[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011025160A2 - Gear coupling using a bevel gear - Google Patents

Gear coupling using a bevel gear Download PDF

Info

Publication number
WO2011025160A2
WO2011025160A2 PCT/KR2010/005214 KR2010005214W WO2011025160A2 WO 2011025160 A2 WO2011025160 A2 WO 2011025160A2 KR 2010005214 W KR2010005214 W KR 2010005214W WO 2011025160 A2 WO2011025160 A2 WO 2011025160A2
Authority
WO
WIPO (PCT)
Prior art keywords
bevel gear
gear
hub
internal
external
Prior art date
Application number
PCT/KR2010/005214
Other languages
French (fr)
Korean (ko)
Other versions
WO2011025160A3 (en
Inventor
박노길
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2011025160A2 publication Critical patent/WO2011025160A2/en
Publication of WO2011025160A3 publication Critical patent/WO2011025160A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/18Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/18Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth
    • F16D3/185Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts the coupling parts (1) having slidably-interengaging teeth radial teeth connecting concentric inner and outer coupling parts

Definitions

  • the present invention relates to a gear coupling, and more particularly, to a gear coupling using a bevel gear that can smoothly transmit power while absorbing shaft alignment errors using a spherical involute bevel gear.
  • the gear coupling is a device for transmitting power by connecting a shaft to a gear of an internal gear and an external gear, and a conventional gear coupling is shown in FIG. 1.
  • 1 is a cross-sectional view showing a conventional gear coupling.
  • the gear coupling consists of a pinion in the form of an external gear and a sleeve in the form of an internal gear.
  • the pinion 2 is fixed to one rotation shaft 1 and the sleeve 3 is fixed to the other rotation shaft 1. .
  • the pinion 2 is crowned on the tooth 2a and the teeth are based on involute.
  • Crowning is processing so that the center of the tooth becomes convex.
  • the purpose of crowning the teeth 2a of the pinion 2 is to allow the pinion 2 to function as a gear coupling even when the position and the axial direction of the drive rotation shaft 1 and the driven rotation shaft 1 are shifted.
  • the sleeve 3 is filled with grease or lubricating oil as lubricant, and both ends of the sleeve 3 are coupled with a cover 4 which prevents the lubricant from scattering, and in the center of the sleeve 3 There is a center plate 5 which bisects the sleeve 3.
  • the shaft nut 6 is fastened so as to prevent the pinion 2 from falling off the rotating shaft, and a shock absorbing material 7 is provided to prevent the shaft nut 6 from colliding with the center plate 5.
  • the gear coupling is charged with backlash and crowning to absorb axial error and axial flow of the rotating shaft, and by installing it in duplicate, it absorbs not only axial error and axial flow but also axial parallel error. will be.
  • FIG. 2 is a conceptual diagram illustrating three types of axial alignment errors that may occur in a coupling.
  • Axial angle error means that both axes form a constant angle without forming 180 ° by any factor, and axial flow (b) means that both axes are approaching or moving away by some factor, and parallel error ( c) refers to a phenomenon in which both axes are not positioned in a straight line but are shifted in parallel with each other.
  • Gear coupling has the advantage of very high power density and no bending moment, while the friction is severe and the wear of the teeth is disadvantageous.
  • the locking phenomenon may occur under excessive operating conditions, speed transmission error occurs, and the debris is collected in the circumferential direction by centrifugal force, causing frequent problems on the tooth surface.
  • Another type of flexible coupling is a diaphragm, a laminated disk, a coil spring, a rubber or an elastomer of a resin, etc., which is a shaft joint formed by connecting a flexible elastic medium between two axes to be connected.
  • Flexible couplings do not require lubrication, are simple in structure, are effective for isolating high frequency rotational vibrations, but have a short fatigue life, especially corrosion or damage to joints. In addition, additional vibration such as resonance may occur, and the power density is low, so that the effective diameter is larger than the gear coupling and there is a problem that a bending moment occurs.
  • the present invention has been made to solve the disadvantages while utilizing the advantages of the gear coupling as described above is an object of the present invention by using a spherical involute bevel gear bevel gear that can overcome the axial error, axial flow and parallel error It is to provide a gear coupling using.
  • the present invention for achieving the above object in the gear coupling for transmitting power by connecting the first rotary shaft and the second rotary shaft by the meshing of the gear, made of a cylindrical shape, one side is coupled to the first rotation shaft, the other side
  • An internal hub having an internal bevel gear inclined inward along a circumference
  • an external hub having a cylindrical shape, one side of which is coupled to the second rotating shaft, and the external bevel gear is inclined outward along the other circumference to form an internal bevel gear and backlash. It is characterized in that the power can be transmitted even in a state in which the second rotating shaft forms the shaft angle.
  • a first pivot holder rotatably coupled by a first thrust bearing inside the internal hub and a second pivotally rotatably coupled by a second thrust bearing inside the external hub and hinged to the first pivot holder. It is characterized in that the pivot holder is further provided.
  • a lubricant is filled in the internal hub and the external hub, and one side of each of the first thrust bearing and the second thrust bearing is combined with a first packing disc and a second packing disc to seal the lubricant, and the internal hub and The outer circumferential surface of the external hub is characterized in that the case for sealing the lubricant is coupled.
  • a cylindrical spline spacer having a spline groove in the circumferential direction is further interposed between the circumferential hub having a spline formed at one outer circumference and the second rotary shaft to guide the axial flow of the first and second rotary shafts. It is characterized by.
  • the pitch cone angle formed by the internal hub and the external hub is characterized in that 70 ° ⁇ 80 °.
  • the pair of gear couplings using the bevel gears are disposed to face each other, and a pair of spline spacers having a cylindrical shape having spline grooves formed on an inner circumferential surface and into which the first and second splines are respectively inserted.
  • the effect of the present invention by the configuration as described above is due to the excellent surface pressure strength, the power density is superior to the conventional general gear coupling and there is no locking phenomenon does not occur because of the locking phenomenon.
  • the allowable axial error is proportional to the amount of backlash, but even if the backlash is given a typical amount of backlash of 0.05m, as shown in one embodiment, a considerable performance is obtained (at least 0.05m). If the maximum amount of backlash is identified, there is a significant increase in the allowable axial error.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional general gear coupling.
  • FIG. 2 is a conceptual diagram illustrating three types of axis alignment errors that may occur in a coupling.
  • Figure 3 is an internal cut perspective view showing the internal structure of the gear coupling using a bevel gear according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of the internal hub and the first pivot holder of the present invention shown in FIG.
  • Figure 5 is a perspective view showing the bite state of the internal bevel gear and the external bevel gear according to the axial error. (a) shows no axial error, and (b) shows axial error.
  • FIG. 6 is a conceptual diagram showing a state in which the axial angle error is overcome by the present invention.
  • Figure 7 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to another embodiment of the present invention
  • FIG. 8 is a conceptual diagram illustrating that the axial angle error and parallel error is overcome according to another embodiment of the present invention.
  • first thrust bearing 140 second pivot holder
  • first internal hub 212 first internal bevel gear
  • first external hub 222 first external bevel gear
  • first pivot holder 240 second pivot holder
  • the present invention has a basic configuration of the internal hub 110, the external hub 120, the first pivot holder 130, the second pivot holder 140, the internal hub 110 and the external hub 120 is a spherical inball Rotate (Spherical involute) bevel gears to form a rotation, and the internal pivot 110 and the external hub 120 inside the first pivot holder 130 and the second pivot holder 140 are hinged to each other and internally installed
  • the hub 110 and the external hub 120 are rotated while maintaining a state in which they are engaged with each other so that the rotational force can be transmitted at a transmission ratio of 1: 1.
  • Spherical involute bevel gears are a form of known bevel gears in which the complete spherical involute surface of the bevel gear corresponds to the surface of the trajectory on which one edge of the plane is drawn as the unstretched film wound around the side of the foundation cone.
  • Figure 3 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to an embodiment of the present invention
  • Figure 4 is a perspective view showing the internal hub and the first pivot holder of the present invention shown in FIG. .
  • the internal hub 110 is formed in a generally cylindrical shape, one side is connected to the first rotating shaft, and the other side is an internal bevel gear 112 having a sawtooth shape along the circumference as shown in FIG.
  • the internal bevel gear 112 is formed to be inclined at a predetermined angle inwardly, and the teeth are involute teeth and do not require crowning in the dental direction as in the conventional gear coupling.
  • the external hub 120 also has a generally cylindrical shape so as to correspond to the internal hub 110, one side is connected to the second rotating shaft, and the other external bevel gear 122 having a sawtooth shape is formed along the circumference.
  • the external bevel gear 122 is formed to be inclined at an angle to the outside and the tooth is an involute tooth and the tooth surface does not require a separate crowning process.
  • the external bevel gear 122 meshes with the internal bevel gear 112, and forms a backlash so that the external bevel gear 122 is engaged with the internal bevel gear 112.
  • a pitch cone angle ⁇ formed by the external hub 120 and the internal hub 110 is achieved. It is preferable that the teeth are joined to form about 70 ° to 80 °.
  • Backlash refers to a gap between the gear teeth that are originally engaged to facilitate gear rotation. In the present invention, such a backlash is imposed in a certain amount to sufficiently absorb the axial error of both shafts.
  • the number of teeth of the internal bevel gear 112 and the external bevel gear 122 is the same.
  • FIG. 5 is a perspective view illustrating a bite state of an internal bevel gear and an external bevel gear according to an axial error. (a) is when there is no axial error, and (b) is when there is an axial error.
  • the internal / external bevel gears maintain the gear contact toward the pitch line and the teeth of the gears are separated from each other. That is, while the internal bevel gear 112 and the external bevel gear 122 are in close contact with each other in A, it is possible to see a state separated from each other in the B position. However, the bite of the mutual gears is good and the rotational force transmission proceeds smoothly.
  • Tooth contact of the existing gear coupling is a point contact due to the crowning process and there is a weakness caused by excessive sliding between the tooth surface, whereas the present invention is because there is no separate crowning process, the line contact and the sliding between the tooth surface is very small.
  • the life due to wear is considerably longer. This also results in an increase in the amount of torque that can be transmitted. That is, higher power density can be obtained than before.
  • the spherical involute tooth has a merit that a 1: 1 speed ratio can be maintained even if the shaft angle is changed. Therefore, a transmission error does not occur even when the shaft angle is generated, so that a quiet operation can be performed without additional vibration.
  • the backlash serves as a passage for discharging the sludge or debris included in the lubricant even though it is a means for overcoming the axial error.
  • the residue (lubrication) during lubrication gathers at the teeth of the sleeve teeth and the teeth of the pinion by the centrifugal force, causing the gear contact to be caught in the tooth contact portion.
  • the debris is discharged to the outside through the backlash, so that the teeth are removed from the tooth surface. So the tooth surface is always clean, which greatly improves the fitting and scoping strength.
  • the present invention can increase the limit of acceptable axial error without great limitation.
  • the allowable axial error of the existing gear coupling is determined by the tooth width and the amount of crowns in the dental direction. Therefore, in order to increase the allowable axial error, the width of the tooth should be reduced and the crown amount should be larger. Therefore, the existing gear coupling has a limit in the range of the maximum shaft angle error.
  • the allowable axial error is determined by the amount of backlash.
  • the relation between the backlash amount B and the allowable axial error ⁇ is as follows.
  • the allowable axial error of the conventional coupling can be sufficiently absorbed without a separate backlash amount. Therefore, even if a normal amount of backlash (0.05m) is imposed, not only the assembly is performed smoothly but also the allowable shaft angle error is possible up to 0.6 °.
  • the present invention can give the maximum backlash up to the limit backlash amount, it is self-evident that the allowable amount of the axial error increases Do. Therefore, it is obvious that the present invention is much more free to increase the allowable shaft angle error compared to the conventional gear coupling. Therefore, the amount of backlash can be increased in the range in which the bending strength that does not collide with the teeth is allowed.
  • the portion where the internal hub 110 and the external hub 120 are engaged is sealed by a case to be described later, and the portion of the external hub 120 is formed to have a relatively small diameter as shown in the external hub.
  • the outer surface from the bevel gear 112 to the external bevel gear 122 forms a curved surface.
  • first pivot holder 130 and the second pivot holder 140 will be described together with reference to FIGS. 3 and 4.
  • first and second pivot holders are rotatably coupled and hinged to each other in the internal and external hubs, respectively.
  • first pivot holder 130 Since the structures are the same as each other, the first pivot holder 130 will be mainly described. As shown, one side of the cylindrical shape is inserted into and coupled to the internal hub 110, and is rotatable and supported in the axial direction (thrust). It is coupled to the internal hub 110 by a first thrust bearing 132 to be supported). Thrust bearings are bearings that support the action of the load in the axial direction, and ball, collar, and footstep bearings may be used.
  • the other side of the first pivot holder 130 is disposed to face the center of the external hub 120, and a hole h at which the pin p can be inserted is formed at an end thereof.
  • the second pivot holder 140 is also inserted into the external hub 120 and is coupled by the second thrust bearing 142, and a hole h is formed at the other end of the first pivot holder 130. It is arranged in communication with the hole (h) and is hinged to each other by being fixed by the pin (p).
  • the first and second pivot holders 140 are coupled to face each other as the internal and external hubs 120 face each other to maintain the internal and external hubs 120 engaged. At the same time, it supports the reaction force (thrust) generated in the axial direction during torque transmission.
  • the first and second pivot holders 140 are hinged to each other when an axial angle occurs in the internal and external hubs 120 so that the first and second thrust bearings can actively absorb and simultaneously absorb the first and second thrust bearings. Rotationally coupled by 142 does not interfere with the rotational forces of both axes.
  • a lubricant is filled in the inner space formed by the internal hub 110 and the external hub 120.
  • the lubricant lubricates the engagement of the internal bevel gear 112 and the external bevel gear 122 and the hinge coupling of the first and second pivot holders 140 and the action of the first and second thrust bearings 142.
  • first thrust bearing 132 and the second thrust bearing 142 are respectively connected to the first packing disc 150 and the second packing disc 160 having a disc shape, and the internal hub Cylindrical case 170 is coupled to the outer circumferential surface of the portion where the 110 and the external hub 120 are engaged to seal the lubricant discharged through the backlash formed by the internal bevel gear 112 and the external bevel gear 122. do.
  • first and second packing discs 160 and the case 170 should be sealed by using an o-ring or the like.
  • the case 170 is coupled to the outer circumferential surface of the portion where the internal hub 110 and the external hub 120 is meshed with a slight distance, and it is preferable to form a curved surface as mentioned above, which is both shaft angle
  • a portion where the internal hub 110 and the external hub 120 engage with each other is formed as a curved surface, such as a joint or a universal joint in the case 170. Be able to act.
  • FIG. 6 is a conceptual diagram illustrating a state in which an axial error is overcome by the present invention.
  • the actual axial error occurs as a three-dimensional behavior or a two-dimensional behavior for understanding.
  • the dotted line shows the state before the axial error occurs and the solid line shows the state where the axial error occurs.
  • the opposite side of the internal bevel gear 112 and the external bevel gear 122 is in close contact with one side of the internal bevel gear 112 and the external bevel gear 122. 6 is spaced apart from each other, and the first pivot holder 130 and the second pivot holder 140 are also bent at a predetermined angle with respect to the pin p so that both rotation shafts form an axial angle.
  • the spline spacer 180 may be further interposed between the external hub 120 and the second rotary shaft.
  • the spline spacer 180 is capable of guiding and absorbing the axial flow of the shaft.
  • the spline spacer 180 has a cylindrical shape and a spline groove 182 is formed along the axial direction on an inner circumferential surface thereof.
  • Splines 124 having a shape in which a plurality of keys are formed are formed at one outer circumference of the external hub 120 so as to correspond to the spline grooves 182.
  • the second rotation shaft is fixed or spline-coupled to one side of the spline spacer 180 and at the same time the spline 124 of the external hub 120 is inserted into the other side of the spline spacer 180 to be fixed in the axial direction.
  • the error is absorbed when the first and second rotation shafts flow in the axial direction.
  • This is a double gear coupling using a bevel gear in which a pair of bevel gear gear couplings described in Embodiment 1 is coupled by a connecting member such as the spline spacer.
  • 7 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to another embodiment of the present invention.
  • the present invention is a gear coupling using one bevel gear consisting of a first internal hub 210, a first external hub 220, a first pivot holder 230, a second pivot holder 240, and Gear coupling using another bevel gear consisting of a second internal hub 310, a second external hub 320, a third pivot holder 330, a fourth pivot holder 340 to the spline spacer 400
  • the first rotary shaft and the second rotary shaft which are coupled to face each other to be connected to each other are connected to each other to form a shaft angle, and at the same time, the power can be smoothly transmitted even when the axis is shifted. That is, the axial error and parallel error are overcome simultaneously.
  • the first internal hub 210, the first external hub 220, the second internal hub 310, and the second external hub 320 are the internal hub 110 and the external contact described above in the first embodiment. Since the hub 120 and its configuration are substantially the same, detailed description thereof will be omitted.
  • first pivot holder 130, the second pivot holder 240, the third pivot holder 330, and the fourth pivot holder 340 also have the first pivot holder 130 and the second pivot.
  • the holder 140 and its configuration are large and similar.
  • the spline spacer 400 also has a cylindrical shape with a spline groove 410 formed on an inner circumferential surface thereof, and thus has the same configuration as described above.
  • FIG. 8 is a conceptual diagram illustrating that the axial angle error and parallel error is overcome according to another embodiment of the present invention.
  • both rotation shafts form an axial angle and smoothly transmit power even when the axis is out of alignment. It can be.
  • a three-dimensional area where the axis alignment heat error (axial error, parallel error, and axial flow) can be completely absorbed can be obtained.
  • the axial angle error ⁇ t and the parallel error ⁇ E between the first rotational axis and the second rotational axis with respect to the axial alignment error occurring in this area are calculated as follows.
  • the plurality of points shown in FIG. 9 are locations simulating a meaningful region of the center of the first rotating shaft capable of completely absorbing the axis alignment heat error.
  • the present invention can be used for gear coupling, and more specifically, it can be used for gear coupling using bevel gears that can smoothly transmit power while absorbing shaft alignment errors using spherical involute bevel gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Abstract

The present invention relates to a gear coupling using a bevel gear, and particularly, to a gear coupling for connecting and transmitting power between a first rotating shaft and a second rotating shaft through gear engagement, the gear coupling comprising: an internal hub having a cylindrical shape with one end coupled to the first rotating shaft, and an internal bevel gear formed at an angle in and along a circumference of the other end thereof; an external hub having a cylindrical shape with one end coupled to the second rotating shaft, and an external bevel gear formed angled outward around a circumference of the other end thereof and meshed with the internal bevel gear to form a backlash; a first pivot holder rotatably coupled inside the internal hub; and a second pivot holder rotatably coupled inside the external hub and coupled via a hinge to the first pivot holder, wherein power can be transmitted even when a shaft angle is formed between the first rotating shaft and the second rotating shaft, and power can be transmitted even with shaft lines which are offset when a pair of the gear couplings is used to form shaft angles, such that power density is superior to that of the prior art, and as locking does not occur, there is no bending moment and no deviation in velocity transfer, such that not only is vibration reduced, but the amount of tooth face slip is also minimal to thus extend the lifespan of gears, and as deposits are discharged from the tooth faces through centrifugal force, they do not become lodged between the teeth.

Description

베벨기어를 이용한 기어커플링Gear Coupling Using Bevel Gears
본 발명은 기어커플링에 관한 것으로, 보다 상세하게는 구형 인볼류트 베벨기어를 이용하여 축정렬 오차를 흡수하면서 동력을 원활하게 전달할 수 있는 베벨기어를 이용한 기어커플링에 관한 것이다. The present invention relates to a gear coupling, and more particularly, to a gear coupling using a bevel gear that can smoothly transmit power while absorbing shaft alignment errors using a spherical involute bevel gear.
기어커플링은 내접기어와 외접기어의 치합으로 축을 연결하여 동력을 전달하는 장치로서 종래의 기어커플링은 도 1에 도시된 바와 같다. 도 1은 종래 기어커플링을 나타내는 단면도이다.The gear coupling is a device for transmitting power by connecting a shaft to a gear of an internal gear and an external gear, and a conventional gear coupling is shown in FIG. 1. 1 is a cross-sectional view showing a conventional gear coupling.
기어커플링은 외접기어 형태의 피니언(Pinion)과 내접기어 형태의 슬리브(Sleeve)로 구성되며 피니언(2)은 일측 회전축(1)에 고정되고 슬리브(3)는 타측 회전축(1)에 고정된다.The gear coupling consists of a pinion in the form of an external gear and a sleeve in the form of an internal gear. The pinion 2 is fixed to one rotation shaft 1 and the sleeve 3 is fixed to the other rotation shaft 1. .
그리고 피니언(2)은 톱니(2a)에 크라우닝(crowning) 처리되어 있고 치형은 인볼류트(Involute)를 기본으로 한다.The pinion 2 is crowned on the tooth 2a and the teeth are based on involute.
크라우닝이란 톱니 중앙부가 볼록하게 되도록 가공하는 것이다. 피니언(2) 톱니(2a)에 크라우닝을 실시하는 목적은 구동회전축(1)과 피구동회전축(1)의 위치나 축선방향이 어긋나도 기어커플링으로서 기능하게 하기 위해서이다.Crowning is processing so that the center of the tooth becomes convex. The purpose of crowning the teeth 2a of the pinion 2 is to allow the pinion 2 to function as a gear coupling even when the position and the axial direction of the drive rotation shaft 1 and the driven rotation shaft 1 are shifted.
세부적으로 슬리브(3) 내에는 윤활제로서 그리스(Greese)나 윤활유가 충진되어 있으며, 슬리브(3)의 양단에는 윤활제가 비산하는 것을 방지하는 커버(4)가 결합되어 있고, 슬리브(3) 중앙에는 슬리브(3)를 이등분 하는 중심판(5)이 있다. 또한 피니언(2)이 회전축에서 탈락하는 것을 방지하도록 체결하는 축너트(6)가 결합되어 있고 더불어 축너트(6)가 중심판(5)에 충돌하는 것을 막는 완충재(7)가 설치된다.In detail, the sleeve 3 is filled with grease or lubricating oil as lubricant, and both ends of the sleeve 3 are coupled with a cover 4 which prevents the lubricant from scattering, and in the center of the sleeve 3 There is a center plate 5 which bisects the sleeve 3. In addition, the shaft nut 6 is fastened so as to prevent the pinion 2 from falling off the rotating shaft, and a shock absorbing material 7 is provided to prevent the shaft nut 6 from colliding with the center plate 5.
따라서, 양 회전축의 정열이 어긋나도 피니언(2)의 외부 톱니(2a)가 크라우닝되어 있기 때문에 원활한 구동력 전달이 가능할 뿐 아니라 양 회전축이 축선방향으로 이동할 때도 슬리브(3) 내의 내부 톱니(3a)의 홈을 따라 피니언(2)의 외부 톱니(2a)가 일정거리 자유롭게 이동하므로 구동력 전달에 문제가 없다.Therefore, even if the alignment of the two rotary shafts is misaligned, the external teeth 2a of the pinion 2 are crowned, so that not only smooth driving force can be transmitted but also the internal teeth 3a in the sleeve 3 are moved when both the rotary shafts move in the axial direction. Since the external teeth 2a of the pinion 2 move freely along a groove of the predetermined distance, there is no problem in driving force transmission.
기어커플링은 백래쉬(Backlash)와 치열방향에 크라우닝이 부과되어 있어서 동력 회전축의 축각오차와 축유동을 흡수하게 되며 이중으로 설치함으로써 축각오차와 축유동뿐 아니라 축평행 오차까지도 흡수하게 되는 것이다.The gear coupling is charged with backlash and crowning to absorb axial error and axial flow of the rotating shaft, and by installing it in duplicate, it absorbs not only axial error and axial flow but also axial parallel error. will be.
도 2는 커플링에서 발생할 수 있는 3가지 종류의 축정렬오차를 나타내는 개념도이다.2 is a conceptual diagram illustrating three types of axial alignment errors that may occur in a coupling.
축각오차(a)는 양 축이 어떤 요인에 의해 180°를 이루지 않고 일정각을 형성하게 되는 것이며, 축유동(b)은 양 축이 어떤 요인에 의해 근접하거나 멀어지는 것을 의미하며, 평행오차(c)는 양 축이 일직선 상에 위치하지 않고 서로 평행하게 어긋나는 현상을 말한다.Axial angle error (a) means that both axes form a constant angle without forming 180 ° by any factor, and axial flow (b) means that both axes are approaching or moving away by some factor, and parallel error ( c) refers to a phenomenon in which both axes are not positioned in a straight line but are shifted in parallel with each other.
실제로는 이러한 3가지 종류의 모든 오차가 3차원적으로 복합되어 발생하기 때문에 기어커플링은 모든 오차를 흡수하면서 동력을 정확하게 전달할 수 있어야 한다.In reality, all three types of errors are combined in three dimensions, so the gear coupling must absorb all the errors and transmit power accurately.
기어커플링은 동력밀도(Power Density)가 매우 높고 굽힘모멘트가 없는 것이 장점인 반면, 마찰이 심하여 톱니의 마모가 많은 단점이 있다. 또한 과도한 운전조건에서 잠김(Locking) 현상이 발생할 수 있으며 속도전달 오차가 생기며 원심력으로 찌꺼기가 원주방향으로 몰려서 치면에 자주 끼는 문제가 발생하기도 하여 고속 축이음에는 부적합하다.Gear coupling has the advantage of very high power density and no bending moment, while the friction is severe and the wear of the teeth is disadvantageous. In addition, the locking phenomenon may occur under excessive operating conditions, speed transmission error occurs, and the debris is collected in the circumferential direction by centrifugal force, causing frequent problems on the tooth surface.
또 다른 종류로 플렉시블 커플링(Flexible coupling)은 연결해야할 양 축 사이를 유연한 탄성매개물로 구성하여 연결하는 축이음으로서 다이아프램, 겹판 디스크, 코일스프링, 고무 혹은 합성수지의 엘라스토머 등을 사용한다.Another type of flexible coupling is a diaphragm, a laminated disk, a coil spring, a rubber or an elastomer of a resin, etc., which is a shaft joint formed by connecting a flexible elastic medium between two axes to be connected.
플렉시블 커플링의 경우 윤활이 필요없고 구조가 간단하며, 고주파 회전진동을 절연시키는데 효과적이나 피로수명이 짧고 특히, 이음부분의 부식 혹은 훼손이 많다. 또한 공진과 같은 추가적인 진동이 발생할 수 있고 동력밀도가 낮아서 유효직경이 기어커플링보다 커지며 굽힘모멘트가 발생하는 문제가 있다.Flexible couplings do not require lubrication, are simple in structure, are effective for isolating high frequency rotational vibrations, but have a short fatigue life, especially corrosion or damage to joints. In addition, additional vibration such as resonance may occur, and the power density is low, so that the effective diameter is larger than the gear coupling and there is a problem that a bending moment occurs.
본 발명은 상기와 같은 기어커플링의 장점을 살리면서 단점을 해결하고자 안출된 것으로 본 발명의 목적은 구형 인볼루트 베벨기어를 사용하여 축각오차, 축유동 및 평행오차를 극복할 수 있는 베벨기어를 이용한 기어커플링을 제공하는 것이다.The present invention has been made to solve the disadvantages while utilizing the advantages of the gear coupling as described above is an object of the present invention by using a spherical involute bevel gear bevel gear that can overcome the axial error, axial flow and parallel error It is to provide a gear coupling using.
상기와 같은 목적을 달성하기 위한 본 발명은 기어의 치합에 의해 제1회전축과 제2회전축을 연결하여 동력을 전달하는 기어커플링에 있어서, 원통형상으로 이루어져 일측이 제1회전축과 결합되고, 타측 원주를 따라 내접베벨기어가 내측으로 경사지게 형성된 내접허브; 및 원통형상으로 이루어져 일측이 제2회전축과 결합되고, 타측 원주를 따라 외접베벨기어가 외측으로 경사지게 형성되어 상기 내접베벨기어와 백래쉬를 형성하면서 치합되는 외접허브;를 포함하여 이루어져, 제1회전축과 제2회전축이 축각을 형성한 상태에서도 동력을 전달할 수 있는 것을 특징으로 한다.The present invention for achieving the above object in the gear coupling for transmitting power by connecting the first rotary shaft and the second rotary shaft by the meshing of the gear, made of a cylindrical shape, one side is coupled to the first rotation shaft, the other side An internal hub having an internal bevel gear inclined inward along a circumference; And an external hub having a cylindrical shape, one side of which is coupled to the second rotating shaft, and the external bevel gear is inclined outward along the other circumference to form an internal bevel gear and backlash. It is characterized in that the power can be transmitted even in a state in which the second rotating shaft forms the shaft angle.
여기서, 상기 내접허브 내부에는 제1스러스트 베어링에 의해 회전가능하게 결합되는 제1피봇홀더 및 상기 외접허브 내부에는 제2스러스트 베어링에 의해 회전가능하게 결합되고 상기 제1피봇홀더와 힌지결합되는 제2피봇홀더가 더 구비되는 것을 특징으로 한다.Here, a first pivot holder rotatably coupled by a first thrust bearing inside the internal hub and a second pivotally rotatably coupled by a second thrust bearing inside the external hub and hinged to the first pivot holder. It is characterized in that the pivot holder is further provided.
또, 상기 내접허브와 외접허브 내부에는 윤활제가 충진되고, 상기 제1스러스트 베어링과 제2스러스트 베어링 각각의 일측에는 윤활제를 밀폐하는 제1패킹디스크와 제2패킹디스크가 결합되며, 상기 내접허브와 외접허브의 외주면에는 윤활제를 밀폐하는 케이스가 결합되는 것을 특징으로 한다.In addition, a lubricant is filled in the internal hub and the external hub, and one side of each of the first thrust bearing and the second thrust bearing is combined with a first packing disc and a second packing disc to seal the lubricant, and the internal hub and The outer circumferential surface of the external hub is characterized in that the case for sealing the lubricant is coupled.
그리고 일측 외주에 스플라인이 형성된 상기 외접허브와 제2회전축 사이에는 내주면에 축방향으로 스플라인홈이 형성된 원통형상의 스플라인 스페이서가 더 개재되어, 제1회전축과 제2회전축의 축방향 유동을 가이드할 수 있는 것을 특징으로 한다.In addition, a cylindrical spline spacer having a spline groove in the circumferential direction is further interposed between the circumferential hub having a spline formed at one outer circumference and the second rotary shaft to guide the axial flow of the first and second rotary shafts. It is characterized by.
바람직한 것은 상기 내접허브와 외접허브가 이루는 피치원추각은 70°~ 80°인 것을 특징으로 한다.Preferably, the pitch cone angle formed by the internal hub and the external hub is characterized in that 70 ° ~ 80 °.
한편, 상기의 베벨기어를 이용한 기어커플링 한 쌍을 마주보게 배치하되, 내주면에 스플라인홈이 형성된 원통형상을 이루며 양측으로 상기 제1스플라인과 제2스플라인이 각각 삽입되는 스플라인 스페이서로 상기 한 쌍의 베벨기어 커플링을 연결하여, 제1회전축과 제2회전축이 축각을 형성하면서 축선이 어긋난 상태에서도 동력을 전달할 수 있는 것을 특징으로 한다.Meanwhile, the pair of gear couplings using the bevel gears are disposed to face each other, and a pair of spline spacers having a cylindrical shape having spline grooves formed on an inner circumferential surface and into which the first and second splines are respectively inserted. By connecting the bevel gear coupling, it is characterized in that the first rotation shaft and the second rotation shaft to form an axial angle while transmitting power even when the axis line is shifted.
상술한 바와 같은 구성에 의한 본 발명의 효과는 우수한 면압강도로 인하여 종래 일반적인 기어커플링에 비해 동력밀도가 더 우수하고 잠김현상이 없기 때문에 회전축에 굽힘모멘트가 발생하지 않는다.The effect of the present invention by the configuration as described above is due to the excellent surface pressure strength, the power density is superior to the conventional general gear coupling and there is no locking phenomenon does not occur because of the locking phenomenon.
또 치면의 미끄럼량이 적어 마모가 감소하기 때문에 기어수명이 길며 회전시 원심력으로 윤활제의 찌꺼기가 치면 외측으로 빠져나가기 때문에 톱니 사이에 끼지 않아 기어의 수명을 더 증가시켜준다.In addition, since the amount of sliding of the tooth surface is reduced, the wear life is reduced, and the gear life is long, and when the residue of lubricant is hit by the centrifugal force during rotation, it escapes to the outside.
뿐만 아니라 허용 축각오차는 백래쉬량에 비례하는데 기어 조립시 통상적인 백래쉬량인 0.05m를 부여한 경우에도 일 실시 예에서 보여준 바대로 상당한 성과를 얻었음을 볼 때 치충돌이 발생하지 않는(적어도 0.05m 보다 큰) 최대한의 백래쉬량이 파악된다면 상당량의 허용 축각오차의 증대효과를 갖는다.In addition, the allowable axial error is proportional to the amount of backlash, but even if the backlash is given a typical amount of backlash of 0.05m, as shown in one embodiment, a considerable performance is obtained (at least 0.05m). If the maximum amount of backlash is identified, there is a significant increase in the allowable axial error.
그리고 속도 전달오차가 없기 때문에 추가로 진동이 발생하지 않는다.And since there is no speed transmission error, no additional vibration occurs.
도 1은 종래 일반적인 기어커플링의 구조를 나타내는 단면도.1 is a cross-sectional view showing the structure of a conventional general gear coupling.
도 2는 커플링에서 발생할 수 있는 3가지 종류의 축정렬오차를 나타내는 개념도.2 is a conceptual diagram illustrating three types of axis alignment errors that may occur in a coupling.
도 3은 본 발명의 바람직한 일 실시 예에 따른 베벨기어를 이용한 기어커플링의 내부구조를 나타내는 내부 절개사시도.Figure 3 is an internal cut perspective view showing the internal structure of the gear coupling using a bevel gear according to an embodiment of the present invention.
도 4는 도 3에 도시된 본 발명의 내접허브 및 제1피봇홀더를 나타내는 사시도.4 is a perspective view of the internal hub and the first pivot holder of the present invention shown in FIG.
도 5는 축각오차에 따른 내접베벨기어와 외접베벨기어의 물림상태를 나타내는 사시도. (a)는 축각오차가 없을 때, (b)는 축각오차가 있을 때.Figure 5 is a perspective view showing the bite state of the internal bevel gear and the external bevel gear according to the axial error. (a) shows no axial error, and (b) shows axial error.
도 6은 본 발명에 의해 축각오차가 극복되는 상태를 나타내는 개념도.6 is a conceptual diagram showing a state in which the axial angle error is overcome by the present invention.
도 7은 본 발명의 바람직한 다른 실시 예에 따른 베벨기어를 이용한 기어커플링의 내부구조를 나타내는 내부 절개사시도Figure 7 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to another embodiment of the present invention
도 8은 본 발명에 다른 실시 예에 따라 축각오차 및 평행오차가 극복되는 것을 나타내는 개념도.8 is a conceptual diagram illustrating that the axial angle error and parallel error is overcome according to another embodiment of the present invention.
<< 도면의 주요부분에 대한 설명 >><< Explanation of main parts of drawing >>
110 : 내접허브 112 : 내접베벨기어110: internal hub 112: internal bevel gear
120 : 외접허브 122 : 외접베벨기어120: external hub 122: external bevel gear
124 : 스플라인 130 : 제1피봇홀더124: spline 130: the first pivot holder
132 : 제1스러스트 베어링 140 : 제2피봇홀더132: first thrust bearing 140: second pivot holder
142 : 제2스러스트 베어링 150 : 제1패킹디스크142: second thrust bearing 150: first packing disc
160 : 제2패킹디스크 170 : 케이스160: second packing disk 170: case
180 : 스플라인 스페이서 182 : 스플라인홈180: spline spacer 182: spline groove
p : 핀 h : 홀p: pin h: hole
θ : 피치원추각θ: pitch cone angle
210 : 제1내접허브 212 : 제1내접베벨기어210: first internal hub 212: first internal bevel gear
220 : 제1외접허브 222 : 제1외접베벨기어220: first external hub 222: first external bevel gear
230 : 제1피봇홀더 240 : 제2피봇홀더230: first pivot holder 240: second pivot holder
310 : 제2내접허브 312 : 제2내접베벨기어310: second internal hub 312: second internal bevel gear
320 : 제2외접허브 322 : 제2외접베벨기어320: second external hub 322: second external bevel gear
330 : 제3피봇홀더 340 : 제4피봇홀더330: third pivot holder 340: fourth pivot holder
400 : 스플라인 스페이서 410 : 스플라인홈400: spline spacer 410: spline groove
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시 예를 상세하게 설명하고자 한다. 하기 설명 및 첨부 도면에 나타난 바는 본 발명의 전반적인 이해를 위해 제시된 것이므로 본 발명의 기술적 범위가 그것들에 한정되는 것은 아니다. 그리고 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 구성 및 기능에 대한 상세한 설명은 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. The following description and the accompanying drawings are presented for the overall understanding of the present invention, and thus the technical scope of the present invention is not limited thereto. And a detailed description of known configurations and functions that may unnecessarily obscure the subject matter of the present invention will be omitted.
본 발명은 내접허브(110), 외접허브(120), 제1피봇홀더(130), 제2피봇홀더(140)를 기본 구성으로 하는데, 내접허브(110)와 외접허브(120)는 구형 인볼루트(Spherical involute) 베벨기어를 이루면서 치합하여 회전하고 내접허브(110)와 외접허브(120) 내부에 각각 제1피봇홀더(130)와 제2피봇홀더(140)가 서로 힌지결합하면서 내설되어 내접허브(110)와 외접허브(120)가 치합된 상태를 유지하면서 회전함으로써 상호 1:1의 전달비로 회전력을 전달할 수 있게 하는 구조이다.The present invention has a basic configuration of the internal hub 110, the external hub 120, the first pivot holder 130, the second pivot holder 140, the internal hub 110 and the external hub 120 is a spherical inball Rotate (Spherical involute) bevel gears to form a rotation, and the internal pivot 110 and the external hub 120 inside the first pivot holder 130 and the second pivot holder 140 are hinged to each other and internally installed The hub 110 and the external hub 120 are rotated while maintaining a state in which they are engaged with each other so that the rotational force can be transmitted at a transmission ratio of 1: 1.
구형 인볼루트 베벨기어는 공지된 베벨기어의 형태로서 베벨기어의 완전한 구형 인볼루트 곡면은 기초원추의 측면에 감겨진 늘어나지 않는 막이 풀리면서 그 평면의 한 모서리가 그리는 궤적의 곡면에 해당한다.Spherical involute bevel gears are a form of known bevel gears in which the complete spherical involute surface of the bevel gear corresponds to the surface of the trajectory on which one edge of the plane is drawn as the unstretched film wound around the side of the foundation cone.
구형 인볼루트 베벨기어에 대한 기구학적 특성 등은 한국정밀공학회지 제12권 제5호(1995.5)"완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화"(박노길), 한국정밀공학회지 제17권 제2호(2000.2)"구형 인볼루트 베벨기어에 대한 실험적 연구"(정동현, 이형우, 박노길)을 참조할 수 있다.The kinematic characteristics of the spherical involute bevel gears can be found in Korean Society of Precision Engineering Vol. 12, No. 5 (1995.5), "Kinematics and Shape Modeling of Involute Bevel Gear Pairs" (Park No-Gil), Korean Society of Precision Engineering, Vol. 17, No. 2 (2000.2) "Experimental Study on Spherical Involute Bevel Gears" (Dong-Hyun Jung, Hyung-Woo Lee, Park No-Gil).
<실시 예 1><Example 1>
먼저 도 3과 도 2를 참조하여 상기 내접허브(110)를 설명한다. 도 3은 본 발명의 바람직한 일 실시 예를 따른 베벨기어를 이용한 기어 커플링의 내부구조를 나타내는 내부 절개사시도, 도 4는 도 3에 도시된 본 발명의 내접허브 및 제1피봇홀더를 나타내는 사시도이다.First, the internal hub 110 will be described with reference to FIGS. 3 and 2. Figure 3 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to an embodiment of the present invention, Figure 4 is a perspective view showing the internal hub and the first pivot holder of the present invention shown in FIG. .
상기 내접허브(110)는 전체적으로 대략 원통형을 이루면서 일측은 제1회전축과 연결되고 타측에는 도 4에 도시된 바와 같이 원주를 따라 톱니 형상을 가지는 내접베벨기어(112)가 형성된다. The internal hub 110 is formed in a generally cylindrical shape, one side is connected to the first rotating shaft, and the other side is an internal bevel gear 112 having a sawtooth shape along the circumference as shown in FIG.
상기 내접베벨기어(112)는 내측으로 일정각도 경사지게 가공 형성되고 치형은 인볼루트 치형이며 기존의 기어커플링처럼 치열방향으로의 크라우닝 가공은 필요로 하지 않는다.The internal bevel gear 112 is formed to be inclined at a predetermined angle inwardly, and the teeth are involute teeth and do not require crowning in the dental direction as in the conventional gear coupling.
다음으로 역시 도 3을 참조하여 외접허브(120)에 대해 설명한다.Next, the external hub 120 will also be described with reference to FIG. 3.
상기 외접허브(120)도 상기 내접허브(110)와 대응되도록 전체적으로 대략 원통형을 이루면서 일측은 제2회전축과 연결되고 타측에는 원주를 따라 톱니 형상을 가지는 다수개의 외접베벨기어(122)가 형성된다.The external hub 120 also has a generally cylindrical shape so as to correspond to the internal hub 110, one side is connected to the second rotating shaft, and the other external bevel gear 122 having a sawtooth shape is formed along the circumference.
상기 외접베벨기어(122)는 외측으로 일정각도 경사지게 가공 형성되고 치형은 인볼루트 치형이며 치면은 역시 별도의 크라우닝 가공을 필요로 하지 않는다.The external bevel gear 122 is formed to be inclined at an angle to the outside and the tooth is an involute tooth and the tooth surface does not require a separate crowning process.
그리고 상기 외접베벨기어(122)는 상기 내접베벨기어(112)와 치합하되, 백래쉬(Back lash)를 형성하면서 치합하며 상기 외접허브(120)와 내접허브(110)가 이루는 피치원추각(θ)이 약 70°~ 80°를 이루게 치합되는 것이 바람직하다.The external bevel gear 122 meshes with the internal bevel gear 112, and forms a backlash so that the external bevel gear 122 is engaged with the internal bevel gear 112. A pitch cone angle θ formed by the external hub 120 and the internal hub 110 is achieved. It is preferable that the teeth are joined to form about 70 ° to 80 °.
백래쉬는 원래 기어 회전을 원활하게 하기 위해 맞물리는 기어 톱니 사이에 두는 틈을 의미하는데, 본 발명에서 이러한 백래쉬는 양 축이 이루는 축각오차를 충분히 흡수하도록 일정량으로 부과된다.Backlash refers to a gap between the gear teeth that are originally engaged to facilitate gear rotation. In the present invention, such a backlash is imposed in a certain amount to sufficiently absorb the axial error of both shafts.
여기서, 상기 내접베벨기어(112)와 외접베벨기어(122)의 잇수가 동일함은 당연하다.Here, the number of teeth of the internal bevel gear 112 and the external bevel gear 122 is the same.
도 5는 축각오차에 따른 내접베벨기어와 외접베벨기어의 물림상태를 나타내는 사시도이다. (a)는 축각오차가 없을 때, (b)는 축각오차가 있을 때를 나타낸다.5 is a perspective view illustrating a bite state of an internal bevel gear and an external bevel gear according to an axial error. (a) is when there is no axial error, and (b) is when there is an axial error.
도시된 바와 같이 축각오차가 없을 때 내접베벨기어(112)와 외접베벨기어(122)는 피치원 상에서 모든 기어가 동시에 접한다.As shown, when there is no axial error, the internal bevel gear 112 and the external bevel gear 122 are in contact with all gears simultaneously on the pitch circle.
그러나 축각오차가 발생한 상태에서는 내접/외접베벨기어는 피치선 쪽으로 기어접촉이 유지되며 그 반대쪽은 기어의 이가 서로 분리된다. 즉, A에서 내접베벨기어(112)와 외접베벨기어(122)가 서로 밀착되는 반면, B 위치에서는 서로 분리된 상태를 볼 수 있다. 그러나 상호 기어의 물림은 양호하여 원활하게 회전력 전달이 진행된다.However, in the state of axial error, the internal / external bevel gears maintain the gear contact toward the pitch line and the teeth of the gears are separated from each other. That is, while the internal bevel gear 112 and the external bevel gear 122 are in close contact with each other in A, it is possible to see a state separated from each other in the B position. However, the bite of the mutual gears is good and the rotational force transmission proceeds smoothly.
기존 기어커플링의 치접촉은 크라우닝 가공으로 인하여 점접촉이고 치면 사이 미끄럼이 과다하여 마모가 잘 생기는 취약점이 있는데 반해 본 발명은 별도의 크라우닝 가공이 없어서 선접촉이고 치면사이 미끄럼도 매우 작기 때문에 마모로 인한 수명이 상당히 길어진다. 또 이것은 전달될 수 있는 토크량이 증대되는 결과를 가져온다. 즉 기존에 비해 더 높은 동력밀도를 얻을 수 있다.Tooth contact of the existing gear coupling is a point contact due to the crowning process and there is a weakness caused by excessive sliding between the tooth surface, whereas the present invention is because there is no separate crowning process, the line contact and the sliding between the tooth surface is very small. The life due to wear is considerably longer. This also results in an increase in the amount of torque that can be transmitted. That is, higher power density can be obtained than before.
그리고 구형 인볼루트 치형의 경우 축각이 변동하더라도 1:1 속도비가 유지될 수 있는 장점이 있어 축각이 발생해도 전달오차가 발생하지 않아 추가적인 진동발생 없이 정숙한 운전을 할 수 있다.In addition, the spherical involute tooth has a merit that a 1: 1 speed ratio can be maintained even if the shaft angle is changed. Therefore, a transmission error does not occur even when the shaft angle is generated, so that a quiet operation can be performed without additional vibration.
또한, 본 발명에서 백래쉬는 축각오차를 극복하기 위한 수단이 되기도 하지만 윤활제에 포함된 슬러지나 찌꺼기를 배출하는 통로로서의 기능을 수행한다. 기존 기어커플링의 경우는 윤활 중의 찌꺼기(쇳조각 등)가 원심력에 의해 슬리브 이뿌리부와 피니언의 치면 이끝부에 모여 쌓임으로 인해 치접촉부에 끼어 기어 손상을 일으키는데 반하여 본 발명은 구형 베벨기어 치합으로 인하여 치열이 방사형으로 향하고 있어서 원심력에 의해 찌꺼기는 백래쉬를 통해 외부로 배출되어 오히려 치면에서 제거되는 효과를 얻는다. 그래서 치면상태가 항상 청결하여 피팅이나 스코핑 강도가 크게 향상된다.In addition, in the present invention, the backlash serves as a passage for discharging the sludge or debris included in the lubricant even though it is a means for overcoming the axial error. In the case of the existing gear coupling, the residue (lubrication) during lubrication gathers at the teeth of the sleeve teeth and the teeth of the pinion by the centrifugal force, causing the gear contact to be caught in the tooth contact portion. As the teeth are radially directed, the debris is discharged to the outside through the backlash, so that the teeth are removed from the tooth surface. So the tooth surface is always clean, which greatly improves the fitting and scoping strength.
한편, 본 발명은 큰 제약없이 수용가능한 축각오차의 한계를 늘릴 수 있다. On the other hand, the present invention can increase the limit of acceptable axial error without great limitation.
기존의 기어커플링의 허용 축각오차는 치폭과 치열방향의 크라운량(치열방향 곡률반경)에 따라 결정된다. 따라서 허용 축각오차를 늘리려면 치폭도 줄이고 크라운량도 더 크게 해줘야 하는데 그만큼 치 강도가 감소하는 것은 자명하다. 그로 인하여 기존 기어커플링은 최대축각오차의 범위에 한계가 있다. The allowable axial error of the existing gear coupling is determined by the tooth width and the amount of crowns in the dental direction. Therefore, in order to increase the allowable axial error, the width of the tooth should be reduced and the crown amount should be larger. Therefore, the existing gear coupling has a limit in the range of the maximum shaft angle error.
본 발명의 경우, 허용 축각오차는 백래쉬량에 의해서 결정된다. 백래쉬량(B)과 허용 축각오차(ΔΣ) 사이의 관계식은 다음과 같다.In the case of the present invention, the allowable axial error is determined by the amount of backlash. The relation between the backlash amount B and the allowable axial error ΔΣ is as follows.
Figure PCTKR2010005214-appb-I000001
Figure PCTKR2010005214-appb-I000001
여기서, Z는 기어잇수,
Figure PCTKR2010005214-appb-I000002
는 기어의 기초원추각이며, m은 기어모듈이다.
Where Z is the number of gear teeth,
Figure PCTKR2010005214-appb-I000002
Is the basic cone angle of the gear and m is the gear module.
백래쉬량은 통상적으로 조립오차를 감안하여 기어의 조립이 원활히 이루어지도록 하기위하여 약 모듈의 0.05배를 부여한다. 이 정도의 크기는 조립을 원활히 이루면서 역방향 토크가 발생할 때 치의 뒷면끼리 서로 충돌하는 문제를 충분히 방지할 수 있는 만큼의 경험적인 량이다. 따라서 역방향 토크로 인한 치 충돌을 방지할 수 있는 벡래쉬량을 0.05m의 수준으로 보는 것은 타당하다. 통상적인 백래쉬량을 (1)식에 대입하면
Figure PCTKR2010005214-appb-I000003
와 같이 되므로 바람직한 실시예(Z=21,
Figure PCTKR2010005214-appb-I000004
=60°)에 대해서는 허용축각오차 ΔΣ가 0.6°까지 됨을 알 수 있다.
The amount of backlash is generally given about 0.05 times of the module in order to facilitate the assembly of the gear in consideration of the assembly error. This size is an empirical amount enough to prevent the problem of collision between the back side of teeth when reverse torque occurs while making assembly smooth. Therefore, it is reasonable to view the backlash amount at the level of 0.05m which can prevent the tooth collision due to the reverse torque. Substituting the usual amount of backlash into equation (1)
Figure PCTKR2010005214-appb-I000003
Since the preferred embodiment (Z = 21,
Figure PCTKR2010005214-appb-I000004
= 60 °), the allowable axis angle error ΔΣ is up to 0.6 °.
이 정도의 크기는 기존의 기어커플링의 허용 축각오차(0.5°~ 1.0°)와 거의 맞먹는 수준이므로 별도의 백래쉬량 없이도 통상적인 커플링의 허용 축각오차를 충분히 흡수할 수 있다고 본다. 따라서 통상적인 백래쉬량(0.05m)만큼을 부과하더라도 조립이 원활히 이루어질 뿐만 아니라 허용축각오차는 0.6°까지 가능하게 된다. Since the size is almost the same as the allowable axial error (0.5 ° ~ 1.0 °) of the conventional gear coupling, it is considered that the allowable axial error of the conventional coupling can be sufficiently absorbed without a separate backlash amount. Therefore, even if a normal amount of backlash (0.05m) is imposed, not only the assembly is performed smoothly but also the allowable shaft angle error is possible up to 0.6 °.
역토크로 인한 치충돌이 발생하는 한계 백래쉬량이 0.05m보다 얼마나 더 클지는 경우에 따라 다르나 본 발명은 한계 백래쉬량까지 최대로 백래쉬를 부여할 수 있으며 그 만큼 축각오차의 허용량이 증가하는 것은 자명하다. 따라서 본 발명은 기존의 기어카플링에 비하여 허용축각오차를 증가시키는데 훨씬 자유롭다는 것은 자명한 사실이다. 따라서, 치충돌이 안되는 치굽힘강도가 허용되는 범위에서 백래쉬량을 크게 할 수 있다.It depends on how much the limit backlash that the collision due to reverse torque is larger than 0.05m, but the present invention can give the maximum backlash up to the limit backlash amount, it is self-evident that the allowable amount of the axial error increases Do. Therefore, it is obvious that the present invention is much more free to increase the allowable shaft angle error compared to the conventional gear coupling. Therefore, the amount of backlash can be increased in the range in which the bending strength that does not collide with the teeth is allowed.
참고로 상기 내접허브(110)와 외접허브(120)가 치합하는 부분은 후술하는 케이스에 의해 밀폐되는데, 이 부분은 도시된 바와 같이 외접허브(120) 측의 직경이 상대적으로 작게 형성되고 상기 내접베벨기어(112)로부터 외접베벨기어(122)에 이르는 외면이 곡면을 이룬다.For reference, the portion where the internal hub 110 and the external hub 120 are engaged is sealed by a case to be described later, and the portion of the external hub 120 is formed to have a relatively small diameter as shown in the external hub. The outer surface from the bevel gear 112 to the external bevel gear 122 forms a curved surface.
다음으로 도 3과 도 4를 참조하여 제1피봇홀더(130)와 제2피봇홀더(140)를 함께 설명한다.Next, the first pivot holder 130 and the second pivot holder 140 will be described together with reference to FIGS. 3 and 4.
상기 제1, 제2피봇홀더는 도시된 바와 같이 각각 상기 내접, 외접허브 내부에서 회전가능하게 결합되고 서로 힌지결합된다.As shown in the drawing, the first and second pivot holders are rotatably coupled and hinged to each other in the internal and external hubs, respectively.
각각은 서로 구조가 동일하므로 제1피봇홀더(130)를 위주로 설명하자면, 도시된 바와 같이 원기둥 형상으로 일측이 상기 내접허브(110) 내부에 삽입되어 결합되는데, 회전 가능하고 축방향으로 지지(추력지지)될 수 있도록 제1스러스트 베어링(132)에 의해 상기 내접허브(110)와 결합된다. 스러스트 베어링은 하중이 축방향으로 작용하는 것을 지지하는 베어링인데 볼(Ball), 칼라(Collar), 풋스텝(Footstep) 베어링 등이 사용될 수 있다.Since the structures are the same as each other, the first pivot holder 130 will be mainly described. As shown, one side of the cylindrical shape is inserted into and coupled to the internal hub 110, and is rotatable and supported in the axial direction (thrust). It is coupled to the internal hub 110 by a first thrust bearing 132 to be supported). Thrust bearings are bearings that support the action of the load in the axial direction, and ball, collar, and footstep bearings may be used.
그리고 상기 제1피봇홀더(130)의 타측은 상기 외접허브(120)의 중심을 향하도록 배치되며 그 단부에는 핀(p)이 삽입될 수 있는 홀(h)이 형성된다.The other side of the first pivot holder 130 is disposed to face the center of the external hub 120, and a hole h at which the pin p can be inserted is formed at an end thereof.
마찬가지로 상기 제2피봇홀더(140)도 상기 외접허브(120) 내부에 삽입되어 제2스러스트 베어링(142)에 의해 결합되며 타측 단부에 홀(h)이 형성되며 상기 제1피봇홀더(130)의 홀(h)과 연통되게 배치되어 핀(p)으로 고정됨으로써 상호 힌지결합된다.Similarly, the second pivot holder 140 is also inserted into the external hub 120 and is coupled by the second thrust bearing 142, and a hole h is formed at the other end of the first pivot holder 130. It is arranged in communication with the hole (h) and is hinged to each other by being fixed by the pin (p).
이러한 구조로 되어 있어 상기 제1, 제2피봇홀더(140)는 상기 내접, 외접허브(120)가 마주보는 것과 같이 마주보며 결합되어 있어 상기 내접, 외접허브(120)가 치합된 상태를 유지하는 동시에 토크전달시 축방향으로 발생하는 반력(추력)을 지지해준다.In this structure, the first and second pivot holders 140 are coupled to face each other as the internal and external hubs 120 face each other to maintain the internal and external hubs 120 engaged. At the same time, it supports the reaction force (thrust) generated in the axial direction during torque transmission.
그리고 상기 내접, 외접허브(120)에 축각이 발생할 때 상기 제1, 제2피봇홀더(140)가 상호 힌지결합되어 있으므로 축각에 능동적으로 대응하여 흡수할 수 있으며 동시에 각각 제1, 제2스러스트 베어링(142)에 의해 회전 가능하게 결합되므로 양 축의 회전력을 방해하지 않는다. The first and second pivot holders 140 are hinged to each other when an axial angle occurs in the internal and external hubs 120 so that the first and second thrust bearings can actively absorb and simultaneously absorb the first and second thrust bearings. Rotationally coupled by 142 does not interfere with the rotational forces of both axes.
바람직하게는, 상기 내접허브(110)와 외접허브(120)가 형성하는 내부공간에는 윤활제가 충진되는 것이 좋다. 윤활제는 상기 내접베벨기어(112)와 외접베벨기어(122)의 물림 및 상기 제1, 제2피봇홀더(140)의 힌지결합과 제1, 제2스러스트 베어링(142)의 작용을 윤활한다.Preferably, a lubricant is filled in the inner space formed by the internal hub 110 and the external hub 120. The lubricant lubricates the engagement of the internal bevel gear 112 and the external bevel gear 122 and the hinge coupling of the first and second pivot holders 140 and the action of the first and second thrust bearings 142.
이러한 윤활제를 밀폐하기 위해서 상기 제1스러스트 베어링(132)과 제2스러스트 베어링(142) 각 일측에는 원판 형상의 제1패킹디스크(150)와 제2패킹디스크(160)가 결합되며, 상기 내접허브(110)와 외접허브(120)가 치합하는 부분의 외주면에는 상기 내접베벨기어(112)와 외접베벨기어(122)가 형성하는 백래쉬를 통해 배출되는 윤활제를 밀폐하도록 원통형상의 케이스(170)가 결합된다. 물론 상기 제1, 제2패킹디스크(160) 및 케이스(170)는 오링과 같은 것을 사용해서 실링(Sealing) 처리가 되어야 할 것이다.In order to seal the lubricant, the first thrust bearing 132 and the second thrust bearing 142 are respectively connected to the first packing disc 150 and the second packing disc 160 having a disc shape, and the internal hub Cylindrical case 170 is coupled to the outer circumferential surface of the portion where the 110 and the external hub 120 are engaged to seal the lubricant discharged through the backlash formed by the internal bevel gear 112 and the external bevel gear 122. do. Of course, the first and second packing discs 160 and the case 170 should be sealed by using an o-ring or the like.
상기 케이스(170)는 상기 내접허브(110)와 외접허브(120)가 치합하는 부분의 외주면과 약간의 간격을 두고 결합되며 앞서 언급한 바와 같이 곡면을 형성하는 것이 바람직한데, 이것은 양 축이 축각을 형성할 때 상기 케이스(170)가 곡면이어야 상기 내접허브(110)와 외접허브(120)가 치합하는 부분이 곡면으로 형성되어 상기 케이스(170) 내부에서 관절이나 유니버셜 조인트(Universal Joint)과 같이 거동할 수 있게 된다.The case 170 is coupled to the outer circumferential surface of the portion where the internal hub 110 and the external hub 120 is meshed with a slight distance, and it is preferable to form a curved surface as mentioned above, which is both shaft angle When the case 170 is curved, a portion where the internal hub 110 and the external hub 120 engage with each other is formed as a curved surface, such as a joint or a universal joint in the case 170. Be able to act.
도 6은 본 발명에 의해 축각오차가 극복되는 상태를 나타내는 개념도이다.6 is a conceptual diagram illustrating a state in which an axial error is overcome by the present invention.
실제 축각오차가 발생하는 것은 3차원 거동이나 이해를 위해서 2차원적 거동으로 도시하였음을 일러둔다. 점선부분은 축각오차가 발생하기 전 상태를 나타내며 실선은 축각오차가 발생한 상태를 나타낸다.It is to be noted that the actual axial error occurs as a three-dimensional behavior or a two-dimensional behavior for understanding. The dotted line shows the state before the axial error occurs and the solid line shows the state where the axial error occurs.
상기 내접허브(110)와 외접허브(120) 사이에는 백래쉬가 형성되어 있기 때문에 내접베벨기어(112)와 외접베벨기어(122)가 치합되는 부분의 일측(도 6에서 아래부분)이 밀착되면 반대측(도 6에서 윗부분)은 서로 간격이 벌어지고 핀(p)을 중심으로 제1피봇홀더(130)와 제2피봇홀더(140)도 일정각도로 꺾이면서 양 회전축은 축각을 형성하게 된다.Since the backlash is formed between the internal hub 110 and the external hub 120, the opposite side of the internal bevel gear 112 and the external bevel gear 122 is in close contact with one side of the internal bevel gear 112 and the external bevel gear 122. 6 is spaced apart from each other, and the first pivot holder 130 and the second pivot holder 140 are also bent at a predetermined angle with respect to the pin p so that both rotation shafts form an axial angle.
본 발명에서 상기 외접허브(120)와 제2회전축 사이에는 스플라인 스페이서(180)가 더 개재될 수 있다.In the present invention, the spline spacer 180 may be further interposed between the external hub 120 and the second rotary shaft.
상기 스플라인 스페이서(180)는 축의 축방향 유동을 가이드하여 흡수할 수 있는 것으로서, 원통형상을 이루고 내주면에 축방향을 따라 스플라인홈(182)이 형성된다.The spline spacer 180 is capable of guiding and absorbing the axial flow of the shaft. The spline spacer 180 has a cylindrical shape and a spline groove 182 is formed along the axial direction on an inner circumferential surface thereof.
상기 외접허브(120)의 일측 외주에는 상기 스플라인홈(182)에 대응하게 결합될 수 있도록 다수개의 키(Key)가 형성된 형상의 스플라인(124)이 형성된다. Splines 124 having a shape in which a plurality of keys are formed are formed at one outer circumference of the external hub 120 so as to correspond to the spline grooves 182.
*따라서, 상기 스플라인 스페이서(180)의 일측에 제2회전축을 고정하거나 스플라인 결합시키고 동시에 상기 외접허브(120)의 스플라인(124)이 상기 스플라인 스페이서(180)의 타측 내부에 삽입되어 축방향으로 일정거리 미끄러지면서 축방향으로 이동가능하게 거동함으로써 제1, 제2회전축이 축방향으로 유동할 때 그 오차를 흡수하게 된다.Therefore, the second rotation shaft is fixed or spline-coupled to one side of the spline spacer 180 and at the same time the spline 124 of the external hub 120 is inserted into the other side of the spline spacer 180 to be fixed in the axial direction. By slidably moving in the axial direction while sliding the distance, the error is absorbed when the first and second rotation shafts flow in the axial direction.
이하에서는 본 발명의 다른 실시 예를 살펴본다. Hereinafter, another embodiment of the present invention will be described.
<실시 예 2><Example 2>
<실시 예 1>에서 상술한 베벨기어 기어커플링 한 쌍을 상기 스플라인 스페이서와 같은 연결부재에 의해 결합시킨 베벨기어를 이용한 이중기어커플링이다. 도 7은 본 발명의 바람직한 다른 실시 예에 따른 베벨기어를 이용한 기어커플링의 내부구조를 나타내는 내부 절개사시도이다.This is a double gear coupling using a bevel gear in which a pair of bevel gear gear couplings described in Embodiment 1 is coupled by a connecting member such as the spline spacer. 7 is an internal cutaway perspective view showing the internal structure of the gear coupling using a bevel gear according to another embodiment of the present invention.
본 발명은 크게 제1내접허브(210), 제1외접허브(220), 제1피봇홀더(230), 제2피봇홀더(240)로 구성되는 하나의 베벨기어를 이용한 기어커플링과, 제2내접허브(310), 제2외접허브(320), 제3피봇홀더(330), 제4피봇홀더(340)로 구성되는 또 하나의 베벨기어를 이용한 기어커플링을 스플라인 스페이서(400)로 연결하되 마주보도록 결합되어 동력을 연결하고자 하는 제1회전축과 제2회전축이 축각을 형성하면서 동시에 축선이 어긋난 상태에서도 동력을 원활하게 전달할 수 있게 된다. 즉, 축각오차와 평행오차를 동시에 극복한다.The present invention is a gear coupling using one bevel gear consisting of a first internal hub 210, a first external hub 220, a first pivot holder 230, a second pivot holder 240, and Gear coupling using another bevel gear consisting of a second internal hub 310, a second external hub 320, a third pivot holder 330, a fourth pivot holder 340 to the spline spacer 400 The first rotary shaft and the second rotary shaft which are coupled to face each other to be connected to each other are connected to each other to form a shaft angle, and at the same time, the power can be smoothly transmitted even when the axis is shifted. That is, the axial error and parallel error are overcome simultaneously.
상기 제1내접허브(210), 제1외접허브(220), 제2내접허브(310), 제2외접허브(320)는 각각 <실시 예 1>에 상술한 상기 내접허브(110) 및 외접허브(120)와 그 구성이 대동소이하므로 상세한 설명은 생략한다.The first internal hub 210, the first external hub 220, the second internal hub 310, and the second external hub 320 are the internal hub 110 and the external contact described above in the first embodiment. Since the hub 120 and its configuration are substantially the same, detailed description thereof will be omitted.
그리고 상기 제1피봇홀더(230), 제2피봇홀더(240), 제3피봇홀더(330), 제4피봇홀더(340)도 상술한 앞 실시 예의 제1피봇홀더(130) 및 제2피봇홀더(140)와 그 구성이 대동소이 하다.In addition, the first pivot holder 130, the second pivot holder 240, the third pivot holder 330, and the fourth pivot holder 340 also have the first pivot holder 130 and the second pivot. The holder 140 and its configuration are large and similar.
또한, 스플라인 스페이서(400)도 내주면에 스플라인홈(410)이 형성된 원통형상을 가지므로 상술한 것과 동일한 구성을 가진다. In addition, the spline spacer 400 also has a cylindrical shape with a spline groove 410 formed on an inner circumferential surface thereof, and thus has the same configuration as described above.
다만 이와 같이 베벨기어 두 개를 이용하기 때문에 앞 실시 예에서는 흡수할 수 없는 평행오차를 흡수할 수 있게 된다. 즉, 본 발명의 구형 인볼루트 베벨기어를 이중으로 사용하면 축각오차, 축유동, 평행오차 3개를 모두 극복하면서 회전력을 원활하게 전달할 수 있게 된다.However, since two bevel gears are used as described above, parallel errors that cannot be absorbed in the previous embodiment can be absorbed. In other words, if the spherical involute bevel gear of the present invention is used in duplicate, the rotational force can be smoothly transmitted while overcoming all three axial errors, axial flows, and parallel errors.
도 8은 본 발명에 다른 실시 예에 따라 축각오차 및 평행오차가 극복되는 것을 나타내는 개념도이다.8 is a conceptual diagram illustrating that the axial angle error and parallel error is overcome according to another embodiment of the present invention.
실제 축각오차 및 평행오차가 발생하는 것은 3차원 거동이나 이해를 위해서 2차원적 거동으로 도시하였음을 일러둔다. 점선부분은 축각오차 및 평행오차가 발생하기 전 상태를 나타내며 실선은 축각오차 및 평행오차가 발생한 상태를 나타낸다.It is to be noted that the actual axial and parallel errors are depicted as two-dimensional behavior for the sake of three-dimensional behavior or understanding. The dotted line indicates the state before the axial error and the parallel error occurs, and the solid line indicates the state where the axial error and the parallel error have occurred.
역시 백래쉬로 인해 제1내접베벨기어(212)와 제1외접베벨기어(222)가 치합되는 부분의 아래부분이 밀착되면 윗부분은 서로 간격이 벌어지고 핀(p)을 중심으로 제1피봇홀더(230)와 제2피봇홀더(240)도 일정각도로 꺾이게 되고, 동시에 제1내접베벨기어(312)와 제2외접베벨기어(322)가 치합되는 부분의 윗부분이 서로 밀착되면 아래부분은 서로 간격이 벌어지고 핀(p)을 중심으로 제3피봇홀더(330)와 제4피봇홀더(340)도 동일 각도로 꺾이게 되면서 양 회전축은 축각을 형성할 뿐 아니라 축선이 어긋난 상태에서도 동력을 원활하게 전달할 수 있는 것이다.Also, if the lower part of the part where the first internal bevel gear 212 and the first external bevel gear 222 are engaged by the backlash is in close contact with each other, the upper parts are spaced apart from each other and the first pivot holder (p) 230 and the second pivot holder 240 are also bent at a predetermined angle, and at the same time, when the upper portions of the parts where the first internal bevel gear 312 and the second external bevel gear 322 are in close contact with each other are spaced apart from each other, As the third pivot holder 330 and the fourth pivot holder 340 are bent at the same angle around the pin p, both rotation shafts form an axial angle and smoothly transmit power even when the axis is out of alignment. It can be.
참고로 본 발명에서 축정열오차(축각오차, 평행오차, 축유동)를 완전히 흡수할 수 있는 영역을 3차원적으로 살펴보면, 기어커플링 1개를 사용할 때의 허용 축각오차(ΔΣ0)와 허용 축유동량(ΔZ0)에 따라 결정된다. 도 9는 다소 과장된 허용 축정열오차인 ΔΣ0 = 10°, 허용 축유동인 ΔZ0 = 21mm에 대하여 제1회전축 피봇중심(도 8에서 p 위치)과 제1회전축 중심 사이의 거리 a = 70mm, 스플라인 스페이서의 표준거리 LS = 140mm에 대한 제1회전축 중심의 상대변위
Figure PCTKR2010005214-appb-I000005
의 범위를 나타낸다. 이 영역 내에서 발생되는 축정열오차에 대하여 제1회전축과 제2회전축 간의 축각오차(ΔΣt)와 평행오차(ΔE)는 다음과 같이 계산된다.
For reference, in the present invention, a three-dimensional area where the axis alignment heat error (axial error, parallel error, and axial flow) can be completely absorbed can be obtained. The allowable axial error when using one gear coupling (ΔΣ 0 ) And the allowable axial flow rate (ΔZ 0 ). 9 shows the distance a = 70 mm between the first axis of pivot pivot (p position in FIG. 8) and the center of the first axis of rotation for a slightly exaggerated allowable axis alignment error ΔΣ 0 = 10 ° and the allowable axis flow of ΔZ 0 = 21 mm. Relative displacement of the center of the first axis of rotation relative to the standard distance L S = 140 mm
Figure PCTKR2010005214-appb-I000005
Indicates the range of. The axial angle error ΔΣ t and the parallel error ΔE between the first rotational axis and the second rotational axis with respect to the axial alignment error occurring in this area are calculated as follows.
축각오차
Figure PCTKR2010005214-appb-I000006
,
Axial error
Figure PCTKR2010005214-appb-I000006
,
평행오차
Figure PCTKR2010005214-appb-I000007
Parallel error
Figure PCTKR2010005214-appb-I000007
여기서,
Figure PCTKR2010005214-appb-I000008
: 제2회전축 중심 변위에 대한 제1회전축 중심의 상대변위,
here,
Figure PCTKR2010005214-appb-I000008
: Relative displacement of the center of the first axis of rotation with respect to the displacement of the center of the second axis of rotation,
Figure PCTKR2010005214-appb-I000009
: 제1회전축 중심의 방향벡터,
Figure PCTKR2010005214-appb-I000010
: 제2회전축 중심의 방향벡터,
Figure PCTKR2010005214-appb-I000009
= Direction vector of the first axis of rotation,
Figure PCTKR2010005214-appb-I000010
= Direction vector of the second axis of rotation,
Figure PCTKR2010005214-appb-I000011
: 제1회전축과 제2회전축 사이의 최단거리 법선벡터
Figure PCTKR2010005214-appb-I000011
Is the shortest normal vector between the first and second axes of rotation.
그리고 도 9에 도시된 다수의 점들은 축정열오차를 완전히 흡수할 수 있는 제1회전축 중심의 의미있는 영역을 시뮬레이션한 위치이다.In addition, the plurality of points shown in FIG. 9 are locations simulating a meaningful region of the center of the first rotating shaft capable of completely absorbing the axis alignment heat error.
본 발명은 기어커플링에 이용 가능하고, 보다 상세하게는 구형 인볼류트 베벨기어를 이용하여 축정렬 오차를 흡수하면서 동력을 원활하게 전달할 수 있는 베벨기어를 이용한 기어커플링에 이용 가능한 것이다. The present invention can be used for gear coupling, and more specifically, it can be used for gear coupling using bevel gears that can smoothly transmit power while absorbing shaft alignment errors using spherical involute bevel gears.

Claims (6)

  1. 기어의 치합에 의해 제1회전축과 제2회전축을 연결하여 동력을 전달하는 기어커플링에 있어서,In the gear coupling which transmits power by connecting the 1st rotation shaft and the 2nd rotation shaft by meshing of gears,
    원통형상으로 이루어져 일측이 제1회전축과 결합되고, 타측 원주를 따라 내접베벨기어(112)가 내측으로 경사지게 형성된 내접허브(110); 및An internal hub 110 having a cylindrical shape, one side of which is coupled to the first rotating shaft, and the internal bevel gear 112 inclined inward along the other circumference; And
    원통형상으로 이루어져 일측이 제2회전축과 결합되고, 타측 원주를 따라 외접베벨기어(122)가 외측으로 경사지게 형성되어 상기 내접베벨기어(112)와 백래쉬를 형성하면서 치합되는 외접허브(120);를 포함하여 이루어져,An external hub 120 having a cylindrical shape, one side of which is coupled to the second rotating shaft, and the external bevel gear 122 is inclined outward along the other circumference to form an internal bevel gear 112 and backlash. Consisting of,
    제1회전축과 제2회전축이 축각을 형성한 상태에서도 동력을 전달할 수 있는 것을 특징으로 하는 베벨기어를 이용한 기어커플링.Gear coupling using a bevel gear, characterized in that the first rotation shaft and the second rotation shaft can transmit power even in the form of the shaft angle.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 내접허브(110) 내부에는 제1스러스트 베어링에 의해 회전가능하게 결합되는 제1피봇홀더(130) 및 상기 외접허브(120) 내부에는 제2스러스트 베어링에 의해 회전가능하게 결합되고 상기 제1피봇홀더(130)와 힌지결합되는 제2피봇홀더(140)가 더 구비되는 것을 특징으로 하는 베벨기어를 이용한 기어커플링.The first pivot holder 130 is rotatably coupled by the first thrust bearing inside the internal hub 110 and the first pivot is rotatably coupled by the second thrust bearing inside the external hub 120. Gear coupling using a bevel gear, characterized in that the second pivot holder 140 which is hinged to the holder 130 is further provided.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 내접허브(110)와 외접허브(120) 내부에는 윤활제가 충진되고,Lubricant is filled in the internal hub 110 and the external hub 120,
    상기 제1스러스트 베어링(132)과 제2스러스트 베어링(142) 각각의 일측에는 윤활제를 밀폐하는 제1패킹디스크(150)와 제2패킹디스크(160)가 결합되며,One side of each of the first thrust bearing 132 and the second thrust bearing 142 is coupled to the first packing disc 150 and the second packing disc 160 to seal the lubricant,
    상기 내접허브(110)와 외접허브(120)의 외주면에는 윤활제를 밀폐하는 케이스(170)가 결합되는 것을 특징으로 하는 베벨기어를 이용한 기어커플링.Gear coupling using a bevel gear, characterized in that the case 170 for sealing the lubricant is coupled to the outer circumferential surface of the internal hub 110 and the external hub 120.
  4. 제 1 항에 있어서,The method of claim 1,
    일측 외주에 스플라인(124)이 형성된 상기 외접허브(120)와 제2회전축 사이에는 내주면에 축방향으로 스플라인홈(182)이 형성된 원통형상의 스플라인 스페이서(180)가 더 개재되어,Between the external hub 120 and the second rotary shaft formed with the spline 124 on one side circumference, a cylindrical spline spacer 180 having a spline groove 182 formed on the inner circumferential surface is further interposed.
    제1회전축과 제2회전축의 축방향 유동을 가이드할 수 있는 것을 특징으로 하는 베벨기어를 이용한 기어커플링.Gear coupling using a bevel gear, characterized in that can guide the axial flow of the first rotary shaft and the second rotary shaft.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 내접허브(110)와 외접허브(120)가 이루는 피치원추각은 70°~ 80°인 것을 특징으로 하는 베벨기어를 이용한 기어커플링.Gear coupling using the bevel gear, characterized in that the pitch cone angle formed by the internal hub 110 and the external hub 120 is 70 ° ~ 80 °.
  6. 제 1 항 내지 제 3 항 중 어느 한 항의 베벨기어를 이용한 기어커플링 한 쌍을 마주보게 배치하되, 내주면에 스플라인홈(410)이 형성된 원통형상을 이루며 양측으로 상기 제1스플라인(224)과 제2스플라인(324)이 각각 삽입되는 스플라인 스페이서(400)로 상기 한 쌍의 베벨기어 커플링을 연결하여,A pair of gear couplings using the bevel gear of any one of claims 1 to 3 are disposed to face each other, the spline groove 410 is formed on the inner circumferential surface and the first spline 224 and the second side By connecting the pair of bevel gear coupling to the spline spacer 400 is inserted two splines 324, respectively,
    제1회전축과 제2회전축이 축각을 형성하면서 축선이 어긋난 상태에서도 동력을 전달할 수 있는 것을 특징으로 하는 베벨기어를 이용한 기어커플링.A gear coupling using a bevel gear, characterized in that the first rotating shaft and the second rotating shaft form an axial angle, and thus power can be transmitted even when the axis line is shifted.
PCT/KR2010/005214 2009-08-26 2010-08-10 Gear coupling using a bevel gear WO2011025160A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090079282A KR101053250B1 (en) 2009-08-26 2009-08-26 Gear Coupling with Involute Bevel Gears
KR10-2009-0079282 2009-08-26

Publications (2)

Publication Number Publication Date
WO2011025160A2 true WO2011025160A2 (en) 2011-03-03
WO2011025160A3 WO2011025160A3 (en) 2011-04-28

Family

ID=43628536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005214 WO2011025160A2 (en) 2009-08-26 2010-08-10 Gear coupling using a bevel gear

Country Status (2)

Country Link
KR (1) KR101053250B1 (en)
WO (1) WO2011025160A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151699A1 (en) * 2011-05-09 2012-11-15 Exponential Technologies, Inc. Spherical involute gear coupling
US9316102B2 (en) 2011-04-20 2016-04-19 Exponential Technologies, Inc. Rotors formed using involute curves
CN107091278A (en) * 2017-04-18 2017-08-25 中交疏浚技术装备国家工程研究中心有限公司 A kind of flexible thrust shaft coupling
CN111379792A (en) * 2018-12-28 2020-07-07 中车戚墅堰机车车辆工艺研究所有限公司 Drum gear
CN111379793A (en) * 2018-12-28 2020-07-07 中车戚墅堰机车车辆工艺研究所有限公司 Crowned tooth coupling and gear transmission system with same
US10975869B2 (en) 2017-12-13 2021-04-13 Exponential Technologies, Inc. Rotary fluid flow device
US11168683B2 (en) 2019-03-14 2021-11-09 Exponential Technologies, Inc. Pressure balancing system for a fluid pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104514813B (en) * 2013-09-30 2017-02-08 浙江中科德润科技有限公司 Gear coupling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107710A (en) * 2005-10-14 2007-04-26 Yoshio Abe 70-degrees angling universal joint
US7300431B2 (en) * 2002-06-24 2007-11-27 Arkady Veniaminovich Dubrovsky Remote controlled device for tool rotating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748329U (en) * 1980-09-05 1982-03-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300431B2 (en) * 2002-06-24 2007-11-27 Arkady Veniaminovich Dubrovsky Remote controlled device for tool rotating
JP2007107710A (en) * 2005-10-14 2007-04-26 Yoshio Abe 70-degrees angling universal joint

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316102B2 (en) 2011-04-20 2016-04-19 Exponential Technologies, Inc. Rotors formed using involute curves
WO2012151699A1 (en) * 2011-05-09 2012-11-15 Exponential Technologies, Inc. Spherical involute gear coupling
US8887592B2 (en) 2011-05-09 2014-11-18 Exponential Technologies, Inc. Spherical involute gear coupling
CN107091278A (en) * 2017-04-18 2017-08-25 中交疏浚技术装备国家工程研究中心有限公司 A kind of flexible thrust shaft coupling
US10975869B2 (en) 2017-12-13 2021-04-13 Exponential Technologies, Inc. Rotary fluid flow device
US11614089B2 (en) 2017-12-13 2023-03-28 Exponential Technologies, Inc. Rotary fluid flow device
CN111379792A (en) * 2018-12-28 2020-07-07 中车戚墅堰机车车辆工艺研究所有限公司 Drum gear
CN111379793A (en) * 2018-12-28 2020-07-07 中车戚墅堰机车车辆工艺研究所有限公司 Crowned tooth coupling and gear transmission system with same
US11168683B2 (en) 2019-03-14 2021-11-09 Exponential Technologies, Inc. Pressure balancing system for a fluid pump

Also Published As

Publication number Publication date
WO2011025160A3 (en) 2011-04-28
KR20110021466A (en) 2011-03-04
KR101053250B1 (en) 2011-08-01

Similar Documents

Publication Publication Date Title
WO2011025160A2 (en) Gear coupling using a bevel gear
EP1267095B1 (en) Planetary gear device for reducing speed of an output shaft of a motor
US11424661B2 (en) Shaft coupling
US4976655A (en) Connecting rod assembly for downhole drilling
JP3476500B2 (en) Combination of thrust washers of gear transmission
CA1177819A (en) Articulated coupling
CN104603487B (en) Gear shaft and the oil sealing used in the gear shaft
US4126018A (en) Apparatus for interconnecting rotary shafts
EP4042032B1 (en) Coupling
EP1672250B1 (en) Power transmission device
RU2289733C1 (en) Constant angular velocity universal joint
CN201013781Y (en) Rolling body universal coupling
CN101520081A (en) Automatic directional driving mechanism
RU34664U1 (en) Coupling
WO2022206896A1 (en) High-reliability flexible drill rod
US4417881A (en) Drive shaft seal
CN218670285U (en) Power transmission structure for coating production
CN221170993U (en) Servo drive
CA1200148A (en) Double axle drive for rail traction vehicles
CN221482460U (en) Motor coupling
CN214945864U (en) Novel spline movable drum-shaped ball column universal coupling
CN211820454U (en) Damping coupling
CN112524167B (en) Drum-shaped gear coupling with axial large-expansion function
RU46717U1 (en) DRIVING BOX DRIVE
JP2020034063A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812174

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812174

Country of ref document: EP

Kind code of ref document: A2