WO2011024809A1 - Electric wire and process for production thereof - Google Patents
Electric wire and process for production thereof Download PDFInfo
- Publication number
- WO2011024809A1 WO2011024809A1 PCT/JP2010/064281 JP2010064281W WO2011024809A1 WO 2011024809 A1 WO2011024809 A1 WO 2011024809A1 JP 2010064281 W JP2010064281 W JP 2010064281W WO 2011024809 A1 WO2011024809 A1 WO 2011024809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating layer
- fluororesin
- thermosetting resin
- layer
- electric wire
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/065—Insulating conductors with lacquers or enamels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
Definitions
- the present invention relates to an electric wire and a manufacturing method thereof.
- Electric wires used in automobiles and robots, and coil windings used in motors require high discharge starting voltage, mechanical strength, heat resistance, etc. indicated by wear resistance. Mechanical strength is also required to prevent damage.
- Patent Document 1 a small amount of a dispersion of fluororesin fine powder dispersed in alcohol is mixed with an insulating paint such as polyamideimide to form a lubricating paint, and the lubricating paint is baked on the outermost layer. It was proposed to use an insulated wire.
- Patent Document 2 on the insulating film mainly composed of a thermosetting resin, a film composed of a fluororesin not containing a binder or a composition ratio of a binder composed of a fluororesin and a binder in a weight ratio, the fluororesin and the binder
- a film composed of a fluororesin not containing a binder or a composition ratio of a binder composed of a fluororesin and a binder in a weight ratio, the fluororesin and the binder
- Patent Document 3 is characterized in that an insulating layer is formed by electrodeposition of a water-dispersed resin emulsion obtained by water-dispersing a polyimide resin, a fluororesin, and a charge imparting agent on a conductor, followed by drying and baking. A method of manufacturing an insulated wire has been proposed.
- Patent Document 4 a self-lubricating insulated wire having a coating made of a lubricating polyamideimide synthesized in the presence of fluororesin fine powder as an outermost layer has been proposed.
- An object of the present invention is to provide an electric wire having a higher discharge starting voltage, mechanical strength indicated by wear resistance, and heat resistance than before.
- the present invention has a conductor and a first insulating layer formed on the outer periphery of the conductor, and the first insulating layer is made of a thermosetting resin and a fluororesin, and the thermosetting resin and the fluororesin Is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, coating the resulting mixture on a conductor, and baking it. It is the electric wire characterized by this.
- the said electric wire has the 2nd insulating layer which is formed in the outer periphery of a 1st insulating layer and 80 mass% or more of the whole consists of a fluororesin.
- the electric wire is formed on the outer periphery of the second insulating layer, is made of a thermosetting resin and a fluororesin, and a third insulation having a mass ratio of the thermosetting resin to the fluororesin of 100: 0 to 30:70.
- the third insulating layer is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on the second insulating layer, and baking it. Preferably there is.
- thermosetting resin is at least one selected from the group consisting of polyvinyl formal, polyamideimide, polyimide, polyester, polyurethane, polyamide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide. Preferably it is a seed.
- the fluororesin includes polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / It is preferably at least one selected from the group consisting of a tetrafluoroethylene / hexafluoropropylene copolymer, polyvinylidene fluoride, and polychlorotrifluoroethylene.
- the present invention is a method for manufacturing the above-mentioned electric wire, comprising mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it to form a first insulating layer. It is also the manufacturing method characterized by these.
- the present invention is a method for producing the above electric wire, wherein a thermosetting resin solution and a fluororesin organosol are mixed, and the obtained mixed solution is applied onto a conductor and baked to form a first insulating layer, It is also a manufacturing method characterized in that a second insulating layer containing 80% or more of a fluororesin is formed on the outer periphery of the first insulating layer.
- the present invention is a method for producing the above electric wire, wherein a thermosetting resin solution and a fluororesin organosol are mixed, and the obtained mixed solution is applied onto a conductor and baked to form a first insulating layer, A second insulating layer containing 80% or more of a fluororesin is formed on the outer periphery of the first insulating layer, a thermosetting resin solution and a fluororesin organosol are mixed, and the resulting mixture is used as the second insulating layer. It is also a manufacturing method characterized in that a third insulating layer is formed by applying and baking on the top.
- the electric wire of the present invention has the above-described configuration, the conductor and the insulating layer are firmly bonded, the dielectric constant is low, the discharge starting voltage is high, and the mechanical strength (abrasion resistance) is excellent. In addition, since a thin insulating layer can be formed, heat dissipation is also good. Furthermore, when the outermost layer has a fluororesin, the slipperiness is good and the heat resistance is also excellent.
- the electric wire of the present invention has a conductor and a first insulating layer formed on the outer periphery of the conductor, and the first insulating layer is made of a thermosetting resin and a fluororesin, and is thermosetting.
- the mass ratio of the resin to the fluororesin is 90:10 to 10:90, and the first insulating layer is obtained by mixing the thermosetting resin solution and the fluororesin organosol and placing the obtained mixture on the conductor. It is a layer formed by applying and baking.
- this 1st insulating layer formed in the outer periphery of a conductor this 1st insulating layer will contact
- the second insulating layer is in contact with the first insulating layer.
- the third insulating layer is in contact with the second insulating layer.
- the first insulating layer contains the thermosetting resin and the fluororesin in the above mass ratio, the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed solution is placed on the conductor. Since it is formed by coating and baking, the discharge start voltage is high, and the mechanical strength (wear resistance) and heat resistance are excellent.
- thermosetting resin of the first insulating layer if the thermosetting resin of the first insulating layer is too much, the discharge starting voltage may be lowered or the heat resistance may be inferior.
- the mass ratio of the thermosetting resin to the fluororesin is preferably 90:10 to 20:80, and more preferably 75:25 to 30:70.
- “mass ratio” is solid content mass ratio.
- the total of the thermosetting resin and the fluororesin is preferably 97 to 100% by mass.
- the electric wire of the present invention preferably has a second insulating layer formed on the outer periphery of the first insulating layer.
- a 2nd insulating layer When it has a 2nd insulating layer, it will be excellent in the balance of a discharge start voltage and abrasion resistance.
- the second insulating layer is made of fluororesin with 80% by mass or more of the entire second insulating layer. More preferably, it is 85 mass% or more, More preferably, it is 90 mass% or more.
- the second insulating layer may contain, for example, an inorganic pigment, a filler, an adhesion imparting agent, an antioxidant, a lubricant, a dye, and the like, which will be described later, in addition to the fluororesin.
- the electric wire of the present invention preferably has a third insulating layer formed on the outer periphery of the second insulating layer.
- the third insulating layer is formed on the outer periphery of the second insulating layer, and is made of a thermosetting resin and a fluororesin, and the mass ratio of the thermosetting resin to the fluororesin is 100: 0 to 30:70.
- the third insulating layer may be a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on the second insulating layer, and baking it.
- thermosetting resin solution not containing a fluororesin organosol on the second insulating layer may be used, but the thermosetting resin solution and the fluororesin organosol are mixed.
- the obtained liquid mixture is preferably a layer formed by applying and baking on the second insulating layer.
- the third insulating layer contains the thermosetting resin and the fluororesin in the above-described mass ratio, the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed solution is used as the second mixture.
- the layer formed by applying and baking on the insulating layer is more excellent in mechanical strength and heat resistance. Moreover, since the electric wire of the present invention has the second insulating layer, the discharge starting voltage is high and the heat resistance is further improved.
- the mass ratio of the thermosetting resin to the fluororesin is preferably 99.9: 0.1 to 30:70, more preferably 80:20 to 30:70. 60:40 to 30:70 is more preferable, and the mass ratio of the thermosetting resin to the fluororesin is particularly preferably 50:50 to 30:70.
- the total of the thermosetting resin and the fluororesin is preferably 97 to 100% by mass.
- thermosetting resin is at least one selected from the group consisting of polyvinyl formal, polyamideimide, polyimide, polyester, polyurethane, polyamide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide. It is preferable.
- thermosetting resin is more preferably at least one selected from the group consisting of polyamideimide, polyimide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide.
- thermosetting resin individually or in combination of 2 or more types.
- Preferred embodiments when two or more are used include a combination of polyarylene sulfide and polyamideimide, a combination of polyarylene sulfide and polyimide, a combination of polyarylene sulfide and polyesterimide, and the like.
- the polyamideimide [PAI] is a resin composed of a polymer having both an amide bond and an imide bond in the molecular structure.
- the PAI is not particularly limited. For example, a reaction between an aromatic diamine having an amide group in the molecule and an aromatic tetravalent carboxylic acid such as pyromellitic acid, an aromatic trivalent carboxylic acid such as trimellitic anhydride, Resins comprising high molecular weight polymers produced by reaction with diamines such as 4,4-diaminophenyl ether and diisocyanates such as diphenylmethane diisocyanate, reaction of dibasic acid having an aromatic imide ring in the molecule and diamine, etc. Is mentioned.
- As said PAI what consists of a polymer which has an aromatic ring in a principal chain from the point which is excellent in heat resistance is preferable.
- the polyimide [PI] is a resin made of a polymer having an imide bond in the molecular structure.
- the PI is not particularly limited, and examples thereof include a resin made of a high molecular weight polymer produced by a reaction of an aromatic tetravalent carboxylic anhydride such as pyromellitic anhydride.
- an aromatic tetravalent carboxylic anhydride such as pyromellitic anhydride.
- what consists of a polymer which has an aromatic ring in a principal chain from the point which is excellent in heat resistance is preferable.
- the polyarylene sulfide [PAS] is a resin made of a polymer having an arylene thioether group in the molecular structure.
- arylene means arylene and does not mean allylene.
- the PAS is not particularly limited, and examples thereof include polyphenylene sulfide [PPS].
- the PAS includes a terminal group represented by a general formula —Ar—Z (wherein Ar represents an arylene group, Z represents a thiolate group (—SM, M represents an alkali metal) or —F). Or a polymer having the general formula —Ar—Z ′ (wherein Ar represents an arylene group, and Z ′ represents a mercapto group (—SH) or —H). It may consist of a polymer having a terminal group.
- PPS comprising a polymer having a terminal group represented by the above general formula -Ar-Z
- a polymer having a terminal group represented by the above general formula -Ar-Z can be produced by, for example, the method described in US Pat. No. 3,354,129 and the like, for example, N-methyl It can be produced by producing a polyarylene thioether by dehalogenation / sulfurization reaction between an alkali metal sulfide such as Na 2 S or sodium sulfate and a dihaloaromatic compound such as paradichlorobenzene in a polar solvent such as pyrrolidone. it can.
- a PPS comprising a polymer having a terminal group represented by the general formula —Ar—Z ′ can be produced, for example, by modifying the terminal group represented by the general formula —Ar—Z by acid treatment. it can.
- t represents an integer of 2 or more
- the PES is not particularly limited, and examples thereof include a resin made of a polymer obtained by polycondensation of dichlorodiphenyl sulfone and bisphenol.
- the polyesterimide [PEI] is a resin composed of a polymer having both an imide bond and an ester bond in the molecular structure.
- PAI or PEI is used as the thermosetting resin.
- PAI or PEI the mechanical strength of the insulating layer can be improved.
- the fluororesin is polytetrafluoroethylene [PTFE], tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer [PFA], tetrafluoroethylene / hexafluoropropylene copolymer [FEP], ethylene / tetrafluoro It is preferably at least one selected from the group consisting of ethylene copolymers, ethylene / tetrafluoroethylene / hexafluoropropylene copolymers, polyvinylidene fluoride, and polychlorotrifluoroethylene. More preferably, the fluororesin is at least one selected from the group consisting of PTFE, PFA and FEP.
- the fluororesin used for the first insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
- the fluororesin used for the second insulating layer is preferably a melt processable fluororesin, more preferably FEP or PFA.
- the fluororesin used for the third insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
- the PTFE may be a tetrafluoroethylene homopolymer or a modified polytetrafluoroethine [modified PTFE].
- modified PTFE means a product obtained by copolymerizing a small amount of a comonomer with TFE so as not to impart melt processability to the obtained polymer.
- the small amount of the comonomer is not particularly limited.
- HFP hexafluoropropylene
- CTFE chlorotrifluoroethylene
- 3FH trifluoroethylene
- PAVE perfluoroalkyl vinyl ether
- PAVE perfluoro (alkoxy) Vinyl ether
- (perfluoroalkyl) ethylene and the like One kind or two or more kinds of the small amount of comonomer can be used.
- the ratio in which the small amount of the comonomer is added to the modified PTFE varies depending on the type thereof. For example, when PAVE, perfluoro (alkoxy vinyl ether) or the like is used, the TFE and the small amount of the comonomer are usually used. It is preferably 0.001 to 1% by mass of the total mass with the polymer.
- PTFE having a melting point of 320 ° C. or higher is preferable from the viewpoint of heat resistance.
- the PFA is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of PAVE units, and 80 to 97 mol% of TFE units and 3 to 20 mol of PAVE units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
- the PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE, and even more preferably PMVE.
- PFA may be a copolymer composed of TFE, PAVE, and a monomer copolymerizable with TFE and PAVE.
- alkyl perfluorovinyl ether derivative those in which Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
- PFA has a monomer unit derived from a monomer copolymerizable with TFE and PAVE in an amount of 0.1 to 10 mol%, and a total of TFE unit and PAVE unit is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be inferior, and if it exceeds 10 mol%, heat resistance, mechanical properties and productivity. Tend to be inferior.
- the FEP is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of HFP units, and 80 to 97 mol% of TFE units and 3 to 20 mol of HFP units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
- FEP may be a copolymer comprising TFE, HFP, and a monomer copolymerizable with TFE and HFP.
- CF 2 CF-ORf 2 (wherein Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms.) Perfluoro (alkyl vinyl ether) [PAVE]
- the PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, and more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE.
- alkyl perfluorovinyl ether derivative those in which Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
- the monomer units derived from monomers copolymerizable with TFE and HFP are 0.1 to 10 mol%, and the total of TFE units and HFP units is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be poor, and if it exceeds 10 mol%, heat resistance, mechanical properties, productivity, etc. Tend to be inferior.
- fluororesin should just use 1 or more types, it is also preferable to use 2 or more types of fluororesins.
- fluororesins Preferable embodiments when two or more kinds of fluororesins are used include a combination of PTFE and PFA, a combination of PTFE and FEP, and the like.
- the fluororesin used for the second insulating layer is preferably a perfluoro resin, more preferably at least one perfluoro resin selected from the group consisting of PTFE, PFA, and FEP.
- the fluororesin When the fluororesin is PTFE, the fluororesin preferably has a standard specific gravity (SSG) of 2.13 to 2.21. When the fluororesin is PFA or FEP, the fluororesin preferably has an MFR at 372 ° C. of 5 to 80 g / 10 min. In the present specification, the SSG is measured in accordance with ASTM D 4895. The above MFR is compliant with ASTM D3307-01, and flows out from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a 5 kg load at a temperature 70 ° C. higher than the melting point, using a melt indexer (manufactured by Toyo Seiki Co., Ltd.) per 10 minutes. It is the mass (g / 10min) of the polymer to do.
- SSG standard specific gravity
- the first insulating layer, the second insulating layer, or the third insulating layer may contain an inorganic pigment in order to improve the discharge starting voltage and the mechanical strength (wear resistance).
- the inorganic pigment is preferably stable even when baked, and examples thereof include titanium, iron oxide, and carbon powder.
- the inorganic pigment may be contained in any insulating layer constituting the electric wire.
- the first insulating layer, the second insulating layer, or the third insulating layer may also contain a filler, an adhesion promoter, an antioxidant, a lubricant, a dye, and the like.
- the inorganic pigment, filler, adhesion imparting agent, antioxidant, lubricant, dye and the like may be contained in any insulating layer constituting the electric wire.
- each insulating layer is not limited, but the total thickness of the first insulating layer, the second insulating layer, and the third insulating layer can be 1 to 100 ⁇ m. According to the present invention, the total film thickness can be 60 ⁇ m or less, or 40 ⁇ m or less. Moreover, it can also be thinned to 30 ⁇ m or less. Reducing the total film thickness of each insulating layer is advantageous in terms of excellent heat dissipation performance.
- the film thicknesses of the first insulating layer, the second insulating layer, and the third insulating layer may be set as appropriate according to the use of the electric wire, etc.
- the electric wire of the present invention includes the conductor and the first insulating layer.
- the first insulating layer is preferably 10 to 20 ⁇ m.
- the first insulating layer is preferably 5 to 15 ⁇ m, and the second insulating layer is preferably 10 to 40 ⁇ m.
- the electric wire of the present invention comprises only a conductor, a first insulating layer, a second insulating layer, and a third insulating layer
- the first insulating layer is 5 to 15 ⁇ m
- the second insulating layer is 10 to
- the thickness is preferably 40 ⁇ m
- the third insulating layer is preferably 5 to 20 ⁇ m.
- the first insulating layer is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it.
- the third insulating layer is obtained by mixing a thermosetting resin solution and a fluororesin organosol, and applying the obtained mixed liquid (or thermosetting resin solution) on the second insulating layer. , A layer formed by baking.
- the coating method is not particularly limited, and a known method such as a dipping method can be used.
- thermosetting resin solution When an insulating layer is formed from a mixture obtained by mixing a thermosetting resin solution and a fluororesin organosol, the thermosetting resin and the fluororesin are uniformly dispersed in the insulating layer.
- the discharge start voltage is high, and mechanical strength, heat resistance, and the like are greatly improved.
- thermosetting resin solution and the fluororesin organosol are preferably performed until the thermosetting resin and the fluororesin are sufficiently mixed with each other, and can usually be performed by stirring for 5 minutes to 2 hours. .
- the liquid mixture may be applied only once or a plurality of times. By applying a plurality of times, pinholes in the insulating film can be reduced.
- the baking can be performed by a conventionally known method. You may dry the apply
- the baking temperature is preferably 200 to 320 ° C., for example.
- the baking temperature of the first insulating layer is more preferably 250 to 270 ° C.
- the baking temperature of the third insulating layer is preferably 250 to 310 ° C., more preferably 250 to 300 ° C.
- the baking temperature of the third insulating layer is preferably higher than the baking temperature of the first insulating layer.
- the baking temperature of the first insulating layer is 250 to 270 ° C.
- the baking temperature of the third insulating layer is preferably higher than 270 ° C. and not higher than 310 ° C., preferably higher than 270 ° C. and lower than 300 ° C. More preferably.
- the fluororesin organosol is composed of a fluororesin and an organic medium.
- the organic medium include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, cresol, methyl isobutyl ketone and the like.
- the thermosetting resin solution is composed of a thermosetting resin and a medium.
- the medium may be composed of an aqueous medium or may be composed of an organic medium. However, from the viewpoint of uniformly mixing with the fluororesin organosol, the medium may be composed of an organic medium. preferable.
- the organic medium include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, cresol, methyl isobutyl ketone and the like.
- the concentration of the fluororesin in the organosol may be 1 to 80% by mass, and may be 1 to 50% by mass.
- the thermosetting resin concentration in the thermosetting resin solution may be 1 to 80% by mass or 1 to 50% by mass.
- concentration of fluororesin in organosol is the total concentration of fluororesins with respect to the total mass of the fluororesin organosol. The same applies to the case of the thermosetting resin solution.
- the fluororesin organosol preferably has a dispersed particle size of 30 to 500 nm. More preferably, it is 30 to 350 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks.
- the fluororesin organosol is an organosol made of a fluororesin excluding PTFE, the dispersed particle diameter is preferably 30 to 200 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks. More preferably, it is 40 to 100 nm.
- the fluororesin organosol is a PTFE organosol made of PTFE, the dispersed particle size is preferably 150 to 350 nm.
- the dispersed particle diameter is more preferably 200 to 300 nm, and further preferably 230 to 260 nm.
- the dispersed particle diameter is a value measured by a dynamic light scattering method using FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
- the fluororesin organosol can be produced by a known method.
- a method for producing an aqueous dispersion containing colloidal particles of fluororesin by adding an organic solvent having a boiling point of 100 ° C. or higher and then removing the water by heating Japanese Patent Publication No. 49-18775, US Patent
- No. 2937156 Japanese Patent No. 1094349
- Japanese Patent Publication No. 48-175408 a phase inversion agent such as a water-soluble organic liquid or an aqueous electrolyte solution is added to the fluororesin aqueous dispersion and stirred.
- a method of causing phase inversion to a phase inversion liquid such as an organic solvent which is insoluble or hardly soluble in water (see Japanese Patent Publication No. 49-17016).
- the concentration of the solid content (fluororesin and thermosetting resin) in the mixed solution is preferably 5 to 70% by mass, more preferably 5 to 50% by mass, and 10 to 30% by mass. More preferably.
- the mass ratio of the thermosetting resin to the fluororesin in the mixed liquid is preferably 90:10 to 10:90, and 90:10 to It is more preferably 20:80, and further preferably 75:25 to 30:70.
- the mass ratio of the thermosetting resin to the fluororesin in the mixed liquid is preferably 100: 0 to 30:70, and 99.9: It is more preferably 0.1 to 30:70, still more preferably 80:20 to 30:70, particularly preferably 60:40 to 30:70, and 50:50 to 30:70. Most preferably it is.
- the use of the mixed solution for forming the first insulating layer or the third insulating layer is beneficial in obtaining an electric wire having excellent characteristics, and the mixed solution is used for a layer other than the layer structure of the electric wire. It is possible.
- the material for forming the conductor is not particularly limited as long as the material has good conductivity, and examples thereof include copper, copper alloy, copper clad aluminum, aluminum, silver, gold, and galvanized iron.
- the shape of the conductor is not particularly limited, and may be circular or flat. In the case of a circular conductor, the diameter of the conductor may be 0.3 to 2.5 mm.
- the dielectric constant as the whole insulating layer is 3.0 or less.
- the electric wire of the present invention comprises only a conductor and a first insulating layer
- the relative dielectric constant of the first insulating layer measured by the following method is 3.0 or less.
- the relative dielectric constant when the laminate comprising two layers is measured by the following method may be 3.0 or less. preferable.
- the relative dielectric constant is 3.0 when a laminate composed of three layers is measured by the following method. The following is preferable.
- the relative dielectric constant is a value measured by a capacitance method.
- a capacitance method As a measuring method, a covered electric wire is placed in 1% saline, the electric capacity between the conductor and the outside of the outermost insulating layer is obtained, and the relative dielectric constant is obtained from the thickness and surface area. The measurement can be performed under the following conditions.
- Capacitance method dielectric constant measurement method 1 kHz (pF / m) Inner electrode: Core wire (conductor)
- Outer electrode Water measuring device: NF circuit design block LCZ meter
- the discharge start voltage of the insulating layer can be set to 800 V or more. Moreover, it can also be set to 1000V or more.
- the discharge start voltage means the discharge start voltage of the entire insulating layer constituting the electric wire.
- the electric wire includes a conductor, a first insulating layer, a second insulating layer, and a third insulating layer. , The discharge start voltage of the entire insulating layer including the first insulating layer, the second insulating layer, and the third insulating layer.
- the discharge start voltage can be measured at a frequency of 100 kHz and a charge amount of 100 pC using a DAC-PD-3 manufactured by Soken Denki Co., Ltd. for a twist piece prepared in accordance with JIS C3003 11.1.
- the mechanical strength is a value measured by a reciprocating wear tester according to JIS C 3003 10.1.
- the manufacturing method of the said electric wire is also one of this invention.
- the electric wire of the present invention is obtained by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it to form a first insulating layer. It can manufacture suitably.
- the electric wire of the present invention is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture is applied onto a conductor and baked to form a first insulating layer.
- the outer periphery of the first insulating layer In addition, the second insulating layer containing 80% or more of the fluororesin can be preferably formed by a manufacturing method characterized by forming the second insulating layer.
- the electric wire of the present invention is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture is applied onto a conductor and baked to form a first insulating layer.
- the outer periphery of the first insulating layer Then, a second insulating layer containing 80% or more of the fluororesin is formed, and the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed liquid (or thermosetting resin solution) is second insulated.
- It can also be preferably manufactured by a manufacturing method characterized in that the third insulating layer is formed by applying and baking on the layer.
- the thermosetting resin and the fluororesin are uniformly dispersed in the first insulating layer. Therefore, an electric wire having a high discharge start voltage and excellent mechanical strength, heat resistance, etc. can be obtained. Moreover, since the liquid mixture of the thermosetting resin solution and the fluororesin organosol is excellent in processability, the production method of the present invention is also excellent in productivity. The same applies to the third insulating layer.
- thermosetting resin solution The mixing of the thermosetting resin solution and the fluororesin organosol, the application of the mixed solution, and the baking are as described above.
- the second insulating layer may be formed by applying a paint containing 80% or more of a fluororesin on the first insulating layer and baking it, or by melt extrusion molding. It may be, and is more preferably formed by melt extrusion molding.
- the firing conditions are appropriately determined depending on the type of the fluororesin used, etc.
- the baking is preferably performed at 270 to 320 ° C.
- the melt extrusion molding conditions may be appropriately set depending on the type of fluororesin to be used.
- the extrusion temperature is 360 to 400 ° C. It is preferable.
- the electric wire of the present invention may be heated after forming each insulating layer.
- the heating may be performed at a temperature near the melting point of the fluororesin. By the heating, the adhesiveness of each insulating layer can be made more excellent.
- the above electric wires can be suitably used for automobile electric wires, robot electric wires and the like. Moreover, it can be used suitably also as a coil winding (magnet wire), and if the electric wire of the present invention is used, the electric wire is hardly damaged during winding.
- the above winding is suitable for motors, rotating electrical machines, compressors, transformers, etc., requires high voltage, high current and high thermal conductivity, requires high-density winding processing, It has the characteristics that it can withstand use with high-power motors. Moreover, it is suitable also as an electric wire for power distribution, power transmission, or communication.
- the liquid mixture of the thermosetting resin solution and the fluororesin organosol can be suitably used as a material for an insulating layer formed on a high-frequency transmission product such as a printed circuit board.
- the substrate, the first insulating layer formed on the substrate, and the first insulating layer are composed of the thermosetting resin and the fluororesin described above, and the mass ratio of the thermosetting resin and the fluororesin is 90: 10 to 10:90, a high-frequency transmission characterized in that it is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, coating the resulting mixture on a conductor, and baking it.
- the insulating layer and the substrate are firmly bonded, the dielectric loss is low, and the transmission characteristics are excellent.
- the high-frequency transmission product may further include a second insulating layer that is formed on the first insulating layer and has 80% by mass or more of a fluororesin.
- the second insulating layer can be preferably manufactured by forming a second insulating layer containing 80% or more of a fluororesin on the first insulating layer.
- the high-frequency transmission product is further formed on the second insulating layer, is made of a thermosetting resin and a fluororesin, and a mass ratio of the thermosetting resin to the fluororesin is 100: 0 to 30:70.
- the third insulating layer is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture (or thermosetting resin solution) is mixed on the second insulating layer. It is also a preferred form that it is a layer formed by applying and baking onto a layer.
- the thickness of the insulating layer is measured according to JIS C 3003.5.
- Discharge start voltage The discharge start voltage was measured at a frequency of 100 kHz and a charge amount of 100 pC using a twisted piece prepared in accordance with JIS C3003 11.1 using a DAC-PD-3 manufactured by Soken Denki Co., Ltd. .
- organosol PTFE concentration 70%
- MIBK methyl isobutyl ketone
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene / hexafluoropropylene copolymer
- thermosetting resin solution a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent is used. used.
- PAI polyamideimide
- the organosol is a dispersion of primary particles.
- the FEP organosol of Example 1 which was an organic solvent dispersion by phase inversion of an emulsion-polymerized FEP from an aqueous dispersion to an organic solvent, had a dispersed particle size of 40 to 100 nm and an average particle size of 50 nm.
- the PTFE organosol has a dispersed particle size of 230 to 260 nm and an average particle size of 255 nm.
- the continuous firing furnace is obtained by directly connecting three 2 m long firing furnaces vertically.
- This firing furnace was a hot air circulation type, and the temperature inside the furnace was set to 90 ° C. for the first furnace, 180 ° C. for the second furnace, and 270 ° C. for the third furnace.
- the liquid mixture is applied to the surface of the copper wire in a beaker, and then the copper wire is introduced into a continuous firing furnace and covered with an insulating layer. Obtained wire.
- the thickness of the insulating layer (first layer) of the electric wire obtained by one operation was 24 ⁇ m.
- FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer.
- a third layer was formed in the same manner as the first layer.
- Example 2 The aqueous dispersion of FEP was placed in a beaker with a rubber stopper consisting of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed to the bottom of the beaker.
- the electric wire having the first layer formed in the same manner as in Example 1 is passed through the rubber plug into the beaker, and the upper end of the electric wire is passed from the upper surface of the beaker to the continuous firing furnace installed on the upper portion of the beaker.
- the second layer was formed, and then the third layer was formed in the same manner as in Example 1 except that the third furnace was set to 305 ° C., and an electric wire was obtained.
- Example 3 The mixed solution of Example 1 was applied and baked three times to obtain an electric wire.
- Comparative Example 1 An electric wire was obtained in the same manner as in Example 1 except that only the 30% PAI solution was applied to the conductor to form the first layer. Table 1 shows the evaluation results of the electric wires obtained in Examples 1 to 3 and Comparative Example 1.
- the heat resistance of the coated wires obtained in Examples 1 to 3 and Comparative Example 1 was evaluated by the following method.
- the covered electric wires obtained in Examples 1 to 3 or Comparative Example 1 were heated in an electric furnace at 200 ° C. for 200 hours, removed from the furnace, and returned to room temperature.
- the test piece was created by the method from two based on JIS C 3003 11.1, and the partial discharge start voltage was measured.
- the partial discharge start voltage was 80% or more in the ratio before and after the heat treatment in both Example 1, Example 2, and Example 3.
- the ratio before and after heat treatment was 40% or less. From this result, it can be seen that the covered electric wires obtained in Examples 1 to 3 have higher heat resistance than the conventional covered electric wires.
- Example 4 the fluorosol organosol was obtained by dissolving MIBK and FEP in an organosol (FEP concentration 70%), and a thermosetting resin solution obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent. % PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) was used.
- the FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
- the continuous firing furnace is obtained by directly connecting three 2 m long firing furnaces vertically.
- This firing furnace was a hot air circulation type, and the temperature inside the furnace was set to 90 ° C. for the first furnace, 180 ° C. for the second furnace, and 270 ° C. for the third furnace.
- the liquid mixture is applied to the surface of the copper wire in a beaker, and then the copper wire is introduced into a continuous firing furnace and covered with an insulating layer. Obtained wire.
- the thickness of the insulating layer (first layer) of the electric wire obtained by the above one operation was 10 ⁇ m.
- FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer.
- the film thickness of the second layer was 35 ⁇ m.
- a third layer was formed on the second layer in the same manner as the first layer except that the third furnace was set at 305 ° C.
- the film thickness of the third layer was 10 ⁇ m.
- Example 5 In this example, an organic sol composed of MIBK and FEP (70% FEP concentration) was used as the fluororesin organosol, and a polyester imide [PEI] was dissolved in an N-methylpyrrolidone solvent as a thermosetting resin solution. % PEI solution was used.
- the FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
- a first layer was formed in the same manner as in Example 4 except that the mixed liquid obtained after the stirring was used.
- the film thickness of the first layer was 10 ⁇ m.
- a second layer and a third layer were formed on the first layer by the same method as in Example 4.
- Example 6 A first layer, a second layer, and a third layer were formed in the same manner as in Example 4. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
- Example 7 A first layer, a second layer, and a third layer were formed in the same manner as in Example 5. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
- Example 8 A first layer and a second layer were formed in the same manner as in Example 6.
- Example 9 A first layer and a second layer were formed by the same method as in Example 7.
- Example 10 The aqueous dispersion of FEP was put into a beaker with a rubber stopper, which was composed of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed in the bottom of the beaker.
- the second layer was formed by performing 7 times. Then, the 3rd layer was formed by the same method as Example 6, and the electric wire was obtained.
- the film thickness of the second layer was 35 ⁇ m.
- Example 15 A first layer and a second layer were formed in the same manner as in Example 7. Thereafter, Examples were used except that only a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent was used on the second layer. A third layer was formed in the same manner as in FIG. The film thickness of the third layer was 5 ⁇ m.
- a 30% PAI solution HI-680 manufactured by Hitachi Chemical Co., Ltd.
- PAI polyamideimide
- Example 16 A first layer and a second layer were formed in the same manner as in Example 7.
- a third layer was formed in the same manner as in Example 7 except that the mixed liquid obtained on the second layer was used.
- Example 17 A first layer was formed in the same manner as in Example 7. On the first layer, FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer. The film thickness of the second layer was 55 ⁇ m. A third layer was formed on the second layer by the same method as in Example 7.
- Example 18 A first layer was formed in the same manner as in Example 4.
- a second layer was formed in the same manner as the first layer except that the mixed solution thus obtained was used.
- the film thickness of the second layer was 50 ⁇ m.
- a third layer was formed on the second layer by the same method as in Example 4.
- Comparative Example 2 The first layer was formed in the same manner as in Example 7 except that only the 30% PEI solution was applied to the conductor.
- the film thickness of the first layer was 8 ⁇ m.
- a second layer was formed on the first layer in the same manner as the first layer except that only the 30% PAI solution was applied.
- the film thickness of the second layer was 30 ⁇ m.
- Each solution HI-680 manufactured by Hitachi Chemical Co., Ltd. was put into a rotary stirrer and stirred for 1 hour to mix.
- a first layer was formed in the same manner as in Example 6 except that the obtained mixed solution was used.
- the film thickness of the first layer was 5 ⁇ m.
- a second layer was formed on the first layer by the same method as in Example 6.
- a third layer was formed on the second layer by the same method as the first layer.
- Comparative Example 4 A first layer was formed in the same manner as in Comparative Example 3. The film thickness of the first layer was 75 ⁇ m. The results of Examples 4 to 19 and Comparative Examples 2 to 4 are shown in Tables 2 to 4.
- Comparative Example 5 The FEP aqueous dispersion was converted into secondary particles by coagulation, and then the dried powder was dispersed in MIBK. The dispersion was mixed with the 30% PAI solution (HI-680, manufactured by Hitachi Chemical Co., Ltd.) Created. A coated electric wire was prepared in the same manner as in Example 1 except that this mixed solution was used instead of the mixed solution in Example 1.
- the powder obtained by making the FEP aqueous dispersion into secondary particles by coagulation and drying has a secondary particle diameter of 0.20 to 0.50 mm, which is about 2000 times that of the FEP organosol used in Example 1.
- the electric wire of the present invention can be suitably used for automobile electric wires, robot electric wires and the like. Also, it can be suitably used as a coil winding (magnet wire).
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Conductors (AREA)
Abstract
Disclosed is an electric wire having a higher spark-over voltage, higher mechanical strength typified by abrasion resistance and higher heat resistance than those of conventional electric wires. The electric wire comprises a conducting body and a first insulating layer formed around the conducting body, wherein the first insulating layer comprises a heat-curable resin and a fluororesin, wherein the ratio of the heat-curable resin to the fluororesin is 90:10 to 10:90 by mass. The first insulating layer is produced by mixing a solution of the heat-curable resin with an organosol of the fluororesin, applying the resulting mixed solution onto the conducting body, and baking the conducting body having the mixed solution applied thereon.
Description
本発明は、電線及びその製造方法に関する。
The present invention relates to an electric wire and a manufacturing method thereof.
自動車やロボットに使用される電線や、モーターに使用されるコイル用の巻き線には、放電開始電圧が高いこと、耐摩耗性で示される機械的強度、耐熱性等が要求され、また加工時の損傷を防ぐためにも機械的強度が要求される。
Electric wires used in automobiles and robots, and coil windings used in motors require high discharge starting voltage, mechanical strength, heat resistance, etc. indicated by wear resistance. Mechanical strength is also required to prevent damage.
このような背景の下、特許文献1では、フッ素樹脂微粉末をアルコールに分散した分散物を、ポリアミドイミドなどの絶縁塗料に少量配合して潤滑塗料とすること、潤滑塗料を最外層に焼き付けて絶縁電線とすることが提案された。
Under such a background, in Patent Document 1, a small amount of a dispersion of fluororesin fine powder dispersed in alcohol is mixed with an insulating paint such as polyamideimide to form a lubricating paint, and the lubricating paint is baked on the outermost layer. It was proposed to use an insulated wire.
特許文献2では、熱硬化性樹脂を主成分とする絶縁皮膜の上に、バインダーを含まぬフッ素樹脂よりなる皮膜またはフッ素樹脂とバインダーよりなりバインダーの構成比が、重量比で、フッ素樹脂とバインダーを合わせた量の20%以下よりなる皮膜を形成したことを特徴とする絶縁電線が提案された。
In Patent Document 2, on the insulating film mainly composed of a thermosetting resin, a film composed of a fluororesin not containing a binder or a composition ratio of a binder composed of a fluororesin and a binder in a weight ratio, the fluororesin and the binder There has been proposed an insulated wire characterized in that a film comprising 20% or less of the combined amount is formed.
特許文献3では、ポリイミド樹脂とフッ素樹脂と電荷付与剤とを水分散してなる水分散型樹脂エマルジョンを導体上に電着し、乾燥、焼付けすることによって絶縁層を形成することを特徴とする絶縁電線の製造方法が提案された。
Patent Document 3 is characterized in that an insulating layer is formed by electrodeposition of a water-dispersed resin emulsion obtained by water-dispersing a polyimide resin, a fluororesin, and a charge imparting agent on a conductor, followed by drying and baking. A method of manufacturing an insulated wire has been proposed.
特許文献4では、フッ素樹脂微粉末の存在下で合成された潤滑性ポリアミドイミドからなる被膜を最外層に有する自己潤滑性絶縁電線が提案された。
In Patent Document 4, a self-lubricating insulated wire having a coating made of a lubricating polyamideimide synthesized in the presence of fluororesin fine powder as an outermost layer has been proposed.
しかしながら、自動車やロボットに使用される機器、並びに、モーターに対する小型化や高出力化の要求を受け、そこで使用される電線やコイルに流れる電流の密度も大きくなり、また、巻き線の密度も高くなる傾向にあるので、従来の電線では達成できなかった高い性能を有する電線が求められる。
However, in response to demands for miniaturization and higher output of equipment and motors used in automobiles and robots, the density of the current flowing through the wires and coils used there increases, and the winding density also increases. Therefore, an electric wire having high performance that cannot be achieved by a conventional electric wire is required.
本発明の課題は、従来よりも高い放電開始電圧、耐摩耗性で示される機械的強度、及び、耐熱性を有する電線を提供することにある。
An object of the present invention is to provide an electric wire having a higher discharge starting voltage, mechanical strength indicated by wear resistance, and heat resistance than before.
本発明は、導体と、前記導体の外周に形成される第一の絶縁層とを有し、前記第一の絶縁層は、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が90:10~10:90であり、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層であることを特徴とする電線である。
The present invention has a conductor and a first insulating layer formed on the outer periphery of the conductor, and the first insulating layer is made of a thermosetting resin and a fluororesin, and the thermosetting resin and the fluororesin Is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, coating the resulting mixture on a conductor, and baking it. It is the electric wire characterized by this.
上記電線は、第一の絶縁層の外周に形成され、全体の80質量%以上がフッ素樹脂からなる第二の絶縁層を有することが好ましい。
It is preferable that the said electric wire has the 2nd insulating layer which is formed in the outer periphery of a 1st insulating layer and 80 mass% or more of the whole consists of a fluororesin.
上記電線は、第二の絶縁層の外周に形成され、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が100:0~30:70である第三の絶縁層を有し、第三の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けることによって形成された層であることが好ましい。
The electric wire is formed on the outer periphery of the second insulating layer, is made of a thermosetting resin and a fluororesin, and a third insulation having a mass ratio of the thermosetting resin to the fluororesin of 100: 0 to 30:70. The third insulating layer is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on the second insulating layer, and baking it. Preferably there is.
本発明の電線において、上記熱硬化性樹脂は、ポリビニルホルマール、ポリアミドイミド、ポリイミド、ポリエステル、ポリウレタン、ポリアミド、ポリエーテルスルホン、ポリアリーレンサルファイド、ポリエーテルイミド及びポリエステルイミドからなる群より選択される少なくとも1種であることが好ましい。
In the electric wire of the present invention, the thermosetting resin is at least one selected from the group consisting of polyvinyl formal, polyamideimide, polyimide, polyester, polyurethane, polyamide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide. Preferably it is a seed.
本発明の電線において、上記フッ素樹脂は、ポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリビニリデンフルオライド及びポリクロロトリフルオロエチレンからなる群より選択される少なくとも1種であることが好ましい。
In the electric wire of the present invention, the fluororesin includes polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / It is preferably at least one selected from the group consisting of a tetrafluoroethylene / hexafluoropropylene copolymer, polyvinylidene fluoride, and polychlorotrifluoroethylene.
本発明は、上記電線の製造方法であって、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成することを特徴とする製造方法でもある。
The present invention is a method for manufacturing the above-mentioned electric wire, comprising mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it to form a first insulating layer. It is also the manufacturing method characterized by these.
本発明は、上記電線の製造方法であって、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成することを特徴とする製造方法でもある。
The present invention is a method for producing the above electric wire, wherein a thermosetting resin solution and a fluororesin organosol are mixed, and the obtained mixed solution is applied onto a conductor and baked to form a first insulating layer, It is also a manufacturing method characterized in that a second insulating layer containing 80% or more of a fluororesin is formed on the outer periphery of the first insulating layer.
本発明は、上記電線の製造方法であって、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成し、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けて、第三の絶縁層を形成することを特徴とする製造方法でもある。
The present invention is a method for producing the above electric wire, wherein a thermosetting resin solution and a fluororesin organosol are mixed, and the obtained mixed solution is applied onto a conductor and baked to form a first insulating layer, A second insulating layer containing 80% or more of a fluororesin is formed on the outer periphery of the first insulating layer, a thermosetting resin solution and a fluororesin organosol are mixed, and the resulting mixture is used as the second insulating layer. It is also a manufacturing method characterized in that a third insulating layer is formed by applying and baking on the top.
本発明の電線は、上記構成からなるので、導体と絶縁層が強固に接着しており、誘電率が低く、放電開始電圧が高く、優れた機械的強度(耐磨耗性)を有する。また、薄膜の絶縁層を成形することができるので、放熱性も良好である。さらに、最外層がフッ素樹脂を有するものである場合、すべり性が良好であり、耐熱性にも優れる。
Since the electric wire of the present invention has the above-described configuration, the conductor and the insulating layer are firmly bonded, the dielectric constant is low, the discharge starting voltage is high, and the mechanical strength (abrasion resistance) is excellent. In addition, since a thin insulating layer can be formed, heat dissipation is also good. Furthermore, when the outermost layer has a fluororesin, the slipperiness is good and the heat resistance is also excellent.
本発明の電線は、導体と、前記導体の外周に形成される第一の絶縁層とを有し、前記第一の絶縁層は、熱硬化性樹脂及びフッ素樹脂からなり、かつ、熱硬化性樹脂とフッ素樹脂との質量比が90:10~10:90であり、該第一の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層であることを特徴とする。なお、「導体の外周に形成される第一の絶縁層」という場合、該第一の絶縁層は、導体と接することとなる。「第一の絶縁層の外周に形成される第二の絶縁層」という場合、該第二の絶縁層は、第一の絶縁層と接することとなる。「第二の絶縁層の外周に形成される第三の絶縁層」という場合、該第三の絶縁層は、第二の絶縁層と接することとなる。
The electric wire of the present invention has a conductor and a first insulating layer formed on the outer periphery of the conductor, and the first insulating layer is made of a thermosetting resin and a fluororesin, and is thermosetting. The mass ratio of the resin to the fluororesin is 90:10 to 10:90, and the first insulating layer is obtained by mixing the thermosetting resin solution and the fluororesin organosol and placing the obtained mixture on the conductor. It is a layer formed by applying and baking. In addition, when saying "the 1st insulating layer formed in the outer periphery of a conductor", this 1st insulating layer will contact | connect a conductor. In the case of “a second insulating layer formed on the outer periphery of the first insulating layer”, the second insulating layer is in contact with the first insulating layer. In the case of “a third insulating layer formed on the outer periphery of the second insulating layer”, the third insulating layer is in contact with the second insulating layer.
本発明の電線は、第一の絶縁層が熱硬化性樹脂とフッ素樹脂とを上記の質量比で含み、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて形成されるものであるので、放電開始電圧が高く、機械的強度(耐摩耗性)、及び、耐熱性に優れる。
In the electric wire of the present invention, the first insulating layer contains the thermosetting resin and the fluororesin in the above mass ratio, the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed solution is placed on the conductor. Since it is formed by coating and baking, the discharge start voltage is high, and the mechanical strength (wear resistance) and heat resistance are excellent.
本発明の電線において、第一の絶縁層の熱硬化性樹脂が多すぎると放電開始電圧が低くなったり、耐熱性に劣るおそれがあり、フッ素樹脂が多すぎると接着性、機械的強度に劣る。熱硬化性樹脂とフッ素樹脂との質量比は、90:10~20:80であることが好ましく、75:25~30:70であることがより好ましい。なお、「質量比」は固形分質量比である。第一の絶縁層は、熱硬化性樹脂及びフッ素樹脂の合計が97~100質量%であることが好ましい。
In the electric wire of the present invention, if the thermosetting resin of the first insulating layer is too much, the discharge starting voltage may be lowered or the heat resistance may be inferior. . The mass ratio of the thermosetting resin to the fluororesin is preferably 90:10 to 20:80, and more preferably 75:25 to 30:70. In addition, "mass ratio" is solid content mass ratio. In the first insulating layer, the total of the thermosetting resin and the fluororesin is preferably 97 to 100% by mass.
本発明の電線は、第一の絶縁層の外周に形成される第二の絶縁層を有することが好ましい。第二の絶縁層を有する場合、放電開始電圧と耐摩耗性のバランスに優れるものとなる。
The electric wire of the present invention preferably has a second insulating layer formed on the outer periphery of the first insulating layer. When it has a 2nd insulating layer, it will be excellent in the balance of a discharge start voltage and abrasion resistance.
本発明の電線において、第二の絶縁層は、第二の絶縁層全体の80質量%以上がフッ素樹脂からなるものである。より好ましくは、85質量%以上であり、更に好ましくは90質量%以上である。
In the electric wire of the present invention, the second insulating layer is made of fluororesin with 80% by mass or more of the entire second insulating layer. More preferably, it is 85 mass% or more, More preferably, it is 90 mass% or more.
第二の絶縁層は、フッ素樹脂以外に、例えば、後述する、無機顔料、フィラー、密着付与剤、酸化防止剤、潤滑剤、染料等を含んでいてもよい。
The second insulating layer may contain, for example, an inorganic pigment, a filler, an adhesion imparting agent, an antioxidant, a lubricant, a dye, and the like, which will be described later, in addition to the fluororesin.
本発明の電線は、第二の絶縁層の外周に形成される第三の絶縁層を有することが好ましい。第三の絶縁層は、第二の絶縁層の外周に形成され、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が100:0~30:70である。第三の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けることによって形成された層であってもよいし、フッ素樹脂オルガノゾルを含まない熱硬化性樹脂溶液を第二の絶縁層上に塗布し、焼き付けることによって形成された層であってもよいが、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けることによって形成された層であることが好ましい。本発明の電線は、第三の絶縁層が熱硬化性樹脂とフッ素樹脂とを上記の質量比で含み、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けることによって形成された層であると、機械的強度、及び、耐熱性がより優れる。また、本発明の電線は、第二の絶縁層を有するので、放電開始電圧が高く、耐熱性が更に優れたものとなる。
The electric wire of the present invention preferably has a third insulating layer formed on the outer periphery of the second insulating layer. The third insulating layer is formed on the outer periphery of the second insulating layer, and is made of a thermosetting resin and a fluororesin, and the mass ratio of the thermosetting resin to the fluororesin is 100: 0 to 30:70. The third insulating layer may be a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on the second insulating layer, and baking it. A layer formed by applying and baking a thermosetting resin solution not containing a fluororesin organosol on the second insulating layer may be used, but the thermosetting resin solution and the fluororesin organosol are mixed. The obtained liquid mixture is preferably a layer formed by applying and baking on the second insulating layer. In the electric wire of the present invention, the third insulating layer contains the thermosetting resin and the fluororesin in the above-described mass ratio, the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed solution is used as the second mixture. The layer formed by applying and baking on the insulating layer is more excellent in mechanical strength and heat resistance. Moreover, since the electric wire of the present invention has the second insulating layer, the discharge starting voltage is high and the heat resistance is further improved.
本発明の電線において、第三の絶縁層の熱硬化性樹脂が多すぎると放電開始電圧が低くなるおそれがあり、フッ素樹脂が多すぎると機械的強度に劣るおそれがある。第三の絶縁層において、熱硬化性樹脂とフッ素樹脂との質量比は、99.9:0.1~30:70であることが好ましく、80:20~30:70であることがより好ましく、60:40~30:70であることが更に好ましく、熱硬化性樹脂とフッ素樹脂との質量比は、50:50~30:70であることが特に好ましい。第三の絶縁層は、熱硬化性樹脂及びフッ素樹脂の合計が97~100質量%であることが好ましい。
In the electric wire of the present invention, if the thermosetting resin of the third insulating layer is too much, the discharge start voltage may be lowered, and if the amount of the fluororesin is too much, the mechanical strength may be inferior. In the third insulating layer, the mass ratio of the thermosetting resin to the fluororesin is preferably 99.9: 0.1 to 30:70, more preferably 80:20 to 30:70. 60:40 to 30:70 is more preferable, and the mass ratio of the thermosetting resin to the fluororesin is particularly preferably 50:50 to 30:70. In the third insulating layer, the total of the thermosetting resin and the fluororesin is preferably 97 to 100% by mass.
上記電線において、熱硬化性樹脂は、ポリビニルホルマール、ポリアミドイミド、ポリイミド、ポリエステル、ポリウレタン、ポリアミド、ポリエーテルスルホン、ポリアリーレンサルファイド、ポリエーテルイミド及びポリエステルイミドからなる群より選択される少なくとも1種であることが好ましい。
In the electric wire, the thermosetting resin is at least one selected from the group consisting of polyvinyl formal, polyamideimide, polyimide, polyester, polyurethane, polyamide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide. It is preferable.
上記熱硬化性樹脂は、ポリアミドイミド、ポリイミド、ポリエーテルスルホン、ポリアリーレンサルファイド、ポリエーテルイミド及びポリエステルイミドからなる群より選択される少なくとも1種であることがより好ましい。
The thermosetting resin is more preferably at least one selected from the group consisting of polyamideimide, polyimide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide.
上記熱硬化性樹脂は、単独で又は2種以上を併用して使用してもよい。2種以上を使用する場合の好ましい態様としては、ポリアリーレンサルファイド及びポリアミドイミドの組み合わせ、ポリアリーレンサルファイド及びポリイミドの組み合わせ、ポリアリーレンサルファイド及びポリエステルイミドの組み合わせ、等が挙げられる。
You may use the said thermosetting resin individually or in combination of 2 or more types. Preferred embodiments when two or more are used include a combination of polyarylene sulfide and polyamideimide, a combination of polyarylene sulfide and polyimide, a combination of polyarylene sulfide and polyesterimide, and the like.
上記ポリアミドイミド〔PAI〕は、分子構造中にアミド結合とイミド結合の両方を有する重合体からなる樹脂である。上記PAIとしては特に限定されず、例えば、アミド基を分子内にもつ芳香族ジアミンとピロメリット酸等の芳香族四価カルボン酸との反応、無水トリメリット酸等の芳香族三価カルボン酸と4,4-ジアミノフェニルエーテル等のジアミンやジフェニルメタンジイソシアネート等のジイソシアネートとの反応、芳香族イミド環を分子内に有する二塩基酸とジアミンとの反応等により製造される高分子量重合体からなる樹脂等が挙げられる。上記PAIとしては、耐熱性に優れる点から、主鎖中に芳香環を有する重合体からなるものが好ましい。
The polyamideimide [PAI] is a resin composed of a polymer having both an amide bond and an imide bond in the molecular structure. The PAI is not particularly limited. For example, a reaction between an aromatic diamine having an amide group in the molecule and an aromatic tetravalent carboxylic acid such as pyromellitic acid, an aromatic trivalent carboxylic acid such as trimellitic anhydride, Resins comprising high molecular weight polymers produced by reaction with diamines such as 4,4-diaminophenyl ether and diisocyanates such as diphenylmethane diisocyanate, reaction of dibasic acid having an aromatic imide ring in the molecule and diamine, etc. Is mentioned. As said PAI, what consists of a polymer which has an aromatic ring in a principal chain from the point which is excellent in heat resistance is preferable.
上記ポリイミド〔PI〕は、分子構造中にイミド結合を有する重合体からなる樹脂である。上記PIとしては特に限定されず、例えば、無水ピロメリット酸等の芳香族四価カルボン酸無水物の反応等により製造される高分子量重合体からなる樹脂等が挙げられる。上記PIとしては、耐熱性に優れる点から、主鎖中に芳香環を有する重合体からなるものが好ましい。
The polyimide [PI] is a resin made of a polymer having an imide bond in the molecular structure. The PI is not particularly limited, and examples thereof include a resin made of a high molecular weight polymer produced by a reaction of an aromatic tetravalent carboxylic anhydride such as pyromellitic anhydride. As said PI, what consists of a polymer which has an aromatic ring in a principal chain from the point which is excellent in heat resistance is preferable.
上記ポリアリーレンサルファイド〔PAS〕は、分子構造中にアリーレンチオエーテル基を有する重合体からなる樹脂である。本明細書において、「アリーレン」とは、aryleneを意味し、allyleneを意味するものではない。上記PASとしては特に限定されず、例えば、ポリフェニレンサルファイド〔PPS〕等が挙げられる。
The polyarylene sulfide [PAS] is a resin made of a polymer having an arylene thioether group in the molecular structure. In the present specification, “arylene” means arylene and does not mean allylene. The PAS is not particularly limited, and examples thereof include polyphenylene sulfide [PPS].
上記PASとしては、一般式-Ar-Z(式中、Arはアリーレン基を示し、Zはチオラート基(-SM、Mはアルカリ金属を示す)又は-Fを示す)で表される末端基を有する重合体からなるものであってもよいし、一般式-Ar-Z’(式中、Arはアリーレン基を示し、Z’はメルカプト基(-SH)又は-Hを示す)で表される末端基を有する重合体からなるものであってもよい。
The PAS includes a terminal group represented by a general formula —Ar—Z (wherein Ar represents an arylene group, Z represents a thiolate group (—SM, M represents an alkali metal) or —F). Or a polymer having the general formula —Ar—Z ′ (wherein Ar represents an arylene group, and Z ′ represents a mercapto group (—SH) or —H). It may consist of a polymer having a terminal group.
上記一般式-Ar-Zで表される末端基を有する重合体からなるPPSは、例えば、米国特許第3354129号公報等に記載されている方法等により製造することができ、例えば、N-メチルピロリドン等の極性溶媒中で、Na2S等のアルカリ金属硫化物又は硫酸ナトリウムと、パラジクロロベンゼン等のジハロ芳香族化合物との脱ハロゲン/硫化反応によってポリアリーレンチオエーテルを生成させることにより製造することができる。
PPS comprising a polymer having a terminal group represented by the above general formula -Ar-Z can be produced by, for example, the method described in US Pat. No. 3,354,129 and the like, for example, N-methyl It can be produced by producing a polyarylene thioether by dehalogenation / sulfurization reaction between an alkali metal sulfide such as Na 2 S or sodium sulfate and a dihaloaromatic compound such as paradichlorobenzene in a polar solvent such as pyrrolidone. it can.
上記一般式-Ar-Z’で表される末端基を有する重合体からなるPPSは、例えば、上記一般式-Ar-Zで表される末端基を酸処理により変性することにより製造することができる。
A PPS comprising a polymer having a terminal group represented by the general formula —Ar—Z ′ can be produced, for example, by modifying the terminal group represented by the general formula —Ar—Z by acid treatment. it can.
上記ポリエーテルスルホン〔PES〕としては、下記一般式
As the polyethersulfone [PES], the following general formula
(式中、tは2以上の整数を示す)で表される重合体からなる樹脂等が挙げられる。上記PESとしては特に限定されず、例えば、ジクロロジフェニルスルホンとビスフェノールとの重縮合により得られる重合体からなる樹脂等が挙げられる。
(In the formula, t represents an integer of 2 or more) and the like. The PES is not particularly limited, and examples thereof include a resin made of a polymer obtained by polycondensation of dichlorodiphenyl sulfone and bisphenol.
上記ポリエステルイミド〔PEI〕は、分子構造中にイミド結合とエステル結合との両方を有する重合体からなる樹脂である。
The polyesterimide [PEI] is a resin composed of a polymer having both an imide bond and an ester bond in the molecular structure.
上記熱硬化性樹脂としては、PAI又はPEIを用いることが更に好ましい。PAI又はPEIを用いることにより、絶縁層の機械的強度を向上させることができる。
More preferably, PAI or PEI is used as the thermosetting resin. By using PAI or PEI, the mechanical strength of the insulating layer can be improved.
上記電線において、上記フッ素樹脂は、ポリテトラフルオロエチレン〔PTFE〕、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体〔PFA〕、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体〔FEP〕、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリビニリデンフルオライド及びポリクロロトリフルオロエチレンからなる群より選択される少なくとも1種であることが好ましい。上記フッ素樹脂は、PTFE、PFA及びFEPからなる群より選択される少なくとも1種であることが更に好ましい。
In the electric wire, the fluororesin is polytetrafluoroethylene [PTFE], tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer [PFA], tetrafluoroethylene / hexafluoropropylene copolymer [FEP], ethylene / tetrafluoro It is preferably at least one selected from the group consisting of ethylene copolymers, ethylene / tetrafluoroethylene / hexafluoropropylene copolymers, polyvinylidene fluoride, and polychlorotrifluoroethylene. More preferably, the fluororesin is at least one selected from the group consisting of PTFE, PFA and FEP.
第一の絶縁層に用いられるフッ素樹脂としては、PTFE及びFEPからなる群より選択される少なくとも1種が好ましい。PTFEとFEPは単独で使用してもよいし、併用してもよい。
第二の絶縁層に用いられるフッ素樹脂としては、溶融加工性のフッ素樹脂が好ましく、FEP又はPFAがより好ましい。
第三の絶縁層に用いられるフッ素樹脂としては、PTFE及びFEPからなる群より選択される少なくとも1種が好ましい。PTFEとFEPは単独で使用してもよいし、併用してもよい。 The fluororesin used for the first insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
The fluororesin used for the second insulating layer is preferably a melt processable fluororesin, more preferably FEP or PFA.
The fluororesin used for the third insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
第二の絶縁層に用いられるフッ素樹脂としては、溶融加工性のフッ素樹脂が好ましく、FEP又はPFAがより好ましい。
第三の絶縁層に用いられるフッ素樹脂としては、PTFE及びFEPからなる群より選択される少なくとも1種が好ましい。PTFEとFEPは単独で使用してもよいし、併用してもよい。 The fluororesin used for the first insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
The fluororesin used for the second insulating layer is preferably a melt processable fluororesin, more preferably FEP or PFA.
The fluororesin used for the third insulating layer is preferably at least one selected from the group consisting of PTFE and FEP. PTFE and FEP may be used alone or in combination.
〔PTFE〕
上記PTFEは、テトラフルオロエチレン単独重合体であってもよいし、変性ポリテトラフルオロエチン〔変性PTFE〕であってもよい。上記「変性PTFE」は、得られる重合体に溶融加工性を付与しない程度の少量の共単量体をTFEと共重合してなるものを意味する。上記少量の共単量体としては特に限定されず、例えば、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(3FH)、パーフルオロアルキルビニルエーテル(PAVE)、パーフルオロ(アルコキシビニルエーテル)、(パーフルオロアルキル)エチレン等が挙げられる。上記少量の共単量体は、1種又は2種以上を用いることができる。 [PTFE]
The PTFE may be a tetrafluoroethylene homopolymer or a modified polytetrafluoroethine [modified PTFE]. The above “modified PTFE” means a product obtained by copolymerizing a small amount of a comonomer with TFE so as not to impart melt processability to the obtained polymer. The small amount of the comonomer is not particularly limited. For example, hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), trifluoroethylene (3FH), perfluoroalkyl vinyl ether (PAVE), perfluoro (alkoxy) Vinyl ether), (perfluoroalkyl) ethylene and the like. One kind or two or more kinds of the small amount of comonomer can be used.
上記PTFEは、テトラフルオロエチレン単独重合体であってもよいし、変性ポリテトラフルオロエチン〔変性PTFE〕であってもよい。上記「変性PTFE」は、得られる重合体に溶融加工性を付与しない程度の少量の共単量体をTFEと共重合してなるものを意味する。上記少量の共単量体としては特に限定されず、例えば、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(3FH)、パーフルオロアルキルビニルエーテル(PAVE)、パーフルオロ(アルコキシビニルエーテル)、(パーフルオロアルキル)エチレン等が挙げられる。上記少量の共単量体は、1種又は2種以上を用いることができる。 [PTFE]
The PTFE may be a tetrafluoroethylene homopolymer or a modified polytetrafluoroethine [modified PTFE]. The above “modified PTFE” means a product obtained by copolymerizing a small amount of a comonomer with TFE so as not to impart melt processability to the obtained polymer. The small amount of the comonomer is not particularly limited. For example, hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), trifluoroethylene (3FH), perfluoroalkyl vinyl ether (PAVE), perfluoro (alkoxy) Vinyl ether), (perfluoroalkyl) ethylene and the like. One kind or two or more kinds of the small amount of comonomer can be used.
上記少量の共単量体が上記変性PTFEに付加されている割合は、その種類によって異なるが、例えば、PAVE、パーフルオロ(アルコキシビニルエーテル)等を用いる場合、通常、上記TFEと上記少量の共単量体との合計質量の0.001~1質量%であることが好ましい。
The ratio in which the small amount of the comonomer is added to the modified PTFE varies depending on the type thereof. For example, when PAVE, perfluoro (alkoxy vinyl ether) or the like is used, the TFE and the small amount of the comonomer are usually used. It is preferably 0.001 to 1% by mass of the total mass with the polymer.
PTFEとしては、耐熱性の観点で、融点が320℃以上のものが好ましい。
PTFE having a melting point of 320 ° C. or higher is preferable from the viewpoint of heat resistance.
〔PFA〕
上記PFAとしては、特に限定されないが、TFE単位70~99モル%とPAVE単位1~30モル%からなる共重合体であることが好ましく、TFE単位80~97モル%とPAVE単位3~20モル%からなる共重合体であることがより好ましい。TFE単位が70モル%未満では機械物性が低下する傾向があり、99モル%をこえると融点が高くなりすぎ成形性が低下する傾向がある。 [PFA]
The PFA is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of PAVE units, and 80 to 97 mol% of TFE units and 3 to 20 mol of PAVE units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
上記PFAとしては、特に限定されないが、TFE単位70~99モル%とPAVE単位1~30モル%からなる共重合体であることが好ましく、TFE単位80~97モル%とPAVE単位3~20モル%からなる共重合体であることがより好ましい。TFE単位が70モル%未満では機械物性が低下する傾向があり、99モル%をこえると融点が高くなりすぎ成形性が低下する傾向がある。 [PFA]
The PFA is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of PAVE units, and 80 to 97 mol% of TFE units and 3 to 20 mol of PAVE units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)からなる群より選択される少なくとも1種であることが好ましく、なかでも、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることがより好ましく、PMVEであることが更に好ましい。
The PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE, and even more preferably PMVE.
PFAは、TFE、PAVE、並びに、TFE及びPAVEと共重合可能な単量体からなる共重合体であってもよく、当該単量体としては、HFP、CX1X2=CX3(CF2)nX4(式中、X1、X2及びX3は、同一若しくは異なって、水素原子又はフッ素原子を表し、X4は、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、CF2=CF-OCH2-Rf1(式中、Rf1は炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられる。
PFA may be a copolymer composed of TFE, PAVE, and a monomer copolymerizable with TFE and PAVE. Examples of the monomer include HFP, CX 1 X 2 = CX 3 (CF 2 ) N X 4 (wherein X 1 , X 2 and X 3 are the same or different and each represents a hydrogen atom or a fluorine atom; X 4 represents a hydrogen atom, a fluorine atom or a chlorine atom; And a vinyl monomer represented by CF 2 ═CF—OCH 2 —Rf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms). And alkyl perfluorovinyl ether derivatives represented.
上記アルキルパーフルオロビニルエーテル誘導体としては、Rf1が炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF2=CF-OCH2-CF2CF3がより好ましい。
As the alkyl perfluorovinyl ether derivative, those in which Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ═CF—OCH 2 —CF 2 CF 3 is more preferable.
PFAは、TFE及びPAVEと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びPAVE単位が合計で90~99.9モル%であることが好ましい。共重合可能な単量体単位が0.1モル%未満であると成形性、耐環境応力割れ性及び耐ストレスクラック性に劣りやすく、10モル%をこえると、耐熱性、機械特性、生産性などに劣る傾向にある。
PFA has a monomer unit derived from a monomer copolymerizable with TFE and PAVE in an amount of 0.1 to 10 mol%, and a total of TFE unit and PAVE unit is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be inferior, and if it exceeds 10 mol%, heat resistance, mechanical properties and productivity. Tend to be inferior.
〔FEP〕
上記FEPとしては、特に限定されないが、TFE単位70~99モル%とHFP単位1~30モル%からなる共重合体であることが好ましく、TFE単位80~97モル%とHFP単位3~20モル%からなる共重合体であることがより好ましい。TFE単位が70モル%未満では機械物性が低下する傾向があり、99モル%をこえると融点が高くなりすぎ成形性が低下する傾向がある。 [FEP]
The FEP is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of HFP units, and 80 to 97 mol% of TFE units and 3 to 20 mol of HFP units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
上記FEPとしては、特に限定されないが、TFE単位70~99モル%とHFP単位1~30モル%からなる共重合体であることが好ましく、TFE単位80~97モル%とHFP単位3~20モル%からなる共重合体であることがより好ましい。TFE単位が70モル%未満では機械物性が低下する傾向があり、99モル%をこえると融点が高くなりすぎ成形性が低下する傾向がある。 [FEP]
The FEP is not particularly limited, but is preferably a copolymer comprising 70 to 99 mol% of TFE units and 1 to 30 mol% of HFP units, and 80 to 97 mol% of TFE units and 3 to 20 mol of HFP units. It is more preferable that the copolymer is composed of%. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
FEPは、TFE、HFP、並びに、TFE及びHFPと共重合可能な単量体からなる共重合体であってもよく、当該単量体としては、CF2=CF-ORf2(式中、Rf2は炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、CX1X2=CX3(CF2)nX4(式中、X1、X2及びX3は、同一若しくは異なって、水素原子又はフッ素原子を表し、X4は、水素原子、フッ素原子又は塩素原子を表し、nは2~10の整数を表す。)で表されるビニル単量体、及び、CF2=CF-OCH2-Rf1(式中、Rf1は炭素数1~5のパーフルオロアルキル基を表す。)で表されるアルキルパーフルオロビニルエーテル誘導体等が挙げられ、なかでも、PAVEであることが好ましい。
FEP may be a copolymer comprising TFE, HFP, and a monomer copolymerizable with TFE and HFP. As the monomer, CF 2 = CF-ORf 2 (wherein Rf 2 represents a perfluoroalkyl group having 1 to 5 carbon atoms.) Perfluoro (alkyl vinyl ether) [PAVE], CX 1 X 2 = CX 3 (CF 2 ) n X 4 (wherein X 1 , X 2 and X 3 are the same or different and each represents a hydrogen atom or a fluorine atom, X 4 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 2 to 10. A vinyl monomer, and an alkyl perfluorovinyl ether derivative represented by CF 2 ═CF—OCH 2 —Rf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms). Named, Even if, it is preferable that the PAVE.
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、及び、パーフルオロ(ブチルビニルエーテル)からなる群より選択される少なくとも1種であることが好ましく、なかでも、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることがより好ましい。
The PAVE is selected from the group consisting of perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro (butyl vinyl ether). It is preferably at least one, and more preferably at least one selected from the group consisting of PMVE, PEVE and PPVE.
上記アルキルパーフルオロビニルエーテル誘導体としては、Rf1が炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF2=CF-OCH2-CF2CF3がより好ましい。
As the alkyl perfluorovinyl ether derivative, those in which Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ═CF—OCH 2 —CF 2 CF 3 is more preferable.
FEPは、TFE及びHFPと共重合可能な単量体に由来する単量体単位が0.1~10モル%であり、TFE単位及びHFP単位が合計で90~99.9モル%であることが好ましい。共重合可能な単量体単位が0.1モル%未満であると成形性、耐環境応力割れ性及び耐ストレスクラック性に劣りやすく、10モル%をこえると耐熱性、機械特性、生産性などに劣る傾向にある。
In FEP, the monomer units derived from monomers copolymerizable with TFE and HFP are 0.1 to 10 mol%, and the total of TFE units and HFP units is 90 to 99.9 mol%. Is preferred. If the copolymerizable monomer unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance tend to be poor, and if it exceeds 10 mol%, heat resistance, mechanical properties, productivity, etc. Tend to be inferior.
上記フッ素樹脂は、少なくとも1種以上を使用すればよいが、2種以上のフッ素樹脂を使用することも好ましい。2種以上のフッ素樹脂を使用する場合の好ましい態様としては、PTFE及びPFAの組み合わせ、PTFE及びFEPの組み合わせ等が挙げられる。
Although the said fluororesin should just use 1 or more types, it is also preferable to use 2 or more types of fluororesins. Preferable embodiments when two or more kinds of fluororesins are used include a combination of PTFE and PFA, a combination of PTFE and FEP, and the like.
また、上記第二の絶縁層に使用されるフッ素樹脂としては、パーフルオロ樹脂が好ましく、PTFE、PFA及びFEPからなる群より選択される少なくとも1種のパーフルオロ樹脂であることが更に好ましい。
The fluororesin used for the second insulating layer is preferably a perfluoro resin, more preferably at least one perfluoro resin selected from the group consisting of PTFE, PFA, and FEP.
上記フッ素樹脂がPTFEである場合、該フッ素樹脂は、標準比重(SSG)が2.13~2.21であることが好ましい。上記フッ素樹脂がPFA又はFEPである場合、該フッ素樹脂は、372℃におけるMFRが5~80g/10分であることが好ましい。
本明細書において、上記SSGは、ASTM D 4895に準拠して測定したものである。上記MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、融点より70℃高い温度、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。 When the fluororesin is PTFE, the fluororesin preferably has a standard specific gravity (SSG) of 2.13 to 2.21. When the fluororesin is PFA or FEP, the fluororesin preferably has an MFR at 372 ° C. of 5 to 80 g / 10 min.
In the present specification, the SSG is measured in accordance with ASTM D 4895. The above MFR is compliant with ASTM D3307-01, and flows out from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a 5 kg load at a temperature 70 ° C. higher than the melting point, using a melt indexer (manufactured by Toyo Seiki Co., Ltd.) per 10 minutes. It is the mass (g / 10min) of the polymer to do.
本明細書において、上記SSGは、ASTM D 4895に準拠して測定したものである。上記MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、融点より70℃高い温度、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。 When the fluororesin is PTFE, the fluororesin preferably has a standard specific gravity (SSG) of 2.13 to 2.21. When the fluororesin is PFA or FEP, the fluororesin preferably has an MFR at 372 ° C. of 5 to 80 g / 10 min.
In the present specification, the SSG is measured in accordance with ASTM D 4895. The above MFR is compliant with ASTM D3307-01, and flows out from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a 5 kg load at a temperature 70 ° C. higher than the melting point, using a melt indexer (manufactured by Toyo Seiki Co., Ltd.) per 10 minutes. It is the mass (g / 10min) of the polymer to do.
第一の絶縁層、第二の絶縁層又は第三の絶縁層は、放電開始電圧及び機械的強度(耐摩耗性)を向上させるために、無機顔料を含んでもよい。上記無機顔料は焼き付けの際にも安定なものが好ましく、例えば、チタン、鉄の酸化物、カーボン粉末などが挙げられる。上記無機顔料は、電線を構成するいずれの絶縁層に含まれていてもよい。
The first insulating layer, the second insulating layer, or the third insulating layer may contain an inorganic pigment in order to improve the discharge starting voltage and the mechanical strength (wear resistance). The inorganic pigment is preferably stable even when baked, and examples thereof include titanium, iron oxide, and carbon powder. The inorganic pigment may be contained in any insulating layer constituting the electric wire.
第一の絶縁層、第二の絶縁層又は第三の絶縁層は、また、フィラー、密着付与剤、酸化防止剤、潤滑剤、染料等を含むものであってもよい。上記無機顔料、フィラー、密着付与剤、酸化防止剤、潤滑剤、染料等は、電線を構成するいずれの絶縁層に含まれていてもよい。
The first insulating layer, the second insulating layer, or the third insulating layer may also contain a filler, an adhesion promoter, an antioxidant, a lubricant, a dye, and the like. The inorganic pigment, filler, adhesion imparting agent, antioxidant, lubricant, dye and the like may be contained in any insulating layer constituting the electric wire.
各絶縁層の膜厚は限定されないが、第一の絶縁層、第二の絶縁層及び第三の絶縁層の合計の膜厚を1~100μmとすることができる。本発明によれば、上記合計の膜厚を60μm以下にすることもできるし、40μm以下にすることも可能である。また、30μm以下まで薄くすることもできる。各絶縁層の合計の膜厚を薄くすることは、放熱性能に優れる点で有利である。
The thickness of each insulating layer is not limited, but the total thickness of the first insulating layer, the second insulating layer, and the third insulating layer can be 1 to 100 μm. According to the present invention, the total film thickness can be 60 μm or less, or 40 μm or less. Moreover, it can also be thinned to 30 μm or less. Reducing the total film thickness of each insulating layer is advantageous in terms of excellent heat dissipation performance.
上記第一の絶縁層、第二の絶縁層及び第三の絶縁層の膜厚は、電線の用途等に応じて適宜設定すればよいが、例えば、本発明の電線が、導体及び第一の絶縁層のみからなる場合、第一の絶縁層は、10~20μmであることが好ましい。導体、第一の絶縁層及び第二の絶縁層のみからなる場合、第一の絶縁層は、5~15μmであり、第二の絶縁層は、10~40μmであることが好ましい。本発明の電線が、導体、第一の絶縁層、第二の絶縁層及び第三の絶縁層のみからなる場合、第一の絶縁層は、5~15μm、第二の絶縁層は、10~40μm、第三の絶縁層は、5~20μmであることが好ましい。
The film thicknesses of the first insulating layer, the second insulating layer, and the third insulating layer may be set as appropriate according to the use of the electric wire, etc. For example, the electric wire of the present invention includes the conductor and the first insulating layer. In the case of consisting only of an insulating layer, the first insulating layer is preferably 10 to 20 μm. In the case of only the conductor, the first insulating layer, and the second insulating layer, the first insulating layer is preferably 5 to 15 μm, and the second insulating layer is preferably 10 to 40 μm. When the electric wire of the present invention comprises only a conductor, a first insulating layer, a second insulating layer, and a third insulating layer, the first insulating layer is 5 to 15 μm, and the second insulating layer is 10 to The thickness is preferably 40 μm, and the third insulating layer is preferably 5 to 20 μm.
本発明の電線において、第一の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層である。
In the electric wire of the present invention, the first insulating layer is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it.
本発明の電線において、第三の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液(又は熱硬化性樹脂溶液)を第二の絶縁層上に塗布し、焼き付けて形成された層である。
In the electric wire of the present invention, the third insulating layer is obtained by mixing a thermosetting resin solution and a fluororesin organosol, and applying the obtained mixed liquid (or thermosetting resin solution) on the second insulating layer. , A layer formed by baking.
上記塗布の方法は特に限定されず、ディッピング法等の公知の方法を用いることができる。
The coating method is not particularly limited, and a known method such as a dipping method can be used.
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合して得られた混合液から絶縁層を形成すると、絶縁層中に熱硬化性樹脂とフッ素樹脂とが均一に分散するので、本発明の電線は放電開始電圧が高く、機械的強度、及び、耐熱性等がより大きく向上する。
When an insulating layer is formed from a mixture obtained by mixing a thermosetting resin solution and a fluororesin organosol, the thermosetting resin and the fluororesin are uniformly dispersed in the insulating layer. The discharge start voltage is high, and mechanical strength, heat resistance, and the like are greatly improved.
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとの混合は、熱硬化性樹脂とフッ素樹脂とがお互いに充分に混じりあうまで混合することが好ましく、通常5分~2時間撹拌することにより行うことができる。
The mixing of the thermosetting resin solution and the fluororesin organosol is preferably performed until the thermosetting resin and the fluororesin are sufficiently mixed with each other, and can usually be performed by stirring for 5 minutes to 2 hours. .
上記混合液の塗布は、1回のみでもよいし、複数回行ってもよい。複数回の塗布により、絶縁膜のピンホールを減少させることができる。
The liquid mixture may be applied only once or a plurality of times. By applying a plurality of times, pinholes in the insulating film can be reduced.
上記焼き付けは、従来公知の方法により行うことができる。塗布した混合液を焼き付け前に乾燥してもよい。焼き付けの温度としては、例えば、200~320℃であることが好ましい。第一の絶縁層の焼付け温度はより好ましくは、250~270℃であり、第三の絶縁層の焼付け温度は250~310℃が好ましく、250℃~300℃がより好ましい。また、混合液中の媒体等を充分に揮発させて、接着性をより向上させる観点から、第三の絶縁層の焼き付け温度は、第一の絶縁層の焼き付け温度よりも高いことが好ましい。例えば、第一の絶縁層の焼付け温度が250~270℃であり、第三の絶縁層の焼付け温度が270℃を超え、310℃以下であることが好ましく、270℃を超え、300℃以下であることがより好ましい。
The baking can be performed by a conventionally known method. You may dry the apply | coated liquid mixture before baking. The baking temperature is preferably 200 to 320 ° C., for example. The baking temperature of the first insulating layer is more preferably 250 to 270 ° C., and the baking temperature of the third insulating layer is preferably 250 to 310 ° C., more preferably 250 to 300 ° C. Further, from the viewpoint of sufficiently evaporating the medium and the like in the mixed solution and further improving the adhesiveness, the baking temperature of the third insulating layer is preferably higher than the baking temperature of the first insulating layer. For example, the baking temperature of the first insulating layer is 250 to 270 ° C., and the baking temperature of the third insulating layer is preferably higher than 270 ° C. and not higher than 310 ° C., preferably higher than 270 ° C. and lower than 300 ° C. More preferably.
フッ素樹脂オルガノゾルは、フッ素樹脂及び有機媒体からなるものである。有機媒体としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、クレゾール、メチルイソブチルケトン等が挙げられる。
The fluororesin organosol is composed of a fluororesin and an organic medium. Examples of the organic medium include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, cresol, methyl isobutyl ketone and the like.
熱硬化性樹脂溶液は、熱硬化性樹脂及び媒体からなるものである。上記媒体は、水性媒体からなるものであってもよいし、有機媒体からなるものであってもよいが、フッ素樹脂オルガノゾルとの混合を均一に行う観点から、有機媒体からなるものであることが好ましい。有機媒体としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、クレゾール、メチルイソブチルケトン等が挙げられる。
The thermosetting resin solution is composed of a thermosetting resin and a medium. The medium may be composed of an aqueous medium or may be composed of an organic medium. However, from the viewpoint of uniformly mixing with the fluororesin organosol, the medium may be composed of an organic medium. preferable. Examples of the organic medium include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, cresol, methyl isobutyl ketone and the like.
オルガノゾル中のフッ素樹脂の濃度は1~80質量%であってよく、1~50質量%であってもよい。熱硬化性樹脂溶液中の熱硬化性樹脂濃度は1~80質量%であってよく、1~50質量%であってもよい。2種以上のフッ素樹脂オルガノゾルを使用する場合、上記「オルガノゾル中のフッ素樹脂の濃度」は、フッ素樹脂オルガノゾルの合計質量に対する、フッ素樹脂の合計の濃度である。熱硬化性樹脂溶液の場合も同様である。
The concentration of the fluororesin in the organosol may be 1 to 80% by mass, and may be 1 to 50% by mass. The thermosetting resin concentration in the thermosetting resin solution may be 1 to 80% by mass or 1 to 50% by mass. When two or more kinds of fluororesin organosols are used, the above-mentioned “concentration of fluororesin in organosol” is the total concentration of fluororesins with respect to the total mass of the fluororesin organosol. The same applies to the case of the thermosetting resin solution.
フッ素樹脂オルガノゾルは、分散粒子径が30~500nmであることが好ましい。30~350nmであることがより好ましい。分散粒子径が大きすぎる場合や小さすぎる場合、クラック等の不具合を生じるおそれがある。
フッ素樹脂オルガノゾルが、PTFEを除くフッ素樹脂からなるオルガノゾルである場合、分散粒子径が30~200nmであることが好ましい。分散粒子径が大きすぎる場合や小さすぎる場合、クラック等の不具合を生じるおそれがある。40~100nmであることがより好ましい。
フッ素樹脂オルガノゾルがPTFEからなるPTFEオルガノゾルの場合、分散粒子径は150~350nmであることが好ましい。分散粒子径が大きすぎる場合や小さすぎる場合、クラック等の不具合を生じるおそれがある。200~300nmであることがより好ましく、230~260nmであることが更に好ましい。上記分散粒子径は、大塚電子(株)製FPAR-1000を用いて、動的光散乱法によって測定した値である。 The fluororesin organosol preferably has a dispersed particle size of 30 to 500 nm. More preferably, it is 30 to 350 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks.
When the fluororesin organosol is an organosol made of a fluororesin excluding PTFE, the dispersed particle diameter is preferably 30 to 200 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks. More preferably, it is 40 to 100 nm.
When the fluororesin organosol is a PTFE organosol made of PTFE, the dispersed particle size is preferably 150 to 350 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks. It is more preferably 200 to 300 nm, and further preferably 230 to 260 nm. The dispersed particle diameter is a value measured by a dynamic light scattering method using FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
フッ素樹脂オルガノゾルが、PTFEを除くフッ素樹脂からなるオルガノゾルである場合、分散粒子径が30~200nmであることが好ましい。分散粒子径が大きすぎる場合や小さすぎる場合、クラック等の不具合を生じるおそれがある。40~100nmであることがより好ましい。
フッ素樹脂オルガノゾルがPTFEからなるPTFEオルガノゾルの場合、分散粒子径は150~350nmであることが好ましい。分散粒子径が大きすぎる場合や小さすぎる場合、クラック等の不具合を生じるおそれがある。200~300nmであることがより好ましく、230~260nmであることが更に好ましい。上記分散粒子径は、大塚電子(株)製FPAR-1000を用いて、動的光散乱法によって測定した値である。 The fluororesin organosol preferably has a dispersed particle size of 30 to 500 nm. More preferably, it is 30 to 350 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks.
When the fluororesin organosol is an organosol made of a fluororesin excluding PTFE, the dispersed particle diameter is preferably 30 to 200 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks. More preferably, it is 40 to 100 nm.
When the fluororesin organosol is a PTFE organosol made of PTFE, the dispersed particle size is preferably 150 to 350 nm. When the dispersed particle diameter is too large or too small, there is a risk of causing problems such as cracks. It is more preferably 200 to 300 nm, and further preferably 230 to 260 nm. The dispersed particle diameter is a value measured by a dynamic light scattering method using FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
フッ素樹脂オルガノゾルは、公知の方法により製造することができる。例えば、フッ素樹脂のコロイド状粒子を含む水性分散体に、沸点が100℃以上の有機溶媒を加え、次いで水分を加熱して除去することによって製造する方法(特公昭49-18775号公報、米国特許第2937156号明細書、英国特許第1094349号明細書、特公昭48-17548公報参照)、水に可溶な有機液体又は電解質水溶液等の転相剤をフッ素樹脂水性分散体に加えて撹拌して、水に不溶又は難溶である有機溶媒等の転相液に転層させる方法(特公昭49-17016号公報参照)等が挙げられる。
The fluororesin organosol can be produced by a known method. For example, a method for producing an aqueous dispersion containing colloidal particles of fluororesin by adding an organic solvent having a boiling point of 100 ° C. or higher and then removing the water by heating (Japanese Patent Publication No. 49-18775, US Patent) No. 2937156, British Patent No. 1094349, Japanese Patent Publication No. 48-17548), a phase inversion agent such as a water-soluble organic liquid or an aqueous electrolyte solution is added to the fluororesin aqueous dispersion and stirred. And a method of causing phase inversion to a phase inversion liquid such as an organic solvent which is insoluble or hardly soluble in water (see Japanese Patent Publication No. 49-17016).
上記混合液中の固形分(フッ素樹脂及び熱硬化性樹脂)の濃度は、5~70質量%であることが好ましく、5~50質量%であることがより好ましく、10~30質量%であることが更に好ましい。
The concentration of the solid content (fluororesin and thermosetting resin) in the mixed solution is preferably 5 to 70% by mass, more preferably 5 to 50% by mass, and 10 to 30% by mass. More preferably.
第一の絶縁層を形成するための混合液の場合、該混合液中の熱硬化性樹脂とフッ素樹脂との質量比は、90:10~10:90であることが好ましく、90:10~20:80であることがより好ましく、75:25~30:70であることが更に好ましい。第三の絶縁層を形成するための混合液の場合、該混合液中の熱硬化性樹脂とフッ素樹脂との質量比は、100:0~30:70であることが好ましく、99.9:0.1~30:70であることがより好ましく、80:20~30:70であることが更に好ましく、60:40~30:70であることが特に好ましく、50:50~30:70であることが最も好ましい。
In the case of the mixed liquid for forming the first insulating layer, the mass ratio of the thermosetting resin to the fluororesin in the mixed liquid is preferably 90:10 to 10:90, and 90:10 to It is more preferably 20:80, and further preferably 75:25 to 30:70. In the case of the mixed liquid for forming the third insulating layer, the mass ratio of the thermosetting resin to the fluororesin in the mixed liquid is preferably 100: 0 to 30:70, and 99.9: It is more preferably 0.1 to 30:70, still more preferably 80:20 to 30:70, particularly preferably 60:40 to 30:70, and 50:50 to 30:70. Most preferably it is.
第一の絶縁層又は第三の絶縁層を形成するための混合液の使用は、優れた特性を有する電線を得る上で有益であり、上記混合液は上記電線が有する層構成以外でも使用することは可能である。
The use of the mixed solution for forming the first insulating layer or the third insulating layer is beneficial in obtaining an electric wire having excellent characteristics, and the mixed solution is used for a layer other than the layer structure of the electric wire. It is possible.
導体の形成材料としては、導電性が良好な材料であれば特に制限されず、例えば、銅、銅合金、銅クラッドアルミニウム、アルミニウム、銀、金、亜鉛めっき鉄等が挙げられる。
The material for forming the conductor is not particularly limited as long as the material has good conductivity, and examples thereof include copper, copper alloy, copper clad aluminum, aluminum, silver, gold, and galvanized iron.
上記導体は、その形状に特に限定はなく、円形であっても平形であってもよい。円形導体である場合、導体の直径は、0.3~2.5mmであってよい。
The shape of the conductor is not particularly limited, and may be circular or flat. In the case of a circular conductor, the diameter of the conductor may be 0.3 to 2.5 mm.
本発明の電線は、絶縁層全体としての比誘電率が3.0以下であることが好ましい。例えば、本発明の電線が、導体及び第一の絶縁層のみからなる場合、下記方法で測定した第一の絶縁層の比誘電率が3.0以下であることが好ましい。本発明の電線が、導体、第一の絶縁層及び第二の絶縁層のみからなる場合、二層からなる積層体を下記方法で測定したときの比誘電率が3.0以下であることが好ましい。本発明の電線が、導体、第一の絶縁層、第二の絶縁層及び第三の絶縁層からなる場合、三層からなる積層体を下記方法で測定したときの比誘電率が3.0以下であることが好ましい。
As for the electric wire of this invention, it is preferable that the dielectric constant as the whole insulating layer is 3.0 or less. For example, when the electric wire of the present invention comprises only a conductor and a first insulating layer, it is preferable that the relative dielectric constant of the first insulating layer measured by the following method is 3.0 or less. When the electric wire of the present invention is composed of only the conductor, the first insulating layer, and the second insulating layer, the relative dielectric constant when the laminate comprising two layers is measured by the following method may be 3.0 or less. preferable. When the electric wire of the present invention is composed of a conductor, a first insulating layer, a second insulating layer, and a third insulating layer, the relative dielectric constant is 3.0 when a laminate composed of three layers is measured by the following method. The following is preferable.
上記比誘電率は、容量法により測定する値である。測定方法としては、被覆電線を1%食塩水中に入れ、導体と、最外絶縁層の外側間の電気容量を求め、厚み、表面積から比誘電率を求める。測定は、以下の条件で行うことができる。
容量法誘電率測定方法 1kHz(pF/m)
内側電極:芯線(導体)
外側電極:水
測定機器:NF回路設計ブロック社製LCZメーター The relative dielectric constant is a value measured by a capacitance method. As a measuring method, a covered electric wire is placed in 1% saline, the electric capacity between the conductor and the outside of the outermost insulating layer is obtained, and the relative dielectric constant is obtained from the thickness and surface area. The measurement can be performed under the following conditions.
Capacitance method dielectric constant measurement method 1 kHz (pF / m)
Inner electrode: Core wire (conductor)
Outer electrode: Water measuring device: NF circuit design block LCZ meter
容量法誘電率測定方法 1kHz(pF/m)
内側電極:芯線(導体)
外側電極:水
測定機器:NF回路設計ブロック社製LCZメーター The relative dielectric constant is a value measured by a capacitance method. As a measuring method, a covered electric wire is placed in 1% saline, the electric capacity between the conductor and the outside of the outermost insulating layer is obtained, and the relative dielectric constant is obtained from the thickness and surface area. The measurement can be performed under the following conditions.
Capacitance method dielectric constant measurement method 1 kHz (pF / m)
Inner electrode: Core wire (conductor)
Outer electrode: Water measuring device: NF circuit design block LCZ meter
本発明によれば、絶縁層の放電開始電圧を800V以上とすることができる。また、1000V以上とすることもできる。上記放電開始電圧は、電線を構成する絶縁層全体の放電開始電圧を意味し、例えば、電線が、導体と、第一の絶縁層、第二の絶縁層及び第三の絶縁層とからなる場合、第一の絶縁層、第二の絶縁層及び第三の絶縁層をあわせた絶縁層全体の放電開始電圧である。
According to the present invention, the discharge start voltage of the insulating layer can be set to 800 V or more. Moreover, it can also be set to 1000V or more. The discharge start voltage means the discharge start voltage of the entire insulating layer constituting the electric wire. For example, the electric wire includes a conductor, a first insulating layer, a second insulating layer, and a third insulating layer. , The discharge start voltage of the entire insulating layer including the first insulating layer, the second insulating layer, and the third insulating layer.
上記放電開始電圧は、JIS C3003 11.1に準拠して作成したツイスト片について、総研電気(株)製DAC-PD-3を用いて、周波数100kHz、電荷量100pCにて測定することができる。
The discharge start voltage can be measured at a frequency of 100 kHz and a charge amount of 100 pC using a DAC-PD-3 manufactured by Soken Denki Co., Ltd. for a twist piece prepared in accordance with JIS C3003 11.1.
上記機械的強度は、JIS C 3003 10.1に準じて往復式磨耗試験器により測定する値である。
The mechanical strength is a value measured by a reciprocating wear tester according to JIS C 3003 10.1.
上記電線の製造方法も本発明の1つである。
The manufacturing method of the said electric wire is also one of this invention.
本発明の電線は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成することを特徴とする製造方法により好適に製造できる。
The electric wire of the present invention is obtained by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on a conductor, and baking it to form a first insulating layer. It can manufacture suitably.
本発明の電線は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成することを特徴とする製造方法によっても好適に製造できる。
The electric wire of the present invention is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture is applied onto a conductor and baked to form a first insulating layer. The outer periphery of the first insulating layer In addition, the second insulating layer containing 80% or more of the fluororesin can be preferably formed by a manufacturing method characterized by forming the second insulating layer.
本発明の電線は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成し、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液(又は熱硬化性樹脂溶液)を第二の絶縁層上に塗布し、焼き付けて、第三の絶縁層を形成することを特徴とする製造方法によっても好適に製造できる。
The electric wire of the present invention is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture is applied onto a conductor and baked to form a first insulating layer. The outer periphery of the first insulating layer Then, a second insulating layer containing 80% or more of the fluororesin is formed, and the thermosetting resin solution and the fluororesin organosol are mixed, and the obtained mixed liquid (or thermosetting resin solution) is second insulated. It can also be preferably manufactured by a manufacturing method characterized in that the third insulating layer is formed by applying and baking on the layer.
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合して得られた混合液から第一の絶縁層を形成すると、該第一の絶縁層中に熱硬化性樹脂とフッ素樹脂とが均一に分散するので、放電開始電圧が高く、機械的強度、耐熱性等にも優れた電線が得られる。また、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとの混合液は加工性にも優れるので、本発明の製造方法は、生産性にも優れる方法である。第三の絶縁層の場合にも同様である。
When the first insulating layer is formed from the mixture obtained by mixing the thermosetting resin solution and the fluororesin organosol, the thermosetting resin and the fluororesin are uniformly dispersed in the first insulating layer. Therefore, an electric wire having a high discharge start voltage and excellent mechanical strength, heat resistance, etc. can be obtained. Moreover, since the liquid mixture of the thermosetting resin solution and the fluororesin organosol is excellent in processability, the production method of the present invention is also excellent in productivity. The same applies to the third insulating layer.
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとの混合、混合液の塗布、及び、焼き付けについては上述した通りである。
The mixing of the thermosetting resin solution and the fluororesin organosol, the application of the mixed solution, and the baking are as described above.
第二の絶縁層の形成方法は、フッ素樹脂を80%以上含む塗料を第一の絶縁層上に塗布し、焼成して形成するものであってもよいし、溶融押出成形により形成するものであってもよく、溶融押出成形により形成されるものであることがより好ましい。
The second insulating layer may be formed by applying a paint containing 80% or more of a fluororesin on the first insulating layer and baking it, or by melt extrusion molding. It may be, and is more preferably formed by melt extrusion molding.
第二の絶縁層が、フッ素樹脂を80%以上含む塗料を第一の絶縁層上に塗布し、焼成して形成されるものである場合、焼成の条件は使用するフッ素樹脂の種類等によって適宜設定すればよいが、例えば、上記焼成は270~320℃で行うことが好ましい。
When the second insulating layer is formed by applying a paint containing 80% or more of a fluororesin on the first insulating layer and firing it, the firing conditions are appropriately determined depending on the type of the fluororesin used, etc. For example, the baking is preferably performed at 270 to 320 ° C.
第二の絶縁層が溶融押出成形により形成されるものである場合、溶融押出成形の条件は使用するフッ素樹脂の種類等によって適宜設定すればよいが、例えば、押出温度は360~400℃で行うことが好ましい。
In the case where the second insulating layer is formed by melt extrusion molding, the melt extrusion molding conditions may be appropriately set depending on the type of fluororesin to be used. For example, the extrusion temperature is 360 to 400 ° C. It is preferable.
本発明の電線は、各絶縁層を形成した後加熱してもよい。上記加熱は、フッ素樹脂の融点付近の温度で加熱してもよい。上記加熱により、各絶縁層の接着性をより優れたものとできる。
The electric wire of the present invention may be heated after forming each insulating layer. The heating may be performed at a temperature near the melting point of the fluororesin. By the heating, the adhesiveness of each insulating layer can be made more excellent.
上記電線は、自動車用電線、ロボット用電線等に好適に使用できる。また、コイルの巻き線(マグネットワイヤー)としても好適に使用でき、本発明の電線を使用すれば、巻線加工での電線の損傷を生じにくい。上記巻き線は、モーター、回転電機、圧縮機、変圧器(トランス)等に好適であり、高電圧、高電流及び高熱伝導率が要求され、高密度な巻線加工が必要となる、小型・高出力モーターでの使用にも充分に耐えうる特性を有する。また、配電、送電又は通信用の電線としても好適である。
The above electric wires can be suitably used for automobile electric wires, robot electric wires and the like. Moreover, it can be used suitably also as a coil winding (magnet wire), and if the electric wire of the present invention is used, the electric wire is hardly damaged during winding. The above winding is suitable for motors, rotating electrical machines, compressors, transformers, etc., requires high voltage, high current and high thermal conductivity, requires high-density winding processing, It has the characteristics that it can withstand use with high-power motors. Moreover, it is suitable also as an electric wire for power distribution, power transmission, or communication.
上記熱硬化性樹脂溶液と上記フッ素樹脂オルガノゾルとの混合液は、プリント基板等の高周波伝送製品上に形成する絶縁層の材料としても好適に使用できる。
The liquid mixture of the thermosetting resin solution and the fluororesin organosol can be suitably used as a material for an insulating layer formed on a high-frequency transmission product such as a printed circuit board.
基板と、基板上に形成される第一の絶縁層と、前記第一の絶縁層は、上述した熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が90:10~10:90であり、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層であることを特徴とする高周波伝送製品は、絶縁層と基板とが強固に接着しており、誘電体損が低く、伝送特性に優れる。
The substrate, the first insulating layer formed on the substrate, and the first insulating layer are composed of the thermosetting resin and the fluororesin described above, and the mass ratio of the thermosetting resin and the fluororesin is 90: 10 to 10:90, a high-frequency transmission characterized in that it is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, coating the resulting mixture on a conductor, and baking it. In the product, the insulating layer and the substrate are firmly bonded, the dielectric loss is low, and the transmission characteristics are excellent.
上記高周波伝送製品は、更に、第一の絶縁層上に形成され、全体の80質量%以上がフッ素樹脂からなる第二の絶縁層を有することも好ましい形態の一つである。第二の絶縁層は、第一の絶縁層上に、フッ素樹脂を80%以上含む第二の絶縁層を形成することで好適に製造することができる。
The high-frequency transmission product may further include a second insulating layer that is formed on the first insulating layer and has 80% by mass or more of a fluororesin. The second insulating layer can be preferably manufactured by forming a second insulating layer containing 80% or more of a fluororesin on the first insulating layer.
上記高周波伝送製品は、更に、第二の絶縁層上に形成され、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が100:0~30:70である第三の絶縁層を有し、第三の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液(又は、熱硬化性樹脂溶液)を第二の絶縁層上に塗布し、焼き付けることによって形成された層であることも好ましい形態の一つである。
The high-frequency transmission product is further formed on the second insulating layer, is made of a thermosetting resin and a fluororesin, and a mass ratio of the thermosetting resin to the fluororesin is 100: 0 to 30:70. Three insulating layers, the third insulating layer is a mixture of a thermosetting resin solution and a fluororesin organosol, and the resulting mixture (or thermosetting resin solution) is mixed on the second insulating layer. It is also a preferred form that it is a layer formed by applying and baking onto a layer.
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to such examples.
実施例の各数値は以下の方法により測定した。
Each numerical value of the examples was measured by the following method.
絶縁層の厚み
JIS C 3003.5に準拠して測定する。 The thickness of the insulating layer is measured according to JIS C 3003.5.
JIS C 3003.5に準拠して測定する。 The thickness of the insulating layer is measured according to JIS C 3003.5.
放電開始電圧
放電開始電圧は、JIS C3003 11.1に準拠して作成したツイスト片について、総研電気(株)製DAC-PD-3を用いて、周波数100kHz、電荷量100pCにて測定を行った。 Discharge start voltage The discharge start voltage was measured at a frequency of 100 kHz and a charge amount of 100 pC using a twisted piece prepared in accordance with JIS C3003 11.1 using a DAC-PD-3 manufactured by Soken Denki Co., Ltd. .
放電開始電圧は、JIS C3003 11.1に準拠して作成したツイスト片について、総研電気(株)製DAC-PD-3を用いて、周波数100kHz、電荷量100pCにて測定を行った。 Discharge start voltage The discharge start voltage was measured at a frequency of 100 kHz and a charge amount of 100 pC using a twisted piece prepared in accordance with JIS C3003 11.1 using a DAC-PD-3 manufactured by Soken Denki Co., Ltd. .
耐磨耗性
JIS C 3003 10.1に準じて往復式磨耗試験器を用いて測定する。 Abrasion resistance Measured using a reciprocating abrasion tester according to JIS C 3003 10.1.
JIS C 3003 10.1に準じて往復式磨耗試験器を用いて測定する。 Abrasion resistance Measured using a reciprocating abrasion tester according to JIS C 3003 10.1.
実施例1
この実施例では、フッ素樹脂オルガノゾルとして、メチルイソブチルケトン(MIBK)とポリテトラフルオロエチレン〔PTFE〕とからなるオルガノゾル(PTFE濃度70%)及びMIBKとテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体〔FEP〕とからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)を使用した。上記オルガノゾルは、1次粒子の分散体である。
乳化重合FEPの水性分散体から有機溶媒への転相により有機溶媒分散体とした実施例1のFEPオルガノゾルは、分散粒子径が40~100nmであり、平均粒子径は50nmである。PTFEオルガノゾルは、分散粒子径が230~260nmであり、平均粒子径は255nmである。 Example 1
In this example, as fluororesin organosol, organosol (PTFE concentration 70%) composed of methyl isobutyl ketone (MIBK) and polytetrafluoroethylene [PTFE], and MIBK and tetrafluoroethylene / hexafluoropropylene copolymer [FEP] are used. As a thermosetting resin solution, a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent is used. used. The organosol is a dispersion of primary particles.
The FEP organosol of Example 1, which was an organic solvent dispersion by phase inversion of an emulsion-polymerized FEP from an aqueous dispersion to an organic solvent, had a dispersed particle size of 40 to 100 nm and an average particle size of 50 nm. The PTFE organosol has a dispersed particle size of 230 to 260 nm and an average particle size of 255 nm.
この実施例では、フッ素樹脂オルガノゾルとして、メチルイソブチルケトン(MIBK)とポリテトラフルオロエチレン〔PTFE〕とからなるオルガノゾル(PTFE濃度70%)及びMIBKとテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体〔FEP〕とからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)を使用した。上記オルガノゾルは、1次粒子の分散体である。
乳化重合FEPの水性分散体から有機溶媒への転相により有機溶媒分散体とした実施例1のFEPオルガノゾルは、分散粒子径が40~100nmであり、平均粒子径は50nmである。PTFEオルガノゾルは、分散粒子径が230~260nmであり、平均粒子径は255nmである。 Example 1
In this example, as fluororesin organosol, organosol (PTFE concentration 70%) composed of methyl isobutyl ketone (MIBK) and polytetrafluoroethylene [PTFE], and MIBK and tetrafluoroethylene / hexafluoropropylene copolymer [FEP] are used. As a thermosetting resin solution, a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent is used. used. The organosol is a dispersion of primary particles.
The FEP organosol of Example 1, which was an organic solvent dispersion by phase inversion of an emulsion-polymerized FEP from an aqueous dispersion to an organic solvent, had a dispersed particle size of 40 to 100 nm and an average particle size of 50 nm. The PTFE organosol has a dispersed particle size of 230 to 260 nm and an average particle size of 255 nm.
樹脂成分の質量比(固形分)で、PTFE:FEP:PAI=7:38:55となるように、PTFEのオルガノゾル、FEPのオルガノゾル、及び、PAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。
The PTFE organosol, the FEP organosol, and the PAI solution were charged into a rotary stirrer so that the mass ratio (solid content) of the resin components would be PTFE: FEP: PAI = 7: 38: 55. Stir for hours to mix.
攪拌後に得られた混合液100gを、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。1.0mm直径の銅線をゴム栓からビーカー内に通し、さらに、銅線の上端をビーカー上面からビーカーの上部に設置された連続式焼成炉中に通した。
100 g of the mixed solution obtained after the stirring was put into a beaker with a rubber stopper composed of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed in the bottom of the beaker. A copper wire having a diameter of 1.0 mm was passed through the rubber plug into the beaker, and the upper end of the copper wire was passed from the top surface of the beaker into a continuous firing furnace installed at the top of the beaker.
上記連続式焼成炉は、長さ2mの焼成炉を3個垂直に直結したものである。この焼成炉は熱風循環式で、炉内温度を下から1番目の炉を90℃、2番目の炉を180℃、3番目の炉を270℃に設定した。
The continuous firing furnace is obtained by directly connecting three 2 m long firing furnaces vertically. This firing furnace was a hot air circulation type, and the temperature inside the furnace was set to 90 ° C. for the first furnace, 180 ° C. for the second furnace, and 270 ° C. for the third furnace.
銅線の上端を1m/minの速度で上方に引っ張ることにより、ビーカー内で銅線の表面に混合液が塗付され、続いて銅線を連続式焼成炉中に導入し、絶縁層により被覆された電線を得た。
By pulling the upper end of the copper wire upward at a speed of 1 m / min, the liquid mixture is applied to the surface of the copper wire in a beaker, and then the copper wire is introduced into a continuous firing furnace and covered with an insulating layer. Obtained wire.
上記1回の操作で得られた電線の絶縁層(第1層)の厚みは、24μmであった。
The thickness of the insulating layer (first layer) of the electric wire obtained by one operation was 24 μm.
第1層上に、FEPを、ダイ温度380℃、成形速度15m/分で溶融押し出し成形し、第2層を形成した。そのうえに、第1層と同じ方法で第3層を形成した。
On the first layer, FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer. On top of that, a third layer was formed in the same manner as the first layer.
実施例2
FEPの水性分散液を、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。実施例1と同じようにして第1層を形成した電線を、ゴム栓からビーカー内に通し、さらに、該電線の上端をビーカー上面からビーカーの上部に設置された上記連続式焼成炉中に通すことにより、第2層を形成し、その後、3番目の炉は305℃とした以外は実施例1と同様にして、第3層を形成して電線を得た。 Example 2
The aqueous dispersion of FEP was placed in a beaker with a rubber stopper consisting of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed to the bottom of the beaker. The electric wire having the first layer formed in the same manner as in Example 1 is passed through the rubber plug into the beaker, and the upper end of the electric wire is passed from the upper surface of the beaker to the continuous firing furnace installed on the upper portion of the beaker. Thus, the second layer was formed, and then the third layer was formed in the same manner as in Example 1 except that the third furnace was set to 305 ° C., and an electric wire was obtained.
FEPの水性分散液を、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。実施例1と同じようにして第1層を形成した電線を、ゴム栓からビーカー内に通し、さらに、該電線の上端をビーカー上面からビーカーの上部に設置された上記連続式焼成炉中に通すことにより、第2層を形成し、その後、3番目の炉は305℃とした以外は実施例1と同様にして、第3層を形成して電線を得た。 Example 2
The aqueous dispersion of FEP was placed in a beaker with a rubber stopper consisting of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed to the bottom of the beaker. The electric wire having the first layer formed in the same manner as in Example 1 is passed through the rubber plug into the beaker, and the upper end of the electric wire is passed from the upper surface of the beaker to the continuous firing furnace installed on the upper portion of the beaker. Thus, the second layer was formed, and then the third layer was formed in the same manner as in Example 1 except that the third furnace was set to 305 ° C., and an electric wire was obtained.
実施例3
実施例1の混合液を3回塗布焼付けして、電線を得た。 Example 3
The mixed solution of Example 1 was applied and baked three times to obtain an electric wire.
実施例1の混合液を3回塗布焼付けして、電線を得た。 Example 3
The mixed solution of Example 1 was applied and baked three times to obtain an electric wire.
比較例1
30%PAI溶液のみを導体に塗布して第1層を形成したこと以外は実施例1と同じ方法で電線を得た。
実施例1~3及び比較例1で得られた電線の評価結果を表1に示す。 Comparative Example 1
An electric wire was obtained in the same manner as in Example 1 except that only the 30% PAI solution was applied to the conductor to form the first layer.
Table 1 shows the evaluation results of the electric wires obtained in Examples 1 to 3 and Comparative Example 1.
30%PAI溶液のみを導体に塗布して第1層を形成したこと以外は実施例1と同じ方法で電線を得た。
実施例1~3及び比較例1で得られた電線の評価結果を表1に示す。 Comparative Example 1
An electric wire was obtained in the same manner as in Example 1 except that only the 30% PAI solution was applied to the conductor to form the first layer.
Table 1 shows the evaluation results of the electric wires obtained in Examples 1 to 3 and Comparative Example 1.
(耐熱性評価)
下記方法にて、実施例1~3及び比較例1で得られた被覆電線の耐熱性を評価した。
実施例1~3又は比較例1で得られた被覆電線を200℃の電気炉で200時間加熱し、炉から取り出して常温にもどした。その後、JIS C 3003 11.1に準拠した2個より法にて試験片を作成し、部分放電開始電圧を測定した。部分放電開始電圧は、実施例1、実施例2、及び実施例3ともに、熱処理前後比で80%以上であった。比較例1では、熱処理前後比で40%以下であった。この結果より、実施例1~3で得られた被覆電線が、従来の被覆電線よりも高い耐熱性を有することがわかる。 (Heat resistance evaluation)
The heat resistance of the coated wires obtained in Examples 1 to 3 and Comparative Example 1 was evaluated by the following method.
The covered electric wires obtained in Examples 1 to 3 or Comparative Example 1 were heated in an electric furnace at 200 ° C. for 200 hours, removed from the furnace, and returned to room temperature. Then, the test piece was created by the method from two based on JIS C 3003 11.1, and the partial discharge start voltage was measured. The partial discharge start voltage was 80% or more in the ratio before and after the heat treatment in both Example 1, Example 2, and Example 3. In Comparative Example 1, the ratio before and after heat treatment was 40% or less. From this result, it can be seen that the covered electric wires obtained in Examples 1 to 3 have higher heat resistance than the conventional covered electric wires.
下記方法にて、実施例1~3及び比較例1で得られた被覆電線の耐熱性を評価した。
実施例1~3又は比較例1で得られた被覆電線を200℃の電気炉で200時間加熱し、炉から取り出して常温にもどした。その後、JIS C 3003 11.1に準拠した2個より法にて試験片を作成し、部分放電開始電圧を測定した。部分放電開始電圧は、実施例1、実施例2、及び実施例3ともに、熱処理前後比で80%以上であった。比較例1では、熱処理前後比で40%以下であった。この結果より、実施例1~3で得られた被覆電線が、従来の被覆電線よりも高い耐熱性を有することがわかる。 (Heat resistance evaluation)
The heat resistance of the coated wires obtained in Examples 1 to 3 and Comparative Example 1 was evaluated by the following method.
The covered electric wires obtained in Examples 1 to 3 or Comparative Example 1 were heated in an electric furnace at 200 ° C. for 200 hours, removed from the furnace, and returned to room temperature. Then, the test piece was created by the method from two based on JIS C 3003 11.1, and the partial discharge start voltage was measured. The partial discharge start voltage was 80% or more in the ratio before and after the heat treatment in both Example 1, Example 2, and Example 3. In Comparative Example 1, the ratio before and after heat treatment was 40% or less. From this result, it can be seen that the covered electric wires obtained in Examples 1 to 3 have higher heat resistance than the conventional covered electric wires.
実施例4
この実施例では、フッ素樹脂オルガノゾルとして、MIBKとFEPとからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)を使用した。上記FEP濃度70%のFEPオルガノゾルは、実施例1のFEPオルガノゾルと同じである。 Example 4
In this example, the fluorosol organosol was obtained by dissolving MIBK and FEP in an organosol (FEP concentration 70%), and a thermosetting resin solution obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent. % PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) was used. The FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
この実施例では、フッ素樹脂オルガノゾルとして、MIBKとFEPとからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)を使用した。上記FEP濃度70%のFEPオルガノゾルは、実施例1のFEPオルガノゾルと同じである。 Example 4
In this example, the fluorosol organosol was obtained by dissolving MIBK and FEP in an organosol (FEP concentration 70%), and a thermosetting resin solution obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent. % PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) was used. The FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
樹脂成分の質量比(固形分)で、FEP:PAI=50:50となるように、FEPのオルガノゾル、及び、PAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。
The FEP organosol and the PAI solution were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PAI = 50: 50, and the mixture was stirred for 1 hour and mixed.
攪拌後に得られた混合液100gを、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。1.0mm直径の銅線をゴム栓からビーカー内に通し、さらに、銅線の上端をビーカー上面からビーカーの上部に設置された連続式焼成炉中に通した。
100 g of the mixed solution obtained after the stirring was put into a beaker with a rubber stopper composed of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed in the bottom of the beaker. A copper wire having a diameter of 1.0 mm was passed through the rubber plug into the beaker, and the upper end of the copper wire was passed from the top surface of the beaker into a continuous firing furnace installed at the top of the beaker.
上記連続式焼成炉は、長さ2mの焼成炉を3個垂直に直結したものである。この焼成炉は熱風循環式で、炉内温度を下から1番目の炉を90℃、2番目の炉を180℃、3番目の炉を270℃に設定した。
The continuous firing furnace is obtained by directly connecting three 2 m long firing furnaces vertically. This firing furnace was a hot air circulation type, and the temperature inside the furnace was set to 90 ° C. for the first furnace, 180 ° C. for the second furnace, and 270 ° C. for the third furnace.
銅線の上端を1m/minの速度で上方に引っ張ることにより、ビーカー内で銅線の表面に混合液が塗付され、続いて銅線を連続式焼成炉中に導入し、絶縁層により被覆された電線を得た。
By pulling the upper end of the copper wire upward at a speed of 1 m / min, the liquid mixture is applied to the surface of the copper wire in a beaker, and then the copper wire is introduced into a continuous firing furnace and covered with an insulating layer. Obtained wire.
上記1回の操作で得られた電線の絶縁層(第1層)の厚みは、10μmであった。
The thickness of the insulating layer (first layer) of the electric wire obtained by the above one operation was 10 μm.
第1層上に、FEPを、ダイ温度380℃、成形速度15m/分で溶融押し出し成形し、第2層を形成した。第2層の膜厚は35μmであった。第2層のうえに、3番目の炉を305℃に設定したこと以外は第1層と同じ方法で第3層を形成した。第3層の膜厚は10μmであった。
On the first layer, FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer. The film thickness of the second layer was 35 μm. A third layer was formed on the second layer in the same manner as the first layer except that the third furnace was set at 305 ° C. The film thickness of the third layer was 10 μm.
実施例5
この実施例では、フッ素樹脂オルガノゾルとして、MIBKとFEPとからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリエステルイミド〔PEI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PEI溶液を使用した。上記FEP濃度70%のFEPオルガノゾルは、実施例1のFEPオルガノゾルと同じである。 Example 5
In this example, an organic sol composed of MIBK and FEP (70% FEP concentration) was used as the fluororesin organosol, and a polyester imide [PEI] was dissolved in an N-methylpyrrolidone solvent as a thermosetting resin solution. % PEI solution was used. The FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
この実施例では、フッ素樹脂オルガノゾルとして、MIBKとFEPとからなるオルガノゾル(FEP濃度70%)、熱硬化性樹脂溶液として、ポリエステルイミド〔PEI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PEI溶液を使用した。上記FEP濃度70%のFEPオルガノゾルは、実施例1のFEPオルガノゾルと同じである。 Example 5
In this example, an organic sol composed of MIBK and FEP (70% FEP concentration) was used as the fluororesin organosol, and a polyester imide [PEI] was dissolved in an N-methylpyrrolidone solvent as a thermosetting resin solution. % PEI solution was used. The FEP organosol having the FEP concentration of 70% is the same as the FEP organosol of Example 1.
樹脂成分の質量比(固形分)で、FEP:PEI=50:50となるように、FEPのオルガノゾル、及び、PEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例4と同じ方法で第1層を形成した。第1層の膜厚は10μmであった。その後、第1層の上に、実施例4と同じ方法で第2層及び第3層を形成した。
The FEP organosol and the PEI solution were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 50: 50, and the mixture was stirred for 1 hour and mixed. A first layer was formed in the same manner as in Example 4 except that the mixed liquid obtained after the stirring was used. The film thickness of the first layer was 10 μm. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 4.
実施例6
実施例4と同じ方法で第1層、第2層及び第3層を形成した。第1層及び第3層の厚みは、それぞれ5μmであった。 Example 6
A first layer, a second layer, and a third layer were formed in the same manner as in Example 4. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
実施例4と同じ方法で第1層、第2層及び第3層を形成した。第1層及び第3層の厚みは、それぞれ5μmであった。 Example 6
A first layer, a second layer, and a third layer were formed in the same manner as in Example 4. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
実施例7
実施例5と同じ方法で第1層、第2層及び第3層を形成した。第1層及び第3層の厚みは、それぞれ5μmであった。 Example 7
A first layer, a second layer, and a third layer were formed in the same manner as in Example 5. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
実施例5と同じ方法で第1層、第2層及び第3層を形成した。第1層及び第3層の厚みは、それぞれ5μmであった。 Example 7
A first layer, a second layer, and a third layer were formed in the same manner as in Example 5. The thickness of the 1st layer and the 3rd layer was 5 micrometers, respectively.
実施例8
実施例6と同じ方法で第1層及び第2層を形成した。 Example 8
A first layer and a second layer were formed in the same manner as in Example 6.
実施例6と同じ方法で第1層及び第2層を形成した。 Example 8
A first layer and a second layer were formed in the same manner as in Example 6.
実施例9
実施例7と同じ方法により第1層及び第2層を形成した。 Example 9
A first layer and a second layer were formed by the same method as in Example 7.
実施例7と同じ方法により第1層及び第2層を形成した。 Example 9
A first layer and a second layer were formed by the same method as in Example 7.
実施例10
FEPの水性分散液を、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。実施例6と同じ方法で第1層を形成した電線を、ゴム栓からビーカー内に通し、さらに、該電線の上端をビーカー上面からビーカーの上部に設置された連続式焼成炉中に通す操作を7回行うことにより、第2層を形成した。その後、実施例6と同じ方法で第3層を形成して電線を得た。第2層の膜厚は35μmであった。 Example 10
The aqueous dispersion of FEP was put into a beaker with a rubber stopper, which was composed of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed in the bottom of the beaker. An operation in which the electric wire having the first layer formed by the same method as in Example 6 is passed through the rubber plug into the beaker, and the upper end of the electric wire is passed from the upper surface of the beaker to the continuous firing furnace installed on the upper portion of the beaker. The second layer was formed by performing 7 times. Then, the 3rd layer was formed by the same method as Example 6, and the electric wire was obtained. The film thickness of the second layer was 35 μm.
FEPの水性分散液を、底面に穴の開いたポリエチレン製ビーカー及び前記ビーカー底面に固定された穴の開いたゴム栓からなるゴム栓付きビーカーに入れた。実施例6と同じ方法で第1層を形成した電線を、ゴム栓からビーカー内に通し、さらに、該電線の上端をビーカー上面からビーカーの上部に設置された連続式焼成炉中に通す操作を7回行うことにより、第2層を形成した。その後、実施例6と同じ方法で第3層を形成して電線を得た。第2層の膜厚は35μmであった。 Example 10
The aqueous dispersion of FEP was put into a beaker with a rubber stopper, which was composed of a polyethylene beaker with a hole in the bottom and a rubber stopper with a hole fixed in the bottom of the beaker. An operation in which the electric wire having the first layer formed by the same method as in Example 6 is passed through the rubber plug into the beaker, and the upper end of the electric wire is passed from the upper surface of the beaker to the continuous firing furnace installed on the upper portion of the beaker. The second layer was formed by performing 7 times. Then, the 3rd layer was formed by the same method as Example 6, and the electric wire was obtained. The film thickness of the second layer was 35 μm.
実施例11
樹脂成分の質量比(固形分)で、FEP:PEI=10:90となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法で第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 11
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 10: 90, and the mixture was stirred for 1 hour. Mixed. A first layer was formed in the same manner as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
樹脂成分の質量比(固形分)で、FEP:PEI=10:90となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法で第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 11
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 10: 90, and the mixture was stirred for 1 hour. Mixed. A first layer was formed in the same manner as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
実施例12
樹脂成分の質量比(固形分)で、FEP:PEI=30:70となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 12
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 30: 70, and the mixture was stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
樹脂成分の質量比(固形分)で、FEP:PEI=30:70となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 12
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 30: 70, and the mixture was stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
実施例13
樹脂成分の質量比(固形分)で、FEP:PEI=70:30となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 13
The FEP organosol and the PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PEI = 70: 30, and stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
樹脂成分の質量比(固形分)で、FEP:PEI=70:30となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 13
The FEP organosol and the PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PEI = 70: 30, and stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
実施例14
樹脂成分の質量比(固形分)で、FEP:PEI=90:10となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 14
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PEI = 90: 10, and stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
樹脂成分の質量比(固形分)で、FEP:PEI=90:10となるように、実施例7で用いたFEPのオルガノゾル及びPEI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。この攪拌後に得られた混合液を用いたこと以外は、実施例7と同じ方法により第1層を形成した。その後、第1層の上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 14
The FEP organosol and PEI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PEI = 90: 10, and stirred for 1 hour. Mixed. A first layer was formed by the same method as in Example 7 except that the mixed liquid obtained after the stirring was used. Thereafter, a second layer and a third layer were formed on the first layer by the same method as in Example 7.
実施例15
実施例7と同じ方法で第1層及び第2層を形成した。その後、第2層のうえに、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)のみを用いたこと以外は、実施例7と同じ方法で第3層を形成した。第3層の膜厚は、5μmであった。 Example 15
A first layer and a second layer were formed in the same manner as in Example 7. Thereafter, Examples were used except that only a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent was used on the second layer. A third layer was formed in the same manner as in FIG. The film thickness of the third layer was 5 μm.
実施例7と同じ方法で第1層及び第2層を形成した。その後、第2層のうえに、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)のみを用いたこと以外は、実施例7と同じ方法で第3層を形成した。第3層の膜厚は、5μmであった。 Example 15
A first layer and a second layer were formed in the same manner as in Example 7. Thereafter, Examples were used except that only a 30% PAI solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) obtained by dissolving polyamideimide [PAI] in an N-methylpyrrolidone solvent was used on the second layer. A third layer was formed in the same manner as in FIG. The film thickness of the third layer was 5 μm.
実施例16
実施例7と同じ方法で第1層及び第2層を形成した。樹脂成分の質量比(固形分)で、FEP:PAI=70:30となるように、実施例7で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。第2層の上に得られた混合液を用いたこと以外は実施例7と同じ方法で第3層を形成した。 Example 16
A first layer and a second layer were formed in the same manner as in Example 7. The FEP organosol and PAI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PAI = 70: 30, and stirred for 1 hour. Mixed. A third layer was formed in the same manner as in Example 7 except that the mixed liquid obtained on the second layer was used.
実施例7と同じ方法で第1層及び第2層を形成した。樹脂成分の質量比(固形分)で、FEP:PAI=70:30となるように、実施例7で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。第2層の上に得られた混合液を用いたこと以外は実施例7と同じ方法で第3層を形成した。 Example 16
A first layer and a second layer were formed in the same manner as in Example 7. The FEP organosol and PAI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PAI = 70: 30, and stirred for 1 hour. Mixed. A third layer was formed in the same manner as in Example 7 except that the mixed liquid obtained on the second layer was used.
実施例17
実施例7と同じ方法で第1層を形成した。第1層上に、FEPを、ダイ温度380℃、成形速度15m/分で溶融押し出し成形し、第2層を形成した。第2層の膜厚は55μmであった。第2層上に、実施例7と同じ方法で第3層を形成した。 Example 17
A first layer was formed in the same manner as in Example 7. On the first layer, FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer. The film thickness of the second layer was 55 μm. A third layer was formed on the second layer by the same method as in Example 7.
実施例7と同じ方法で第1層を形成した。第1層上に、FEPを、ダイ温度380℃、成形速度15m/分で溶融押し出し成形し、第2層を形成した。第2層の膜厚は55μmであった。第2層上に、実施例7と同じ方法で第3層を形成した。 Example 17
A first layer was formed in the same manner as in Example 7. On the first layer, FEP was melt-extruded at a die temperature of 380 ° C. and a molding speed of 15 m / min to form a second layer. The film thickness of the second layer was 55 μm. A third layer was formed on the second layer by the same method as in Example 7.
実施例18
実施例4と同じ方法で第1層を形成した。樹脂成分の質量比(固形分)で、FEP:PAI=81:19となるように、実施例4で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。このようにして得られた混合液を用いたこと以外は、第1層と同じ方法で第2層を形成した。第2層の膜厚は50μmであった。第2層上に実施例4と同じ方法で第3層を形成した。 Example 18
A first layer was formed in the same manner as in Example 4. The FEP organosol and PAI solution used in Example 4 were charged into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PAI = 81: 19, and stirred for 1 hour. Mixed. A second layer was formed in the same manner as the first layer except that the mixed solution thus obtained was used. The film thickness of the second layer was 50 μm. A third layer was formed on the second layer by the same method as in Example 4.
実施例4と同じ方法で第1層を形成した。樹脂成分の質量比(固形分)で、FEP:PAI=81:19となるように、実施例4で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。このようにして得られた混合液を用いたこと以外は、第1層と同じ方法で第2層を形成した。第2層の膜厚は50μmであった。第2層上に実施例4と同じ方法で第3層を形成した。 Example 18
A first layer was formed in the same manner as in Example 4. The FEP organosol and PAI solution used in Example 4 were charged into a rotary stirrer so that the mass ratio (solid content) of the resin components would be FEP: PAI = 81: 19, and stirred for 1 hour. Mixed. A second layer was formed in the same manner as the first layer except that the mixed solution thus obtained was used. The film thickness of the second layer was 50 μm. A third layer was formed on the second layer by the same method as in Example 4.
実施例19
樹脂成分の質量比(固形分)で、FEP:PEI=10:90となるように、実施例7で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。このようにして得られた混合液を用いたこと以外は、実施例7と同じ方法で第1層を形成した。第1層上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 19
The FEP organosol and PAI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 10: 90, and stirred for 1 hour. Mixed. A first layer was formed in the same manner as in Example 7 except that the mixed solution thus obtained was used. A second layer and a third layer were formed on the first layer by the same method as in Example 7.
樹脂成分の質量比(固形分)で、FEP:PEI=10:90となるように、実施例7で用いたFEPのオルガノゾル及びPAI溶液をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。このようにして得られた混合液を用いたこと以外は、実施例7と同じ方法で第1層を形成した。第1層上に、実施例7と同じ方法で第2層及び第3層を形成した。 Example 19
The FEP organosol and PAI solution used in Example 7 were put into a rotary stirrer so that the mass ratio (solid content) of the resin components was FEP: PEI = 10: 90, and stirred for 1 hour. Mixed. A first layer was formed in the same manner as in Example 7 except that the mixed solution thus obtained was used. A second layer and a third layer were formed on the first layer by the same method as in Example 7.
比較例2
30%PEI溶液のみを導体に塗布したこと以外は実施例7と同じ方法で第1層を形成した。第1層の膜厚は8μmであった。第1層上に、30%PAI溶液のみを塗布したこと以外は第1層と同じ方法で第2層を形成した。第2層の膜厚は30μmであった。 Comparative Example 2
The first layer was formed in the same manner as in Example 7 except that only the 30% PEI solution was applied to the conductor. The film thickness of the first layer was 8 μm. A second layer was formed on the first layer in the same manner as the first layer except that only the 30% PAI solution was applied. The film thickness of the second layer was 30 μm.
30%PEI溶液のみを導体に塗布したこと以外は実施例7と同じ方法で第1層を形成した。第1層の膜厚は8μmであった。第1層上に、30%PAI溶液のみを塗布したこと以外は第1層と同じ方法で第2層を形成した。第2層の膜厚は30μmであった。 Comparative Example 2
The first layer was formed in the same manner as in Example 7 except that only the 30% PEI solution was applied to the conductor. The film thickness of the first layer was 8 μm. A second layer was formed on the first layer in the same manner as the first layer except that only the 30% PAI solution was applied. The film thickness of the second layer was 30 μm.
比較例3
樹脂成分の質量比(固形分)で、FEP:PAI=50:50となるように、FEP粉体、及び、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。得られた混合液を用いたこと以外は、実施例6と同じ方法で第1層を形成した。第1層の膜厚は5μmであった。第1層上に、実施例6と同じ方法で第2層を形成した。第2層上に、第1層と同じ方法で第3層を形成した。 Comparative Example 3
30% PAI obtained by dissolving FEP powder and polyamideimide [PAI] in N-methylpyrrolidone solvent so that the mass ratio (solid content) of the resin component is FEP: PAI = 50: 50 Each solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) was put into a rotary stirrer and stirred for 1 hour to mix. A first layer was formed in the same manner as in Example 6 except that the obtained mixed solution was used. The film thickness of the first layer was 5 μm. A second layer was formed on the first layer by the same method as in Example 6. A third layer was formed on the second layer by the same method as the first layer.
樹脂成分の質量比(固形分)で、FEP:PAI=50:50となるように、FEP粉体、及び、ポリアミドイミド〔PAI〕をN-メチルピロリドン溶媒に溶解させて得られた30%PAI溶液(日立化成社製HI-680)をそれぞれ回転式攪拌装置に投入し、1時間攪拌して混合した。得られた混合液を用いたこと以外は、実施例6と同じ方法で第1層を形成した。第1層の膜厚は5μmであった。第1層上に、実施例6と同じ方法で第2層を形成した。第2層上に、第1層と同じ方法で第3層を形成した。 Comparative Example 3
30% PAI obtained by dissolving FEP powder and polyamideimide [PAI] in N-methylpyrrolidone solvent so that the mass ratio (solid content) of the resin component is FEP: PAI = 50: 50 Each solution (HI-680 manufactured by Hitachi Chemical Co., Ltd.) was put into a rotary stirrer and stirred for 1 hour to mix. A first layer was formed in the same manner as in Example 6 except that the obtained mixed solution was used. The film thickness of the first layer was 5 μm. A second layer was formed on the first layer by the same method as in Example 6. A third layer was formed on the second layer by the same method as the first layer.
比較例4
比較例3と同様にして第1層を形成した。第1層の膜厚は75μmであった。
実施例4~19及び比較例2~4の結果を表2~4に示す。 Comparative Example 4
A first layer was formed in the same manner as in Comparative Example 3. The film thickness of the first layer was 75 μm.
The results of Examples 4 to 19 and Comparative Examples 2 to 4 are shown in Tables 2 to 4.
比較例3と同様にして第1層を形成した。第1層の膜厚は75μmであった。
実施例4~19及び比較例2~4の結果を表2~4に示す。 Comparative Example 4
A first layer was formed in the same manner as in Comparative Example 3. The film thickness of the first layer was 75 μm.
The results of Examples 4 to 19 and Comparative Examples 2 to 4 are shown in Tables 2 to 4.
比較例5
FEP水性分散体を凝析により2次粒子化し、その後乾燥させた粉末をMIBKに分散させ、この分散体を上記30%PAI溶液(日立化成社製HI-680)に混合して、混合液を作成した。この混合液を、実施例1の混合液の代わりに使用したこと以外は、実施例1と同じ方法で被覆電線を作成した。上記FEP水性分散体を凝析により2次粒子化し、乾燥させた粉末は、2次粒子径が0.20~0.50mmであり、実施例1で用いたFEPオルガノゾルの2000倍程度である。そのため塗料化すると、粒径の大きいFEPの2次粒子があるために、ディッピングした場合に膜厚が不均一になった。また、粒子内に空気層が存在するため、部分放電開始電圧も700Vと低かった。 Comparative Example 5
The FEP aqueous dispersion was converted into secondary particles by coagulation, and then the dried powder was dispersed in MIBK. The dispersion was mixed with the 30% PAI solution (HI-680, manufactured by Hitachi Chemical Co., Ltd.) Created. A coated electric wire was prepared in the same manner as in Example 1 except that this mixed solution was used instead of the mixed solution in Example 1. The powder obtained by making the FEP aqueous dispersion into secondary particles by coagulation and drying has a secondary particle diameter of 0.20 to 0.50 mm, which is about 2000 times that of the FEP organosol used in Example 1. For this reason, when it was made into a paint, because there were FEP secondary particles having a large particle diameter, the film thickness became non-uniform when dipped. Further, since an air layer was present in the particles, the partial discharge start voltage was also as low as 700V.
FEP水性分散体を凝析により2次粒子化し、その後乾燥させた粉末をMIBKに分散させ、この分散体を上記30%PAI溶液(日立化成社製HI-680)に混合して、混合液を作成した。この混合液を、実施例1の混合液の代わりに使用したこと以外は、実施例1と同じ方法で被覆電線を作成した。上記FEP水性分散体を凝析により2次粒子化し、乾燥させた粉末は、2次粒子径が0.20~0.50mmであり、実施例1で用いたFEPオルガノゾルの2000倍程度である。そのため塗料化すると、粒径の大きいFEPの2次粒子があるために、ディッピングした場合に膜厚が不均一になった。また、粒子内に空気層が存在するため、部分放電開始電圧も700Vと低かった。 Comparative Example 5
The FEP aqueous dispersion was converted into secondary particles by coagulation, and then the dried powder was dispersed in MIBK. The dispersion was mixed with the 30% PAI solution (HI-680, manufactured by Hitachi Chemical Co., Ltd.) Created. A coated electric wire was prepared in the same manner as in Example 1 except that this mixed solution was used instead of the mixed solution in Example 1. The powder obtained by making the FEP aqueous dispersion into secondary particles by coagulation and drying has a secondary particle diameter of 0.20 to 0.50 mm, which is about 2000 times that of the FEP organosol used in Example 1. For this reason, when it was made into a paint, because there were FEP secondary particles having a large particle diameter, the film thickness became non-uniform when dipped. Further, since an air layer was present in the particles, the partial discharge start voltage was also as low as 700V.
本発明の電線は、自動車用電線、ロボット用電線等に好適に使用できる。また、コイルの巻き線(マグネットワイヤー)としても好適に利用可能である。
The electric wire of the present invention can be suitably used for automobile electric wires, robot electric wires and the like. Also, it can be suitably used as a coil winding (magnet wire).
Claims (8)
- 導体と、前記導体の外周に形成される第一の絶縁層とを有し、
前記第一の絶縁層は、熱硬化性樹脂及びフッ素樹脂からなり、
熱硬化性樹脂とフッ素樹脂との質量比が90:10~10:90であり、
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を導体上に塗布し、焼き付けることによって形成された層である
ことを特徴とする電線。 A conductor and a first insulating layer formed on the outer periphery of the conductor;
The first insulating layer is made of a thermosetting resin and a fluororesin,
The mass ratio of thermosetting resin to fluororesin is 90:10 to 10:90,
An electric wire characterized in that it is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixture onto a conductor, and baking it. - 第一の絶縁層の外周に形成され、全体の80質量%以上がフッ素樹脂からなる第二の絶縁層を有する
請求項1記載の電線。 The electric wire according to claim 1, comprising a second insulating layer formed on the outer periphery of the first insulating layer, wherein 80% by mass or more of the whole is made of a fluororesin. - 第二の絶縁層の外周に形成され、熱硬化性樹脂及びフッ素樹脂からなり、熱硬化性樹脂とフッ素樹脂との質量比が100:0~30:70である第三の絶縁層を有し、
第三の絶縁層は、熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けることによって形成された層である
請求項2記載の電線。 A third insulating layer formed on the outer periphery of the second insulating layer, made of a thermosetting resin and a fluororesin, and having a mass ratio of the thermosetting resin to the fluororesin of 100: 0 to 30:70; ,
3. The third insulating layer is a layer formed by mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution on the second insulating layer, and baking it. Electric wire. - 熱硬化性樹脂は、ポリビニルホルマール、ポリアミドイミド、ポリイミド、ポリエステル、ポリウレタン、ポリアミド、ポリエーテルスルホン、ポリアリーレンサルファイド、ポリエーテルイミド及びポリエステルイミドからなる群より選択される少なくとも1種である請求項1、2又は3記載の電線。 The thermosetting resin is at least one selected from the group consisting of polyvinyl formal, polyamideimide, polyimide, polyester, polyurethane, polyamide, polyethersulfone, polyarylene sulfide, polyetherimide, and polyesterimide. The electric wire according to 2 or 3.
- フッ素樹脂は、ポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリビニリデンフルオライド及びポリクロロトリフルオロエチレンからなる群より選択される少なくとも1種である請求項1、2、3又は4記載の電線。 The fluororesin is polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene. The electric wire according to claim 1, 2, 3, or 4, which is at least one selected from the group consisting of a copolymer, polyvinylidene fluoride, and polychlorotrifluoroethylene.
- 請求項1、2、3、4又は5記載の電線の製造方法であって、
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、
得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成する
ことを特徴とする製造方法。 It is a manufacturing method of the electric wire according to claim 1, 2, 3, 4 or 5,
Mix the thermosetting resin solution and fluororesin organosol,
A manufacturing method characterized in that the obtained mixed liquid is applied onto a conductor and baked to form a first insulating layer. - 請求項2、3、4又は5記載の電線の製造方法であって、
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、
得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、
第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成する
ことを特徴とする製造方法。 It is a manufacturing method of the electric wire according to claim 2, 3, 4, or 5,
Mix the thermosetting resin solution and fluororesin organosol,
The resulting mixture is applied onto the conductor and baked to form a first insulating layer,
A manufacturing method comprising forming a second insulating layer containing 80% or more of a fluororesin on the outer periphery of the first insulating layer. - 請求項3、4又は5記載の電線の製造方法であって、
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、
得られた混合液を導体上に塗布し、焼き付けて第一の絶縁層を形成し、
第一の絶縁層の外周に、フッ素樹脂を80%以上含む第二の絶縁層を形成し、
熱硬化性樹脂溶液とフッ素樹脂オルガノゾルとを混合し、得られた混合液を第二の絶縁層上に塗布し、焼き付けて、第三の絶縁層を形成する
ことを特徴とする製造方法。 It is a manufacturing method of the electric wire according to claim 3, 4 or 5,
Mix the thermosetting resin solution and fluororesin organosol,
The resulting mixture is applied onto the conductor and baked to form a first insulating layer,
Forming a second insulating layer containing 80% or more of a fluororesin on the outer periphery of the first insulating layer;
A manufacturing method comprising mixing a thermosetting resin solution and a fluororesin organosol, applying the obtained mixed solution onto a second insulating layer, and baking the mixture to form a third insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011528802A JP5423800B2 (en) | 2009-08-24 | 2010-08-24 | Electric wire and manufacturing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-193621 | 2009-08-24 | ||
JP2009193621 | 2009-08-24 | ||
JP2010-035055 | 2010-02-19 | ||
JP2010035055 | 2010-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024809A1 true WO2011024809A1 (en) | 2011-03-03 |
Family
ID=43627910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064281 WO2011024809A1 (en) | 2009-08-24 | 2010-08-24 | Electric wire and process for production thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5423800B2 (en) |
WO (1) | WO2011024809A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014032885A (en) * | 2012-08-06 | 2014-02-20 | Auto Network Gijutsu Kenkyusho:Kk | Insulated wire |
WO2014112405A1 (en) * | 2013-01-17 | 2014-07-24 | ダイキン工業株式会社 | Insulated wire |
WO2014183011A2 (en) * | 2013-05-10 | 2014-11-13 | Sabic Innovative Plastics Ip B.V. | Dual layer wire coatings |
WO2014189017A1 (en) * | 2013-05-23 | 2014-11-27 | 旭硝子株式会社 | Covering material for heat-resistant electric wires, method for producing same, and electric wire |
WO2019102989A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Insulated conductor and insulated conductor manufacturing method |
WO2019102991A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Insulated conductor and insulated conductor manufacturing method |
WO2024048192A1 (en) * | 2022-08-29 | 2024-03-07 | ダイキン工業株式会社 | Coated electric wire and method for producing coated electric wire |
WO2024048191A1 (en) * | 2022-08-29 | 2024-03-07 | ダイキン工業株式会社 | Covered wire and method for producing covered wire |
JP7525806B2 (en) | 2022-08-29 | 2024-07-31 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
JP7534686B2 (en) | 2022-08-29 | 2024-08-15 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56106976A (en) * | 1980-01-30 | 1981-08-25 | Fujikura Ltd | Insulated wire |
JPS62120214U (en) * | 1986-01-23 | 1987-07-30 | ||
JPS6329412A (en) * | 1986-07-22 | 1988-02-08 | 住友電気工業株式会社 | Insulated wire |
JPS6433810A (en) * | 1987-07-29 | 1989-02-03 | Sumitomo Electric Industries | Anti-abrasive insulated electrical wire |
JPH01260714A (en) * | 1988-04-08 | 1989-10-18 | Fujikura Ltd | Insulated electric wire |
JPH06215636A (en) * | 1993-01-20 | 1994-08-05 | Hitachi Cable Ltd | Self-lubricating enamel wire |
JPH06275128A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Chem Co Ltd | Resin composition for electric insulation and insulated wire |
-
2010
- 2010-08-24 WO PCT/JP2010/064281 patent/WO2011024809A1/en active Application Filing
- 2010-08-24 JP JP2011528802A patent/JP5423800B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56106976A (en) * | 1980-01-30 | 1981-08-25 | Fujikura Ltd | Insulated wire |
JPS62120214U (en) * | 1986-01-23 | 1987-07-30 | ||
JPS6329412A (en) * | 1986-07-22 | 1988-02-08 | 住友電気工業株式会社 | Insulated wire |
JPS6433810A (en) * | 1987-07-29 | 1989-02-03 | Sumitomo Electric Industries | Anti-abrasive insulated electrical wire |
JPH01260714A (en) * | 1988-04-08 | 1989-10-18 | Fujikura Ltd | Insulated electric wire |
JPH06215636A (en) * | 1993-01-20 | 1994-08-05 | Hitachi Cable Ltd | Self-lubricating enamel wire |
JPH06275128A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Chem Co Ltd | Resin composition for electric insulation and insulated wire |
Non-Patent Citations (3)
Title |
---|
10889, KAGAKU SHOHIN, 1989, pages 742 - 743, 745 TO 746 * |
KAGAKU DAIJITEN, KABUSHIKI KAISHA, 1989, TOKYO, pages 824 * |
SEIICHI HONMA, PLASTIC POCKET BOOK, 2003, pages 12 - 13 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014032885A (en) * | 2012-08-06 | 2014-02-20 | Auto Network Gijutsu Kenkyusho:Kk | Insulated wire |
WO2014112405A1 (en) * | 2013-01-17 | 2014-07-24 | ダイキン工業株式会社 | Insulated wire |
CN104903977A (en) * | 2013-01-17 | 2015-09-09 | 大金工业株式会社 | Insulated Wire |
JPWO2014112405A1 (en) * | 2013-01-17 | 2017-01-19 | ダイキン工業株式会社 | Insulated wire |
CN104903977B (en) * | 2013-01-17 | 2018-12-28 | 大金工业株式会社 | Insulated electric conductor |
US10991478B2 (en) | 2013-01-17 | 2021-04-27 | Daikin Industries, Ltd. | Insulated wire |
WO2014183011A2 (en) * | 2013-05-10 | 2014-11-13 | Sabic Innovative Plastics Ip B.V. | Dual layer wire coatings |
WO2014183011A3 (en) * | 2013-05-10 | 2014-12-31 | Sabic Innovative Plastics Ip B.V. | Dual layer wire coatings |
WO2014189017A1 (en) * | 2013-05-23 | 2014-11-27 | 旭硝子株式会社 | Covering material for heat-resistant electric wires, method for producing same, and electric wire |
JPWO2014189017A1 (en) * | 2013-05-23 | 2017-02-23 | 旭硝子株式会社 | Heat-resistant wire covering material, method for producing the same, and wire |
KR20200090157A (en) | 2017-11-21 | 2020-07-28 | 미쓰비시 마테리알 가부시키가이샤 | Insulation conductor and method of manufacturing the insulation conductor |
KR102590075B1 (en) | 2017-11-21 | 2023-10-16 | 미쓰비시 마테리알 가부시키가이샤 | Insulated conductors and methods of manufacturing insulated conductors |
WO2019102991A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Insulated conductor and insulated conductor manufacturing method |
WO2019102989A1 (en) | 2017-11-21 | 2019-05-31 | 三菱マテリアル株式会社 | Insulated conductor and insulated conductor manufacturing method |
US11430585B2 (en) | 2017-11-21 | 2022-08-30 | Mitsubishi Materials Corporation | Insulated conductor and insulated conductor manufacturing method |
TWI787399B (en) * | 2017-11-21 | 2022-12-21 | 日商三菱綜合材料股份有限公司 | Insulated conductor and method of manufacturing insulated conductor |
US11555254B2 (en) | 2017-11-21 | 2023-01-17 | Mitsubishi Materials Corporation | Insulated conductor and insulated conductor manufacturing method |
KR20200090159A (en) | 2017-11-21 | 2020-07-28 | 미쓰비시 마테리알 가부시키가이샤 | Insulation conductor and method of manufacturing the insulation conductor |
KR102590076B1 (en) | 2017-11-21 | 2023-10-16 | 미쓰비시 마테리알 가부시키가이샤 | Insulated conductors and methods of manufacturing insulated conductors |
WO2024048192A1 (en) * | 2022-08-29 | 2024-03-07 | ダイキン工業株式会社 | Coated electric wire and method for producing coated electric wire |
WO2024048191A1 (en) * | 2022-08-29 | 2024-03-07 | ダイキン工業株式会社 | Covered wire and method for producing covered wire |
JP7469727B2 (en) | 2022-08-29 | 2024-04-17 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
JP7469726B2 (en) | 2022-08-29 | 2024-04-17 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
JP7525806B2 (en) | 2022-08-29 | 2024-07-31 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
JP7534686B2 (en) | 2022-08-29 | 2024-08-15 | ダイキン工業株式会社 | Covered electric wire and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP5423800B2 (en) | 2014-02-19 |
JPWO2011024809A1 (en) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5423800B2 (en) | Electric wire and manufacturing method thereof | |
JP7420202B2 (en) | Insulated conductor and method for manufacturing insulated conductor | |
TWI737892B (en) | Electrodeposition solution and method of producing conductor with insulating coating formed by using same | |
CN104903977B (en) | Insulated electric conductor | |
JP2011071089A (en) | Electric wire and method of manufacturing the same | |
JP6508406B1 (en) | Insulated conductor and method of manufacturing insulated conductor | |
KR101708498B1 (en) | Insulated Wire | |
WO2022154052A1 (en) | Electrodeposition fluid and method for producing insulating coating film | |
WO2022202363A1 (en) | Insulation film-provided flat conductive plate and method for manufacturing same | |
JP7469727B2 (en) | Covered electric wire and method for producing the same | |
JP2011003375A (en) | Insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811859 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011528802 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811859 Country of ref document: EP Kind code of ref document: A1 |