[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011036083A1 - Turbocompoundsystem und komponenten - Google Patents

Turbocompoundsystem und komponenten Download PDF

Info

Publication number
WO2011036083A1
WO2011036083A1 PCT/EP2010/063588 EP2010063588W WO2011036083A1 WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1 EP 2010063588 W EP2010063588 W EP 2010063588W WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
turbine
low
stage
compressor
Prior art date
Application number
PCT/EP2010/063588
Other languages
English (en)
French (fr)
Inventor
Ennio Codan
Adrian Rettig
Original Assignee
Abb Turbo Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Turbo Systems Ag filed Critical Abb Turbo Systems Ag
Publication of WO2011036083A1 publication Critical patent/WO2011036083A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of supercharged by exhaust gas turbochargers internal combustion engines.
  • It relates to an internal combustion engine with a two-stage exhaust gas turbocharger, comprising a high-pressure stage, a low pressure stage, and arranged parallel to the high-pressure stage means for energy recovery.
  • This energy can be obtained directly as mechanical power from the turbocharger shaft (power take out, PTO).
  • PTO power take out
  • a subset of the exhaust gas may be expanded in a utility turbine and also converted to mechanical energy.
  • the mechanical power can be supplied to the drive shaft or converted by a generator into electrical power.
  • the excess energy of the charge depends at least quadratically on the engine load. As a result, with a reduction in engine load from 100% to 50%, the additional power is reduced by at least a factor of 4. Size Marine engines virtually never ride at 100% load. Typically, they are operated in the range of 50 to 85% load. As a result, the average additional power that can actually be generated falls below 2% of rated engine power on average, which makes the considerable investment for the turbocompound system unattractive. The spread of known turbocompound systems with turbine or PTO is correspondingly low.
  • the object of the invention is to maximize the recoverable additional power over the entire operating range between 50 and 100% engine load.
  • the pressure ratios between the high and low pressure stages are specifically set for a 2-stage charging, whereby the quadratic dependency of the additional power obtainable via the power turbine or the power take-out is bypassed by the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow can.
  • the pressure ratio ⁇ , ⁇ above the low pressure compressor is at least 50 percent greater than the pressure ratio ⁇ , ⁇ across the high pressure compressor.
  • Fig. 1 shows the diagram of an internal combustion engine with a two-stage
  • Fig. 2 shows the diagram of an internal combustion engine with a two-stage
  • FIG. 3 shows a diagram with the turbine characteristics of exhaust gas turbochargers with a diameter ratio D T / D V > 1 and a diameter ratio
  • Fig. 4 is a diagram of the turbine expansion ratios in one and two stages
  • FIG. 1 shows schematically a per se known two-stage supercharging system of an internal combustion engine.
  • the internal combustion engine 2 has a charge air receiver 1 on the inlet side and an exhaust gas receiver 3 on the outlet side.
  • the high-pressure exhaust gas coming from the combustion chambers of the engine passes through a high-pressure exhaust gas line 5 into a high-pressure turbine 15 of a two-stage exhaust gas turbocharger.
  • the exhaust gas partially expanded in the high-pressure turbine 15 flows via a low-pressure exhaust gas line 16, a low-pressure exhaust gas receiver 4 and a further low-pressure exhaust gas line 6 into a low-pressure turbine 7 and via an exhaust line 8 into the open.
  • the low-pressure compressor 10 connected to the low-pressure turbine 7 sucks the combustion air via a suction line 9 and presses them via a low-pressure charge air cooler 12 and a low-pressure charge air line 11 in the high-pressure compressor 18 driven by the high-pressure turbine 15, from which it acts as a high-pressure charge air via a high-pressure charge air cooler 21 and a Hochdruckladeluft effet 19 and the charge air receiver 1 enters the combustion chambers of the engine 2.
  • the charging system shown in Figure 1 also has a power take-out (PTO) device for removing power from the high-pressure exhaust gas turbocharger 33.
  • the extracted power can be converted directly into a connected to the shaft of the exhaust gas turbocharger generator 25 into electrical power.
  • PTO power take-out
  • a useful turbine 20 arranged in the high-pressure exhaust line parallel to the high-pressure turbine 15, which in a certain load range, for example 40% to 100% of the engine load, over a can be shut off by a shut-off valve 26 and branching off from the high pressure exhaust line 5 Nutzturbine exhaust gas line 28 can be acted upon by high pressure exhaust gas.
  • a generator 25 is coupled to the power turbine.
  • the power of the power turbine can be used mechanically, for example, by transmitting the power of the power turbine to the engine crankshaft via a gear transmission and a clutch.
  • the additional power that can be gained via the power turbine or the power take-out depends strongly on the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow. Both the expansion ratio and the exhaust gas mass flow decrease at least linearly with the engine load. The product of the two factors gives the at least quadratic dependence.
  • This quadratic dependence can be avoided.
  • This division can be characterized by the ratio ⁇ , ⁇ / ⁇ , ⁇ .
  • the ratio is according to the invention at least 1 .5 be, the ideal value is 2.
  • the expansion ratio of the high-pressure turbine for taking off the additional power is used: the expansion ratio of the high-pressure turbine remains almost constant in the range between 50% and 100% of the engine load, as shown in FIG , 4 I see.
  • This diagram shows the expansion ratios of exhaust gas turbines as a function of engine load.
  • Curve 1 shows the expansion ratio of a turbine in single-stage supercharging
  • curve 2 the expansion ratio of the low-pressure turbine of a two-stage supercharger
  • the engine 3 the expansion ratio of the high-pressure turbine of the two-stage supercharger.
  • the recoverable additional power is thus determined only by the exhaust gas mass flow, which varies linearly with the engine load.
  • the recoverable additional power reaches up to 50% of the shaft power of the high-pressure turbocharger. This removal of the additional power affects the high pressure turbocharger mating.
  • the decisive variable for the turbocharger mating is the running number of the turbine v. It is defined as
  • a conventional turbocharger is designed with a diameter ratio D T / D v s 0.9. This results in the balance between compressor and turbine power a running number of about 0.7, in which the turbine efficiency is typically at an optimum.
  • the problem can be solved by the high-pressure turbine or the high pressure turbine diameter D T is shown larger than the high pressure compressor diameter: the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.
  • the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Der zweistufige Abgasturbolader des Verbrennungsmotors (2) umfasst eine Hochdruckstufe mit einer von den Hochdruckabgasen (5) des Verbrennungsmotors beaufschlagten Hochdruckturbine (15) und einem mit der Hochdruckturbine in Antriebsverbindung stehenden Hochdruckverdichter (18), eine Niederdruckstufe mit einer der Hochdruckturbine (15) in Reihe nachgeschalteten Niederdruckturbine (7), die über eine Niederdruckabgasleitung (16, 6) mit der Hochdruckturbine (15) verbunden ist und mit einem dem Hochdruckverdichter (18) über eine Niederdruckladeluftleitung (11 ) in Reihe vorgeschalteten Niederdruckverdichter (10), welcher mit der Niederdruckturbine (7) in Antriebsverbindung steht, sowie Mittel (20, 25) zur Energierückgewinnung, welche parallel zur Hochdruckstufe angeordnet sind, dadurch gekennzeichnet, dass das Druckverhältnis πV,ND über dem Niederdruckverdichter m indestens 50 Prozent grösser ist als das Druckverhältn is πV,HD über dem Hochdruckverdichter.

Description

Tu rbocompou ndsystem u nd Komponenten
B E S C H R E I B U N G
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der mittels Abgasturbolader aufgeladenen Brennkraftmaschinen.
Sie betrifft einen Verbrennungsmotor mit zweistufigem Abgasturbolader, umfassend eine Hochdruckstufe, eine Niederdruckstufe, sowie parallel zur Hochdruckstufe angeordnete Mittel zur Energierückgewinnung.
Stand der Technik
Insbesondere bei grossen Schiffsmotoren ist es von Vorteil, die überschüssige Energie des Aufladesystems bei hohen Motorlasten abzuleiten. Diese Energie kann direkt als mechanische Leistung aus der Turboladerwelle (Power Take out, PTO) gewonnen werden. Alternativ kann eine Teilmenge des Abgases in einer Nutzturbine expandiert und ebenfalls in mechanische Energie umgewandelt werden. Die mechanische Leistung kann der Antriebswelle zugeführt oder durch einen Generator in elektrische Leistung umgeformt werden.
Die derart gewinnbare Leistung beträgt bei Volllast für 1 -stufig aufgeladene Motoren 3 bis 4% der Motorleistung. Dieser Anteil ist abhängig von der Differenz zwischen dem durch das Aufladesystem verfügbaren und dem für den zuverlässigen Motorbetrieb erforderlichen Aufladewirkungsgrad.
D u r c h d e n E i n s a t z d e r 2-stufigen Aufladung können der verfügbare Aufladewirkungsgrad u nd dadurch die gewinnbare Zusatzleistung gesteigert werden. Aus DE 3807372 sind verschiedene Schaltungsmöglichkeiten einer Nutzturbine in Verbindung mit 2-stufiger Aufladung bekannt.
Die überschüssige Energie der Aufladung hängt mindestens quadratisch von der Motorlast ab. Daraus resultiert, dass bei einer Reduktion der Motorlast von 100% auf 50%, sich die zusätzliche Leistung um mindestens den Faktor 4 reduziert. Grosse Schiffsmotoren fahren praktisch nie bei 100% Last. Typischerweise werden sie im Bereich 50 bis 85% Last betrieben. Dadurch fällt die tatsächlich gewinnbare Zusatzleistung im Durchschnitt unter 2% der Motornennleistung, was die erhebliche Investition für das Turbocompoundsystem unattraktiv macht. Die Verbreitung bekannter Turbocompoundsystemen mit Nutzturbine oder PTO ist entsprechend gering.
Kurze Darstellung der Erfindung
Aufgabe der Erfindung ist, die gewinnbare Zusatzleistung auf dem ganzen Betriebsbereich zwischen 50 und 100% Motorlast zu maximieren.
Erfindungsgemäss werden hierfür bei einer 2-stufigen Aufladung die Druckverhältnisse zwischen der Hoch- und Niederdruckstufe gezielt eingestellt, wodurch die quadratische Abhäng ig keit der über d ie N utzturbine oder den Power Take-Out gewinnbaren Zusatzleistung vom Expansionsverhältnis der Turboladerturbine und dem verfügbaren Abgasmassenstrom umgangen werden kann.
Erfindungsgemäss ist das Druckverhältnis ν,Νϋ über dem Niederdruckverdichter m i nd esten s 50 Prozent g rösser al s das Druckverhä ltn is ν,Ηϋ über dem Hochdruckverdichter.
Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen.
Kurze Beschreibung der Zeichnungen
Folgend ist anhand der Zeichnungen der erfindungsgemässe Verbrennungsmotor mit zweistufigem Abgasturbolader beschrieben. Hierbei zeigt
Fig. 1 das Schema eines Verbrennungsmotors mit einem zweistufigen
Aufladesystem mit PTO im Hochruckturbolader,
Fig. 2 das Schema eines Verbrennungsmotors mit einem zweistufigen
Aufladesystem mit einer Nutzturbine parallel zum Hochdruckturbolader, Fig. 3 ein Diagramm mit den Turbinencharakteristiken von Abgasturboladern mit einem Durchmesserverhältnis DT/DV > 1 und einem Durchmesserverhältnis
Fig. 4 ein Diagramm der Turbinen-Expansionverhältnisse bei ein- und zweistufiger
Aufladung, ).5 das Schema des Verbrennungsmotors mit einem zweistufigen
Aufladesystem mit PTO im Hochruckturbolader gemäss Fig. 1, mit dargestellten Regelungsmöglichkeiten,
).6 das Schema des Verbrennungsmotors mit einem zweistufigen Aufladesystem mit einer Nutzturbine parallel zum Hochdruckturbolader gemäss Fig.2, mit dargestellten Regelungsmöglichkeiten, und
).7 einen Schnitt entlang der Turboladerachse durch einen Abgasturbolader mit einem Durchmesserverhältnis DT/DV > 1.
Weg zur Ausführung der Erfindung
Fig.1 zeigt schematisch ein an sich bekanntes zweistufiges Aufladesystem eines Verbrennungsmotors.
Der Verbrennungsmotor 2 weist einlassseitig einen Ladeluftaufnehmer 1 und auslassseitig einen Abgasaufnehmer 3 auf. Aus diesem gelangt das aus den Brennkammern des Motors kommende Hockdruckabgas durch eine Hochdruckabgasleitung 5 in eine Hochdruckturbine 15 eines zweistufigen Abgasturboladers. Das in der Hochdruckturbine 15 teilentspannte Abgas strömt über eine Niederdruckabgasleitung 16, einen Niederdruckabgasaufnehmer 4 und eine weitere Niederdruckabgasleitung 6 in eine Niederdruckturbine 7 und über eine Auspuffleitung 8 ins Freie.
Der mit der Niederdruckturbine 7 verbundene Niederdruckverdichter 10 saugt die Verbrennungsluft über eine Ansaugleitung 9 an und drückt sie über einen Niederdruck- Ladeluftkühler 12 und eine Niederdruckladeluftleitung 11 in den von der Hochdruckturbine 15 angetriebenen Hochdruckverdichter 18, aus dem sie als Hochdruckladeluft über einen Hochdruck-Ladeluftkühler 21 und eine Hochdruckladeluftleitung 19 und den Ladeluftaufnehmer 1 in die Brennkammern des Motors 2 gelangt. Das in Fig.1 dargestellte Aufladesystem weist zudem eine Power Take-Out (PTO) Vorrichtung zur Entnahme von Leistung aus dem Hochdruck- Abgasturbolader 33 auf. Beispielsweise kann die entnommene Leistung direkt in einem mit der Welle des Abgasturboladers verbundenen Generator 25 in elektrische Leistung gewandelt werden. Das in Fig. 2 dargestellte Aufladesystem weist anstelle des mit der Welle des Hochdruck-Abgasturboladers verbundenen Generators eine in der Hochdruck- Abgasleitung parallel zur Hochdruckturbine 15 angeordnete Nutzturbine 20 auf, die in einem bestimmten Lastbereich, beispielsweise 40% bis 100% der Motorenlast, über eine durch ein Absperrorgan 26 absperrbare und von der Hochdruckabgasleitung 5 abzweigende Nutzturbinenabgasleitung 28 mit Hochdruckabgas beaufschlagt werden kann. Über eine Schaltkupplung ist ein Generator 25 an die Nutzturbine gekoppelt. Alternativ kann die Leistung der Nutzturbine mechanisch genutzt werden, indem etwa über ein Zahnradgetriebe und eine Schaltkupplung die Leistung der Nutzturbine auf die Motorkurbelwelle übertragen wird.
Die über die Nutzturbine oder den Power Take-Out gewinnbare Zusatzleistung hängt stark vom Expansionsverhältn is der Tu rboladerturbine u nd dem verfügbaren Abgasmassenstrom ab. Sowohl das Expansionsverhältnis als auch der Abgasmassenstrom nehmen zumindest linear mit der Motorlast ab. Das Produkt der beiden Faktoren ergibt die zumindest quadratische Abhängigkeit.
Mit einer 2-stufigen Aufladung und günstiger Aufteilung der Druckverhältnisse zwischen der Hoch- und Niederdruckstufe lässt sich diese quadratische Abhängigkeit umgehen. Diese Aufteilung kann durch das Verhältnis ν,Νϋ / πν,Ηϋ charakterisiert werden. Das Verhältnis ist erfindungsgemäss mindestens 1 .5 sein, der Idealwert liegt bei 2.
U nte r d i ese n Vo ra u ssetzu n g en n utzt m a n aus folgendem Grund das Expansionsverhältnis der Hochdruckturbine für die Entnahme der Zusatzleistung: das Expansionsverhältnis der Hochdruckturbine bleibt im Bereich zwischen 50% und 100% der Motorlast nahezu konstant, wie dies aus der Fig . 4 ersichtl ich ist. In d iesem Diagramm sind die Expansionsverhältnisse von Abgasturbinen in Abhängigkeit der Motorlast dargestellt. Die Kurve 1 zeigt das Expansionsverhältnis einer Turbine bei einstufiger Aufladung, die Kurve 2 das Expansionsverhältnis der Niederdruckturbine einer zweistufigen Auflad u ng u nd d ie Ku rve 3 das Expansionsverhältn is der Hochdruckturbine der zweistufigen Aufladung. Die gewinnbare Zusatzleistung ist somit nur noch durch den Abgasmassenstrom bestimmt, welcher linear mit der Motorlast variiert.
Dank des besseren Wirkungsgrades der 2-stufigen Aufladung ist in der Summe eine Zusatzleistung von 6 bis 7% der Motornennleistung bei 100% Motorlast realisierbar. Bei 50% Motorlast beträgt d ie rückgewinnbare Leistung immer noch 3 bis 4% der Motornennleistung. Im Vergleich zu heutigen Anwendungen entspricht das bei 100% Last einer Verdoppelung der rückgewinnbaren Leistung bei 50% Last sogar einer Erhöhung um den Faktor 4 bis 5.
Die gewinnbare Zusatzleistung erreicht bis zu 50% der Wellenleistung des Hochdruck- Turboladers. Diese Entnahme der Zusatzleistung beeinflusst das Hochdruck- Turboladermatching. Die entscheidende Grösse für das Turboladermatching ist die Laufzahl der Turbine v. Sie ist definiert als
Figure imgf000007_0001
mit UT als Turbinenumfanggeschwindigkeit und Co der isentropen Strömungsgeschwindigkeit durch die Turbine. Die Laufzahl ist proportional zum Durchmesserverhältnis DT/DV und der Wurzel des Produktes der Verhältnisse der Massenströmen (Turbine zu Verdichter) und der Leistungen (Verdichter zu Turbine). Ein konventioneller Turbolader ist mit einem Durchmesserverhältnis DT / Dv s 0.9 ausgelegt. Dadurch erg ibt sich beim Gleichgewicht zwischen Verd ichter- und Turbinenleistung eine Laufzahl von etwa 0.7, bei welchem der Turbinenwirkungsgrad typischerweise ein Optimum aufweist.
Wird vom Turbolader 50% der Turbinenleistung in Form von Leistung (PTO) oder Massenstrom (Nutzturbine) entnommen, reduziert sich die Laufzahl mit der Wurzel der Leistungsverhältnisse, d. h. bis um etwa 30%. In der Formel oben wird im Fall PTO die Turbinenleistung PT erhöht, im Fall Nutzturbine der Massenstrom mT reduziert, das Endresultat bleibt aber gleich. Da die Kurve des Turbinenwirkungsgrades über der Laufzahl, wie in Fig. 3 gezeigt ist, näherungsweise eine Parabel darstellt, führt eine Verschiebung der Laufzahl um 30% zu einer Reduktion des Turbinenwirkungsgrad von 0.3Λ2 = 0.09 (= 9%). Diese würde den Wirkungsgrad des gesamten Aufladesystems und dadurch die gewinnbare Zusatzleistung beeinträchtigen.
Das Problem kann gelöst werden, indem die Hochdruck-Turbine bzw. der Hochdruck- Turbinendurchmesser DT grösser dargestellt wird als der Hochdruck- Verdichterdurchmesser: das Durchmesserverhältnis DT/DV soll mindestens 1 betragen, vorzugsweise 1 .1 bis 1 .2. Ein derartiges System, wie es in Fig. 7 dargestellt ist, hat generell den Vorteil, dass sich die Energierückgewinnung ausschliesslich auf die Hochdruckstufe auswirkt. Hochdruckstufe he isst hohe Drücke, hohe Dichten , hohe Leistungsd ichte und entsprechend kleine Grösse der notwendigen Komponenten. Im Vergleich zu einem System, welches sich auf die Niederdruckstufe auswirkt, werden die Kosten deutlich tiefer.
Weitere Vorteile ergeben sich, wenn die Anzahl der Hochdruck-Turbolader durch die Wahl von grösseren Turboladern reduziert werden kann, idealerweise durch einen einzigen. Dadurch wird der Hochdruck-Turbolader gross und dreht entsprechend relativ langsam, was insbesondere im Falle von PTO die Kosten für den elektromechanischen Teil des Systems stark reduziert.
Eine weitere Anforderung an das System ist die Regelbarkeit der Zusatzleistung in Abhängigkeit von Motorbetriebsbedingungen . Dies kann durch die elektronische Regelung im Falle von PTO bzw. mittels variabler Geometrie der Nutzturbine gelöst werden . Generel l si nd al l e bekan nten Regeloption en, also etwa variable Leitvorrichtungen am Niederdruck-Verdichter oder Variable Turbinengeometrien an beiden Aufladestufen, mit dem beschriebenen System kombinierbar. Eine weitere Mögl ich keit ergibt sich bei modernen Motoren m it regelbaren Steuerzeiten : d ie Zu satzl eistu ng ka n n d u rch Va riation d er Steuerzeiten (vorzug sweise des Auslassschliesspunktes) geregelt werden. Fig. 5 und Fig. 6 zeigen die Schemen nach Fig. 1 und Fig. 2 mit den jeweiligen Regelungsmöglichkeiten. Zur Regelung des erfindungsgemässen System sind weitere Details dem im CIMAC Paper No. 63, 2007, „New Applications Fields for Marine Waste Heat Systems by Analysing the Main Design Parameters" zu entnehmen.
Bezugszeichenliste Ladeluftaufnehmer
Brennkraftmaschine
Abgasaufnehmer
Niederdruckabgasaufnehmer
Hochdruck-Abgasleitung
Niederdruck-Abgasleitung
Niederdruckturbine
Auspuffleitung
Ansaugleitung
Niederdruckverdichter
Niederdruck-Ladeluftleitung
Niederdruck-Ladeluftkühler
Huchdruckturbine
Niederdruck-Abgasleitung
Hochdruckverdichter
Hochdruck-Ladeluftleitung
Nutzturbine
Hochdruck-Ladeluftkühler
Absperrorgan
Generator
Absperrorgan
Niederdruck-Abgasleitung
Hochdruck-Abgasleitung
Niederdruckturbolader
Hochdruckturbolader

Claims

PAT E N TA N S P R Ü C H E
Verbrennungsmotor mit zweistufigem Abgasturbolader, umfassend
eine Hochdruckstufe mit einer ü ber eine Hochdruck-Abgasleitung (5) mit Hochdruckabgasen (5) des Verbrennungsmotors beaufschlagten Hochdruckturbine (15) und einem mit der Hochdruckturbine (15) in Antriebsverbindung stehenden Hochdruckverdichter (18),
eine Niederdruckstufe mit einer der Hochdruckturbine (15) über eine Niederdruckabgasleitung (16, 6) in Reihe nachgeschalteten Niederdruckturbine (7) und einem mit der Niederdruckturbine (7) in Antriebsverbindung stehenden, dem Hochdruckverdichter (18) über eine Niederdruckladeluftleitung (1 1 ) in Reihe vorgeschalteten Niederdruckverdichter (10), sowie
parallel zur Hochdruckstufe angeordnete Mittel zur Energierückgewinnung (20, 25), dadurch gekennzeichnet, dass das Druckverhältnis ν,Νϋ über dem Niederdruckverdichter mindestens 50 Prozent grösser ist als das Druckverhältnis ν,Ηϋ über dem Hochdruckverdichter.
Verbrennungsmotor mit zweistufigem Abgasturbolader nach Anspruch 1 , wobei das Druckverhältnis ν,Νϋ über dem Niederdruckverdichter mindestens doppelt so gross ist wie das Druckverhältnis ν,Ηϋ über dem Hochdruckverdichter.
Verbrennungsmotor mit zweistufigem Abgasturbolader nach einem der Ansprüche 1 oder 2, wobei der Turbinenraddurchmesser (DT) des Turbinenrades der Hochdruckturbine (15) grösser ist als der Verdichterraddurchmesser (Dv) des Verdichterrades des Hochdruckverdichters (18).
Verbrennungsmotor mit zweistufigem Abgasturbolader nach Anspruch 3, wobei der Turbinenraddurchmesser (DT) des Turbinenrades der Hochdruckturbine (15) mindestens 10 Prozent grösser ist als der Verdichterraddurchmesser (Dv) des Verdichterrades des Hochdruckverdichters (18)
Verbrennungsmotor mit zweistufigem Abgasturbolader nach Anspruch 4, wobei der Turbinenraddurchmesser (DT) des Turbinenrades der Hochdruckturbine (15) mindestens 20 Prozent grösser ist als der Verdichterraddurchmesser (Dv) des Verdichterrades des Hochdruckverdichters (18)
6. Verbrennungsmotor mit zweistufigem Abgasturbolader nach einem der vorangehenden Ansprüche, wobei die Niederdruckstufe mehrere in der Niederdruckabgasleitung parallel zueinander angeordnete Niederdruckturbinen und mit ihnen in Antriebsverbindung stehende, in der Niederdruckladeluftleitung parallel zueinander angeordnete Niederdruckverdichter umfasst.
7. Verbrennungsmotor mit zweistufigem Abgasturbolader nach Anspruch 6, wobei die Hochdruckstufe mehrere in der Hochdruckabgasleitung parallel zueinander angeordnete Hochdruckturbinen und mit ihnen in Antriebsverbindung stehende, in der Hochdruckladeluftleitung parallel zueinander angeordnete Hochdruckverdichter umfasst.
8. Verbrennungsmotor mit zweistufigem Abgasturbolader nach einem der Ansprüche 6 oder 7, wobei die Anzahl der parallel zueinander angeordneten Niederdruckturbinen grösser ist als die Anzahl Hochdruckturbinen.
9. Verbrennungsmotor mit zweistufigem Abgasturbolader nach einem der vorangehenden Ansprüche, wobei die Mittel zur Energierückgewinnung
einen mit der Welle der Hochdruckturbine gekoppelten Generator und/ oder e i n en m it e i n er i n d er Hochdruckabgasleitung parallel zur Hochdruckturbine angeordneten Nutzturbine gekoppelten Generator umfassen.
10. Verbrennungsmotor mit zweistufigem Abgasturbolader nach einem der vorangehenden Ansprüche, wobei der Verbrennungsmotor zur Regelung der
Energierückgewinnung mit variablen Ventilsteuerzeiten betreibbar ist.
PCT/EP2010/063588 2009-09-22 2010-09-16 Turbocompoundsystem und komponenten WO2011036083A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042283.8 2009-09-22
DE102009042283A DE102009042283A1 (de) 2009-09-22 2009-09-22 Turbocompoundsystem und Komponenten

Publications (1)

Publication Number Publication Date
WO2011036083A1 true WO2011036083A1 (de) 2011-03-31

Family

ID=43402222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063588 WO2011036083A1 (de) 2009-09-22 2010-09-16 Turbocompoundsystem und komponenten

Country Status (2)

Country Link
DE (1) DE102009042283A1 (de)
WO (1) WO2011036083A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562265A (zh) * 2012-01-11 2012-07-11 清华大学 二级涡轮增压系统
GB2508866A (en) * 2012-12-13 2014-06-18 Bowman Power Group Ltd Turbogenerator system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108194A1 (de) * 2011-07-20 2013-01-24 Daimler Ag Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens
DE102012224078A1 (de) * 2012-12-20 2014-06-26 Mtu Friedrichshafen Gmbh Verbrennungsmotor
EP3112686A1 (de) * 2014-02-25 2017-01-04 Mitsubishi Heavy Industries, Ltd. Elektrischer mehrstufiger radialverdichter und aufladesystem einer brennkraftmaschine
DE102019120817A1 (de) * 2019-08-01 2021-02-04 Man Energy Solutions Se Anordnung zur Energiebereitstellung
NL2026301B1 (en) * 2020-08-19 2022-04-14 Daf Trucks Nv Alternative Turbo Compounding
WO2024102701A2 (en) * 2022-11-08 2024-05-16 Joby Aero, Inc. Hydrogen recirculation turbocharger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807372A1 (de) 1988-03-07 1989-09-21 Asea Brown Boveri Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine
JPH06229253A (ja) * 1993-02-04 1994-08-16 Isuzu Motors Ltd 排気エネルギー回収装置
JP2000356136A (ja) * 1999-06-14 2000-12-26 Yanmar Diesel Engine Co Ltd 内燃機関の二段過給装置
EP1101917A2 (de) * 1999-11-17 2001-05-23 Isuzu Motors Limited Abgasturbolader eines Dieselmotors
US20020056444A1 (en) * 2000-10-05 2002-05-16 Etsuo Chou Air-supplying structure for multi-cylinder engine
EP1754870A2 (de) * 2005-08-18 2007-02-21 Volkswagen Aktiengesellschaft Brennkraftmaschine mit Abgasturboaufladung
EP2053208A1 (de) * 2007-10-26 2009-04-29 Deere & Company Turboverbundmaschinensystem mit niedriger Emission
US20090241540A1 (en) * 2008-03-31 2009-10-01 Caterpillar Inc. System for recovering engine exhaust energy
WO2010005805A2 (en) * 2008-07-07 2010-01-14 Borgwarner Inc. Multi-stage supercharging device of an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7933253U1 (de) * 1979-02-19 1980-07-24 Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) Abgasturboladeraggregat zum Aufladen von Verbrennungsmotoren
DE4141159C1 (en) * 1991-12-13 1993-04-29 Asea Brown Boveri Ag, Baden, Aargau, Ch Two-stage supercharging for IC engine - involves two separate turbocharger units with compressors in series and turbines in parallel.
JP3979294B2 (ja) * 2003-01-22 2007-09-19 トヨタ自動車株式会社 多段ターボチャージャの制御装置
DE102004030703A1 (de) * 2004-06-25 2006-03-09 Daimlerchrysler Ag Abgasturbolader für eine Hubkolben-Brennkraftmaschine und Hubkolben-Brennkraftmaschine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807372A1 (de) 1988-03-07 1989-09-21 Asea Brown Boveri Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine
JPH06229253A (ja) * 1993-02-04 1994-08-16 Isuzu Motors Ltd 排気エネルギー回収装置
JP2000356136A (ja) * 1999-06-14 2000-12-26 Yanmar Diesel Engine Co Ltd 内燃機関の二段過給装置
EP1101917A2 (de) * 1999-11-17 2001-05-23 Isuzu Motors Limited Abgasturbolader eines Dieselmotors
US20020056444A1 (en) * 2000-10-05 2002-05-16 Etsuo Chou Air-supplying structure for multi-cylinder engine
EP1754870A2 (de) * 2005-08-18 2007-02-21 Volkswagen Aktiengesellschaft Brennkraftmaschine mit Abgasturboaufladung
EP2053208A1 (de) * 2007-10-26 2009-04-29 Deere & Company Turboverbundmaschinensystem mit niedriger Emission
US20090241540A1 (en) * 2008-03-31 2009-10-01 Caterpillar Inc. System for recovering engine exhaust energy
WO2010005805A2 (en) * 2008-07-07 2010-01-14 Borgwarner Inc. Multi-stage supercharging device of an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BYUNGCHAN LEE, ZORAN FILIPI, DENNIS ASSANIS, DOHOY JUNG: "Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements", SAE INT. J. ENGINES, vol. SAE, no. 2009-, 01-1471, 1 January 2009 (2009-01-01), pages 1335 - 1346, XP002616212 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562265A (zh) * 2012-01-11 2012-07-11 清华大学 二级涡轮增压系统
GB2508866A (en) * 2012-12-13 2014-06-18 Bowman Power Group Ltd Turbogenerator system and method
GB2508866B (en) * 2012-12-13 2020-05-20 Bowman Power Group Ltd Turbogenerator system and method

Also Published As

Publication number Publication date
DE102009042283A1 (de) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2011036083A1 (de) Turbocompoundsystem und komponenten
DE102009006359B4 (de) Vorrichtung und Verfahren zur variablen Abgasturboaufladung und Abgasrückführung
EP2534353B1 (de) Aufgeladene brennkraftmaschine
DE3807372C2 (de) Verbrennungsmotor mit zweistufigem Abgasturbolader und Nutzturbine
DE102016201464B4 (de) Aufgeladene Brennkraftmaschine mit Abgasturboaufladung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102010035085B4 (de) Kraftwagen mit einer Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102017200800A1 (de) Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine mit Ladeluftkühlung
EP2196659A1 (de) Zweistufiges Aufladesystem für Abgaszirkulation
WO2008068060A1 (de) Aufladeeinrichtung
WO2010088710A1 (de) Brennkraftmaschine
DE3623541A1 (de) Brennkraftmaschine mit wenigstens einem turbolader
DE102009026469A1 (de) Verfahren zur Ladedruckregelung einer Aufladeeinrichtung und Aufladeeinrichtung
EP2356328A1 (de) Zweistufiges aufladesystem für abgasrezirkulation
EP2530274A2 (de) Aufgeladene Brennkraftmaschine
DE212015000133U1 (de) Mehrstufige Verdichteranlage zur Erzeugung eines komprimierten Gases
DE19853360A1 (de) Brennkraftmaschine mit zwei Abgasturboladern
DE102015216105A1 (de) Verfahren zur Regelung des Ladedrucks einer aufgeladenen Brennkraftmaschine mit mindestens zwei Verdichtern und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
WO2007107301A1 (de) Brennkraftmaschine und verfahren zum betreiben einer brennkraftmaschine
DE102011108194A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens
EP2058485B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202011110100U1 (de) Aufgeladene Brennkraftmaschine
DE102011120337A1 (de) Verbrennungskraftmaschine, insbesondere für einen Kraftwagen
EP2058486B1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102007024527A1 (de) Turbolader-Vorrichtung für eine Brennkraftmaschine
DE102012011086A1 (de) Verbrennungskraftmaschine für einen Kraftwagen sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10754330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10754330

Country of ref document: EP

Kind code of ref document: A1