)レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(B)前記被験物質を接触させたレポータープラスミドまたは形質転換体におけるレポーターの発現量を調べ、被験物質を接触させない対照と比較する工程、および
(C)前記比較結果に基づいて、レポーターの発現を有意に増加させる物質を選択する工程。
前記(A)において、被験物質とは、いかなる公知物質および新規物質であってもよく、例えば、核酸、糖質、脂質、タンパク質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成またはファージディスプレイ法により作製されたランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分などがあげられる。また、これらの化合物の2種以上の混合物を試料として供することもできる。
好ましい実施形態において、被験物質と接触させる前に、レポータープラスミドの場合はレポーター遺伝子が発現できるように所望の細胞に一過性に導入し、形質転換体の場合は宿主に適した培地および培養条件で培養しておくことが好ましい。用いる細胞または宿主の種類は、好ましくは、ヒト細胞株(例えば、ヒト乳癌細胞株ZR-75-1、ヒト乳癌細胞株BT-474)などであり得る。被験物質との接触方法としては、例えば、前記細胞または形質転換体を適当な培地中に入れ、約25~40℃のインキュベーター中で生存または培養させ、次に、前記培地中に被験物質を添加し、インキュベートを続けることで接触させる方法などが挙げられうる。このような被験物質との接触方法は、当該分野において周知であり、当業者であれば、適宜適切な方法を選択して利用することができる。
前記被験物質の添加量は、当業者が、有効成分の種類、培地に対する溶解性、細胞または形質転換体の感受性等によって適宜設定することができる。
工程(B)において、前記被験物質を接触させた細胞または形質転換体におけるレポーター遺伝子の発現量は、各レポーター遺伝子に応じて周知の方法により調べることができる。このような方法としては、例えば、蛍光タンパク質の場合、各蛍光タンパク質に応じた励起波長を照射して検出される蛍光を測定することにより行う方法などがあげられる。
他の実施形態において、前記工程(B)において、被験物質を接触させない細胞または形質転換体におけるレポーター遺伝子の発現量も、同時にまたは別途に調べ、接触した場合の結果と接触しない場合の結果とを比較することができる。
前記工程(C)において、工程(B)で得られた比較結果に基づき、ラクリチンの発現を促進させうる被験物質を選択することができる。選択する基準は、レポーターの発現が上昇していることを指標にすればよい。そのような基準を設定することは、当業者の技術範囲内である。
このようにして選択された被験物質は、ラクリチンの発現および分泌を促進させ、涙液の分泌を高める効果を有することが期待され得る。したがって、本発明のスクリーニング方法により選択された被験物質は、ラクリチンの転写制御機構に作用して機能する作用機序の明確なドライアイの予防または治療薬の候補となりうる。
3.スクリーニング用キット
他の局面において、本発明は、ラクリチン遺伝子の転写調節因子のスクリーニング用キットを提供する。このスクリーニング用キットは、上述のa)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;b)当該ポリヌクレオチドを含有するベクター;c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;またはd)当該ベクターもしくはレポータープラスミドを導入した形質転換体を含み得る。前記キットは、さらに、スクリーニングに使用される溶媒、検出用蛍光色素などの試薬などを含んでいてもよい。このスクリーニング用キットには、上述のスクリーニング方法において記載した任意の形態が使用され得る。
他の局面において、本発明は、ラクリチン遺伝子の転写調節因子のスクリーニング用キットを提供する。このスクリーニング用キットは、上述のa)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;b)当該ポリヌクレオチドを含有するベクター;c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;またはd)当該ベクターもしくはレポータープラスミドを導入した形質転換体を含み得る。前記キットは、さらに、スクリーニングに使用される溶媒、検出用蛍光色素などの試薬などを含んでいてもよい。このスクリーニング用キットには、上述のスクリーニング方法において記載した任意の形態が使用され得る。
他の実施形態において、前記スクリーニング用キットは、ドライアイの予防または治療薬のスクリーニングキットとしても使用可能である。この場合、キット中には、ポリヌクレオチド、ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド、または当該レポータープラスミドを導入した形質転換体を含むことが好ましい。
別の局面において、本発明は、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含む、ポリヌクレオチドを提供する。
別の局面において、本発明は、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含む、ポリヌクレオチドを提供する。
以下に実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1 ヒトラクリチンの翻訳開始点の上流6kbのDNA配列のクローニング
1.1 配列設計
転写開始点検索サイトDBTSS(http://dbtss.hgc.jp/)の検索サービスを利用して、対象遺伝子Human lacritin(NM_033277)の翻訳開始点から6kb上流のDNA配列(K17225_design)を入手した。入手した配列情報をもとに、以下の2種類のクローニング用PCRプライマーを設計し、東洋紡績株式会社に委託して合成した。
pSLG-(6kbF) tcgaggtcgacGATGAGATTAACATTTAAATTGGTAGACCTTG(配列番号8)
pSLG-R ggccgactagtTCTTTGGGATGAGGAGTGAGTATAACC(配列番号9)
(大文字は、標的配列の5’側に相同あるいは3’側に相補な配列。下線は、SalIまたはSpeI認識配列。)
1.1 配列設計
転写開始点検索サイトDBTSS(http://dbtss.hgc.jp/)の検索サービスを利用して、対象遺伝子Human lacritin(NM_033277)の翻訳開始点から6kb上流のDNA配列(K17225_design)を入手した。入手した配列情報をもとに、以下の2種類のクローニング用PCRプライマーを設計し、東洋紡績株式会社に委託して合成した。
pSLG-(6kbF) tcgaggtcgacGATGAGATTAACATTTAAATTGGTAGACCTTG(配列番号8)
pSLG-R ggccgactagtTCTTTGGGATGAGGAGTGAGTATAACC(配列番号9)
(大文字は、標的配列の5’側に相同あるいは3’側に相補な配列。下線は、SalIまたはSpeI認識配列。)
1.2 PCR
Human Genomic DNA(Roche、#1691112)をテンプレートにして、KOD FX(東洋紡、#KFX-101)を用いて、PCRを実施した。PCRの反応条件は、94℃にて2分間を1回、これに続き98℃にて10秒間、続いて68℃にて20秒間のサイクルを15回行った。次いで、得られた増幅産物をMagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って精製した。
Human Genomic DNA(Roche、#1691112)をテンプレートにして、KOD FX(東洋紡、#KFX-101)を用いて、PCRを実施した。PCRの反応条件は、94℃にて2分間を1回、これに続き98℃にて10秒間、続いて68℃にて20秒間のサイクルを15回行った。次いで、得られた増幅産物をMagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って精製した。
1.3 ライゲーション反応
pSLG-testベクター(緑色発光ルシフェラーゼ発現ベクター:東洋紡、#MRV-101)と、上述の1.2で得られた増幅産物の各々を、SalI及びSpeIで制限酵素処理した。ベクターの場合には、1.5μgのpSLG-testベクター、10×buffer(5μL、東洋紡、#SPE-101)およびSpeI(1μL、東洋紡、#SPE-101)を混合し、蒸留水を加え、50μLの反応液とした。また、増幅産物の場合には、増幅産物(50μL)、10×buffer(5μL、東洋紡、#SPE-101)およびSpeI(1μL、東洋紡、#SPE-101)を混合し、反応液とした。これらの反応液を37℃にて3時間反応させることにより、pSLG-testベクターおよび増幅産物を制限酵素処理した。その後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って精製した。続いて、回収した溶液(約44μL)を、10×buffer(5μL、東洋紡、#SAL-111)およびSalI(1μL、東洋紡、#SAL-111)と混合し、37℃にて3時間反応させることにより制限酵素処理した後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って、再度精製を実施した。その後、精製したベクターとPCR産物を混合し、Ligation high ver.2(東洋紡、#LGK-201)を用いて16℃、30分間のライゲーション反応を行った。
pSLG-testベクター(緑色発光ルシフェラーゼ発現ベクター:東洋紡、#MRV-101)と、上述の1.2で得られた増幅産物の各々を、SalI及びSpeIで制限酵素処理した。ベクターの場合には、1.5μgのpSLG-testベクター、10×buffer(5μL、東洋紡、#SPE-101)およびSpeI(1μL、東洋紡、#SPE-101)を混合し、蒸留水を加え、50μLの反応液とした。また、増幅産物の場合には、増幅産物(50μL)、10×buffer(5μL、東洋紡、#SPE-101)およびSpeI(1μL、東洋紡、#SPE-101)を混合し、反応液とした。これらの反応液を37℃にて3時間反応させることにより、pSLG-testベクターおよび増幅産物を制限酵素処理した。その後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って精製した。続いて、回収した溶液(約44μL)を、10×buffer(5μL、東洋紡、#SAL-111)およびSalI(1μL、東洋紡、#SAL-111)と混合し、37℃にて3時間反応させることにより制限酵素処理した後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って、再度精製を実施した。その後、精製したベクターとPCR産物を混合し、Ligation high ver.2(東洋紡、#LGK-201)を用いて16℃、30分間のライゲーション反応を行った。
1.4 形質転換
ライゲーション後の反応物2μLを大腸菌DH5αコンピテントセル(東洋紡、#DNA-903)50μLに加えて、形質転換した。具体的には、以下のとおり実施した。
コンピテントセルをフリーザーから取り出し、氷上で素早く融解し、形質転換するプラスミドDNAを加え、ピペットの先で軽く攪拌した。氷上で20分間静置し、42℃で30秒間インキュベートした後、氷上で急冷した。コンピテントセルに付属のSOC培地を450μL添加し、37℃で1時間振とう培養した。
次いで、得られた大腸菌形質転換体100μLを、50μg/mLアンピシリン(ナカライテスク、#02738-84)を含むルリア-ベルターニ培地(LB)プレート(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))上で、37℃、一晩培養した。得られた大腸菌形質転換体のコロニーを採取してコロニーダイレクトPCR(94℃にて30秒間、68℃にて20秒間、続いて74℃にて20秒間のサイクルを30回)を実施し、候補クローンを選別した。
ライゲーション後の反応物2μLを大腸菌DH5αコンピテントセル(東洋紡、#DNA-903)50μLに加えて、形質転換した。具体的には、以下のとおり実施した。
コンピテントセルをフリーザーから取り出し、氷上で素早く融解し、形質転換するプラスミドDNAを加え、ピペットの先で軽く攪拌した。氷上で20分間静置し、42℃で30秒間インキュベートした後、氷上で急冷した。コンピテントセルに付属のSOC培地を450μL添加し、37℃で1時間振とう培養した。
次いで、得られた大腸菌形質転換体100μLを、50μg/mLアンピシリン(ナカライテスク、#02738-84)を含むルリア-ベルターニ培地(LB)プレート(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))上で、37℃、一晩培養した。得られた大腸菌形質転換体のコロニーを採取してコロニーダイレクトPCR(94℃にて30秒間、68℃にて20秒間、続いて74℃にて20秒間のサイクルを30回)を実施し、候補クローンを選別した。
1.5 プラスミドDNA抽出
候補クローンの大腸菌形質転換体100μLを、50μg/mLアンピシリンを含むLB液体培地(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))で、37℃、一晩培養した。次いで、MagExtractor-Plasmid-(東洋紡、#NPK-301)を使用し、キットに添付の方法に従って、プラスミドDNAを抽出した。得られたプラスミドDNAについて、インサート全長のシーケンス解析を行い、設計配列(K17225_design)と比較し、ミスマッチ配列がないことを確認した。
シーケンス解析は、サイクルシークエンス法を用いて実施した。具体的には、プラスミド3μL、プライマー(3.2pmol/L)1μLとBig dye Terminator Cycle Sequencing Kit(アプライドバイオシステムズ社、#4336915)1μLを混合し、反応溶液とした。サイクル反応は、94℃にて2分間の反応を1回後、これに続き、94℃にて30秒間、50℃にて20秒間、続いて60℃にて4分間の反応サイクルを30回実施した。次いで、ゲル濾過クロマトグラフィー(GE Healthcare社:Sephadex G-50 Medium(#17-0043-01))を用いて精製後、DNAシーケンサー(#3730、DNA Analyzer)を用いて、インサート配列の塩基配列を解析した。
その結果、インサート全長の配列が設計配列と完全に一致するクローン(pSLG-test(6kb))を取得することができた。
候補クローンの大腸菌形質転換体100μLを、50μg/mLアンピシリンを含むLB液体培地(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))で、37℃、一晩培養した。次いで、MagExtractor-Plasmid-(東洋紡、#NPK-301)を使用し、キットに添付の方法に従って、プラスミドDNAを抽出した。得られたプラスミドDNAについて、インサート全長のシーケンス解析を行い、設計配列(K17225_design)と比較し、ミスマッチ配列がないことを確認した。
シーケンス解析は、サイクルシークエンス法を用いて実施した。具体的には、プラスミド3μL、プライマー(3.2pmol/L)1μLとBig dye Terminator Cycle Sequencing Kit(アプライドバイオシステムズ社、#4336915)1μLを混合し、反応溶液とした。サイクル反応は、94℃にて2分間の反応を1回後、これに続き、94℃にて30秒間、50℃にて20秒間、続いて60℃にて4分間の反応サイクルを30回実施した。次いで、ゲル濾過クロマトグラフィー(GE Healthcare社:Sephadex G-50 Medium(#17-0043-01))を用いて精製後、DNAシーケンサー(#3730、DNA Analyzer)を用いて、インサート配列の塩基配列を解析した。
その結果、インサート全長の配列が設計配列と完全に一致するクローン(pSLG-test(6kb))を取得することができた。
実施例2 ヒトラクリチンの翻訳開始点の上流0.12kb、0.149kb、0.169kb、0.22kb、0.5kbおよび1kbのDNA配列、ならびに0.13kb-mutA、0.13kb-mutB、および0.13kb-mutCのDNA配列のクローニング
2.1 配列設計とPCR
ラクリチンの転写制御に必要な転写調節領域を解析するため、翻訳開始点の上流0.12kb、0.149kb、0.169kb、0.22kb、0.5kbおよび1kbのDNA配列、ならびに0.13kb-mutA、0.13kb-mutB、および0.13kb-mutCのDNA配列のクローニングを試みた。pSLG-testベクター(東洋紡 #MRV-101)に、上述の9つのDNA配列をサブクローニングするため、以下の9種類の5’側に相同なPCRプライマーを設計し、東洋紡績株式会社に委託して合成を行った。
pSLG-(1kbF) tcgaggtcgacTACATAGGAGCCACAACTCC(配列番号10)
pSLG-(0.5kbF) tcgaggtcgacCCTTCAAACCCTGCACTGAG(配列番号11)
pSLG-(0.22kbF) tcgaggtcgacGCCTGCAAGGATCCCAGGTATC(配列番号12)
pSLG-(0.169kbF) tcgaggtcgacAGCAGGTGACAGTTTGGGG(配列番号13)
pSLG-(0.149kbF) tcgaggtcgacAGAAGGGGAGGAGGATGCGG(配列番号14)
pSLG-(0.12kbF) tcgaggtcgacCTCTCCAGGCTTGGTTCCC(配列番号15)
pSLG-(0.13kb-mutA) tcgaggtcgacGAGGATGCGGAAGTCACAC(配列番号17)
pSLG-(0.13kb-mutB) tcgaggtcgacAGAAGGGGAGAAGTCACACCTCTCCAGGC(配列番号18)
pSLG-(0.13kb-mutC) tcgaggtcgacAGAAGGGGAGGAGGATGCGGCTCTCCAGGCTTGGTTCCC(配列番号19)
(大文字は、標的配列の5’側に相同な配列。下線は、SalI認識配列。)
また、3’側に相補なプライマーとして、pSLG-Rを使用し、KOD FX(東洋紡、#KFX-101)を用いて、pSLG-(6kb)をテンプレートにPCRを行った。反応は、94℃にて2分間を1回、これに続き98℃にて10秒間、続いて68℃にて20秒間のサイクルを15回行った。次いで、得られた増幅産物をMagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って精製した。
2.1 配列設計とPCR
ラクリチンの転写制御に必要な転写調節領域を解析するため、翻訳開始点の上流0.12kb、0.149kb、0.169kb、0.22kb、0.5kbおよび1kbのDNA配列、ならびに0.13kb-mutA、0.13kb-mutB、および0.13kb-mutCのDNA配列のクローニングを試みた。pSLG-testベクター(東洋紡 #MRV-101)に、上述の9つのDNA配列をサブクローニングするため、以下の9種類の5’側に相同なPCRプライマーを設計し、東洋紡績株式会社に委託して合成を行った。
pSLG-(1kbF) tcgaggtcgacTACATAGGAGCCACAACTCC(配列番号10)
pSLG-(0.5kbF) tcgaggtcgacCCTTCAAACCCTGCACTGAG(配列番号11)
pSLG-(0.22kbF) tcgaggtcgacGCCTGCAAGGATCCCAGGTATC(配列番号12)
pSLG-(0.169kbF) tcgaggtcgacAGCAGGTGACAGTTTGGGG(配列番号13)
pSLG-(0.149kbF) tcgaggtcgacAGAAGGGGAGGAGGATGCGG(配列番号14)
pSLG-(0.12kbF) tcgaggtcgacCTCTCCAGGCTTGGTTCCC(配列番号15)
pSLG-(0.13kb-mutA) tcgaggtcgacGAGGATGCGGAAGTCACAC(配列番号17)
pSLG-(0.13kb-mutB) tcgaggtcgacAGAAGGGGAGAAGTCACACCTCTCCAGGC(配列番号18)
pSLG-(0.13kb-mutC) tcgaggtcgacAGAAGGGGAGGAGGATGCGGCTCTCCAGGCTTGGTTCCC(配列番号19)
(大文字は、標的配列の5’側に相同な配列。下線は、SalI認識配列。)
また、3’側に相補なプライマーとして、pSLG-Rを使用し、KOD FX(東洋紡、#KFX-101)を用いて、pSLG-(6kb)をテンプレートにPCRを行った。反応は、94℃にて2分間を1回、これに続き98℃にて10秒間、続いて68℃にて20秒間のサイクルを15回行った。次いで、得られた増幅産物をMagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って精製した。
2.2 ライゲーション反応
pSLG-testベクターと上述の2.1で得られた増幅産物の各々を、SalI及びSpeIで制限酵素処理した。ベクターの場合には、1.5μgのpSLG-testベクター、10×buffer(5μL、東洋紡、#SPE-101)、およびSpeI(1μL、東洋紡、#SPE-101)を混合し、蒸留水を加えて50μLの反応液とした。また、増幅産物の場合には、増幅産物(50μL)、10×buffer(5μL、東洋紡、#SPE-101)、およびSpeI(1μL、東洋紡、#SPE-101)を混合し反応液とした。これらの反応液を37℃にて3時間反応させることにより、pSLG-testベクターおよび増幅産物を制限酵素処理した。その後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って精製した。続いて、回収した溶液(約44μL)を、10×buffer(5μL、東洋紡、#SAL-111)、およびSalI(1μL、東洋紡、#SAL-111)と混合し、37℃にて3時間反応させることにより制限酵素処理した後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って、再度精製を実施した。
その後、精製したベクターとPCR産物とを1対3の割合で混合し、Ligation high ver.2(東洋紡、#LGK-201)を用いて16℃、30分間のライゲーション反応を行った。
pSLG-testベクターと上述の2.1で得られた増幅産物の各々を、SalI及びSpeIで制限酵素処理した。ベクターの場合には、1.5μgのpSLG-testベクター、10×buffer(5μL、東洋紡、#SPE-101)、およびSpeI(1μL、東洋紡、#SPE-101)を混合し、蒸留水を加えて50μLの反応液とした。また、増幅産物の場合には、増幅産物(50μL)、10×buffer(5μL、東洋紡、#SPE-101)、およびSpeI(1μL、東洋紡、#SPE-101)を混合し反応液とした。これらの反応液を37℃にて3時間反応させることにより、pSLG-testベクターおよび増幅産物を制限酵素処理した。その後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用し、キット添付の方法に従って精製した。続いて、回収した溶液(約44μL)を、10×buffer(5μL、東洋紡、#SAL-111)、およびSalI(1μL、東洋紡、#SAL-111)と混合し、37℃にて3時間反応させることにより制限酵素処理した後、MagExtractor-PCR & Gel Cleanup-(東洋紡、#NPK-601)を使用して、キット添付の方法に従って、再度精製を実施した。
その後、精製したベクターとPCR産物とを1対3の割合で混合し、Ligation high ver.2(東洋紡、#LGK-201)を用いて16℃、30分間のライゲーション反応を行った。
2.3 形質転換
上述の2.2により得られたライゲーション後の反応物2μLを大腸菌DH5αコンピテントセル(東洋紡、#DNA-903)50μLに加えて、形質転換した。具体的には、以下のとおり実施した。
コンピテントセルをフリーザーから取り出し、氷上で素早く融解し、形質転換するプラスミドDNAを加え、ピペットの先で軽く攪拌した。氷上で20分間静置し、42℃で30秒間インキュベートした後、氷上で急冷した。コンピテントセルに付属のSOC培地を450μL添加し、37℃で1時間振とう培養した。続いて、得られた大腸菌形質転換体100μLを、50μg/mLアンピシリン(ナカライテスク、02738-84)を含むルリア-ベルターニ培地(LB)プレート(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))上で、37℃、一晩培養した。得られた大腸菌形質転換体のコロニーを採取して、コロニーダイレクトPCR(94℃にて30秒間、68℃にて20秒間、続いて74℃にて20秒間のサイクルを30回)を実施し、候補クローンを選別した。
上述の2.2により得られたライゲーション後の反応物2μLを大腸菌DH5αコンピテントセル(東洋紡、#DNA-903)50μLに加えて、形質転換した。具体的には、以下のとおり実施した。
コンピテントセルをフリーザーから取り出し、氷上で素早く融解し、形質転換するプラスミドDNAを加え、ピペットの先で軽く攪拌した。氷上で20分間静置し、42℃で30秒間インキュベートした後、氷上で急冷した。コンピテントセルに付属のSOC培地を450μL添加し、37℃で1時間振とう培養した。続いて、得られた大腸菌形質転換体100μLを、50μg/mLアンピシリン(ナカライテスク、02738-84)を含むルリア-ベルターニ培地(LB)プレート(ベクトンディッキンソン、Bacto tryptone(#211705)、Bacto Yeast Extract(#212750))上で、37℃、一晩培養した。得られた大腸菌形質転換体のコロニーを採取して、コロニーダイレクトPCR(94℃にて30秒間、68℃にて20秒間、続いて74℃にて20秒間のサイクルを30回)を実施し、候補クローンを選別した。
2.4 プラスミドDNA抽出
候補クローンの大腸菌形質転換体100μLを、50μg/mLアンピシリンを含むLB液体培地で37℃、一晩培養した。次いで、MagExtractor-Plasmid-(東洋紡、#NPK-301)を使用して、キット添付の方法に従って、プラスミドDNAを抽出した。
得られたプラスミドDNAについて、インサート全長のシーケンス解析を行い、PCRによる配列置換が認められないことを確認した。シーケンス解析は、サイクルシークエンス法を用いて実施した。具体的には、プラスミド3μL、プライマー(3.2pmol/L)1μLとBig dye Terminator Cycle Sequencing Kit(アプライドバイオシステムズ社、#4336915)1μLを混合し、反応溶液とした。サイクル反応は、94℃にて2分間の反応を1回後、これに続き、94℃にて30秒間、50℃にて20秒間、続いて60℃にて4分間の反応サイクルを30回実施した。次いで、ゲル濾過クロマトグラフィー(GE Healthcare社:Sephadex G-50 Medium(#17-0043-01))を用いて精製後、DNAシーケンサー(#3730、DNA Analyzer)を用いて、インサート配列の塩基配列を解析した。
候補クローンの大腸菌形質転換体100μLを、50μg/mLアンピシリンを含むLB液体培地で37℃、一晩培養した。次いで、MagExtractor-Plasmid-(東洋紡、#NPK-301)を使用して、キット添付の方法に従って、プラスミドDNAを抽出した。
得られたプラスミドDNAについて、インサート全長のシーケンス解析を行い、PCRによる配列置換が認められないことを確認した。シーケンス解析は、サイクルシークエンス法を用いて実施した。具体的には、プラスミド3μL、プライマー(3.2pmol/L)1μLとBig dye Terminator Cycle Sequencing Kit(アプライドバイオシステムズ社、#4336915)1μLを混合し、反応溶液とした。サイクル反応は、94℃にて2分間の反応を1回後、これに続き、94℃にて30秒間、50℃にて20秒間、続いて60℃にて4分間の反応サイクルを30回実施した。次いで、ゲル濾過クロマトグラフィー(GE Healthcare社:Sephadex G-50 Medium(#17-0043-01))を用いて精製後、DNAシーケンサー(#3730、DNA Analyzer)を用いて、インサート配列の塩基配列を解析した。
2.5 トランスフェクショングレードのプラスミドDNAの精製
上述の実験より構築した6種類のベクターを含む大腸菌形質転換体のコロニーを掻きとり、100mLのアンピシリンを含むLB液体培地に懸濁し、これを37℃で4時間培養した。その後、Plasmid Midi V-100キット(VioGene社、#GDV1001)を使用して、トランスフェクショングレードのプラスミドDNAを抽出した。
上述の実験より構築した6種類のベクターを含む大腸菌形質転換体のコロニーを掻きとり、100mLのアンピシリンを含むLB液体培地に懸濁し、これを37℃で4時間培養した。その後、Plasmid Midi V-100キット(VioGene社、#GDV1001)を使用して、トランスフェクショングレードのプラスミドDNAを抽出した。
実施例3 転写活性の評価
乳癌細胞株(ZR-75-1、ATCC、#CRL-1500)を、10%FBSを添加したRPMI1640培地(ATCC、#30-2001)を使用して、37℃で培養した。トランスフェクションの前日に、乳癌細胞株を2.0×105cellずつ24wellプレート(住友ベークライト、#MS-80240に播種した。翌日、Lipofectamine 2000(Invitrogen、#11668-019)を使用して、下記表1-1、1-2および1-3に示すように、転写調節領域を含むプラスミドとpSLR-SV40(赤色発光ルシフェラーゼ発現ベクター:東洋紡)とを混合したものを、細胞株に対してトランスフェクションした。表1-1は、図1に示す実験に用いたプラスミド群であり、表1-2は、図2Aに示す実験に用いたプラスミド群であり、表1-3は、図2Bに示す実験に用いたプラスミド群である。
乳癌細胞株(ZR-75-1、ATCC、#CRL-1500)を、10%FBSを添加したRPMI1640培地(ATCC、#30-2001)を使用して、37℃で培養した。トランスフェクションの前日に、乳癌細胞株を2.0×105cellずつ24wellプレート(住友ベークライト、#MS-80240に播種した。翌日、Lipofectamine 2000(Invitrogen、#11668-019)を使用して、下記表1-1、1-2および1-3に示すように、転写調節領域を含むプラスミドとpSLR-SV40(赤色発光ルシフェラーゼ発現ベクター:東洋紡)とを混合したものを、細胞株に対してトランスフェクションした。表1-1は、図1に示す実験に用いたプラスミド群であり、表1-2は、図2Aに示す実験に用いたプラスミド群であり、表1-3は、図2Bに示す実験に用いたプラスミド群である。
ネガティブコントロールとして、0.8μg pSLG-test(ベクターのみ)を、同様の手順により細胞株にトランスフェクションした。また、発光量の補正のため、pSLG-SV40(東洋紡、#MRV-201)、またはpSLR-SV40(東洋紡、#MRV-203)をそれぞれ単独で細胞株にトランスフェクションした群も作製した。
トランスフェクションの24時間後に、Tripluc Luciferase Assay Reagent(東洋紡、#MRA-301)を使用して、細胞の溶解と発光反応を行った。次いで、全光(F0)および600nmロングパスフィルター(F2)透過光の2種類の発光量を、ルミノメーター「カラフルックアナライザー」(東洋紡、#CLX-101)で測定した。各群について、得られた緑色発光ルシフェラーゼ(SLG)と赤色発光ルシフェラーゼ(SLR)の発光量から、SLG/SLR活性比を算出した。pSLG-test(0.22kb)で得られたSLG/SLR活性比を100として、6種類のベクター(pSLG-test、pSLG-test(0.12kb)、pSLG-test(0.149kb)、pSLG-test(0.169kb)、pSLG-test(0.5kb)、pSLG-test(1kb))の相対活性を算出した。算出した相対活性を表2および表3、図1および図2Aに示す。
トランスフェクションの24時間後に、Tripluc Luciferase Assay Reagent(東洋紡、#MRA-301)を使用して、細胞の溶解と発光反応を行った。次いで、全光(F0)および600nmロングパスフィルター(F2)透過光の2種類の発光量を、ルミノメーター「カラフルックアナライザー」(東洋紡、#CLX-101)で測定した。各群について、得られた緑色発光ルシフェラーゼ(SLG)と赤色発光ルシフェラーゼ(SLR)の発光量から、SLG/SLR活性比を算出した。pSLG-test(0.22kb)で得られたSLG/SLR活性比を100として、6種類のベクター(pSLG-test、pSLG-test(0.12kb)、pSLG-test(0.149kb)、pSLG-test(0.169kb)、pSLG-test(0.5kb)、pSLG-test(1kb))の相対活性を算出した。算出した相対活性を表2および表3、図1および図2Aに示す。
pSLG-test(0.149kb)で得られたSLG/SLR活性比を100として、7種類のベクター(pSLG-test、pSLG-test(0.12kb)、pSLG-test(0.13kb-mutA)、pSLG-test(0.13kb-mutB)、pSLG-test(0.13kb-mutC)、pSLG-test(0.169kb)、pSLG-test(0.22kb))の相対活性を算出した。
算出した相対活性を図2Bに示す。
算出した相対活性を図2Bに示す。
その結果、pSLG-testには転写活性がなく、pSLG-test(0.12kb)は低いながらも転写活性を示した。このことから、ラクリチン遺伝子の基本転写因子の結合配列は、翻訳領域上流1~120塩基に存在することが確認された。また、pSLG-test(0.22kb)、pSLG-test(0.5kb)およびpSLG-test(1kb)の転写活性は、pSLG-test(0.12kb)の活性に比べると、10倍程度高い数値を示した(図1および表2)。さらに配列を絞り込み評価したところ、pSLG-test(0.149kb)およびpSLG-test(0.169kb)もまた、pSLG-test(0.12kb)の活性に比べると、9~10倍程度高い転写活性を示した(図2Aおよび表3)。
以上の結果から、ラクリチンのプロモーター領域は翻訳領域上流1~149塩基に存在することが分かった。また、ラクリチン遺伝子の翻訳領域の上流121~149塩基の領域には、転写促進に関与する配列の存在が確認された。図2Bに示すように、ラクリチン遺伝子のプロモーター領域のうち、5’側から10塩基ずつ欠失させたプラスミド(pSLG-test(0.13kb-mutA)、pSLG-test(0.13kb-mutB)、pSLG-test(0.13kb-mutC)の相対活性は、それぞれ、32.3%、20.7%、26.9%であった。これは、転写調節領域を含んでいないpSLG-test(0.12kb)の相対活性よりも高いものであった。しかし、これらの転写活性は、完全な転写調節領域を含むpSLG-test(0.149kb)の活性よりも低いものであったことから、欠失させた各部位にそれぞれ異なる転写調節因子が少なくとも1つ以上結合することが推測された。
以上の結果から、ラクリチンのプロモーター領域は翻訳領域上流1~149塩基に存在することが分かった。また、ラクリチン遺伝子の翻訳領域の上流121~149塩基の領域には、転写促進に関与する配列の存在が確認された。図2Bに示すように、ラクリチン遺伝子のプロモーター領域のうち、5’側から10塩基ずつ欠失させたプラスミド(pSLG-test(0.13kb-mutA)、pSLG-test(0.13kb-mutB)、pSLG-test(0.13kb-mutC)の相対活性は、それぞれ、32.3%、20.7%、26.9%であった。これは、転写調節領域を含んでいないpSLG-test(0.12kb)の相対活性よりも高いものであった。しかし、これらの転写活性は、完全な転写調節領域を含むpSLG-test(0.149kb)の活性よりも低いものであったことから、欠失させた各部位にそれぞれ異なる転写調節因子が少なくとも1つ以上結合することが推測された。
実施例4 ゲルシフトアッセイ
ゲルシフトアッセイは、Pierce社のLightShift Chemiluminescent EMAS kit(#20148)のような方法を用いて実施されるが、これに類似する方法であれば、いかなる方法も用いることができる。
ゲルシフトアッセイは、Pierce社のLightShift Chemiluminescent EMAS kit(#20148)のような方法を用いて実施されるが、これに類似する方法であれば、いかなる方法も用いることができる。
4.1 DNAプローブと核タンパク質抽出液との結合
4.1.1 核タンパク質抽出液の調製
核タンパク質抽出液の調製は、Nuclear/Cytosol Fractionation Kit(BioVision Inc.、#K266-100)を用いて、キット添付のプロトコールに従って実施した。
4.1.2 ビオチンが結合したDNAプローブの調製および結合反応
本実施例において使用したビオチン化オリゴヌクオレチドは、DNA合成機(アプライドバイオシステムズ製、#394)用いてホスホロアミダイト法により合成した。操作は、DNA合成機に添付されている説明書に従って実施した。得られた合成産物を、逆相クロマトグラフィー等を用いたHPLC法により精製し、目的のポリヌクレオチドを得た。続いて、得られた一本鎖のビオチン化オリゴヌクレオチド(+)鎖および(-)鎖を95℃で15分間熱変性し、その後1時間かけて25℃に徐冷し、二本鎖のDNAプローブを作製した。最終的に、二本鎖のDNAプローブを、ゲル濃度20%のポリアクリルアミド電気泳動を用いて精製した。
反応は、非特異的な結合を抑えるため、50ng/μLのPoly(dI・dC)(Pierce社(#20148))を加えた1×Binding Buffer(Pierce社(#20148))20μL中で行い、核タンパク質抽出液(2~4μg)とビオチンが結合したDNAプローブ(20pmol)を加え、室温で20分間実施した。
4.1.1 核タンパク質抽出液の調製
核タンパク質抽出液の調製は、Nuclear/Cytosol Fractionation Kit(BioVision Inc.、#K266-100)を用いて、キット添付のプロトコールに従って実施した。
4.1.2 ビオチンが結合したDNAプローブの調製および結合反応
本実施例において使用したビオチン化オリゴヌクオレチドは、DNA合成機(アプライドバイオシステムズ製、#394)用いてホスホロアミダイト法により合成した。操作は、DNA合成機に添付されている説明書に従って実施した。得られた合成産物を、逆相クロマトグラフィー等を用いたHPLC法により精製し、目的のポリヌクレオチドを得た。続いて、得られた一本鎖のビオチン化オリゴヌクレオチド(+)鎖および(-)鎖を95℃で15分間熱変性し、その後1時間かけて25℃に徐冷し、二本鎖のDNAプローブを作製した。最終的に、二本鎖のDNAプローブを、ゲル濃度20%のポリアクリルアミド電気泳動を用いて精製した。
反応は、非特異的な結合を抑えるため、50ng/μLのPoly(dI・dC)(Pierce社(#20148))を加えた1×Binding Buffer(Pierce社(#20148))20μL中で行い、核タンパク質抽出液(2~4μg)とビオチンが結合したDNAプローブ(20pmol)を加え、室温で20分間実施した。
4.2 電気泳動および転写反応
上述の反応液20μLにLoading buffer(Pierce社(#20148))を5μL加え、予め氷冷した6%TBE-PAGEゲル(TEFCO社(#BB-060K))を用いて、100V定圧で、反応サンプルの電気泳動を行った。泳動バッファーには、0.5×TBE緩衝液(TEFCO社(#06-314))を使用した。ブロモフェノールブルー色素が、ゲルの全長の3分の2まで流れたところで電気泳動を止め、ナイロンメンブレン(GE Healthcare社(#RPN1210))に、380mAで30分間転写した。転写後、ビオチンが結合したDNAプローブをナイロンメンブレンに完全に結合させるため、UVP社のUVLMS-38 EL Seriesを用いてUV(254nm、8分間)を照射し、クロスリンクさせた。
上述の反応液20μLにLoading buffer(Pierce社(#20148))を5μL加え、予め氷冷した6%TBE-PAGEゲル(TEFCO社(#BB-060K))を用いて、100V定圧で、反応サンプルの電気泳動を行った。泳動バッファーには、0.5×TBE緩衝液(TEFCO社(#06-314))を使用した。ブロモフェノールブルー色素が、ゲルの全長の3分の2まで流れたところで電気泳動を止め、ナイロンメンブレン(GE Healthcare社(#RPN1210))に、380mAで30分間転写した。転写後、ビオチンが結合したDNAプローブをナイロンメンブレンに完全に結合させるため、UVP社のUVLMS-38 EL Seriesを用いてUV(254nm、8分間)を照射し、クロスリンクさせた。
4.3 ナイロンメンブレン上のDNAプローブの検出
ナイロンメンブレンを、ブッロキング緩衝液(Pierce社(#20148))により、室温下で15分間ブロッキングした。その後、ストレプトアビジン-HRPコンジュゲート溶液(Pierce社(#20148))とナイロンメンブレンを室温で30分間インキュベートした。インキュベートの後、ナイロンメンブレンを、0.5% Tween20を含むTBS溶液(バイオラッド社、#170-6435)を用いて洗浄し、西洋ワサビペルオキシダーゼ(HRP)と発光物質との酵素反応により、ナイロンメンブレン上のDNAプローブを検出した。発光物質の検出は、バイオラッド社のChemi Doc XRSを使用し、検出した。被験物質と接触させたDNAプローブを、被験物質と接触させていない対照群と比較することにより、ラクリチンの転写調節因子を確認することができる。
ナイロンメンブレンを、ブッロキング緩衝液(Pierce社(#20148))により、室温下で15分間ブロッキングした。その後、ストレプトアビジン-HRPコンジュゲート溶液(Pierce社(#20148))とナイロンメンブレンを室温で30分間インキュベートした。インキュベートの後、ナイロンメンブレンを、0.5% Tween20を含むTBS溶液(バイオラッド社、#170-6435)を用いて洗浄し、西洋ワサビペルオキシダーゼ(HRP)と発光物質との酵素反応により、ナイロンメンブレン上のDNAプローブを検出した。発光物質の検出は、バイオラッド社のChemi Doc XRSを使用し、検出した。被験物質と接触させたDNAプローブを、被験物質と接触させていない対照群と比較することにより、ラクリチンの転写調節因子を確認することができる。
図3に示すように、ラクリチン遺伝子の翻訳領域の上流121~130塩基、121~140塩基、121~149塩基の各DNAを用いたゲルシフトアッセイの結果、特異的なバンドのシフトが認められた。したがって、それぞれのDNAに、ラクリチン遺伝子の転写調節を行う因子が結合することが確認された。また、実線矢印で示されるとおり、4種類の異なる位置に、バンドが検出されたことから、配列番号3、4および5で表されるヌクレオチドのそれぞれに、異なるタンパク質が結合すると考えられた。
実施例5 スクリーニングキット
ラクリチン遺伝子の転写因子またはドライアイの予防もしくは治療薬のスクリーニングキットは、実施例2で用いた以下の試薬を、それぞれ1.5mlのポリプロピレン製遠心分離チューブに格納して製造する。
1.pSLG-test(0.149kb) 50μg
2.pSLG-test(ネガティブコントロール) 50μg
3.pSLR-SV40(内部標準) 50μg
ラクリチン遺伝子の転写因子またはドライアイの予防もしくは治療薬のスクリーニングキットは、実施例2で用いた以下の試薬を、それぞれ1.5mlのポリプロピレン製遠心分離チューブに格納して製造する。
1.pSLG-test(0.149kb) 50μg
2.pSLG-test(ネガティブコントロール) 50μg
3.pSLR-SV40(内部標準) 50μg
実施例6 ラクリチン遺伝子の転写因子の同定
6.1 限外ろ過膜によるバッファー置換
Microcon Ultracel YM-10(Millipore社、#42421)の限外濾過膜を用いて、核タンパク質抽出液を濃縮する。濃縮物を、以下のBinding bufferに希釈し、さらに遠心濃縮を2回繰り返すことにより、溶液をBinding bufferに置換する。その後、核タンパク質抽出液を20000×gで10分間遠心し、上清を結合実験に用いる。
(Binding buffer)
20mM HEPES(pH7.9)
80mM KCl(洗浄bufferは300 mM)
1mM MgCl2
0.2mM EDTA
0.1% Triton X-100
0.5mM DTT
10% glycerol
Protease inhibitor(Complete,Mini EDTA-free,Roche)
6.1 限外ろ過膜によるバッファー置換
Microcon Ultracel YM-10(Millipore社、#42421)の限外濾過膜を用いて、核タンパク質抽出液を濃縮する。濃縮物を、以下のBinding bufferに希釈し、さらに遠心濃縮を2回繰り返すことにより、溶液をBinding bufferに置換する。その後、核タンパク質抽出液を20000×gで10分間遠心し、上清を結合実験に用いる。
(Binding buffer)
20mM HEPES(pH7.9)
80mM KCl(洗浄bufferは300 mM)
1mM MgCl2
0.2mM EDTA
0.1% Triton X-100
0.5mM DTT
10% glycerol
Protease inhibitor(Complete,Mini EDTA-free,Roche)
6.2 DNA結合ビーズの作製
Streptavidin Sepharose High Performanceビーズ(GE Healthcare社、#17-5113-01)をBinding bufferで3回洗浄し、50%スラリーとする。続いて、洗浄したスラリー20μLと二本鎖DNA100 pmol(4.1.2で作製したもの)をBinding buffer 500μLに加え、4℃で2時間ゆっくりと攪拌転倒し、DNA結合ビーズを作製する。その後、このDNA結合ビーズを800×gで30秒間の遠心に供し、Binding bufferで3回洗浄する。さらに、洗浄したDNA結合ビーズに、400μLのBinding bufferおよび100μLのNanoBio Blocker(ナノビオテック社、#NBP-10701)を加え、4℃で16時間のブロッキング反応を行う。最後に、DNAを結合したビーズを、Binding bufferで3回洗浄し、試験に使用する。
Streptavidin Sepharose High Performanceビーズ(GE Healthcare社、#17-5113-01)をBinding bufferで3回洗浄し、50%スラリーとする。続いて、洗浄したスラリー20μLと二本鎖DNA100 pmol(4.1.2で作製したもの)をBinding buffer 500μLに加え、4℃で2時間ゆっくりと攪拌転倒し、DNA結合ビーズを作製する。その後、このDNA結合ビーズを800×gで30秒間の遠心に供し、Binding bufferで3回洗浄する。さらに、洗浄したDNA結合ビーズに、400μLのBinding bufferおよび100μLのNanoBio Blocker(ナノビオテック社、#NBP-10701)を加え、4℃で16時間のブロッキング反応を行う。最後に、DNAを結合したビーズを、Binding bufferで3回洗浄し、試験に使用する。
6.3 DNA結合ビーズと核タンパク質抽出液のインキュベーション
DNA結合ビーズ 20μL(50%スラリー)およびdI-dC 10μgを、Binding bufferに置換した核タンパク質抽出液500μL(100μg)に加える。この混合物を室温で30分間振盪し、DNA結合ビーズに核タンパク質を吸着させる。その後、800×gで60秒間遠心して、DNA結合ビーズと上清(未吸着)とに分ける。
DNA結合ビーズ 20μL(50%スラリー)およびdI-dC 10μgを、Binding bufferに置換した核タンパク質抽出液500μL(100μg)に加える。この混合物を室温で30分間振盪し、DNA結合ビーズに核タンパク質を吸着させる。その後、800×gで60秒間遠心して、DNA結合ビーズと上清(未吸着)とに分ける。
6.4 結合タンパク質の溶出
タンパク質が結合したDNAビーズを、Binding bufferのKCl濃度を300 mMに変更した洗浄バッファーを用いて、2回洗浄する。さらに通常のBinding bufferで1回洗浄し、最終的に、洗浄したビーズに2× SDS-PAGE sampleバッファーを30μL加え、65℃で15分間処理した後、遠心後の上清を泳動用サンプル(吸着サンプル)とする。
(2× SDS-PAGE sampleバッファー)
0.125M Tris-HCl(pH6.8)
100mM DTT
4% SDS
10% Sucrose
0.004% Bromophenol blue
タンパク質が結合したDNAビーズを、Binding bufferのKCl濃度を300 mMに変更した洗浄バッファーを用いて、2回洗浄する。さらに通常のBinding bufferで1回洗浄し、最終的に、洗浄したビーズに2× SDS-PAGE sampleバッファーを30μL加え、65℃で15分間処理した後、遠心後の上清を泳動用サンプル(吸着サンプル)とする。
(2× SDS-PAGE sampleバッファー)
0.125M Tris-HCl(pH6.8)
100mM DTT
4% SDS
10% Sucrose
0.004% Bromophenol blue
6.5 吸着タンパク質の同定
吸着サンプルを、常法に従いSDSポリアクリルアミドゲル電気泳動法により泳動分離する。続いて、銀染色により、吸着したタンパク質のバンドを検出する。その後、検出したバンドを切り抜き、トリプシンでインゲル消化し、抽出したペプチドを、質量分析計ultraflex TOF/TOF(ブルカー・ダルトニクス社)にて測定する。吸着したタンパク質は、測定したスペクトルデータを用いて、NCBInrのヒトの登録配列に対してMS/MS Ion search分析を行うことにより同定できる。
吸着サンプルを、常法に従いSDSポリアクリルアミドゲル電気泳動法により泳動分離する。続いて、銀染色により、吸着したタンパク質のバンドを検出する。その後、検出したバンドを切り抜き、トリプシンでインゲル消化し、抽出したペプチドを、質量分析計ultraflex TOF/TOF(ブルカー・ダルトニクス社)にて測定する。吸着したタンパク質は、測定したスペクトルデータを用いて、NCBInrのヒトの登録配列に対してMS/MS Ion search分析を行うことにより同定できる。
本発明によれば、ラクリチン遺伝子の転写調節因子を効率的に選別することができる。選別された転写調節因子は、ラクリチンの発現を促進させるために使用することができる。ラクリチンは糖タンパクであるため、人工的に生体内に存在するラクリチンと同じものを産生することは難しい。ラクリチン遺伝子の転写調節因子を用いてラクリチンの発現を促進させることにより、このような問題点を容易に解決することができる。
(配列表の説明)
配列番号1:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号2:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号3:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号4:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号5:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号6:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号7:ヒトのラクリチン遺伝子の塩基配列
配列番号8:実施例1で使用したクローニング用PCRプライマー
配列番号9:実施例1で使用したクローニング用PCRプライマー
配列番号10:実施例2で使用したクローニング用PCRプライマー
配列番号11:実施例2で使用したクローニング用PCRプライマー
配列番号12:実施例2で使用したクローニング用PCRプライマー
配列番号13:実施例2で使用したクローニング用PCRプライマー
配列番号14:実施例2で使用したクローニング用PCRプライマー
配列番号15:実施例2で使用したクローニング用PCRプライマー
配列番号16:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号17:実施例2で使用したクローニング用PCRプライマー
配列番号18:実施例2で使用したクローニング用PCRプライマー
配列番号19:実施例2で使用したクローニング用PCRプライマー
本出願は、日本で出願された特願2009-221551を基礎としておりそれらの内容は本明細書に全て包含されるものである。
配列番号1:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号2:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号3:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号4:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号5:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号6:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号7:ヒトのラクリチン遺伝子の塩基配列
配列番号8:実施例1で使用したクローニング用PCRプライマー
配列番号9:実施例1で使用したクローニング用PCRプライマー
配列番号10:実施例2で使用したクローニング用PCRプライマー
配列番号11:実施例2で使用したクローニング用PCRプライマー
配列番号12:実施例2で使用したクローニング用PCRプライマー
配列番号13:実施例2で使用したクローニング用PCRプライマー
配列番号14:実施例2で使用したクローニング用PCRプライマー
配列番号15:実施例2で使用したクローニング用PCRプライマー
配列番号16:ヒトのラクリチン遺伝子の転写調節領域の部分塩基配列
配列番号17:実施例2で使用したクローニング用PCRプライマー
配列番号18:実施例2で使用したクローニング用PCRプライマー
配列番号19:実施例2で使用したクローニング用PCRプライマー
本出願は、日本で出願された特願2009-221551を基礎としておりそれらの内容は本明細書に全て包含されるものである。
Claims (13)
- 以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を用いることを特徴とする、ラクリチン遺伝子の転写調節因子のスクリーニング方法。 - 前記ポリヌクレオチドが配列番号1で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 前記ポリヌクレオチドが配列番号2で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 前記ポリヌクレオチドが配列番号3で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 前記ポリヌクレオチドが配列番号4で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 前記ポリヌクレオチドが配列番号5で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 前記ポリヌクレオチドが配列番号16で表される塩基配列からなるものである、請求項1記載のスクリーニング方法。
- 請求項1記載のスクリーニング方法であって、以下の工程:
(a)前記ポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体と被験物質とを接触させる工程、
(b)前記被験物質を接触させたポリヌクレオチド、ベクター、レポータープラスミドまたは形質転換体における被験物質とポリヌクレオチドとの結合を調べ、被験物質を接触させない対照と比較する工程、および
(c)前記比較結果に基づいて、ポリヌクレオチドに結合する因子を選択する工程
を包含する、方法。 - 前記ポリヌクレオチドが、ビオチンが結合したDNAプローブであり、そして前記被験物質が核タンパク質抽出液である、請求項8記載の方法。
- 以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ラクリチン遺伝子の転写調節因子のスクリーニング用キット。 - ドライアイの予防または治療薬のスクリーニング方法であって、以下:
A)レポータープラスミドであって、配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチドおよびレポーター遺伝子を含有する、レポータープラスミド;または
B)当該レポータープラスミドを導入した形質転換体
を用いることを特徴とする、方法。 - 以下:
a)配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含むポリヌクレオチド;
b)当該ポリヌクレオチドを含有するベクター;
c)当該ポリヌクレオチドおよびレポーター遺伝子を含有するレポータープラスミド;または
d)当該ベクターもしくはレポータープラスミドを導入した形質転換体
を含む、ドライアイの予防または治療薬のスクリーニングキット。 - 配列番号6で表される塩基配列の中から選ばれる連続する10~66塩基の塩基配列からなり、かつ配列番号1~5、16のいずれかで表される塩基配列を含む、ポリヌクレオチド。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-221551 | 2009-09-25 | ||
JP2009221551 | 2009-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011037196A1 true WO2011037196A1 (ja) | 2011-03-31 |
Family
ID=43795940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066578 WO2011037196A1 (ja) | 2009-09-25 | 2010-09-24 | ラクリチン遺伝子の転写調節因子のスクリーニング方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011037196A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004536570A (ja) * | 2001-02-20 | 2004-12-09 | ユニバーシティ オブ バージニア パテント ファウンデーション | 眼涙増殖因子様タンパク質 |
JP2006129724A (ja) * | 2004-11-02 | 2006-05-25 | Senju Pharmaceut Co Ltd | ラクリチン活性を有する化合物のスクリーニング方法 |
JP2007537260A (ja) * | 2004-05-13 | 2007-12-20 | ユニバーシティ オブ バージニア パテント ファウンデーション | 眼細胞生存の促進におけるラクリチンの使用 |
WO2008105454A1 (ja) * | 2007-02-28 | 2008-09-04 | Senju Pharmaceutical Co., Ltd. | ラクリチン高発現細胞 |
WO2009116639A1 (ja) * | 2008-03-19 | 2009-09-24 | 千寿製薬株式会社 | ラクリチンの部分ペプチド |
-
2010
- 2010-09-24 WO PCT/JP2010/066578 patent/WO2011037196A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004536570A (ja) * | 2001-02-20 | 2004-12-09 | ユニバーシティ オブ バージニア パテント ファウンデーション | 眼涙増殖因子様タンパク質 |
JP2007537260A (ja) * | 2004-05-13 | 2007-12-20 | ユニバーシティ オブ バージニア パテント ファウンデーション | 眼細胞生存の促進におけるラクリチンの使用 |
JP2006129724A (ja) * | 2004-11-02 | 2006-05-25 | Senju Pharmaceut Co Ltd | ラクリチン活性を有する化合物のスクリーニング方法 |
WO2008105454A1 (ja) * | 2007-02-28 | 2008-09-04 | Senju Pharmaceutical Co., Ltd. | ラクリチン高発現細胞 |
WO2009116639A1 (ja) * | 2008-03-19 | 2009-09-24 | 千寿製薬株式会社 | ラクリチンの部分ペプチド |
Non-Patent Citations (1)
Title |
---|
NAKAJIMA, T. ET AL.: "Establishment of an appropriate animal model for lacritin studies: cloning and characterization of lacritin in monkey eyes.", EXPERIMENTAL EYE RESEARCH, vol. 85, 2007, pages 651 - 658, XP002571160, DOI: doi:10.1016/j.exer.2007.07.019 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mita et al. | LINE-1 protein localization and functional dynamics during the cell cycle | |
Bertling et al. | Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells | |
Young et al. | Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A' | |
Chen et al. | Translational control by DHX36 binding to 5′ UTR G-quadruplex is essential for muscle stem-cell regenerative functions | |
US20160282354A1 (en) | Compositions and methods for selecting a treatment for b-cell neoplasias | |
US8211635B2 (en) | P53 modulator and cancer target | |
JP2015528295A (ja) | がんの診断及び治療方法 | |
Smith et al. | A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli | |
McKay et al. | Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA | |
WO2011027308A1 (en) | Novel tumor markers | |
JP2019106996A (ja) | タンパク質の安定性を測定する方法およびその使用 | |
Nguyen et al. | Establishment of a NanoBiT-based cytosolic Ca2+ sensor by optimizing calmodulin-binding motif and protein expression levels | |
Li et al. | Nuclear localization of Desmoplakin and its involvement in telomere maintenance | |
Gray et al. | Engineering a synthetic cell panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2 | |
US20120135879A1 (en) | Method and Composition for Cancer Diagnosis and Treatment | |
US20220281931A1 (en) | Chemically inducible polypeptide polymerization | |
Fontana et al. | Suggestive evidence on the involvement of polypyrimidine-tract binding protein in regulating alternative splicing of MAP/microtubule affinity-regulating kinase 4 in glioma | |
Yin et al. | Rootletin prevents Cep68 from VHL-mediated proteasomal degradation to maintain centrosome cohesion | |
Solovyeva et al. | Integrative proteogenomics for differential expression and splicing variation in a DM1 mouse model | |
Cummins et al. | Elongin C is a mediator of Notch4 activity in human renal tubule cells | |
WO2011027311A2 (en) | Novel tumor markers | |
WO2011037196A1 (ja) | ラクリチン遺伝子の転写調節因子のスクリーニング方法 | |
Méreau et al. | A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis | |
Maita et al. | A split luciferase-based reporter for detection of a cellular macromolecular complex | |
JP7051087B2 (ja) | クロマチンの異常凝縮の検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10818868 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |