[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011036774A1 - 軌跡生成プログラムおよび軌跡生成装置 - Google Patents

軌跡生成プログラムおよび軌跡生成装置 Download PDF

Info

Publication number
WO2011036774A1
WO2011036774A1 PCT/JP2009/066695 JP2009066695W WO2011036774A1 WO 2011036774 A1 WO2011036774 A1 WO 2011036774A1 JP 2009066695 W JP2009066695 W JP 2009066695W WO 2011036774 A1 WO2011036774 A1 WO 2011036774A1
Authority
WO
WIPO (PCT)
Prior art keywords
trajectory
motion
impact
generation unit
trajectory generation
Prior art date
Application number
PCT/JP2009/066695
Other languages
English (en)
French (fr)
Inventor
史朗 永嶋
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011532851A priority Critical patent/JP5327330B2/ja
Priority to CN2009801616198A priority patent/CN102574012A/zh
Priority to PCT/JP2009/066695 priority patent/WO2011036774A1/ja
Publication of WO2011036774A1 publication Critical patent/WO2011036774A1/ja
Priority to US13/425,809 priority patent/US20120179385A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3623Training appliances or apparatus for special sports for golf for driving
    • A63B69/3632Clubs or attachments on clubs, e.g. for measuring, aligning
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement

Definitions

  • the present invention relates to a track generation program and a track generation device.
  • the disclosed technique has been made in view of the above, and an object thereof is to provide a trajectory generation program and a trajectory generation device that can more accurately reproduce a trajectory of a series of motions.
  • the technology disclosed in the present application is acquired from an acceleration sensor and an angular velocity sensor attached to a predetermined part of a body when the computer has an impact operation that generates a predetermined impact. Using each sensor value, a trajectory generated by dividing the motion trajectory of the predetermined part from the start motion to the impact motion of the series of motion motions and the motion trajectory of the predetermined part from the impact motion to the end motion. Run the generation procedure.
  • the trajectory of a series of movements can be more accurately reproduced.
  • FIG. 1 is a diagram illustrating the trajectory generation apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the mobile phone according to the second embodiment.
  • FIG. 3 is a diagram illustrating a display example according to the second embodiment.
  • FIG. 4 is a diagram illustrating a display example according to the second embodiment.
  • FIG. 5 is a diagram illustrating a display example of a waist movement locus according to the second embodiment.
  • FIG. 6 is a diagram illustrating a flow of processing by the locus generation unit according to the second embodiment.
  • FIG. 7 is a diagram illustrating a flow of processing by the locus generation unit according to the second embodiment.
  • FIG. 8 is a diagram illustrating a flow of processing by the trajectory generation unit according to the second embodiment.
  • FIG. 9 is a diagram illustrating a computer that executes a trajectory generation program.
  • FIG. 1 is a diagram illustrating a trajectory generation apparatus according to the first embodiment. As illustrated in FIG. 1, the trajectory generation device 1 according to the first embodiment includes a trajectory generation unit 2.
  • the trajectory generation unit 2 uses a sensor value acquired from an acceleration sensor and an angular velocity sensor attached to a predetermined part of the body, when the series of motion motions have an impact motion that generates a predetermined impact, Generate an operation trajectory. For example, the trajectory generation unit 2 individually generates an operation trajectory of a predetermined part of the body from the start operation to the impact operation of a series of exercise operations and an operation trajectory of the predetermined part of the body from the impact operation to the end operation.
  • the trajectory generation unit 2 since the trajectory generation unit 2 according to the first embodiment generates the motion trajectory of the predetermined part of the body separately before and after the impact action, the influence of the impact action on the trajectory derivation of the predetermined part of the body is taken into consideration. It is possible to reproduce the trajectory of a series of movements more accurately.
  • a mobile phone is taken up as an apparatus having the trajectory generating device disclosed in the present application.
  • the mobile phone is merely an example, and can be applied to all small information processing apparatuses that can be attached to the body.
  • a waist movement locus is generated when a golf swing is performed with the mobile phone according to the second embodiment attached to the waist.
  • FIG. 2 is a diagram illustrating a configuration of the mobile phone according to the second embodiment.
  • the mobile phone 100 according to the second embodiment includes an acceleration sensor 110, an angular velocity sensor 120, a display 130, a sensor value storage unit 140, a trajectory data storage unit 150, and a trajectory generation unit 160.
  • the acceleration sensor 110 measures the acceleration of the waist to which the mobile phone 100 is continuously attached at a default time interval (for example, 0.2 second interval) when processing by the trajectory generation unit 160 described later is started. To do. Then, the acceleration sensor 110 sends each measured acceleration sensor value (for example, voltage value) to the trajectory generation unit 160 described later.
  • a default time interval for example, 0.2 second interval
  • the angular velocity sensor 120 when processing by the trajectory generation unit 160 described later is started, the angular velocity of the waist to which the mobile phone 100 is continuously attached at a default time interval (for example, 0.2 second interval). And the measured angular velocity sensor values (for example, voltage values) are sent to the trajectory generation unit 160 described later. Note that the acceleration sensor 110 and the angular velocity sensor 120 execute measurement at synchronized timing.
  • the display 130 displays the waist movement locus generated by the locus generation unit 160 described later in a state that the user can visually recognize the waist.
  • the display 130 displays menu information at the start of generation of a waist motion trajectory during a golf swing and past waist motion trajectory list information stored in a trajectory data storage unit 150 described later.
  • the sensor value storage unit 140 stores each acceleration sensor value measured by the acceleration sensor 110 and each angular velocity sensor value measured by the angular velocity sensor 120 in association with each other at the same measurement timing.
  • the trajectory data storage unit 150 stores data related to the hip motion trajectory generated by the trajectory generation unit 160 described later in association with the motion trajectory generation date and time.
  • the sensor value storage unit 140 and the trajectory data storage unit 150 are, for example, semiconductor memory elements such as a RAM (Random Access Memory) and a flash memory, or storage devices such as a hard disk and an optical disk.
  • semiconductor memory elements such as a RAM (Random Access Memory) and a flash memory
  • storage devices such as a hard disk and an optical disk.
  • the locus generation unit 160 attaches the mobile phone 100 to the waist and performs a golf swing, and the motion locus of the waist is measured by the acceleration sensor 110 and each angular velocity sensor value measured by the angular velocity sensor 120. Generate using.
  • FIG. 3 is a diagram illustrating a display example according to the second embodiment. The figure shows a state where a menu screen provided with selection items of “swing measurement” and “swing history” is displayed on the display 130.
  • “Swing measurement” is an item for the user to select when the user desires to start generating a waist movement locus when performing a golf swing.
  • the “swing history” is an item for the user to select when the user desires to browse the waist motion trajectory list stored in the trajectory data storage unit 150.
  • the locus generation unit 160 outputs, for example, a menu screen as shown in FIG. 3 to the display 130 in response to a user operation. Then, when there is an input for selecting “swing history”, the trajectory generation unit 160 outputs, for example, a waist motion trajectory list stored in the trajectory data storage unit 150 to the display 130 as shown in FIG. .
  • FIG. 4 is a diagram illustrating a display example according to the second embodiment. In the same figure, as the swing history data list, the generation date and time of the waist movement locus is displayed on the display 130 in time series. For example, when there is an input to select “September 9, 2009, 12:00”, the trajectory generation unit 160 reads the waist motion history data corresponding to the selected date and time from the trajectory data storage unit 150, Output to the display 130.
  • the trajectory generation unit 160 starts generating a motion trajectory of the waist when the mobile phone 100 is attached to the waist and a golf swing is performed.
  • the trajectory generation unit 160 is premised on the assumption that a certain offset acceleration is generated during the golf swing. Note that offset acceleration refers to a certain error from the true value of acceleration.
  • the trajectory generation unit 160 performs the following processing according to the boundary condition 1: “the position of the hips at the start of the swing is equal to the waist position at the time of impact” and the boundary condition 2: “the hip speed at the end of the swing is 0”. Execute.
  • the trajectory generator 160 determines the acceleration sensor value ( ⁇ 0 ) and angular velocity sensor value ( ⁇ ) measured in a series of swing motions. 0 ) are all acquired from the sensor value storage unit 140. Then, the trajectory generation unit 160 extracts a set of acceleration sensor values and angular velocity sensor values measured at the same timing from the acquired acceleration sensor values and angular velocity sensor values, and extracts the extracted acceleration sensor values and angular velocity sensor values. Is converted to absolute coordinates ( ⁇ and ⁇ ). The acceleration sensor value and the angular velocity sensor value are converted into absolute coordinates by performing calculations shown in the following mathematical formulas (4) and (5).
  • the trajectory generation unit 160 substitutes the absolute coordinates into the following formulas (6) to (10), and executes the numerical integration in one step in accordance with the boundary conditions described above, thereby Calculate (R and P).
  • the x component horizontal vector (R x ) of the waist posture matrix the y component horizontal vector (R y ) of the waist posture matrix
  • the z component horizontal vector (R z ) of the waist posture matrix the waist position vector (P)
  • a waist velocity vector (v) is calculated.
  • the trajectory generation unit 160 determines whether or not the position / orientation calculation has been completed for all the acceleration sensor values ( ⁇ 0 ) and angular velocity sensor values ( ⁇ 0 ) measured in the series of swing motions. Determine. As a result of the determination, when the calculation of the position and orientation is not completed for all the acceleration sensor values and angular velocity sensor values measured in a series of swing operations, the following processing is performed. That is, the trajectory generation unit 160 performs processing using the above-described mathematical expressions (4) to (10), and calculates the position and orientation of the remaining acceleration sensor values and angular velocity sensor values.
  • the trajectory generation unit 160 calculates the offset acceleration 1 from the start of the golf swing to the moment of impact using the following formula (11). Equation (11) is for deriving the offset acceleration 1 in accordance with the boundary condition 1 described above, and p in the equation corresponds to the time of impact from the value of p obtained as a result of the integration described above. Substitute the value of p.
  • the trajectory generation unit 160 After calculating the offset acceleration 1, the trajectory generation unit 160 corrects the acceleration sensor value with the offset acceleration 1, and then performs the same processing as described above to obtain the position and orientation from the start of the swing to the moment of impact. calculate.
  • the trajectory generation unit 160 acquires all acceleration sensor values and angular velocity sensor values measured in a series of swing motions from the sensor value storage unit 140. Then, the trajectory generation unit 160 extracts a set of acceleration sensor values and angular velocity sensor values measured at the same timing from the acquired acceleration sensor values and angular velocity sensor values. The trajectory generation unit 160 subtracts the offset acceleration 1 from the extracted acceleration sensor value, and uses the above-described mathematical expressions (4) and (5) to express the acceleration sensor value and the angular velocity sensor value obtained by subtracting the offset acceleration 1 as absolute coordinates ( ⁇ And ⁇ ). When the conversion to the absolute coordinates is completed, the trajectory generation unit 160 substitutes the absolute coordinates into the above-described mathematical formulas (6) to (10), and executes the position and orientation by performing one-step numerical integration according to the boundary conditions described above. calculate.
  • the trajectory generation unit 160 determines whether or not the calculation of the position and orientation has been completed for all the acceleration sensor values and angular velocity sensor values measured within a series of swing motions. As a result of the determination, when the calculation of the position and orientation has not been completed for all the acceleration sensor values and angular velocity sensor values measured within a series of swing motions, the trajectory generation unit 160 performs the following process. That is, the trajectory generation unit 160 executes processing using the above-described mathematical expressions (4) to (10), subtracts the offset acceleration 1 from the remaining acceleration sensor values, and subtracts the offset acceleration 1 to obtain an acceleration sensor value and angular velocity. The position and orientation are calculated for the sensor value.
  • the trajectory generation unit 160 performs the following processing. In other words, the trajectory generation unit 160 calculates the offset acceleration 2 from the moment of impact of the golf swing to the end of the swing using the following formula (12).
  • Equation (12) derives the offset acceleration 2 in accordance with the boundary condition 2 described above. That is, the trajectory generation unit 160 substitutes a value obtained by subtracting v corresponding to the time of impact from v corresponding to the end of the swing, out of the values of v obtained as a result of the integration after calculating the offset acceleration 1, into v s of the same equation. To do. In addition, the trajectory generation unit 160 substitutes the time from the moment of impact to the end of the swing into t in the same equation.
  • the trajectory generation unit 160 executes the same process as described above, and calculates the position and orientation from the moment of impact corrected according to the offset acceleration 2 to the end of the swing.
  • the trajectory generation unit 160 acquires all acceleration sensor values and angular velocity sensor values measured in a series of swing motions from the sensor value storage unit 140. Then, the locus generation unit 160 subtracts the offset accelerations 1 and 2 from each acceleration sensor value from the moment of impact to the end of the swing. The trajectory generating unit 160 converts each acceleration sensor value and each angular velocity sensor value obtained by subtracting the offset accelerations 1 and 2 into absolute coordinates using the above-described mathematical expressions (4) and (5). When the conversion to the absolute coordinates is completed, the trajectory generation unit 160 substitutes the absolute coordinates in the above-described mathematical expressions (6) to (10), respectively, and executes the numerical integration in one step according to the boundary conditions 1 and 2 described above. To calculate the position and orientation.
  • the trajectory generation unit 160 After calculating the position and orientation, the trajectory generation unit 160 combines the position and orientation from the start of the swing to the moment of impact and the position and orientation from the moment of impact to the end of the swing to express the motion of the waist in a series of swing operations. Generate data. And the locus
  • the locus generation unit 160 is, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or an electronic circuit such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • FIG. 6 are diagrams illustrating a process flow by the trajectory generation unit according to the second embodiment.
  • the trajectory generator 160 determines the acceleration sensor value ( ⁇ 0 ) and angular velocity sensor value ( ⁇ ) measured in a series of swing motions. 0 ) are all acquired from the sensor value storage unit 140 (step S3). Then, the locus generation unit 160 extracts a set of acceleration sensor values and angular velocity sensor values measured at the same timing from the acquired acceleration sensor values and angular velocity sensor values (step S4). The trajectory generation unit 160 converts the extracted acceleration sensor value and angular velocity sensor value into absolute coordinates ( ⁇ and ⁇ ) (step S5). When the conversion to the absolute coordinates is finished, the trajectory generation unit 160 calculates the position and orientation (R and P) by integrating the absolute coordinates according to the boundary condition described above (step S6).
  • the trajectory generation unit 160 determines whether or not the calculation of the position and orientation has been completed for all the acceleration sensor values and angular velocity sensor values measured in the series of swing motions (step S7). As a result of the determination, when the calculation of the position and orientation is not completed for all the acceleration sensor values and angular velocity sensor values measured in the series of swing motions (No in step S7), the following processing is performed. That is, the trajectory generation unit 160 performs the processing from step S4 to step S6 described above, and calculates the position and orientation for the remaining acceleration sensor values and angular velocity sensor values.
  • the trajectory generation unit 160 performs the following process. That is, as shown in FIG. 7, the trajectory generation unit 160 calculates the offset acceleration 1 corresponding to the moment of impact from the start of the golf swing (step S8).
  • the trajectory generation unit 160 executes basically the same processing as the processing in steps S3 to S7 described above, and from the start of the swing in which the correction according to the offset acceleration 1 has been performed.
  • the position and orientation (R and P) corresponding to the moment of impact are calculated.
  • the trajectory calculation unit 160 acquires all the acceleration sensor values and angular velocity sensor values measured within a series of swing motions from the sensor value storage unit 140 (step S9). Then, the trajectory generation unit 160 extracts a set of acceleration sensor values and angular velocity sensor values measured at the same timing from the acquired acceleration sensor values and angular velocity sensor values (step S10).
  • the locus generation unit 160 subtracts the offset acceleration 1 from the extracted acceleration sensor value, and converts the acceleration sensor value and the angular velocity sensor value obtained by subtracting the offset acceleration 1 into absolute coordinates (step S11).
  • the trajectory generation unit 160 calculates the position and orientation (R and P) by integrating the absolute coordinates according to the boundary condition described above (step S12).
  • the trajectory generation unit 160 determines whether or not the calculation of the position and orientation has been completed for all the acceleration sensor values and angular velocity sensor values measured in the series of swing motions (step S13). As a result of the determination, when the calculation of the position and orientation is not completed for all of the acceleration sensor values and the angular velocity sensor values measured within the series of swing motions (No in step S13), the trajectory generation unit 160 performs the above steps. The same processing as S10 to S12 is executed. That is, the trajectory generation unit 160 subtracts the offset acceleration 1 from the remaining acceleration sensor values, and calculates the position and orientation of the acceleration sensor value and the angular velocity sensor value obtained by subtracting the offset acceleration 1.
  • the trajectory generation unit 160 performs the following process. That is, as shown in FIG. 8, the locus generation unit 160 calculates the offset acceleration 2 corresponding to the end of the swing from the moment of impact of the golf swing (step S14).
  • the trajectory generating unit 160 executes basically the same processing as the above-described steps S9 to S12, and the swing ends from the moment of impact corrected according to the offset acceleration 2. Corresponding position and orientation (R and P) are calculated.
  • the trajectory generation unit 160 acquires all the acceleration sensor values and angular velocity sensor values measured within a series of swing motions from the sensor value storage unit 140 (step S15). Then, the trajectory generation unit 160 subtracts the offset accelerations 1 and 2 from each acceleration sensor value from the moment of impact to the end of the swing (step S16). The trajectory generation unit 160 converts each acceleration sensor value and each angular velocity sensor value obtained by subtracting the offset accelerations 1 and 2 into absolute coordinates (step S17). When the conversion to the absolute coordinates is completed, the trajectory generation unit 160 calculates the position and orientation (R and P) by integrating the absolute coordinates in accordance with the boundary conditions described above (step S18).
  • the trajectory generation unit 160 After calculating the position and orientation, the trajectory generation unit 160 combines the position and orientation corresponding to the moment of impact from the start of the swing and the position and orientation corresponding to the end of the swing from the moment of impact to determine the waist movement in a series of swing operations.
  • the trajectory data to be represented is generated (step S19). Then, the trajectory generation unit 160 displays the generated trajectory data on the display 130 (step S20).
  • the mobile phone 100 divides the golf swing from the start to the impact of the golf swing to the impact and the offset from the impact to the end of the swing.
  • the acceleration is derived respectively.
  • the mobile phone 100 After subtracting the offset acceleration from the actually measured acceleration sensor value, the mobile phone 100 performs integration according to the boundary condition, and derives the position and orientation corrected for the offset acceleration separately before and after the impact. Then, the mobile phone 100 generates and displays an operation locus of the waist during the golf swing from the position and orientation derived before and after the impact. For this reason, according to the second embodiment, it is possible to consider the influence of the impact motion on the derivation of the trajectory of the predetermined part of the body, and the motion trajectory of the waist during the golf swing can be more accurately reproduced.
  • the swing history data list in which the generation dates and times of the waist motion trajectory are listed is provided to the user, and the data of the waist motion history corresponding to the date and time selected by the user is stored in the trajectory data storage unit.
  • the data is read from 150 and output to the display 130. For this reason, it is possible to provide a past motion trajectory according to the user's request.
  • the embodiment of the mobile phone 100 has been described by taking a golf swing as an example of a series of motion operations.
  • the embodiment is not limited to a golf swing, and an impact operation such as a baseball bat swing is performed. It can be similarly applied to the measurement of the movement motion including.
  • each component of the mobile phone 100 shown in FIG. 2 is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific form of distribution / integration of the mobile phone 100 is not limited to that shown in the figure.
  • the trajectory generation unit 160 is functionally or physically distributed to the position and orientation derivation unit and the motion trajectory generation unit. As described above, all or a part of the mobile phone 100 can be configured to be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions.
  • FIG. 9 is a diagram illustrating a computer that executes a trajectory generation program.
  • a computer 200 as a mobile phone 100 is configured by connecting an input / output control unit 210, an HDD 220, a RAM 230, and a CPU 240 via a bus 300.
  • the input / output control unit 210 controls input / output of various information.
  • the HDD 220 stores information necessary for the CPU 240 to execute various processes.
  • the RAM 230 temporarily stores various information.
  • the CPU 240 executes various arithmetic processes.
  • the HDD 220 stores in advance a trajectory generation program 221 that performs the same function as each processing unit of the mobile phone 100 shown in FIG. 2 and trajectory generation data 222. .
  • trajectory generation program 221 can be appropriately distributed and stored in a storage unit of another computer that is communicably connected via a network.
  • the CPU 240 reads out the trajectory generation program 221 from the HDD 220 and develops it in the RAM 230, so that the trajectory generation program 221 functions as a trajectory generation process 231 as shown in FIG.
  • the trajectory generation process 231 reads the trajectory generation data 222 and the like from the HDD 220, expands the data in the area allocated to itself in the RAM 230, and executes various processes based on the expanded data and the like.
  • trajectory generation process 231 particularly corresponds to processing executed in the trajectory generation unit 160 of the mobile phone 100 shown in FIG.
  • trajectory generation program 221 does not necessarily need to be stored in the HDD 220 from the beginning.
  • each program is stored in a “portable physical medium” such as a flexible disk (FD), a CD-ROM, a DVD disk, a magneto-optical disk, and an IC card inserted into the computer 200. Then, the computer 200 may read and execute each program from these.
  • a “portable physical medium” such as a flexible disk (FD), a CD-ROM, a DVD disk, a magneto-optical disk, and an IC card inserted into the computer 200. Then, the computer 200 may read and execute each program from these.
  • each program is stored in “another computer (or server)” connected to the computer 200 via a public line, the Internet, a LAN, a WAN, or the like. Then, the computer 200 may read and execute each program from these.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)
  • Telephone Function (AREA)

Abstract

 軌跡生成部2は、所定の衝撃を発生させるインパクト動作を一連の運動動作が有する場合に、体の所定部位に取り付けられた加速度センサおよび角速度センサから取得される各センサ値を用いて、所定部位の動作軌跡を生成する。例えば、軌跡生成部2は、一連の運動動作の開始動作からインパクト動作までの体の所定部位の動作軌跡と、インパクト動作から終了動作までの体の所定部位の動作軌跡とを個別に生成する。すなわち、軌跡生成部2は、インパクト動作の前後に分けて、体の所定部位の動作軌跡を生成するので、インパクト動作が体の所定部位の軌跡導出に与える影響を考慮することができ、一連の運動動作の軌跡をより正確に再現できる。

Description

軌跡生成プログラムおよび軌跡生成装置
 この発明は、軌跡生成プログラムおよび軌跡生成装置に関する。
 近年、体の部位に加速度センサおよび角速度センサを取り付けて、加速度センサおよび角速度センサから得られる各センサ値を用いて、センサを取り付けた体の部位の運動の軌跡を生成する技術が提案されている。また、近年、加速度センサを搭載することにより、歩数計の機能を有する携帯電話などの開発も行われている。
佐川貢一、森山靖子、塚本利昭、近藤和泉、「装着型センサによる投球時上腕の3次元位置計測」、計測自動制御学会、第216回研究集会、2004年6月22日、資料番号216-4
 ところで、上述した従来の技術は、体に取り付けられたセンサに一連の運動動作内で衝撃が加えられるような場合には、センサから得られるセンサ値に誤差が生じるので、運動の軌跡を正確に再現することが難しいという問題があった。
 開示の技術は、上記に鑑みてなされたものであって、一連の運動動作の軌跡をより正確に再現することが可能な軌跡生成プログラムおよび軌跡生成装置を提供することを目的とする。
 本願の開示する技術は、一つの態様において、コンピュータに、所定の衝撃を発生させるインパクト動作を一連の運動動作が有する場合に、体の所定部位に取り付けられた加速度センサおよび角速度センサから取得される各センサ値を用いて、当該一連の運動動作の開始動作から当該インパクト動作までの当該所定部位の動作軌跡と、当該インパクト動作から終了動作までの当該所定部位の動作軌跡とに分けて生成する軌跡生成手順を実行させる。
 本願の開示する技術の一つの態様によれば、一連の運動動作の軌跡をより正確に再現できる。
図1は、実施例1に係る軌跡生成装置を示す図である。 図2は、実施例2に係る携帯電話の構成を示す図である。 図3は、実施例2に係るディスプレイ表示例を示す図である。 図4は、実施例2に係るディスプレイ表示例を示す図である。 図5は、実施例2に係る腰の動作軌跡の表示例を示す図である。 図6は、実施例2に係る軌跡生成部による処理の流れを示す図である。 図7は、実施例2に係る軌跡生成部による処理の流れを示す図である。 図8は、実施例2に係る軌跡生成部による処理の流れを示す図である。 図9は、軌跡生成プログラムを実行するコンピュータを示す図である。
 以下に、図面を参照しつつ、本願の開示する軌跡生成プログラムおよび軌跡生成装置の一実施形態について詳細に説明する。なお、軌跡生成プログラムおよび軌跡生成装置の一実施形態として後述する以下の実施例により、本願が開示する技術が限定されるものではない。
 図1は、実施例1に係る軌跡生成装置を示す図である。同図に示すように、実施例1に係る軌跡生成装置1は、軌跡生成部2を有する。
 軌跡生成部2は、所定の衝撃を発生させるインパクト動作を一連の運動動作が有する場合に、体の所定部位に取り付けられた加速度センサおよび角速度センサから取得される各センサ値を用いて、所定部位の動作軌跡を生成する。例えば、軌跡生成部2は、一連の運動動作の開始動作からインパクト動作までの体の所定部位の動作軌跡と、インパクト動作から終了動作までの体の所定部位の動作軌跡とを個別に生成する。
 すなわち、実施例1に係る軌跡生成部2は、インパクト動作の前後に分けて、体の所定部位の動作軌跡を生成するので、インパクト動作が体の所定部位の軌跡導出に与える影響を考慮することができ、一連の運動動作の軌跡をより正確に再現できる。
[実施例2の構成]
 以下の実施例2では、本願の開示する軌跡生成装置を有する装置として携帯電話を取り上げるが、携帯電話はあくまで一例であり、体に取り付け可能な小型の情報処理装置の全てに適用可能である。また、以下では、実施例2に係る携帯電話を腰に取り付けてゴルフスイングを行った時の腰の動作軌跡を生成する場合について説明する。
 図2は、実施例2に係る携帯電話の構成を示す図である。同図に示すように、実施例2に係る携帯電話100は、加速度センサ110、角速度センサ120、ディスプレイ130、センサ値記憶部140、軌跡データ記憶部150および軌跡生成部160を有する。
 加速度センサ110は、後述する軌跡生成部160による処理が開始されると、デフォルトで設定された時間間隔(例えば、0.2秒間隔)で継続的に携帯電話100が取り付けられる腰の加速度を計測する。そして、加速度センサ110は、計測した各加速度センサ値(例えば、電圧値)を後述する軌跡生成部160に送出する。
 また、角速度センサ120は、後述する軌跡生成部160による処理が開始されると、デフォルトで設定された時間間隔(例えば、0.2秒間隔)で継続的に携帯電話100が取り付けられる腰の角速度を計測し、計測した各角速度センサ値(例えば、電圧値)を後述する軌跡生成部160に送出する。なお、加速度センサ110および角速度センサ120は、同期したタイミングで計測を実行する。
 ディスプレイ130は、後述する軌跡生成部160により生成された腰の動作軌跡をユーザが視認可能な状態で表示する。また、ディスプレイ130は、ゴルフスイング時の腰の動作軌跡の生成開始時のメニュー情報や、後述する軌跡データ記憶部150に記憶されている過去の腰の動作軌跡の一覧情報を表示する。
 センサ値記憶部140は、加速度センサ110により計測された各加速度センサ値と、角速度センサ120により計測された各角速度センサ値とを、計測タイミングが同一であるもの同士対応付けて記憶する。
 軌跡データ記憶部150は、後述する軌跡生成部160により生成された腰の動作軌跡に関するデータを、動作軌跡の生成日時に対応付けて記憶する。
 なお、センサ値記憶部140および軌跡データ記憶部150は、例えば、RAM(Random Access Memory)、フラッシュメモリ(flash memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。
 軌跡生成部160は、携帯電話100を腰に取り付けてゴルフスイングを行った時の腰の動作軌跡を、加速度センサ110により計測された各加速度センサ値および角速度センサ120により計測された各角速度センサ値を用いて生成する。
 図3は、実施例2に係るディスプレイ表示例を示す図である。同図には、「スイング測定」および「スイング履歴」の選択項目が設けられたメニュー画面がディスプレイ130に表示されている様子が示されている。「スイング測定」は、ゴルフスイングを行った時の腰の動作軌跡の生成開始をユーザが希望する場合に、ユーザに選択させるための項目である。「スイング履歴」は、軌跡データ記憶部150に記憶されている腰の動作軌跡一覧の閲覧をユーザが希望する場合に、ユーザに選択させるための項目である。
 軌跡生成部160は、例えば、ユーザ操作に応じて、例えば、図3に示すようなメニュー画面をディスプレイ130に出力する。そして、軌跡生成部160は、「スイング履歴」を選択する入力があると、例えば、図4に示すように、軌跡データ記憶部150に記憶されている腰の動作軌跡一覧をディスプレイ130に出力する。図4は、実施例2に係るディスプレイ表示例を示す図である。同図には、スイング履歴データ一覧として、腰の動作軌跡の生成日時がディスプレイ130に時系列で表示されている様子が示されている。例えば、軌跡生成部160は、「2009年9月9日 12:00」を選択する入力があると、選択された日時に対応する腰の動作履歴のデータを軌跡データ記憶部150から読み込んで、ディスプレイ130に出力する。
 また、軌跡生成部160は、「スイング測定」を選択する入力があると、携帯電話100を腰に取り付けてゴルフスイングを行った時の腰の動作軌跡の生成を開始する。なお、軌跡生成部160は、ゴルフスイングの最中に一定のオフセット加速度が発生しているという仮定を前提とする。なお、オフセット加速度とは、加速度の真の値との一定の誤差のことをいう。そして、軌跡生成部160は、境界条件1:「スイング開始時とインパクト時の腰の位置が等しい」、境界条件2:「スイング終了時の腰の速度が0」という条件にしたがって以下の処理を実行する。
 例えば、軌跡生成部160は、「スイング測定」を選択する入力があると、腰姿勢マトリクス(R)、初期条件(腰の位置ベクトル:p=0,腰の速度ベクトル:v=0)を設定する。なお、腰姿勢マトリクス(R)、初期条件(腰の位置ベクトル:p=0,腰の速度ベクトル:v=0)は、以下の式(1)、(2)および(3)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 腰姿勢マトリクス(R)および初期条件(p=0,v=0)の設定後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値(α)および角速度センサ値(ω)をセンサ値記憶部140から全て取得する。そして、軌跡生成部160は、取得した加速度センサ値および角速度センサ値の中から、同一のタイミングで計測された加速度センサ値および角速度センサ値を一組抽出し、抽出した加速度センサ値および角速度センサ値を絶対座標(αおよびω)に変換する。なお、以下の数式(4)および(5)に示す計算を行うことで、加速度センサ値および角速度センサ値が絶対座標に変換される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 絶対座標への変換を終えると、軌跡生成部160は、以下に示す数式(6)~(10)に絶対座標を代入し、上述した境界条件にしたがって数値積分をワンステップ実行することにより位置姿勢(RおよびP)を算出する。なお、この数値積分により、腰姿勢マトリクスのx成分横ベクトル(R)、腰姿勢マトリクスのy成分横ベクトル(R)、腰姿勢マトリクスのz成分横ベクトル(R)、腰の位置ベクトル(p)、腰の速度ベクトル(v)が算出される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 位置姿勢の算出後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値(α)および角速度センサ値(ω)の全てについて位置姿勢の算出を完了しているか否かを判定する。判定の結果、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了していない場合には、次のように処理する。すなわち、軌跡生成部160は、上述した数式(4)~(10)を用いた処理を実行して、残りの加速度センサ値および角速度センサ値について位置姿勢を算出する。
 一方、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了している場合には、軌跡生成部160は、次のように処理する。すなわち、軌跡生成部160は、以下に示す数式(11)を用いて、ゴルフスイングのスイング開始からインパクトの瞬間までのオフセット加速度1を算出する。なお、数式(11)は、上述した境界条件1にしたがってオフセット加速度1を導出するものであり、同式のpには、上述した積分の結果得られるpの値の中から、インパクト時に対応するpの値を代入する。
Figure JPOXMLDOC01-appb-M000011
 オフセット加速度1を算出した後、軌跡生成部160は、加速度センサ値をオフセット加速度1で補正した上で、上述した処理と同様の処理を実行し、スイング開始時からインパクトの瞬間までの位置姿勢を算出する。
 すなわち、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値をセンサ値記憶部140から全て取得する。そして、軌跡生成部160は、取得した加速度センサ値および角速度センサ値の中から、同一のタイミングで計測された加速度センサ値および角速度センサ値を一組抽出する。軌跡生成部160は、抽出した加速度センサ値からオフセット加速度1を差し引き、上述した数式(4)および(5)を用いて、オフセット加速度1を差し引いた加速度センサ値、角速度センサ値を絶対座標(αおよびω)に変換する。絶対座標への変換を終えると、軌跡生成部160は、上述した数式(6)~(10)に絶対座標を代入し、上述した境界条件にしたがって数値積分をワンステップ実行することにより位置姿勢を算出する。
 位置姿勢の算出後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了しているか否かを判定する。判定の結果、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了していない場合には、軌跡生成部160は、次のように処理する。すなわち、軌跡生成部160は、上述した数式(4)~(10)を用いた処理を実行して、残りの加速度センサ値からオフセット加速度1を差し引き、オフセット加速度1を差し引いた加速度センサ値、角速度センサ値について位置姿勢を算出する。
 一方、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了している場合には、軌跡生成部160は、次のように処理する。すなわち、軌跡生成部160は、以下に示す数式(12)を用いて、ゴルフスイングのインパクトの瞬間からスイング終了までのオフセット加速度2を算出する。
 数式(12)は、上述した境界条件2にしたがってオフセット加速度2を導出するものである。すなわち、軌跡生成部160は、同式のvに、オフセット加速度1算出後の積分の結果得られるvの値のうち、スイング終了時に対応するvからインパクト時に対応するvを差し引いた値を代入する。また、軌跡生成部160は、同式のtに、インパクトの瞬間からスイング終了までの時間を代入する。
 なお、実施例2では、ゴルフスイングの最中に一定のオフセット加速度が発生するという仮定を前提とするので、スイング終了時に対応する腰の速度として、オフセット加速度に応じたある程度の速度が導出されることとなる。この点に着目し、「境界条件2:スイング終了時の腰の速度が0」に基づいた数式(12)を導出する。
Figure JPOXMLDOC01-appb-M000012
 オフセット加速度2を算出した後、軌跡生成部160は、上述した処理と同様の処理を実行して、オフセット加速度2に応じた補正がなされたインパクトの瞬間からスイング終了までの位置姿勢を算出する。
 すなわち、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値をセンサ値記憶部140から全て取得する。そして、軌跡生成部160は、インパクトの瞬間からスイング終了までの各加速度センサ値からオフセット加速度1および2を差し引く。軌跡生成部160は、上述した数式(4)および(5)を用いて、オフセット加速度1および2を差し引いた各加速度センサ値,各角速度センサ値を絶対座標にそれぞれ変換する。絶対座標への変換を終えると、軌跡生成部160は、上述した数式(6)~(10)に絶対座標をそれぞれ代入し、上述した境界条件1および2にしたがって数値積分をワンステップ実行することにより位置姿勢を算出する。
 位置姿勢の算出後、軌跡生成部160は、スイング開始からインパクトの瞬間までの位置姿勢と、インパクトの瞬間からスイング終了までの位置姿勢とを合成して一連のスイング動作における腰の動きを表す軌跡データを生成する。そして、軌跡生成部160は、例えば、図5に示すように、生成した軌跡データをディスプレイ130に出力する。図5は、実施例2に係る腰の動作軌跡の表示例を示す図である。また、軌跡生成部160は、生成した軌跡データを軌跡データ記憶部150に格納する。
 なお、軌跡生成部160は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA (Field Programmable Gate Array)などの集積回路、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などの電子回路である。
[実施例2による処理]
 図6~8は、実施例2に係る軌跡生成部による処理の流れを示す図である。図6に示すように、ゴルフスイング時の腰の動作軌跡生成に関わるスイング測定の開始を待機する(ステップS1)。そして、例えば、「スイング測定」を選択する入力があると、軌跡生成部160は、測定を開始し(ステップS1肯定)、腰姿勢マトリクス(R)、初期条件(腰の位置ベクトル:p=0,腰の速度ベクトル:v=0)を設定する(ステップS2)。
 腰姿勢マトリクス(R)および初期条件(p=0,v=0)の設定後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値(α)および角速度センサ値(ω)をセンサ値記憶部140から全て取得する(ステップS3)。そして、軌跡生成部160は、取得した加速度センサ値および角速度センサ値の中から、同一のタイミングで計測された加速度センサ値および角速度センサ値を一組抽出する(ステップS4)。軌跡生成部160は、抽出した加速度センサ値および角速度センサ値を絶対座標(αおよびω)に変換する(ステップS5)。絶対座標への変換を終えると、軌跡生成部160は、上述した境界条件にしたがって絶対座標を積分することにより位置姿勢(RおよびP)を算出する(ステップS6)。
 位置姿勢の算出後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了しているか否かを判定する(ステップS7)。判定の結果、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了していない場合には(ステップS7否定)、次のように処理する。すなわち、軌跡生成部160は、上述したステップS4~ステップS6までの処理を実行して、残りの加速度センサ値および角速度センサ値について位置姿勢を算出する。
 一方、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了している場合には(ステップS7肯定)、軌跡生成部160は、次のように処理する。すなわち、軌跡生成部160は、図7に示すように、ゴルフスイングのスイング開始からインパクトの瞬間に対応するオフセット加速度1を算出する(ステップS8)。
 オフセット加速度1を算出した後、軌跡生成部160は、上述したステップS3~ステップS7の処理と基本的には同様の処理を実行して、オフセット加速度1に応じた補正がなされたスイング開始時からインパクトの瞬間に対応する位置姿勢(RおよびP)を算出する。
 すなわち、軌跡算出部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値をセンサ値記憶部140から全て取得する(ステップS9)。そして、軌跡生成部160は、取得した加速度センサ値および角速度センサ値の中から、同一のタイミングで計測された加速度センサ値および角速度センサ値を一組抽出する(ステップS10)。
 軌跡生成部160は、抽出した加速度センサ値からオフセット加速度1を差し引き、オフセット加速度1を差し引いた加速度センサ値、角速度センサ値を絶対座標に変換する(ステップS11)。絶対座標への変換を終えると、軌跡生成部160は、上述した境界条件にしたがって絶対座標を積分することにより位置姿勢(RおよびP)を算出する(ステップS12)。
 位置姿勢の算出後、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了しているか否かを判定する(ステップS13)。判定の結果、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了していない場合には(ステップS13否定)、軌跡生成部160は、上述したステップS10~ステップS12と同様の処理を実行する。すなわち、軌跡生成部160は、残りの加速度センサ値からオフセット加速度1を差し引き、オフセット加速度1を差し引いた加速度センサ値、角速度センサ値について位置姿勢を算出する。
 一方、一連のスイング動作内で計測された加速度センサ値および角速度センサ値の全てについて位置姿勢の算出を完了している場合には(ステップS13肯定)、軌跡生成部160は、次のように処理する。すなわち、軌跡生成部160は、図8に示すように、ゴルフスイングのインパクトの瞬間からスイング終了に対応するオフセット加速度2を算出する(ステップS14)。
 オフセット加速度2を算出した後、軌跡生成部160は、上述したステップS9~ステップS12と基本的に同様の処理を実行して、オフセット加速度2に応じた補正がなされたインパクトの瞬間からスイング終了に対応する位置姿勢(RおよびP)を算出する。
 すなわち、軌跡生成部160は、一連のスイング動作内で計測された加速度センサ値および角速度センサ値をセンサ値記憶部140から全て取得する(ステップS15)。そして、軌跡生成部160は、インパクトの瞬間からスイング終了までの各加速度センサ値からオフセット加速度1および2を差し引く(ステップS16)。軌跡生成部160は、オフセット加速度1および2を差し引いた各加速度センサ値,各角速度センサ値を絶対座標にそれぞれ変換する(ステップS17)。絶対座標への変換を終えると、軌跡生成部160は、上述した境界条件にしたがって絶対座標をそれぞれ積分することにより位置姿勢(RおよびP)を算出する(ステップS18)。
 位置姿勢の算出後、軌跡生成部160は、スイング開始からインパクトの瞬間に対応する位置姿勢と、インパクトの瞬間からスイング終了に対応する位置姿勢とを合成して一連のスイング動作における腰の動きを表す軌跡データを生成する(ステップS19)。そして、軌跡生成部160は、生成した軌跡データをディスプレイ130に表示する(ステップS20)。
[実施例2による効果]
 上述してきたように、実施例2によれば、携帯電話100は、ゴルフスイングのスイング開始からインパクトまで間と、インパクトからスイング終了までの間とに分けて、ゴルフスイング中に発生しているオフセット加速度をそれぞれ導出する。携帯電話100は、実測された加速度センサ値からオフセット加速度を差し引いた後、境界条件にしたがった積分を実行することで、オフセット加速度の分を補正した位置姿勢をインパクトの前後に分けて導出する。そして、携帯電話100は、インパクトの前後に分けて導出された位置姿勢から、ゴルフスイング中の腰の動作軌跡を生成して表示する。このようなことから、実施例2によれば、インパクト動作が体の所定部位の軌跡導出に与える影響を考慮することができ、ゴルフスイング中の腰の動作軌跡をより正確に再現できる。
 また、実施例2によれば、腰の動作軌跡の生成日時が列挙されたスイング履歴データ一覧をユーザに提供し、ユーザから選択された日時に対応する腰の動作履歴のデータを軌跡データ記憶部150から読み込んで、ディスプレイ130に出力する。このようなことから、ユーザの要求に応じた過去の動作軌跡を提供できる。
 なお、上述した実施例2では、一連の運動動作としてゴルフスイングを例に取り上げて携帯電話100の実施形態を説明したが、ゴルフスイングに限られるものではなく、野球のバットスイングなど、インパクト動作を含む運動動作の測定に同様に適用できる。
(1)装置構成等
 例えば、図2に示した携帯電話100の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、携帯電話100の分散・統合の具体的形態は図示のものに限られず、例えば、軌跡生成部160を位置姿勢導出部および動作軌跡生成部に機能的あるいは物理的に分散する。このように、携帯電話100の全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
(2)軌跡生成プログラム
 また、上記の実施例で説明した携帯電話100の各種の処理(図6~8参照)は、あらかじめ用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータシステムで実行することによって実現することもできる。
 そこで、以下では、図9を用いて、上記の実施例で説明した携帯電話100と同様の機能を有する軌跡生成プログラムを実行するコンピュータの一例を説明する。図9は、軌跡生成プログラムを実行するコンピュータを示す図である。
 同図に示すように、携帯電話100としてコンピュータ200は、入出力制御部210、HDD220、RAM230およびCPU240をバス300で接続して構成される。
 ここで、入出力制御部210は、各種情報の入出力を制御する。HDD220は、CPU240による各種処理の実行に必要な情報を記憶する。RAM230は、各種情報を一時的に記憶する。CPU240は、各種演算処理を実行する。
 そして、HDD220には、図9に示すように、図2に示した携帯電話100の各処理部と同様の機能を発揮する軌跡生成プログラム221と、軌跡生成用データ222とがあらかじめ記憶されている。
 なお、この軌跡生成プログラム221を適宜分散させて、ネットワークを介して通信可能に接続された他のコンピュータの記憶部に記憶させておくこともできる。
 そして、CPU240が、この軌跡生成プログラム221をHDD220から読み出してRAM230に展開することにより、図9に示すように、軌跡生成プログラム221は軌跡生成プロセス231として機能するようになる。
 すなわち、軌跡生成プロセス231は、軌跡生成用データ222等をHDD220から読み出して、RAM230において自身に割り当てられた領域に展開し、この展開したデータ等に基づいて各種処理を実行する。
 また、軌跡生成プロセス231は、特に、図2に示した携帯電話100の軌跡生成部160において実行される処理に対応する。
 なお、上記した軌跡生成プログラム221については、必ずしも最初からHDD220に記憶させておく必要はない。例えば、コンピュータ200に挿入されるフレキシブルディスク(FD)、CD-ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に各プログラムを記憶させておく。そして、コンピュータ200がこれらから各プログラムを読み出して実行するようにしてもよい。
 さらには、公衆回線、インターネット、LAN、WANなどを介してコンピュータ200に接続される「他のコンピュータ(またはサーバ)」などに各プログラムを記憶させておく。そして、コンピュータ200がこれらから各プログラムを読み出して実行するようにしてもよい。
 1 軌跡生成装置
 2 軌跡生成部
 100 携帯電話
 110 加速度センサ
 120 角速度センサ
 130 ディスプレイ
 140 センサ値記憶部
 150 軌跡データ記憶部
 160 軌跡生成部
 200 コンピュータ
 210 入出力制御部
 220 HDD(Hard Disk Drive)
 221 軌跡生成プログラム
 222 軌跡生成用データ
 230 RAM(Random Access Memory)
 231 軌跡生成プロセス
 240 CPU(Central Processing Unit)
 300 バス

Claims (4)

  1.  コンピュータに、
     所定の衝撃を発生させるインパクト動作を一連の運動動作が有する場合に、体の所定部位に取り付けられた加速度センサおよび角速度センサから取得される各センサ値を用いて、当該一連の運動動作の開始動作から当該インパクト動作までの当該所定部位の動作軌跡と、当該インパクト動作から終了動作までの当該所定部位の動作軌跡とを個別に生成する軌跡生成手順を実行させることを特徴とする軌跡生成プログラム。
  2.  前記軌跡生成手順は、前記運動動作の開始直前における前記所定部位の位置姿勢とインパクト動作の瞬間における当該所定部位の位置姿勢が同一であるという第一の条件、当該運動動作の終了時における当該所定部位の動作速度が0であるという第2の条件に基づいて、前記動作軌跡を補正することを特徴とする請求項1に記載の軌跡生成プログラム。
  3.  前記軌跡生成手順により生成された動作軌跡のデータを生成日時に対応付けて記憶部に格納する格納手順と、
     前記格納手順により記憶部に格納された動作軌跡のデータに対応付けられた生成日時の一覧情報を利用者に提供する提供手順と、
     前記提供手順により提供された前記一覧情報内で、前記生成日時の選択指示入力を前記利用者から受け付けた場合に、当該選択指示入力が受け付けられた生成日時に対応する動作軌跡のデータを前記記憶部から読み込んで、当該読み込んだ動作軌跡のデータを表示部に出力する出力手順と
     をさらにコンピュータに実行させることを特徴とする請求項1に記載の軌跡生成プログラム。
  4.  所定の衝撃を発生させるインパクト動作を一連の運動動作が有する場合に、体の所定部位に取り付けられた加速度センサおよび角速度センサから取得される各センサ値を用いて、当該一連の運動動作の開始動作から当該インパクト動作までの当該所定部位の動作軌跡と、当該インパクト動作から終了動作までの当該所定部位の動作軌跡とを個別に生成する軌跡生成部を有することを特徴とする軌跡生成装置。
PCT/JP2009/066695 2009-09-25 2009-09-25 軌跡生成プログラムおよび軌跡生成装置 WO2011036774A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011532851A JP5327330B2 (ja) 2009-09-25 2009-09-25 軌跡生成プログラムおよび軌跡生成装置
CN2009801616198A CN102574012A (zh) 2009-09-25 2009-09-25 轨迹生成程序以及轨迹生成装置
PCT/JP2009/066695 WO2011036774A1 (ja) 2009-09-25 2009-09-25 軌跡生成プログラムおよび軌跡生成装置
US13/425,809 US20120179385A1 (en) 2009-09-25 2012-03-21 Trajectory creating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066695 WO2011036774A1 (ja) 2009-09-25 2009-09-25 軌跡生成プログラムおよび軌跡生成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/425,809 Continuation US20120179385A1 (en) 2009-09-25 2012-03-21 Trajectory creating apparatus

Publications (1)

Publication Number Publication Date
WO2011036774A1 true WO2011036774A1 (ja) 2011-03-31

Family

ID=43795544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066695 WO2011036774A1 (ja) 2009-09-25 2009-09-25 軌跡生成プログラムおよび軌跡生成装置

Country Status (4)

Country Link
US (1) US20120179385A1 (ja)
JP (1) JP5327330B2 (ja)
CN (1) CN102574012A (ja)
WO (1) WO2011036774A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099523A (ja) * 2011-10-14 2013-05-23 Dunlop Sports Co Ltd テニススイング分析方法
JP2013125024A (ja) * 2011-12-16 2013-06-24 Seiko Epson Corp 運動解析方法及び運動解析装置
JP2016107087A (ja) * 2014-12-09 2016-06-20 ダンロップスポーツ株式会社 監視デバイスを備えるスポーツ器具
JP2019092648A (ja) * 2017-11-20 2019-06-20 カシオ計算機株式会社 電子機器、評価方法及びプログラム
JP2020089745A (ja) * 2020-01-28 2020-06-11 株式会社ユピテル スウェイ検知装置、及びスウェイ検知プログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094026B2 (ja) * 2011-03-02 2017-03-15 セイコーエプソン株式会社 姿勢判定方法、位置算出方法及び姿勢判定装置
CN103223237B (zh) * 2013-05-17 2016-06-22 北京方格世纪科技有限公司 一种模拟高尔夫球动作纠正系统和方法
JP6555149B2 (ja) * 2016-02-15 2019-08-07 オムロン株式会社 演算装置、演算方法及び演算プログラム
JP6717613B2 (ja) * 2016-02-23 2020-07-01 ブリヂストンスポーツ株式会社 計測システムおよび計測方法
CN113722544A (zh) * 2021-09-16 2021-11-30 福建平潭瑞谦智能科技有限公司 一种基于视频图像分析处理系统及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215182U (ja) * 1988-07-14 1990-01-30
JP2001502428A (ja) * 1996-10-19 2001-02-20 マゼソン リンゼイ ノーマン 移動している物品の軌道及び/又は運動に関連するパラメータを測定するための装置
US6899633B1 (en) * 2002-03-11 2005-05-31 John A. Kienzle Apparatus for generating a complex acoustic profile representing the acceleration pattern of an object moving through a path of travel
JP2009125229A (ja) * 2007-11-21 2009-06-11 Advanced Telecommunication Research Institute International 動き測定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634523B1 (ko) * 2004-11-06 2006-10-16 삼성전자주식회사 운동 동작 모니터링 장치 및 방법
WO2006081395A2 (en) * 2005-01-26 2006-08-03 Bentley Kinetics, Inc. Method and system for athletic motion analysis and instruction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215182U (ja) * 1988-07-14 1990-01-30
JP2001502428A (ja) * 1996-10-19 2001-02-20 マゼソン リンゼイ ノーマン 移動している物品の軌道及び/又は運動に関連するパラメータを測定するための装置
US6899633B1 (en) * 2002-03-11 2005-05-31 John A. Kienzle Apparatus for generating a complex acoustic profile representing the acceleration pattern of an object moving through a path of travel
JP2009125229A (ja) * 2007-11-21 2009-06-11 Advanced Telecommunication Research Institute International 動き測定装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099523A (ja) * 2011-10-14 2013-05-23 Dunlop Sports Co Ltd テニススイング分析方法
JP2013125024A (ja) * 2011-12-16 2013-06-24 Seiko Epson Corp 運動解析方法及び運動解析装置
JP2016107087A (ja) * 2014-12-09 2016-06-20 ダンロップスポーツ株式会社 監視デバイスを備えるスポーツ器具
JP7064278B2 (ja) 2014-12-09 2022-05-10 住友ゴム工業株式会社 監視デバイスを備えるスポーツ器具
JP2019092648A (ja) * 2017-11-20 2019-06-20 カシオ計算機株式会社 電子機器、評価方法及びプログラム
JP7069662B2 (ja) 2017-11-20 2022-05-18 カシオ計算機株式会社 電子機器、評価方法及びプログラム
JP2020089745A (ja) * 2020-01-28 2020-06-11 株式会社ユピテル スウェイ検知装置、及びスウェイ検知プログラム

Also Published As

Publication number Publication date
JPWO2011036774A1 (ja) 2013-02-14
CN102574012A (zh) 2012-07-11
JP5327330B2 (ja) 2013-10-30
US20120179385A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5327330B2 (ja) 軌跡生成プログラムおよび軌跡生成装置
CN108615055B (zh) 一种相似度计算方法、装置及计算机可读存储介质
EP3677320A1 (en) Practice support program, practice support method and practice support system
JP5912415B2 (ja) ゴルフスイング解析装置およびゴルフスイング解析方法
JP6943294B2 (ja) 技認識プログラム、技認識方法および技認識システム
JP7215515B2 (ja) 解析装置、解析方法及びプログラム
CN109211267B (zh) 一种惯性动作捕捉姿态快速校准方法及系统
CN109523615B (zh) 用于虚拟动画人物动作的数据处理方法及装置
JP2017029516A (ja) ゴルフスイング解析装置
CN109186596B (zh) Imu测量数据生成方法、系统、计算机装置及可读存储介质
CN111489423B (zh) 一种动画处理的方法及装置、电子设备、存储介质
JP6165815B2 (ja) 学習システム、学習方法、プログラム、記録媒体
US20170039882A1 (en) Information processing apparatus, information processing method, and computer program
KR101959232B1 (ko) Ems 시그널 발생 시스템 및 ems 시그널 발생 방법
WO2020075825A1 (ja) 動き推定装置、電子機器、制御プログラム及び動き推定方法
Callejas-Cuervo et al. Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes
JP2016030123A (ja) 運動解析方法、運動解析装置及びプログラム
JP6621167B1 (ja) 動き推定装置、電子機器、制御プログラム及び動き推定方法
JP6560421B1 (ja) 情報処理システム、情報処理方法及び情報処理プログラム
CN114053679A (zh) 运动训练方法及其系统
WO2018084295A1 (ja) スイング解析装置、コンピュータにスイングを解析させるためのプログラムおよびスイング解析システム
JP2017012586A (ja) スイングデータ演算装置、スイングデータ演算システム、スイングデータ演算方法、及びプログラム
CN115310484B (zh) 姿态拓展状态语义处理方法及系统
TWI854786B (zh) 物件追蹤方法及主機
EP4303824A1 (en) System and method for monitoring a body pose of a user

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161619.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011532851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849805

Country of ref document: EP

Kind code of ref document: A1