WO2011029164A1 - Nickel-based superalloy for valves of internal combustion engines - Google Patents
Nickel-based superalloy for valves of internal combustion engines Download PDFInfo
- Publication number
- WO2011029164A1 WO2011029164A1 PCT/BR2009/000293 BR2009000293W WO2011029164A1 WO 2011029164 A1 WO2011029164 A1 WO 2011029164A1 BR 2009000293 W BR2009000293 W BR 2009000293W WO 2011029164 A1 WO2011029164 A1 WO 2011029164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloys
- mass
- internal combustion
- alloy
- combustion engine
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title description 30
- 229910000601 superalloy Inorganic materials 0.000 title description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 128
- 239000000956 alloy Substances 0.000 claims abstract description 128
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 49
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000005299 abrasion Methods 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract 4
- 229910017060 Fe Cr Inorganic materials 0.000 claims description 14
- 229910002544 Fe-Cr Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 3
- 238000009749 continuous casting Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims description 2
- 238000004663 powder metallurgy Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 claims description 2
- 238000009718 spray deposition Methods 0.000 claims description 2
- 238000010891 electric arc Methods 0.000 claims 1
- 238000013467 fragmentation Methods 0.000 claims 1
- 238000006062 fragmentation reaction Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 230000003068 static effect Effects 0.000 claims 1
- 239000010955 niobium Substances 0.000 abstract description 83
- 230000007797 corrosion Effects 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 11
- -1 niobium carbides Chemical class 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 55
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 36
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 23
- 230000003647 oxidation Effects 0.000 description 19
- 238000007254 oxidation reaction Methods 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 150000001247 metal acetylides Chemical class 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 230000032683 aging Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 229910000913 inconels 751 Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000007928 solubilization Effects 0.000 description 5
- 238000005063 solubilization Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 101000908657 Rattus norvegicus Deoxyuridine 5'-triphosphate nucleotidohydrolase Proteins 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- PYLYNBWPKVWXJC-UHFFFAOYSA-N [Nb].[Pb] Chemical compound [Nb].[Pb] PYLYNBWPKVWXJC-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001180 sulfating effect Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
Definitions
- the present invention deals with a precipitation hardened Ni-Fe-Cr superalloy for application to internal combustion engine valves, having as main characteristics the precipitation of Ni 3 (AI, Ti, Nb) and niobium and titanium carbides in their microstructure.
- the alloy design based on its microstructural aspects, allows the alloy of the present invention to have equivalent or superior properties to alloys used in internal combustion engine valves, associated with significant reduction in alloy cost due to lower nickel content. .
- the alloy of the present invention is intended for the manufacture of valves, which application requires of the alloy a need for various properties, namely: oxidation resistance, wear resistance and heat resistance, given the high temperatures involved in the application.
- Inconel 751 An example of an alloy with excellent performance in these applications is Inconel 751, which has a very high cost due to its high nickel content above 70%. In this sense, lower nickel alloys with properties of hot strength, corrosion resistance, long term microstructural stability and abrasion resistance have been developed. Examples are prior art alloys, NCF3015 (JIS3015D - US Patent 5,660,938) and HI 461 alloy.
- Oxidation resistance at elevated temperatures is the property to be evaluated in terms of corrosion, based on the good performance of Inconel 751.
- the alloys of the present invention meet all these needs.
- Ni-Fe-Cr alloys used in exhaust valves are closely related to the presence of intermetallic phases, alloying elements and carbides in their microstructures.
- Intermetallic phases are very important for high temperature resistance.
- a composition that gives the material the corrosion resistance required in the medium of use is very important.
- carbides is important for the abrasion resistance of the material.
- the performance of alloying elements in the formation of these phases has been carefully analyzed and modified in relation to the traditional concept.
- the present invention utilizes the use of relatively high amounts of niobium (higher than prior art alloys) as an alloying element, not only as a carbide former, but mainly as a fine intermetallic precipitate.
- Another element that the present invention utilizes in higher amounts than prior art alloys is aluminum, which has the preponderant niobium-forming function of the niobium, Ni 3 (AI, Nb), improving the heat resistance of the alloy. material.
- aluminum acts to improve the hot oxidation resistance of the alloy.
- the morphology of these precipitates is determined by the surface energy of the ⁇ / ⁇ ' interface and the elastic energy generated by the misalignment of the ⁇ and ⁇ ' lattices, being determined primarily by the lattice deformation. If this strain is small, the morphology that will minimize surface energy and volume strain energy will be the spherical. However, if the lattice deformation is considerably large, the morphology of the precipitates will not be spherical but cubic. When the lattice mismatch is up to 0.02% the ⁇ ' precipitates are spherical, in the case of mismatch between 0.5 and 1.0% these precipitates are cubic, and above 1.25% assume platelet shape.
- Niobium presents a lower precipitation kinetics of the ordered Ni 3 Nb phase than when compared to elements such as titanium and aluminum in the Ni 3 phases (Ti, AI).
- high levels of niobium lead to precipitation of the ordered phase ⁇ " (Ni 3 Nb), similar to phase ⁇ ' .
- niobium When added to the alloy at lower levels, niobium only increases the volume of precipitates gamma line and the solubilization temperature of this phase, bringing its hardening effect to even higher temperatures.
- alloy element compositions which, by weight percentage, consist of:
- 0.1 to 4.0 aluminum preferably 1.0 to 3.0 aluminum, typically 2.0% aluminum.
- non-metallic impurities include, but are not limited to, the following elements, by weight:
- Chromium is used to give the alloy resistance to corrosion and oxidation at high temperatures, so its content should be greater than 10% for exhaust valve superalloys. Content above 25% threatens the stability of the microstructure due to the tendency of formation of phases such as the sigma phase and alpha line ( ⁇ and ⁇ '), which deteriorate the ductility. Thus, it was decided that the chromium content of the alloys would be between these limits, preferably between 14.0% and 22.0%, typically 18.0%.
- Titanium and niobium are carbide formers. When added to the alloy, they first combine with carbon, given the high chemical affinity of these elements. Formed carbides contribute to abrasive wear resistance. The titanium and niobium content not combined with carbon is combined with nickel to form the intermetallic phases ⁇ 'and ⁇ ".
- titanium and niobium contents should be added to the alloy of the present invention according to the relationship , Nb + 2 Ti, which accounts for the atomic mass difference of the two elements, so for the desired effect on wear resistance and heat resistance properties, the Nb + 2Ti ratio should be greater than 4.0% and preferably higher. at 5.0%, typically equal to 8.0%.
- MC-type niobium carbides are more effective in abrasion resistance than titanium because of their higher hot hardness.
- the niobium content must be carefully balanced against the carbon content. Since niobium has a greater tendency to bond to carbon, the niobium available for nickel intermetallic phase formation will be the amount of this element dissolved in the alloy matrix after reaction with carbon to form the primary carbides. : C must be greater than 7.4: 1 (by mass) so that there is still dissolved Nb in the austenitic matrix which will precipitate as Ni 3 Nb.
- a for the element Nb is between 2.0 and 8.0% (by mass), with an intermediate range of 3.0 to 8.0% (by mass) of Nb and a narrow range of 3.1 to 8.0. % (by mass) Nb, or even narrower from 3.5 to 8.0.
- Nb In addition to improvements in heat and abrasion resistance, Nb also improves weldability of the ⁇ "phase precipitation hardened superalloys, and furthermore improves corrosion resistance in sulfating environments such as diesel engines.
- Nb can be partially replaced by tantalum (Ta) in equiatomic bases.
- Ta tantalum
- Ta is also an intermetallic phase former with nickel and strongly stabilizes primary carbides, being equally beneficial for hot hardness and abrasion resistance.
- niobium showed effect on the heat resistance properties.
- the mechanism is not fully defined, in the alloys of the present invention the niobium content not combined with carbon should form different intermetals than titanium intermetallics, probably of the two-line gamma ( ⁇ ") type, very stable to coalescence and thus , effective in improving the properties of high temperature strength
- ⁇ two-line gamma
- niobium causes, for the same ratio content (Nb + 2 Ti), to decrease the total titanium percentage of the alloy.
- Studies of the present invention have shown that such a decrease is also beneficial for improving oxidation resistance at elevated temperatures - a property also essential in high temperature working valves.
- the ratio (Nb + 2 Ti) must therefore have a minimum content of 2.0% niobium, preferably niobium above 3.5%. being the ideal niobium content equal to or greater than 3.7%.
- the content of these elements cannot be excessively high as it would promote the formation of coarse intermetals, impairing the mechanical properties. of the alloy in terms of mechanical strength and ductility, and raise the cost of the alloy.
- the ratio value (Nb + 2 Ti) should be below 15.0%, preferably below 13.0%.
- Carbon is added with the intention of combining with titanium and niobium to form hard carbide particles and impart abrasion resistance.
- the carbon content must be at least 0.05%, preferably above 0.1%.
- the percentage of hard particles must be below 5% by volume so as not to deteriorate the toughness and hot workability properties, the latter essential for hot forged valves.
- the volume of these particles is determined by carbon since, in the formation of NbC or TiC, the alloy has excess Ti and Nb.
- the carbon content is used as a controller of the particle volume formed, being below 1.0%, preferably below 0.40%.
- Aluminum is very important for gamma phase ( ⁇ ') precipitation, and therefore for high temperature resistance. Another extremely important function of aluminum in the alloy is to increase oxidation resistance at high temperatures by increasing the formation of Al 2 O 3 during heating. However, aluminum contents should be restricted as very high amounts of this element may lead to deterioration of resistance at high temperatures and hot workability due to the formation of nitrides and phases such as ⁇ and ⁇ during long heating times.
- the aluminum content therefore, should be between 0.5% and 4.0%, preferably between 1.0% and 3.0%, typically 2.0%.
- Residuals Other elements, such as manganese, tungsten, molybdenum, copper, sulfur, phosphorus and those normally obtained as normal residues from the steelmaking process or liquid nickel alloys, should be understood as impurities related to the steelmaking deoxidation processes. or inherent in manufacturing processes. Therefore, the content of manganese, copper, tungsten and molybdenum at 5.0%, preferably below 2.0%, due to the destabilization of the relationship between the austenite and ferrite phases, as well as possible effects on the intermetallic phases present in the alloy. Phosphorus and sulfur segregate into grain boundaries and other interfaces and should therefore be below 0.20%, preferably below 0.05%, preferably maximum 0.005%.
- the alloy as described may be produced by conventional or special processes such as melting in electric or vacuum furnaces, whether or not followed by remelting processes. Casting can be done in ingots by conventional casting or continuous casting, or even by other manufacturing processes involving liquid metal disaggregation and further aggregation, such as powder metallurgy and the spray forming or continuous casting process.
- the end products can be obtained after hot or cold forming, end products being produced in the form of wire rod, blocks, bars, wires, plates, strips, or even can be products in the raw state of solidification.
- Figure 1 shows the microstructure, observed under optical microscope, of alloys ET1 and PH to PI9, after polishing and attack with glyceregia reagent for 15 seconds. 120x magnification.
- Figure 2 presents the result of computational image analysis to quantify the carbides observed in the alloys studied with different Ti, Nb and Al contents.
- the analysis was performed in a total area of (65990,417) ⁇ 2 of the sample, in 50 random fields with 500x magnification.
- Figure 3 shows the results of the alloy creep test of the present invention compared to the ET1 and ET2 alloys, evaluating the creep failure time at 800 ° C temperature and three stress levels.
- Figure 4 compares the heat resistance of the alloys of the present invention to ET1 and ET2 alloys from the yield stress for various temperatures.
- Figures 5 and 6 show the result of the abrasive wear test performed on alloys ET1, ET2 and alloys PM to PI7.
- the test was performed with the sanding of pins (pin against sandpaper), the pins were made in the alloys after heat treatment of aging and the sanding with abrasives of alumina and grain # 120.
- the average contact speed between the sandpaper and the pins was 100 m / min
- EXAMPLE To define the alloy compositions of the present invention, various alloys were produced and compared to those of the prior art. Chemical compositions are shown in Table 1, hereinafter referred to as PI the alloys of the present invention and ET the alloys of the prior art; ET1 alloy corresponds to H1 461, ET2 to Inconel 751, and ET3 alloy to NCF 3015 (US 5,660,938). Relationships are also quantified: (Nb + 2 Ti); (Nb / C) and (Ti / Al) in Table 1.
- Table 1 shows the significant reduction of the nickel content of the alloy in the compositions of the present invention in relation to the ET2 alloy, generating significantly lower cost.
- ET2 and ET3 alloys also do not have significant carbon content, which does not promote carbide formation and the high wear resistance observed in other alloys.
- Table 1 also shows the addition of different niobium contents in the alloys of the present invention, unlike the state of the art alloy (ET1), which has only titanium.
- Relationship analysis (Nb + 2 Ti) is also interesting because it normalizes the atomic mass difference and thus relates to the atomic content. This is approximately constant between those of the present invention (PM to PI6) and the ET1 alloy; thus Ti atoms in the alloys of the present invention are gradually replaced by niobium until in the alloy PI4 titanium is completely replaced by niobium.
- titanium and niobium show different effects on the studied alloys, so the substitution employed was very beneficial to the final properties, as described below. In this sense, it is very interesting to quantify and differentiate the alloys under study through the content of non-combined carbide niobium. This quantification can be assessed by the ratio (Nb / C).
- Ti / Al The differences between titanium and aluminum contents between the different alloys can be assessed by the ratio (Ti / Al), which is very important for the properties of hot oxidation resistance and conformability of the alloys. This ratio (Ti / Al) is also shown in Table 1.
- Ingot melting was performed in a close procedure for the ten alloys (ET1, ET2, ET3, PM, PI2, PI3, PI4, PI5, PI6, PI7) in a vacuum induction furnace, and casting was done in iron ingot molds. cast, producing a 55kg ingot. After solidification, the ingots were forged and rolled into 18 mm diameter round gauges. After solubilization, the bars were observed under an optical microscope, the result being shown in Figure 1. In the images it can be observed the increase of the carbides size with the substitution of the titanium for the niobium, fact confirmed by the quantitative analysis of the images presented in the Figure 2.
- Table 1 Chemical compositions of three state of the art alloys (ET1, ET2 and ET3 ) and the alloys of the present invention (PI1 to PI7). Percentage by mass and balance in 1 iron.
- Table 2 presents the hardness of ET1, ET2, ET3, PM,
- Table 2 Response to heat treatment of state of the art alloys (ET1, ET2 and ET3) and alloys of the present invention (PM, PI2, PI3, PI4, PI5, PI6 and PI7). Hardness results in HB after solubilization at 1050 ° C and aging at
- the alloys of the present invention are significantly more creep-resistant than ET alloy, being in alloys PI2, PI3, PI5 and PI6 equivalent or better than ET2 alloy (Inconel 751), although have considerably lower nickel content than this alloy.
- the same behavior is observed, being alloys PI2, PI3, PI5 and mainly PI6 more resistant than alloy ET1 and ET2.
- the PI4 alloy due to the higher concentration of coarse phases, has a reduction in hot strength and creep.
- the alloys of the present invention were also superior to ET1 and ET2 alloys, as shown in Table 3; It is observed that the lower the titanium content, the higher the oxidation resistance of the alloy, the better the resistance observed for PI4 alloy without titanium. This is due to the effect of titanium on destabilizing the oxide layer formed on the surface of nickel-iron alloys and thus decreasing oxidation resistance. Another interesting effect to note is that among the low titanium alloys (PI2, PI3, PI4, PI5, PI6 and PI7), those with higher aluminum content (PI5, PI6 and PI7) have resistance to hot oxidation. higher under the test conditions. The assay was performed so that all samples of all alloys involved had identical dimensions, so as to have identical contact surface.
- Table 3 Mass gain (in mg / cm 2 ) after 100, 200 and 400 hours at 800 ° C in atmosphere (air). The lower the mass gain, the greater the resistance to oxidation of the material.
- the abrasive wear resistance follows the same trend of oxidation resistance, but for different reasons.
- ET1 and PI1 to PI9 alloys have significantly higher wear resistance than ET2 alloy due to the presence of hard particles in their microstructures (as shown in Figure 1).
- the higher the niobium content the lower the wear rate and therefore the higher abrasive wear resistance; This is due to the larger size of the carbides present in the microstructure of the highest niobium alloys, as shown in Figure 1 and quantified in Figure 2.
- the industrial application of these alloys involves an aging heat treatment step after final part forming.
- the alloys of the present invention find it easier to obtain the minimum hardness required in the application (about 330 HB - Brinell hardness scale), ie hardness above 330 HB is observed after only 20 minutes of treatment at 750 ° C. ° C, the hardness being always higher for the alloys of the present invention (PI5, PI6) than prior art alloys for the same treatment time, as can be seen in Figure 7.
- Alloys PI5 and PI6 also exhibit better response to aging heat treatment at 690 ° C than the state of the art ET3 alloy, obtaining hardness above the minimum value required for application after one hour of treatment. This can be seen in Figure 8.
- the reduction in aging treatment temperature and time is of vital importance for cost savings and productivity gains in material processing.
- the alloys of the present invention in addition to the economic advantage of working with lower nickel content, also have better properties.
- the alloys of the present invention have superior levels of high temperature properties and wear resistance, thus being important improvements for industrial application in combustion engine valves or even other components employed at high temperature and corrosive environments.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Low-cost alloys that withstand the mechanical stresses associated with high temperatures, that withstand corrosion and abrasion, exhibit high mouldability and satisfy the various requirements in conditions of use in an exhaust or intake valve for internal combustion engines. The main features of the alloys are the Ni3Nb and niobium carbides precipitated in the microstructure thereof, which is composed, in percentage by weight, of: 0.15-0,50% C, maximum 3.0% Mn, maximum 1.0% Si, 12.0-25.0% Cr, 25.0-49.0% Ni, maximum 0.50% Mo, maximum 0.50% W, maximum 0.50% V, 0.50-5.0% Cu, 1.85-3.0% Al, 1.0-4.5% Ti, 3.1-8.0% Nb, 0.001-0.02% B, 0.001-0.10% Zr, maximum 2.0% Co, where (Ni + Co) is not higher than 50% by weight and not lower than 25% by weight, the remainder being iron and inevitable impurities due to the alloy production process.
Description
"Superliga a Base de Níquel para Válvula de Motores de Combustão Interna" "Superalloy Nickel Base for Internal Combustion Engine Valve"
A presente invenção trata de uma superliga Ni-Fe-Cr endurecida por precipitação para aplicação em válvulas de motores de combustão interna, possuindo como principais características a precipitação de Ni3(AI,Ti,Nb) e de carbonetos de nióbio e titânio em sua microestrutura. O projeto da liga, baseado em seus aspectos microestruturais, permite que a liga da presente invenção possua propriedades equivalentes ou superiores às das ligas empregadas em válvulas de motores de combustão interna, associado à significativa redução no custo da liga, devido ao menor teor de níquel. The present invention deals with a precipitation hardened Ni-Fe-Cr superalloy for application to internal combustion engine valves, having as main characteristics the precipitation of Ni 3 (AI, Ti, Nb) and niobium and titanium carbides in their microstructure. The alloy design, based on its microstructural aspects, allows the alloy of the present invention to have equivalent or superior properties to alloys used in internal combustion engine valves, associated with significant reduction in alloy cost due to lower nickel content. .
A liga da presente invenção é destinada à fabricação de válvulas, aplicação esta que exige da liga uma necessidade de várias propriedades, destacando-se: a resistência à oxidação, resistência ao desgaste e a resistência ao calor, dadas as elevadas temperaturas envolvidas na aplicação. The alloy of the present invention is intended for the manufacture of valves, which application requires of the alloy a need for various properties, namely: oxidation resistance, wear resistance and heat resistance, given the high temperatures involved in the application.
Convencionalmente, os materiais usados para válvulas de exaustão para motores a diesel ou gasolina eram JIS SUH 35 ou JIS SUH 38 com recobrimento de Stellite na face da válvula. Com o histórico aumento nas temperaturas de uso das válvulas nos novos motores, materiais de mais alto desempenho começaram a ser empregados em algumas aplicações, como é o caso das superligas a base de níquel. Conventionally, the materials used for diesel or gasoline exhaust valves were JIS SUH 35 or JIS SUH 38 with Stellite overlay on the valve face. With the historic rise in valve use temperatures in new engines, higher performance materials have begun to be employed in some applications, such as nickel-based superalloys.
Atualmente, a redução nos custos de produção de materiais de alto desempenho é uma tendência da indústria, como é o caso das válvulas de exaustão, que são peças expostas às mais elevadas temperaturas e elevadas solicitações mecânicas em um motor de combustão interna. Estas solicitações extremas em termos de resistência mecânica e resistência à corrosão em temperaturas elevadas, exigem o uso de superligas a base de níquel, as quais possuem custos elevados. Outro fator a ser avaliado é a resistência à abrasão. Muitas ligas recebem um recobrimento com Stellite (liga a base de cobalto) na
face da válvula, o que também eleva o custo final da válvula. Deste modo, aumentou-se a procura por materiais de alta performance em termos de abrasão, que eliminassem a necessidade do recobrimento da face da válvula. Today, reducing production costs for high-performance materials is an industry trend, such as exhaust valves, which are parts exposed to the highest temperatures and high mechanical stresses in an internal combustion engine. These extreme demands on mechanical strength and corrosion resistance at elevated temperatures require the use of nickel based superalloys, which are costly. Another factor to be evaluated is the abrasion resistance. Many alloys are coated with Stellite (cobalt-based alloy) on the valve face, which also raises the final cost of the valve. This has increased the demand for high-performance abrasion materials that eliminate the need for valve face covering.
Um exemplo de liga com excelente desempenho nestas aplicações é o Inconel 751 , que possui custo bastante elevado devido a seu alto teor de níquel acima de 70%. Neste sentido, ligas com menores teores de níquel com propriedades de resistência a quente, resistência à corrosão, estabilidade microestrutural durante longos períodos em temperatura e resistência à abrasão têm sido desenvolvidas. Exemplos são as ligas do estado da técnica, NCF3015 (JIS3015D - patente US 5,660,938) e a liga Hl 461. An example of an alloy with excellent performance in these applications is Inconel 751, which has a very high cost due to its high nickel content above 70%. In this sense, lower nickel alloys with properties of hot strength, corrosion resistance, long term microstructural stability and abrasion resistance have been developed. Examples are prior art alloys, NCF3015 (JIS3015D - US Patent 5,660,938) and HI 461 alloy.
Com a utilização da gasolina livre de chumbo desde os anos 70, a exigência em termos de resistência à corrosão do material da válvula de exaustão foi reduzida, de modo que a corrosão pelo óxido de chumbo já não é mais uma preocupação primordial. A resistência à oxidação em temperaturas elevadas é a propriedade a ser avaliada em termos de corrosão, tendo como referência o bom desempenho do Inconel 751. With the use of lead-free gasoline since the 1970s, the corrosion resistance requirement of the exhaust valve material has been reduced so that corrosion by lead oxide is no longer a primary concern. Oxidation resistance at elevated temperatures is the property to be evaluated in terms of corrosion, based on the good performance of Inconel 751.
Portanto, fica evidente a necessidade do desenvolvimento de novas composições de superligas resistentes às solicitações mecânicas relacionadas às altas temperaturas, resistentes à corrosão, resistentes à abrasão, com elevada conformabilidade e que atenda às variadas solicitações nas condições de uso da válvula de exaustão ou admissão, capazes de atender a necessidade de menor custo, o que se relaciona ao menor teor de elementos de liga de alto custo. A liga Inconel 751 é o mais importante material a ser substituído. Therefore, the need for the development of new superalloy compositions resistant to high temperature, corrosion resistant, abrasion resistant, high conformability, and meeting the varied demands in the conditions of use of the exhaust or intake valve, is evident. able to meet the need for lower cost, which is related to the lower content of high cost alloying elements. Inconel 751 alloy is the most important material to be replaced.
As ligas da presente invenção vêm atender todas essas necessidades. The alloys of the present invention meet all these needs.
As propriedades das ligas Ni-Fe-Cr utilizadas em válvulas de exaustão estão intimamente relacionadas à presença de fases intermetálicas,
elementos de liga e carbonetos em suas microestruturas. As fases intermetálicas são muito importantes para a resistência em altas temperaturas. Sobre os elementos em solução sólida na liga, é muito importante uma composição que confira ao material resistência à corrosão necessária no meio de uso. Já a presença dos carbonetos é importante para a resistência ao desgaste por abrasão do material. A atuação dos elementos de liga na formação destas fases foi cuidadosamente analisada e modificada em relação ao conceito tradicional. Neste sentido, a presente invenção utiliza o emprego do nióbio em quantidades relativamente altas (mais elevadas que as ligas do estado da técnica) como elemento de liga, não apenas como formador de carbonetos, mas principalmente na forma de fino precipitado intermetálico. The properties of Ni-Fe-Cr alloys used in exhaust valves are closely related to the presence of intermetallic phases, alloying elements and carbides in their microstructures. Intermetallic phases are very important for high temperature resistance. For solid solution elements in the alloy, a composition that gives the material the corrosion resistance required in the medium of use is very important. The presence of carbides is important for the abrasion resistance of the material. The performance of alloying elements in the formation of these phases has been carefully analyzed and modified in relation to the traditional concept. In this regard, the present invention utilizes the use of relatively high amounts of niobium (higher than prior art alloys) as an alloying element, not only as a carbide former, but mainly as a fine intermetallic precipitate.
Outro elemento que a presente invenção utiliza em quantidades mais elevadas que as ligas do estado da técnica é o alumínio, o qual possui função preponderante de formador de intermetálico ordenado junto ao nióbio, Ni3(AI,Nb), melhorando a resistência ao calor do material. Além disso, o alumínio atua na melhoria da resistência à oxidação a quente da liga. Another element that the present invention utilizes in higher amounts than prior art alloys is aluminum, which has the preponderant niobium-forming function of the niobium, Ni 3 (AI, Nb), improving the heat resistance of the alloy. material. In addition, aluminum acts to improve the hot oxidation resistance of the alloy.
É de extrema importância que exista uma pequena distorção entre os parâmetros de rede das fases γ e γ', o que leva a uma baixa energia interfacial (γ / γ'). A principal força motriz do coalescimento destes precipitados intermetálicos é a minimização da energia interfacial total, de modo que uma interface coerente ou semi-coerente de baixa energia leva a uma microestrutura mais estável. Estabilidade é uma propriedade altamente desejável em aplicações em altas temperaturas. It is extremely important that there is a slight distortion between the network parameters of the phases γ and γ ' , which leads to a low interfacial energy (γ / γ ' ). The main driving force of the coalescence of these intermetallic precipitates is the minimization of total interfacial energy, so that a coherent or semi-coherent low energy interface leads to a more stable microstructure. Stability is a highly desirable property in high temperature applications.
A morfologia destes precipitados é determinada pela energia superficial da interface γ / γ' e pela energia elástica gerada pelo desajuste dos reticulados das fases γ e γ', sendo determinada primordialmente pela deformação do reticulado. Se esta deformação for pequena, a morfologia que minimizará a energia superficial e a energia de deformação por volume será a
esférica. Entretanto, se a deformação do reticulado for consideravelmente grande, a morfologia dos precipitados não será esférica e sim cúbica. Quando o desajuste de reticulados é de até 0,02 % os precipitados γ' são esféricos, no caso de desajuste entre 0,5 e 1 ,0 % estes precipitados são cúbicos, e acima de 1 ,25 % assumem formato de plaquetas. The morphology of these precipitates is determined by the surface energy of the γ / γ ' interface and the elastic energy generated by the misalignment of the γ and γ ' lattices, being determined primarily by the lattice deformation. If this strain is small, the morphology that will minimize surface energy and volume strain energy will be the spherical. However, if the lattice deformation is considerably large, the morphology of the precipitates will not be spherical but cubic. When the lattice mismatch is up to 0.02% the γ ' precipitates are spherical, in the case of mismatch between 0.5 and 1.0% these precipitates are cubic, and above 1.25% assume platelet shape.
O nióbio apresenta uma cinética de precipitação da fase ordenada Ni3Nb menor do que quando comparados aos elementos como o titânio e o alumínio nas fases Ni3(Ti,AI). Nas superligas do sistema Ni-Cr-Fe, elevados teores de nióbio levam à precipitação da fase ordenada γ" (Ni3Nb), semelhante à fase γ'. Quando adicionado à liga em teores mais baixos, o nióbio apenas aumenta o volume dos precipitados gama linha e a temperatura de solubilização desta fase, levando seu efeito endurecedor a temperaturas ainda mais altas. Niobium presents a lower precipitation kinetics of the ordered Ni 3 Nb phase than when compared to elements such as titanium and aluminum in the Ni 3 phases (Ti, AI). In Ni-Cr-Fe superalloys, high levels of niobium lead to precipitation of the ordered phase γ " (Ni 3 Nb), similar to phase γ ' . When added to the alloy at lower levels, niobium only increases the volume of precipitates gamma line and the solubilization temperature of this phase, bringing its hardening effect to even higher temperatures.
A fim de satisfazer as condições mencionadas anteriormente, as ligas da presente invenção possuem composições de elementos de liga que, em porcentagem em massa, consistem de: In order to satisfy the aforementioned conditions, the alloys of the present invention have alloy element compositions which, by weight percentage, consist of:
• 12,0 a 25,0 de cromo, preferencialmente 14,0 a 24,0 de cromo, tipicamente 18,0 de cromo. • 12.0 to 25.0 chrome, preferably 14.0 to 24.0 chrome, typically 18.0 chrome.
• 4,0 a 15,0 para a relação (Nb + 2 Ti), preferencialmente (Nb + 2Ti) entre 5,0 e 1 1 ,0, tipicamente (Nb + 2ΤΊ) igual a 8,0; neste equação o titânio e o nióbio podem assumir qualquer valor dentro dos limites, porém deve ser mantido um teor mínimo de nióbio igual a 3,10%, preferencialmente maior que 3,70%. • 4.0 to 15.0 for the ratio (Nb + 2 Ti), preferably (Nb + 2Ti) between 5.0 and 11 1.0, typically (Nb + 2ΤΊ) equal to 8.0; In this equation titanium and niobium can assume any value within the limits, but a minimum niobium content of 3.10%, preferably greater than 3.70%, should be maintained.
• 0,05 a 1 ,0 de carbono, preferencialmente 0,20 a 0,40 carbono, tipicamente 0,27% carbono. • 0.05 to 1.0 carbon, preferably 0.20 to 0.40 carbon, typically 0.27% carbon.
• 0,1 a 4,0 de alumínio, preferencialmente 1 ,0 a 3,0 alumínio, tipicamente 2,0% de alumínio. 0.1 to 4.0 aluminum, preferably 1.0 to 3.0 aluminum, typically 2.0% aluminum.
Balanço em ferro e impurezas metálicas ou não metálicas
inevitáveis ao processo de aciaria, em que as ditas impurezas não metálicas incluem, mas não estão limitadas aos seguintes elementos, em porcentagem em massa: Iron balance and metallic or non-metallic impurities inevitable to the steelmaking process, wherein said non-metallic impurities include, but are not limited to, the following elements, by weight:
• Máximo 5,0 para os elementos manganês, cobre, molibdênio e tungsténio, preferencialmente máximo 5,0, tipicamente máximo • Maximum 5.0 for the manganese, copper, molybdenum and tungsten elements, preferably maximum 5.0, typically maximum
0,50. 0.50.
• Máximo 0,20 para o fósforo e o enxofre, preferencialmente máximo 0,05, tipicamente máximo 0,005. • Maximum 0.20 for phosphorus and sulfur, preferably maximum 0.05, typically maximum 0.005.
A seguir, são apresentadas as razões da especificação da composição do novo material, descrevendo o efeito de cada um dos elementos de liga. As porcentagens indicadas referem-se à porcentagem em massa. The following are the reasons for specifying the composition of the new material, describing the effect of each of the alloying elements. The percentages given refer to the percentage by mass.
O cromo é utilizado para conferir à liga resistência à corrosão e oxidação em altas temperaturas, de modo que seu teor deve ser superior a 10% no caso de superligas para válvulas de exaustão. Teores acima de 25% ameaçam a estabilidade da microestrutura, devido à tendência de formação de fases como a fase sigma e alfa linha (σ e α'), as quais deterioram a ductilidade . Deste modo, decidiu-se que o teor de cromo das ligas seria entre esses limites, preferencialmente entre 14,0% e 22,0%, tipicamente 18,0%. Chromium is used to give the alloy resistance to corrosion and oxidation at high temperatures, so its content should be greater than 10% for exhaust valve superalloys. Content above 25% threatens the stability of the microstructure due to the tendency of formation of phases such as the sigma phase and alpha line (σ and α '), which deteriorate the ductility. Thus, it was decided that the chromium content of the alloys would be between these limits, preferably between 14.0% and 22.0%, typically 18.0%.
O titânio e o nióbio são formadores de carbonetos. Quando adicionados à liga, combinam primeiramente com o carbono, dada a elevada afinidade química desses elementos. Os carbonetos formados contribuem para a resistência ao desgaste abrasivo. O teor de titânio e nióbio não combinado com o carbono combina-se com o níquel para formação das fases intermetálicas γ' e γ". Para esses dois efeitos, os teores de titânio e nióbio devem ser adicionados à liga da presente invenção segundo a relação, Nb + 2 Ti, que contabiliza a diferença de massa atómica dos dois elementos. Assim, para o efeito desejado nas propriedades de resistência ao desgaste e resistência a quente, a relação Nb + 2Ti deve ser superior à 4,0% e preferencialmente superior a 5,0%,
tipicamente igual a 8,0%. Titanium and niobium are carbide formers. When added to the alloy, they first combine with carbon, given the high chemical affinity of these elements. Formed carbides contribute to abrasive wear resistance. The titanium and niobium content not combined with carbon is combined with nickel to form the intermetallic phases γ 'and γ ". For these two effects, titanium and niobium contents should be added to the alloy of the present invention according to the relationship , Nb + 2 Ti, which accounts for the atomic mass difference of the two elements, so for the desired effect on wear resistance and heat resistance properties, the Nb + 2Ti ratio should be greater than 4.0% and preferably higher. at 5.0%, typically equal to 8.0%.
Um ponto-chave na definição desta liga foi a variação dos teores de titânio e nióbio para definição de uma composição ideal, dentro da relação em questão. Foi observado que a introdução do nióbio em quantidades acima de 3,0% gera efeitos benéficos, tanto em relação aos carbonetos formados, quanto ao teor residual de nióbio (não combinado na forma de carbonetos), sendo este teor essencial para melhoria das propriedades a quente da liga. A idéia na introdução do Nb em quantidades mais elevadas é gerar a precipitação da fase intermetálica γ" (NÍ3Nb) e modificação dã fase γ' pela introdução de maior teor de nióbio em sua estrutura. Além disso, a elevada quantidade de nióbio provoca a precipitação de carbonetos primários da forma NbC. Esses carbonetos de nióbio do tipo MC são mais efetivos na resistência à abrasão que os de titânio, dada sua maior dureza a quente. O teor de nióbio deve ser cuidadosamente balanceado ao teor de carbono. Uma vez que o nióbio possui uma tendência maior a se ligar ao carbono, o nióbio disponível para a formação de fase intermetálica com o níquel será a quantidade deste elemento dissolvido na matriz da liga após reação com o carbono para formação dos carbonetos primários. Deste modo, a razão Nb:C deve ser maior que 7,4 : 1 (em massa), para que ainda exista Nb dissolvido na matriz austenítica, o qual irá precipitar na forma de Ni3Nb. Uma faixa larga para o elemento Nb é entre 2,0 até 8,0% (em massa), com faixa intermediária de 3,0 até 8,0% (em massa) de Nb e um estreito intervalo de 3,1 até 8,0% (em massa) de Nb, ou um ainda mais estreito de 3,5 to 8,0. A key point in the definition of this alloy was the variation of titanium and niobium contents to define an ideal composition within the relationship in question. It has been observed that the introduction of niobium in amounts above 3.0% generates beneficial effects, both in relation to the formed carbides and the residual niobium content (not combined in the form of carbides). Hot league. The idea of introducing Nb in higher quantities is to generate precipitation of the intermetallic phase γ "(NÍ3Nb) and modification of phase γ 'by introducing higher niobium content into its structure. In addition, the high amount of niobium causes precipitation NbC carbides. These MC-type niobium carbides are more effective in abrasion resistance than titanium because of their higher hot hardness.The niobium content must be carefully balanced against the carbon content. Since niobium has a greater tendency to bond to carbon, the niobium available for nickel intermetallic phase formation will be the amount of this element dissolved in the alloy matrix after reaction with carbon to form the primary carbides. : C must be greater than 7.4: 1 (by mass) so that there is still dissolved Nb in the austenitic matrix which will precipitate as Ni 3 Nb. a for the element Nb is between 2.0 and 8.0% (by mass), with an intermediate range of 3.0 to 8.0% (by mass) of Nb and a narrow range of 3.1 to 8.0. % (by mass) Nb, or even narrower from 3.5 to 8.0.
Além das melhorias da resistência ao calor e à abrasão, Nb também melhora a soldabilidade das superligas endurecidas por precipitação da fase γ", e, além disso, melhora a resistência à corrosão em ambientes sulfatantes, como motores a diesel. In addition to improvements in heat and abrasion resistance, Nb also improves weldability of the γ "phase precipitation hardened superalloys, and furthermore improves corrosion resistance in sulfating environments such as diesel engines.
O Nb pode ser parcialmente substituído por tântalo (Ta) em
bases equiatômicas. Como o Nb, o Ta também é formador de fase intermetálica com o níquel e estabiliza fortemente carbonetos primários, sendo igualmente benéfico para a dureza a quente e resistência à abrasão. Nb can be partially replaced by tantalum (Ta) in equiatomic bases. Like Nb, Ta is also an intermetallic phase former with nickel and strongly stabilizes primary carbides, being equally beneficial for hot hardness and abrasion resistance.
O aumento na quantidade de nióbio mostrou efeito nas propriedades de resistência a quente. Apesar de não totalmente definido o mecanismo, nas ligas da presente invenção o teor de nióbio não combinado com o carbono deve formar intermetálicos diferentes que os intermetálicos de titânio, provavelmente do tipo gama duas linhas (γ"), muito estáveis ao coalescimento e, assim, efetivos em melhorar as propriedades da resistência em alta temperatura. Em relação aos carbonetos, foi notada uma maior fração volumétrica de carbonetos de maior tamanho com o aumento do teor de nióbio e a redução do teor de titânio, resultando em maior resistência ao desgaste. The increase in the amount of niobium showed effect on the heat resistance properties. Although the mechanism is not fully defined, in the alloys of the present invention the niobium content not combined with carbon should form different intermetals than titanium intermetallics, probably of the two-line gamma (γ ") type, very stable to coalescence and thus , effective in improving the properties of high temperature strength In relation to carbides, a larger volumetric fraction of larger carbides was noted with the increase of niobium content and the reduction of titanium content, resulting in higher wear resistance.
A adição do nióbio faz com que, para um mesmo teor da relação (Nb + 2 Ti), se diminua a porcentagem total de titânio da liga. Os estudos da presente invenção mostraram que tal diminuição é também benéfica para melhoria da resistência à oxidação em temperaturas elevadas - propriedade também essencial em válvulas de trabalho em alta temperatura. The addition of niobium causes, for the same ratio content (Nb + 2 Ti), to decrease the total titanium percentage of the alloy. Studies of the present invention have shown that such a decrease is also beneficial for improving oxidation resistance at elevated temperatures - a property also essential in high temperature working valves.
A diminuição da porcentagem total de titânio na liga pela adição do nióbio em quantidades acima de 3,5% melhora sua trabalhabilidade a quente, uma vez que a ductilidade a quente da liga é ameaçada para valores acima de 4,0 para a soma entre os teores de titânio e alumínio. (Ti + Al) < 4,0%. Decreasing the total titanium percentage in the alloy by the addition of niobium in amounts above 3.5% improves its hot workability, as the alloy's hot ductility is threatened to values above 4.0 for the sum between titanium and aluminum contents. (Ti + Al) <4.0%.
Para todos esses efeitos, da resistência a quente, da resistência à oxidação e da resistência ao desgaste, a relação (Nb + 2 Ti) deve assim apresentar um teor mínimo de 2,0% de nióbio, preferencialmente nióbio acima de 3,5%, sendo o teor de nióbio ideal igual ou maior que 3,7%. For all these effects of heat resistance, oxidation resistance and wear resistance, the ratio (Nb + 2 Ti) must therefore have a minimum content of 2.0% niobium, preferably niobium above 3.5%. being the ideal niobium content equal to or greater than 3.7%.
Apesar dos aspectos benéficos do titânio e do nióbio, o teor desses elementos não pode ser excessivamente alto, pois promoveria a formação de intermetálicos grosseiros, prejudicando as propriedades mecânicas
da liga em termos de resistência mecânica e ductilidade, além elevar o custo da liga. Assim, o valor da relação (Nb + 2 Ti) deve estar abaixo 15,0%, preferencialmente abaixo de 13,0%. Despite the beneficial aspects of titanium and niobium, the content of these elements cannot be excessively high as it would promote the formation of coarse intermetals, impairing the mechanical properties. of the alloy in terms of mechanical strength and ductility, and raise the cost of the alloy. Thus, the ratio value (Nb + 2 Ti) should be below 15.0%, preferably below 13.0%.
O carbono é adicionado com a intenção de se combinar com titânio e nióbio para formação das partículas duras de carbonetos e conferir resistência à abrasão. Para tal função, o teor de carbono deve ser de no mínimo 0,05%, preferencialmente acima de 0,1 %. Porém, a porcentagem de partículas duras deve estar abaixo de 5% em volume, de modo a não deteriorar as propriedades de tenacidade e trabalhabilidade a quente, esta última essencial para válvulas forjadas a quente. O volume dessas partículas é determinado pelo carbono, uma vez que, na formação do NbC ou TiC, a liga possui excesso de Ti e Nb. Desta forma, o teor de carbono é utilizado como controlador do volume de partículas formado, estando abaixo de 1 ,0%, preferencialmente abaixo de 0,40%. Carbon is added with the intention of combining with titanium and niobium to form hard carbide particles and impart abrasion resistance. For such a function, the carbon content must be at least 0.05%, preferably above 0.1%. However, the percentage of hard particles must be below 5% by volume so as not to deteriorate the toughness and hot workability properties, the latter essential for hot forged valves. The volume of these particles is determined by carbon since, in the formation of NbC or TiC, the alloy has excess Ti and Nb. Thus, the carbon content is used as a controller of the particle volume formed, being below 1.0%, preferably below 0.40%.
O alumínio é muito importante para a precipitação da fase gama linha (γ'), e, portanto, para a resistência em altas temperaturas. Outra função de extrema importância do alumínio na liga é aumentar a resistência à oxidação em altas temperaturas, pelo aumento da formação de AI2O3 durante aquecimento. No entanto, os teores de alumínio devem ser restritos, uma vez que quantidades muito elevadas desse elemento podem levar à deterioração da resistência em altas temperaturas e trabalhabilidade à quente, devido à formação de nitretos e fases como η e δ durante longos tempos de aquecimento. O teor de alumínio, portanto, deve estar entre 0,5% e 4,0%, preferencialmente entre 1 ,0% e 3,0%, tipicamente igual a 2,0%. Aluminum is very important for gamma phase (γ ') precipitation, and therefore for high temperature resistance. Another extremely important function of aluminum in the alloy is to increase oxidation resistance at high temperatures by increasing the formation of Al 2 O 3 during heating. However, aluminum contents should be restricted as very high amounts of this element may lead to deterioration of resistance at high temperatures and hot workability due to the formation of nitrides and phases such as η and δ during long heating times. The aluminum content, therefore, should be between 0.5% and 4.0%, preferably between 1.0% and 3.0%, typically 2.0%.
Residuais: Os outros elementos, como manganês, tungsténio, molibdênio, cobre, enxofre, fósforo e os normalmente obtidos como residuais normais do processo de elaboração de aço ou ligas de níquel líquido, devem ser entendidos como impurezas, relacionados aos processos de desoxidação de aciaria ou inerentes aos processos de fabricação. Portanto, limita-se o teor de
manganês, cobre, tungsténio e molibdênio a 5,0%, preferencialmente abaixo de 2,0%, dada à desestabilização da relação entre as fases austenita e ferrita, bem como por possíveis efeitos nas fases intermetálicas presentes na liga. O fósforo e o enxofre segregam em contornos de grão e outras interfaces, devendo, portanto, estar abaixo de 0,20%, preferencialmente abaixo de 0,05%, preferencialmente máximo 0,005%. Residuals: Other elements, such as manganese, tungsten, molybdenum, copper, sulfur, phosphorus and those normally obtained as normal residues from the steelmaking process or liquid nickel alloys, should be understood as impurities related to the steelmaking deoxidation processes. or inherent in manufacturing processes. Therefore, the content of manganese, copper, tungsten and molybdenum at 5.0%, preferably below 2.0%, due to the destabilization of the relationship between the austenite and ferrite phases, as well as possible effects on the intermetallic phases present in the alloy. Phosphorus and sulfur segregate into grain boundaries and other interfaces and should therefore be below 0.20%, preferably below 0.05%, preferably maximum 0.005%.
A liga, conforme descrita, pode ser produzida por processos convencionais ou especiais como fusão em fornos elétrico ou a vácuo, seguidos ou não de processos de refusão. A fundição pode ser feita em lingotes, por meio de lingotamento convencional ou lingotamento contínuo, ou mesmo por outros processos de manufatura que envolvam desagregação do metal líquido e posterior agregação, como a metalurgia do pó e o processo de conformação por spray ou fundição contínua. Os produtos finais podem ser obtidos após conformação a quente ou a frio, sendo produzidos produtos finais na forma de fio-máquina, blocos, barras, arames, chapas, tiras, ou mesmo podem ser produtos no estado bruto de solidificação. The alloy as described may be produced by conventional or special processes such as melting in electric or vacuum furnaces, whether or not followed by remelting processes. Casting can be done in ingots by conventional casting or continuous casting, or even by other manufacturing processes involving liquid metal disaggregation and further aggregation, such as powder metallurgy and the spray forming or continuous casting process. The end products can be obtained after hot or cold forming, end products being produced in the form of wire rod, blocks, bars, wires, plates, strips, or even can be products in the raw state of solidification.
Na descrição seguinte de experimentos realizados, é feita referência às figuras anexas, de forma que: In the following description of experiments performed, reference is made to the attached figures, so that:
A Figura 1 mostra a microestrutura, observada em microscópio óptico, das ligas ET1 e PH a PI9, após polimento e ataque com reagente Glicerégia por 15 segundos. Aumento de 120 x. Figure 1 shows the microstructure, observed under optical microscope, of alloys ET1 and PH to PI9, after polishing and attack with glyceregia reagent for 15 seconds. 120x magnification.
A Figura 2 apresenta o resultado de análise computacional de imagens, para quantificação dos carbonetos observados -nas ligas estudadas com diferentes teores de Ti, Nb e Al. A análise foi realizada em uma área total de (65990,417) μιη2 da amostra, em 50 campos aleatórios com 500 x de aumento. Figure 2 presents the result of computational image analysis to quantify the carbides observed in the alloys studied with different Ti, Nb and Al contents. The analysis was performed in a total area of (65990,417) μιη 2 of the sample, in 50 random fields with 500x magnification.
A Figura 3 mostra os resultados do ensaio de fluência das ligas da presente invenção em comparação às ligas ET1 e ET2, avaliando o tempo de ruptura em fluência para temperatura de 800°C e três níveis de tensão.
A Figura 4 compara a resistência a quente das ligas da presente invenção às ligas ET1 e ET2, a partir da tensão de escoamento para várias temperaturas. Figure 3 shows the results of the alloy creep test of the present invention compared to the ET1 and ET2 alloys, evaluating the creep failure time at 800 ° C temperature and three stress levels. Figure 4 compares the heat resistance of the alloys of the present invention to ET1 and ET2 alloys from the yield stress for various temperatures.
As Figuras 5 e 6 mostram o resultado do ensaio de desgaste abrasivo, realizado nas ligas ET1 , ET2 e nas ligas PM a PI7. O ensaio foi realizado com o lixamento de pinos (pino contra lixa), sendo os pinos feitos nas ligas após tratamento térmico de envelhecimento e a lixa com abrasivos de alumina e grana # 120. A velocidade média de contato entre a lixa e os pinos foi de 100 m/min. Figures 5 and 6 show the result of the abrasive wear test performed on alloys ET1, ET2 and alloys PM to PI7. The test was performed with the sanding of pins (pin against sandpaper), the pins were made in the alloys after heat treatment of aging and the sanding with abrasives of alumina and grain # 120. The average contact speed between the sandpaper and the pins was 100 m / min
EXEMPLO: Para definir as composições das ligas da presente invenção, diversas ligas foram produzidas e comparadas às do estado da técnica. As composições químicas são apresentadas na Tabela 1 , sendo doravante denominados PI as ligas da presente invenção e ET as ligas do estado da técnica; a liga ET1 corresponde à liga Hl 461 , a ET2 ao Inconel 751 , e a liga ET3, correspondente à liga NCF 3015 (da patente US 5,660,938). São também quantificadas as relações: (Nb + 2 Ti); (Nb/C) e (Ti/Al) na Tabela 1. EXAMPLE: To define the alloy compositions of the present invention, various alloys were produced and compared to those of the prior art. Chemical compositions are shown in Table 1, hereinafter referred to as PI the alloys of the present invention and ET the alloys of the prior art; ET1 alloy corresponds to H1 461, ET2 to Inconel 751, and ET3 alloy to NCF 3015 (US 5,660,938). Relationships are also quantified: (Nb + 2 Ti); (Nb / C) and (Ti / Al) in Table 1.
Na Tabela 1 observa-se a significativa redução do teor de níquel da liga nas composições da presente invenção em relação à liga ET2, gerando custo sensivelmente menor. As ligas ET2 e ET3 também não possuem teores expressivos de carbono, o que não promove a formação de carbonetos e a alta resistência ao desgaste observada nas outras ligas. Table 1 shows the significant reduction of the nickel content of the alloy in the compositions of the present invention in relation to the ET2 alloy, generating significantly lower cost. ET2 and ET3 alloys also do not have significant carbon content, which does not promote carbide formation and the high wear resistance observed in other alloys.
Observa-se também, na Tabela 1 , a adição de diferentes teores de nióbio nas ligas da presente invenção, ao contrário da liga do estado da técnica (ET1 ), que apresenta apenas titânio. A análise da relação (Nb + 2 Ti) é, também, interessante, porque normaliza a diferença de massa atómica e assim relaciona-se ao teor atómico. Esta é aproximadamente constante entre as da presente invenção (PM a PI6) e na liga ET1 ; assim, os átomos de Ti nas ligas da presente invenção são substituídos gradativamente por nióbio, até que na liga
PI4 o titânio é totalmente substituído pelo nióbio. Apesar de apresentarem natureza química similar, o titânio e o nióbio mostram efeitos diferentes nas ligas estudadas, de modo que a substituição empregada mostrou-se muito benéfica às propriedades finais, conforme descrito a seguir. Neste sentido, torna-se muito interessante a quantificação e diferenciação das ligas em estudo através do teor de nióbio não combinado na forma de carbonetos. Esta quantificação pode ser avaliada pela relação (Nb/C). Table 1 also shows the addition of different niobium contents in the alloys of the present invention, unlike the state of the art alloy (ET1), which has only titanium. Relationship analysis (Nb + 2 Ti) is also interesting because it normalizes the atomic mass difference and thus relates to the atomic content. This is approximately constant between those of the present invention (PM to PI6) and the ET1 alloy; thus Ti atoms in the alloys of the present invention are gradually replaced by niobium until in the alloy PI4 titanium is completely replaced by niobium. Despite being similar in chemical nature, titanium and niobium show different effects on the studied alloys, so the substitution employed was very beneficial to the final properties, as described below. In this sense, it is very interesting to quantify and differentiate the alloys under study through the content of non-combined carbide niobium. This quantification can be assessed by the ratio (Nb / C).
As diferenças entre os teores de titânio e alumínio entre as diferentes ligas pode ser avaliada pela relação (Ti/Al), a qual é muito importante para as propriedades de resistência à oxidação a quente e conformabilidade das ligas. Esta relação (Ti/Al) também é exibida na Tabela 1 . The differences between titanium and aluminum contents between the different alloys can be assessed by the ratio (Ti / Al), which is very important for the properties of hot oxidation resistance and conformability of the alloys. This ratio (Ti / Al) is also shown in Table 1.
A fusão dos lingotes foi feita em procedimento próximo para as dez ligas (ET1 , ET2, ET3, PM , PI2, PI3, PI4, PI5, PI6, PI7), em forno de indução a vácuo, sendo o vazamento feito em lingoteiras de ferro fundido, produzindo um lingote com cerca 55 kg. Após a solidificação, os lingotes foram forjados e laminados para bitolas redondas de 18 mm de diâmetro. Após solubilização, as barras foram observadas em microscópio óptico, sendo o resultado mostrado na Figura 1 . Nas imagens pode ser observado o aumento do tamanho dos carbonetos com a substituição do titânio pelo nióbio, fato este confirmado pelas análises quantitativas de imagens apresentadas na Figura 2. Tabela 1 : Composições químicas de três ligas do estado da técnica (ET1 , ET2 e ET3) e das ligas da presente invenção (PI1 a PI7). Porcentagem em massa e balanço em 1 ferro. Ingot melting was performed in a close procedure for the ten alloys (ET1, ET2, ET3, PM, PI2, PI3, PI4, PI5, PI6, PI7) in a vacuum induction furnace, and casting was done in iron ingot molds. cast, producing a 55kg ingot. After solidification, the ingots were forged and rolled into 18 mm diameter round gauges. After solubilization, the bars were observed under an optical microscope, the result being shown in Figure 1. In the images it can be observed the increase of the carbides size with the substitution of the titanium for the niobium, fact confirmed by the quantitative analysis of the images presented in the Figure 2. Table 1: Chemical compositions of three state of the art alloys (ET1, ET2 and ET3 ) and the alloys of the present invention (PI1 to PI7). Percentage by mass and balance in 1 iron.
I2 0,27 0,10 0, 15 18,0 46,0 1 ,20 2,00 3,85 7,85 14,3 1 ,7 I3 0,27 0,10 0, 15 18,0 46,0 1 ,20 1 ,00 5,80 7,85 21 ,5 0,8 I4 0,27 0,10 0, 15 18,0 46,0 1 ,20 - 7,70 7,70 28,5 - I5 0,27 0,10 0,15 18,0 46,0 1 ,90 2,00 3,95 7,95 14,6 1 ,1 I6 0,25 0,10 0,15 15,2 32,1 1 ,92 2,10 3,90 7,92 15,6 1 ,1 I7 0,25 0,10 0,15 18,8 36,0 1 ,30 1 ,71 3,38 6,80 13,5 1 ,3 I2 0.27 0.10 0.15 18.0 46.0 1, 20 2.00 3.85 7.85 14.1, 7 I3 0.27 0.10 0.15 18.0 46.0 1, 20 1.00 5.80 7.85 21, 5 0.8 I4 0.27 0.10 0, 15 18.0 46.0 1, 20 - 7.70 7.70 28.5 - I5 0 , 0.10 0.15 18.0 46.0 1, 90 2.00 3.95 7.95 14.6 1, 1 I6 0.25 0.10 0.15 15.2 32.1 1, 92 2.10 3.90 7.92 15.6 1, 1 I7 0.25 0.10 0.15 18.8 36.0 1, 30 1.71 3.38 6.80 13.5 1, 3
A Tabela 2 apresenta a dureza das ligas ET1 , ET2, ET3, PM , Table 2 presents the hardness of ET1, ET2, ET3, PM,
PI2, PI3, PI4, PI5, PI6 e PI7 após solubilização a 1050°C e envelhecimento a 750°C por 1 hora e, também após solubilização a 1050°C e envelhecimento por 4 horas. Estes dados apontam valores equivalentes das durezas das ligas envelhecidas, com exceção da liga ET3 que possui menor dureza. No estado soiubilizado, as ligas com nióbio possuem menor dureza, o que é interessante para a usinabilidade do material nesta condição. PI2, PI3, PI4, PI5, PI6 and PI7 after solubilization at 1050 ° C and aging at 750 ° C for 1 hour and also after solubilization at 1050 ° C and aging for 4 hours. These data show equivalent hardness values of the aged alloys, except for the ET3 alloy which has lower hardness. In the soiubilized state, niobium alloys have lower hardness, which is interesting for the machinability of the material in this condition.
Tabela 2: Resposta ao tratamento térmico das ligas do estado da técnica (ET1 , ET2 e ET3) e das ligas da presente invenção (PM , PI2, PI3, PI4, PI5, PI6 e PI7). Resultados de dureza em HB após solubilização a 1050°C e envelhecimento a Table 2: Response to heat treatment of state of the art alloys (ET1, ET2 and ET3) and alloys of the present invention (PM, PI2, PI3, PI4, PI5, PI6 and PI7). Hardness results in HB after solubilization at 1050 ° C and aging at
750°C or 1 hora e 4 horas. 750 ° C or 1 hour and 4 hours.
Outro parâmetro importante para essas ligas são as propriedades mecânicas em alta temperatura; tais resultados são apresentados nas Figuras 3 e 4. As ligas da presente invenção são significativamente mais resistentes em fluência que a liga ET , sendo nas ligas PI2, PI3, PI5 e PI6 equivalentes ou melhores que a liga ET2 (Inconel 751 ), apesar de possuírem teor de níquel consideravelmente inferior que esta liga. Na resistência em alta
temperatura, medida pela tensão de escoamento (Figura 4), o mesmo comportamento é observando, sendo as ligas PI2, PI3, PI5 e principalmente PI6 mais resistentes que a liga ET1 e ET2. A liga PI4, devido à maior concentração de fases grosseiras, apresenta redução na resistência a quente e em termos de fluência. Another important parameter for these alloys is the mechanical properties at high temperature; such results are shown in Figures 3 and 4. The alloys of the present invention are significantly more creep-resistant than ET alloy, being in alloys PI2, PI3, PI5 and PI6 equivalent or better than ET2 alloy (Inconel 751), although have considerably lower nickel content than this alloy. In high resistance temperature, as measured by the yield stress (Figure 4), the same behavior is observed, being alloys PI2, PI3, PI5 and mainly PI6 more resistant than alloy ET1 and ET2. The PI4 alloy, due to the higher concentration of coarse phases, has a reduction in hot strength and creep.
Em termos de resistência à oxidação, as ligas da presente invenção também se mostraram superiores às ligas ET1 e ET2, como mostra a Tabela 3; observa-se que quanto menor o teor de titânio, maior a resistência à oxidação da liga, sendo a melhor resistência observada para a liga PI4, sem titânio. Isto ocorre pelo efeito do titânio em desestabilizar a camada de óxido formada na superfície das ligas do sistema níquel-ferro e, assim, diminuir a resistência à oxidação. Outro efeito interessante a ser observado é que, entre as ligas com baixo teor de titânio (PI2, PI3, PI4, PI5, PI6 e PI7), aquelas com maior teor de alumínio (PI5, PI6 e PI7) apresentam resistência à oxidação a quente superior nas condições de ensaio. O ensaio foi realizado de modo que todas as amostras de todas as ligas envolvidas possuíam dimensões idênticas, de modo a possuírem superfície de contato também idêntica. Eram corpos de prova cilíndricos (diâmetro = 12mm e altura = 14mm) na condição solubilizado e envelhecido, os quais foram devidamente pesados e mantidos na temperatura de 800°C durante 100 horas. Após desenfornamento, o corpo de prova é resfriado ao ar e pesado novamente, medindo-se a variação de massa. Este processo é repetido até completar-se o tempo total do ensaio. Cadinhos cerâmicos de alumina foram utilizados como porta-amostra durante o ensaio. O progresso do processo de oxidação à 800°C foi avaliado durante 400 horas, quando foi possível observar uma estabilização do processo de corrosão. In terms of oxidation resistance, the alloys of the present invention were also superior to ET1 and ET2 alloys, as shown in Table 3; It is observed that the lower the titanium content, the higher the oxidation resistance of the alloy, the better the resistance observed for PI4 alloy without titanium. This is due to the effect of titanium on destabilizing the oxide layer formed on the surface of nickel-iron alloys and thus decreasing oxidation resistance. Another interesting effect to note is that among the low titanium alloys (PI2, PI3, PI4, PI5, PI6 and PI7), those with higher aluminum content (PI5, PI6 and PI7) have resistance to hot oxidation. higher under the test conditions. The assay was performed so that all samples of all alloys involved had identical dimensions, so as to have identical contact surface. They were cylindrical specimens (diameter = 12mm and height = 14mm) in aged and solubilized condition, which were properly weighed and kept at 800 ° C for 100 hours. After de-molding, the specimen is air-cooled and re-weighed by measuring the change in mass. This process is repeated until the total assay time is completed. Alumina ceramic crucibles were used as sample holders during the test. The progress of the oxidation process at 800 ° C was evaluated for 400 hours when stabilization of the corrosion process could be observed.
Tabela 3: Ganho em massa (em mg/cm2) após 100, 200 e 400 horas à 800°C em atmosfera (ar). Quanto menor o ganho em massa, maior a resistência à oxic ação do material. Table 3: Mass gain (in mg / cm 2 ) after 100, 200 and 400 hours at 800 ° C in atmosphere (air). The lower the mass gain, the greater the resistance to oxidation of the material.
100 horas 200 horas 400 horas
ET1 (Ti = 4,0%; Al = 1 ,2%) 0,40 0,66 0,66 100 hours 200 hours 400 hours ET1 (Ti = 4.0%; Al = 1.2%) 0.40 0.66 0.66
ET2 (Inconel 751) 0,41 0,54 0,54 ET2 (Inconel 751) 0.41 0.54 0.54
PI1 (Ti = 3,0%; Nb = 1.9%; Al = 1 ,2%) 0,40 0,54 0,54 PIP (Ti = 3.0%; Nb = 1.9%; Al = 1.2%) 0.40 0.54 0.54
PI2 (Ti = 2,0%; Nb= 3,85 %; Al = 1 ,2%) 0,14 0,27 0,27 P 2 (Ti = 2.0%; Nb = 3.85%; Al = 1.2%) 0.14 0.27 0.27
PI3 (Ti = 1 ,0%; Nb= 5,8%; Al = 1 ,2%) 0,14 0,27 0,27 PI3 (Ti = 1.0%; Nb = 5.8%; Al = 1.2%) 0.14 0.27 0.27
PI4 (Nb= 7,7 %; Al = 1 ,2%) 0, 14 0, 14 0,14 PIP4 (Nb = 7.7%; Al = 1.2%) 0.140, 14 0.14
PI5 (Ti = 2,0% Nb= 3,9%; Al = 1 ,9%) 0 0,25 0,25 PI5 (Ti = 2.0% Nb = 3.9%; Al = 1.9%) 0 0.25 0.25
PI6 (Ti = 2,0% Nb= 3,9%; Al = 1 ,9%) 0 0,25 0,25 PI6 (Ti = 2.0% Nb = 3.9%; Al = 1.9%) 0 0.25 0.25
PI7 (Ti = 1 ,7% Nb= 3,4%; Al = 1 ,3%) 0 0,25 0,25 PI7 (Ti = 1.7% Nb = 3.4%; Al = 1.3%) 0 0.25 0.25
A resistência ao desgaste abrasivo, comparada nas Figuras 5 e 6, e quantificada na Tabela 4, segue a mesma tendência da resistência à oxidação, porém por motivos distintos. As ligas ET1 e PI1 a PI9 apresentam resistência ao desgaste significativamente maior que a liga ET2, devido à presença de partículas duras em suas microestruturas (conforme mostrado na Figura 1 ). Porém, é também observado que quanto maior o teor de nióbio menor a taxa de desgaste e, portanto, maior resistência ao desgaste abrasivo; isto ocorre pelo maior tamanho dos carbonetos presentes na microestrutura das ligas de mais alto nióbio, como mostrado na Figura 1 e quantificado na Figura 2. The abrasive wear resistance, compared in Figures 5 and 6, and quantified in Table 4, follows the same trend of oxidation resistance, but for different reasons. ET1 and PI1 to PI9 alloys have significantly higher wear resistance than ET2 alloy due to the presence of hard particles in their microstructures (as shown in Figure 1). However, it is also observed that the higher the niobium content the lower the wear rate and therefore the higher abrasive wear resistance; This is due to the larger size of the carbides present in the microstructure of the highest niobium alloys, as shown in Figure 1 and quantified in Figure 2.
Tabela 4: Taxa de desgaste das ligas estudadas, calculada a partir da divisão da inclinação das curvas da Figura 5 pela área do corpo de prova (Taxa = (1/área) * õ AV I õ AL). Quanto menor a taxa de desgaste, maior a resistência ao desgaste do material, uma vez que menor a perda de material por desgaste. Deste modo, o material que exibir o maior valor para o inverso da taxa de desgaste possui maior resistência ao desgaste. Ou seja: 1/Taxa = Resistência ao Desgaste. Table 4: Wear rate of the studied alloys, calculated from the division of the slope of the curves of Figure 5 by the specimen area (Rate = (1 / area) * õ AV I õ AL). The lower the wear rate, the greater the wear resistance of the material as the less the loss of material due to wear. Thus, the material that exhibits the highest value for the inverse wear ratio has the highest wear resistance. That is: 1 / Rate = Wear Resistance.
Resistência ao Desgaste Wear Resistance
Liga turns on
Valor absoluto Em relação à ET1 Absolute value Regarding ET1
ET1 (Ti = 4,0%) 9,6 100% ET1 (Ti = 4.0%) 9.6 100%
ET2 (Inconel 751) 6,8 71 % ET2 (Inconel 751) 6.8 71%
PM (Ti = 3,0%; Nb= 1.9%) 10,1 105% MW (Ti = 3.0%; Nb = 1.9%) 10.1 105%
PI2 (Ti = 2,0%; Nb= 3,85 %) 10,3 107% PIP (Ti = 2.0%; Nb = 3.85%) 10.3 107%
PI3 (Ti = 1 ,0%; Nb= 5,8%) 10,7 1 1 %
PI4 (Nb= 7,7 %) 1 1 ,0 115% PI3 (Ti = 1.0%; Nb = 5.8%) 10.7 1 1% PI4 (Nb = 7.7%) 11 1.0 115%
PI5 (Ti = 2,0%; Nb= 3,9%) 10,4 108% PI5 (Ti = 2.0%; Nb = 3.9%) 10.4 108%
PI6 (Ti = 2,0%; Nb= 3,9%) 10,2 106% PI6 (Ti = 2.0%; Nb = 3.9%) 10.2 106%
PI7 (Ti = 1 ,7%; Nb= 3,4%) 10,2 106% PI7 (Ti = 1.7%; Nb = 3.4%) 10.2 106%
A aplicação industrial dessas ligas envolve uma etapa de tratamento térmico de envelhecimento após conformação final da peça. As ligas da presente invenção apresentam maior facilidade na obtenção da dureza mínima exigida na aplicação (cerca de 330 HB - escala de dureza Brinell), ou seja, observa-se a obtenção de dureza acima de 330 HB após apenas 20 minutos de tratamento a 750°C, sendo a dureza sempre mais elevada para as ligas da presente invenção (PI5, PI6) em relação às ligas do estado da técnica para um mesmo tempo de tratamento, como pode ser observado na Figura 7. As ligas PI5 e PI6 também apresentam melhor resposta ao tratamento térmico de envelhecimento a 690°C que a liga do estado da técnica ET3, obtendo dureza acima do valor mínimo exigido para a aplicação após uma hora de tratamento. Isso pode ser observado na Figura 8. A redução na temperatura e tempo do tratamento de envelhecimento é de vital importância para redução de custos e ganho de produtividade no processamento do material. The industrial application of these alloys involves an aging heat treatment step after final part forming. The alloys of the present invention find it easier to obtain the minimum hardness required in the application (about 330 HB - Brinell hardness scale), ie hardness above 330 HB is observed after only 20 minutes of treatment at 750 ° C. ° C, the hardness being always higher for the alloys of the present invention (PI5, PI6) than prior art alloys for the same treatment time, as can be seen in Figure 7. Alloys PI5 and PI6 also exhibit better response to aging heat treatment at 690 ° C than the state of the art ET3 alloy, obtaining hardness above the minimum value required for application after one hour of treatment. This can be seen in Figure 8. The reduction in aging treatment temperature and time is of vital importance for cost savings and productivity gains in material processing.
As propriedades de resistência à temperatura e resistência à oxidação a quente podem ser avaliadas, respectivamente, em função das relações (Nb/C) e (Ti/Al). As Figuras 9 e 10 mostram essa análise para as ligas da presente invenção (PI1 à PI7) e do estado da técnica (ET1 e ET2). Na Figura 9, podemos notar claramente que as ligas da presente invenção estão na faixa ótima da relação Nb/C para a otimização da propriedade resistência ao calor, representada pelo tempo de ruptura em fluência à 800°C sob tensão de 100 Mpa. A Figura 10 mostra que as ligas da presente invenção estão na faixa ótima da relação Ti/Al para otimização da propriedade resistência à oxidação a quente, representada pelo inverso do ganho em massa (em mg/cm2) após 400 horas à
800°C em atmosfera (ar). The properties of temperature resistance and resistance to hot oxidation can be evaluated, respectively, as a function of (Nb / C) and (Ti / Al) ratios. Figures 9 and 10 show this analysis for the alloys of the present invention (PI1 to PI7) and the state of the art (ET1 and ET2). In Figure 9, we can clearly see that the alloys of the present invention are in the optimum range of Nb / C ratio for optimizing the heat resistance property, represented by the creep breakdown time at 800 ° C under 100 Mpa stress. Figure 10 shows that the alloys of the present invention are in the optimal Ti / Al ratio range for optimizing the hot oxidation resistance property represented by the inverse mass gain (in mg / cm 2 ) after 400 hours at 800 ° C in atmosphere (air).
Portanto, a comparação das ligas do estado da técnica com as ligas da presente invenção mostrou que a introdução de maiores teores de nióbio e alumínio, acompanhada da redução dos teores de titânio promovem melhoria nas propriedades de resistência a quente, fluência, resistência à oxidação e ao desgaste. Um resumo de tais efeitos é mostrado na Tabela 5. As ligas PI2, PI3, PI5, PI6 e PI7 mostram-se sempre superiores às ligas do estado da técnica, em termos de todas as propriedades observadas. Porém, para situações em que a resistência ao desgaste e à oxidação devem ser privilegiadas, a liga PI4 mostra melhores resultados. Therefore, comparison of the state of the art alloys with the alloys of the present invention showed that the introduction of higher niobium and aluminum contents, accompanied by the reduction of titanium contents, promotes improvement in the properties of hot strength, creep, oxidation resistance and to wear. A summary of such effects is shown in Table 5. Alloys PI2, PI3, PI5, PI6 and PI7 are always superior to prior art alloys in terms of all observed properties. However, for situations where wear and oxidation resistance should be privileged, PI4 shows better results.
Como resumo, pode ser afirmado que os resultados aqui discutidos mostram que as ligas da presente invenção, além da vantagem económica de trabalharem com menor teor de níquel, também possuem melhores propriedades. Em relação às ligas do estado da técnica, as ligas da presente invenção possuem níveis superiores de propriedades em alta temperatura e de resistência ao desgaste, sendo assim importantes melhorias para aplicação industrial em válvulas para motores de combustão ou mesmo outros componentes empregados em alta temperatura e ambientes corrosivos. Tabela 5: Comparativo de Propriedades para todas as ligas estudadas, em valores absolutos e em valores relativos (sendo referência a liga ET1 = 100%). O sinal "-" indica valores não medidos e "~" indica valores aproximados. In summary, it can be stated that the results discussed herein show that the alloys of the present invention, in addition to the economic advantage of working with lower nickel content, also have better properties. In relation to prior art alloys, the alloys of the present invention have superior levels of high temperature properties and wear resistance, thus being important improvements for industrial application in combustion engine valves or even other components employed at high temperature and corrosive environments. Table 5: Comparison of Properties for all studied alloys, in absolute and relative values (with reference to alloy ET1 = 100%). The "-" sign indicates unmeasured values and "~" indicates approximate values.
Resultados Results
ET1 ET2 ET3 PM PI2 PI3 PI4 PI5 PI6 PI7 ET1 ET2 ET3 PM PI2 PI3 PI4 PI5 PI6 PI7
Dureza Após Hardness After
330 335 300 330 335 300
Envelhecimento (HB) t?3¾ 330 316 ¾50 . 340Aging (HB) t? 3? 330 316? 50. 340
Tensão de Escoamento à Flow Tension at
538 484 525 550 552 520 431 .·.: 554 560 ; 500 800°C (MPa) 538 484 525 550 552 520 431. .: 554 560; 500 800 ° C (MPa)
Tempo de Ruptura Sob Break Time Under
Claims
1. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, caracterizadas por apresentar uma composição química de elementos que consistem, em porcentagem em massa, de 0,15 a 0,50% C, até 3,0% Mn, até 1 ,0% Si, de 12,0 a 25,0% Cr, de 25,0 a 49,0% Ni, até 0,50% Mo, até 0,50% W, até 0,50% V, de 0,50 a 5,0% Cu, de 1 ,85 a 3,0% Al, de 1 ,0 a 4,5% Ti, de 3,1 a 8,0% Nb, de 0,001 a 0,02% B, de 0,001 a 0,10% Zr, até 2,0% Co, onde (Ni + Co) não seja maior que 50,0% em massa, nem menor que 25% em massa. O restante sendo ferro e impurezas inevitáveis ao processo de fabricação da Liga. A relação das porcentagens em massa Nb:C deve estar no intervalo de 14:1 até 54: 1. A razão das porcentagens em massa (Ti /Al) deve ser menor que 2; 1. Ni-Fe-Cr alloys for internal combustion engine valves, characterized in that they have a chemical composition of elements consisting of a percentage by mass of 0,15 to 0,50% C up to 3,0% Mn; up to 1.0% Si, from 12.0 to 25.0% Cr, from 25.0 to 49.0% Ni, up to 0.50% Mo, up to 0.50% W, up to 0.50% V, 0.50 to 5.0% Cu, 1.85 to 3.0% Al, 1.0 to 4.5% Ti, 3.1 to 8.0% Nb, 0.001 to 0.02 % B, from 0,001 to 0,10% Zr, up to 2,0% Co, where (Ni + Co) is not greater than 50,0% by mass nor less than 25% by mass. The rest being iron and unavoidable impurities in the alloy manufacturing process. The ratio of mass percentages Nb: C must be in the range 14: 1 to 54: 1. The ratio of mass percentages (Ti / Al) must be less than 2;
2. A liga da reivindicação 1 , onde o elemento Nb é parcialmente substituído por Ta em bases equiatômicas. The alloy of claim 1, wherein the element Nb is partially replaced by Ta on equiatomic bases.
3. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, de acordo com as reivindicações 1 e 2, onde o valor de M, calculado pela equação abaixo, respeite o intervalo: 2.0 < M < 15.0; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 1 and 2, where the value of M calculated by the equation below respects the range: 2.0 <M <15.0;
M = (Nb) + 2(Ti) *(porcentagem em massa) M = (Nb) + 2 (Ti) * (mass percentage)
4. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, de acordo com as reivindicações 1 , 2 e 3, onde o valor de M, calculado pela equação abaixo, respeite o intervalo: 5.0 < M < 1 1.0; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 1, 2 and 3, where the value of M calculated by the equation below respects the range: 5.0 <M <1 1.0;
M = (Nb) + 2(Ti) *(porcentagem em massa) M = (Nb) + 2 (Ti) * (mass percentage)
5. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, caracterizadas por apresentar uma composição química de elementos que consistem, em porcentagem em massa, de 0.15 a 0.50% C, 0.05 a 1.0% Mn, 0.05 a 1.0% Si, 14.0 a 20.0% Cr, 25.0 a 39.0% Ni, até 0.50% Mo, até 0.50% W, até 0.50% V, 0,50 a 5.0% Cu, 1.00 a 3.0% Al, 1.85 a 2.15% Ti, 3.1 a 8.0% Nb, 0.001 a 0.02% B, 0.001 a 0, 1 % Zr, até 2.0% Co, onde (Ni + Co) não seja maior que 50,0% em massa, nem menor que 25% em massa. O restante sendo ferro e impurezas inevitáveis ao processo de fabricação da Liga. A relação das porcentagens em massa Nb:C deve estar no intervalo de 14:1 até 54:1. A razão das porcentagens em massa (Ti /Al) deve ser menor que 2; Ni-Fe-Cr alloys for internal combustion engine valves, characterized in that they have a chemical composition of elements consisting of a percentage by mass of 0.15 to 0.50% C, 0.05 to 1.0% Mn, 0.05 to 1.0% Si , 14.0 to 20.0% Cr, 25.0 to 39.0% Ni, up to 0.50% Mo, up to 0.50% W, up to 0.50% V, 0.50 to 5.0% Cu, 1.00 to 3.0% Al, 1.85 to 2.15% Ti, 3.1 a 8.0% Nb, 0.001 to 0.02% B, 0.001 to 0, 1% Zr, up to 2.0% Co, where (Ni + Co) is not greater than 50.0 mass% or less than 25% mass. The rest being iron and inevitable impurities to the alloy manufacturing process. The ratio of Nb: C mass percentages must be in the range of 14: 1 to 54: 1. The ratio of mass percentages (Ti / Al) must be less than 2;
6. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, caracterizadas por apresentar uma composição química de elementos que consistem, em porcentagem em massa, de 0,15 a 0,50% C, até 3,0% Mn, até 1 ,0% Si, de 14,0 a 22,0% Cr, de 27,0 a 49,0% Ni, até 0,50% Mo, até 0,50% W, até 0,50% V, de 0,50 a 5,0% Cu, de 1 ,5 a 3,0% Al, de 1 ,0 a 3,5% Ti, de 2,5 a 8,0% Nb, de 0,001 a 0,02% B, de 0,001 a 0,10% Zr, até 2,0% Co, onde (Ni + Co) não seja maior que 50,0% em massa, nem menor que 25% em massa. O restante sendo ferro e impurezas inevitáveis ao processo de fabricação da Liga. A relação das porcentagens em massa Nb:C deve estar no intervalo de 14:1 até 40: 1. A razão das porcentagens em massa (Ti /Al) deve ser menor que 2; 6. Ni-Fe-Cr alloys for internal combustion engine valves, characterized in that they have a chemical composition of elements consisting of a percentage by mass of 0,15 to 0,50% C up to 3,0% Mn; up to 1.0% Si, from 14.0 to 22.0% Cr, from 27.0 to 49.0% Ni, up to 0.50% Mo, up to 0.50% W, up to 0.50% V, 0.50 to 5.0% Cu, 1.5 to 3.0% Al, 1.0 to 3.5% Ti, 2.5 to 8.0% Nb, 0.001 to 0.02 % B, from 0,001 to 0,10% Zr, up to 2,0% Co, where (Ni + Co) is not greater than 50,0% by mass nor less than 25% by mass. The rest being iron and unavoidable impurities in the alloy manufacturing process. The ratio of mass percentages Nb: C must be in the range of 14: 1 to 40: 1. The ratio of mass percentages (Ti / Al) must be less than 2;
7. A liga da reivindicação 6, onde o elemento Nb é parcialmente substituído por Ta em bases equiatômicas. The alloy of claim 6, wherein the element Nb is partially replaced by Ta on equiatomic bases.
8. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, de acordo com as reivindicações 5 e 6, onde o valor de M, calculado pela equação abaixo, respeite o intervalo: 2.0 < M < 15.0; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 5 and 6, wherein the value of M calculated by the equation below respects the range: 2.0 <M <15.0;
M = (Nb) + 2(Ti) *(porcentagem em massa) M = (Nb) + 2 (Ti) * (mass percentage)
9. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna, de acordo com as reivindicações 5, 6 e 7, onde o valor de M, calculado pela equação abaixo, respeite o intervalo: 5.0 < M < 1 1 .0; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 5, 6 and 7, where the value of M calculated by the equation below respects the range: 5.0 <M <1 1 .0 ;
M = (Nb) + 2(Ti) *(porcentagem em massa) M = (Nb) + 2 (Ti) * (mass percentage)
10. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna de acordo com as reivindicações 1 , 2, 3, 4, 5, 6, 7, 8 e 9, onde as impurezas residuais provenientes do processo de fabricação, como Ca e Mg não superem um total de 0,03% em massa; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 1, 2, 3, 4, 5, 6, 7, 8 and 9, where residual impurities from the manufacturing process such as Ca and Mg do not exceed a total of 0.03% by mass;
1 1. Ligas Ni-Fe-Cr para válvulas de motores de combustão interna de acordo com as reivindicações 1 , 2, 3, 4, 5, 6, 7, 8, 9 e 10, onde as impurezas são controladas, de modo a obter máximo de 0,02% em massa de P e máximo de 0,0050 de S; Ni-Fe-Cr alloys for internal combustion engine valves according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, where impurities are controlled to obtain a maximum of 0,02 mass% of P and a maximum of 0,0050 of S;
12. Ligas Ni-Fe-Cr de acordo com as reivindicações 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10 e 1 1 , produzidas por forno de indução ao ar, forno de indução à vácuo ou forno elétrico a arco, pelos processos de lingotamentd convencional, lingotamento contínuo ou processos que envolvem fragmentação e agregação da liga, dentre eles, metalurgia do pó, injeção de pó e conformação por spray, resultando em produtos finais obtidos por conformação a quente, conformação a frio, ou produtos utilizados diretamente na condição "bruta de solidificação"; Ni-Fe-Cr alloys according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, produced by air induction furnace, vacuum induction furnace or electric arc furnace, by conventional casting processes, continuous casting processes or processes involving alloy fragmentation and aggregation, including powder metallurgy, powder injection and spray forming, resulting in end products obtained by hot forming, cold, or products used directly under the "gross solidification" condition;
13. Ligas Ni-Fe-Cr de acordo com as reivindicações 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 e 12, aplicadas como válvulas de exaustão ou válvulas de admissão de motores de combustão interna; Ni-Fe-Cr alloys according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, applied as exhaust valves or inlet motors of internal combustion;
14. Ligas Ni-Fe-Cr de acordo com as reivindicações 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12 e 13, aplicadas como componentes, ferramentas ou partes estruturais, estáticas ou dinâmicas, em aplicações que demandem resistência em altas temperaturas, resistência à fluência e resistência à abrasão: Ni-Fe-Cr alloys according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13, applied as static components, tools or structural parts or dynamic, in applications requiring high temperature resistance, creep resistance and abrasion resistance:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/BR2009/000293 WO2011029164A1 (en) | 2009-09-09 | 2009-09-09 | Nickel-based superalloy for valves of internal combustion engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/BR2009/000293 WO2011029164A1 (en) | 2009-09-09 | 2009-09-09 | Nickel-based superalloy for valves of internal combustion engines |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011029164A1 true WO2011029164A1 (en) | 2011-03-17 |
Family
ID=43731875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2009/000293 WO2011029164A1 (en) | 2009-09-09 | 2009-09-09 | Nickel-based superalloy for valves of internal combustion engines |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011029164A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110465667A (en) * | 2019-09-25 | 2019-11-19 | 广西科技大学 | A kind of turbocharger vanes and preparation method thereof |
US11525172B1 (en) | 2021-12-01 | 2022-12-13 | L.E. Jones Company | Nickel-niobium intermetallic alloy useful for valve seat inserts |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5660938A (en) * | 1993-08-19 | 1997-08-26 | Hitachi Metals, Ltd., | Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer |
US20080008617A1 (en) * | 2006-07-07 | 2008-01-10 | Sawford Maria K | Wear resistant high temperature alloy |
US20090081074A1 (en) * | 2007-06-07 | 2009-03-26 | Celso Antonio Barbosa | Wear resistant alloy for high temprature applications |
-
2009
- 2009-09-09 WO PCT/BR2009/000293 patent/WO2011029164A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5660938A (en) * | 1993-08-19 | 1997-08-26 | Hitachi Metals, Ltd., | Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer |
US20080008617A1 (en) * | 2006-07-07 | 2008-01-10 | Sawford Maria K | Wear resistant high temperature alloy |
US20090081074A1 (en) * | 2007-06-07 | 2009-03-26 | Celso Antonio Barbosa | Wear resistant alloy for high temprature applications |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110465667A (en) * | 2019-09-25 | 2019-11-19 | 广西科技大学 | A kind of turbocharger vanes and preparation method thereof |
CN110465667B (en) * | 2019-09-25 | 2022-04-22 | 广西科技大学 | A kind of turbocharger blade and preparation method thereof |
US11525172B1 (en) | 2021-12-01 | 2022-12-13 | L.E. Jones Company | Nickel-niobium intermetallic alloy useful for valve seat inserts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090081074A1 (en) | Wear resistant alloy for high temprature applications | |
Yamaguchi et al. | High-temperature structural intermetallics | |
CA2688647C (en) | Wear resistant alloy for high temperature applications | |
US20090081073A1 (en) | Alloys with high corrosion resistance for engine valve applications | |
Stallybrass et al. | Ferritic Fe–Al–Ni–Cr alloys with coherent precipitates for high-temperature applications | |
CN102439184B (en) | Nickel based alloy useful for valve seat inserts | |
JP5302192B2 (en) | Abrasion resistant heat resistant alloy | |
EP2041326A2 (en) | Nickel-rich wear resistant alloy and method of making and use thereof | |
CN102625856B (en) | Nickel-based superalloy and component made from said superalloy | |
GB2405643A (en) | A nickel-chromium-molybdenum alloy | |
WO2004067793A2 (en) | Corrosion and wear resistant alloy | |
WO2008016395A1 (en) | Heat and corrosion resistant cast austenitic stainless steel alloy with improved high temperature strength | |
CA2688507C (en) | Alloys with high corrosion resistance for engine valve applications | |
JP3905034B2 (en) | Low cost, corrosion resistant and heat resistant alloy for diesel engine valves | |
JP2003231933A (en) | Directionally solidified articles and nickel base superalloy | |
CN107794471A (en) | The crystal grain refinement in IN706 is separated out using Laves phases | |
JP2729480B2 (en) | Age-hardenable nickel-based alloy containing chromium and molybdenum | |
JPH0429728B2 (en) | ||
RU2479658C2 (en) | Wear-resistant alloy for high-temperature applications | |
WO2011029164A1 (en) | Nickel-based superalloy for valves of internal combustion engines | |
WO2011029165A1 (en) | Alloys with high corrosion resistance for engine valve applications | |
JP3412234B2 (en) | Alloy for exhaust valve | |
JP3461350B2 (en) | Nickel-molybdenum alloy | |
WO2019193630A1 (en) | Ni group superalloy casting material and ni group superalloy product using same | |
JP2021008649A (en) | Austenitic stainless cast steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09849084 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09849084 Country of ref document: EP Kind code of ref document: A1 |