[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011037022A1 - 高電圧回路の異常検出装置及び異常検出方法 - Google Patents

高電圧回路の異常検出装置及び異常検出方法 Download PDF

Info

Publication number
WO2011037022A1
WO2011037022A1 PCT/JP2010/065527 JP2010065527W WO2011037022A1 WO 2011037022 A1 WO2011037022 A1 WO 2011037022A1 JP 2010065527 W JP2010065527 W JP 2010065527W WO 2011037022 A1 WO2011037022 A1 WO 2011037022A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
rectangular wave
circuit
wave pulse
measurement point
Prior art date
Application number
PCT/JP2010/065527
Other languages
English (en)
French (fr)
Inventor
佑一 原
典子 星野
剛 森田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201080037242.8A priority Critical patent/CN102483436B/zh
Priority to JP2011532960A priority patent/JP5170318B2/ja
Priority to EP10818697.4A priority patent/EP2482088B1/en
Priority to US13/391,718 priority patent/US8749247B2/en
Publication of WO2011037022A1 publication Critical patent/WO2011037022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to an abnormality detection device and an abnormality detection method for detecting a ground fault of a high-voltage circuit mounted on a vehicle and a looseness of a fastening portion that mechanically fixes an electric wire or the like.
  • Japanese Patent Laid-Open No. 2003-250201 discloses that a positive terminal of a high-voltage DC power source provided in an electric vehicle is connected to one end of a capacitor, and a rectangular wave signal is applied to a measurement point on the other end of the capacitor. A technique for detecting a ground fault of a DC power source by detecting a voltage signal generated at the measurement point is disclosed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an abnormality detection device and method for a high voltage circuit capable of detecting a ground fault and looseness of a fastening portion with high accuracy. It is to be.
  • a high-voltage circuit that detects a ground fault of a high-voltage circuit including a direct-current power supply and an inverter circuit connected to the direct-current power supply via a fastening portion and looseness of the fastening portion.
  • An anomaly detection apparatus and method In the abnormality detection apparatus and method of the high voltage circuit, a first capacitor having one end connected to the positive terminal of the DC power supply and the other end serving as a measurement point is provided, and a rectangular wave pulse is output to the measurement point, When the rectangular wave pulse signal becomes the first phase, the first voltage generated at the measurement point is measured, and when the rectangular wave pulse signal becomes the second phase different from the first phase.
  • a series connection circuit of means is provided, and a ground fault of the DC power source is detected based on a differential voltage obtained in a state where the switch means is opened, and when the ground fault is not detected, the switch means is Find in a closed state It was based on the difference voltage, detecting the loosening state of the fastening portion.
  • FIG. 1 is a block diagram showing a configuration of a high voltage circuit abnormality detection device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an abnormality detection processing procedure of the abnormality detection apparatus for a high voltage circuit according to an embodiment of the present invention.
  • FIG. 3 is a determination table showing the relationship between the magnitude of the differential voltage Vp-p, the decrease in insulation resistance, and the occurrence of loosening of the fastening portion in the high voltage circuit abnormality detection device according to an embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing a change in the differential voltage Vp-p in the abnormality detection device for a high voltage circuit according to an embodiment of the present invention.
  • FIG. 4A shows an abnormality in the insulation resistance when SW1 is off.
  • (B) shows a case where the fastening portion is not loosened when SW1 is on
  • (c) shows a case where the fastening portion is loose when SW1 is on.
  • the high voltage circuit A includes a DC power source 1 and an inverter circuit 2, and converts DC power output from the DC power source 1 into AC power by the inverter circuit 2. Electric power is supplied to a drive motor (not shown) provided in an electric vehicle, a hybrid vehicle, or the like.
  • Fastening portion p2 for electrically connecting DC power supply 1 and inverter circuit 2 between the positive side terminal of DC power supply 1 and the positive side terminal of inverter circuit 2 by mechanical fixing or fastening of electric wires, terminals, or the like. Is provided.
  • the abnormality detection device 3 is a device that detects a ground fault of the high voltage circuit A and a looseness of the fastening portion p2, and the first circuit portion 3a connected to the plus side terminal of the DC power source 1. And a second circuit portion 3b connected to the plus side terminal of the inverter circuit 2.
  • the first circuit unit 3a includes a control circuit 4, a coupling capacitor C1 (first capacitor), buffer amplifiers 5 and 6, a resistor R1, and a voltage measurement circuit 18.
  • the measurement circuit 18 is connected to the ground.
  • the other end of the coupling capacitor C1 is set as a measurement point p1.
  • the voltage measurement circuit 18 includes a resistor R2 and a capacitor C3 connected in series with each other.
  • the resistor R2 has one end connected to the measurement point p1 and the other end connected to the capacitor C3.
  • the capacitor C3 has one end connected to the resistor R2 and the other end grounded to the ground.
  • the control circuit 4 outputs a rectangular wave pulse signal to the measurement point p1 and measures the voltage generated at the measurement point p1 to cause a ground fault (decrease in insulation resistance) in the high voltage circuit A. Detect whether or not.
  • the control circuit 4 outputs an output unit (pulse output means) 16 that outputs a rectangular wave pulse signal and a voltage signal output from the voltage measurement circuit 18 (a voltage signal generated at a connection point p3 between the resistor R2 and the capacitor C3).
  • An A / D converter 17 that performs A / D conversion, and a CPU 11, RAM 12, ROM 13, timer 14, and counter 15 serving as a control center are provided.
  • a buffer amplifier 5 is provided on the output side of the output unit 16, and a buffer amplifier 6 is provided on the input side of the A / D converter 17. The output terminal of the buffer amplifier 5 is connected to the measurement point p1 via the resistor R1.
  • the second circuit unit 3b is a series connection circuit including a capacitor C2 (second capacitor) and a switch SW1 (switch means) connected in series with each other.
  • the capacitance of the capacitor C2 is set larger than the capacitance of the coupling capacitor C1.
  • One end of the capacitor C2 is connected to the plus side terminal of the inverter circuit 2 without passing through the fastening portion p2 (connected to the plus side terminal of the DC power source 1 through the fastening portion p2), and the other end is connected to one end of the switch SW1. It is connected to the.
  • the switch SW1 has one end connected to the capacitor C2 and the other end grounded to the ground. The switch SW1 is turned on / off under the control of the CPU 11.
  • the CPU 11 sets the frequency and duty ratio (for example, 50%) of the rectangular wave pulse signal output to the measurement point p1, and from the output unit 16 with the switch SW1 turned off (open circuit).
  • a rectangular wave pulse signal is output at the above frequency and duty ratio, and the voltage generated at the measurement point p1 at this time is measured to determine whether or not a ground fault has occurred in the high voltage circuit A.
  • the CPU 11 causes the rectangular wave pulse signal to be output from the output unit 16 with the switch SW1 turned on (closed), and at this time, the voltage generated at the measurement point p1 is measured to loosen the fastening unit p2. Whether or not has occurred is determined.
  • the loosened or loosened state of the fastening portion is, for example, a site where two or more elements are electrically connected by mechanical fixing or fastening means such as loosening of the bolt when a wire, a terminal, or the like is bolted.
  • mechanical fixing or fastening means such as loosening of the bolt when a wire, a terminal, or the like is bolted.
  • the rectangular wave pulse signal changes from the H level to the L level at an odd multiple, the first voltage generated at the measurement point p1 is measured, and the rectangular wave pulse signal is a second phase different from the first phase.
  • the duty ratio is set to 50%, the second voltage generated at the measurement point p1 at a time when the rectangular wave pulse signal changes from L level to H level at an even multiple of T / 2
  • a function as voltage measuring means for obtaining a differential voltage Vp-p between the first voltage and the second voltage.
  • the CPU 11 functions as a ground fault detection unit that detects a ground fault of the DC power source 1 based on the differential voltage Vp-p measured and calculated as described above in a state where the switch SW1 is turned off (open circuit). Is provided. Further, the CPU 11 performs the fastening portion based on the differential voltage Vp-p measured and calculated as described above in a state where the switch SW1 is turned on (closed) when the ground fault of the DC power supply 1 is not detected. It has a function as a loose state detection means for detecting the looseness of p2.
  • step S11 the CPU 11 turns off the switch SW1.
  • step S ⁇ b> 12 the CPU 11 increases the rectangular wave pulse signal output from the output unit 16 from 0 [V] to E [V].
  • the voltage of this rectangular wave pulse signal is supplied to the measurement point p1, which is the other end of the coupling capacitor C1, via the buffer amplifier 5 and the resistor R1.
  • the rectangular wave pulse signal output from the output unit 16 is a signal with a duty ratio of 50% that varies from 0 to E [V].
  • step S13 the CPU 11 determines that the time T / 2 has elapsed from the time (time t1) when the rectangular wave pulse signal is raised from 0 [V] to E [V] (first phase: time t1 + T / 2).
  • the voltage Vh (first voltage) generated at the measurement point p1 is detected.
  • the voltage generated at the measurement point p1 is input to the A / D converter 17 via the resistor R2 and the buffer amplifier 6, and the CPU 11 determines the measurement point p1 based on the voltage data input to the A / D converter 17.
  • the resulting voltage Vh is detected.
  • step S14 the CPU 11 lowers the rectangular wave pulse signal output from the output unit 16 from E [V] to 0 [V]. Therefore, the voltage supplied to the coupling capacitor C1 at this time is 0 [V].
  • step S15 the CPU 11 detects the voltage Vl (second voltage) generated at the measurement point p1 when the time T has elapsed from the time t1 (second phase: time t1 + T).
  • step S17 the CPU 11 compares the differential voltage Vp-p obtained in the process of step S16 with the first reference voltage Vref1 set in advance.
  • the CPU 11 determines that the differential voltage Vp-p is lower than the first reference voltage Vref1 (Vp-p ⁇ Vref1) (YES in step S17)
  • the CPU 11 insulates the high voltage circuit A from grounding or the like. It is determined that an abnormality has occurred, and in step S18, the operator is notified of the occurrence of a ground fault.
  • step S17 the CPU 11 determines that the differential voltage Vp-p is equal to or higher than the first reference voltage Vref1 (Vp-p ⁇ Vref1). (NO in step S17), the CPU 11 determines that an insulation abnormality such as a ground fault has not occurred in the high voltage circuit A, and proceeds to a process of detecting looseness of the fastening portion p2.
  • step S19 the CPU 11 turns on the switch SW1. That is, the high voltage side terminal of the inverter circuit 2 is connected to the ground via the capacitor C2.
  • step S20 the CPU 11 increases the rectangular wave pulse signal output from the output unit 16 from 0 [V] to E [V].
  • the voltage of this rectangular wave pulse signal is supplied to the measurement point p1, which is the other end of the coupling capacitor C1, via the buffer amplifier 5 and the resistor R1.
  • step S21 the CPU 11 determines that the time T / 2 has elapsed from the time (time t2) when the rectangular wave pulse signal is raised from 0 [V] to E [V] (first phase: time t2 + T / 2).
  • the voltage Vh (first voltage) generated at the measurement point p1 is detected. That is, the voltage generated at the measurement point p1 is input to the A / D converter 17 via the resistor R2 and the buffer amplifier 6, and the CPU 11 determines the measurement point based on the voltage data input to the A / D converter 17.
  • the voltage Vh generated at p1 is detected.
  • step S22 the CPU 11 lowers the rectangular wave pulse signal output from the output unit 16 from E [V] to 0 [V]. Therefore, the voltage supplied to the coupling capacitor C1 at this time is 0 [V].
  • step S23 the CPU 11 detects the voltage Vl (second voltage) generated at the measurement point p1 when the time T has elapsed from the time t2 (second phase: time t2 + T).
  • step S25 the CPU 11 compares the differential voltage Vp-p obtained in step S24 with the preset second reference voltage Vref2.
  • the CPU 11 determines that the differential voltage Vp-p is equal to or lower than the second reference voltage Vref2 (Vp-p ⁇ Vref2) (YES in step S25)
  • the operator is notified that the loosening of the fastening portion p2 has not occurred. That is, when no looseness occurs at the fastening portion p2, the voltage at the measurement point p1 is affected by the capacitor C2, and the differential voltage Vp-p becomes small.
  • the voltage difference between the on-duty state and the off-duty state becomes small, and the differential voltage Vp-p becomes equal to or lower than the second reference voltage Vref2, so that the fastening portion p2 loosens. Can be confirmed.
  • step S25 when the CPU 11 determines in step S25 that the differential voltage Vp-p exceeds the second reference voltage Vref2 (Vp-p> Vref2) (NO in step S25), the CPU 11 In step S26, it is determined that looseness has occurred, and the operator is informed that a fastening abnormality has occurred. That is, when looseness occurs in the fastening portion p2, a capacitance is generated in the fastening portion p2, and the combined capacitance between the measurement point p1 and the ground is reduced. Vp-p increases. In this case, as shown in FIG.
  • the voltage difference between the on-duty and off-duty becomes large, and the differential voltage Vp-p exceeds the second reference voltage Vref2, so that the fastening portion p2 is loosened. It can be confirmed that it has occurred. That is, as shown in the determination table of FIG. 3, when the differential voltage Vp-p exceeds the second reference voltage Vref2 in a state where the switch SW1 is turned on, the CPU 11 is loosened at the fastening portion p2. This is determined to be informed to the operator.
  • the series connection circuit in which the capacitor C2 and the switch SW1 are connected in series is provided between the inverter circuit 2 and the ground, and the switch SW1.
  • the switch SW1 In the state where is turned off, it is determined whether or not a ground fault has occurred in the high voltage circuit A by outputting a rectangular wave pulse signal to the measurement point p1, and further a condition that no ground fault has occurred below, when the switch SW1 is turned on and the differential voltage Vp-p when the rectangular wave pulse signal is output to the measurement point p1 in this state exceeds the second reference voltage Vref2, the fastening portion p2 is loosened.
  • the capacitance of the capacitor C2 is set larger than that of the coupling capacitor C1, the change in the differential voltage Vp-p can be increased when the fastening portion p2 is loosened. The accuracy of detecting the looseness of the fastening portion p2 can be improved.
  • the duty ratio of the rectangular wave pulse output to the measurement point p1 is set to 50%, the voltage Vh when the rectangular wave pulse changes from the H level to the L level, and the rectangular wave pulse changes from the L level to the H level. Since the differential voltage Vp-p is obtained based on the current voltage Vl, the difference between the on-duty voltage and the off-duty voltage can be obtained accurately, and the accuracy of ground fault detection and loosening detection of the fastening portion can be improved. Can be improved.
  • a rectangular wave pulse signal is output to the measurement point with the switch means opened (off), and the rectangular wave pulse signal is A differential voltage Vp-p between the first voltage detected when the phase becomes 1 and the second voltage detected when the rectangular wave pulse signal becomes the second phase is obtained. Then, based on the magnitude of the differential voltage Vp-p, it is detected whether or not a ground fault has occurred in the high voltage circuit A. Further, when a ground fault is not detected, the switch means is closed (turned on), a rectangular wave pulse signal is output to the measurement point, and is detected when the rectangular wave pulse signal becomes the first phase.
  • a differential voltage Vp-p between the first voltage and the second voltage detected when the rectangular wave pulse signal becomes the second phase is obtained, and the fastening portion is determined based on the magnitude of the differential voltage Vp-p. Detects whether looseness has occurred. Therefore, when looseness has occurred in the fastening part that connects the DC power supply and the inverter circuit, this can be detected reliably and quickly.
  • the present invention can be used for quickly recognizing a loosening in a fastening portion that connects a high-voltage DC power source and an inverter circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

 インバータ回路(2)とグランドとの間に設けられたスイッチ(SW1)をオフとした状態で、測定点(p1)に矩形波パルスを出力し、T/2の位相で検出される電圧(Vh)と、Tの位相で検出される電圧(Vl)との差分電圧(Vp-p)を求め、この大きさに基づいて地絡の発生を検出し、更に、スイッチ(SW1)をオンとした状態で、測定点(p1)に矩形波パルスを出力し、差分電圧(Vp-p)が基準電圧(Vref2)を超えた場合に、締結部(p2)に緩みが発生しているものと判断する高電圧回路(A)の異常検出装置及びその方法。

Description

高電圧回路の異常検出装置及び異常検出方法
 本発明は、車両に搭載される高電圧回路の地絡、及び電線等を機械的に固定する締結部の緩みを検出する異常検出装置、及び異常検出方法に関する。
 特開2003-250201号公報は、電気自動車に設けられた高電圧の直流電源のプラス側端子を、コンデンサの一端側に接続し、このコンデンサの他端側となる測定点に矩形波信号を印加し、該測定点に発生する電圧信号を検出して、直流電源の地絡を検出する技術を開示している。
 上記技術は、直流電源の地絡を検出することができるものの、直流電源とインバータ回路とを接続する電線等を機械的に固定する締結部に緩みが生じた場合、これを検出することができないという欠点があった。
 本発明は、上記課題を解決するためになされたものであり、その目的は、地絡、及び締結部の緩みを高精度に検出することが可能な高電圧回路の異常検出装置及び方法を提供することである。
 本発明の一態様は、直流電源と、該直流電源と締結部を介して接続されたインバータ回路と、を備えた高電圧回路の地絡及び前記締結部の緩みを検出する、高電圧回路の異常検出装置及び方法である。該高電圧回路の異常検出装置及び方法では、一端が前記直流電源のプラス側端子に接続され、他端が測定点とされた第1コンデンサを設け、前記測定点に矩形波パルスを出力し、前記矩形波パルス信号が第1の位相となる時点で、前記測定点に生じる第1の電圧を測定し、前記矩形波パルス信号が前記第1の位相とは異なる第2の位相となる時点で、前記測定点に生じる第2の電圧を測定し、前記第1の電圧と第2の電圧との差分電圧を求め、前記インバータ回路のプラス側端子とグランドとの間に、第2コンデンサ及びスイッチ手段の直列接続回路を設け、前記スイッチ手段を開路した状態で求めた差分電圧に基づいて、前記直流電源の地絡を検出するとともに、前記地絡が検出されていないときに、前記スイッチ手段を閉路した状態で求めた差分電圧に基づいて、前記締結部の緩み状態を検出する。
図1は、本発明の一実施形態に係る高電圧回路の異常検出装置の構成を示すブロック図である。 図2は、本発明の一実施形態に係る高電圧回路の異常検出装置の、異常検出の処理手順を示すフローチャートである。 図3は、本発明の一実施形態に係る高電圧回路の異常検出装置の、差分電圧Vp-pの大きさと絶縁抵抗の低下、締結部の緩み発生の関係を示す判定表である。 図4は、本発明の一実施形態に係る高電圧回路の異常検出装置の、差分電圧Vp-pの変化を示す特性図であり、(a)はSW1オフ時で絶縁抵抗に異常が発生していない場合、(b)はSW1オン時で締結部に緩みが生じていない場合、(c)はSW1オン時で締結部に緩みが生じている場合を示す。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1に示すように、本発明に係る高電圧回路Aは、直流電源1とインバータ回路2とを備えており、直流電源1より出力される直流電力をインバータ回路2で交流電力に変換して、電気自動車やハイブリッド自動車等に設けられる駆動モータ(図示省略)等に電力を供給する。直流電源1のプラス側端子とインバータ回路2のプラス側端子との間には、電線、端子等の機械的な固定又は締結によって直流電源1とインバータ回路2とを電気的に接続する締結部p2が設けられている。
 本発明の一実施形態に係る異常検出装置3は、高電圧回路Aの地絡及び締結部p2の緩みを検出する装置であり、直流電源1のプラス側端子に接続された第1回路部3aと、インバータ回路2のプラス側端子に接続された第2回路部3bと、を備えている。
 第1回路部3aは、制御回路4と、カップリングコンデンサC1(第1コンデンサ)と、バッファアンプ5、6と、抵抗R1と、電圧測定回路18と、を備えている。
 カップリングコンデンサC1は、一端を、締結部p2を介さずに直流電源1のプラス側端子に接続され(締結部p2を介してインバータ回路2のプラス側端子に接続され)、他端を、電圧測定回路18を介してグランドに接地されている。以下、このカップリングコンデンサC1の他端を測定点p1とする。
 電圧測定回路18は、互いに直列に接続された抵抗R2及びコンデンサC3から構成される。抵抗R2は、一端を測定点p1に接続され、他端をコンデンサC3に接続されている。コンデンサC3は、一端を抵抗R2に接続され、他端をグランドに接地されている。
 制御回路4は、測定点p1に矩形波パルス信号を出力し、且つ、該測定点p1に発生する電圧を測定して、高電圧回路Aに地絡(絶縁抵抗の低下)が発生しているか否かを検出する。制御回路4は、矩形波パルス信号を出力する出力部(パルス出力手段)16と、電圧測定回路18より出力される電圧信号(抵抗R2とコンデンサC3との接続点p3に発生する電圧信号)をA/D変換するA/D変換器17と、制御中枢となるCPU11、RAM12、ROM13、タイマ14、及びカウンタ15と、を具備している。出力部16の出力側には、バッファアンプ5が設けられ、A/D変換器17の入力側には、バッファアンプ6が設けられている。バッファアンプ5の出力端子は、抵抗R1を介して測定点p1に接続されている。
 第2回路部3bは、互いに直列に接続されたコンデンサC2(第2コンデンサ)及びスイッチSW1(スイッチ手段)から構成された直列接続回路である。コンデンサC2の静電容量は、カップリングコンデンサC1の静電容量より大きく設定されている。
 コンデンサC2は、一端を、締結部p2を介さずにインバータ回路2のプラス側端子に接続され(締結部p2を介して直流電源1のプラス側端子に接続され)、他端をスイッチSW1の一端に接続されている。また、スイッチSW1は、一端をコンデンサC2に接続され、他端をグランドに接地されている。スイッチSW1は、CPU11の制御下でオン、オフ動作する。
 また、後述するようにCPU11は、測定点p1に出力する矩形波パルス信号の周波数及びデューティ比(例えば、50%)を設定し、スイッチSW1をオフ(開路)とした状態で、出力部16から矩形波パルス信号を上記周波数及びデューティ比で出力させ、このとき測定点p1に発生する電圧を測定することにより、高電圧回路Aに地絡が発生しているか否かを判定する。また、CPU11は、スイッチSW1をオン(閉路)とした状態で、上記矩形波パルス信号を出力部16から出力させ、このとき測定点p1に発生する電圧を測定することにより、締結部p2に緩みが発生しているか否かを判定する。ここで、締結部の緩み又は緩み状態とは、例えば、電線、端子等をボルト締結した場合の該ボルトの緩みなど、機械的な固定又は締結手段によって2以上の要素を電気的に接続した部位において当該接続状態が悪化すること又は悪化した状態を意味する。
 即ち、CPU11は、出力部16より出力された矩形波パルス信号が第1の位相となる時点(例えば、デューティ比を50%に設定した場合、周期Tの1/2(=T/2)の奇数倍で、矩形波パルス信号がHレベルからLレベルに変化する時点)で、測定点p1に生じる第1の電圧を測定し、矩形波パルス信号が第1の位相とは異なる第2の位相となる時点(例えば、デューティ比を50%に設定した場合、T/2の偶数倍で、矩形波パルス信号がLレベルからHレベルに変化する時点)で、測定点p1に生じる第2の電圧を測定し、且つ、第1の電圧と第2の電圧との差分電圧Vp-pを求める電圧測定手段としての機能を備える。また、CPU11は、スイッチSW1をオフ(開路)とした状態で、上記のように測定・算出した差分電圧Vp-pに基づいて、直流電源1の地絡を検出する地絡検出手段としての機能を備える。更に、CPU11は、直流電源1の地絡が検出されていないときに、スイッチSW1をオン(閉路)とした状態で、上記のように測定・算出した差分電圧Vp-pに基づいて、締結部p2の緩みを検出する緩み状態検出手段としての機能を備える。
 次に、上記のように構成された本実施形態に係る異常検出装置の動作を、図2に示すフローチャート、図3に示す判定表、及び図4に示す特性図を参照して説明する。
 始めに、ステップS11において、CPU11は、スイッチSW1をオフとする。次いで、ステップS12において、CPU11は、出力部16より出力する矩形波パルス信号を0[V]からE[V]に上昇させる。この矩形波パルス信号の電圧は、バッファアンプ5、抵抗R1を介してカップリングコンデンサC1の他端である測定点p1に供給される。なお、出力部16より出力される矩形波パルス信号は、0~E[V]で変化するデューティ比50%の信号である。
 ステップS13において、CPU11は、矩形波パルス信号を0[V]からE[V]に上昇させた時点(時刻t1)から時間T/2が経過した時点(第1の位相:時刻t1+T/2)にて、測定点p1に生じる電圧Vh(第1の電圧)を検出する。測定点p1に生じる電圧は、抵抗R2及びバッファアンプ6を介してA/D変換器17に入力され、CPU11は、A/D変換器17に入力された電圧データに基づいて、測定点p1に生じる電圧Vhを検出する。
 時刻t1から時間T/2が経過したとき、ステップS14において、CPU11は、出力部16より出力する矩形波パルス信号をE[V]から0[V]に低下させる。従って、この時点でカップリングコンデンサC1に供給される電圧は、0[V]となる。
 ステップS15において、CPU11は、時刻t1から時間Tが経過した時点(第2の位相:時刻t1+T)において、測定点p1に生じる電圧Vl(第2の電圧)を検出する。
 ステップS16において、CPU11は、ステップS13の処理で検出した電圧VhからステップS15の処理で検出した電圧Vlを減算することにより差分電圧Vp-p(=Vh-Vl)を算出する。
 ステップS17において、CPU11は、ステップS16の処理で求めた差分電圧Vp-pと、予め設定した第1基準電圧Vref1と、を比較する。そして、CPU11は、差分電圧Vp-pが第1基準電圧Vref1を下回っている(Vp-p<Vref1)と判断した場合には(ステップS17でYES)、高電圧回路Aに地絡等の絶縁異常が発生しているものと判断し、ステップS18において、地絡の発生を操作者に報知する。
 即ち、直流電源1のプラス側端子とマイナス側端子(グランド)との間には、図1に破線で示したように、仮想的に絶縁抵抗RL及び車両静電浮遊容量CLが存在しており、絶縁抵抗RLが低下すると、該絶縁抵抗RLを介して流れる電流が増加し、測定点p1の電圧が低下する。そして、CPU11は、差分電圧Vp-pが第1基準電圧Vref1を下回った時点で、操作者に地絡の発生を報知する。
 つまり、図3の判定表に示すように、CPU11は、スイッチSW1がオフとされているときに、差分電圧Vp-pが第1基準電圧Vref1を下回っている場合には、地絡が発生しているものと判断する。
 一方、図4(a)に示すように、差分電圧Vp-pが充分に大きく、ステップS17において、CPU11が、差分電圧Vp-pが第1基準電圧Vref1以上である(Vp-p≧Vref1)と判断した場合には(ステップS17でNO)、CPU11は、高電圧回路Aに地絡等の絶縁異常は発生していないと判断し、締結部p2の緩みを検出する処理に移る。
 ステップS19において、CPU11は、スイッチSW1をオンとする。即ち、インバータ回路2の高電圧側端子を、コンデンサC2を介してグランドに接続する。
 ステップS20において、CPU11は、出力部16より出力する矩形波パルス信号を0[V]からE[V]に上昇させる。この矩形波パルス信号の電圧は、バッファアンプ5、抵抗R1を介してカップリングコンデンサC1の他端である測定点p1に供給される。
 ステップS21において、CPU11は、矩形波パルス信号を0[V]からE[V]に上昇させた時点(時刻t2)から時間T/2が経過した時点(第1の位相:時刻t2+T/2)にて、測定点p1に生じる電圧Vh(第1の電圧)を検出する。即ち、測定点p1に生じる電圧は、抵抗R2及びバッファアンプ6を介してA/D変換器17に入力され、CPU11は、A/D変換器17に入力された電圧データに基づいて、測定点p1に生じる電圧Vhを検出する。
 そして、時刻t2から時間T/2が経過したとき、ステップS22において、CPU11は、出力部16より出力する矩形波パルス信号をE[V]から0[V]に低下させる。従って、この時点でカップリングコンデンサC1に供給される電圧は、0[V]となる。
 ステップS23において、CPU11は、時刻t2から時間Tが経過した時点(第2の位相:時刻t2+T)にて、測定点p1に生じる電圧Vl(第2の電圧)を検出する。
 ステップS24において、CPU11は、ステップS21の処理で検出した電圧VhからステップS23の処理で検出した電圧Vlを減算することにより差分電圧Vp-p(=Vh-Vl)を算出する。
 ステップS25において、CPU11は、ステップS24の処理で求めた差分電圧Vp-pと、予め設定した第2基準電圧Vref2と、を比較する。そして、CPU11は、差分電圧Vp-pが第2基準電圧Vref2以下となっている(Vp-p≦Vref2)と判断した場合には(ステップS25でYES)、締結部p2における緩み等の異常は発生していないものと判断し、ステップS27において、締結部p2の緩みが発生していないことを操作者に通知する。即ち、締結部p2にて緩みが発生していない場合には、測定点p1の電圧はコンデンサC2の影響を受けて、差分電圧Vp-pは小さくなる。この場合、図4(b)に示すように、オンデューティ時とオフデューティ時の電圧の差が小さくなり、差分電圧Vp-pは第2基準電圧Vref2以下となることから、締結部p2に緩みが発生していないことを確認できる。
 一方、ステップS25において、CPU11が、差分電圧Vp-pが第2基準電圧Vref2を上回った(Vp-p>Vref2)と判断した場合には(ステップS25でNO)、CPU11は、締結部p2において緩みが発生していると判断し、ステップS26において、締結異常が発生していることを操作者に報知する。即ち、締結部p2に緩みが発生している場合には、この締結部p2に静電容量が発生して、測定点p1とグランドとの間の合成静電容量が低下することから、差分電圧Vp-pは大きくなる。この場合、図4(c)に示すように、オンデューティ時とオフデューティ時の電圧の差が大きくなり、差分電圧Vp-pは第2基準電圧Vref2を上回ることから、締結部p2に緩みが発生していることを確認できる。つまり、図3の判定表に示すように、CPU11は、スイッチSW1がオンとされた状態で、差分電圧Vp-pが第2基準電圧Vref2を上回った場合には、締結部p2に緩みが発生しているものと判断し、これを操作者に報知する。
 このようにして、本実施形態に係る高電圧回路Aの異常検出装置では、インバータ回路2とグランドとの間に、コンデンサC2とスイッチSW1とが直列に接続された直列接続回路を設け、スイッチSW1をオフとした状態で、測定点p1に矩形波パルス信号を出力することにより、高電圧回路Aに地絡が発生しているか否かを判断し、更に、地絡が発生していないという条件下で、スイッチSW1をオンとし、この状態で測定点p1に矩形波パルス信号を出力した際の差分電圧Vp-pが第2基準電圧Vref2を超えた場合に、締結部p2に緩みが生じていると判断する。従って、締結部p2に緩みが発生していることを確実且つ迅速に検出することができ、締結部p2での締結が完全に外れる(断線する)前の時点でこれを認識することができ、メンテナンス作業等を先行して行うことができる。
 また、カップリングコンデンサC1よりもコンデンサC2の方が静電容量が大きく設定されているので、締結部p2に緩みが発生している場合に差分電圧Vp-pの変化を大きくすることができ、締結部p2の緩みを検出する精度を向上させることができる。
 また、測定点p1に出力する矩形波パルスのデューティ比を50%とし、この矩形波パルスがHレベルからLレベルに変化する時点の電圧Vh、及び矩形波パルスがLレベルからHレベルに変化する時点の電圧Vlに基づいて差分電圧Vp-pを求めるので、オンデューティ時の電圧とオフデューティ時の電圧の差分を正確に求めることができ、地絡検出、及び締結部の緩み検出の精度を向上させることができる。
 以上、説明した通り、本発明に係る高電圧回路Aの異常検出装置及び方法では、スイッチ手段を開路(オフ)した状態で、測定点に矩形波パルス信号を出力し、矩形波パルス信号が第1の位相となる時点で検出される第1の電圧と、矩形波パルス信号が第2の位相となる時点で検出される第2電圧との差分電圧Vp-pを求める。そして、この差分電圧Vp-pの大きさに基づいて高電圧回路Aに地絡が発生しているか否かを検出する。更に、地絡が検出されていない場合には、スイッチ手段を閉路(オン)して、測定点に矩形波パルス信号を出力し、矩形波パルス信号が第1の位相となる時点で検出される第1の電圧と、矩形波パルス信号が第2の位相となる時点で検出される第2電圧との差分電圧Vp-pを求め、この差分電圧Vp-pの大きさに基づいて締結部に緩みが発生しているか否かを検出する。従って、直流電源とインバータ回路とを接続する締結部に緩みが発生している場合には、確実且つ迅速にこれを検出することができる。
 以上、本発明の高電圧回路の異常検出装置及び方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
 本出願は、2009年9月24日に出願された日本国特許願第2009-219037号に基づく優先権を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。
 本発明は、高電圧の直流電源とインバータ回路とを接続する締結部に緩みが発生した場合に、これをいち早く認識する際に利用することができる。
 1 直流電源
 2 インバータ回路
 3 異常検出装置
 4 制御回路
 5、6 バッファアンプ
 SW1 切替スイッチ
 C1 カップリングコンデンサ(第1コンデンサ)
 C2 コンデンサ(第2コンデンサ)
 C3 コンデンサ
 11 CPU
 12 RAM
 13 ROM
 14 タイマ
 15 カウンタ
 16 出力部(パルス出力手段)
 17 A/D変換器
 18 電圧測定回路
 RL  絶縁抵抗
 CL  車両静電浮遊容量
 p1 測定点
 p2 締結部

Claims (6)

  1.  直流電源と、該直流電源と締結部を介して接続されたインバータ回路と、を備えた高電圧回路の地絡及び前記締結部の緩みを検出する、高電圧回路の異常検出装置において、
     一端が前記直流電源のプラス側端子に接続され、他端が測定点とされた第1コンデンサと、
     前記測定点に矩形波パルス信号を出力するパルス出力手段と、
     前記インバータ回路のプラス側端子とグランドとの間に設けられた、第2コンデンサ及びスイッチ手段の直列接続回路と、
     前記パルス出力手段より出力された矩形波パルス信号が第1の位相となる時点で、前記測定点に生じる第1の電圧と、前記矩形波パルス信号が前記第1の位相とは異なる第2の位相となる時点で、前記測定点に生じる第2の電圧と、を測定し、且つ、前記第1の電圧と第2の電圧との差分電圧を求める電圧測定手段と、
     前記スイッチ手段を開路した状態で、前記電圧測定手段により測定された差分電圧に基づいて、前記直流電源の地絡を検出する地絡検出手段と、
     前記地絡検出手段にて地絡が検出されていないときに、前記スイッチ手段を閉路した状態で、前記電圧測定手段により測定された差分電圧に基づいて、前記締結部の緩み状態を検出する緩み状態検出手段と、
     を備えたことを特徴とする高電圧回路の異常検出装置。
  2.  前記矩形波パルスは、デューティ比50%であり、前記第1の位相は、該矩形波パルスがHレベルからLレベルに変化する時点であり、前記第2の位相は、矩形波パルスがLレベルからHレベルに変化する時点であることを特徴とする請求項1に記載の高電圧回路の異常検出装置。
  3.  前記地絡検出手段は、予め設定した第1基準電圧と前記差分電圧とを比較し、該差分電圧が前記第1基準電圧を下回った場合に、地絡が発生していると判断することを特徴とする請求項1または請求項2のいずれかに記載の高電圧回路の異常検出装置。
  4.  前記緩み状態検出手段は、予め設定した第2基準電圧と前記差分電圧とを比較し、該差分電圧が前記第2基準電圧を上回った場合に、前記締結部に緩みが発生していると判断することを特徴とする請求項1~請求項3のいずれか1項に記載の高電圧回路の異常検出装置。
  5.  第2コンデンサは第1コンデンサよりも静電容量が大きいことを特徴とする請求項1~請求項4のいずれか1項に記載の高電圧回路の異常検出装置。
  6.  直流電源と、該直流電源と締結部を介して接続されたインバータ回路と、を備えた高電圧回路の地絡及び前記締結部の緩みを検出する、高電圧回路の異常検出方法であって、
     一端が前記直流電源のプラス側端子に接続され、他端が測定点とされた第1コンデンサを設け、
     前記測定点に矩形波パルスを出力し、
     前記矩形波パルス信号が第1の位相となる時点で、前記測定点に生じる第1の電圧を測定し、
     前記矩形波パルス信号が前記第1の位相とは異なる第2の位相となる時点で、前記測定点に生じる第2の電圧を測定し、
     前記第1の電圧と第2の電圧との差分電圧を求め、
     前記インバータ回路のプラス側端子とグランドとの間に、第2コンデンサ及びスイッチ手段の直列接続回路を設け、
     前記スイッチ手段を開路した状態で求めた差分電圧に基づいて、前記直流電源の地絡を検出するとともに、
     前記地絡が検出されていないときに、前記スイッチ手段を閉路した状態で求めた差分電圧に基づいて、前記締結部の緩み状態を検出することを特徴とする高電圧回路の異常検出方法。
PCT/JP2010/065527 2009-09-24 2010-09-09 高電圧回路の異常検出装置及び異常検出方法 WO2011037022A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080037242.8A CN102483436B (zh) 2009-09-24 2010-09-09 高电压电路的异常检测装置及异常检测方法
JP2011532960A JP5170318B2 (ja) 2009-09-24 2010-09-09 高電圧回路の異常検出装置及び異常検出方法
EP10818697.4A EP2482088B1 (en) 2009-09-24 2010-09-09 Apparatus and method for detecting abnormality of high voltage circuit
US13/391,718 US8749247B2 (en) 2009-09-24 2010-09-09 Apparatus and method for detecting abnormality of high voltage circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-219037 2009-09-24
JP2009219037 2009-09-24

Publications (1)

Publication Number Publication Date
WO2011037022A1 true WO2011037022A1 (ja) 2011-03-31

Family

ID=43795773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065527 WO2011037022A1 (ja) 2009-09-24 2010-09-09 高電圧回路の異常検出装置及び異常検出方法

Country Status (5)

Country Link
US (1) US8749247B2 (ja)
EP (1) EP2482088B1 (ja)
JP (1) JP5170318B2 (ja)
CN (1) CN102483436B (ja)
WO (1) WO2011037022A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145601A (ko) * 2014-06-20 2015-12-30 현대자동차주식회사 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030079A1 (de) * 2010-06-15 2011-12-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des Isolationswiderstandes in einem ungeerdeten elektrischen Netz
JP2012242330A (ja) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd 漏電検知装置
JP5518138B2 (ja) * 2012-07-09 2014-06-11 本田技研工業株式会社 非接地回路の地絡検知装置
AU2013295526B2 (en) 2012-07-27 2017-03-30 San Diego Gas & Electric Company System for detecting a falling electric power conductor and related methods
DE102012015911B3 (de) * 2012-08-10 2013-10-24 Audi Ag Diagnoseeinrichtung zur Überprüfung einer Steuersignalleitung
US20140071563A1 (en) * 2012-09-10 2014-03-13 Dean Solon Monitoring system for and method of preventing electrical arcs in a solar energy system
JP5705382B1 (ja) * 2013-11-22 2015-04-22 三菱電機株式会社 絶縁検出器及び電気機器
CN106375145A (zh) * 2016-08-29 2017-02-01 北京新能源汽车股份有限公司 一种局域网络通讯状态检测、故障处理方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194871A (ja) * 2001-12-28 2003-07-09 Panasonic Ev Energy Co Ltd 漏電検出装置
JP2003250201A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置
JP2004053367A (ja) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd 地絡検知回路の故障診断装置
JP2004361309A (ja) * 2003-06-06 2004-12-24 Nippon Soken Inc モータ駆動装置
JP2005233822A (ja) * 2004-02-20 2005-09-02 Denso Corp 地絡検出装置
JP2006177840A (ja) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd 地絡検出装置、地絡検出装置の診断方法
JP2009219037A (ja) 2008-03-12 2009-09-24 Fuji Xerox Co Ltd 指示システム、指示プログラム及び指示装置
JP2010181368A (ja) * 2009-02-09 2010-08-19 Mitsubishi Motors Corp バッテリパックの検査装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678151B2 (ja) * 2001-01-11 2005-08-03 日産自動車株式会社 電気車両の地絡検出装置
CN1327235C (zh) 2002-03-24 2007-07-18 淄博科汇电气有限公司 直流系统接地故障的探测方法
JP4061168B2 (ja) * 2002-10-16 2008-03-12 矢崎総業株式会社 地絡検知装置および絶縁抵抗計測装置
JP2006170714A (ja) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd 地絡検出装置、地絡検出装置の閾値設定方法
JP4830376B2 (ja) * 2005-07-11 2011-12-07 日産自動車株式会社 車両用地絡検出装置
US8004285B2 (en) * 2005-07-12 2011-08-23 Komatsu Ltd. Leakage detection device of vehicle mounted power supply system
JP4826264B2 (ja) * 2006-01-19 2011-11-30 日産自動車株式会社 地絡検出装置
JP2007198995A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd 地絡抵抗測定回路、及び地絡検出回路
KR101230223B1 (ko) 2006-04-13 2013-02-05 파나소닉 주식회사 전지 팩 및 그 단선 검지 방법
EP1909369B1 (de) * 2006-10-06 2020-05-20 Schmidhauser AG Schaltungsanordnung und Verfahren zur Isolationsüberwachung für im Betrieb befindliche Umrichteranwendungen
JP5018081B2 (ja) * 2006-12-28 2012-09-05 日産自動車株式会社 リレー故障診断装置
US7639021B2 (en) 2007-05-11 2009-12-29 Temic Automotive Of North America, Inc. Circuit and method for detecting a dielectric breakdown fault
JP4974814B2 (ja) 2007-08-29 2012-07-11 カルソニックカンセイ株式会社 車両用地絡検出回路
CN201262636Y (zh) 2008-01-04 2009-06-24 广东省电力工业局试验研究所 直流系统接地校验装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194871A (ja) * 2001-12-28 2003-07-09 Panasonic Ev Energy Co Ltd 漏電検出装置
JP2003250201A (ja) 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置
JP2004053367A (ja) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd 地絡検知回路の故障診断装置
JP2004361309A (ja) * 2003-06-06 2004-12-24 Nippon Soken Inc モータ駆動装置
JP2005233822A (ja) * 2004-02-20 2005-09-02 Denso Corp 地絡検出装置
JP2006177840A (ja) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd 地絡検出装置、地絡検出装置の診断方法
JP2009219037A (ja) 2008-03-12 2009-09-24 Fuji Xerox Co Ltd 指示システム、指示プログラム及び指示装置
JP2010181368A (ja) * 2009-02-09 2010-08-19 Mitsubishi Motors Corp バッテリパックの検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150145601A (ko) * 2014-06-20 2015-12-30 현대자동차주식회사 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법
KR101601436B1 (ko) * 2014-06-20 2016-03-09 현대자동차주식회사 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법

Also Published As

Publication number Publication date
EP2482088A1 (en) 2012-08-01
JPWO2011037022A1 (ja) 2013-02-21
EP2482088B1 (en) 2018-11-07
EP2482088A4 (en) 2017-11-22
US8749247B2 (en) 2014-06-10
US20120146656A1 (en) 2012-06-14
CN102483436A (zh) 2012-05-30
JP5170318B2 (ja) 2013-03-27
CN102483436B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5170318B2 (ja) 高電圧回路の異常検出装置及び異常検出方法
US7994799B2 (en) Insulation resistance detection system, insulation resistance detection apparatus and insulation resistance detection method
JP4280145B2 (ja) 絶縁抵抗低下検出器およびその自己診断方法
US8023234B2 (en) Method for detecting earth-fault conditions in a motor controller
US9255957B2 (en) Earth fault detection circuit and power source device
JP6512072B2 (ja) 故障検査システム
JP5385688B2 (ja) 絶縁抵抗検出装置
JP2007192674A (ja) 地絡検出装置
EP2649717B1 (en) Method and system for measuring the integrity of a power converter
US20050073320A1 (en) State detecting method and insulation resistance fall detector
JP4039156B2 (ja) 地絡検知回路の故障診断装置
JP2003250201A (ja) 車両用地絡検出装置
EP3261215A1 (en) Fault detection system for isolated two-switch exciter drive gate driver
PH12014502021B1 (en) Performance test system for protective relay apparatus
JP4092654B2 (ja) 地絡検出装置
JP2016170931A (ja) コンタクタの故障判定装置
EP2073370B1 (en) Motor control device
JP2019502116A (ja) 電気信号を電気化学エネルギー供給装置に印可するための回路構成
JP2004053365A (ja) 地絡検出装置
WO2013051100A1 (ja) エレベーターの制御装置
JP2007057319A (ja) 地絡事故点検出装置
JP3515147B2 (ja) レーザ発振器の高周波電源の位相検出による異常検出装置
JP2018179835A (ja) 検出装置
KR101120474B1 (ko) Pwm 컨버터의 전원위상 검출장치
JP2013079903A (ja) 車両の漏電検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037242.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532960

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391718

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010818697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE