WO2011037022A1 - 高電圧回路の異常検出装置及び異常検出方法 - Google Patents
高電圧回路の異常検出装置及び異常検出方法 Download PDFInfo
- Publication number
- WO2011037022A1 WO2011037022A1 PCT/JP2010/065527 JP2010065527W WO2011037022A1 WO 2011037022 A1 WO2011037022 A1 WO 2011037022A1 JP 2010065527 W JP2010065527 W JP 2010065527W WO 2011037022 A1 WO2011037022 A1 WO 2011037022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- rectangular wave
- circuit
- wave pulse
- measurement point
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/005—Testing of electric installations on transport means
- G01R31/006—Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
Definitions
- the present invention relates to an abnormality detection device and an abnormality detection method for detecting a ground fault of a high-voltage circuit mounted on a vehicle and a looseness of a fastening portion that mechanically fixes an electric wire or the like.
- Japanese Patent Laid-Open No. 2003-250201 discloses that a positive terminal of a high-voltage DC power source provided in an electric vehicle is connected to one end of a capacitor, and a rectangular wave signal is applied to a measurement point on the other end of the capacitor. A technique for detecting a ground fault of a DC power source by detecting a voltage signal generated at the measurement point is disclosed.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an abnormality detection device and method for a high voltage circuit capable of detecting a ground fault and looseness of a fastening portion with high accuracy. It is to be.
- a high-voltage circuit that detects a ground fault of a high-voltage circuit including a direct-current power supply and an inverter circuit connected to the direct-current power supply via a fastening portion and looseness of the fastening portion.
- An anomaly detection apparatus and method In the abnormality detection apparatus and method of the high voltage circuit, a first capacitor having one end connected to the positive terminal of the DC power supply and the other end serving as a measurement point is provided, and a rectangular wave pulse is output to the measurement point, When the rectangular wave pulse signal becomes the first phase, the first voltage generated at the measurement point is measured, and when the rectangular wave pulse signal becomes the second phase different from the first phase.
- a series connection circuit of means is provided, and a ground fault of the DC power source is detected based on a differential voltage obtained in a state where the switch means is opened, and when the ground fault is not detected, the switch means is Find in a closed state It was based on the difference voltage, detecting the loosening state of the fastening portion.
- FIG. 1 is a block diagram showing a configuration of a high voltage circuit abnormality detection device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an abnormality detection processing procedure of the abnormality detection apparatus for a high voltage circuit according to an embodiment of the present invention.
- FIG. 3 is a determination table showing the relationship between the magnitude of the differential voltage Vp-p, the decrease in insulation resistance, and the occurrence of loosening of the fastening portion in the high voltage circuit abnormality detection device according to an embodiment of the present invention.
- FIG. 4 is a characteristic diagram showing a change in the differential voltage Vp-p in the abnormality detection device for a high voltage circuit according to an embodiment of the present invention.
- FIG. 4A shows an abnormality in the insulation resistance when SW1 is off.
- (B) shows a case where the fastening portion is not loosened when SW1 is on
- (c) shows a case where the fastening portion is loose when SW1 is on.
- the high voltage circuit A includes a DC power source 1 and an inverter circuit 2, and converts DC power output from the DC power source 1 into AC power by the inverter circuit 2. Electric power is supplied to a drive motor (not shown) provided in an electric vehicle, a hybrid vehicle, or the like.
- Fastening portion p2 for electrically connecting DC power supply 1 and inverter circuit 2 between the positive side terminal of DC power supply 1 and the positive side terminal of inverter circuit 2 by mechanical fixing or fastening of electric wires, terminals, or the like. Is provided.
- the abnormality detection device 3 is a device that detects a ground fault of the high voltage circuit A and a looseness of the fastening portion p2, and the first circuit portion 3a connected to the plus side terminal of the DC power source 1. And a second circuit portion 3b connected to the plus side terminal of the inverter circuit 2.
- the first circuit unit 3a includes a control circuit 4, a coupling capacitor C1 (first capacitor), buffer amplifiers 5 and 6, a resistor R1, and a voltage measurement circuit 18.
- the measurement circuit 18 is connected to the ground.
- the other end of the coupling capacitor C1 is set as a measurement point p1.
- the voltage measurement circuit 18 includes a resistor R2 and a capacitor C3 connected in series with each other.
- the resistor R2 has one end connected to the measurement point p1 and the other end connected to the capacitor C3.
- the capacitor C3 has one end connected to the resistor R2 and the other end grounded to the ground.
- the control circuit 4 outputs a rectangular wave pulse signal to the measurement point p1 and measures the voltage generated at the measurement point p1 to cause a ground fault (decrease in insulation resistance) in the high voltage circuit A. Detect whether or not.
- the control circuit 4 outputs an output unit (pulse output means) 16 that outputs a rectangular wave pulse signal and a voltage signal output from the voltage measurement circuit 18 (a voltage signal generated at a connection point p3 between the resistor R2 and the capacitor C3).
- An A / D converter 17 that performs A / D conversion, and a CPU 11, RAM 12, ROM 13, timer 14, and counter 15 serving as a control center are provided.
- a buffer amplifier 5 is provided on the output side of the output unit 16, and a buffer amplifier 6 is provided on the input side of the A / D converter 17. The output terminal of the buffer amplifier 5 is connected to the measurement point p1 via the resistor R1.
- the second circuit unit 3b is a series connection circuit including a capacitor C2 (second capacitor) and a switch SW1 (switch means) connected in series with each other.
- the capacitance of the capacitor C2 is set larger than the capacitance of the coupling capacitor C1.
- One end of the capacitor C2 is connected to the plus side terminal of the inverter circuit 2 without passing through the fastening portion p2 (connected to the plus side terminal of the DC power source 1 through the fastening portion p2), and the other end is connected to one end of the switch SW1. It is connected to the.
- the switch SW1 has one end connected to the capacitor C2 and the other end grounded to the ground. The switch SW1 is turned on / off under the control of the CPU 11.
- the CPU 11 sets the frequency and duty ratio (for example, 50%) of the rectangular wave pulse signal output to the measurement point p1, and from the output unit 16 with the switch SW1 turned off (open circuit).
- a rectangular wave pulse signal is output at the above frequency and duty ratio, and the voltage generated at the measurement point p1 at this time is measured to determine whether or not a ground fault has occurred in the high voltage circuit A.
- the CPU 11 causes the rectangular wave pulse signal to be output from the output unit 16 with the switch SW1 turned on (closed), and at this time, the voltage generated at the measurement point p1 is measured to loosen the fastening unit p2. Whether or not has occurred is determined.
- the loosened or loosened state of the fastening portion is, for example, a site where two or more elements are electrically connected by mechanical fixing or fastening means such as loosening of the bolt when a wire, a terminal, or the like is bolted.
- mechanical fixing or fastening means such as loosening of the bolt when a wire, a terminal, or the like is bolted.
- the rectangular wave pulse signal changes from the H level to the L level at an odd multiple, the first voltage generated at the measurement point p1 is measured, and the rectangular wave pulse signal is a second phase different from the first phase.
- the duty ratio is set to 50%, the second voltage generated at the measurement point p1 at a time when the rectangular wave pulse signal changes from L level to H level at an even multiple of T / 2
- a function as voltage measuring means for obtaining a differential voltage Vp-p between the first voltage and the second voltage.
- the CPU 11 functions as a ground fault detection unit that detects a ground fault of the DC power source 1 based on the differential voltage Vp-p measured and calculated as described above in a state where the switch SW1 is turned off (open circuit). Is provided. Further, the CPU 11 performs the fastening portion based on the differential voltage Vp-p measured and calculated as described above in a state where the switch SW1 is turned on (closed) when the ground fault of the DC power supply 1 is not detected. It has a function as a loose state detection means for detecting the looseness of p2.
- step S11 the CPU 11 turns off the switch SW1.
- step S ⁇ b> 12 the CPU 11 increases the rectangular wave pulse signal output from the output unit 16 from 0 [V] to E [V].
- the voltage of this rectangular wave pulse signal is supplied to the measurement point p1, which is the other end of the coupling capacitor C1, via the buffer amplifier 5 and the resistor R1.
- the rectangular wave pulse signal output from the output unit 16 is a signal with a duty ratio of 50% that varies from 0 to E [V].
- step S13 the CPU 11 determines that the time T / 2 has elapsed from the time (time t1) when the rectangular wave pulse signal is raised from 0 [V] to E [V] (first phase: time t1 + T / 2).
- the voltage Vh (first voltage) generated at the measurement point p1 is detected.
- the voltage generated at the measurement point p1 is input to the A / D converter 17 via the resistor R2 and the buffer amplifier 6, and the CPU 11 determines the measurement point p1 based on the voltage data input to the A / D converter 17.
- the resulting voltage Vh is detected.
- step S14 the CPU 11 lowers the rectangular wave pulse signal output from the output unit 16 from E [V] to 0 [V]. Therefore, the voltage supplied to the coupling capacitor C1 at this time is 0 [V].
- step S15 the CPU 11 detects the voltage Vl (second voltage) generated at the measurement point p1 when the time T has elapsed from the time t1 (second phase: time t1 + T).
- step S17 the CPU 11 compares the differential voltage Vp-p obtained in the process of step S16 with the first reference voltage Vref1 set in advance.
- the CPU 11 determines that the differential voltage Vp-p is lower than the first reference voltage Vref1 (Vp-p ⁇ Vref1) (YES in step S17)
- the CPU 11 insulates the high voltage circuit A from grounding or the like. It is determined that an abnormality has occurred, and in step S18, the operator is notified of the occurrence of a ground fault.
- step S17 the CPU 11 determines that the differential voltage Vp-p is equal to or higher than the first reference voltage Vref1 (Vp-p ⁇ Vref1). (NO in step S17), the CPU 11 determines that an insulation abnormality such as a ground fault has not occurred in the high voltage circuit A, and proceeds to a process of detecting looseness of the fastening portion p2.
- step S19 the CPU 11 turns on the switch SW1. That is, the high voltage side terminal of the inverter circuit 2 is connected to the ground via the capacitor C2.
- step S20 the CPU 11 increases the rectangular wave pulse signal output from the output unit 16 from 0 [V] to E [V].
- the voltage of this rectangular wave pulse signal is supplied to the measurement point p1, which is the other end of the coupling capacitor C1, via the buffer amplifier 5 and the resistor R1.
- step S21 the CPU 11 determines that the time T / 2 has elapsed from the time (time t2) when the rectangular wave pulse signal is raised from 0 [V] to E [V] (first phase: time t2 + T / 2).
- the voltage Vh (first voltage) generated at the measurement point p1 is detected. That is, the voltage generated at the measurement point p1 is input to the A / D converter 17 via the resistor R2 and the buffer amplifier 6, and the CPU 11 determines the measurement point based on the voltage data input to the A / D converter 17.
- the voltage Vh generated at p1 is detected.
- step S22 the CPU 11 lowers the rectangular wave pulse signal output from the output unit 16 from E [V] to 0 [V]. Therefore, the voltage supplied to the coupling capacitor C1 at this time is 0 [V].
- step S23 the CPU 11 detects the voltage Vl (second voltage) generated at the measurement point p1 when the time T has elapsed from the time t2 (second phase: time t2 + T).
- step S25 the CPU 11 compares the differential voltage Vp-p obtained in step S24 with the preset second reference voltage Vref2.
- the CPU 11 determines that the differential voltage Vp-p is equal to or lower than the second reference voltage Vref2 (Vp-p ⁇ Vref2) (YES in step S25)
- the operator is notified that the loosening of the fastening portion p2 has not occurred. That is, when no looseness occurs at the fastening portion p2, the voltage at the measurement point p1 is affected by the capacitor C2, and the differential voltage Vp-p becomes small.
- the voltage difference between the on-duty state and the off-duty state becomes small, and the differential voltage Vp-p becomes equal to or lower than the second reference voltage Vref2, so that the fastening portion p2 loosens. Can be confirmed.
- step S25 when the CPU 11 determines in step S25 that the differential voltage Vp-p exceeds the second reference voltage Vref2 (Vp-p> Vref2) (NO in step S25), the CPU 11 In step S26, it is determined that looseness has occurred, and the operator is informed that a fastening abnormality has occurred. That is, when looseness occurs in the fastening portion p2, a capacitance is generated in the fastening portion p2, and the combined capacitance between the measurement point p1 and the ground is reduced. Vp-p increases. In this case, as shown in FIG.
- the voltage difference between the on-duty and off-duty becomes large, and the differential voltage Vp-p exceeds the second reference voltage Vref2, so that the fastening portion p2 is loosened. It can be confirmed that it has occurred. That is, as shown in the determination table of FIG. 3, when the differential voltage Vp-p exceeds the second reference voltage Vref2 in a state where the switch SW1 is turned on, the CPU 11 is loosened at the fastening portion p2. This is determined to be informed to the operator.
- the series connection circuit in which the capacitor C2 and the switch SW1 are connected in series is provided between the inverter circuit 2 and the ground, and the switch SW1.
- the switch SW1 In the state where is turned off, it is determined whether or not a ground fault has occurred in the high voltage circuit A by outputting a rectangular wave pulse signal to the measurement point p1, and further a condition that no ground fault has occurred below, when the switch SW1 is turned on and the differential voltage Vp-p when the rectangular wave pulse signal is output to the measurement point p1 in this state exceeds the second reference voltage Vref2, the fastening portion p2 is loosened.
- the capacitance of the capacitor C2 is set larger than that of the coupling capacitor C1, the change in the differential voltage Vp-p can be increased when the fastening portion p2 is loosened. The accuracy of detecting the looseness of the fastening portion p2 can be improved.
- the duty ratio of the rectangular wave pulse output to the measurement point p1 is set to 50%, the voltage Vh when the rectangular wave pulse changes from the H level to the L level, and the rectangular wave pulse changes from the L level to the H level. Since the differential voltage Vp-p is obtained based on the current voltage Vl, the difference between the on-duty voltage and the off-duty voltage can be obtained accurately, and the accuracy of ground fault detection and loosening detection of the fastening portion can be improved. Can be improved.
- a rectangular wave pulse signal is output to the measurement point with the switch means opened (off), and the rectangular wave pulse signal is A differential voltage Vp-p between the first voltage detected when the phase becomes 1 and the second voltage detected when the rectangular wave pulse signal becomes the second phase is obtained. Then, based on the magnitude of the differential voltage Vp-p, it is detected whether or not a ground fault has occurred in the high voltage circuit A. Further, when a ground fault is not detected, the switch means is closed (turned on), a rectangular wave pulse signal is output to the measurement point, and is detected when the rectangular wave pulse signal becomes the first phase.
- a differential voltage Vp-p between the first voltage and the second voltage detected when the rectangular wave pulse signal becomes the second phase is obtained, and the fastening portion is determined based on the magnitude of the differential voltage Vp-p. Detects whether looseness has occurred. Therefore, when looseness has occurred in the fastening part that connects the DC power supply and the inverter circuit, this can be detected reliably and quickly.
- the present invention can be used for quickly recognizing a loosening in a fastening portion that connects a high-voltage DC power source and an inverter circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
第1回路部3aは、制御回路4と、カップリングコンデンサC1(第1コンデンサ)と、バッファアンプ5、6と、抵抗R1と、電圧測定回路18と、を備えている。
電圧測定回路18は、互いに直列に接続された抵抗R2及びコンデンサC3から構成される。抵抗R2は、一端を測定点p1に接続され、他端をコンデンサC3に接続されている。コンデンサC3は、一端を抵抗R2に接続され、他端をグランドに接地されている。
コンデンサC2は、一端を、締結部p2を介さずにインバータ回路2のプラス側端子に接続され(締結部p2を介して直流電源1のプラス側端子に接続され)、他端をスイッチSW1の一端に接続されている。また、スイッチSW1は、一端をコンデンサC2に接続され、他端をグランドに接地されている。スイッチSW1は、CPU11の制御下でオン、オフ動作する。
2 インバータ回路
3 異常検出装置
4 制御回路
5、6 バッファアンプ
SW1 切替スイッチ
C1 カップリングコンデンサ(第1コンデンサ)
C2 コンデンサ(第2コンデンサ)
C3 コンデンサ
11 CPU
12 RAM
13 ROM
14 タイマ
15 カウンタ
16 出力部(パルス出力手段)
17 A/D変換器
18 電圧測定回路
RL 絶縁抵抗
CL 車両静電浮遊容量
p1 測定点
p2 締結部
Claims (6)
- 直流電源と、該直流電源と締結部を介して接続されたインバータ回路と、を備えた高電圧回路の地絡及び前記締結部の緩みを検出する、高電圧回路の異常検出装置において、
一端が前記直流電源のプラス側端子に接続され、他端が測定点とされた第1コンデンサと、
前記測定点に矩形波パルス信号を出力するパルス出力手段と、
前記インバータ回路のプラス側端子とグランドとの間に設けられた、第2コンデンサ及びスイッチ手段の直列接続回路と、
前記パルス出力手段より出力された矩形波パルス信号が第1の位相となる時点で、前記測定点に生じる第1の電圧と、前記矩形波パルス信号が前記第1の位相とは異なる第2の位相となる時点で、前記測定点に生じる第2の電圧と、を測定し、且つ、前記第1の電圧と第2の電圧との差分電圧を求める電圧測定手段と、
前記スイッチ手段を開路した状態で、前記電圧測定手段により測定された差分電圧に基づいて、前記直流電源の地絡を検出する地絡検出手段と、
前記地絡検出手段にて地絡が検出されていないときに、前記スイッチ手段を閉路した状態で、前記電圧測定手段により測定された差分電圧に基づいて、前記締結部の緩み状態を検出する緩み状態検出手段と、
を備えたことを特徴とする高電圧回路の異常検出装置。 - 前記矩形波パルスは、デューティ比50%であり、前記第1の位相は、該矩形波パルスがHレベルからLレベルに変化する時点であり、前記第2の位相は、矩形波パルスがLレベルからHレベルに変化する時点であることを特徴とする請求項1に記載の高電圧回路の異常検出装置。
- 前記地絡検出手段は、予め設定した第1基準電圧と前記差分電圧とを比較し、該差分電圧が前記第1基準電圧を下回った場合に、地絡が発生していると判断することを特徴とする請求項1または請求項2のいずれかに記載の高電圧回路の異常検出装置。
- 前記緩み状態検出手段は、予め設定した第2基準電圧と前記差分電圧とを比較し、該差分電圧が前記第2基準電圧を上回った場合に、前記締結部に緩みが発生していると判断することを特徴とする請求項1~請求項3のいずれか1項に記載の高電圧回路の異常検出装置。
- 第2コンデンサは第1コンデンサよりも静電容量が大きいことを特徴とする請求項1~請求項4のいずれか1項に記載の高電圧回路の異常検出装置。
- 直流電源と、該直流電源と締結部を介して接続されたインバータ回路と、を備えた高電圧回路の地絡及び前記締結部の緩みを検出する、高電圧回路の異常検出方法であって、
一端が前記直流電源のプラス側端子に接続され、他端が測定点とされた第1コンデンサを設け、
前記測定点に矩形波パルスを出力し、
前記矩形波パルス信号が第1の位相となる時点で、前記測定点に生じる第1の電圧を測定し、
前記矩形波パルス信号が前記第1の位相とは異なる第2の位相となる時点で、前記測定点に生じる第2の電圧を測定し、
前記第1の電圧と第2の電圧との差分電圧を求め、
前記インバータ回路のプラス側端子とグランドとの間に、第2コンデンサ及びスイッチ手段の直列接続回路を設け、
前記スイッチ手段を開路した状態で求めた差分電圧に基づいて、前記直流電源の地絡を検出するとともに、
前記地絡が検出されていないときに、前記スイッチ手段を閉路した状態で求めた差分電圧に基づいて、前記締結部の緩み状態を検出することを特徴とする高電圧回路の異常検出方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080037242.8A CN102483436B (zh) | 2009-09-24 | 2010-09-09 | 高电压电路的异常检测装置及异常检测方法 |
JP2011532960A JP5170318B2 (ja) | 2009-09-24 | 2010-09-09 | 高電圧回路の異常検出装置及び異常検出方法 |
EP10818697.4A EP2482088B1 (en) | 2009-09-24 | 2010-09-09 | Apparatus and method for detecting abnormality of high voltage circuit |
US13/391,718 US8749247B2 (en) | 2009-09-24 | 2010-09-09 | Apparatus and method for detecting abnormality of high voltage circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-219037 | 2009-09-24 | ||
JP2009219037 | 2009-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011037022A1 true WO2011037022A1 (ja) | 2011-03-31 |
Family
ID=43795773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065527 WO2011037022A1 (ja) | 2009-09-24 | 2010-09-09 | 高電圧回路の異常検出装置及び異常検出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8749247B2 (ja) |
EP (1) | EP2482088B1 (ja) |
JP (1) | JP5170318B2 (ja) |
CN (1) | CN102483436B (ja) |
WO (1) | WO2011037022A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150145601A (ko) * | 2014-06-20 | 2015-12-30 | 현대자동차주식회사 | 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010030079A1 (de) * | 2010-06-15 | 2011-12-15 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Überwachung des Isolationswiderstandes in einem ungeerdeten elektrischen Netz |
JP2012242330A (ja) * | 2011-05-23 | 2012-12-10 | Omron Automotive Electronics Co Ltd | 漏電検知装置 |
JP5518138B2 (ja) * | 2012-07-09 | 2014-06-11 | 本田技研工業株式会社 | 非接地回路の地絡検知装置 |
AU2013295526B2 (en) | 2012-07-27 | 2017-03-30 | San Diego Gas & Electric Company | System for detecting a falling electric power conductor and related methods |
DE102012015911B3 (de) * | 2012-08-10 | 2013-10-24 | Audi Ag | Diagnoseeinrichtung zur Überprüfung einer Steuersignalleitung |
US20140071563A1 (en) * | 2012-09-10 | 2014-03-13 | Dean Solon | Monitoring system for and method of preventing electrical arcs in a solar energy system |
JP5705382B1 (ja) * | 2013-11-22 | 2015-04-22 | 三菱電機株式会社 | 絶縁検出器及び電気機器 |
CN106375145A (zh) * | 2016-08-29 | 2017-02-01 | 北京新能源汽车股份有限公司 | 一种局域网络通讯状态检测、故障处理方法及装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194871A (ja) * | 2001-12-28 | 2003-07-09 | Panasonic Ev Energy Co Ltd | 漏電検出装置 |
JP2003250201A (ja) | 2002-02-26 | 2003-09-05 | Nissan Motor Co Ltd | 車両用地絡検出装置 |
JP2004053367A (ja) * | 2002-07-18 | 2004-02-19 | Nissan Motor Co Ltd | 地絡検知回路の故障診断装置 |
JP2004361309A (ja) * | 2003-06-06 | 2004-12-24 | Nippon Soken Inc | モータ駆動装置 |
JP2005233822A (ja) * | 2004-02-20 | 2005-09-02 | Denso Corp | 地絡検出装置 |
JP2006177840A (ja) * | 2004-12-24 | 2006-07-06 | Nissan Motor Co Ltd | 地絡検出装置、地絡検出装置の診断方法 |
JP2009219037A (ja) | 2008-03-12 | 2009-09-24 | Fuji Xerox Co Ltd | 指示システム、指示プログラム及び指示装置 |
JP2010181368A (ja) * | 2009-02-09 | 2010-08-19 | Mitsubishi Motors Corp | バッテリパックの検査装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3678151B2 (ja) * | 2001-01-11 | 2005-08-03 | 日産自動車株式会社 | 電気車両の地絡検出装置 |
CN1327235C (zh) | 2002-03-24 | 2007-07-18 | 淄博科汇电气有限公司 | 直流系统接地故障的探测方法 |
JP4061168B2 (ja) * | 2002-10-16 | 2008-03-12 | 矢崎総業株式会社 | 地絡検知装置および絶縁抵抗計測装置 |
JP2006170714A (ja) * | 2004-12-14 | 2006-06-29 | Nissan Motor Co Ltd | 地絡検出装置、地絡検出装置の閾値設定方法 |
JP4830376B2 (ja) * | 2005-07-11 | 2011-12-07 | 日産自動車株式会社 | 車両用地絡検出装置 |
US8004285B2 (en) * | 2005-07-12 | 2011-08-23 | Komatsu Ltd. | Leakage detection device of vehicle mounted power supply system |
JP4826264B2 (ja) * | 2006-01-19 | 2011-11-30 | 日産自動車株式会社 | 地絡検出装置 |
JP2007198995A (ja) * | 2006-01-30 | 2007-08-09 | Matsushita Electric Ind Co Ltd | 地絡抵抗測定回路、及び地絡検出回路 |
KR101230223B1 (ko) | 2006-04-13 | 2013-02-05 | 파나소닉 주식회사 | 전지 팩 및 그 단선 검지 방법 |
EP1909369B1 (de) * | 2006-10-06 | 2020-05-20 | Schmidhauser AG | Schaltungsanordnung und Verfahren zur Isolationsüberwachung für im Betrieb befindliche Umrichteranwendungen |
JP5018081B2 (ja) * | 2006-12-28 | 2012-09-05 | 日産自動車株式会社 | リレー故障診断装置 |
US7639021B2 (en) | 2007-05-11 | 2009-12-29 | Temic Automotive Of North America, Inc. | Circuit and method for detecting a dielectric breakdown fault |
JP4974814B2 (ja) | 2007-08-29 | 2012-07-11 | カルソニックカンセイ株式会社 | 車両用地絡検出回路 |
CN201262636Y (zh) | 2008-01-04 | 2009-06-24 | 广东省电力工业局试验研究所 | 直流系统接地校验装置 |
-
2010
- 2010-09-09 WO PCT/JP2010/065527 patent/WO2011037022A1/ja active Application Filing
- 2010-09-09 JP JP2011532960A patent/JP5170318B2/ja active Active
- 2010-09-09 EP EP10818697.4A patent/EP2482088B1/en active Active
- 2010-09-09 US US13/391,718 patent/US8749247B2/en active Active
- 2010-09-09 CN CN201080037242.8A patent/CN102483436B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194871A (ja) * | 2001-12-28 | 2003-07-09 | Panasonic Ev Energy Co Ltd | 漏電検出装置 |
JP2003250201A (ja) | 2002-02-26 | 2003-09-05 | Nissan Motor Co Ltd | 車両用地絡検出装置 |
JP2004053367A (ja) * | 2002-07-18 | 2004-02-19 | Nissan Motor Co Ltd | 地絡検知回路の故障診断装置 |
JP2004361309A (ja) * | 2003-06-06 | 2004-12-24 | Nippon Soken Inc | モータ駆動装置 |
JP2005233822A (ja) * | 2004-02-20 | 2005-09-02 | Denso Corp | 地絡検出装置 |
JP2006177840A (ja) * | 2004-12-24 | 2006-07-06 | Nissan Motor Co Ltd | 地絡検出装置、地絡検出装置の診断方法 |
JP2009219037A (ja) | 2008-03-12 | 2009-09-24 | Fuji Xerox Co Ltd | 指示システム、指示プログラム及び指示装置 |
JP2010181368A (ja) * | 2009-02-09 | 2010-08-19 | Mitsubishi Motors Corp | バッテリパックの検査装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150145601A (ko) * | 2014-06-20 | 2015-12-30 | 현대자동차주식회사 | 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법 |
KR101601436B1 (ko) * | 2014-06-20 | 2016-03-09 | 현대자동차주식회사 | 교류 발전기의 와이어링 불완전체결 검출 장치 및 그 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2482088A1 (en) | 2012-08-01 |
JPWO2011037022A1 (ja) | 2013-02-21 |
EP2482088B1 (en) | 2018-11-07 |
EP2482088A4 (en) | 2017-11-22 |
US8749247B2 (en) | 2014-06-10 |
US20120146656A1 (en) | 2012-06-14 |
CN102483436A (zh) | 2012-05-30 |
JP5170318B2 (ja) | 2013-03-27 |
CN102483436B (zh) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5170318B2 (ja) | 高電圧回路の異常検出装置及び異常検出方法 | |
US7994799B2 (en) | Insulation resistance detection system, insulation resistance detection apparatus and insulation resistance detection method | |
JP4280145B2 (ja) | 絶縁抵抗低下検出器およびその自己診断方法 | |
US8023234B2 (en) | Method for detecting earth-fault conditions in a motor controller | |
US9255957B2 (en) | Earth fault detection circuit and power source device | |
JP6512072B2 (ja) | 故障検査システム | |
JP5385688B2 (ja) | 絶縁抵抗検出装置 | |
JP2007192674A (ja) | 地絡検出装置 | |
EP2649717B1 (en) | Method and system for measuring the integrity of a power converter | |
US20050073320A1 (en) | State detecting method and insulation resistance fall detector | |
JP4039156B2 (ja) | 地絡検知回路の故障診断装置 | |
JP2003250201A (ja) | 車両用地絡検出装置 | |
EP3261215A1 (en) | Fault detection system for isolated two-switch exciter drive gate driver | |
PH12014502021B1 (en) | Performance test system for protective relay apparatus | |
JP4092654B2 (ja) | 地絡検出装置 | |
JP2016170931A (ja) | コンタクタの故障判定装置 | |
EP2073370B1 (en) | Motor control device | |
JP2019502116A (ja) | 電気信号を電気化学エネルギー供給装置に印可するための回路構成 | |
JP2004053365A (ja) | 地絡検出装置 | |
WO2013051100A1 (ja) | エレベーターの制御装置 | |
JP2007057319A (ja) | 地絡事故点検出装置 | |
JP3515147B2 (ja) | レーザ発振器の高周波電源の位相検出による異常検出装置 | |
JP2018179835A (ja) | 検出装置 | |
KR101120474B1 (ko) | Pwm 컨버터의 전원위상 검출장치 | |
JP2013079903A (ja) | 車両の漏電検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080037242.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818697 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532960 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13391718 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010818697 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |