[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011036710A1 - Touch-type input device - Google Patents

Touch-type input device Download PDF

Info

Publication number
WO2011036710A1
WO2011036710A1 PCT/JP2009/004830 JP2009004830W WO2011036710A1 WO 2011036710 A1 WO2011036710 A1 WO 2011036710A1 JP 2009004830 W JP2009004830 W JP 2009004830W WO 2011036710 A1 WO2011036710 A1 WO 2011036710A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
user
unit
touch
input
Prior art date
Application number
PCT/JP2009/004830
Other languages
French (fr)
Japanese (ja)
Inventor
高倉潤也
山内康晋
杉田馨
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/004830 priority Critical patent/WO2011036710A1/en
Publication of WO2011036710A1 publication Critical patent/WO2011036710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention relates to a touch input device.
  • Touch-type input devices are widely used as an interface for intuitive coordinate input.
  • input methods such as a capacitance method, a resistive film method, a surface acoustic wave method, an optical method, and a camera method.
  • the capacitive touch input device senses the information on the screen position touched by the user by the change in the capacitance between the fingertip and the conductive panel.
  • a part of a human body such as a finger comes into contact with the conductive panel through a protective film in a state where a uniform alternating electric field is formed on the conductive panel
  • capacitive coupling occurs between the human body and the conductive panel.
  • the human body and the ground serving as the reference potential point are capacitively coupled by stray capacitance, a current flows between the ground from the electric field forming unit via the conductive panel and the human body.
  • the ratio of each current flowing out from each electric field forming unit is determined by the resistance ratio between the position of the finger touching the conductive panel and each electric field forming unit. Accordingly, if the current value flowing out from each electric field forming unit is measured, the coordinates of the touched position can be calculated from the ratio of the currents.
  • the operation of touching multiple points simultaneously and inputting multiple coordinates simultaneously is called multi-touch.
  • multi-touch By supporting multi-touch, the degree of freedom of input operation is increased.
  • a plurality of users can perform operations on one input device. In order for multiple users to work simultaneously on a single touch-type input device, it is not sufficient that the touch-type input device supports multi-touch. It is necessary to identify whether the input is from a user and to associate each user with each input coordinate.
  • a multi-user touch system in which a plurality of users can be operated simultaneously and a plurality of input coordinates can be associated with each user has been proposed (for example, Patent Document 1).
  • a grid-like antenna is arranged on the panel in order to detect a position on the touch surface.
  • Each antenna is connected to a signal source and supplied with signals that can be distinguished from each other.
  • Each user is also capacitively coupled to a receiver corresponding to the user.
  • An object of the present invention is to provide a touch input device that can identify users even when a plurality of users touch the touch surface almost simultaneously.
  • a touch input device has a planar conductive layer, and identifies a plurality of users from a conductive panel through which an input signal propagates when the input surface is touched.
  • a signal generation unit that generates an identification signal for the user, a signal supply unit that supplies the identification signal to each user's body, and the signal generation unit that generates the identification signal having separable characteristics for each user
  • a control unit for controlling the detection unit a detection unit connected to a plurality of positions of the conductive panel and detecting a detection signal including a plurality of input signals propagated from the conductive panel for each of the plurality of positions, and the identification Based on a signal characteristic, a separation unit that separates the detection signal into components corresponding to each user, an electrical characteristic of the conductive layer, and a magnitude of the separated signal for each of the plurality of positions
  • Said Comprising an estimation unit that estimates a contact position on the input surface of the user in the power signal.
  • a plurality of users can simultaneously perform an input operation on the touch surface, and each user can be identified.
  • the figure explaining the outline of the input device of 1st Embodiment The figure which shows the input device of 1st Embodiment.
  • Sectional drawing which shows the structure of an electroconductive panel.
  • the flowchart of an initial setting process The flowchart of the whole process in coordinate input mode.
  • the flowchart of a signal measurement process The figure which shows the structure of the data memorize
  • the input device of this embodiment is a capacitive touch input device. Even when a plurality of users touch the touch surface almost simultaneously, the users can be identified.
  • touch input is performed by a user's finger as an input unit will be exemplified.
  • a method using various input means such as a user input using a device such as a pen may be used.
  • FIG. 1 is a diagram for explaining a usage state when the input device 100 of the present embodiment is applied to a desktop type.
  • the central area of the input device 100 is a conductive panel 4 for inputting coordinates when the user touches.
  • a plurality of signal detection units (not shown) are arranged around the conductive panel 4 and are connected to the conductive panel 4.
  • the input device can be used simultaneously by multiple users.
  • Each user carries signal supply units 5-1 and 5-2 corresponding to the user, for example, in his / her arm.
  • the signal supply units 5-1 and 5-2 are respectively connected to corresponding signal generation units (not shown).
  • FIG. 2 is a diagram showing the input device of this embodiment.
  • the input device 100 includes a conductive panel 4 through which an input signal propagates when it touches an input surface, a signal generator 7 (1 to N) that generates an identification signal for identifying N users, and each user's A signal supply unit 5 (1 to N) for supplying an identification signal to the body, a control unit 6 for controlling the signal generation unit 7 to generate an identification signal having separable characteristics for each user, and a conductive panel 4 is connected to a plurality of positions, and a detection unit 8 (1 to M) that detects a detection signal including a plurality of input signals propagated from the conductive panel 4 at each of M positions, and based on the characteristics of the identification signal A signal separation unit 9 (1 to N) that separates the detection signal into components corresponding to each user, and a touch position estimation unit that estimates the contact position of each user on the input surface of the conductive panel 4 indicated by the input signal 13
  • the control unit 6 determines the characteristics (signal amplitude, frequency, phase, timing, etc.) of each signal generated for the signal generation units 7-1 to 7-N to supply to each user.
  • the signals corresponding to the respective users are determined so that they can be distinguished (separated) from each other. For example, there are signals having different frequencies as shown in FIG. 3 (a) and signals having different supply times as shown in FIG. 3 (b). Alternatively, it may be encoded into a separable code.
  • the control unit 6 notifies the signal detection units 8-1 to 8-M and the signal separation units 9-1 to 9-M of information necessary for signal detection and signal separation.
  • Signal generation units 7-1 to 7-N generate amplitude, frequency, phase, and timing signals set by the control unit 6.
  • the voltage signal generated by a general signal generation method such as a VCO (Voltage Controlled Oscillator) is converted into a current signal via a VCCS (Voltage Control Current Source) circuit. Transmit from signal supply unit 5-1 to 5-N.
  • VCO Voltage Controlled Oscillator
  • the signal supply units 5-1 to 5-N supply the current signals (identification signals) generated by the corresponding signal generation units 7-1 to 7-N to the user's human body.
  • a wristband-like one can be connected to the user's human body or clothes, or an electrode can be provided on a chair, a desk, or a floor.
  • the conductive panel 4 is a touch input surface, and the user can input coordinates corresponding to the touched position by touching the conductive panel 4.
  • FIG. 4 is a cross-sectional view showing the structure of the conductive panel 4. It has a planar conductive layer 16 made of a conductive material such as ITO (indium tin nitride), a protective layer 15 and a base layer 17 on the surface. The user touches the protective layer 15 side and inputs coordinates.
  • the protective layer 15 is a dielectric, and when the user touches the protective layer 15, capacitive coupling occurs between the user's human body and the conductive layer, and a current signal flows. When a plurality of users touch the conductive panel 4 at the same time, current signals corresponding to the respective users flow on the conductive panel 4 simultaneously.
  • the signal detectors 8-1 to 8-M are connected to the conductive panel 4 and detect signals.
  • FIG. 5 shows the configuration of the signal detector 8-1.
  • the configuration of the signal detectors 8-2 to 8-M is the same as that of the signal detector 8-1 and is therefore omitted.
  • the peripheral electrode 10 adjusts the distribution of current flowing from the conductive panel 4 to the signal detector 8-1 to 8-M.
  • the conduction switching unit 18 is a part that determines whether or not to conduct between the peripheral electrode 10 and the current-voltage conversion circuit 19 based on a command from the control unit 6, and is configured by an analog switch, for example.
  • the current-voltage conversion circuit 19 is a part that converts the detected current into a voltage, and is an inverting amplifier circuit configured by, for example, an OP amplifier.
  • the conduction switching unit 18 when the conduction switching unit 18 is in the conduction state, the point between the conduction switching unit 18 and the current-voltage conversion circuit 19 is zero potential. Further, when the conduction switching unit 18 is in a non-conduction state, the current-voltage conversion circuit 19 and the subsequent states are in a floating state as viewed from the conductive panel 4. The voltage converted by the current-voltage conversion circuit 19 is converted into a digital signal by the A / D converter 19 and transmitted to the signal separation unit 9-1.
  • the signal separation units 9-1 to 9-M separate the signals detected by the corresponding signal detection units 8-1 to 8-M into signals corresponding to each user based on information from the control unit. If the signals corresponding to each user are signals of different frequencies, they are separated using general methods used for frequency separation, such as Fourier transform, autoregressive coefficient calculation, digital filter, adaptive filter, etc. The amplitude of the signal corresponding to the user can be obtained. When the signals corresponding to each user are separated by time, the amplitude of the signal observed at the time when the signal is supplied to each user is set as the amplitude of the signal corresponding to each user.
  • the separated signal storage unit 11 temporarily stores the amplitude of the signal corresponding to each user separated by the signal separating units 9-1 to 9-M in a RAM or the like, and uses it in the processing in the touch position estimating unit 13 described later.
  • the conductive panel characteristic storage unit 12 stores in advance the characteristics of the conductive panel obtained by actual measurement or simulation in a storage medium such as a hard disk, EEPROM, CD-ROM, and the processing in the touch position estimation unit 13 described later. Use in.
  • the touch position estimation unit 13 includes a CPU, a RAM, and the like, and for each user, based on the information stored in the separation signal storage unit 11 and the characteristics of the conductive panel 4 stored in the conductive panel characteristic storage unit 12, 4 Estimate the coordinates of the touch position of each user on the top. Details of the method of touch position estimation will be described later.
  • the signal generated by the signal generation unit 7-1 is supplied to a certain user by the signal supply unit 5-1, and the user touches a point on the conductive panel 4 to connect to the conductive panel 4.
  • the signal detection units 8-1 to 8-M the signal flow when the signal detection units 8-1 and 8-2 are in a conductive state is schematically shown.
  • the user's touch position is on a curve (hereinafter referred to as an iso-current ratio line) that passes between the signal detectors 8-1 and 8-2.
  • an iso-current ratio line a curve that passes between the signal detectors 8-1 and 8-2.
  • the intersection of the isocurrent ratio line obtained with the signal detectors 8-1 and 8-2 in the conductive state and the isocurrent ratio line obtained with the signal detectors 8_1 and 8_M in the conductive state is the touch position to be obtained. Coordinates.
  • FIG. 7A shows an isocurrent ratio line obtained when the signal detection units 8_1 and 8-2 are in a conductive state
  • FIG. 10 shows an isocurrent ratio line obtained when the signal detection units 8_1 and 8-M are in a conductive state.
  • the numerical values attached to the curves in the figure are log (I1 ⁇ 1-2 / I2 ⁇ 1-2) in FIG. 7 (a) and log (I1 ⁇ 1-M / in FIG. 7 (b). IM ⁇ 1-M). If the pair of signal detectors arranged diagonally is in a conductive state, the isocurrent ratio line can be made closer to a straight line by devising the resistance value of the peripheral electrode 10 (Patent No. 1).
  • the isoelectric ratio curve is curved.
  • coordinates are estimated using the iso-current ratio line shown in FIGS. 7A and 7B when the resistance value of the peripheral electrode 10 is infinite. A method will be described.
  • the X coordinate and Y coordinate corresponding to ui and vj in the table corresponding to the combination of the signal detection unit pairs being used are expressed as X (ui, vj) and Y (ui, vj), respectively.
  • X (ui, vj) and Y (ui, vj) are expressed as X (ui, vj) and Y (ui, vj), respectively.
  • the coordinates X and Y of the touch position are approximated by Equations 1 and 2, respectively. be able to.
  • w1 to w4 are determined according to the difference from the values of u and v, for example, by the following equations.
  • each signal detection unit is arranged in four corners of the touch panel, but the signal detection units are not necessarily arranged in four corners, and the number thereof may be four or more.
  • the combination of signal detection unit pairs to be used is not limited to 8_1 and 8-2, and 8_1 and 8-M, and any combination can be used.
  • the signal generated by the signal generation unit 7-1 is supplied to a user via the signal supply unit 5-1, and the signal generated by the signal generation unit 7-2 is supplied to the signal supply unit 5- 2 is a schematic representation of the flow of signals supplied to another user via 2 and each user touching a point on the conductive panel at the same time.
  • the signal generation unit 7-1 supplies a signal as a current source to the user, the signal from the signal generation unit 7-2 does not flow into the signal generation unit 7-1.
  • the signal from the signal generator 7-1 does not flow into the signal generator 7-2.
  • a part of the signal from the signal generator 7-2 flows to the ground via the ground stray capacitance 21, and a part of the signal from the signal generator 7-1 flows to the ground via the ground stray capacitance 22. To do.
  • the signals detected by the signal detection units 8_1 and 8_M are a mixture of the signal from the signal generation unit 7-1 and the signal from the signal generation unit 7-2. -1 and 9-M can be separated into signals corresponding to each user. If the influence of the signal flowing out to earth via ground floating capacitance can be ignored, using the signal corresponding to each separated user, as in the case where one user mentioned above performs touch input, The coordinates of the touch position corresponding to each user can be obtained.
  • FIG. 10 shows the shape of the equicurrent ratio line when a signal flows out from the point 24 on the conductive panel 4 to the ground. As described above, it is known that the shape is distorted as compared with FIG. 7B showing the isocurrent ratio line when it is assumed that there is no outflow. Therefore, when a plurality of users perform touch input at the same time, an error may occur in the estimation of the touch position.
  • the amount EX (x, 'where the isocurrent ratio line is shifted in the X direction and the Y direction at the point (x, y) y ', x, y) and EY (x', y ', x, y) are determined by determining the value of impedance ZL from the conductive panel to the ground through the human body other than the user to be estimated.
  • the signal detection unit pair can be obtained by actual measurement or simulation. The value varies depending on the value of ZL, but the relative magnitude relationship is constant regardless of ZL. If each coordinate position is a discrete value, a table having a structure as shown in FIG. 11 can be obtained.
  • the distortion is obtained by Equations 7 and 8 for each user, and the total is simply obtained for all users, whereby the maximum likelihood estimate of the distortion in this case Can be requested.
  • the estimation error of the touch position coordinate estimated using a certain signal detection unit pair depends on the touch position coordinate of the touch input of the user to be estimated and the touch input other than the user to be estimated.
  • the touch position coordinates and the signal detection unit pair if the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of the touch input other than the user to be estimated are known, an optimal signal detection unit pair can be selected. However, if the optimum signal detection unit pair cannot be selected, the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of touch inputs other than the user to be estimated cannot be obtained accurately. That is, this problem is an incomplete problem that lacks information (parameters) necessary to solve the problem.
  • This concept is used for the touch position estimation method in the embodiment. That is, when estimating the respective touch positions when a plurality of users are performing touch input at the same time, assuming a certain touch position coordinate, the optimum signal detection unit set is selected and the touch position coordinate is re-established. Make an estimate. Assuming the touch position coordinates thus obtained, the touch position coordinates are re-estimated again, thereby bringing the estimated value of the touch position coordinates closer to the optimum touch position coordinate estimated value. At this time, in order for the estimated value of the touch position coordinates to converge to the optimum touch position coordinate estimated value, the initial value of the parameter (initial value of the initial touch position coordinate) is changed to the actual coordinate of the touch position. It is necessary to be close. As the initial value of the assumed touch position coordinates, for example, the touch position coordinates obtained on the assumption that there is no signal interference can be used.
  • FIG. 12 is a flowchart when performing the initial setting process.
  • the control unit 6 sets all the signal generation units 7 so as not to perform signal generation.
  • each signal detector 8 detects a signal. As for the signal detected here, noise is detected because the signal generator 7 does not generate a signal.
  • step S3 the signal detected in step S2 is separated by the signal separation unit 9 into each frequency included in a plurality of different frequency combination candidates, and the magnitude of each signal is stored in the separated signal storage unit 11.
  • the frequency combination is a combination of frequencies assigned to each user, and frequencies for the maximum number of users that are set so as not to be an integral multiple of each other are prepared.
  • a plurality of frequency combination candidates are prepared in the control unit 6, and the combination selected by the control unit 6 is notified to the signal separation unit 9.
  • step S4 in order to determine whether or not the frequency combination use candidate assigned to each user can be used in the control unit 6, the signal of each frequency stored in the separated signal storage unit 11 in step S3. Set the initial value of the threshold for comparison with the size.
  • step S5 the control unit 6 makes a determination with reference to a determined flag for determining whether or not a frequency combination that has not been determined to be usable among a plurality of frequency combination candidates has been determined. Set as a candidate.
  • Step S6 is a step in which the control unit 6 determines whether the frequency combination set in Step S5 is usable. If the maximum number of users is N, there are N frequencies in the frequency combination to be determined whether it can be used. Of the magnitudes of the signals stored in step S3, the control section 6 reads the magnitude of the signal corresponding to each frequency of the frequency combination to be determined from the separated signal storage section 11, and is set in step S4 or S8. Compare with the threshold value. If the signal magnitude is smaller than the threshold value at all frequencies, it is determined that the frequency combination can be used, and the process proceeds to step S7.
  • control unit 6 determines that the frequency combination is unusable and sets the determined flag of the determined frequency combination to determined. The process proceeds to step S8.
  • step S7 the control unit 6 refers to the determined flag and determines whether determination has been performed for all frequency combination candidates. If all the frequency combination candidates have been determined, the determined flag is cleared and the process proceeds to step S8. If there is an undetermined frequency combination, the process proceeds to step S5. Step S8 loosens the determination criteria when it is determined that all frequency candidates are unusable. That is, the threshold value set in the control unit 6 is set larger than the previous threshold value.
  • step S9 each frequency of the frequency combination determined in step S5 is set by the control unit 6 for each signal generation unit 7 and signal separation unit 9. Upon receiving this notification, each signal generation unit 7 starts signal generation, and the signal separation unit 9 thereafter performs signal separation assuming that each set frequency is a signal corresponding to each user. After the above initial setting process is completed, the initial setting mode is shifted to the coordinate input mode. In the coordinate input mode, processing for estimating touch input position coordinates described below is performed at regular intervals.
  • FIG. 13 is a flowchart showing the entire processing in the coordinate input mode.
  • step A1 measurement of signals necessary for touch position coordinate estimation is performed.
  • step A2 each input position coordinate of each user is estimated.
  • the touch position coordinates are estimated on the assumption that the touch inputs of the respective users do not interfere with each other.
  • the touch position coordinates estimated here include an error when a plurality of users perform touch input simultaneously.
  • Step A3 is a step in which the process is branched depending on whether a plurality of users are performing touch input. If a plurality of users are making touch input, the process proceeds to step A4, and if not, the process proceeds to step A5.
  • Step A5 reports the estimated touch position coordinates. Details of processing contents in A1, A2, A3, and A4 will be described in detail below.
  • FIG. 14 is a flowchart showing the processing content of step A1 in FIG.
  • Step M1 signal generation is started in each of the signal generation units 7-1 to 7-N, and a signal is supplied to the user via the signal supply units 5-1 to 5-N.
  • step M2 the signal detection unit 8 that performs signal detection is selected. From the pair of signal detectors 8 that have not been measured, the control unit 6 selects a pair of signal detectors 8 that perform signal detection. Then, the pair of the signal detection units 8 is set to a conductive state.
  • step M3 each pair of signal detection units 8 selected by the control unit 6 in step M2 detects signals.
  • step M4 the signal detected by the signal detection unit 8 in the immediately preceding step M3 is separated into signals corresponding to each user in the signal separation unit 9.
  • the magnitude of the signal corresponding to each user output from the signal separation unit 9 is stored in the separation signal storage unit 11.
  • Step M5 is a step for determining whether or not measurement has been performed for all pairs of signal detection units 8 used by the control unit 6. If measurement has been performed for all pairs of signal detection units 8 to be used, go to Step M6. move on. If there is an unmeasured pair among the pairs of signal detectors 8 to be used, the process proceeds to step M2.
  • step M6 upon receiving a notification from the control unit 6, the signal generation unit 7 stops signal generation and ends signal supply to the user.
  • the separated signal storage unit 11 stores the magnitude of the signal corresponding to each user measured in each pair of signal detection units 8 as shown in FIG. Information is stored.
  • FIG. 16 is a flowchart showing the process of step A2 in FIG.
  • the following steps E1 to E4 are executed by the touch position estimation unit 13.
  • step E1 the user who estimates the touch position coordinates is determined.
  • Step E2 is a step of determining whether or not the user is performing touch input.
  • the magnitude of the signal corresponding to the user stored in the separated signal storage unit 11 is read, and if the maximum value is equal to or greater than a preset threshold value, it is determined that the user is making a touch input. If it is determined that touch input is being performed, the process proceeds to step E3. If it is determined that touch input is not performed, the process proceeds to step E1.
  • Step E3 is a process of performing touch position coordinate estimation corresponding to the user who is determined to be performing touch input in Step E2. Details of the processing here will be described later with reference to the flowchart of FIG.
  • Step E4 is a step of determining whether or not the touch position coordinates have been estimated for all the users who are making touch input. If the estimation of the touch position coordinates of all users who have performed touch input has been completed, the process ends. If there is a user whose touch position coordinates have not been estimated, the process proceeds to step E1.
  • step C1 the pair combination of the signal detection unit 8 used for coordinate estimation is selected from the combination of pairs to be used for which coordinate estimation has not been performed.
  • step C2 in each of the pair of signal detection units 8 selected in step C1, the magnitude of the signal corresponding to the user who performs touch position coordinate estimation is read from the separated signal storage unit 11, and the ratio is read for each signal detection unit 8 For a pair of.
  • step C3 the coordinates corresponding to the ratio of the signal magnitudes calculated in step C2 are calculated by referring to the coordinate table stored in the conductive panel characteristic storage unit 12, using the formulas 1 and 2, and the signals The coordinates are stored as a combination of a pair of detection units 8.
  • Step C4 is a step in which it is determined whether coordinate calculation has been performed for all combinations of pairs of signal detection units 8. If coordinate calculation has been completed for all pair combinations, the process proceeds to step C5. If there is a pair combination for which coordinates have not been calculated, the process proceeds to step C1.
  • Step C5 calculates an average value of coordinates calculated by the combination of each signal detection unit pair, and uses it as an estimated value of the touch position coordinates.
  • step A4 in FIG. 13 will be described with reference to the flowchart in FIG.
  • the following processing from R1 to R11 is executed by the touch position estimation unit 13.
  • step R1 the touch position coordinates of each user already estimated in step A3 are set to the initial values of the touch position coordinate estimated values.
  • step R2 the user who estimates the touch position coordinates is set.
  • step R3 a pair of signal detectors 8 for calculating the distortion of the equal current ratio line is selected.
  • step R4 the initial estimated value of the touch position coordinates of the user who estimates the touch position coordinates and the distortion of the isocurrent ratio line of the signal detection unit pair corresponding to the initial estimated position of the touch position coordinates other than the user are expressed by Equation 7: And is calculated by Equation 8 and stored as a distortion of the equal current ratio line in the signal detection unit pair.
  • step R5 for the user set in step R2, it is determined whether or not the equicurrent ratio line distortion has been calculated for each pair of signal detectors 8.
  • step R6 If the equivalent current ratio distortion has been calculated for each pair of signal detectors 8 for the user, the process proceeds to step R6. If there is a pair for which the distortion of the isocurrent ratio line has not been calculated, the process proceeds to step R3. In step R6, the values of the isocurrent ratio line distortion values calculated in step R4 are compared for each pair of signal detectors 8, and the pair of signal detectors 8 having a smaller value is used for estimating the touch position coordinates of the user. Select as a pair.
  • step R7 the user's touch position coordinates are re-estimated using the pair of signal detection units 8 selected in step R6.
  • the details of the processing here are the same as the processing in step E3 in FIG. 16, and are shown in the flowchart in FIG.
  • the pair combination of the signal detection unit 8 to be used is the combination of the pair selected in step R6.
  • Step R8 is a step of determining whether or not the re-estimation of the touch position coordinates assuming the touch position coordinates set in the immediately preceding step R1 or R11 has been performed for all the users performing touch input. If re-estimation has been completed for all users, the process proceeds to step R9. If there is a user for which re-estimation has not been performed, the process proceeds to step R2.
  • Step R9 is a step of determining whether or not the re-estimation process has converged. Calculate the difference between the initial value of the touch position coordinate set in the previous step R1 or R11 and the re-estimated value of the touch position coordinate re-estimated assuming that initial value, and the difference is less than or equal to the preset threshold value. For example, it is determined that the re-estimation process has converged. If it is determined that the re-estimation process has converged, the step re-estimation process ends. If it is determined that it has not converged, the process proceeds to step R10. Step R10 is a step of determining whether or not the maximum estimated number of iterations has reached a specified number.
  • Step R11 replaces the initial value for re-estimating the touch position coordinates with the estimated touch position coordinates.
  • Modification 1 of the first embodiment Modification 1 of the first embodiment will be described.
  • the shape of the iso-current ratio line is a complex curve and is difficult to express with a single function. However, it is possible to approximate the shape of the isocurrent ratio line by a function that can be expressed by a small number of parameters.
  • a parameter at a certain current magnitude ratio can be obtained by actual measurement or simulation, and can be stored as a table having a structure as shown in FIG.
  • the actually measured values are u and v, and ui ⁇ u ⁇ ui + 1, vj ⁇ v ⁇ Vj + 1, for example
  • the touch position coordinates can be obtained by obtaining the intersection of Equation 18 and Equation 19 instead of Equation 1 and Equation 2.
  • the amount of data to be stored in the conductive panel characteristic storage unit 12 can be reduced.
  • FIG. 20 shows a case where the user performs touch input and the signal detection units 8-1, 8-2, 8-3, and 8-M arranged at the four corners of the conductive panel are in a conductive state. It is the figure which represented the flow of the signal typically. This shows that the signal flow is only reversed as compared to the signal flow on a normal capacitive touch panel.
  • the touch position coordinates of each user can be estimated by Expression 23 and Expression 24 after being separated into signals corresponding to each user.
  • an error occurs in the estimated position of the touch position coordinates, but it can be used for applications where accuracy is not required.
  • step Q2 the signal detection units 7-1 to 7-M arranged at the four corners of the conductive panel 4 are turned on by notification from the control unit 6, and signals are detected in the respective signal detection units 7. .
  • step Q3 the signal detected in the signal detection unit 7 in the immediately preceding step Q2 is separated into signals corresponding to each user by the signal separation unit 9, and the respective magnitudes are stored in the separation signal storage unit 11.
  • the touch position coordinates can be calculated by Expression 23 and Expression 24 instead of Expression 7 and Expression 8.
  • iterative estimation of touch position coordinates is not performed regardless of whether a plurality of users are touching.
  • the touch position coordinates can be estimated by simple processing.
  • FIG. 22 shows a block diagram of a system in the second embodiment. Description of parts similar to those in FIG. 2 is omitted.
  • the impedance measuring units 23-1 to 23-N detect the voltage at each of the signal supply units 5-1 to 5-N, and measure the ground impedance of the connected user.
  • the impedance measured here is used for touch position estimation in the touch position estimation unit 13. Details of the touch position estimation method will be described later. Next, the principle of the touch position estimation method in this embodiment will be described.
  • the method of initial estimation of the touch position coordinates is the same as that of the second modification of the first embodiment. That is, first, the touch position coordinates of each user are estimated from Expression 23 and Expression 24 from the magnitude of the signal corresponding to each user in the signal detectors arranged at the four corners of the conductive panel 4.
  • EX (x, 'Y', x, y) and EY (x ', y', x, y) can be approximated by equations similar to Equations 7 and 8, for example.
  • the obtained EX and EY times 1 / ZL are approximate values of the actual deviation. That is, the touch position coordinates x and y of the touch input of the user to be estimated, the touch position coordinates x ′ and y ′ of the touch input other than the user to be estimated, and the ground impedance ZL other than the user to be estimated are If it is known, the estimated shift of the touch position coordinate can be corrected. If the coordinates obtained by Equation 23 and Equation 24 are X and Y,
  • the amount of deviation by each user can be obtained and the total calculated.
  • FIG. 24A shows an equivalent circuit when a user who has received a signal from the signal generation unit 7-1 performs touch input on the touch panel.
  • ZE represents the impedance from the user to the ground
  • ZT represents the impedance between the conductive panel and the user
  • ZP represents the impedance of the conductive panel.
  • the voltage measured by the impedance measuring unit 23-1 is defined as VT.
  • FIG. 24B shows an equivalent circuit in the case where the user who receives the signal from the signal generation unit 7-1 does not perform touch input on the touch panel. At this time, when the voltage measured by the impedance measuring unit 23-1 is VNT, the following equations are established.
  • Equation 28 if ZT >> ZP, the following approximation holds.
  • Equation 29 when the resistance value of the conductive panel is 1 k ⁇ / ⁇ and the signal frequency is about 100 kHz or less, the approximation of Equation 29 is well established. Since ZL to be obtained is ZT + ZE, it can be obtained by Equation 30 obtained by solving Equation 27 and Equation 29.
  • the deviation amount of the touch position coordinate estimated value is expressed by Expression 25 and Expression 26. Can be corrected. However, if the deviation amount of the estimated value cannot be obtained, the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of the touch input other than the user to be estimated cannot be accurately determined. That is, as in the case of the first embodiment, it is an incomplete problem in which parameters necessary for solving the problem are insufficient.
  • FIG. 25 is a flowchart showing the flow of initial impedance value measurement processing. This process is executed during the transition from the initial setting mode to the coordinate input mode.
  • Step Z1 sets all the signal detection units to the non-conduction state.
  • the control unit 6 sets a user who measures impedance (voltage in the user's signal supply unit) from among users whose impedance has not been measured.
  • step Z3 the control unit 6 notifies the signal generation unit 7 corresponding to the user set in step Z2 to start signal generation. In response to this, the corresponding signal generation unit 7 starts signal generation, and a signal is supplied to the corresponding user.
  • step Z4 the impedance measurement unit 23 measures the impedance (the voltage at the user's signal supply unit of the user), and stores it in the touch position estimation unit 13 as a VN corresponding to the user.
  • step Z5 the signal generator 7 terminates signal generation for the user in response to a notification from the controller 6.
  • step Z6 the control unit 6 determines whether or not impedance measurement has been performed for all users. If there is a user whose impedance has not been measured, the process proceeds to step Z2. Otherwise, the process ends.
  • FIG. 26 is a flowchart of signal and impedance measurement processing. This process replaces the signal measurement process in the second modification of the first embodiment shown in FIG.
  • step P2 the impedance measurement unit 23 measures the impedance (voltage in the signal supply unit) of each user, and stores it in the touch position estimation unit 13 as the voltage in the signal supply unit corresponding to each user. However, at this time, it is unknown whether the voltage corresponds to VT or VNT.
  • Step F3 is executed when it is determined that the user set in Step F1 does not perform touch input in Step F2. At this time, the voltage corresponding to the user measured in the immediately preceding step P2 is set as the value of VNT corresponding to the user.
  • Step F4 is executed when it is determined that the user set in Step F1 is performing touch input in Step F2. At this time, the voltage corresponding to the user measured in the immediately preceding step P2 is set as the value of VT corresponding to the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

A conductive panel has a planar conductive layer, and when a user comes into contact with an input surface, an input signal is propagated. A signal generation unit generates an identification signal for identifying a plurality of users. A signal supply unit supplies the identification signal to input means used by each of the users. A control unit controls a signal generation unit so as to generate an identification signal having characteristics separable for each user if there are a plurality of users. A signal detection unit is connected to a plurality of positions of the conductive panel, and performs detection of the input signal that has propagated from the conductive panel for each of the plurality of positions. A signal separation unit, on the basis of characteristics of the identification signal, separates the input signal into components corresponding to each user. A touch position estimation unit, on the basis of electrical characteristics of the conductive layer and the amplitude of the separated signal for each of the plurality of positions, estimates a contact position on the input surface of each user that is indicated by the input signal.

Description

タッチ式入力装置Touch input device
 本発明は、タッチ式の入力装置に関する。 The present invention relates to a touch input device.
 直感的な座標入力を行うインターフェースとして、タッチ式の入力装置が広く用いられている。静電容量方式、抵抗膜方式、表面弾性波方式、光学方式、カメラ方式など様々な入力方式が存在する。 タ ッ チ Touch-type input devices are widely used as an interface for intuitive coordinate input. There are various input methods such as a capacitance method, a resistive film method, a surface acoustic wave method, an optical method, and a camera method.
 その中でも、静電容量方式のタッチ式入力装置は、指先と導電性パネルとの間の静電容量の変化によってユーザーが触れた画面位置の情報を感知する。導電性パネル上に一様な交流電界を形成した状態で、導電パネルに保護膜を介して指など人体の一部が接触すると、人体と導電性パネルの間に容量性の結合が生じる。また、人体と基準電位点となるアースの間は浮遊容量により容量的に結合されているため、電界形成部より、導電性パネルと人体を介して、アースとの間で電流が流れる。このとき、各電界形成部から流出するそれぞれの電流の比は、導電性パネルに触れた指の位置と各電界形成部との間の抵抗比によって決定される。従って、各電界形成部から流出する電流値を測定すれば、その電流の比からタッチした位置の座標を算出することができる。 Among them, the capacitive touch input device senses the information on the screen position touched by the user by the change in the capacitance between the fingertip and the conductive panel. When a part of a human body such as a finger comes into contact with the conductive panel through a protective film in a state where a uniform alternating electric field is formed on the conductive panel, capacitive coupling occurs between the human body and the conductive panel. In addition, since the human body and the ground serving as the reference potential point are capacitively coupled by stray capacitance, a current flows between the ground from the electric field forming unit via the conductive panel and the human body. At this time, the ratio of each current flowing out from each electric field forming unit is determined by the resistance ratio between the position of the finger touching the conductive panel and each electric field forming unit. Accordingly, if the current value flowing out from each electric field forming unit is measured, the coordinates of the touched position can be calculated from the ratio of the currents.
 また、複数の点を同時にタッチし、複数の座標を同時に入力する動作をマルチタッチと呼ぶ。マルチタッチに対応することにより、入力操作の自由度が高まる。また、一つの入力装置に対して複数のユーザーが、それぞれ操作を実施することが可能となる。複数のユーザーが、単一のタッチ式の入力装置上で同時に作業を行うためには、タッチ式入力装置がマルチタッチに対応しているだけでは十分ではなく、複数の座標入力のそれぞれが、どのユーザーからの入力であるかを識別し、各ユーザーと各入力座標を対応付ける必要がある。 Also, the operation of touching multiple points simultaneously and inputting multiple coordinates simultaneously is called multi-touch. By supporting multi-touch, the degree of freedom of input operation is increased. In addition, a plurality of users can perform operations on one input device. In order for multiple users to work simultaneously on a single touch-type input device, it is not sufficient that the touch-type input device supports multi-touch. It is necessary to identify whether the input is from a user and to associate each user with each input coordinate.
 複数のユーザーが同時に操作することができ、かつ、複数の入力座標と各ユーザーを対応付けられるマルチユーザータッチシステムが提案されている(例えば特許文献1)。この方式では、タッチ面上の位置を検出するために、グリッド状のアンテナがパネル上に配置される。それぞれのアンテナは信号源に接続され互いに識別可能な信号が供給される。また、それぞれのユーザーは、ユーザーに対応する受信機と容量的に結合されている。上記構成により、どのユーザーが、タッチ面上のどの位置に触れているかを特定することができる。この方式では、パネル上にグリッド状のパターンを形成する必要がある。そのため、例えばアンテナの材料にITO(酸化インジウムスズ)等の透明導電材料を用いたとしても光透過率や屈折率をタッチ面上で均一にすることができないといった課題があった。 A multi-user touch system in which a plurality of users can be operated simultaneously and a plurality of input coordinates can be associated with each user has been proposed (for example, Patent Document 1). In this method, a grid-like antenna is arranged on the panel in order to detect a position on the touch surface. Each antenna is connected to a signal source and supplied with signals that can be distinguished from each other. Each user is also capacitively coupled to a receiver corresponding to the user. With the above configuration, it is possible to specify which user is touching which position on the touch surface. In this method, it is necessary to form a grid pattern on the panel. Therefore, for example, even when a transparent conductive material such as ITO (indium tin oxide) is used as the antenna material, there is a problem that the light transmittance and the refractive index cannot be made uniform on the touch surface.
 また、ユーザーを識別する電気的な信号検出と、光学式など別の座標検出と組み合わせることで、タッチ面上が均一な透明導電膜なとすることのできる情報入力装置および方法も提案されている(例えば特許文献2)。しかし、この方式では、タッチ位置座標とユーザーの対応付けにタイミング情報を用いているため、複数のユーザーが、ほぼ同時にタッチ面にタッチした場合にそれらを識別することができないという課題があった。 There has also been proposed an information input device and method capable of making a transparent conductive film uniform on the touch surface by combining electrical signal detection for identifying a user with another coordinate detection such as an optical type. (For example, patent document 2). However, since this method uses timing information for associating the touch position coordinates with the user, there is a problem that when a plurality of users touch the touch surface almost simultaneously, they cannot be identified.
米国特許6,498,590号US Patent 6,498,590 特開2000-148396号公報JP 2000-148396 A
 本発明は、複数のユーザーがほぼ同時にタッチ面にタッチした場合であってもユーザーを識別することができるタッチ式入力装置を提供することを目的とするものである。 An object of the present invention is to provide a touch input device that can identify users even when a plurality of users touch the touch surface almost simultaneously.
上記課題を解決するために、本発明の一態様のタッチ式入力装置は、平面状の導電層を有し、入力面に接触すると入力信号が伝搬する導電性パネルと、複数のユーザーを識別するための識別信号を生成する信号生成部と、それぞれのユーザーの体に対して識別信号を供給する信号供給部と、ユーザー毎に分離可能な特性を有する前記識別信号を生成するよう前記信号生成部を制御する制御部と、前記導電性パネルの複数の位置に接続され、前記複数の位置毎に前記導電性パネルから伝搬した複数の入力信号を含んだ検出信号を検出する検出部と、前記識別信号の特性に基づいて、前記検出信号から前記各ユーザーに対応する成分に分離する分離部と、前記導電層の電気的な特性と、前記複数の位置毎の分離された信号の大きさに基づいて前記入力信号が示す各ユーザーの前記入力面上での接触位置を推定する推定部と、を備える。
In order to solve the above problems, a touch input device according to one embodiment of the present invention has a planar conductive layer, and identifies a plurality of users from a conductive panel through which an input signal propagates when the input surface is touched. A signal generation unit that generates an identification signal for the user, a signal supply unit that supplies the identification signal to each user's body, and the signal generation unit that generates the identification signal having separable characteristics for each user A control unit for controlling the detection unit, a detection unit connected to a plurality of positions of the conductive panel and detecting a detection signal including a plurality of input signals propagated from the conductive panel for each of the plurality of positions, and the identification Based on a signal characteristic, a separation unit that separates the detection signal into components corresponding to each user, an electrical characteristic of the conductive layer, and a magnitude of the separated signal for each of the plurality of positions Said Comprising an estimation unit that estimates a contact position on the input surface of the user in the power signal.
 本発明の入力装置によれば、複数のユーザーが同時にタッチ面に入力操作行うことができ、かつ、それぞれのユーザーを識別することができる。
According to the input device of the present invention, a plurality of users can simultaneously perform an input operation on the touch surface, and each user can be identified.
第1の実施形態の入力装置の概略を説明する図。The figure explaining the outline of the input device of 1st Embodiment. 第1の実施形態の入力装置を示す図。The figure which shows the input device of 1st Embodiment. 分離可能な供給信号の例を示す図。The figure which shows the example of the supply signal which can be isolate | separated. 導電性パネルの構造を示す断面図。Sectional drawing which shows the structure of an electroconductive panel. 信号検出部の構成を示す図。The figure which shows the structure of a signal detection part. 1人のユーザーがタッチ入力した場合の信号の流れを説明する図。The figure explaining the flow of a signal when one user performs touch input. 等電流比線の形状の例を示す図。The figure which shows the example of the shape of an equal current ratio line. 座標テーブルのデータ構造を示す図。The figure which shows the data structure of a coordinate table. 複数のユーザーがタッチ入力した場合の信号の流れを説明する図。The figure explaining the flow of a signal when a plurality of users touch-input. 複数のユーザーがタッチ入力した場合の等電流比線の歪みを示す図。The figure which shows the distortion of an iso-current ratio line when a plurality of users touch-input. 歪み情報テーブルのデータ構造を示す図。The figure which shows the data structure of a distortion information table. 初期設定処理のフローチャート。The flowchart of an initial setting process. 座標入力モードにおける処理全体のフローチャート。The flowchart of the whole process in coordinate input mode. 信号測定処理のフローチャート。The flowchart of a signal measurement process. 分離信号記憶部に記憶されるデータの構造を示す図。The figure which shows the structure of the data memorize | stored in a separation signal memory | storage part. 全ユーザーのタッチ位置座標初期推定処理のフローチャート。The flowchart of a touch position coordinate initial stage estimation process of all the users. 各ユーザーのタッチ位置座標算出処理のフローチャート。The flowchart of a touch position coordinate calculation process of each user. タッチ位置座標反復推定処理のフローチャート。The flowchart of a touch position coordinate repetition estimation process. 等電流比線関数パラメータテーブルのデータ構造を示す図。The figure which shows the data structure of an equal current ratio line function parameter table. 第1の実施形態の変形例2におけるタッチ入力時の信号の流れの概略図。Schematic of the signal flow at the time of touch input in Modification 2 of the first embodiment. 第1の実施形態の変形例2における信号測定処理のフローチャート。The flowchart of the signal measurement process in the modification 2 of 1st Embodiment. 第2の実施形態の入力装置を示す図。The figure which shows the input device of 2nd Embodiment. 第2の実施形態における歪み情報テーブルのデータ構造を示す図。The figure which shows the data structure of the distortion information table in 2nd Embodiment. タッチ入力時及びタッチ非入力時の等価回路を示す図。The figure which shows the equivalent circuit at the time of touch input and touch non-input. インピーダンス初期測定処理のフローチャート。The flowchart of an impedance initial measurement process. 信号およびインピーダンス測定処理のフローチャート。The flowchart of a signal and impedance measurement process. 第2の実施形態における全ユーザーのタッチ位置座標初期推定処理のフローチャート。The flowchart of the touch position coordinate initial stage estimation process of all the users in 2nd Embodiment.
 図面を参照して、本発明の実施の形態を説明する。なお、互いに同様の動作をする構成や処理には共通の符号を付して、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the structure and process which mutually perform the same operation | movement, and the overlapping description is abbreviate | omitted.
 (第1の実施形態) 
 本実施形態の入力装置は、静電容量方式のタッチ式入力装置である。複数のユーザーがほぼ同時にタッチ面にタッチした場合であってもユーザーを識別することができる。以下の各実施形態では入力手段としてユーザーの指によってタッチ入力を行う場合について例示する。その他、ペン等のデバイスを用いてユーザーが入力する等の様々な入力手段を用いる方法であって構わない。
(First embodiment)
The input device of this embodiment is a capacitive touch input device. Even when a plurality of users touch the touch surface almost simultaneously, the users can be identified. In each of the following embodiments, a case where touch input is performed by a user's finger as an input unit will be exemplified. In addition, a method using various input means such as a user input using a device such as a pen may be used.
 図1は、本実施形態の入力装置100を卓上型に適用した場合の使用状態を説明する図である。 FIG. 1 is a diagram for explaining a usage state when the input device 100 of the present embodiment is applied to a desktop type.
入力装置100の中央の領域は、ユーザーがタッチすることにより座標を入力する導電性パネル4となっている。導電性パネル4の周囲には、複数の信号検出部(図示せず)が配されており、導電性パネル4と接続されている。入力装置は複数のユーザーが同時に使用できる。各ユーザーは、それぞれに対応する信号供給部5-1、5-2を例えば腕に携帯する。信号供給部5-1、5-2、はそれぞれ対応する信号生成部(図示せず)に接続されている。 The central area of the input device 100 is a conductive panel 4 for inputting coordinates when the user touches. A plurality of signal detection units (not shown) are arranged around the conductive panel 4 and are connected to the conductive panel 4. The input device can be used simultaneously by multiple users. Each user carries signal supply units 5-1 and 5-2 corresponding to the user, for example, in his / her arm. The signal supply units 5-1 and 5-2 are respectively connected to corresponding signal generation units (not shown).
 図2は、本実施形態の入力装置を示す図である。 FIG. 2 is a diagram showing the input device of this embodiment.
 入力装置100は、入力面に接触すると入力信号が伝搬する導電性パネル4と、N人のユーザーを識別するための識別信号を生成する信号生成部7(1~N)と、それぞれのユーザーの体に対して識別信号を供給する信号供給部5(1~N)と、ユーザー毎に分離可能な特性を有する識別信号を生成するよう信号生成部7を制御する制御部6と、導電性パネル4の複数の位置に接続され、M箇所の位置毎に導電性パネル4から伝搬した複数の入力信号を含んだ検出信号を検出する検出部8(1~M)と、識別信号の特性に基づいて検出信号から各ユーザーに対応する成分に分離する信号分離部9(1~N)と、入力信号が示す各ユーザーの導電性パネル4の入力面上での接触位置を推定するタッチ位置推定部13を有する。 The input device 100 includes a conductive panel 4 through which an input signal propagates when it touches an input surface, a signal generator 7 (1 to N) that generates an identification signal for identifying N users, and each user's A signal supply unit 5 (1 to N) for supplying an identification signal to the body, a control unit 6 for controlling the signal generation unit 7 to generate an identification signal having separable characteristics for each user, and a conductive panel 4 is connected to a plurality of positions, and a detection unit 8 (1 to M) that detects a detection signal including a plurality of input signals propagated from the conductive panel 4 at each of M positions, and based on the characteristics of the identification signal A signal separation unit 9 (1 to N) that separates the detection signal into components corresponding to each user, and a touch position estimation unit that estimates the contact position of each user on the input surface of the conductive panel 4 indicated by the input signal 13
 制御部6は、信号生成部7-1から7-Nが各ユーザーに供給するために生成する各信号の特性(信号の振幅、周波数、位相、タイミングなど)を決定する。ここで各ユーザーに対応する信号は、互いに識別(分離)が可能であるように決定される。たとえば、図3(a)に示すように互いに周波数が異なる信号や、図3(b)に示すように信号の供給時間が異なるものがある。あるいは、分離可能な符号に符号化されていてもよい。また、制御部6は信号検出および信号分離を行うために必要な情報を信号検出部8-1から8-Mおよび信号分離部9-1から9-Mに通知する。 The control unit 6 determines the characteristics (signal amplitude, frequency, phase, timing, etc.) of each signal generated for the signal generation units 7-1 to 7-N to supply to each user. Here, the signals corresponding to the respective users are determined so that they can be distinguished (separated) from each other. For example, there are signals having different frequencies as shown in FIG. 3 (a) and signals having different supply times as shown in FIG. 3 (b). Alternatively, it may be encoded into a separable code. In addition, the control unit 6 notifies the signal detection units 8-1 to 8-M and the signal separation units 9-1 to 9-M of information necessary for signal detection and signal separation.
 信号生成部7-1から7-Nは、制御部6により設定された振幅、周波数、位相、タイミングの信号を生成する。DDS(ダイレクトディジタルシンセサイズ)方式のほか、VCO(電圧制御発振器)等の一般的な信号生成方式で生成した電圧信号を、VCCS(電圧制御電流源)回路を介して電流信号に変換した上で信号供給部5-1から5-Nへ伝送する。 Signal generation units 7-1 to 7-N generate amplitude, frequency, phase, and timing signals set by the control unit 6. In addition to the DDS (Direct Digital Synthesis) method, the voltage signal generated by a general signal generation method such as a VCO (Voltage Controlled Oscillator) is converted into a current signal via a VCCS (Voltage Control Current Source) circuit. Transmit from signal supply unit 5-1 to 5-N.
 信号供給部5-1から5-Nは、それぞれ対応する信号生成部7-1から7-Nで生成された電流信号(識別信号)をユーザーの人体に対して供給する。ユーザーの人体に電流信号を供給する方法としては、リストバンド状のものをユーザーの人体や衣服に接続させるほか、椅子、机上、または床面に電極を配置することで供給することもできる。 The signal supply units 5-1 to 5-N supply the current signals (identification signals) generated by the corresponding signal generation units 7-1 to 7-N to the user's human body. As a method for supplying a current signal to the user's human body, a wristband-like one can be connected to the user's human body or clothes, or an electrode can be provided on a chair, a desk, or a floor.
 導電性パネル4はタッチ入力面であり、ユーザーは導電性パネル4上に触れることにより、タッチした位置に対応した座標を入力することができる。 
 図4は導電性パネル4の構造を示す断面図である。ITO(窒化インジウムスズ)などの導電性のある材料で構成された平面状の導電層16と、表面の保護層15および基盤層17を有する。ユーザーは保護層15の側に触れて座標を入力する。保護層15は誘電体となっており、ユーザーが保護層15に触れるとユーザーの人体と導電層の間には容量性の結合が生じ、電流信号が流れる。複数のユーザーが同時に導電性パネル4にタッチした場合には、それぞれのユーザーに対応する電流信号がそれぞれ、導電性パネル4上を同時に流れる。 
 信号検出部8-1から8-Mは、導電性パネル4に接続され信号の検出を行う。
The conductive panel 4 is a touch input surface, and the user can input coordinates corresponding to the touched position by touching the conductive panel 4.
FIG. 4 is a cross-sectional view showing the structure of the conductive panel 4. It has a planar conductive layer 16 made of a conductive material such as ITO (indium tin nitride), a protective layer 15 and a base layer 17 on the surface. The user touches the protective layer 15 side and inputs coordinates. The protective layer 15 is a dielectric, and when the user touches the protective layer 15, capacitive coupling occurs between the user's human body and the conductive layer, and a current signal flows. When a plurality of users touch the conductive panel 4 at the same time, current signals corresponding to the respective users flow on the conductive panel 4 simultaneously.
The signal detectors 8-1 to 8-M are connected to the conductive panel 4 and detect signals.
 図5は信号検出部8-1の構成を示している。信号検出部8-2から8-Mの構成は、信号検出部8-1と同様であるので省略する。周辺電極10は、導電性パネル4から信号検出部8-1から8-Mへ流入する電流の分布を調節する。導通切替え部18は、周辺電極10と電流電圧変換回路19の間を導通させるか否かを、制御部6からの指令に基づき決定する部分であり、例えばアナログスイッチにより構成される。電流電圧変換回路19は、検出された電流を電圧に変換する部分であり、たとえばOPアンプで構成された反転増幅回路である。そのため、導通切替部18が導通状態にあるとき導通切替部18と電流電圧変換回路19の間の点はゼロ電位となる。また、導通切替部18が非導通状態のときは、電流電圧変換回路19以降は、導電性パネル4から見てフローティング状態となる。電流電圧変換回路19により変換された電圧は、A/D変換器19によりディジタル信号に変換され、信号分離部9-1に伝達される。 FIG. 5 shows the configuration of the signal detector 8-1. The configuration of the signal detectors 8-2 to 8-M is the same as that of the signal detector 8-1 and is therefore omitted. The peripheral electrode 10 adjusts the distribution of current flowing from the conductive panel 4 to the signal detector 8-1 to 8-M. The conduction switching unit 18 is a part that determines whether or not to conduct between the peripheral electrode 10 and the current-voltage conversion circuit 19 based on a command from the control unit 6, and is configured by an analog switch, for example. The current-voltage conversion circuit 19 is a part that converts the detected current into a voltage, and is an inverting amplifier circuit configured by, for example, an OP amplifier. Therefore, when the conduction switching unit 18 is in the conduction state, the point between the conduction switching unit 18 and the current-voltage conversion circuit 19 is zero potential. Further, when the conduction switching unit 18 is in a non-conduction state, the current-voltage conversion circuit 19 and the subsequent states are in a floating state as viewed from the conductive panel 4. The voltage converted by the current-voltage conversion circuit 19 is converted into a digital signal by the A / D converter 19 and transmitted to the signal separation unit 9-1.
 信号分離部9-1から9-Mは、対応する信号検出部8-1から8-Mが検出した信号を、制御部からの情報に基づき、各ユーザーに対応する信号へと分離する。各ユーザーに対応する信号が、互いに異なる周波数の信号である場合、フーリエ変換、自己回帰係数の計算、ディジタルフィルタ、適応フィルタなど、周波数の分離に用いられる一般的な方法を用いて分離し、各ユーザーに対応する信号の振幅を求めることができる。また、各ユーザーに対応する信号が時間によって分離されている場合、各ユーザーに信号が供給されている時間に観測された信号の振幅を、各ユーザーに対応する信号の振幅とする。 The signal separation units 9-1 to 9-M separate the signals detected by the corresponding signal detection units 8-1 to 8-M into signals corresponding to each user based on information from the control unit. If the signals corresponding to each user are signals of different frequencies, they are separated using general methods used for frequency separation, such as Fourier transform, autoregressive coefficient calculation, digital filter, adaptive filter, etc. The amplitude of the signal corresponding to the user can be obtained. When the signals corresponding to each user are separated by time, the amplitude of the signal observed at the time when the signal is supplied to each user is set as the amplitude of the signal corresponding to each user.
 分離信号記憶部11は、上記信号分離部9-1から9-Mが分離した各ユーザーに対応する信号の振幅をRAM等に一時記憶し、後述するタッチ位置推定部13における処理で利用する。 The separated signal storage unit 11 temporarily stores the amplitude of the signal corresponding to each user separated by the signal separating units 9-1 to 9-M in a RAM or the like, and uses it in the processing in the touch position estimating unit 13 described later.
 導電性パネル特性記憶部12は、あらかじめ、実測またはシミュレーションにより求めた導電性パネルの特性を、ハードディスク、EEPROM、CD-ROM等の記憶媒体に記憶しておき、後述するタッチ位置推定部13における処理で利用する。 The conductive panel characteristic storage unit 12 stores in advance the characteristics of the conductive panel obtained by actual measurement or simulation in a storage medium such as a hard disk, EEPROM, CD-ROM, and the processing in the touch position estimation unit 13 described later. Use in.
 タッチ位置推定部13は、CPUおよびRAMなどを備え、各ユーザーについて、分離信号記憶部11に記憶された情報と、導電パネル特性記憶部12に記憶された導電パネル4の特性に基づき、導電パネル4上における各ユーザーのタッチ位置の座標の推定を行う。タッチ位置推定の方法の詳細は、後述する。 The touch position estimation unit 13 includes a CPU, a RAM, and the like, and for each user, based on the information stored in the separation signal storage unit 11 and the characteristics of the conductive panel 4 stored in the conductive panel characteristic storage unit 12, 4 Estimate the coordinates of the touch position of each user on the top. Details of the method of touch position estimation will be described later.
 次に、本実施形態の入力装置がタッチ位置を推定する方法を説明する。まず、1人のユーザーがタッチ入力を行っている場合について説明する。 
 図6は、信号生成部7-1により生成された信号が、信号供給部5-1によりあるユーザーに供給され、該ユーザーが導電性パネル4上の点にタッチし、導電性パネル4に接続されている信号検出部8-1から8-Mのうち、信号検出部8-1と8-2が導通状態にある場合の信号の流れを模式的に表したものである。
Next, a method for estimating the touch position by the input device according to the present embodiment will be described. First, a case where one user performs touch input will be described.
In FIG. 6, the signal generated by the signal generation unit 7-1 is supplied to a certain user by the signal supply unit 5-1, and the user touches a point on the conductive panel 4 to connect to the conductive panel 4. Among the signal detection units 8-1 to 8-M, the signal flow when the signal detection units 8-1 and 8-2 are in a conductive state is schematically shown.
 このとき、信号検出部8-1で検出される電流の大きさをI1・1-2、信号検出部8-2で検出される電流の大きさをI2・1-2とすると、I1・1-2とI2・1-2の比がある値であったとき、ユーザーのタッチ位置は信号検出部8-1と8-2の間を通るある曲線(以降、等電流比線と呼ぶ)上にあることがわかる。 
 続いて、別の信号検出部の組合せとして、例えば信号検出部8_1と8_Mを導通状態にして信号の検出を行えば、今度はタッチ位置が信号検出部8_1と8_Mの間を通る、ある等電流比線上に存在することがわかる。したがって、信号検出部8-1と8-2を導通状態にして求めた等電流比線と、信号検出部8_1と8_Mを導通状態にして求めた等電流比線の交点が、求めるタッチ位置の座標である。
At this time, if the current detected by the signal detector 8-1 is I1 · 1-2, and the current detected by the signal detector 8-2 is I2 · 1-2, then I1 · 1 When the ratio of -2 and I2 · 1-2 is a certain value, the user's touch position is on a curve (hereinafter referred to as an iso-current ratio line) that passes between the signal detectors 8-1 and 8-2. You can see that
Subsequently, as another combination of signal detection units, for example, if signal detection is performed with the signal detection units 8_1 and 8_M in a conductive state, the touch position passes between the signal detection units 8_1 and 8_M, and an equal current It can be seen that it exists on the ratio line. Therefore, the intersection of the isocurrent ratio line obtained with the signal detectors 8-1 and 8-2 in the conductive state and the isocurrent ratio line obtained with the signal detectors 8_1 and 8_M in the conductive state is the touch position to be obtained. Coordinates.
 図7(a)は、信号検出部8_1と8-2を導通状態にして求まる等電流比線、図10は信号検出部8_1と8-Mを導通状態にして求まる等電流比線を表す図であり、図中の曲線に付している数値は、図7(a)ではlog(I1・1-2/I2・1-2)、図7(b)ではlog(I1・1-M/IM・1-M)を表す。なお、対角に配置されている信号検出部のペアを導通状態とした場合であれば、周辺電極10の抵抗値を工夫することで等電流比線を直線に近づけることができるが(特許 第4168537号)、それ以外の信号検出部の組合せを用いた場合、等電流比線は湾曲する。ここでは湾曲した等電流比線への対処方法を含めて、図7(a)および(b)に示す、周辺電極10の抵抗値が無限大である場合の等電流比線を用いて座標推定方法を説明する。 FIG. 7A shows an isocurrent ratio line obtained when the signal detection units 8_1 and 8-2 are in a conductive state, and FIG. 10 shows an isocurrent ratio line obtained when the signal detection units 8_1 and 8-M are in a conductive state. The numerical values attached to the curves in the figure are log (I1 · 1-2 / I2 · 1-2) in FIG. 7 (a) and log (I1 · 1-M / in FIG. 7 (b). IM · 1-M). If the pair of signal detectors arranged diagonally is in a conductive state, the isocurrent ratio line can be made closer to a straight line by devising the resistance value of the peripheral electrode 10 (Patent No. 1). 4168537), and other combinations of signal detectors, the isoelectric ratio curve is curved. Here, including a method for dealing with a curved iso-current ratio line, coordinates are estimated using the iso-current ratio line shown in FIGS. 7A and 7B when the resistance value of the peripheral electrode 10 is infinite. A method will be described.
 u=log(I1・1-2/I2・1-2)、v=log(I1・1-M/IM・1-M)とすると、タッチ位置の座標はuに対応する等電流比線とvに対応する等電流比線の交点を求めることにより一意に定まる。したがって、実測値またはシミュレーション値をもとに、離散的なui(i=1,2,…, ui<ui+1)とvj(j=1,2,…, vj<vj+1)の値に対応する座標を図8に表すような構造のテーブルとして持つことが可能である。使用している信号検出部ペアの組合せに対応するテーブルのui、vjに対応するX座標、Y座標を、それぞれX(ui,vj)、Y(ui,vj)と表す。実際に測定された値がu、vでありui<u<ui+1、vj<v<vj+1とすると、タッチ位置の座標X、Yはそれぞれ式1,式2により、近似して求めることができる。
Figure JPOXMLDOC01-appb-M000001
If u = log (I1 ・ 1-2 / I2 ・ 1-2) and v = log (I1 ・ 1-M / IM ・ 1−M), the coordinates of the touch position are the isocurrent ratio line corresponding to u. It is uniquely determined by finding the intersection of isocurrent ratio lines corresponding to v. Therefore, based on measured or simulated values, discrete ui (i = 1,2, ..., ui <ui + 1) and vj (j = 1,2, ..., vj <vj + 1) values It is possible to have a table having a structure as shown in FIG. The X coordinate and Y coordinate corresponding to ui and vj in the table corresponding to the combination of the signal detection unit pairs being used are expressed as X (ui, vj) and Y (ui, vj), respectively. Assuming that the actually measured values are u and v, and ui <u <ui + 1 and vj <v <vj + 1, the coordinates X and Y of the touch position are approximated by Equations 1 and 2, respectively. be able to.
Figure JPOXMLDOC01-appb-M000001
ここでw1からw4は、u、vの値からの差に応じて、たとえば以下の式により決定する。
Figure JPOXMLDOC01-appb-M000002
Here, w1 to w4 are determined according to the difference from the values of u and v, for example, by the following equations.
Figure JPOXMLDOC01-appb-M000002
また、u= ui, v= vjとなるui,vjが存在すれば、X(ui,vj)、Y(ui,vj)をそのままタッチ位置の座標推定値とすることができる。 
 なお、ここでは各信号検出部がタッチパネルの4角に配置された図を用いているが、信号検出部は必ずしも4角に配置される必要はなく、その数も4つ以上であってよい。また、使用する信号検出部ペアの組合せも、8_1と8-2および8_1と8-Mに限定されず、任意の組合せを用いることができる。
If ui and vj satisfying u = ui and v = vj exist, X (ui, vj) and Y (ui, vj) can be directly used as the coordinate estimation value of the touch position.
Here, a diagram in which each signal detection unit is arranged in four corners of the touch panel is used, but the signal detection units are not necessarily arranged in four corners, and the number thereof may be four or more. Further, the combination of signal detection unit pairs to be used is not limited to 8_1 and 8-2, and 8_1 and 8-M, and any combination can be used.
 次に、複数のユーザーが同時にタッチ入力を行っている場合のタッチ位置座標推定の原理について説明する。 
 図9は、信号生成部7-1により生成された信号が、信号供給部5-1を介してあるユーザーに供給され、信号生成部7-2により生成された信号が、信号供給部5-2を介して別のユーザーに供給され、それぞれのユーザーがそれぞれ導電性パネル上の点を同時に触れていたときの信号の流れを模式的に表したものである。このとき、信号生成部7-1は、電流源として信号をユーザーに対して供給しているため、信号生成部7-2からの信号は信号生成部7-1へは流入せず、同様に信号生成部7-1からの信号は信号生成部7-2へは流入しない。しかし、対地浮遊容量21を介して信号生成部7-2からの信号の一部はアースへ流出し、対地浮遊容量22を介して信号生成部7-1からの信号の一部はアースへ流出する。
Next, the principle of touch position coordinate estimation when a plurality of users perform touch input simultaneously will be described.
In FIG. 9, the signal generated by the signal generation unit 7-1 is supplied to a user via the signal supply unit 5-1, and the signal generated by the signal generation unit 7-2 is supplied to the signal supply unit 5- 2 is a schematic representation of the flow of signals supplied to another user via 2 and each user touching a point on the conductive panel at the same time. At this time, since the signal generation unit 7-1 supplies a signal as a current source to the user, the signal from the signal generation unit 7-2 does not flow into the signal generation unit 7-1. The signal from the signal generator 7-1 does not flow into the signal generator 7-2. However, a part of the signal from the signal generator 7-2 flows to the ground via the ground stray capacitance 21, and a part of the signal from the signal generator 7-1 flows to the ground via the ground stray capacitance 22. To do.
 また、信号検出部8_1と8_Mで検出される信号は、信号生成部7-1からの信号と信号生成部7-2からの信号の混合したものであるが、この信号は、信号分離部9-1および9-Mによりそれぞれのユーザーに対応した信号に分離することができる。対地浮遊容量を介してアースへ流出する信号の影響が無視できる場合、分離されたそれぞれのユーザーに対応する信号を用いれば、上述した1人のユーザーがタッチ入力を行っている場合と同様に、それぞれのユーザーに対応するタッチ位置の座標を求めることができる。 The signals detected by the signal detection units 8_1 and 8_M are a mixture of the signal from the signal generation unit 7-1 and the signal from the signal generation unit 7-2. -1 and 9-M can be separated into signals corresponding to each user. If the influence of the signal flowing out to earth via ground floating capacitance can be ignored, using the signal corresponding to each separated user, as in the case where one user mentioned above performs touch input, The coordinates of the touch position corresponding to each user can be obtained.
 しかし、実際には対地浮遊容量からアースへ流出する信号の影響が無視できない場合がある。図10は、導電性パネル4上の点24から、アースに対して信号の流出があった場合の、等電流比線の形状を表している。このように、流出がないことを仮定した場合の等電流比線を表した図7(b)と比べて、形状が歪むことが分かっている。したがって、複数のユーザーが同時にタッチ入力を行っている場合にはタッチ位置の推定に誤差が生じる場合がある。 However, in reality, the influence of the signal flowing from the ground floating capacity to the ground cannot be ignored. FIG. 10 shows the shape of the equicurrent ratio line when a signal flows out from the point 24 on the conductive panel 4 to the ground. As described above, it is known that the shape is distorted as compared with FIG. 7B showing the isocurrent ratio line when it is assumed that there is no outflow. Therefore, when a plurality of users perform touch input at the same time, an error may occur in the estimation of the touch position.
 ところで、図7(b)と図10を比較すると、等電流比線の歪みが大きい部分とそうでない部分があることがわかる。すなわち、タッチ位置座標の推定誤差が大きい領域と、そうでない領域が存在し、そのずれの方向もそれぞれの領域で異なる。この推定誤差が相対的に大きいか否かは、推定しようとするユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標、および信号検出部ペアの位置関係によって決まる。 By the way, comparing FIG. 7B and FIG. 10, it can be seen that there are portions where the distortion of the isocurrent ratio line is large and portions where it is not. That is, there are areas where the estimation error of the touch position coordinates is large and areas where the estimation error is not, and the direction of the shift is different in each area. Whether or not this estimation error is relatively large depends on the touch position coordinates of the touch input of the user to be estimated, the touch position coordinates of the touch input other than the user to be estimated, and the positional relationship of the signal detection unit pair. Determined.
 推定しようとするユーザー以外のタッチ入力のタッチ位置が点(x’,y’)にあるとき、等電流比線が点(x,y)においてX方向、Y方向にずれる量EX(x,’ y’, x, y)およびEY(x’, y’, x, y)は、推定しようとするユーザー以外の人体を介した導電性パネルからアースまでのインピーダンスZLの値を決めれば、それぞれの信号検出部ペアについて、実測またはシミュレーションにより求めることができる。その値は、ZLの値によって変わるが、相対的な大小関係はZLにかかわらず一定である。また、それぞれの座標位置を離散的な値とすれば、図11に示すような構造のテーブルとすることができる。 When the touch position of the touch input other than the user to be estimated is at the point (x ', y'), the amount EX (x, 'where the isocurrent ratio line is shifted in the X direction and the Y direction at the point (x, y) y ', x, y) and EY (x', y ', x, y) are determined by determining the value of impedance ZL from the conductive panel to the ground through the human body other than the user to be estimated. The signal detection unit pair can be obtained by actual measurement or simulation. The value varies depending on the value of ZL, but the relative magnitude relationship is constant regardless of ZL. If each coordinate position is a discrete value, a table having a structure as shown in FIG. 11 can be obtained.
 x’k<x’<x’k+1、y’l<y’<y’l+1、xm<x<xm+1、yn<y<yn+1であったとき、EX、EYはそれぞれ、例えば次式により近似できる。
Figure JPOXMLDOC01-appb-M000003
When x'k <x '<x'k + 1, y'l <y'<y'l + 1, xm <x <xm + 1, yn <y <yn + 1, EX and EY are Each can be approximated by, for example:
Figure JPOXMLDOC01-appb-M000003
ただし
Figure JPOXMLDOC01-appb-M000004
However,
Figure JPOXMLDOC01-appb-M000004
であり、この値は、それぞれの信号検出部ペアに対して得られる。 This value is obtained for each signal detector pair.
 また、複数のユーザーによる歪みの合計を求めるには、それぞれのユーザーについて式7と式8により歪みを求め、それを全ユーザーについて単純に合計を求めることで、この場合の歪みの最尤推定値を求めることができる。 In addition, in order to obtain the total distortion of a plurality of users, the distortion is obtained by Equations 7 and 8 for each user, and the total is simply obtained for all users, whereby the maximum likelihood estimate of the distortion in this case Can be requested.
 2次元平面である導電性パネル上でのタッチ位置の座標を推定するには、信号検出部ペアのうち、少なくとも2通りの信号検出部ペアでの信号測定結果があればよい。したがって、利用可能な全ての信号検出部ペアでの測定結果のうち、X座標を推定するときは上記EXの絶対値が小さい信号検出部ペアを、Y座標を推定するときは上記EYの絶対値が小さい信号検出部ペアを、それぞれ少なくとも2つ以上選択し、その測定結果を元にタッチ位置座標の推定を行えば、複数のユーザーが同時にタッチすることによる推定誤差を軽減することができる。 In order to estimate the coordinates of the touch position on the conductive panel which is a two-dimensional plane, it is only necessary to have signal measurement results from at least two signal detection unit pairs among the signal detection unit pairs. Therefore, of the measurement results of all available signal detection unit pairs, when estimating the X coordinate, the signal detection unit pair with a small absolute value of EX is used, and when estimating the Y coordinate, the absolute value of EY is used. If at least two signal detection unit pairs each having a small signal size are selected and the touch position coordinates are estimated based on the measurement results, estimation errors due to simultaneous touching by a plurality of users can be reduced.
 上述したとおり、ある信号検出部ペアを用いて推定したタッチ位置座標の推定誤差が大きいか否かは、推定しようとするユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標、および信号検出部ペアによって決まる。つまり、推定しようとしているユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標が分かっていれば、最適な信号検出部ペアを選択することができる。しかし、最適な信号検出部ペアが選択できなければ、推定しようとしているユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標を正確に求めることができない。つまり、この問題は問題を解くために必要な情報(パラメータ)が不足している不完全問題である。 As described above, whether or not the estimation error of the touch position coordinate estimated using a certain signal detection unit pair is large depends on the touch position coordinate of the touch input of the user to be estimated and the touch input other than the user to be estimated. The touch position coordinates and the signal detection unit pair. That is, if the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of the touch input other than the user to be estimated are known, an optimal signal detection unit pair can be selected. However, if the optimum signal detection unit pair cannot be selected, the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of touch inputs other than the user to be estimated cannot be obtained accurately. That is, this problem is an incomplete problem that lacks information (parameters) necessary to solve the problem.
 このように、問題を解くために必要なパラメータは求まっていないが、問題を解くために必要なパラメータは、問題を解けば求めることができる問題を解くための方法として、EMアルゴリズムという手法が統計学の分野で用いられている。(非特許文献:Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39(1):1-38, 1977)このEMアルゴリズムの考え方は、要約すると以下の通りである。問題を解くために必要なパラメータが不足しているときに、そのパラメータに任意の値を仮定して問題を解き、そのパラメータを求める。こうして求めたパラメータを用いて再び問題を解けば、そのときに求まるパラメータは、前回求めたパラメータよりも正確になる。この手順を繰り返すことで、パラメータの推定値は局所的最適解へ収束することが保証される。ただし、大域的最適解へ収束するか否かは、仮定するパラメータの初期値に依存する。 In this way, the parameters necessary to solve the problem are not found, but the parameters required to solve the problem are statistically determined by the EM algorithm as a method for solving the problem that can be obtained by solving the problem. Used in academic fields. (Non-patent literature: Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1): 1-38, The concept of the algorithm is summarized as follows. When a parameter necessary for solving a problem is insufficient, the problem is solved by assuming an arbitrary value for the parameter, and the parameter is obtained. If the problem is solved again using the parameters obtained in this way, the parameters obtained at that time will be more accurate than the previously obtained parameters. By repeating this procedure, it is assured that the parameter estimates converge to a locally optimal solution. However, whether or not to converge to the global optimal solution depends on the initial value of the assumed parameter.
 この考え方を、実施形態におけるタッチ位置の推定方法に利用する。すなわち、複数のユーザーが同時にタッチ入力を行っている場合のそれぞれのタッチ位置を推定する際に、あるタッチ位置座標を仮定して、最適な信号検出部の組の選択を行いタッチ位置座標の再推定を行う。こうして求めたタッチ位置座標を仮定して、再びタッチ位置座標の再推定を繰り返すことで、タッチ位置座標の推定値を、最適なタッチ位置座標推定値に近づけていく。このとき、タッチ位置座標の推定値が、最適なタッチ位置座標推定値に収束するためには、パラメータの初期値(最初に仮定するタッチ位置座標の初期値)が、実際のタッチ位置の座標に近いことが必要である。仮定するタッチ位置座標の初期値として、例えば、信号の干渉が存在しないことを仮定して求めたタッチ位置座標を使うことができる。 This concept is used for the touch position estimation method in the embodiment. That is, when estimating the respective touch positions when a plurality of users are performing touch input at the same time, assuming a certain touch position coordinate, the optimum signal detection unit set is selected and the touch position coordinate is re-established. Make an estimate. Assuming the touch position coordinates thus obtained, the touch position coordinates are re-estimated again, thereby bringing the estimated value of the touch position coordinates closer to the optimum touch position coordinate estimated value. At this time, in order for the estimated value of the touch position coordinates to converge to the optimum touch position coordinate estimated value, the initial value of the parameter (initial value of the initial touch position coordinate) is changed to the actual coordinate of the touch position. It is necessary to be close. As the initial value of the assumed touch position coordinates, for example, the touch position coordinates obtained on the assumption that there is no signal interference can be used.
 以上のような構成および原理に基づき、入力位置の座標を推定する装置の動作について、図12から図18のフローチャートに基づき、詳細に説明する。 
 まず、本装置の電源が投入されると、初期設定モードとなり制御部6は、初期設定処理を実施する。 
 図12は、初期設定処理を行う際のフローチャートである。ステップS1において、制御部6は全ての信号生成部7に対して、信号生成を行わないように設定する。 
 ステップS2では、各信号検出部8において信号を検出する。ここで検出される信号は、信号生成部7が信号生成を行っていないので、雑音が検出される。 
 ステップS3では、ステップS2で検出された信号を、信号分離部9で複数の異なる周波数組合せの候補に含まれる各周波数に分離し、それぞれの信号の大きさを分離信号記憶部11に記憶する。周波数組合せとは、各ユーザーに割り当てる周波数の組合せであり、互いに整数倍とならないように設定された最大利用ユーザー数分の周波数が用意されている。この周波数組合せの候補は、制御部6に複数用意されており、制御部6が選択した組合せが信号分離部9に対して通知されている。
Based on the above configuration and principle, the operation of the apparatus for estimating the coordinates of the input position will be described in detail based on the flowcharts of FIGS.
First, when the power of the present apparatus is turned on, the initial setting mode is set, and the control unit 6 performs an initial setting process.
FIG. 12 is a flowchart when performing the initial setting process. In step S1, the control unit 6 sets all the signal generation units 7 so as not to perform signal generation.
In step S2, each signal detector 8 detects a signal. As for the signal detected here, noise is detected because the signal generator 7 does not generate a signal.
In step S3, the signal detected in step S2 is separated by the signal separation unit 9 into each frequency included in a plurality of different frequency combination candidates, and the magnitude of each signal is stored in the separated signal storage unit 11. The frequency combination is a combination of frequencies assigned to each user, and frequencies for the maximum number of users that are set so as not to be an integral multiple of each other are prepared. A plurality of frequency combination candidates are prepared in the control unit 6, and the combination selected by the control unit 6 is notified to the signal separation unit 9.
 ステップS4では、制御部6において、各ユーザーに割り当てる周波数組合せ使用候補である周波数が使用可能であるかの判断を行うために、ステップS3で分離信号記憶部11に記憶された各周波数の信号の大きさと比較するための閾値の初期値を設定する。 In step S4, in order to determine whether or not the frequency combination use candidate assigned to each user can be used in the control unit 6, the signal of each frequency stored in the separated signal storage unit 11 in step S3. Set the initial value of the threshold for comparison with the size.
 ステップS5では、制御部6が複数ある周波数組合せ候補のうち使用可能であるかの判定が未実施である周波数組合せを、判定を行ったか否かを判定する判定済フラッグを参照し、判定を行う候補に設定する。 In step S5, the control unit 6 makes a determination with reference to a determined flag for determining whether or not a frequency combination that has not been determined to be usable among a plurality of frequency combination candidates has been determined. Set as a candidate.
 ステップS6は、ステップS5で設定された周波数組合せが、使用可能であるかを制御部6が判定するステップである。最大利用ユーザー数がN人であれば、使用可能であるかを判定すべき周波数組合せにはN個の周波数がある。ステップS3で記憶された各信号の大きさのうち、判定を行う周波数組合せの各周波数に対応する信号の大きさを、制御部6は分離信号記憶部11より読み込み、ステップS4またはS8で設定された閾値と比較する。すべての周波数で、信号の大きさが閾値より小さければ、その周波数組合せを使用可能と判定し、ステップS7へ進む。 Step S6 is a step in which the control unit 6 determines whether the frequency combination set in Step S5 is usable. If the maximum number of users is N, there are N frequencies in the frequency combination to be determined whether it can be used. Of the magnitudes of the signals stored in step S3, the control section 6 reads the magnitude of the signal corresponding to each frequency of the frequency combination to be determined from the separated signal storage section 11, and is set in step S4 or S8. Compare with the threshold value. If the signal magnitude is smaller than the threshold value at all frequencies, it is determined that the frequency combination can be used, and the process proceeds to step S7.
周波数組合せに含まれる各信号のうち、いずれか1つでも閾値より大きければ、制御部6はその周波数組合せは使用不可と判断し、判定を行った周波数組合せの判定済みフラッグを判定済みに設定し、ステップS8へ進む。 If any one of the signals included in the frequency combination is greater than the threshold, the control unit 6 determines that the frequency combination is unusable and sets the determined flag of the determined frequency combination to determined. The process proceeds to step S8.
 ステップS7では、制御部6は判定済フラッグを参照し、すべての周波数組合せ候補について判定を行ったかを判定する。すべての周波数組合せ候補が判定済みであれば、判定済みフラッグをクリアし、ステップS8へ進む。未判定の周波数組合せがあれば、ステップS5へ進む。 
 ステップS8は、すべての周波数候補が使用不可能と判定された場合に、判定基準を甘くする。すなわち、制御部6において設定されている閾値をそれまでの閾値よりも大きくする。 
 ステップS9では、ステップS5で決定した周波数組合せの各周波数を、制御部6より各信号生成部7および信号分離部9に対して設定する。この通知を受けて各信号生成部7は信号生成を開始し、信号分離部9は、これ以降、設定された各周波数を各ユーザーに対応する信号であるとして信号分離を実施する。 
 以上の初期設定処理が終了したのち、初期設定モードから座標入力モードに移行する。座標入力モードでは、以下で説明するタッチ入力位置座標を推定する処理を一定時間毎に実施する。
In step S7, the control unit 6 refers to the determined flag and determines whether determination has been performed for all frequency combination candidates. If all the frequency combination candidates have been determined, the determined flag is cleared and the process proceeds to step S8. If there is an undetermined frequency combination, the process proceeds to step S5.
Step S8 loosens the determination criteria when it is determined that all frequency candidates are unusable. That is, the threshold value set in the control unit 6 is set larger than the previous threshold value.
In step S9, each frequency of the frequency combination determined in step S5 is set by the control unit 6 for each signal generation unit 7 and signal separation unit 9. Upon receiving this notification, each signal generation unit 7 starts signal generation, and the signal separation unit 9 thereafter performs signal separation assuming that each set frequency is a signal corresponding to each user.
After the above initial setting process is completed, the initial setting mode is shifted to the coordinate input mode. In the coordinate input mode, processing for estimating touch input position coordinates described below is performed at regular intervals.
 図13は、座標入力モードにおける処理の全体を示したフローチャートである。ステップA1は、タッチ位置座標推定のために必要な信号の測定を実施する。続いて、ステップA2において、各ユーザーの各入力位置座標の推定を行う。ここでは、それぞれのユーザーのタッチ入力が互いに干渉していないことを仮定してタッチ位置座標の推定を行う。ここで推定するタッチ位置座標は、複数のユーザーが同時にタッチ入力を行っていた場合には誤差が含まれる。ステップA3は、複数のユーザーがタッチ入力を行っているかにより処理を分岐させるステップである。複数のユーザーがタッチ入力を行っていた場合には、ステップA4へ進み、そうでない場合はステップA5へ進む。ステップA5は、推定したタッチ位置座標を報告する。A1、A2、A3、A4における処理内容の詳細は以下で詳細に説明する。 FIG. 13 is a flowchart showing the entire processing in the coordinate input mode. In step A1, measurement of signals necessary for touch position coordinate estimation is performed. Subsequently, in step A2, each input position coordinate of each user is estimated. Here, the touch position coordinates are estimated on the assumption that the touch inputs of the respective users do not interfere with each other. The touch position coordinates estimated here include an error when a plurality of users perform touch input simultaneously. Step A3 is a step in which the process is branched depending on whether a plurality of users are performing touch input. If a plurality of users are making touch input, the process proceeds to step A4, and if not, the process proceeds to step A5. Step A5 reports the estimated touch position coordinates. Details of processing contents in A1, A2, A3, and A4 will be described in detail below.
 図14は、図13におけるステップA1の処理内容を示すフローチャートである。ステップM1では各信号生成部7-1から7-Nにおいて信号生成を開始し、信号供給部5-1から5-Nを介してユーザーに信号が供給される。 
 ステップM2では、信号検出を行う信号検出部8の選択を行う。測定が未実施である信号検出部8のペアのなかから、信号検出を行う信号検出部8のペアが制御部6によって選択される。そして、該信号検出部8のペアを導通状態に設定する。 
ステップM3では、ステップM2で制御部6によって選択された信号検出部8のペアにおいて、それぞれ信号の検出を行う。 
 ステップM4では、直前のステップM3において信号検出部8が検出を行った信号を、信号分離部9において各ユーザーに対応する信号へ分離する。また、信号分離部9から出力される各ユーザーに対応する信号の大きさを、分離信号記憶部11に記憶する。
FIG. 14 is a flowchart showing the processing content of step A1 in FIG. In Step M1, signal generation is started in each of the signal generation units 7-1 to 7-N, and a signal is supplied to the user via the signal supply units 5-1 to 5-N.
In step M2, the signal detection unit 8 that performs signal detection is selected. From the pair of signal detectors 8 that have not been measured, the control unit 6 selects a pair of signal detectors 8 that perform signal detection. Then, the pair of the signal detection units 8 is set to a conductive state.
In step M3, each pair of signal detection units 8 selected by the control unit 6 in step M2 detects signals.
In step M4, the signal detected by the signal detection unit 8 in the immediately preceding step M3 is separated into signals corresponding to each user in the signal separation unit 9. In addition, the magnitude of the signal corresponding to each user output from the signal separation unit 9 is stored in the separation signal storage unit 11.
 ステップM5は、制御部6が使用する信号検出部8のペア全てについて測定を実施したかを判定するステップであり、使用する信号検出部8のペア全てにおいて測定実施済みであれば、ステップM6へ進む。使用する信号検出部8のペアのうち、未測定のペアが存在した場合は、ステップM2へ進む。 Step M5 is a step for determining whether or not measurement has been performed for all pairs of signal detection units 8 used by the control unit 6. If measurement has been performed for all pairs of signal detection units 8 to be used, go to Step M6. move on. If there is an unmeasured pair among the pairs of signal detectors 8 to be used, the process proceeds to step M2.
 ステップM6では、制御部6からの通知を受けて、信号生成部7は信号生成を停止し、ユーザーに対する信号供給を終了する。以上のM1からM6の処理が終了した時点で、分離信号記憶部11には、図15に示すように、各信号検出部8のペアにおいて測定された、各ユーザーに対応する信号の大きさの情報が格納されている。 In step M6, upon receiving a notification from the control unit 6, the signal generation unit 7 stops signal generation and ends signal supply to the user. At the time when the processing from M1 to M6 is completed, the separated signal storage unit 11 stores the magnitude of the signal corresponding to each user measured in each pair of signal detection units 8 as shown in FIG. Information is stored.
 続いて、図13におけるステップA2の処理について説明する。図16は、図13におけるステップA2の処理を示したフローチャートである。以下のステップE1からE4の処理は、タッチ位置推定部13にて実行される。 Subsequently, the process of step A2 in FIG. 13 will be described. FIG. 16 is a flowchart showing the process of step A2 in FIG. The following steps E1 to E4 are executed by the touch position estimation unit 13.
 まず、ステップE1において、タッチ位置座標を推定するユーザーを決定する。 First, in step E1, the user who estimates the touch position coordinates is determined.
 ステップE2は、該ユーザーがタッチ入力を行っているかを判定するステップである。分離信号記憶部11に格納されている、該ユーザーに対応する信号の大きさを読み込み、その最大値が、あらかじめ設定された閾値以上であれば該ユーザーがタッチ入力を行っていると判断する。タッチ入力を行っていると判断されれば、ステップE3へ進み。タッチ入力を行っていないと判断されれば、ステップE1へ進む。 Step E2 is a step of determining whether or not the user is performing touch input. The magnitude of the signal corresponding to the user stored in the separated signal storage unit 11 is read, and if the maximum value is equal to or greater than a preset threshold value, it is determined that the user is making a touch input. If it is determined that touch input is being performed, the process proceeds to step E3. If it is determined that touch input is not performed, the process proceeds to step E1.
 ステップE3は、ステップE2においてタッチ入力を行っていると判断されたユーザーに対応するタッチ位置座標推定を実施する処理である。ここでの処理の詳細は、図17のフローチャートを用いて後述する。 Step E3 is a process of performing touch position coordinate estimation corresponding to the user who is determined to be performing touch input in Step E2. Details of the processing here will be described later with reference to the flowchart of FIG.
 ステップE4は、タッチ入力を行っている全てのユーザーについてタッチ位置座標の推定を行ったかを判定するステップである。タッチ入力を行っている全てのユーザーのタッチ位置座標の推定が完了していれば処理を終了し、タッチ位置座標が未推定であるユーザーがいる場合にはステップE1へ進む。 Step E4 is a step of determining whether or not the touch position coordinates have been estimated for all the users who are making touch input. If the estimation of the touch position coordinates of all users who have performed touch input has been completed, the process ends. If there is a user whose touch position coordinates have not been estimated, the process proceeds to step E1.
 次に図16のステップE3における処理を、図17に示すフローチャートを用いて説明する。ステップC1では座標推定に用いる信号検出部8のペアの組合せを、座標推定が未実施である使用するペアの組合せの中から選択する。 Next, the process in step E3 of FIG. 16 will be described using the flowchart shown in FIG. In step C1, the pair combination of the signal detection unit 8 used for coordinate estimation is selected from the combination of pairs to be used for which coordinate estimation has not been performed.
 ステップC2では、ステップC1で選択した信号検出部8のペアそれぞれにおいて、タッチ位置座標推定を行うユーザーに対応する信号の大きさを分離信号記憶部11から読み込み、その比をそれぞれの信号検出部8のペアについて算出する。 In step C2, in each of the pair of signal detection units 8 selected in step C1, the magnitude of the signal corresponding to the user who performs touch position coordinate estimation is read from the separated signal storage unit 11, and the ratio is read for each signal detection unit 8 For a pair of.
 ステップC3では、ステップC2で算出した信号の大きさの比に対応する座標を、導電性パネル特性記憶部12に記憶されている座標テーブルを参照し、式1および式2により算出し、該信号検出部8のペアの組合せでの座標として記憶する。 In step C3, the coordinates corresponding to the ratio of the signal magnitudes calculated in step C2 are calculated by referring to the coordinate table stored in the conductive panel characteristic storage unit 12, using the formulas 1 and 2, and the signals The coordinates are stored as a combination of a pair of detection units 8.
 ステップC4では、信号検出部8のペアの全組合せで座標算出を行ったかを判断するステップである。全てのペアの組合せで座標算出が完了していればステップC5へ進み、座標が未算出であるペアの組合せがあれば、ステップC1へ進む。 Step C4 is a step in which it is determined whether coordinate calculation has been performed for all combinations of pairs of signal detection units 8. If coordinate calculation has been completed for all pair combinations, the process proceeds to step C5. If there is a pair combination for which coordinates have not been calculated, the process proceeds to step C1.
 ステップC5は、各信号検出部ペアの組合せで算出した座標の平均値を算出し、タッチ位置座標の推定値とする。 Step C5 calculates an average value of coordinates calculated by the combination of each signal detection unit pair, and uses it as an estimated value of the touch position coordinates.
 続いて、図13におけるステップA4における処理を図18のフローチャートを用いて説明する。以下のR1からR11の処理は、タッチ位置推定部13にて実行される。ステップR1では、ステップA3において既に推定された、各ユーザーのタッチ位置座標を、タッチ位置座標推定値の初期値に設定する。 Subsequently, the process in step A4 in FIG. 13 will be described with reference to the flowchart in FIG. The following processing from R1 to R11 is executed by the touch position estimation unit 13. In step R1, the touch position coordinates of each user already estimated in step A3 are set to the initial values of the touch position coordinate estimated values.
 ステップR2では、タッチ位置座標の推定を行うユーザーを設定する。 
 ステップR3では、等電流比線の歪みを計算する信号検出部8のペアを選択する。 
 ステップR4では、タッチ位置座標の推定を行うユーザーのタッチ位置座標初期推定値と、該ユーザー以外のタッチ位置座標初期推定値に対応する該信号検出部ペアの等電流比線の歪みを、式7および式8により計算し、該信号検出部ペアにおける等電流比線の歪みとして記憶する。 
 ステップR5では、ステップR2で設定したユーザーについて、等電流比線の歪みを各信号検出部8のペアで計算したかを判定するステップである。該ユーザーについて、各信号検出部8のペアについて等電流比線の歪みが計算されていれば、ステップR6へ進む。等電流比線の歪みが未計算であるペアが存在すれば、ステップR3へ進む。 
 ステップR6では、各信号検出部8のペアについてステップR4で算出した等電流比線の歪みの値を比較し、その値が小さい信号検出部8のペアを該ユーザーのタッチ位置座標推定に使用するペアとして選択する。
In step R2, the user who estimates the touch position coordinates is set.
In step R3, a pair of signal detectors 8 for calculating the distortion of the equal current ratio line is selected.
In step R4, the initial estimated value of the touch position coordinates of the user who estimates the touch position coordinates and the distortion of the isocurrent ratio line of the signal detection unit pair corresponding to the initial estimated position of the touch position coordinates other than the user are expressed by Equation 7: And is calculated by Equation 8 and stored as a distortion of the equal current ratio line in the signal detection unit pair.
In step R5, for the user set in step R2, it is determined whether or not the equicurrent ratio line distortion has been calculated for each pair of signal detectors 8. If the equivalent current ratio distortion has been calculated for each pair of signal detectors 8 for the user, the process proceeds to step R6. If there is a pair for which the distortion of the isocurrent ratio line has not been calculated, the process proceeds to step R3.
In step R6, the values of the isocurrent ratio line distortion values calculated in step R4 are compared for each pair of signal detectors 8, and the pair of signal detectors 8 having a smaller value is used for estimating the touch position coordinates of the user. Select as a pair.
 ステップR7では、ステップR6で選択した信号検出部8のペアを用いて、該ユーザーのタッチ位置座標の再推定を行う。ここでの処理の詳細は図16のステップE3の処理と同様であり、図17のフローチャートに示される。ただし、使用する信号検出部8のぺアの組合せは、ステップR6で選択されたペアの組合せである。 In step R7, the user's touch position coordinates are re-estimated using the pair of signal detection units 8 selected in step R6. The details of the processing here are the same as the processing in step E3 in FIG. 16, and are shown in the flowchart in FIG. However, the pair combination of the signal detection unit 8 to be used is the combination of the pair selected in step R6.
 ステップR8では、直前のステップR1またはR11で設定したタッチ位置座標を仮定したタッチ位置座標の再推定を、タッチ入力を行っている全てのユーザーについて実施したかを判定するステップである。全ユーザーについて再推定が完了していればステップR9へ進み、再推定が未実施のユーザーが存在すれば、ステップR2へ進む。 Step R8 is a step of determining whether or not the re-estimation of the touch position coordinates assuming the touch position coordinates set in the immediately preceding step R1 or R11 has been performed for all the users performing touch input. If re-estimation has been completed for all users, the process proceeds to step R9. If there is a user for which re-estimation has not been performed, the process proceeds to step R2.
 ステップR9は、再推定処理が収束したか否かを判定するステップである。直前のステップR1またはR11で設定したタッチ位置座標の初期値と、その初期値を仮定して再推定したタッチ位置座標の再推定値の差を計算し、その差があらかじめ設定した閾値以下であれば、再推定処理が収束したと判定する。再推定処理が収束したと判定されればステップ再推定処理を終了する。収束していないと判定されれば、ステップR10へ進む。 
 ステップR10は、最推定の反復回数が、規定回数に到達したかを判定するステップである。最推定の反復回数が規定回数に到達していれば、最推定処理が収束していなくても再推定処理を打ち切る。規定回数に到達していなければ、ステップR11へ進む。 
 ステップR11はタッチ位置座標の再推定を行うための初期値を、推定したタッチ位置座標に置き換える。 
 本実施例においては、タッチ入力面が、一様な光の屈折率および透過率のタッチ式入力装置においても、複数のユーザーが同時にタッチ入力を行うことができ、また、干渉の影響が少ない信号検出部を用いてタッチ位置の推定を行うことで、複数のユーザーが同時に入力を行うことによる信号の干渉による誤差を軽減することができる。
Step R9 is a step of determining whether or not the re-estimation process has converged. Calculate the difference between the initial value of the touch position coordinate set in the previous step R1 or R11 and the re-estimated value of the touch position coordinate re-estimated assuming that initial value, and the difference is less than or equal to the preset threshold value. For example, it is determined that the re-estimation process has converged. If it is determined that the re-estimation process has converged, the step re-estimation process ends. If it is determined that it has not converged, the process proceeds to step R10.
Step R10 is a step of determining whether or not the maximum estimated number of iterations has reached a specified number. If the maximum number of iterations reaches the specified number, the re-estimation process is terminated even if the maximum estimation process has not converged. If the specified number of times has not been reached, the process proceeds to step R11.
Step R11 replaces the initial value for re-estimating the touch position coordinates with the estimated touch position coordinates.
In this embodiment, even in a touch input device with a uniform light refractive index and transmittance, the touch input surface allows a plurality of users to perform touch input at the same time, and the signal is less affected by interference. By estimating the touch position using the detection unit, it is possible to reduce errors due to signal interference caused by simultaneous input by a plurality of users.
 (第1の実施形態の変形例1) 
 第1の実施形態の変形例1について述べる。等電流比線の形状は複雑な曲線となり、ひとつの関数で表現することは困難である。しかし、少数のパラメータで表せる関数により等電流比線の形状を近似することが可能である。信号検出部8-1と8-Mのペアを用いたとき、それぞれの電流の大きさの比u=log(I1・1-M/IM・1-M)とすると、一例として以下のような近似が可能である。 
Figure JPOXMLDOC01-appb-M000005
(Modification 1 of the first embodiment)
Modification 1 of the first embodiment will be described. The shape of the iso-current ratio line is a complex curve and is difficult to express with a single function. However, it is possible to approximate the shape of the isocurrent ratio line by a function that can be expressed by a small number of parameters. When a pair of signal detectors 8-1 and 8-M is used, if the ratio of the respective current magnitudes is u = log (I1 · 1-M / IM · 1-M), the following is an example: Approximation is possible.
Figure JPOXMLDOC01-appb-M000005
また、信号検出部8-1と8-2のペアを用いたとき、それぞれの信号検出部の電流の大きさの比v=log(I1・1-2/I2・1-2)とすると、
Figure JPOXMLDOC01-appb-M000006
Also, when a pair of signal detectors 8-1 and 8-2 is used, if the ratio of the current magnitude of each signal detector v = log (I1 · 1-2 / I2 · 1-2),
Figure JPOXMLDOC01-appb-M000006
信号検出部8のペアの位置により、これ以外にも各種の近似式を用いることができる。 Various other approximate expressions can be used depending on the position of the pair of signal detectors 8.
 それぞれの信号検出部ペアについて、ある電流大きさの比におけるパラメータは実測またはシミュレーションにより求めることができ、図19に示すような構造のテーブルとして記憶しておくことができる。u=uiの関数をy=Fui(x)、v=vjの関数をy=Fvj(x)とし、実際に測定された値がu、vでありui<u<ui+1、vj<v<vj+1とすれば、たとえば
Figure JPOXMLDOC01-appb-M000007
For each signal detection unit pair, a parameter at a certain current magnitude ratio can be obtained by actual measurement or simulation, and can be stored as a table having a structure as shown in FIG. The function of u = ui is y = Fui (x), the function of v = vj is y = Fvj (x), the actually measured values are u and v, and ui <u <ui + 1, vj <v <Vj + 1, for example
Figure JPOXMLDOC01-appb-M000007
の交点を求めることで、タッチ位置の座標を求めることができる。ただし、
Figure JPOXMLDOC01-appb-M000008
By obtaining the intersection point, the coordinates of the touch position can be obtained. However,
Figure JPOXMLDOC01-appb-M000008
である。本変形例では、式1および式2の代わりに、式18と式19の交点を求めることにより、タッチ位置座標を求めることができる。 
 本変形例においては、導電性パネル特性記憶部12に記憶しておくべきデータの量を削減することができる。
It is. In the present modification, the touch position coordinates can be obtained by obtaining the intersection of Equation 18 and Equation 19 instead of Equation 1 and Equation 2.
In this modification, the amount of data to be stored in the conductive panel characteristic storage unit 12 can be reduced.
 (第1の実施形態の変形例2) 
 第1の実施形態の変形例2について述べる。 
 図20は、ユーザーがタッチ入力を行っており、導電性パネルの4角に配置された信号検出部8-1、8-2、8-3、8-Mが導通状態となっている場合の信号の流れを模式的に表した図である。これは、通常の静電容量式タッチパネルでの信号の流れと比較すると、信号の流れが逆になっているだけであることが分かる。
(Modification 2 of the first embodiment)
A second modification of the first embodiment will be described.
FIG. 20 shows a case where the user performs touch input and the signal detection units 8-1, 8-2, 8-3, and 8-M arranged at the four corners of the conductive panel are in a conductive state. It is the figure which represented the flow of the signal typically. This shows that the signal flow is only reversed as compared to the signal flow on a normal capacitive touch panel.
 したがって、各信号検出部で検出される信号の大きさがそれぞれ、I1、I2、I3、IM=I4であったとき、X座標、Y座標は通常の静電容量式タッチパネルと同様に以下の式で求めることができる。
Figure JPOXMLDOC01-appb-M000009
Therefore, when the magnitude of the signal detected by each signal detection unit is I1, I2, I3, IM = I4, the X coordinate and Y coordinate are the following formulas as in the normal capacitive touch panel: Can be obtained.
Figure JPOXMLDOC01-appb-M000009
 複数のユーザーが同時にタッチ入力を行っていた場合であっても、それぞれのユーザーに対応する信号に分離したうえで、式23および式24でそれぞれのユーザーのタッチ位置座標を推定できる。複数のユーザーがタッチ入力を行っている場合には、タッチ位置座標の推定位置に誤差が生じるが、精度が要求されない用途には使用可能である。 Even when a plurality of users perform touch input at the same time, the touch position coordinates of each user can be estimated by Expression 23 and Expression 24 after being separated into signals corresponding to each user. When a plurality of users perform touch input, an error occurs in the estimated position of the touch position coordinates, but it can be used for applications where accuracy is not required.
 本変形例においては、図13のフローチャートに示す信号測定処理が、図21のフローチャートに置き換わる。図21に示す、本変形例における信号測定処理について図13の処理と異なる処理となるステップQ2およびQ3の内容を説明する。 In this modification, the signal measurement process shown in the flowchart of FIG. 13 is replaced with the flowchart of FIG. The contents of steps Q2 and Q3, which are processing different from the processing in FIG. 13, in the signal measurement processing in this modification shown in FIG. 21 will be described.
 ステップQ2では、制御部6からの通知により、導電性パネル4の4角に配置された信号検出部7-1から7-Mを導通状態にし、それぞれの信号検出部7において信号の検出を行う。 In step Q2, the signal detection units 7-1 to 7-M arranged at the four corners of the conductive panel 4 are turned on by notification from the control unit 6, and signals are detected in the respective signal detection units 7. .
 ステップQ3では、直前のステップQ2で信号検出部7において検出された信号を、信号分離部9でそれぞれ各ユーザーに対応する信号に分離し、それぞれの大きさを分離信号記憶部11に記憶する。 In step Q3, the signal detected in the signal detection unit 7 in the immediately preceding step Q2 is separated into signals corresponding to each user by the signal separation unit 9, and the respective magnitudes are stored in the separation signal storage unit 11.
 また、座標算出において式7および式8の代わりに、式23および式24によりタッチ位置座標を算出することができる。ただし、複数のユーザーがタッチしているか如何にかかわらず、タッチ位置座標の反復推定は行わない。 In addition, in the coordinate calculation, the touch position coordinates can be calculated by Expression 23 and Expression 24 instead of Expression 7 and Expression 8. However, iterative estimation of touch position coordinates is not performed regardless of whether a plurality of users are touching.
 本変形例によれば、複数のユーザーが同時にタッチ入力をおこなうことによる干渉の影響が無視できるとき、簡易な処理によりタッチ位置座標を推定することができる。 According to this modified example, when the influence of interference caused by a plurality of users performing touch input at the same time can be ignored, the touch position coordinates can be estimated by simple processing.
 (第2の実施形態) 
 図22は、第2の実施形態におけるシステムのブロック図を表す。図2と同様である部分は説明を省略する。 
 インピーダンス測定部23-1から23-Nは、各信号供給部5-1から5-Nにおける電圧を検出し、接続されるユーザーの対地インピーダンスを測定する。ここで測定されるインピーダンスは、タッチ位置推定部13におけるタッチ位置推定に用いられる。タッチ位置推定方法の詳細は後述する。 
 続いて、本実施形態におけるタッチ位置推定方法の原理について説明する。タッチ位置座標の初期推定の方法は、第1の実施形態の変形例2と同様である。すなわち、まず、導電性パネル4の4角に配置された信号検出部における各ユーザーに対応する信号の大きさから、式23および式24により各ユーザーのタッチ位置座標を推定する。
(Second Embodiment)
FIG. 22 shows a block diagram of a system in the second embodiment. Description of parts similar to those in FIG. 2 is omitted.
The impedance measuring units 23-1 to 23-N detect the voltage at each of the signal supply units 5-1 to 5-N, and measure the ground impedance of the connected user. The impedance measured here is used for touch position estimation in the touch position estimation unit 13. Details of the touch position estimation method will be described later.
Next, the principle of the touch position estimation method in this embodiment will be described. The method of initial estimation of the touch position coordinates is the same as that of the second modification of the first embodiment. That is, first, the touch position coordinates of each user are estimated from Expression 23 and Expression 24 from the magnitude of the signal corresponding to each user in the signal detectors arranged at the four corners of the conductive panel 4.
 複数のユーザーが同時にタッチ入力を行っていた場合、タッチ位置には誤差が生じる。タッチ位置の座標を推定しようとするユーザーのタッチ位置がx, yであり、推定しようとするユーザー以外のタッチ位置の座標が(x’, y’)であったとき、推定しようとするユーザー以外の人体を介した導電性パネルからアースまでのインピーダンスZLを定めれば、推定位置に生じるx方向、y方向のずれ量、EX(x,’ y’, x, y)およびEY(x’, y’, x, y)は実測またはシミュレーションにより求めることができる。また、それぞれを離散的な値とすれば、あらかじめ求めた値を図23に示すような構造のテーブルとすることができる。 ∙ When multiple users are performing touch input at the same time, an error occurs in the touch position. When the touch position of the user who is trying to estimate the coordinates of the touch position is x, y and the coordinates of the touch position other than the user who is to be estimated are (x ', y'), the user other than the user who is trying to estimate If the impedance ZL from the conductive panel through the human body to the ground is determined, the amount of deviation in the x direction, y direction, EX (x, 'y', x, y) and EY (x ', y ′, x, y) can be obtained by actual measurement or simulation. Moreover, if each is made into a discrete value, the value calculated | required beforehand can be made into the table of a structure as shown in FIG.
 x’k<x’<x’k+1、y’l<y’<y’l+1、xm<x<xm+1、yn<y<yn+1であったとき、EX(x,’ y’, x, y)およびEY(x’, y’, x, y)はそれぞれ、例えば式7および式8と同様の式により近似できる。 When x'k <x '<x'k + 1, y'l <y' <y'l + 1, xm <x <xm + 1, yn <y <yn + 1, EX (x, 'Y', x, y) and EY (x ', y', x, y) can be approximated by equations similar to Equations 7 and 8, for example.
 式7および式8を計算する際に参照したテーブルが、ZL=ZL0を仮定して求めた値であり、実際の推定しようするユーザー以外の対地インピーダンスがZLであれば、式7および式8により求めたEXおよびEYの1/ZL倍が実際のずれ量の近似値となる。すなわち、推定しようとしているユーザーのタッチ入力のタッチ位置座標x,yと、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標x’、y’と、推定しようとしているユーザー以外の対地インピーダンスZLが分かっていれば、推定したタッチ位置座標のずれを補正することができる。式23および式24により求めた座標をX、Yとすると、
Figure JPOXMLDOC01-appb-M000010
If the table referred to when calculating Equation 7 and Equation 8 is a value obtained assuming ZL = ZL0, and the ground impedance other than the actual user to be estimated is ZL, then Equation 7 and Equation 8 The obtained EX and EY times 1 / ZL are approximate values of the actual deviation. That is, the touch position coordinates x and y of the touch input of the user to be estimated, the touch position coordinates x ′ and y ′ of the touch input other than the user to be estimated, and the ground impedance ZL other than the user to be estimated are If it is known, the estimated shift of the touch position coordinate can be corrected. If the coordinates obtained by Equation 23 and Equation 24 are X and Y,
Figure JPOXMLDOC01-appb-M000010
により補正することができる。 Can be corrected.
 なお、推定しようとしているユーザー以外のユーザーが複数人いた場合は、それぞれのユーザーによるずれ量をそれぞれ求め、その合計を計算すればよい。 In addition, when there are a plurality of users other than the user to be estimated, the amount of deviation by each user can be obtained and the total calculated.
 次に、各ユーザーの対地インピーダンスZLを測定する方法を図23および、図24(a)により説明する。図24(a)は、信号生成部7-1から信号の供給を受けたユーザーが、タッチパネルにタッチ入力を行っている際の等価回路を示している。ZEはユーザーから地面へのインピーダンス、ZTは導電性パネルとユーザーの間のインピーダンス、ZPは導電性パネルのインピーダンスを表している。このとき、インピーダンス測定部23-1で測定された電圧をVTとする。一方、図24(b)は、信号生成部7-1から信号の供給を受けたユーザーが、タッチパネルにタッチ入力を行っていない場合の等価回路を示している。このときインピーダンス測定部23-1で測定された電圧をVNTとすると、以下の式がそれぞれ成り立つ。
Figure JPOXMLDOC01-appb-M000011
Next, a method for measuring the ground impedance ZL of each user will be described with reference to FIG. 23 and FIG. FIG. 24A shows an equivalent circuit when a user who has received a signal from the signal generation unit 7-1 performs touch input on the touch panel. ZE represents the impedance from the user to the ground, ZT represents the impedance between the conductive panel and the user, and ZP represents the impedance of the conductive panel. At this time, the voltage measured by the impedance measuring unit 23-1 is defined as VT. On the other hand, FIG. 24B shows an equivalent circuit in the case where the user who receives the signal from the signal generation unit 7-1 does not perform touch input on the touch panel. At this time, when the voltage measured by the impedance measuring unit 23-1 is VNT, the following equations are established.
Figure JPOXMLDOC01-appb-M000011
また、式28について、ZT>>ZPであれば、以下の近似が成り立つ。
Figure JPOXMLDOC01-appb-M000012
In addition, regarding Equation 28, if ZT >> ZP, the following approximation holds.
Figure JPOXMLDOC01-appb-M000012
実際に、たとえば導電性パネルの抵抗値が1kΩ/□であり、信号の周波数が100kHz程度以下であった場合、式29の近似はよく成立する。求めたいZLはZT+ZEであるので、式27および式29を解いた式30で求めることができる。
Figure JPOXMLDOC01-appb-M000013
Actually, for example, when the resistance value of the conductive panel is 1 kΩ / □ and the signal frequency is about 100 kHz or less, the approximation of Equation 29 is well established. Since ZL to be obtained is ZT + ZE, it can be obtained by Equation 30 obtained by solving Equation 27 and Equation 29.
Figure JPOXMLDOC01-appb-M000013
 これに加えて、推定しようとしているユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標が分かれば、タッチ位置座標推定値のずれ量を式25および式26により補正することができる。しかし推定値のずれ量が求められないと、推定しようとしているユーザーのタッチ入力のタッチ位置座標と、推定しようとしているユーザー以外のタッチ入力のタッチ位置座標が正確には分からない。すなわち、第1の実施形態の場合と同じく、問題を解くために必要なパラメータが不足している不完全問題である。 In addition to this, if the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of the touch input other than the user to be estimated are known, the deviation amount of the touch position coordinate estimated value is expressed by Expression 25 and Expression 26. Can be corrected. However, if the deviation amount of the estimated value cannot be obtained, the touch position coordinates of the touch input of the user to be estimated and the touch position coordinates of the touch input other than the user to be estimated cannot be accurately determined. That is, as in the case of the first embodiment, it is an incomplete problem in which parameters necessary for solving the problem are insufficient.
 ここでも、第1の実施形態と同じ考え方でこの問題に対処できる。すなわち、複数のユーザーが同時にタッチ入力を行っている場合のそれぞれのタッチ位置を補正する際に、あるタッチ位置座標を仮定して、補正量の計算を行いタッチ位置座標の補正を行う。こうして求めたタッチ位置座標を仮定して、再びタッチ位置座標の補正を繰り返すことで、タッチ位置座標の推定値を、最適なタッチ位置座標推定値に近づけていくことができる。 Again, this problem can be dealt with in the same way as in the first embodiment. That is, when correcting each touch position when a plurality of users are simultaneously performing touch input, assuming a certain touch position coordinate, a correction amount is calculated to correct the touch position coordinate. By assuming the touch position coordinates thus obtained and correcting the touch position coordinates again, the estimated value of the touch position coordinates can be brought closer to the optimum touch position coordinate estimated value.
 以上のような構成および原理に基づき、入力位置の座標を推定する装置の動作について、図25から図27のフローチャートに基づき、詳細に説明する。 Based on the above configuration and principle, the operation of the apparatus for estimating the coordinates of the input position will be described in detail based on the flowcharts of FIGS.
 図25は、インピーダンス値初期測定処理の流れを表すフローチャートである。この処理は、初期設定モードから、座標入力モードに移行する間に実行される。ステップZ1は、すべての信号検出部を非導通状態に設定する。 
 ステップZ2では、制御部6はインピーダンスが未測定であるユーザーの中から、インピーダンス(該ユーザーの信号供給部における電圧)を測定するユーザーを設定する。 
 ステップZ3では、制御部6はステップZ2において設定したユーザーに対応する信号生成部7に対して信号生成を開始するように通知する。これを受けて、対応する信号生成部7は信号生成を開始し、対応するユーザに対して信号が供給される。 
 ステップZ4では、インピーダンス測定部23がインピーダンス(該ユーザーの該ユーザーの信号供給部における電圧)を測定し、該ユーザーに対応するVNとして、タッチ位置推定部13に記憶する。 
 ステップZ5では、制御部6からの通知により、信号生成部7は、該ユーザーに対する信号生成を終了する。 
 ステップZ6で、制御部6は、すべてのユーザーについて、インピーダンスの測定を実施したかを判断し、インピーダンスが未測定のユーザーが存在すればステップZ2へ進む。そうでなければ、処理を終了する。 
 次に、本実施例における信号およびインピーダンス測定処理の説明をする。図26は、信号およびインピーダンス測定処理のフローチャートである。この処理は、図21に示した第1の実施形態の変形例2における信号測定処理に置き換わるものであり、ステップP2以外の処理は、上記処理と同様であるため説明は省略する。 
 ステップP2は、インピーダンス測定部23が各ユーザーのインピーダンス(信号供給部における電圧)を測定し、それぞれ各ユーザーに対応する信号供給部における電圧として、タッチ位置推定部13に記憶する。ただし、この時点では、VTに相当する電圧であるかVNTに相当する電圧であるかはわからない。
FIG. 25 is a flowchart showing the flow of initial impedance value measurement processing. This process is executed during the transition from the initial setting mode to the coordinate input mode. Step Z1 sets all the signal detection units to the non-conduction state.
In step Z2, the control unit 6 sets a user who measures impedance (voltage in the user's signal supply unit) from among users whose impedance has not been measured.
In step Z3, the control unit 6 notifies the signal generation unit 7 corresponding to the user set in step Z2 to start signal generation. In response to this, the corresponding signal generation unit 7 starts signal generation, and a signal is supplied to the corresponding user.
In step Z4, the impedance measurement unit 23 measures the impedance (the voltage at the user's signal supply unit of the user), and stores it in the touch position estimation unit 13 as a VN corresponding to the user.
In step Z5, the signal generator 7 terminates signal generation for the user in response to a notification from the controller 6.
In step Z6, the control unit 6 determines whether or not impedance measurement has been performed for all users. If there is a user whose impedance has not been measured, the process proceeds to step Z2. Otherwise, the process ends.
Next, the signal and impedance measurement process in the present embodiment will be described. FIG. 26 is a flowchart of signal and impedance measurement processing. This process replaces the signal measurement process in the second modification of the first embodiment shown in FIG. 21, and the processes other than step P2 are the same as the processes described above, and thus the description thereof is omitted.
In step P2, the impedance measurement unit 23 measures the impedance (voltage in the signal supply unit) of each user, and stores it in the touch position estimation unit 13 as the voltage in the signal supply unit corresponding to each user. However, at this time, it is unknown whether the voltage corresponds to VT or VNT.
 次に、本実施形態における初期推定処理を図27のフローチャートを用いて説明する。ステップF3およびF4以外の処理は、上記処理と同様であるので、説明を省略する。また、以下の処理は、タッチ位置推定部13において実行される。 Next, the initial estimation process in this embodiment will be described with reference to the flowchart of FIG. Since the processes other than steps F3 and F4 are the same as the above processes, description thereof will be omitted. Further, the following processing is executed in the touch position estimation unit 13.
 ステップF3は、ステップF1において設定されたユーザーが、ステップF2においてタッチ入力を行っていないと判定された場合に実行される。このとき、直前のステップP2において測定した該ユーザーに対応する電圧を、該ユーザーに対応するVNTの値とする。 Step F3 is executed when it is determined that the user set in Step F1 does not perform touch input in Step F2. At this time, the voltage corresponding to the user measured in the immediately preceding step P2 is set as the value of VNT corresponding to the user.
 ステップF4は、ステップF1において設定されたユーザーが、ステップF2においてタッチ入力を行っていると判定された場合に実行される。このとき、直前のステップP2において測定した該ユーザーに対応する電圧を、該ユーザーに対応するVTの値とする。 Step F4 is executed when it is determined that the user set in Step F1 is performing touch input in Step F2. At this time, the voltage corresponding to the user measured in the immediately preceding step P2 is set as the value of VT corresponding to the user.
 また、タッチ位置座標推定処理および、再推定処理では、式25および式26が使われる。 Further, in the touch position coordinate estimation process and the re-estimation process, Expressions 25 and 26 are used.
 本実施形態においては、各ユーザーのタッチ位置からアースに対するインピーダンスを測定することにより、複数のユーザーが同時に入力を行うことによる信号の干渉による誤差を補正することができる。
In this embodiment, by measuring the impedance to the ground from the touch position of each user, it is possible to correct an error due to signal interference caused by a plurality of users inputting simultaneously.
1・・・電界形成部
2・・・導電性パネル
3・・・電流検出部
4・・・導電性パネル
5-1、5-2、5-N・・・信号供給部
6・・・制御部
7-1、7-2、7-N・・・信号生成部
8-1、8-2、8-M・・・信号検出部
9-1、9-2、9-M・・・信号分離部
10・・・周辺電極
11・・・分離信号記憶部
12・・・導電性パネル特性記憶部
13・・・タッチ位置推定部
15・・・保護層
16・・・導電層
17・・・基板層
18・・・導通切替部
19・・・電流電圧変換回路
20・・・A/D変換器
21・・・7-1に接続されるユーザーの対地浮遊容量
22・・・7-2に接続されるユーザーの対地浮遊容量
23-1、23-2、23-N・・・インピーダンス測定部
24・・・導電性パネル上の信号流出地点
25・・・ユーザーとアースの間のインピーダンス
26・・・ユーザーと導電性パネルの間のインピーダンス
27・・・導電性パネルのインピーダンス
1 ... Electric field forming part
2 ... Conductive panel
3 ... Current detector
4 ... Conductive panel
5-1、5-2、5-N ・ ・ ・ Signal supply unit
6 ... Control unit
7-1, 7-2, 7-N ... Signal generator
8-1, 8-2, 8-M ... Signal detector
9-1, 9-2, 9-M ... Signal separator
10 ... Peripheral electrode
11 ... Separated signal storage
12 ... Conductive panel characteristic memory
13 ... Touch position estimation unit
15 ... Protective layer
16 ... conductive layer
17 ... Substrate layer
18 ... Conductivity switching part
19 ... Current-voltage conversion circuit
20 ... A / D converter
21 ・ ・ ・ Ground capacity of user connected to 7-1
22 ・ ・ ・ Ground capacitance of user connected to 7-2
23-1, 23-2, 23-N ・ ・ ・ Impedance measurement unit
24 ... Signal outflow point on conductive panel
25 ・ ・ ・ Impedance between user and ground
26: Impedance between user and conductive panel
27 ... Impedance of conductive panel

Claims (7)

  1.  平面状の導電層を有し、入力面に接触すると入力信号が伝搬する導電性パネルと、
     複数のユーザーを識別するための識別信号を生成する信号生成部と、
     それぞれのユーザーが用いる入力手段に対して識別信号を供給する信号供給部と、
     ユーザー毎に分離可能な特性を有する前記識別信号を生成するよう前記信号生成部を制御する制御部と、
     前記導電性パネルの複数の位置に接続され、前記複数の位置毎に前記導電性パネルから伝搬した複数の入力信号を含んだ検出信号を検出する検出部と、
     前記識別信号の特性に基づいて、前記検出信号から前記各ユーザーに対応する成分に分離する分離部と、
     前記導電層の電気的な特性と、前記複数の位置毎の分離された信号の大きさに基づいて前記入力信号が示す各ユーザーの前記入力面上での接触位置を推定する推定部と、
     を備えることを特徴としたタッチ式入力装置。
     
    A conductive panel that has a planar conductive layer and propagates an input signal when in contact with the input surface;
    A signal generator for generating an identification signal for identifying a plurality of users;
    A signal supply unit for supplying an identification signal to the input means used by each user;
    A control unit that controls the signal generation unit to generate the identification signal having separable characteristics for each user;
    A detection unit connected to a plurality of positions of the conductive panel and detecting a detection signal including a plurality of input signals propagated from the conductive panel for each of the plurality of positions;
    A separation unit that separates the detection signal into components corresponding to the users based on the characteristics of the identification signal;
    An estimation unit that estimates a contact position on the input surface of each user indicated by the input signal based on electrical characteristics of the conductive layer and a magnitude of the separated signal for each of the plurality of positions;
    A touch-type input device comprising:
  2.  ユーザーの接触位置からアースまでのインピーダンスを測定する測定部を更に備え、
     前記推定部は、前記インピーダンスを更に用いて前記接触位置を推定することを特徴とする請求項1記載のタッチ式入力装置。
    It further includes a measurement unit that measures the impedance from the contact position of the user to the ground,
    The touch-type input device according to claim 1, wherein the estimation unit further estimates the contact position using the impedance.
  3.  前記検出部が前記導電性パネルの3以上の位置に配され、それぞれの位置で前記入力信号を導通させるか否かを制御可能であり、
     前記制御部は、2つの位置の前記検出部を選択し、選択された前記検出部で前記入力信号が導通する状態になるよう制御することを特徴とする請求項2記載のタッチ式入力装置。
    The detection unit is disposed at three or more positions of the conductive panel, and can control whether or not to conduct the input signal at each position,
    The touch input device according to claim 2, wherein the control unit selects the detection units at two positions and performs control so that the input signal is conducted in the selected detection units.
  4.  前記識別信号のそれぞれの特性毎に、該識別信号が供給された状態で前記入力面上での接触位置に接触した場合の前記接触位置の推定結果の誤差の大きさを示す誤差情報を、推定に用いた前記検出部の組毎に記憶する記憶部を更に備え、
     前記制御部は、既に推定されたユーザーの接触位置と前記誤差情報に基づき、前記推定部が接触位置を推定する際に使用する2つの位置の前記検出部の組合せを選択することを特徴とする請求項3記載のタッチ式入力装置。
    For each characteristic of the identification signal, estimation is made on error information indicating the magnitude of the error in the estimation result of the contact position when the identification signal is supplied and the contact position on the input surface is touched. A storage unit for storing each detection unit set used in
    The control unit selects a combination of the detection units at two positions used when the estimation unit estimates the contact position based on the user's estimated contact position and the error information. The touch input device according to claim 3.
  5. 前記制御部は、ユーザー毎に分離可能な特性を有する前記識別信号として、互いの周波数が整数倍でなく、かつ互いに異なる周波数の前記識別信号を前記信号生成部に生成させるよう制御することを特徴とする請求項3記載のタッチ式入力装置。
    The control unit controls the signal generation unit to generate the identification signal having a frequency different from each other and different from each other as the identification signal having separable characteristics for each user. The touch input device according to claim 3.
  6. 前記制御部は、ユーザー毎に分離可能な特性を有する前記識別信号として、時間的に分離されている前記識別信号を、前記信号生成部に生成させるよう制御することを特徴とする請求項3記載のタッチ式入力装置。
    The said control part is controlled to make the said signal generation part generate | occur | produce the said identification signal isolate | separated in time as the said identification signal which has the characteristic which can be separated for every user. Touch input device.
  7. 前記制御部は、ユーザー毎に分離可能な特性を有する前記識別信号として、互いに分離可能な符号に符号化されている前記識別信号を前記信号生成部に生成させるよう制御することを特徴とする請求項3記載のタッチ式入力装置。 The control unit controls the signal generation unit to generate the identification signal encoded in a code that can be separated from each other as the identification signal having a separable characteristic for each user. Item 4. The touch input device according to item 3.
PCT/JP2009/004830 2009-09-24 2009-09-24 Touch-type input device WO2011036710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004830 WO2011036710A1 (en) 2009-09-24 2009-09-24 Touch-type input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004830 WO2011036710A1 (en) 2009-09-24 2009-09-24 Touch-type input device

Publications (1)

Publication Number Publication Date
WO2011036710A1 true WO2011036710A1 (en) 2011-03-31

Family

ID=43795484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004830 WO2011036710A1 (en) 2009-09-24 2009-09-24 Touch-type input device

Country Status (1)

Country Link
WO (1) WO2011036710A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141131A1 (en) * 2011-04-11 2012-10-18 グンゼ株式会社 Touch panel device
JP2012234230A (en) * 2011-04-28 2012-11-29 Wacom Co Ltd Multi-touch/multi-user detector
JP2014016795A (en) * 2012-07-09 2014-01-30 Konica Minolta Inc Operation display device and program
EP2972701A4 (en) * 2013-03-15 2017-01-25 Tactual Labs Co. Fast multi-touch sensor with user identification techniques
JP2019053759A (en) * 2013-03-15 2019-04-04 タクチュアル ラブズ シーオー. High-speed multi-touch sensor with user identification technique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148396A (en) * 1998-11-06 2000-05-26 Canon Inc Information inputting device and method therefor
JP2003022158A (en) * 2001-05-24 2003-01-24 Mitsubishi Electric Research Laboratories Inc Multi-user touch system and method for operating thereof
JP2004535026A (en) * 2001-07-09 2004-11-18 スリーエム イノベイティブ プロパティズ カンパニー Touch screen with selective touch source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148396A (en) * 1998-11-06 2000-05-26 Canon Inc Information inputting device and method therefor
JP2003022158A (en) * 2001-05-24 2003-01-24 Mitsubishi Electric Research Laboratories Inc Multi-user touch system and method for operating thereof
JP2004535026A (en) * 2001-07-09 2004-11-18 スリーエム イノベイティブ プロパティズ カンパニー Touch screen with selective touch source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141131A1 (en) * 2011-04-11 2012-10-18 グンゼ株式会社 Touch panel device
JPWO2012141131A1 (en) * 2011-04-11 2014-07-28 グンゼ株式会社 Touch panel device
JP2012234230A (en) * 2011-04-28 2012-11-29 Wacom Co Ltd Multi-touch/multi-user detector
EP2518603B1 (en) * 2011-04-28 2021-04-07 Wacom Co., Ltd. Multi-touch and multi-user detecting device
JP2014016795A (en) * 2012-07-09 2014-01-30 Konica Minolta Inc Operation display device and program
EP2972701A4 (en) * 2013-03-15 2017-01-25 Tactual Labs Co. Fast multi-touch sensor with user identification techniques
JP2019053759A (en) * 2013-03-15 2019-04-04 タクチュアル ラブズ シーオー. High-speed multi-touch sensor with user identification technique

Similar Documents

Publication Publication Date Title
TWI530848B (en) Noise cancellation technique for capacitive touchscreen controller using differential sensing
TWI419025B (en) A sensing device for detecting contact with or close to an object, and a display device for mounting the same
TWI351631B (en) Anisotropic touch screen element
US9069399B2 (en) Gain correction for fast panel scanning
US20110157083A1 (en) Resistive touch apparatus
JP5216861B2 (en) Coordinate input device
WO2011036710A1 (en) Touch-type input device
CN105874412A (en) Capacitive touch systems and methods using differential signal techniques
US8390596B2 (en) Control circuit and control method for touch panel
TW200832201A (en) Touch location sensing system and method employing sensor data fitting to a predefined curve
TW200941314A (en) Touch sensor device and pointing coordinate determination method thereof
CN104049777A (en) Channel Aggregation For Optimal Stylus Detection
TW201120701A (en) Control circuit and control method for touch panel, touch panel input device and electronic apparatus
WO2014160436A1 (en) Baseline management for sensing device
WO2012018849A1 (en) System and method for dual-touch gesture classification in resistive touch screens
WO2013159684A1 (en) Method for automatically switching handheld modes and wireless handheld device
TW201106220A (en) Touch panel and output method therefor
US20120001854A1 (en) Analog resistive multi-touch display screen
JP2019523464A (en) Signal detection in frequency division modulation touch systems
US8125467B2 (en) Touch sensor with sliding structure
CN103677616B (en) A kind of operating method of electronic installation
JP5399428B2 (en) Resistive touch device
US9342203B2 (en) Input apparatus and input method
US9453862B2 (en) Multitouch tactile device with multi frequency and barycentric capacitive detection
CN103164092B (en) Touch point detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP