[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011026886A1 - Dinukleare metall-carben-komplexe in oleds - Google Patents

Dinukleare metall-carben-komplexe in oleds Download PDF

Info

Publication number
WO2011026886A1
WO2011026886A1 PCT/EP2010/062851 EP2010062851W WO2011026886A1 WO 2011026886 A1 WO2011026886 A1 WO 2011026886A1 EP 2010062851 W EP2010062851 W EP 2010062851W WO 2011026886 A1 WO2011026886 A1 WO 2011026886A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
dinuclear
substituted
radical
carbene
Prior art date
Application number
PCT/EP2010/062851
Other languages
English (en)
French (fr)
Inventor
Thomas Strassner
Alexander Poethig
Original Assignee
Basf Se
Tu Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Tu Dresden filed Critical Basf Se
Publication of WO2011026886A1 publication Critical patent/WO2011026886A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds

Definitions

  • the present invention relates to dinuclear carbene complexes, organic light-emitting diodes (OLEDs) containing at least one such dinuclear carbene complex, light-emitting layers containing at least one such dinuclear carbene complex, a device such as stationary or mobile screens or illumination means, containing a corresponding OLED, as well as the use of the dinuclear carbene complexes according to the invention in OLEDs, for example as emitter, matrix material, charge transport material and / or charge blocker.
  • OLEDs organic light-emitting diodes
  • OLED Organic Light Emitting Diode
  • the property of materials is used to emit light when excited by electrical current.
  • OLEDs are of particular interest as an alternative to cathode ray tubes and liquid crystal displays for the production of flat panel displays. Due to the very compact design and the intrinsically low power consumption, devices containing OLEDs are particularly suitable for mobile applications, eg. B. for applications in cell phones, laptops, etc. Furthermore, white OLEDs offer great advantages over the previously known lighting technologies, in particular a particularly high efficiency.
  • Liu et al., Organometallics 2007, 26, 3660-3667 disclose the synthesis and luminescence of silver cation-containing complexes having short Ag-Ag bonds which are stabilized by functionalized bis (N-heterocyclic carbene) ligands.
  • Tn metallic silver (I) -stabilized complexes stabilized by bridging NHC ligands are disclosed in Catalano et al., Inorganic Chemistry, 2003, 42, 5483-5485.
  • the imidazole units attached to the silver cations via carbene bonds are bridged by means of pyridine heterocycles.
  • electroluminescence is understood as meaning both electrofluorescence and electrophosphorescence.
  • A is independently N or C
  • R 1 independently of one another, linear or branched, optionally interrupted by at least one heteroatom, optionally bearing at least one functional group having 1 to 20 carbon atoms, substituted or unsubstituted, optionally interrupted by at least one heteroatom, optionally bearing at least one functional group cycloalkyl having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical having 5 to 30 carbon atoms and / or heteroatoms and
  • R 2 , R 3 are independently of one another free electron pair, if A is N, or, if A is C, independently of one another hydrogen, linear or branched alkyl radical optionally having at least one heteroatom and optionally carrying at least one functional group having 1 to 20 carbon atoms, substituted or unsubstituted, optionally interrupted by at least one heteroatom, optionally bearing at least one functional group cycloalkyl radical having 3 to 20 carbon atoms, substituted or unsubstituted aryl radical having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl radical having 5 to 30 carbon and / or heteroatoms, or
  • R 1 and R 2 or R 2 and R 3 form together with the atoms A and / or N of the N-heterocyclic carbene an optionally interrupted by at least one heteroatom saturated, unsaturated or aromatic carbon ring having a total of 5 to 30 carbon and / or heteroatoms.
  • the compounds of the general formula (I) may also be present in the following mesomeric limit formula:
  • aryl radical or group is to be understood as meaning a radical having a skeleton of 6 to 30 carbon atoms, preferably 6 to 18 carbon atoms, which is composed of one aromatic ring or several condensed aromatic rings.
  • Suitable backbones are, for example, phenyl, benzyl, naphthyl, anthracenyl or phenanthrenyl. This backbone may be unsubstituted, that is, all carbon atoms that are substitutable bear hydrogen atoms or one or more
  • substituents are, for example, alkyl radicals, preferably alkyl radicals having 1 to 8 carbon atoms, more preferably methyl, ethyl, i-propyl or t-butyl, aryl radicals, preferably C 6 -aryl radicals, which in turn may be substituted or unsubstituted, heteroaryl radicals, preferably heteroaryl radicals, which contain at least one nitrogen atom, particularly preferably pyridyl radicals, alkenyl radicals, preferably alkenyl radicals which carry a double bond, particularly preferably alkenyl radicals having a double bond and 1 to 8 carbon atoms, or groups having a donor or acceptor action.
  • Donor-action groups are to be understood as meaning groups having a +1 and / or + M effect, and acceptor-accepting groups are understood as meaning groups having an -I and / or -M effect.
  • Suitable groups with donor or acceptor action are halogen radicals, preferably F, Cl, Br, particularly preferably F, alkoxy radicals, aryloxy radicals, carbonyl radicals, ester radicals, amine radicals, amide radicals, CH 2 F groups, CHF 2 groups, CF 3 groups, CN groups, thio groups or SCN groups.
  • the aryl radicals carry substituents selected from the group consisting of methyl, F, CF 3 , amine radicals, thio groups and alkoxy, or the aryl radicals are unsubstituted.
  • the aryl radical or the aryl group is preferably a C 6 -aryl radical which is optionally substituted by at least one of the abovementioned substituents.
  • the C 6 -aryl radical particularly preferably has no, one, two or three of the abovementioned substituents, where the one substituent is preferably arranged in ortho, meta and / or para position to the further point of attachment of the aryl radical.
  • the C 6 aryl group in a 2-, 4- and 6-position with Ci -3 alkyl radicals, preferably methyl radicals substituted phenyl, ie, a mesityl.
  • a heteroaryl radical or a heteroaryl radical is to be understood as meaning radicals having from 5 to 30 carbon atoms and / or heteroatoms which differ from the abovementioned aryl radicals in that at least one carbon atom in the skeleton of the aryl radicals is replaced by a heteroatom.
  • Preferred heteroatoms are N, O and S.
  • one or two carbon atoms of the backbone of the aryl radicals are replaced by heteroatoms.
  • the backbone is selected from electron-deficient systems such as pyridyl, pyrimidyl, pyrazyl and triazyl, and five-membered ones Heteroaromatics such as pyrrole, furan, thiophene, imidazole, pyrazole, triazole, oxazole and thiazole.
  • the backbone may be substituted at one, several or all substitutable positions of the backbone. Suitable substituents are the same as those already mentioned with respect to the aryl groups.
  • alkyl radical or an alkyl group is to be understood as meaning a radical having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms.
  • This alkyl radical may be branched or unbranched and may optionally be interrupted by one or more heteroatoms, preferably N, O or S.
  • this alkyl radical may be substituted by one or more of the substituents mentioned with respect to the aryl groups. It is also possible that the alkyl radical carries one or more aryl groups. All of the aryl groups listed above are suitable.
  • the alkyl radicals are particularly preferably selected from the group consisting of methyl, ethyl, i-propyl, n-propyl, i-butyl, n-butyl, t-butyl, sec-butyl, i-pentyl, n-pentyl, sec-pentyl , neo-pentyl, n-hexyl, i-hexyl and sec-hexyl. Very particular preference is given to methyl, i-propyl, tert-butyl.
  • a cycloalkyl radical or a cycloalkyl group is to be understood as meaning a cyclic radical having 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, particularly preferably 3 to 8 carbon atoms.
  • This cycloalkyl radical may optionally be interrupted by one or more heteroatoms, preferably N, O or S.
  • this cycloalkyl radical may be unsubstituted or substituted, ie substituted with one or more of the substituents mentioned with respect to the aryl groups. It is also possible that the cycloalkyl radical carries one or more aryl groups. All of the aryl groups listed above are suitable.
  • the cycloalkyl radicals are particularly preferably selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. Most preferred is cyclohexyl.
  • the statements made with regard to the aryl, heteroaryl, alkyl and cycloalkyl radicals apply, independently of one another, to the radicals R 1 , R 2 and R 3 , where R 2 and R 3, in the case where A is N, denote a free electron pair , ie, that there is no substituent selected from the above-mentioned group on these ring nitrogen atoms.
  • A is C
  • hydrogen and / or the substituents mentioned are independently of one another R 2 and R 3 .
  • R 1 and R 2 or R 2 and R 3 together with the atoms A and / or N of the N-heterocyclic carbene form a saturated, unsaturated or optionally interrupted by at least one heteroatom aromatic carbon ring with 5 to 30 carbon atoms and / or heteroatoms.
  • "Overall" according to the present invention means that the ring atoms A, which in this embodiment are equal to C. According to the invention, only the radicals R 1 and R 2 or R 2 and R 2 form R 3 corresponding rings, which are located on the same five-membered ring.
  • R 2 and R 3 together form an optionally interrupted by at least one heteroatom saturated, unsaturated or aromatic carbon ring having a total of 5 to 30 carbon and / or heteroatoms.
  • R 2 and R 3 together with the two ring atoms form a cyclopentenyl, cyclohexenyl, phenyl, pyridine, pyrimidine or pyrazine ring.
  • M is independently Ag, Au or Cu.
  • two metal atoms M are present in the complexes according to the invention.
  • two identical metal atoms for example two Ag, two Au or two Cu, or two different metal atoms M, for example Ag and Au, Ag and Cu or Au and Cu, to be present in a complex.
  • the metal atoms M are present in the oxidation state + 1.
  • A, M, R 1 , R 2 and R 3 have the following meanings:
  • M is Ag, independently of one another, linear or branched alkyl radical having 1 to 4 carbon atoms, for example isopropyl or tert-butyl, or substituted or unsubstituted cycloalkyl radical having 3 to 8 carbon atoms, for example cyclohexyl, or substituted or unsubstituted aryl radical having 6 to 10 carbon atoms
  • R 2 , R 3 are independently hydrogen, linear or branched alkyl radical having 1 to 6 carbon atoms, or substituted or unsubstituted aryl radical having 6 to 10 carbon atoms or substituted or unsubstituted heteroaryl radical having 5 to 30 carbon and / or heteroatoms.
  • R 2 and R 3 form together with the atoms A an optionally interrupted by at least one heteroatom aromatic carbon ring having a total of 5 to 10 carbon and / or heteroatoms,
  • the dinuclear carbene complexes of the general formula (I) according to the invention correspond to the following formulas (Ia), (Ib), (Ic) or (Id):
  • the aforementioned dinuclear carbene complexes and mixtures thereof are eminently suitable as emitter molecules in organic light-emitting diodes (OLEDs). Variations of the ligands make it possible to provide corresponding complexes which exhibit electroluminescence in the red, green and especially in the blue region of the electromagnetic spectrum.
  • the neutral transition metal complexes used according to the invention are therefore suitable for use in technically usable OLEDs.
  • the present invention also relates to a process for the preparation of the dinuclear carbene complexes of the invention by contacting compounds containing the corresponding metal cation with the corresponding ligands or ligand precursors.
  • the preparation of the complexes of the general formula (I) according to the invention can be carried out by direct reaction of the neutral ligand precursors corresponding to the ligands of the corresponding complexes of the general formula (I) with suitable metal-containing compounds.
  • Another method of preparation is transmetalation, in which the ligand is transferred from one metal to another.
  • Suitable ligand precursors which lead to the ligands of the carbene complexes of the general formula (I) are known to the person skilled in the art, for example the corresponding imidazolium, benzimidazolium or triazolium salts. Methods for preparing these ligand precursors are known to those skilled in the art.
  • a deprotonation of the ligands so this can be known by those skilled in basic compounds, such as basic metalates, basic metal acetates, acetylacetonates or alkoxylates or bases such as KO'Bu, NaO'Bu, LiO'Bu, NaH, silylamides and phosphazene bases respectively.
  • the deprotonation takes place with Ag 2 0th
  • the reaction is preferably carried out in a solvent.
  • Suitable solvents are known per se to those skilled in the art and are preferably selected from the group consisting of aromatic or aliphatic solvents, ethers, alcohols, esters, amides, ketones, nitriles, halogenated compounds and mixtures thereof.
  • a particularly preferred solvent is dichloromethane.
  • Compounds which are suitable for the process according to the invention and contain the corresponding metal atom (s) M are generally all compounds known to the person skilled in the art which have a sufficiently high reactivity under the reaction conditions according to the invention.
  • suitable compounds are, for example, silver (I) oxide Ag 2 O, AgBF 4 , Ag 2 CO 3 , Ag (OOCCH 3 ), AgNO 3 , Cu 2 O, CuI, CuBr, CuCl, Cu (OTf) 2 , [Cu (CH 3 CN) 4 ] PF 6 , Au (tht) Cl, Au (SMe 2 ) Cl or mixtures thereof.
  • the molar ratio of metal-containing compound used to ligand precursor used is generally 1 to 10, preferably 1 to 5, particularly preferably 1 to 1.2.
  • the reaction is generally carried out at a temperature of 0 to 160 ° C, preferably 10 to 100 ° C, particularly preferably 20 to 50 ° C, for example room temperature.
  • the reaction time depends on the desired carbene complex and is generally 0.1 to 50 hours, preferably 0.5 to 40 hours, more preferably 10 to 30 hours, for example 24 hours.
  • the resulting carbene complex of the general formula (I) is worked up by methods known to the person skilled in the art.
  • the product precipitated during the reaction is filtered, washed, e.g. B. with ether, in particular diethyl ether, and then dried.
  • ether in particular diethyl ether
  • z. B. from dichloromethane / diethyl ether or dichloroethane / diethyl ether highly pure, inventive carbene complexes are obtained.
  • the dinuclear carbene complexes of the general formula (I) according to the invention are outstandingly suitable as emitter substances, since they have an emission (electroluminescence) in the visible range of the electromagnetic spectrum, for example at 400 to 500 nm.
  • the dinuclear carbene complexes make it possible to provide compounds which have electroluminescence in the red, green and blue regions of the electromagnetic spectrum.
  • OLEDs As emitter substances by means of the dinuclear carbene complexes according to the invention.
  • a particular property of the dinuclear carbene complexes of the general formula (I) according to the invention is that they exhibit luminescence in the solid state, particularly preferably electroluminescence, in the visible region of the electromagnetic spectrum.
  • luminescent in the solid state complexes can be used in substance, ie without further additives, as emitter substances in OLEDs.
  • an OLED with a light-emitting layer can be produced, wherein no complex co-evaporation of a matrix material with the emitter substance is required.
  • Dinuclear carbene complexes of the general formula (I) according to the present invention which exhibit luminescence in the solid, in particular electroluminescence, are not known from the prior art.
  • the complexes are preferably used in a matrix.
  • a further subject of the present application is therefore an OLED containing at least one dinuclear carbene complex of the general formula (I) according to the invention.
  • Another object of the present application is also the use of the dinuclear carbene complexes of the general formula (I) as a light-emitting layer in OLEDs, preferably as an emitter, matrix material, charge transport material and / or charge blocker.
  • Organic light-emitting diodes are basically composed of several layers:
  • the dinuclear carbene complexes of the general formula (I) are preferably used in the light-emitting layer (3) as emitter molecules.
  • a further subject of the present application is therefore a light-emitting layer containing at least one of the dinuclear carbene complexes according to the invention of the general formula (I), preferably as emitter molecule.
  • Preferred dinuclear carbene complexes of the general formula (I) have already been mentioned above.
  • the dinuclear carbene complexes of the general formula (I) used according to the invention can be present in substance, ie without further additives, in the light-emitting layer.
  • further compounds are present in the light-emitting layer.
  • a fluorescent dye may be present to alter the emission color of the dinuclear carbene complex used as the emitter molecule.
  • a diluent material can be used. This diluent material may be a polymer, e.g. As poly (N-vinylcarbazole) or polysilane.
  • the diluent material may also be a small molecule, e.g. 4,4'-N, N'-dicarbazolebiphenyl (CDP) or tertiary aromatic amines.
  • CDP N'-dicarbazolebiphenyl
  • the proportion of the dinuclear carbene complexes used in the light-emitting layer according to the invention is generally less than 40% by weight, preferably from 3 to 30% by weight.
  • the dinuclear carbene complexes of the general formula (I) according to the invention are preferably used in a matrix.
  • the light-emitting layer preferably contains at least one dinuclear carbene complex of the general formula (I) according to the invention and a matrix material as diluent material.
  • Another object of the present application is a light-emitting layer containing at least one dinuclear carbene complex of the general formula (I) as an emitter molecule.
  • Preferred complexes of the general formula (I) have already been mentioned above.
  • the individual of the abovementioned layers of the OLED can in turn be made up of two or more layers.
  • the hole-transporting layer may be constructed of a layer into which holes are injected from the electrode and a layer that transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron-transporting layer can also consist of several layers, for. A layer in which electrons are injected through the electrode and a layer which receives electrons from the electron-injecting layer and transports them into the light-emitting layer.
  • These mentioned layers are each selected according to factors such as energy level, temperature resistance and charge carrier mobility as well as energy difference of said layers with the organic layers or the metal electrodes.
  • the person skilled in the art is able to choose the structure of the OLEDs such that it is optimally adapted to the dinuclear carbene complexes according to the invention used as emitter substances according to the present invention.
  • the HOMO (highest occupied molecular orbital) of the hole-transporting layer should be aligned with the work function of the anode and the LUMO (lowest unoccupied molecular orbital) of the electron-transporting layer should be aligned with the work function of the cathode.
  • a further subject of the present application is an OLED containing at least one light-emitting layer according to the invention.
  • the further layers in the OLED may be constructed of any material commonly employed in such layers and known to those skilled in the art.
  • the anode is an electrode that provides positive charge carriers.
  • it may be constructed of materials including a metal, a mixture of various metals, a metal alloy, a metal oxide, or a mixture of various metal oxides.
  • the anode may be a conductive polymer. Suitable metals include the metals of Groups 1 1, 4, 5 and 6 of the Periodic Table of the If the anode is to be transparent, mixed metal oxides of groups 12, 13 and 14 of the Periodic Table of the Elements, for example indium tin oxide (ITO), are generally used.
  • ITO indium tin oxide
  • the anode (1) contains an organic material, for example polyaniline, as described, for example, in Nature, Vol. 357, pages 477 to 479 (June 1, 1992).
  • At least either the anode or the cathode should be at least partially transparent in order to be able to decouple the light formed.
  • Suitable hole transport materials for the layer (2) of the OLED according to the invention are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, Vol. 18, pages 837 to 860, 1996. Both hole transporting molecules and polymers can be used as hole transport material.
  • Commonly used hole transporting molecules are selected from the group consisting of 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N'-diphenyl-N, N '- bis (3-methylphenyl) - [1,1'-biphenyl] -4,4'-diamine (TPD), 1,1-bis- [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N'-bis (4-methylphenyl) -N, N'-bis (4-ethylphenyl) - [1, 1 '- (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), Tetrakis - (3-methylphenyl) -N, N, N ', N'-2,5-phenylenediamine (PDA), ⁇ -phenyl-4-N, N
  • hole-transporting polymers are selected from the group consisting of polyvinylcarbazoles, (phenylmethyl) polysilanes and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules into polymers such as polystyrene and polycarbonate. Suitable hole-transporting molecules are the molecules already mentioned above.
  • Suitable electron transporting materials for layer (4) of the OLEDs of the present invention include chelated metals such as tris (8-hydroxyquinolato) aluminum (Alq3) with oxinoid compounds, phenanthroline based compounds such as 2,9-dimethyl, 4,7-diphenyl-1,10 phenanthroline (DDPA) or 4,7-diphenyl-1,10-phenanthroline (DPA) and azole compounds such as 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole (PBD ) and 3- (4-biphenylyl) -4-phenyl-5- (4-t- butylphenyl) -1,2,4-triazole (TAZ).
  • chelated metals such as tris (8-hydroxyquinolato) aluminum (Alq3) with oxinoid compounds
  • phenanthroline based compounds such as 2,9-dimethyl, 4,7-diphenyl-1,10
  • the layer (4) can serve both to facilitate the electron transport and as a buffer layer or as a barrier layer in order to avoid quenching of the exciton at the interfaces of the layers of the OLED.
  • the layer (4) improves the mobility of the electrons and reduces quenching of the exciton.
  • the cathode (5) is an electrode which serves to introduce electrons or negative charge carriers.
  • the cathode may be any metal or non-metal that has a lower work function than the anode.
  • Suitable materials for the cathode are selected from the group consisting of Group 1 alkali metals, for example Li, Cs, Group 2 alkaline earth metals, Group 12 metals of the Periodic Table of the Elements comprising the rare earth metals and the lanthanides and actinides.
  • metals such as aluminum, indium, calcium, barium, samarium and magnesium and combinations thereof can be used.
  • lithium-containing organometallic compounds or LiF can be applied between the organic layer and the cathode to reduce the operating voltage.
  • the OLED according to the present invention may additionally contain further layers which are known to the person skilled in the art.
  • a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adapts the band gap of the layers to one another.
  • this further layer can serve as a protective layer.
  • additional layers may be present between the light-emitting layer (3) and the layer (4) to facilitate the transport of the negative charge and / or to match the band gap between the layers.
  • this layer can serve as a protective layer.
  • the OLED according to the invention contains at least one of the further layers mentioned below:
  • Suitable materials for the individual layers are known in the art and z. As disclosed in WO 00/70655.
  • the layers (1), (2), (3), (4) and (5) are surface treated to increase the efficiency of charge carrier transport.
  • the selection of materials for each of said layers is preferably determined by obtaining an OLED having a high efficiency.
  • the preparation of the OLEDs according to the invention can be carried out by methods known to the person skilled in the art.
  • the OLED is prepared by sequential vapor deposition of the individual layers onto a suitable substrate.
  • Suitable substrates are, for example, glass or polymer films.
  • vapor deposition conventional techniques can be used such as thermal evaporation, chemical vapor deposition and others.
  • the organic layers may be coated from solutions or dispersions in suitable solvents using coating techniques known to those skilled in the art.
  • the various layers have the following thicknesses: anode (2) 500 to 5000 ⁇ (Angstrom), preferably 1000 to 2000 ⁇ ; Hole-transporting layer (3) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ , light-emitting layer (4) 10 to 1000 ⁇ , preferably 100 to 800 ⁇ , Electron-transporting layer (5) 50 to 1000 ⁇ , preferably 200 to 800 ⁇ , cathode (6) 200 to 10,000 ⁇ , preferably 300 to 5000 ⁇ .
  • the location of the recombination zone of holes and electrons in the OLED according to the invention and thus the emission spectrum of the OLED can be influenced by the relative thickness of each layer.
  • the thickness of the electron transport layer should preferably be selected so that the electron / holes recombination zone is in the light-emitting layer.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used.
  • the layer thicknesses of optionally used additional layers are known to the person skilled in the art.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens and lighting means. The present invention therefore also relates to a device selected from the group consisting of stationary screens and mobile screens and lighting means, comprising an inventive OLED.
  • Stationary screens are z.
  • Mobile screens are e.g. Screens in mobile phones, laptops, vehicles and destination displays on buses and trains.
  • the dinuclear carbene complexes of the general formula (I) according to the invention can be used in inverse-structure OLEDs.
  • the complexes of the invention in these inverse OLEDs are preferably used in turn in the light-emitting layer, particularly preferably as a light-emitting layer without further additives.
  • the construction of inverse OLEDs and the materials usually used therein are known to the person skilled in the art. Examples
  • Variant 1 Sodium hydroxy-2,4-dichloro-1,3,5-triazine (SHDT), aqueous solution as reactant, lower reaction scheme, Variant 2:
  • Variant 1 Yield 45%
  • the product is obtained analogously to the general method of synthesis (variant 2) and recrystallization from ethanol as a pale yellow solid. (648 mg, 25%).
  • the product is obtained analogously to the general method of synthesis (variant 2) and recrystallization from an ethanol-acetone-water mixture (3: 1: 0.01) as a pale yellow solid. (2.998g, 62%).
  • the graph of the photoluminescence measurement is shown in FIG.
  • the measurement is carried out with a thin layer consisting of 2% complex in PMMA.
  • the wavelength is in nm on the x-axis, and the counts are plotted on the y-axis.
  • the reaction is carried out in a glove box under argon atmosphere.
  • the reaction mixture is filtered through Celite and then evaporated, whereupon a yellow-orange solid forms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Die vorliegende Erfindung betrifft dinukleare Carben-Komplexe enthaltend Ag, Au und/oder Cu als Metallkationen, ein Verfahren zur Herstellung dieser dinuklearen Carben-Komplexe durch Inkontaktbringen von Verbindungen, die das entsprechende Metall-Kation enthalten, mit den entsprechenden Liganden bzw. Ligandvorläufern, OLEDs, enthaltend wenigstens einen dieser dinuklearen Carben-Komplexe, eine Licht-emittierende Schicht, enthaltend mindestens einen dieser dinuklearen Carben-Komplexe, OLEDs, enthaltend eine solche Licht-emittierende Schicht, eine Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen und mobilen Bildschirmen und Belechtungsmitteln, enthaltend entsprechende OLEDs und die Verwendung eines solchen dinuklearen Carben-Komplexes in OLEDs, insbesondere als Emitter, Matrixmaterial, Ladungstransportmaterial und/oder Ladungsblocker.

Description

Dinukleare Metall-Carben-Komplexe in OLEDs Beschreibung Die vorliegende Erfindung betrifft dinukleare Carben-Komplexe, Organische Leuchtdioden (OLEDs) enthaltend wenigstens einen solchen dinuklearen Carben- Komplex, Licht-emittierende Schichten, enthaltend wenigstens einen solchen dinuklearen Carben-Komplex, eine Vorrichtung wie beispielsweise stationäre oder mobile Bildschirme oder Beleuchtungsmittel, enthaltend ein entsprechendes OLED, sowie die Verwendung der erfindungsgemäßen dinuklearen Carben-Komplexe in OLEDs, beispielsweise als Emitter, Matrixmaterial, Ladungstransportmaterial und/oder Ladungsblocker.
In organischen Leuchtdioden (Organic Light Emitting Diode, OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristalldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigen Stromverbrauchs eignen sich Vorrichtungen enthaltend OLEDs insbesondere für mobile Anwendungen, z. B. für Anwendungen in Handys, Laptops, usw. Des Weiteren bieten weiße OLEDs große Vorteile gegenüber den bisher bekannten Beleuchtungstechnologien, insbesondere eine besonders hohe Effizienz.
Es werden im Stand der Technik zahlreiche Materialien, beispielsweise auch Silberkationen enthaltende Komplexe, vorgeschlagen, die bei Anregung durch elektrischen Strom Licht emittieren.
Catalano et al., Journal of Organometallic Chemistry, 690 (2005) 6041-6050, offenbaren lumineszente Koordinationspolymere, die Au(l)-Ag(l)-Wechselwirkungen aufweisen, wobei die Metallatome durch Pyridyl-substituierte NHC-Liganden stabilisiert werden.
Liu et al., Organometallics 2007, 26, 3660-3667, offenbaren die Synthese und Lumineszenz von Silberkationen enthaltenden Komplexen, die kurze Ag-Ag-Bindungen aufweisen, welche durch funktionalisierte bis(N-heterocyclische Carben)-Liganden stabilisiert werden.
Zhou et al., Journal of Organometallic Chemistry 693 (2008), 205-215, offenbaren die Synthese und Charakterisierung von mehrkernigen Silberkomplexen enthaltend Pyrazol-funktionalisierte NHC-Liganden, die Ag-Ag- und Ag-u-Wechselwirkungen aufweisen. In den Komplexen gemäß diesem Dokument sind Silberkationen durch Carben-Bindungen an zwei Pyrazol-Einheiten angebunden. Diese vorhandenen Pyrazol-Einheiten sind jedoch nicht miteinander verbrückt.
Weitere Silber- und Goldkationen enthaltende Komplexe werden in Zhou et al., Organometallics 2007, 26, 2742-2746, offenbart. Diese Komplexe weisen beispielsweise vier Silber-Kationen auf, die über Carben-Bindungen an Pyrazol- Einheiten angebunden sind. Die Pyrazol-Einheiten sind über einfache -CH2-Bindungen miteinander verbrückt. Weitere Bindungen liegen zwischen Silber und dem freien Elektronenpaar von Stickstoff-Atomen vor. Ähnliche Komplexe, jedoch mit Gold- Kationen als Metallatome, werden in Hemmert et al., Dalton Trans., 2009, 340-352, offenbart.
Chen et al., Inorganic Chemistry Communications 11 (2008), 404-408, offenbaren linear angeordnete Ag3-Komplexe, welche durch 1 ,8-Naphthyridin-verbrückte N- heterocyclische Carbene stabilisiert werden. In diesen Komplexen liegen an zwei Imidazol-Derivaten über Carben-Bindungen angebundene Silber-Kationen vor. Jeweils zwei der vorliegenden Imidazol-Einheiten werden über Naphthyridin-Systeme verknüpft.
Weitere Silber- und/oder Goldkationen enthaltende Komplexe, die über Carben- Bindungen angebundene Pyrazol-Derivate enthalten, werden in Ray et al., Inorganic Chemistry 2008, 47, 230-240, Catalano et al., Inorganic Chemistry 2007, 46, 5608- 5615, Catalano et al., Inorganic Chemistry, 2004, 43, 5714-5724 und Catalano et al., Inorganic Chemistry 2005, 44, 6558-6566 offenbart.
Tnmetallische Silber(l)-stabilisierte Komplexe, die durch verbrückende NHC-Liganden stabilisiert werden, werden in Catalano et al., Inorganic Chemistry, 2003, 42, 5483- 5485, offenbart. Die über Carben-Bindungen an die Silber-Kationen angebundenen Imidazol-Einheiten werden mittels Pyridin-Heterocyclen verbrückt.
Obwohl bereits Verbindungen, bevorzugt Iridium-Komplexe, bekannt sind, die im sichtbaren, insbesondere im roten, grünen und insbesondere blauen Bereich des elektromagnetischen Spektrums Elektrolumineszenz zeigen, ist die Bereitstellung von alternativen Verbindungen, die preiswertere Metalle enthalten und hohe Quantenausbeuten besitzen, wünschenswert. Im Rahmen der vorliegenden Erfindung wird unter Elektrolumineszenz sowohl Elektrofluoreszenz als auch Elektrophosphoreszenz verstanden.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung von Verbindungen, die zur Elektrolumineszenz im sichtbaren, insbesondere im blauen, roten und grünen, Bereich des elektromagnetischen Spektrums geeignet sind, wodurch die Herstellung von Vollfarbendisplays und weißen OLEDs ermöglicht wird. Des Weiteren ist es eine Aufgabe der vorliegenden Erfindung entsprechende Komplexe bereitzustellen, die als Mischung mit einer Wirtverbindung oder in Substanz, d. h. in Abwesenheit von Wirtsubstanzen, als Licht-emittierende Schicht in OLEDs eingesetzt werden können. Des Weiteren ist es eine Aufgabe, entsprechende Komplexe bereitzustellen, die eine hohe Quantenausbeute aufweisen. Die Komplexe sollen als Emitter, Matrixmaterial, Ladungstransportmaterial oder Ladungsblocker in OLEDs einsetzbar sein. Diese Aufgaben werden erfindungsgemäß gelöst durch dinukleare Carben-Komplexe der allgemeinen Formel (I)
Figure imgf000005_0001
(I) worin A, M, R1, R2 und R3 die folgenden Bedeutungen aufweisen
A unabhängig voneinander N oder C,
M unabhängig voneinander Ag, Au oder Cu,
R1 unabhängig voneinander, linearer oder verzweigter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Alkylrest mit 1 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Cycloalkylrest mit 3 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter Arylrest mit 6 bis 30 Kohlenstoffatomen, substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen und
R2, R3 unabhängig voneinander freies Elektronenpaar, falls A gleich N, oder, falls A gleich C, unabhängig voneinander Wasserstoff, linearer oder verzweigter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Alkylrest mit 1 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Cycloalkylrest mit 3 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter Arylrest mit 6 bis 30 Kohlenstoffatomen, substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen, oder
R1 und R2 oder R2 und R3 bilden zusammen mit den Atomen A und/oder N des N- heterocyclischen Carbens einen gegebenenfalls von wenigstens einem Heteroatom unterbrochenen gesättigten, ungesättigten oder aromatischen Kohlenstoffring mit insgesamt 5 bis 30 Kohlenstoff und/oder Heteroatomen.
Die Verbindungen der allgemeinen Formel (I) können auch in der folgenden mesomeren Grenzformel vorliegen:
Figure imgf000006_0001
(I)
Im Sinne der vorliegenden Erfindung haben die Begriffe Arylrest oder -gruppe, Heteroarylrest oder -gruppe und Alkylrest oder -gruppe, die folgenden Bedeutungen: Unter einem Arylrest oder -gruppe ist ein Rest mit einem Grundgerüst von 6 bis 30 Kohlenstoffatomen, bevorzugt 6 bis 18 Kohlenstoffatomen zu verstehen, der aus einem aromatischen Ring oder mehreren kondensierten aromatischen Ringen aufgebaut ist. Geeignete Grundgerüste sind zum Beispiel Phenyl, Benzyl, Naphthyl, Anthracenyl oder Phenanthrenyl. Dieses Grundgerüst kann unsubstituiert sein, d. h., dass alle Kohlenstoffatome, die substituierbar sind, Wasserstoffatome tragen, oder an einer, mehreren
oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind zum Beispiel Alkylreste, bevorzugt Alkylreste mit 1 bis 8 Kohlenstoffatomen, besonders bevorzugt Methyl, Ethyl, i-Propyl oder t-Butyl, Arylreste, bevorzugt C6-Arylreste, die wiederum substituiert oder unsubstituiert sein können, Heteroarylreste, bevorzugt Heteroarylreste, die mindestens ein Stickstoffatom enthalten, besonders bevorzugt Pyridylreste, Alkenylreste, bevorzugt Alkenylreste, die eine Doppelbindung tragen, besonders bevorzugt Alkenylreste mit einer Doppelbindung und 1 bis 8 Kohlenstoffatomen, oder Gruppen mit Donor- oder Akzeptorwirkung. Unter Gruppen mit Donorwirkung sind Gruppen zu verstehen, die einen +l- und/oder +M-Effekt aufweisen, und unter Gruppen mit Akzeptorwirkung sind Gruppen zu verstehen, die einen -I- und/oder -M-Effekt aufweisen. Geeignete Gruppen, mit Donor- oder Akzeptorwirkung sind Halogenreste, bevorzugt F, Cl, Br, besonders bevorzugt F, Alkoxyreste, Aryloxyreste, Carbonylreste, Esterreste, Aminreste, Amidreste, CH2F-Gruppen, CHF2-Gruppen, CF3-Gruppen, CN-Gruppen, Thiogruppen oder SCN-Gruppen. Ganz besonders bevorzugt tragen die Arylreste Substituenten ausgewählt aus der Gruppe bestehend aus Methyl, F, CF3, Aminreste, Thiogruppen und Alkoxy, oder die Arylreste sind unsubstituiert. Bevorzugt ist der Arylrest oder die Arylgruppe ein C6-Arylrest, der gegebenenfalls mit mindestens einem der vorstehend genannten Substituenten substituiert ist. Besonders bevorzugt weist der C6-Arylrest keinen, einen, zwei oder drei der vorstehend genannten Substituenten auf, wobei der eine Substituent bevorzugt in ortho-, meta- und/oder para-Position zur weiteren Verknüpfungsstelle des Arylrestes angeordnet ist. Ganz besonders bevorzugt ist der C6-Arylrest ein in 2-, 4- und 6-Position mit Ci-3-Alkylresten, bevorzugt Methylresten substituierter Phenylrest, d. h. ein Mesitylrest.
Unter einem Heteroarylrest oder einer Heteroarylgruppe sind Reste mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen zu verstehen, die sich von den vorstehend genannten Arylresten dadurch unterscheiden, dass in dem Grundgerüst der Arylreste mindestens ein Kohlenstoffatom durch ein Heteroatom ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Ganz besonders bevorzugt sind ein oder zwei Kohlenstoffatome des Grundgerüsts der Arylreste durch Heteroatome ersetzt. Insbesondere bevorzugt ist das Grundgerüst ausgewählt aus elektronenarmen Systemen wie Pyridyl, Pyrimidyl, Pyrazyl und Triazyl, und fünfgliedrigen Heteroaromaten wie Pyrrol, Furan, Thiophen, Imidazol, Pyrazol, Triazol, Oxazol und Thiazol. Das Grundgerüst kann an einer, mehreren oder allen substituierbaren Positionen des Grundgerüsts substituiert sein. Geeignete Substituenten sind dieselben, die bereits bezüglich der Arylgruppen genannt wurden.
Unter einem Alkylrest oder einer Alkylgruppe ist ein Rest mit 1 bis 20 Kohlenstoffatomen, bevorzugt 1 bis 10 Kohlenstoffatomen, besonders bevorzugt 1 bis 8 Kohlenstoffatomen zu verstehen. Dieser Alkylrest kann verzweigt oder unverzweigt sein und gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein. Des Weiteren kann dieser Alkylrest mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten substituiert sein. Es ist ebenfalls möglich, dass der Alkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Besonders bevorzugt sind die Alkylreste ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl, i-Propyl, n-Propyl, i-Butyl, n-Butyl, t-Butyl, sec-Butyl, i-Pentyl, n-Pentyl, sec-Pentyl, neo-Pentyl, n-Hexyl, i- Hexyl und sec-Hexyl. Ganz besonders bevorzugt sind Methyl, i-Propyl, tert-Butyl.
Unter einem Cycloalkylrest oder einer Cycloalkylgruppe ist ein cyclischer Rest mit 3 bis 20 Kohlenstoffatomen, bevorzugt 3 bis 10 Kohlenstoffatomen, besonders bevorzugt 3 bis 8 Kohlenstoffatomen zu verstehen. Dieser Cycloalkylrest kann gegebenenfalls mit einem oder mehreren Heteroatomen, bevorzugt N, O oder S unterbrochen sein. Des Weiteren kann dieser Cycloalkylrest unsubstituiert oder substituiert sein, d. h. mit einem oder mehreren der bezüglich der Arylgruppen genannten Substituenten substituiert sein. Es ist ebenfalls möglich, dass der Cycloalkylrest eine oder mehrere Arylgruppen trägt. Dabei sind alle der vorstehend aufgeführten Arylgruppen geeignet. Besonders bevorzugt sind die Cycloalkylreste ausgewählt aus der Gruppe bestehend aus Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl. Ganz besonders bevorzugt ist Cyclohexyl. Das bezüglich der Aryl-, Heteroaryl, Alkyl- und Cycloalkylreste Gesagte trifft erfindungsgemäß unabhängig voneinander auf die Reste R1, R2 und R3 zu, wobei R2 und R3 für den Fall, dass A gleich N ist, ein freies Elektronenpaar bedeuten, d. h., dass an diesen Ring-Stickstoffatomen kein Substituent ausgewählt aus der oben genannten Gruppe vorliegt. Für den Fall, dass A gleich C ist, liegen als R2 und R3 unabhängig voneinander Wasserstoff und/oder die genannten Substituenten vor.
In einer weiteren Ausführungsform der dinuklearen Komplexe der allgemeinen Formel (I) bilden R1 und R2 oder R2 und R3 zusammen mit den Atomen A und/oder N des N- heterocyclischen Carbens einen gegebenenfalls von wenigstens einem Heteroatom unterbrochenen gesättigten, ungesättigten oder aromatischen Kohlenstoffring mit insgesamt 5 bis 30 Kohlenstoff- und/oder Heteroatomen.„Insgesamt" bedeutet gemäß der vorliegenden Erfindung, dass die Ringatome A, die in dieser Ausführungsform gleich C sind, mitgezählt werden. Erfindungsgemäß bilden nur die Reste R1 und R2 oder R2 und R3 entsprechende Ringe, die sich am gleichen Fünfring befinden.
In einer bevorzugten Ausführungsform bilden R2 und R3 zusammen einen gegebenenfalls von wenigstens einem Heteroatom unterbrochenen gesättigten, ungesättigten oder aromatischen Kohlenstoffring mit insgesamt 5 bis 30 Kohlenstoff- und/oder Heteroatomen. Beispielsweise bilden R2 und R3 zusammen mit den beiden Ringatomen einen Cyclopentenyl-, Cyclohexenyl-, Phenylring, Pyridinring, Pyrimidinring oder Pyrazinring.
In den dinuklearen Komplexen der allgemeinen Formel (I) bedeutet M unabhängig voneinander Ag, Au oder Cu. Gemäß Formel (I) liegen in den erfindungsgemäßen Komplexen zwei Metallatome M vor. Erfindungsgemäß ist es möglich, dass in einem Komplex zwei gleiche Metallatome, beispielsweise zwei Ag, zwei Au oder zwei Cu, oder zwei unterschiedliche Metallatome M, beispielsweise Ag und Au, Ag und Cu oder Au und Cu, vorliegen. In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegen in den dinuklearen Komplexen der allgemeinen Formel (I) zwei gleiche Metallatome vor, besonders bevorzugt zwei Ag-Atome.
In den erfindungsgemäßen dinuklearen Carben-Komplexen der allgemeinen Formel (I) liegen die Metallatome M in der Oxidationsstufe +l vor. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen dinuklearen Carben-Komplexes weisen A, M, R1, R2 und R3 die folgenden Bedeutungen auf:
A C,
M Ag, unabhängig voneinander, linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen, beispielsweise iso-Propyl oder tert.-Butyl, oder substituierter oder unsubstituierter Cycloalkylrest mit 3 bis 8 Kohlenstoffatomen, beispielsweise Cyclohexyl, oder substituierter oder unsubstituierter Arylrest mit 6 bis 10 Kohlenstoffatomen, beispielsweise 2,4,6- Trimethylphenyl (Mesityl), oder substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen und R2, R3 unabhängig voneinander Wasserstoff, linearer oder verzweigter Alkylrest mit 1 bis 6 Kohlenstoffatomen, oder substituierter oder unsubstituierter Arylrest mit 6 bis 10 Kohlenstoffatomen oder substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen. oder
R2 und R3 bilden zusammen mit den Atomen A einen gegebenenfalls von wenigstens einem Heteroatom unterbrochenen aromatischen Kohlenstoffring mit insgesamt 5 bis 10 Kohlenstoff- und/oder Heteroatomen,
In einer ganz besonders bevorzugten Ausführungsform entsprechen die erfindungsgemäßen dinuklearen Carben-Komplexe der allgemeinen Formel (I) den folgenden Formeln (la), (Ib), (Ic) oder (Id):
Figure imgf000010_0001
(Ib) 
Figure imgf000011_0001
Figure imgf000012_0001
11
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Die vorstehend genannten dinuklearen Carben-Komplexe und Mischungen davon sind hervorragend als Emittermoleküle in organischen Licht-emittierenden Dioden (OLEDs) geeignet. Durch Variationen der Liganden ist es möglich, entsprechende Komplexe bereitzustellen, die Elektrolumineszenz im roten, grünen sowie insbesondere im blauen Bereich des elektromagnetischen Spektrums zeigen. Die erfindungsgemäß verwendeten neutralen Übergangsmetallkomplexe eignen sich daher für den Einsatz in technisch verwendbaren OLEDs.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung der erfindungsgemäßen dinuklearen Carben-Komplexe durch Inkontaktbringen von Verbindungen, die das entsprechende Metall-Kation enthalten, mit den entsprechenden Liganden bzw. Ligandvorläufern.
Übliche Verfahren sind z. B. die Deprotonierung von den, den Liganden der Verbindungen der allgemeinen Formel (I) entsprechenden, Ligandvorläufern und anschließende, im Allgemeinen In situ, Umsetzung mit geeigneten M-enthaltenden Metallverbindungen, insbesondere Ag-, Au- und/oder Cu-enthaltenden Metallverbindungen. Diese Ausführungsform ist bevorzugt.
Des Weiteren kann die Herstellung der erfindungsgemäßen Komplexe der allgemeinen Formel (I) durch direkte Umsetzung der neutralen, den Liganden der entsprechenden Komplexe der allgemeinen Formel (I) entsprechenden Ligandvorlaufer mit geeigneten Metall-enthaltenden Verbindungen erfolgen.
Eine weitere Herstellungmethode ist die Transmetallierung, bei der der Ligand von einem Metall auf ein anderes übertragen wird.
Geeignete Ligandvorlaufer, die zu den Liganden der Carbenkomplexe der allgemeinen Formel (I) führen, sind dem Fachmann bekannt, beispielsweise die entsprechenden Imidazolium-, Benzimidazolium- oder Triazoliumsalze. Verfahren zur Herstellung dieser Ligandvorlaufer sind dem Fachmann bekannt.
Erfolgt eine Deprotonierung der Liganden, so kann diese durch dem Fachmann bekannte basische Verbindungen, beispielsweise basische Metallate, basische Metallacetate, -acetylacetonate oder -alkoxylate oder Basen wie KO'Bu, NaO'Bu, LiO'Bu, NaH, Silylamide sowie Phosphazen-Basen erfolgen. Bevorzugt erfolgt die Deprotonierung mit Ag20.
Die Umsetzung erfolgt bevorzugt in einem Lösungsmittel. Geeignete Lösungsmittel sind dem Fachmann an sich bekannt und sind bevorzugt ausgewählt aus der Gruppe bestehend aus aromatischen oder aliphatischen Lösungsmitteln, Ethern, Alkoholen, Estern, Amiden, Ketonen, Nitrilen, halogenierten Verbindungen und Mischungen davon. Ein besonders bevorzugtes Lösungsmittel ist Dichlormethan.
Für das erfindungsgemäße Verfahren geeignete Verbindungen, die das bzw. die entsprechenden Metallatome M enthalten, sind im Allgemeinen alle dem Fachmann bekannten Verbindungen, die eine genügend hohe Reaktivität unter den erfindungsgemäßen Reaktionsbedingungen haben. Beispiele für geeignete Verbindungen sind beispielsweise Silber(l)oxid Ag20, AgBF4, Ag2C03, Ag(OOCCH3), AgN03, Cu20, Cul, CuBr, CuCI, Cu(OTf)2, [Cu(CH3CN)4]PF6, Au(tht)CI, Au(SMe2)CI oder Mischungen davon.
Das molare Verhältnis von eingesetzter Metall-enthaltender Verbindung zu eingesetztem Ligandvorläufer beträgt im Allgemeinen 1 bis 10, bevorzugt 1 bis 5, besonders bevorzugt 1 bis 1 ,2. Die Umsetzung erfolgt im Allgemeinen bei einer Temperatur von 0 bis 160 °C, bevorzugt 10 bis 100 °C, besonders bevorzugt 20 bis 50 °C, beispielsweise Raumtemperatur. Die Reaktionsdauer ist abhängig von dem gewünschten Carben-Komplex und beträgt im Allgemeinen 0,1 bis 50 Stunden, bevorzugt 0,5 bis 40 Stunden, besonders bevorzugt 10 bis 30 Stunden, beispielsweise 24 Stunden.
Der erhaltene Carben-Komplex der allgemeinen Formel (I) wird nach dem Fachmann bekannten Methoden aufgearbeitet. Beispielsweise wird das während der Umsetzung ausgefallene Produkt filtriert, gewaschen, z. B. mit Ether, insbesondere Diethylether, und anschließend getrocknet. Durch Umkristallisation, z. B. aus Dichlormethan/Diethylether oder Dichlorethan/Diethylether, werden hochreine, erfindungsgemäße Carben-Komplexe erhalten.
Die erfindungsgemäßen dinuklearen Carben-Komplexe der allgemeinen Formel (I) eignen sich hervorragend als Emittersubstanzen, da sie eine Emission (Elektrolumineszenz) im sichtbaren Bereich des elektromagnetischen Spektrums, beispielsweise bei 400 bis 500 nm, aufweisen. Durch die dinuklearen Carben- Komplexe ist es möglich, Verbindungen bereitzustellen, die Elektrolumineszenz im roten, grünen sowie im blauen Bereich des elektromagnetischen Spektrums aufweisen. Somit ist es möglich, mithilfe der erfindungsgemäßen dinuklearen Carben-Komplexe als Emittersubstanzen technisch einsetzbare OLEDs bereitzustellen. Eine besondere Eigenschaft der erfindungsgemäßen dinuklearen Carben-Komplexe der allgemeinen Formel (I) ist, dass diese im Festkörper Lumineszenz, besonders bevorzugt Elektrolumineszenz, im sichtbaren Bereich des elektromagnetischen Spektrums zeigen. Diese im Festkörper lumineszierenden Komplexe können in Substanz, also ohne weitere Zusätze, als Emittersubstanzen in OLEDs eingesetzt werden. Dadurch kann ein OLED mit einer Licht emittierenden Schicht hergestellt werden, wobei keine aufwändige Coverdampfung eines Matrixmaterials mit der Emittersubstanz erforderlich ist. Dinukleare Carben-Komplexe der allgemeinen Formel (I) gemäß der vorliegenden Erfindung, die im Festkörper Lumineszenz, insbesondere Elektrolumineszenz, zeigen, sind aus dem Stand der Technik nicht bekannt. Bevorzugt werden die Komplexe in einer Matrix eingesetzt.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher ein OLED, enthaltend wenigstens einen erfindungsgemäßen dinuklearen Carben-Komplex der allgemeinen Formel (I) . Ein weiterer Gegenstand der vorliegenden Anmeldung ist auch die Verwendung der dinuklearen Carben-Komplexe der allgemeinen Formel (I) als Licht-emittierende Schicht in OLEDs, bevorzugt als Emitter, Matrixmaterial, Ladungstransportmaterial und/oder Ladungsblocker.
Organische Licht-emittierende Dioden sind grundsätzlich aus mehreren Schichten aufgebaut:
Anode (1 )
- Löcher-transportierende Schicht (2)
Licht-emittierende Schicht (3)
Elektronen-transportierende Schicht (4)
Kathode (5) Die dinuklearen Carben-Komplexe der allgemeinen Formel (I) werden bevorzugt in der Licht-emittierenden Schicht (3) als Emittermoleküle eingesetzt.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher eine Licht-emittierende Schicht enthaltend mindestens einen der erfindungsgemäßen dinuklearen Carben- Komplexe der allgemeinen Formel (I), bevorzugt als Emittermolekül. Bevorzugte dinukleare Carben-Komplexe der allgemeinen Formel (I) sind bereits vorstehend genannt.
Die erfindungsgemäß verwendeten dinuklearen Carben-Komplexe der allgemeinen Formel (I) können in Substanz, d. h. ohne weitere Zusätze, in der Licht-emittierenden Schicht vorliegen. Es ist jedoch auch möglich, dass neben den erfindungsgemäß eingesetzten dinuklearen Carben-Komplexen der allgemeinen Formel (I) weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des als Emittermoleküls eingesetzten dinuklearen Carben-Komplexes zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses Verdünnungsmaterial kann ein Polymer sein, z. B. Poly(N-vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, z. B. 4,4'-N,N'-Dicarbazolbiphenyl (CDP) oder tertiäre aromatische Amine. Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsgemäß eingesetzten dinuklearen Carben-Komplexe in der Licht-emittierenden Schicht im Allgemeinen weniger als 40 Gew.-%, bevorzugt 3 bis 30 Gew.-%. Bevorzugt werden die erfindungsgemäßen dinuklearen Carben-Komplexe der allgemeinen Formel (I) in einer Matrix eingesetzt, Somit enthält die Licht-emittierende Schicht bevorzugt mindestens einen erfindungsgemäßen dinuklearen Carben-Komplex der allgemeinen Formel (I) und ein Matrixmaterial als Verdünnungsmaterial.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist eine Licht-emittierende Schicht enthaltend mindestens einen dinuklearen Carben-Komplex der allgemeinen Formel (I) als Emittermolekül. Bevorzugte Komplexe der allgemeinen Formel (I) wurden bereits vorstehend genannt.
Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus zwei oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löchertransportierende Schicht aus einer Schicht aufgebaut sein, in die aus der Elektrode Löcher injiziert werden und einer Schicht, die die Löcher von der Loch-injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronentransportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, z. B. einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Licht-emittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten dinuklearen Carben-Komplexe gemäß der vorliegenden Erfindung angepasst ist. Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der elektronentransportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist ein OLED enthaltend mindestens eine erfindungsgemäße Licht-emittierende Schicht. Die weiteren Schichten in dem OLED können aus einem beliebigen Material aufgebaut sein, das üblicherweise in solchen Schichten eingesetzt wird und dem Fachmann bekannt ist.
Die Anode ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen 1 1 , 4, 5 und 6 des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppen 8 bis 10. Wenn die Anode lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen 12, 13 und 14 des Periodensystems der Elemente eingesetzt, zum Beispiel Indium- Zinn-Oxid (ITO). Es ist ebenfalls möglich, dass die Anode (1 ) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (1 1. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können. Geeignete Lochtransportmaterialien für die Schicht (2) des erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technology, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus 4,4'-Bis[N-(1 -naphthyl)-N-phenyl-amino]biphenyl (α-NPD), N, N'- Diphenyl-N, N'-Bis(3-methylphenyl)-[1 ,1 '-biphenyl]-4,4'-diamin (TPD), 1 ,1 -Bis[(di-4- tolylamino)phenyl]cyclohexan (TAPC), N, N'-Bis(4-methylphenyl)-N, N'-Bis(4- ethylphenyl)-[1 ,1 '-(3,3'-dimethyl)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3- methylphenyl)-N,N,N',N'-2,5-phenylendiamin (PDA), a-Phenyl-4-N,N-diphenylamino- styrol (TPS), p-(Diethylamino)-benzaldehyddiphenylhydrazon (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)-2-methylphenyl)(4-methyl-phenyl)methan (MPMP), 1 - Phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1 ,2-trans-Bis(9H-carbazol-9-yl)cyclobutan (DCZB), N,N,N',N'-tetrakis(4- methylphenyl)-(1 ,1 '-biphenyl)-4,4'-diamin (TTB) und Porphyrinverbindungen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinylcarbazolen, (Phenylmethyl)polysilanen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle.
Geeignete Elektronen transportierende Materialien für die Schicht (4) der erfindungsgemäßen OLEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8-hydroxychinolato)aluminium (Alq3), Verbindungen auf Phenanthrolinbasis wie 2,9-Dimethyl, 4,7-Diphenyl-1 , 10-phenanthrolin (DDPA) oder 4,7-Diphenyl-1 ,10-phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5- (4-t-butylphenyl)-1 ,3,4-oxadiazol (PBD) und 3-(4-Biphenylyl)-4-phenyl-5-(4-t- butylphenyl)-1 ,2,4-triazol (TAZ). Dabei kann die Schicht (4) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrschicht, um ein Quenchen des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (4) die Beweglichkeit der Elektronen und reduziert ein Quenchen des Excitons.
Die Kathode (5) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Die Kathode kann jedes Metall oder Nichtmetall sein, das eine geringere Arbeitsfunktion aufweist als die Anode. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe 1 , zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe 2, Metallen der Gruppe 12 des Periodensystems der Elemente, umfassend die Seltenerdmetalle und die Lanthanide und Aktinide. Des Weiteren können Metalle wie Aluminium, Indium, Calcium, Barium, Samarium und Magnesium sowie Kombinationen davon eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.
Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinander anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen.
In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1 ) bis (5) mindestens eine der im Folgenden genannten weiteren Schichten:
eine Loch-Injektionsschicht zwischen der Anode (1 ) und der Löchertransportierenden Schicht (2);
eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3);
eine Blockschicht für Löcher zwischen der Licht-emittierenden Schicht (3) und der Elektronen-transportierenden Schicht (4); eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (4) und der Kathode (5).
Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z. B. in WO 00/70655 offenbart.
Des Weiteren ist es möglich, dass einige oder alle der Schichten (1 ), (2), (3), (4) und (5) oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz zu erhalten.
Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das OLED durch aufeinanderfolgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln beschichtet werden, wobei dem Fachmann bekannte Beschichtungstechniken angewendet werden.
Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (2) 500 bis 5000 Ä (Angstrom), bevorzugt 1000 bis 2000 Ä; Löcher-transportierende Schicht (3) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä, Licht-emittierende Schicht (4) 10 bis 1000 Ä, bevorzugt 100 bis 800 Ä, Elektronen transportierende Schicht (5) 50 bis 1000 Ä, bevorzugt 200 bis 800 Ä, Kathode (6) 200 bis 10.000 Ä, bevorzugt 300 bis 5000 Ä. Die Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED und somit das Emissionsspektrum des OLED können durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Elektronen/Löcher Rekombinationszone in der Licht-emittierenden Schicht liegt. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von gegebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt. Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, worin Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen und Beleuchtungsmitteln. Die vorliegende Erfindung betrifft daher auch eine Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen und mobilen Bildschirmen und Beleuchtungsmitteln, enthaltend ein erfindungsgemäßes OLED.
Stationäre Bildschirme sind z. B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.
Weiterhin können die erfindungsgemäßen dinuklearen Carben-Komplexe der allgemeinen Formel (I) in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die erfindungsgemäßen Komplexe in diesen inversen OLEDs wiederum in der Licht-emittierenden Schicht, besonders bevorzugt als Licht-emittierende Schicht ohne weitere Zusätze, eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt. Beispiele
Die Herstellung der Imidazole erfolgt nach den folgenden Literaturvorschriften:
1 . Arduengo, A. J., III; Gentry, F. P., Jr.; Taverkere, P. K.; Simmons, H. E., III, 98- 1937006177575, 2001
2. Liu, J.; Chen, J.; Zhao, J.; Zhao, Y.; Li, L; Zhang, H., Synt esis 2003, 17, 2661 - 2666.
Beispiel 1 : Synthese der Bisimidazolium-Salze (3a-g)
Figure imgf000024_0001
2 Cl-
(2a) R1 = Mesityl (3a) R1 = Mesityl, 45%
(SHDT) (2b) R = cyclohexyl (3b) R1 = cyclohexyl, 70%
(2c) R = tert-butyl (3c) R = tert-butyl, 65%
Figure imgf000024_0002
(2a) R1 = Mesityl (3a) R1 = Mesityl, 43%
(1 ) (2b) R = cyclohexyl (3b) R = cyclohexyl, 33%
(2c) R = tert-butyl (3c) R1 = tert-butyl, 82% (2d) R = isopropyl (3d) R1 = isopropyl, 93%
Oberes Reaktionsschema, Variante 1 : Natrium-hydroxy-2,4-dichloro-1 ,3,5-triazin (SHDT), wässrige Lsg. als Reaktand, unteres Reaktionsschema, Variante 2:
Cyanursäurechlorid (1 ) als Reaktand.
Variantel :
Zu einer gerührten Lösung des Natriumsalzes von Hydroxy-2,4-dichlor-1 ,3,5-triazin (sodiumhydroxy-2,4-dichloro-1 ,3,5-triazine = SHDT, 8% wässrige Lösung) in THF (0.8 mL / mmol SHDT) wird eine Lösung von zwei Äquivalenten des entsprechenden Imidazol (2a-c) in THF (0.8 mL / mmol Imidazol) gegeben. Die einphasige Lösung wird für bis zu 5 Tage refluxiert. Der in einigen Fällen gebildete Feststoff wird abfiltriert und das Filtrat im Vakuum eingeengt. Das Rohprodukt wird in einer kleinen Menge CH2CI2 gelöst und durch die Zugabe von Diethylether ausgefällt. Der Feststoff wird abfiltiert, falls nötig mit Aceton gewaschen und im Vakuum getrocknet.
Variante 2:
Zu einer Lösung von Cyanursäurechlorid (1 ) in Acetonitril (5 mL / mmol Cyanursäurechlorid) werden tropfenweise bis zu 5 Äquivalente des entsprechenden Imidazols (2a-d) in Acetonitril (ca. 10 mL / mL Imidazol) bei 0°C gegeben, worauf sich ein Feststoff bildet. Die Suspension wird für 30 Minuten bei Raumtemperatur gerührt, 30 Minuten bei 60 °C und anschließend 4.5 Stunden refluxiert. Der erhaltene Feststoff wird abfiltiert, mit (heißem) Aceonitril gewaschen und im Vakuum getrocknet. Analytische Daten:
1.1 4,6-Bis-(1 -mesitylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid Hydrochlorid
(3a)
Variante 1 : Ausbeute 45%
1H-NMR (DMSO-de): δ (ppm) 10.52 (s, 2H, N-CH=N), 8.83 (s, 2H, N-CH=CH), 8.18 (s, 2H, N-CH=CH), 7.18 (s, 4H, CHar), 2.34 (s, 6H, CH3 para), 2.10 (s, 12H, CH3 ortho).
1.2 4,6-Bis-(1 -cyclohexylimidazolium-3-yl)-1 ,3,5-triazin-2- olat-chlorid Hydrochlorid (3b)
Variante 1 : Ausbeute 70%
1H-NMR (DMSO-de): δ (ppm) 10.42 (s, 2H, N-CH=N), 8.58 (s, 2H, N-CH=CH), 8.15 (s, 2H, N-CH=CH), 4.44 (m, 2H, c^'0^'), 2.10 (m, 4H, CH2 cyclohexyl), 1 .90 (m, 8H, CH2 cyclohexyl), 1 .70 (m, 2H, CH2 cyclohexyl), 1 .30 (m, 6H, CH2 cyclohexyl).
1.3 4,6-Bis-(1 -feri-butylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid (3c)
Variante 2: Ausbeute 82 %
1H-NMR (DMSO-de): δ (ppm) 10.21 (s, 2H, N-CH=N), 8.70 (s, 2H, N-CH=CH), 8.26 (s, 2H, N-CH=CH), 1 .70 (s, 9H, CH3).
1.4 4,6-Bis-(1 -isopropylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid
Hydrochlorid (3d)
Variante 2: Ausbeute 93 %
1H-NMR (DMSO-de): δ (ppm) 10.52 (s, 2H, N-CH=N), 8.61 (s, 2H, N-CH=CH), 8.18 (s, 2H, N-CH=CH), 4.82 (sept, J = 6.7 Hz, 1 H, CH), 1.60 (s, 6H, CH3), 1.58 (s, 6H, CH3).
1.5 4,6-Bis-(1 -cyclopentylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid
hydrochlorid (3e
Figure imgf000025_0001
(3e)
Das Produkt wird analog der allgemeinen Synthesevorschrift (Variante 2) als weißer Feststoff erhalten. (598 mg, 14%). 1 H N MR (DMSO-de): δ (ppm) 10.26 (s, 2H , N-CH=N), 8.57 (s, 2H , N-CH=CH), 8.08 (s, 2H, N-CH=CH), 4.89 (sept, 2H, CH), 1 .40-2.30 (m, 16H, CH2). 13C N MR (DMSO-d6): δ (ppm) 165.20 {Cipso), 159.68 (Cipso), 135.28 (CH), 121 .86 (CH), 1 19.28 (CH), 61 .29 (CH), 32.41 (CH2), 23.27 (CH2).
4,6-Bis-(1 -p-methylphenylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid hydrochlorid (3f)
Figure imgf000026_0001
(3f)
Das Produkt wird analog der allgemeinen Synthesevorschrift (Variante 2) und Umkristallisation aus Ethanol als hellgelber Feststoff erhalten. (648 mg, 25%).
1 H NMR (DMSO-de): δ (ppm) 10.80 (s, 2H , N-CH=N), 8.82 (s, 2H , N-CH=CH), 8.53 (s, 2H, N-CH=CH), 7.90 (s, 2H, CHaromatic), 7.87 (s, 2H, CHaromatic), 7.51 (s, 2H, CHaromatic), 7.48 (s, 2H, CHaromatic), 2.43 (s, 6H, CH3 para). 13C N MR (DMSO-d6): δ (ppm) 159.71 (CipS0), 140.20 (CipS0), 134.75 (CH), 132.16 ( pso), 130.29 (CH) , 122.45 (CH), 122.27 (CH), 1 19.55 (CH), 20.56 (CH3).
1.7 4,6-Bis-(1 -p-methoxyphenylimidazolium-3-yl)-1 ,3,5-triazin-2-olat-chlorid hydrochlorid (3g)
Figure imgf000026_0002
(3g)
Das Produkt wird analog der allgemeinen Synthesevorschrift (Variante 2) und Umkristallisation aus einem Ethanol-Aceton-Wasser-Gemisch (3:1 :0.01 ) als hellgelber Feststoff erhalten. (2.998g, 62%).
1 H NMR (DMSO-de): δ (ppm) 10.74 (s, 2H, N-CH=N), 8.79 (s, 2H, N-CH=CH), 8.48 (s, 2H, N-CH=CH), 7.93 (s, 2H, CHaromalic), 7.90 (s, 2H, CHaromalic), 7.24 (s, 2H, CHaramatic), 7.21 (s, 2H, CHaramatic), 3.87 (s, 6H, OCH3 para). 13C NMR (DMSO-d6): δ (ppm) 165.23 (Qpso), 160.29 (Qpso), 159.72 (Cipso), 134.73 (CH), 127.52 (Cipso), 124.04 (CH) , 122.63 (CH), 1 19.38 (CH), 1 14.89 (CH), 55.72 (CH3). Beispiel 2: Synthese der Silber-NHC Komplexe (5)
Figure imgf000027_0001
(3a) R1 = Mesityl (5a) R1 = Mesityl, 75%
(3b) R = cyclohexyl (5b) R1 = cyclohexyl, 77%
(3c) R = tert-butyl (5c) R = tert-butyl, 40%
(3d) R = isopropyl (5d) R1 = isopropyl, 55%
Di-[silber(l)-4,6-bis-(1 -mesitylimidazoN
(5a)
In einem vor Lichteintrag geschützten 25 mL Rundkolben werden 269 mg Bisimidazoliumsalz (3a) und 142 mg Silber(l)-oxid in 15 mL Dichlormethan suspendiert. Nach 24 stündigem Rühren bei Raumtemperatur wird die Suspension durch Celite® filtriert und auf ein Volumen von ca. 5 mL konzentriert. Das Rohprodukt wird durch die Zugabe von 20 mL Diethylether ausgefällt, anschließend zweimal mit ja 10 mL Diethylether gewaschen und im Vakuum getrocknet, woraus das Produkt in 64 % Ausbeute als farbloser Feststoff isoliert wird (182.7 mg). 1 H-NMR (DMSO-d6): δ (ppm) 8.26 (s, 4H , N-CH=CH), 6.83 (s, 4H , N-CH=CH), 6.80 (s, 4H , CHar), 6.75 (s, 4H , CHar), 2.26 (s, 12H, CH3 para), 1 .75 (s, 4H , H20), 1 .60 (s, 12H , CH3 ortho), 1 .54 (s, 12H, CH3 ortho).
2.2 Di-[silber(l)-4,6-bis-(1 -cyc/oftexylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2- olat (5b)
In einem vor Lichteintrag geschützten 25 mL Rundkolben werden 232.6 mg Bisimidazoliumsalz (3b) und 142 mg Silber(l)-oxid in 15 mL Dichlormethan suspendiert. Nach 24 stündigem Rühren bei Raumtemperatur wird die Suspension durch Celite® filtriert und auf ein Volumen von ca. 5 mL konzentriert. Das Rohprodukt wird durch die Zugabe von 20 mL Diethylether ausgefällt, anschließend zweimal mit ja 10 mL Diethylether gewaschen und im Vakuum getrocknet, woraus das Produkt in 70 % Ausbeute als farbloser Feststoff isoliert wird (174 mg). 1 H-NMR (DMSO-d6): δ (ppm) 8.09 (s, 4H, N-CH=CH), 6.96 (s, 4H , N-CH=CH), 3.83 (m, 4H, CH), 1 .75 (s, 8H , H20), 0.80-1 .75 (m, 40H , CH3). 2.3 Di-[silber(l)-4,6-bis-(1 -ferf-butylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2- olat (5c)
In einem vor Lichteintrag geschützten 25 mL Rundkolben werden 206 mg Bisimidazoliumsalz (3c) und 142 mg Silber(l)-oxid in 15 mL Dichlormethan suspendiert. Nach 24 stündigem Rühren bei Raumtemperatur wird die Suspension durch Celite® filtriert und auf ein Volumen von ca. 5 mL konzentriert. Das Rohprodukt wird durch die Zugabe von 20 mL Diethylether ausgefällt, anschließend zweimal mit ja 10 mL Diethylether gewaschen und im Vakuum getrocknet, woraus das Produkt in 40 % Ausbeute als farbloser Feststoff isoliert wird (90.5 mg). 1 H-N MR (DMSO-d6): δ (ppm) 8.10 (s, 4H, N-CH=CH), 7.14 (s, 4H, N-CH=CH), 1 .67 (s, 13.2H, H20), 1 .37 (d, 34H, CH3).
2.4 Di-[silber(l)-4,6-bis-(1 -isopropylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2- olat (5d)
In einem vor Lichteintrag geschützten 25 mL Rundkolben werden 193 mg Bisimidazoliumsalz (3b) und 142 mg Silber(l)-oxid in 15 mL Dichlormethan suspendiert. Nach 24 stündigem Rühren bei Raumtemperatur wird die Suspension durch Celite® filtriert und auf ein Volumen von ca. 5 mL konzentriert. Das Rohprodukt wird durch die Zugabe von 20 mL Diethylether ausgefällt, anschließend zweimal mit ja 10 mL Diethylether gewaschen und im Vakuum getrocknet, woraus das Produkt in 55 % Ausbeute als farbloser Feststoff isoliert wird (1 15.1 mg). 1 H-NMR (DMSO-d6): δ (ppm) 8.10 (s, 4H, N-CH=CH), 6.97 (s, 4H, N-CH=CH), 4.30 (sept, 4H, CH), 1 .30 (d, 12H, CH3), 0.97 (d, 12H, CH3).
2.5 Di-[silber(l)-4,6-bis-(1 -cyclopentylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin- 2-olat] (5e)
Figure imgf000028_0001
(5e) In einem lichtgeschützten 25 mL Einhalskolben werden 44 mg Bisimidazoliumsalz (3e) und 28 mg Silber(l)-oxid in 10 ml Dichlormethan suspendiert. Nach 24 h Rühren bei Raumtemperatur wird die Suspension durch Celite gefiltert und anschließend im Vakuum auf ca. 3 mL eingeengt. Durch Zugabe von 20 mL Diethylether wird das Rohprodukt gefällt, filtriert und zweimal mit 10 mL Diethylether gewaschen. Nach Trocknen im Vakuum erhält man das Produkt als weißen Feststoff in 30 % Ausbeute (29mg).
1 H N MR (DMSO-de): δ (ppm) 8.12 (s, 4H, N-CH=CH), 6.97 (s, 4H, N-CH=CH), 4.41 (sept, 4H, N-CH-CH2), 2.1 (Acetonitrile), 2.0-1 .2 (m, 32, CH2). 13C NMR (DMSO-d6): δ (ppm) 183.90 (dd, Ccarbene), 168.84 (Cipso), 162.68 (Cipso), 1 19.26 (CH), 63.52 (CH), 34.47 (CH2), 32.93 (CH2), 24.41 (CH2), 24.36 (CH2).
2.6 Di-[silber(l)-4,6-bis-(1 -p-methylphenylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5- triazin-2-olat] (5f)
Figure imgf000029_0001
(5f)
In einem lichtgeschützten 250 mL Einhalskolben werden 241 mg Bisimidazoliumsalz (3f) und 139 mg Silber(l)-oxid in 100 ml Dichlormethan suspendiert. Nach 24 h Rühren bei Raumtemperatur wird die Suspension durch Celite gefiltert und anschließend im Vakuum auf ca. 10 mL eingeengt. Durch Zugabe von 100 mL Diethylether wird das Rohprodukt gefällt, filtriert und zweimal mit 20 mL Diethylether gewaschen. Nach Trocknen im Vakuum erhält man das Produkt als weißen Feststoff in 24 % Ausbeute (123mg).
1 H NMR (DMSO-de): δ (ppm) 8.37 (s, 4H, N-CH=CH), 7.24 (s, 4H , N-CH=CH), 7.04 (s, 4H, C/- aromatic), 7.01 (s, 4H, CHaromat\c), 6.98 (s, 4H, CHaromat\c), 6.95 (s, 4H, CHaromat\c), 2.30 (s, 12H, CH3 para), 1 .75 (H20).13C NMR (DMSO-d6): δ (ppm) 184.36 (dd, Ccarbene), 181 ,62 (dd, Ccarbene), 168.64 (Cipso), 162.58 ( pso), 139.60 ( pso), 137.27 ( pso), 130.12 (CH), 122.49 (CH), 121 .78 (d, CH), 1 19.80 (d, CH), 20.96 (CH3).
2.7 Di-[silber(l)-4,6-bis-(1 -p-methoxyphenylimidazolin-2,2'-diyliden-3-yl)-1 ,3,5- triazin-2-olat] (5g)
Figure imgf000030_0001
(5g)
In einem lichtgeschützten 250 mL Einhalskolben werden 514 mg Bisimidazoliumsalz (3g) und 278 mg Silber(l)-oxid in 200 ml Dichlormethan suspendiert. Nach 48 h Rühren bei Raumtemperatur wird die Suspension durch Celite gefiltert und anschließend im Vakuum auf ca. 10 mL eingeengt. Durch Zugabe von 100 mL Diethylether wird das Rohprodukt gefällt, filtriert und zweimal mit 10 mL Diethylether gewaschen. Nach Trocknen im Vakuum erhält man das Produkt als weißen Feststoff in 3 % Ausbeute (31 mg).
1 H NMR (DMSO-de): δ (ppm) 8.34 (d, 4H, N-CH=CH), 7.23 (d, 4H, N-CH=CH), 6.99 (s,
4H, C/-/aromatic), 6.96 (S, 4H, CHaramatic). 6.74 (S, 4H, C/-/aromatic), 6.71 (S, 4H, C -/aramatic)>
3.78 (s, 12H, CH3 para), 1 .59 (H20). 13C NMR (DMSO-d6): δ (ppm) 168.57 (Cipso), 162.66 (CipS0), 160.06 (CipS0), 132.68 ( pso), 124.08 (CH), 122.01 (d, CH), 1 19.67 (d, CH), 1 14.60 (CH), 55.77 (CH3). ESI/MS (m/z): 1095.1 [M+H]+.
Beispiel 3: Photolumineszenz-(PL)-Daten Beispiel 3.1
Figure imgf000031_0001
(5d)
Figure imgf000031_0003
Beispiel 3.2
Figure imgf000031_0002
Figure imgf000031_0004
Beispiel 3.3
Figure imgf000032_0001
Beispiel 3.4
Figure imgf000032_0002
(5a)
Figure imgf000032_0003
Der Graph der Photolumineszenzmessung ist in Figur 1 abgebildet. Die Messung erfolgt mit einer dünnen Schicht bestehend aus 2% Komplex in PMMA. Auf der x-Achse ist die Wellenlänge in nm, auf der y-Achse sind die counts aufgetragen.
Beispiel 4: Synthese von Gold-NHC-Komplexen (6) 4.1 Di-[gold(l)-4,6-bis-(1 -ferf-butyl-imidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2- olat] (6a)
Figure imgf000033_0001
(6a)
In einem lichtgeschützten 50 mL Rundkolben werden 100 mg Di-[silber(l)-4,6-bis-(1 - iert-butyl-imidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2-olat (5c) und 72 mg Gold(l)- tetrahydro-thiophen-chlorid bei Raumtemperatur 3 Stunden in Acetonitril gerührt. Die erhaltene Suspension wird durch Celite gefiltert und anschließend im Vakuum eingeengt. Durch Zugabe von 30 mL Diethylether wird das Rohprodukt gefällt, filtriert und zweimal mit 10 mL Diethylether gewaschen. Nach Trocknen im Vakuum erhält man das Produkt als weißen Feststoff in 50 % Ausbeute (60mg).
1H NMR (CDCI3): δ (ppm) 8.05 (d, 4H, N-CH=CH), 7.12 (d, 4H, N-CH=CH), 1.67 (H20), 1 .50 (s, 36H, CH3). 13C NMR (CDCI3): δ (ppm) 181.79 (Ccarbene), 168.87 (Cipso), 162.62 (Cipso), 1 18.56 (CH), 1 17.66 (CH), 58.94 (CH), 30.47 (CH3).
ESI/MS (m/z): 1075.3 [M+H]+.
Beispiel 5: Synthese von Kupfer-NHC-Komplexen (7)
Di-[kupfer(l)-4,6-bis-(1 -mesityl-imidazolin-2,2'-diyliden-3-yl)-1 ,3,5-triazin-2- olat] (7a)
Figure imgf000034_0001
(7a)
Die Reaktion wird in einer Glovebox unter Argonatmosphäre durchgeführt. Zu 400 mg des Bisimidazoliumsalzes (3a), 75 mg Kupfer(l)oxid sowie 183 mg Natriumacetat werden 20 mL trockenes Acetonitril hinzugefügt und die Reaktionsmischung 3 Stunden refluxiert, woraufhin eine Gelbfärbung eintrat. Die Reaktionsmischung wird durch Celite gefiltert und anschließend eingedampft, woraufhin sich ein gelb-oranger Feststoff bildet.
1 H N MR (CDCIs): δ (ppm) 8.10 (s, 4H, N-CH=CH), 6.78 (s, 4H, N-CH=CH), 6.75 (s, 8H, CHarom), 2.26 (d, 12H , CH3,para), 1 .61 (d, 12H, CH3), 1 .55 (d, 12H, CH3).
5.2 Di-[kupfer(l)-4,6-bis-(1 -/'so-propyl-imidazolin-2,2'-diyliden-3-yl)-1 ,3,5- triazin-2-olat] (7b)
Figure imgf000034_0002
Zu 500 mg des Bisimidazoliumsalzes (3d), 130 mg Kupfer(l)oxid sowie 320 mg Natriumacetat werden in einem ausgeheizten Schlenkkolben 25 mL DMSO hinzugefügt und die Mischung auf 90°C erhitzt und 3 Stunden gerührt, woraufhin sich die Lösung gelb-grünlich verfärbte. Anschließend wird die Reaktionsmischung im Vakuum auf ca. 5 mL eingeengt, 10 mL trockenes Methanol werden hinzugefügt, woraufhin sich die Lösung grün verfärbt. Anschließend wird das Rohprodukt mit 50 mL trockenem Diethylether gefällt und nochmal mit kleinen Volumina Diethylether gewaschen. Das Produkt wird als gelblich-grüner Feststoff erhalten (124 mg, 18 %).
1H NMR (DMSO-de): δ (ppm) 7.89 (s, 4H, N-CH=CH), 7.54 (s, 4H, N-CH=CH), 4.18 (sept, 4H, N-CH-CH2), 1 .13 (d, 12H, CH3), 1.01 (d, 12H, CH3).

Claims

Patentansprüche
Dinukleare Carben-Komplexe der allgemeinen Formel (I)
Figure imgf000036_0001
(I) worin A, M, R1, R2 und R3 die folgenden Bedeutungen aufweisen:
A unabhängig voneinander N oder C,
M unabhängig voneinander Ag, Au oder Cu,
R1 unabhängig voneinander linearer oder verzweigter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Alkylrest mit 1 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Cycloalkylrest mit 3 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter Arylrest mit 6 bis 30 Kohlenstoffatomen, substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen, und
R2, R3 unabhängig voneinander freies Elektronenpaar, falls A gleich N, oder, falls A gleich C, unabhängig voneinander Wasserstoff, linearer oder ver- zweigter, gegebenenfalls von wenigstens einem Heteroatom unterbrochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Alkylrest mit 1 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter, gegebenenfalls von wenigstens einem Heteroatom unter- brochener, gegebenenfalls wenigstens eine funktionelle Gruppe tragender Cycloalkylrest mit 3 bis 20 Kohlenstoffatomen, substituierter oder unsubstituierter Arylrest mit 6 bis 30 Kohlenstoffatomen, substituierter oder unsubstituierter Heteroarylrest mit 5 bis 30 Kohlenstoff- und/oder Heteroatomen, oder
R1 und R2 oder R2 und R3 bilden zusammen mit den Atomen A und/oder N des N-Heterocyclischen Carbens einen gegebenenfalls von wenigstens einem weiteren Heteroatom unterbrochenen gesättigten, ungesättigten oder aromatischen Kohlenstoffring mit insgesamt 5 bis 30 Kohlenstoff- und/oder Heteroatomen.
2. Dinuklearer Carben-Komplex nach Anspruch 1 , dadurch gekennzeichnet, dass A, M, R1, R2 und R3 die folgenden Bedeutungen aufweisen:
A C,
M Ag, unabhängig voneinander Wasserstoff, linearer oder verzweigter Alkyl- rest mit 1 bis 4 Kohlenstoffatomen oder substituierter oder unsubstituierter Cycloalkylrest mit 3 bis 8 Kohlenstoffatomen oder substituierter oder unsubstituierter Arylrest mit 6 bis 10 Kohlenstoffatomen, substituierter oder unsubstituierter Heteroarylrest mit insgesamt 5 bis 30 Kohlenstoff- und/oder Heteroatomen und unabhängig voneinander Wasserstoff, linearer oder verzweigter Alkyl- rest mit 1 bis 6 Kohlenstoffatomen, oder substituierter oder unsubstituierter Arylrest mit 6 bis 10 Kohlenstoffatomen oder substituierter oder unsubstituierter Heteroarylrest mit insgesamt 5 bis 30 Kohlenstoff- und/oder Heteroatomen oder
R2 und R3 bilden zusammen mit den Atomen A einen gegebenenfalls von wenigstens einem Heteroatom unterbrochenen aromatischen Kohlenstoffring mit insgesamt 5 bis 10 Kohlenstoff- und/oder Heteroatomen.
Figure imgf000038_0001
Figure imgf000038_0002
 
Figure imgf000039_0001
Figure imgf000039_0002
(Id)
Verfahren zur Herstellung eines dinuklearen Carben-Komplexes nach einem der Ansprüche 1 bis 3 durch Inkontaktbringen von Verbindungen, die das entsprechende Metall-Kation enthalten, mit den entsprechenden Liganden bzw. Ligand- vorläufern. OLED, enthaltend wenigstens einen dinuklearen Carben-Komplex nach einem der Ansprüche 1 bis 3.
Licht-emittierende Schicht, enthaltend mindestens einen dinuklearen Carben- Komplex nach einem der Ansprüche 1 bis 3.
OLED, enthaltend mindestens eine Licht-emittierende Schicht nach Anspruch 6.
Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen und mobilen Bildschirmen und Belechtungsmitteln, enthaltend ein OLED gemäß Anspruch 5 oder 7.
Verwendung eines dinuklearen Carben-Komplexes nach einem der Ansprüche 1 bis 3 in OLEDs.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass die dinuklearen Carben-Komplexe als Emitter, Matrixmaterial, Ladungstransportmaterial und/oder Ladungsblocker eingesetzt werden.
PCT/EP2010/062851 2009-09-03 2010-09-02 Dinukleare metall-carben-komplexe in oleds WO2011026886A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23944709P 2009-09-03 2009-09-03
US61/239,447 2009-09-03

Publications (1)

Publication Number Publication Date
WO2011026886A1 true WO2011026886A1 (de) 2011-03-10

Family

ID=43302081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062851 WO2011026886A1 (de) 2009-09-03 2010-09-02 Dinukleare metall-carben-komplexe in oleds

Country Status (1)

Country Link
WO (1) WO2011026886A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Kirk-Othmer Encyclopedia of Chemical Technology, 4. Auflage", vol. 18, 1996, pages: 837 - 860
BARNARD, P.J. ET AL.: "Luminescence studies of the intracellualr distribution of a dinuclear Gold(I) N-heterocyclic carbene complex", ANGEWANDTE CHEMIE, INT. EDITION ENGL, 2006, pages 5966 - 5970, XP002613926 *
CATALANO ET AL., INORGANIC CHEMISTRY, vol. 42, 2003, pages 5483 - 5485
CATALANO ET AL., INORGANIC CHEMISTRY, vol. 43, 2004, pages 5714 - 5724
CATALANO ET AL., INORGANIC CHEMISTRY, vol. 44, 2005, pages 6558 - 6566
CATALANO ET AL., INORGANIC CHEMISTRY, vol. 46, 2007, pages 5608 - 5615
CATALANO ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 690, 2005, pages 6041 - 6050
CHEN ET AL., INORGANIC CHEMISTRY COMMUNICATIONS, vol. 11, 2008, pages 404 - 408
HEMMERT ET AL., DALTON TRANS., 2009, pages 340 - 352
LIU ET AL., ORGANOMETALLICS, vol. 26, 2007, pages 3660 - 3667
LIU, B. ET AL.: "Synthesis, structural characterization and luminescence of new silver aggregates conatining short Ag-Ag contacts stabilized by funcionalized Bis (N-heterocyclic carbene) ligands", ORGANOMETALLICS, 2007, pages 3660 - 3667, XP002613925 *
LIU, J.; CHEN, J.; ZHAO, J.; ZHAO, Y.; LI, L.; ZHANG, H., SYNTHESIS, vol. 17, 2003, pages 2661 - 2666
NATURE, vol. 357, 11 June 1992 (1992-06-11), pages 477 - 479
RAY ET AL., INORGANIC CHEMISTRY, vol. 47, 2008, pages 230 - 240
ZHOU ET AL., JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 693, 2008, pages 205 - 215
ZHOU ET AL., ORGANOMETALLICS, vol. 26, 2007, pages 2742 - 2746

Similar Documents

Publication Publication Date Title
EP1819717B1 (de) Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
EP3216797B1 (de) Dinukleare platin-carben-komplexe und deren verwendung in oleds
EP1692244B1 (de) Verwendung von platin(ii)-komplexen als lumineszierende materialien in organischen licht-emittierenden dioden (oleds)
EP2035526B1 (de) Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
EP2150556B1 (de) Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
EP2493906B1 (de) Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
EP2044169B1 (de) Verwendung von pt- und pd-bis- und tetracarbenkomplexen mit verbrückten carbenliganden in oleds
EP2195868B1 (de) Verwendung von acridinderivaten als matrixmaterialien und/oder elektronenblocker in oleds
EP3805338B1 (de) Übergangsmetallkomplexe mit carbenliganden als emitter für organische lichtemittierende dioden (oleds)
EP2082447B1 (de) Oled-anzeige mit verlängerter lebensdauer
EP2288671B1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iii
EP2513125B1 (de) Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
WO2006056416A1 (de) Verwendung von phenothiazin-s-oxiden und -s,s-dioxiden als matrixmaterialien für organische leuchtdioden
DE102014001468B4 (de) Heteroleptischer phenylbenzimidazol-komplex
EP2301091B1 (de) Verwendung von cyclischen phosphazenverbindungen in organischen leuchtdioden
WO2009053278A1 (de) Verwendung von substituierten tris(diphenylamino)-triazinverbindungen in oleds
DE10360681A1 (de) Verwendung von Hauptgruppenmetall-Diketonatokomplexen als lumineszierende Materialien in organischen Leuchtdioden (OLEDs)
WO2009053346A1 (de) Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen
WO2011026886A1 (de) Dinukleare metall-carben-komplexe in oleds
EP1740673B1 (de) Triazolderivate und verwendung von triazolderivaten in organischen leuchtdioden (oleds)
WO2005061655A1 (de) Verwendung von gadolinium(iii)-chelaten als lumineszierende materialien in organischen leuchtdioden (oleds)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10749476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10749476

Country of ref document: EP

Kind code of ref document: A1