[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011024801A1 - Membrane filtration device - Google Patents

Membrane filtration device Download PDF

Info

Publication number
WO2011024801A1
WO2011024801A1 PCT/JP2010/064266 JP2010064266W WO2011024801A1 WO 2011024801 A1 WO2011024801 A1 WO 2011024801A1 JP 2010064266 W JP2010064266 W JP 2010064266W WO 2011024801 A1 WO2011024801 A1 WO 2011024801A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
conductive wire
membrane
peripheral surface
conductive line
Prior art date
Application number
PCT/JP2010/064266
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 小西
紀男 池山
敏夫 長嶋
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2011024801A1 publication Critical patent/WO2011024801A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/106Anti-Telescopic-Devices [ATD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • B01D2311/165Cross-flow velocity control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/243Electrical conductivity control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a membrane filtration device that generates a permeate by filtering an object to be filtered with a filtration membrane.
  • a membrane filtration device configured by arranging a plurality of membrane elements in a straight line in a pressure vessel is known (for example, see Patent Document 1 below).
  • This type of membrane filtration device is generally used to obtain purified permeated water (permeate) by filtering raw water (filtered object) such as waste water or seawater.
  • raw water filtered object
  • a large number of membrane filtration devices are held in a rack called a train, so that processing characteristics (pressure, quality of permeated water, amount of water, etc.) are managed for each train.
  • Patent Document 1 data relating to the processing characteristics is stored in advance in each wireless element (RFID tag) provided in the membrane element.
  • the processing characteristics can be managed for each membrane element by reading data from each wireless tag.
  • the state of each membrane element changes from moment to moment, so it can be said that the management accuracy is sufficient. If the state of each membrane element can be detected in real time, management can be performed with higher accuracy.
  • Patent Document 2 describes that a flow sensor, an electrical conductivity sensor, and the like are provided for a plurality of membrane elements in order to collect data relating to operation performance.
  • data collected from various sensors is temporarily stored in the RFID, and the data is read out. In this case, data calculation and storage, and further It is necessary to secure sufficient power to operate the sensor.
  • Patent Document 3 describes a configuration in which sensors for detecting breakage and breakage of a filtration membrane are incorporated in a plurality of filtration modules, respectively.
  • Patent Document 4 describes an assembly of a filter including an electronic label provided with a storage device that stores information that can be read by a reading means, and a filtration device.
  • Patent Document 5 listed below describes a configuration in which data unique to an exchange member is stored in a memory provided in the exchange member, and the data can be read by a reading device.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a membrane filtration device that can satisfactorily supply power to a sensor or the like. Another object of the present invention is to provide a membrane filtration device that can satisfactorily transmit data from a sensor.
  • a membrane filtration device is provided as a separate body from a membrane element that generates a permeate by filtering an object to be filtered with a filtration membrane, a pressure-resistant container that houses the membrane element, and the membrane element.
  • An outer unit whose outer peripheral surface is close to the inner peripheral surface of the pressure vessel, a sensor for detecting the property of at least one of the filtration object and the permeate, and connected to the sensor, along the outer peripheral surface of the internal unit And a first conductive line provided in a shape.
  • the first conductive line connected to the sensor is provided in a shape along the outer peripheral surface of the internal unit, power supply and / or data communication from the outside via the first conductive line
  • the distance between the external device and the first conductive line can be made as short as possible. Accordingly, it is possible to satisfactorily supply power from the outside to the sensor or the like via the first conductive line, and it is possible to satisfactorily transmit an output signal from the sensor to the outside via the first conductive line.
  • electric power can be easily supplied to the electrical components arranged in the vicinity of the internal unit via the first conductive wire provided in the internal unit separate from the membrane element.
  • the sensor when the sensor is arranged in the pressure vessel as in the case where the sensor is provided in the internal unit, it is relatively difficult to perform power supply and / or data communication by wire, According to the present invention, power supply and / or data communication can be easily performed wirelessly via the first conductive line.
  • the first conductive wire can be easily provided as compared with the configuration in which the first conductive wire is provided in the membrane element. it can.
  • the first conductive wire is embedded in the internal unit, it is possible to reduce the chance that the first conductive wire comes into contact with the object to be filtered or the permeate than when the first conductive wire is provided in the membrane element. With this, the durability of the first conductive wire can be improved.
  • the membrane filtration device includes a second conductive wire provided in a shape along the outer peripheral surface of the pressure-resistant vessel at a position facing the first conductive wire in the pressure-resistant vessel. .
  • the first conductive wire provided in a shape along the outer peripheral surface of the internal unit in the pressure vessel, and the second conductive wire provided in a shape along the outer peripheral surface of the pressure vessel.
  • the second conductive line is provided at a position facing the first conductive line in the pressure vessel, the first conductive line and the second conductive line can be relatively close to each other. Therefore, even in an environment in which an object to be filtered such as raw water or a permeate such as permeate flows through the pressure vessel, power supply and / or data communication can be performed satisfactorily.
  • the membrane filtration device according to the present invention is characterized in that at least one of the first conductive wire and the second conductive wire is coiled.
  • power supply and / or data communication can be satisfactorily performed via the first conductive wire and the second conductive wire, at least one of which is coiled.
  • the membrane filtration device includes a power feeding device that wirelessly supplies power from the second conductive wire to the first conductive wire.
  • the membrane filtration device according to the present invention is provided so as to face the inner peripheral surface of the pressure vessel, and an internal communication device that wirelessly transmits data from the sensor, and the internal communication device outside the pressure vessel And an external communication device that is provided at an opposing position and receives data from the internal communication device.
  • the internal communication device is provided so as to face the inner peripheral surface of the pressure vessel, and the external communication device is provided at a position facing the internal communication device outside the pressure vessel.
  • the communication device and the external communication device can be relatively close to each other. Therefore, the data from the sensor can be satisfactorily transmitted even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel.
  • the frequency band for example, 2.4 GHz
  • the internal communication device and the external communication device do not necessarily have to be close to each other.
  • the membrane filtration device according to the present invention is provided outside the pressure vessel, and receives an external communication device wirelessly via the first conductive wire and the second conductive wire, and the power feeding device. And a modulation / demodulation device for modulating / demodulating a radio signal in different modes depending on whether power is supplied wirelessly and data communication is performed wirelessly by the external communication device.
  • the first conductive line and the second conductive line can be shared for power supply and data communication. Even in such a case, the power supply and the data communication are performed in order to modulate and demodulate the radio signal in different modes depending on whether the power is supplied wirelessly by the power supply device and the data communication is performed wirelessly by the external communication device. Can be performed satisfactorily.
  • the membrane filtration device according to the present invention is characterized in that the sensor is provided in the internal unit.
  • the wiring between the first conductive line and the sensor can be further shortened, so that power supply and / or Data communication and the like can be performed better.
  • the membrane filtration device according to the present invention is characterized in that the internal unit is detachable.
  • the first conductive wire is provided in the detachable internal unit, even if the membrane element is replaced, the internal unit attached to the old membrane element is replaced with the new membrane element.
  • the first conductive line can be reused by changing to. Further, since there is no need to change the membrane element, the conventional membrane element can be used as it is.
  • the senor includes a conductivity sensor for measuring the conductivity of the permeate, a flow sensor for measuring the flow rate of the permeate, and a pressure of the filtration object. At least one of the pressure sensors is included.
  • At least one of the conductivity sensor, the flow rate sensor, and the pressure sensor can be satisfactorily supplied with electric power via the first conductive wire, and an output signal can be output via the first conductive wire. Can be transmitted to the outside satisfactorily.
  • the distance between the external device and the first conductive line can be made as short as possible.
  • Power can be satisfactorily supplied from the outside to the sensor or the like via the conductive line, and an output signal from the sensor can be satisfactorily transmitted to the outside via the first conductive line.
  • a membrane filtration device is provided with a pressure vessel containing a membrane element, an internal unit provided as a separate body from the membrane element, an outer peripheral surface of which is close to an inner circumferential surface of the pressure vessel, and a filtration object And a sensor for detecting the property of at least one of the permeate, and a first conductive wire connected to the sensor and provided in a shape along the outer peripheral surface of the internal unit. Therefore, as an embodiment of the present invention, a configuration in which the second conductive line is provided in a shape along the outer peripheral surface of the pressure resistant container at a position facing the first conductive line in the pressure resistant container can be exemplified. It is not restricted to the structure provided with.
  • the pressure vessel can be exemplified by a cylindrical one, but is not limited to a cylindrical one. Therefore, the membrane element and the internal unit housed in the pressure vessel are not limited to those having a circular cross-sectional shape, and may have other cross-sectional shapes corresponding to the shape of the pressure vessel.
  • the conductive wire is not limited to a coil shape wound in a circular shape, but may have other shapes corresponding to the shape of the pressure vessel, or a shape that does not correspond to the shape of the pressure vessel. It may have.
  • liquid or gas can be exemplified.
  • liquid or gas can be exemplified in water treatment.
  • it is liquid.
  • sensors can be adopted as long as the sensor detects at least one property of the filtration object and the permeate. There may be one sensor or a plurality of sensors.
  • a spiral membrane element having a filtration membrane spirally wound around a central tube can be exemplified, but other membrane elements such as a membrane element having a hollow fiber structure (capillary structure) It may be.
  • it may be a membrane filter type membrane element as disclosed in Japanese Patent Application Laid-Open No. 2008-183561.
  • adjacent membrane elements may have their central tubes connected by an interconnector.
  • the conductive wire is provided in an internal unit that is separate from the membrane element.
  • the internal unit is not limited to a dedicated member, and a conventionally provided member such as a special adapter, a thrust ring, or a telescope prevention member can also be used.
  • the internal unit may be provided in the central tube or the interconnector, or may be provided separately from the central tube or the interconnector.
  • the internal unit may be provided between adjacent membrane elements, or provided on the side opposite to the adjacent membrane element with respect to the membrane element located at the end, that is, at the extreme end in the pressure vessel. Also good.
  • the internal unit may be provided between all adjacent membrane elements, or may be provided only between some membrane elements.
  • the internal unit may be provided detachably with respect to the membrane element, or may be integrally formed.
  • An external unit that wirelessly performs at least one of power supply and data communication with the internal unit may be provided outside the internal unit.
  • the external unit may have a structure formed integrally with the pressure vessel, for example, a movable and feeding type reader / writer, a seal type using an FPC (flexible printed circuit board), or the device and the FPC. It may be configured as a separate member such as a composite type. When the external unit is configured as a separate member from the pressure vessel, the external unit may be attached to the outer peripheral surface of the pressure vessel, or may be arranged away from the outer peripheral surface of the pressure vessel. Also good.
  • FIG. 1 is a schematic cross-sectional view showing an example of a membrane filtration device 50 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a part of the internal configuration of the membrane element 10 of FIG.
  • the membrane filtration device 50 is configured by arranging a plurality of membrane elements 10 in a straight line in the pressure vessel 40.
  • the configuration is not limited to a configuration in which a plurality of membrane elements 10 are provided in the pressure vessel 40, and may be a configuration in which only one membrane element 10 is provided.
  • the pressure vessel 40 is a resin cylinder called a vessel, and is formed of, for example, FRP (Fiberglass Reinforced Plastics).
  • FRP Fiberberglass Reinforced Plastics
  • the pressure vessel 40 is formed in a cylindrical shape.
  • a raw water inlet 48 into which raw water (filtered object) such as drainage and seawater flows is formed.
  • the raw water flowing from the raw water inlet 48 is filtered by the plurality of membrane elements 10. By doing so, purified permeated water (permeate) and concentrated water (concentrated liquid) that is raw water after filtration are obtained.
  • a permeate outlet 46 through which permeate flows out and a concentrated water outlet 44 through which concentrated water flows out are formed.
  • the membrane element 10 is spirally wound around the central tube 20 in a state in which the filtration membrane 12, the supply-side channel material 18, and the permeation-side channel material 14 are laminated.
  • RO Reverse Osmosis
  • Filtration membranes 12 having the same rectangular shape are superposed on both sides of a rectangular permeation-side flow path material 14 made of a resin-made net-like member, and the three sides are bonded to each other so that an opening is formed on one side.
  • a bag-like film member 16 having the above is formed. And the opening part of this membrane member 16 is attached to the outer peripheral surface of the center pipe
  • the filtration membrane 12 is formed, for example, by sequentially laminating a porous support and a skin layer (dense layer) on a nonwoven fabric layer.
  • the raw water passes through the membrane element 10 through the raw water flow path formed by the supply-side flow path material 18 that functions as a raw water spacer. To do. At that time, the raw water is filtered by the filtration membrane 12, and the permeated water filtered from the raw water penetrates into the permeated water flow path formed by the permeate side flow path material 14 functioning as a permeated water spacer.
  • the permeated water that has permeated into the permeated water flow path flows to the central tube 20 side through the permeated water flow path, and the central tube is formed from a plurality of water passage holes (not shown) formed on the outer peripheral surface of the central tube 20. 20 is led.
  • the permeated water flows out from the other end side of the membrane element 10 through the central tube 20, and the concentrated water flows out through the raw water flow path formed by the supply side flow path material 18.
  • the central tubes 20 of the adjacent membrane elements 10 are connected by a tubular interconnector (connecting portion) 42. Therefore, the raw water flowing in from the raw water inlet 48 flows into the raw water flow path in order from the membrane element 10 on the raw water inlet 48 side, and the permeated water filtered from the raw water in each membrane element 10 is connected by the interconnector 42.
  • the permeated water outlet 46 flows out through the single central pipe 20.
  • the concentrated water that is filtered and concentrated by passing through the raw water flow path of each membrane element 10 flows out from the concentrated water outlet 44.
  • the internal unit 100 is provided as a separate body from the membrane element 10.
  • the internal unit 100 has a shape in which the outer peripheral surface thereof corresponds to the outer peripheral surface of the membrane element 10, and the outer peripheral surface of the internal unit 100 is opposed to the inner peripheral surface of the pressure vessel 40.
  • the distance between the outer peripheral surface of the internal unit 100 and the inner peripheral surface of the pressure vessel 40, that is, the thickness of the liquid (raw water in this example) existing between the outer peripheral surface of the internal unit 100 and the inner peripheral surface of the pressure vessel 40 is It is preferably within 10 cm. In this case, the distance between the first conductive wire 102 and / or the antenna 103A, which will be described later, and the inner peripheral surface of the pressure vessel 40 does not necessarily have to be within 10 cm.
  • the internal unit 100 is attached to the interconnector 42.
  • the interconnector 42 can be attached to and detached from the central tube 20 of each membrane element 10, whereby the internal unit 100 can be attached and detached.
  • the external unit 200 is provided at a position facing the internal unit 100 outside the pressure vessel 40.
  • the external unit 200 is for performing power supply and data communication wirelessly with the internal unit 100, and is formed integrally with the pressure vessel 40 in this example.
  • FIG. 3A and 3B are diagrams showing a configuration example of the internal unit 100, where FIG. 3A is a cross-sectional view and FIG. 3B is a front view. However, in FIG.3 (b), the internal structure of the internal unit 100 is shown with the continuous line instead of the broken line.
  • the internal unit 100 includes a main body 101, a first conductive wire 102 held by the main body 101, an internal communication device 103, a plurality of sensors 104, 105, 106, and an IC chip 107.
  • the main body 101 has a configuration in which a first annular portion 111 and a second annular portion 112 having a smaller diameter than the first annular portion 111 are connected through a rib 113 so as to be integrally formed. Yes.
  • the main body 101 is formed of resin, but may be formed of other materials.
  • the first annular portion 111 has an outer diameter that is substantially the same as the outer diameter of the membrane element 10, and is disposed so that its outer peripheral surface is close to and faces the inner peripheral surface of the pressure vessel 40.
  • the internal peripheral surface comprises the flow path of permeated water.
  • the rib 113 is a member that connects the inner peripheral surface of the first annular portion 111 and the outer peripheral surface of the second annular portion 112, and a plurality of ribs 113 are preferably provided.
  • the main body 101 is not limited to the shape as described above, and may be another shape such as a disk shape.
  • the first conductive wire 102 is a coiled conductive wire formed by winding a conductive wire, and is attached to the first annular portion 111 of the main body 101.
  • the first conductive wire 102 is provided in a shape (state) along the outer peripheral surface of the first annular portion 111 inside the first annular portion 111.
  • the first conductive wire 102 is provided so as to face the inner peripheral surface of the pressure resistant container 40 in the vicinity thereof.
  • the first conductive wire 102 may be provided outside the internal unit 100 or may be provided inside.
  • the distance between the first conductive wire 102 and the inner peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves to and from the outside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm.
  • the cross-sectional area of the thickness of the 1st conductive wire 102 is 5 mm ⁇ 2 > or more from a viewpoint of the sensitivity of transmission / reception.
  • the thickness of the first conductive wire 102 is preferably increased as the diameter of the membrane element 10 increases.
  • the first conductive wire 102 may be made thicker when the membrane element 10 having an outer diameter of 16 inches is used than when the membrane element 10 having an outer diameter of 8 inches is used.
  • a copper wire having a diameter of 1.2 mm or more, for example, a diameter of 2 mm or 3 mm can be used.
  • the material of the first conductive wire 102 is not limited to copper, but may be gold, silver, an aluminum conductor, or the like.
  • the first conductive wire 102 may have a circular cross-sectional shape, or may have another shape such as a flat plate shape.
  • the coil formed by the first conductive wire 102 increases the magnetic flux density and facilitates power transmission as the number of turns increases.
  • the first conductive wire 102 is thick, it is difficult to increase the number of turns. It is preferable to set an appropriate number of turns in relation to the thickness of one conductive wire 102. However, the number of turns may be constant regardless of the diameter of the membrane element 10.
  • the internal communication device 103 is attached to the first annular portion 111 of the main body 101.
  • the internal communication device 103 includes an antenna 103A, and can transmit and receive data via the antenna 103A.
  • the internal communication device 103 may be configured to include RFID (Radio Frequency Identification).
  • the internal communication device 103 can wirelessly transmit output signals of sensors 104, 105, and 106 described later from the antenna 103A.
  • the antenna 103A is provided so as to face and face the inner peripheral surface of the pressure vessel 40.
  • the distance between the antenna 103A of the internal communication device 103 and the inner peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves to and from the outside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm.
  • the conductivity sensor 104 and the flow rate sensor 105 are sensors that are attached to the second annular portion 112 of the main body 101 and detect the properties of the permeated water flowing inside the second annular portion 112.
  • the conductivity sensor 104 is a sensor that detects the conductivity of the permeated water
  • the flow rate sensor 105 is a sensor that detects the flow rate of the permeated water.
  • the pressure sensor 106 is a sensor that is attached to the rib 113 of the main body 101 and detects the property of raw water.
  • the pressure sensor 106 is a sensor that detects the pressure of raw water, and can be configured by, for example, a piezoelectric element or a strain gauge.
  • the configuration of the liquid flowing in the pressure vessel 40 is not limited to this configuration. If it is a sensor which detects this, various sensors, such as a well-known physical sensor, a chemical sensor, and a smart sensor (sensor with an information processing function), can be provided in the internal unit 100 according to the characteristic. However, it is preferable that at least one of the conductivity sensor 104, the flow sensor 105, and the pressure sensor 106 is provided in the internal unit 100. Examples of the properties of the liquid detected by the sensor provided in the internal unit 100 include flow rate, pressure, conductivity, temperature, and contamination status (ion concentration, etc.).
  • the IC chip 107 is a microcomputer that controls power control, sensor control, communication control, and the like for each of the electrical components described above provided in the internal unit 100.
  • the IC chip 107 may be configured by a plurality of chips, or may be configured as a single chip.
  • the electrical components held by the main body 101 of the internal unit 100 as described above, that is, the first conductive wire 102, the internal communication device 103, the plurality of sensors 104, 105, 106, and the IC chip 107 are embedded in the main body 101, respectively.
  • the periphery is covered with resin.
  • the wiring for electrically connecting the components as described above is also embedded in the main body 101 so that the periphery is covered with resin.
  • corrosion and damage of each component can be suppressed by seawater, wastewater, acid, alkali used at the time of washing, or the like.
  • the other part excluding the detection part is embedded in the main body 101.
  • the membrane element 10 is replaced. However, by replacing the internal unit 100 attached to the old membrane element 10 with the new membrane element 10, these electrical components can be reused. In addition, since it is not necessary to change the membrane element 10, the conventional membrane element 10 can be used as it is.
  • FIG. 4 is a schematic cross-sectional view showing the internal configuration of the membrane filtration device 50.
  • the internal configuration of the internal unit 100 is indicated by a solid line instead of a broken line.
  • the external unit 200 provided outside the pressure vessel 40 includes a second conductive wire 201, an external communication device 202, and an IC chip 203.
  • the second conductive wire 201 is a coiled conductive wire formed by winding the conductive wire, and has a shape (state) along the outer peripheral surface of the pressure-resistant container 40 at a position facing the first conductive wire 102. ).
  • the second conductive wire 201 may be in contact with the outer peripheral surface of the pressure-resistant container 40 or may be separated from the outer peripheral surface of the pressure-resistant container 40 when adopting a separated configuration. It is preferable that they face each other in close proximity.
  • the second conductive line 201 may be embedded in a material (for example, a resin material) constituting the pressure resistant container 40.
  • the set of the first conductive line 102 and the second conductive line 201 facing each other is not limited to one set, and a plurality of sets may be provided, and the same effect can be obtained by providing a plurality of sets.
  • the distance between the second conductive wire 201 and the outer peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves between the inside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm. Moreover, it is preferable that the cross-sectional area of the thickness of the 2nd conductive wire 201 is 5 mm ⁇ 2 > or more from a viewpoint of the sensitivity of transmission / reception. When the diameter of the membrane element 10 increases, the conductor resistance of the second conductive wire 201 increases. Therefore, the thickness of the second conductive wire 201 is preferably increased as the diameter of the membrane element 10 increases.
  • the second conductive wire 201 may be made thicker when the membrane element 10 having an outer diameter of 16 inches is used than when the membrane element 10 having an outer diameter of 8 inches is used.
  • the pressure vessel 40 accommodating the membrane element 10 having an outer diameter of 8 inches has an outer diameter of, for example, about 24.1 cm and an outer periphery of, for example, about 75.77 cm.
  • the pressure vessel 40 that houses the membrane element 10 having an outer diameter of 16 inches has an outer diameter of, for example, about 44.6 cm and an outer periphery of, for example, about 140.1 cm.
  • a copper wire having a diameter of 1.2 mm or more, for example, a diameter of 2 mm or 3 mm can be used.
  • the material of the second conductive wire 201 is not limited to copper, but may be gold, silver, an aluminum conductor, or the like.
  • the second conductive wire 201 may have a circular cross-sectional shape, or may have another shape such as a flat plate shape.
  • the coil formed by the second conductive wire 201 increases the magnetic flux density and facilitates power transmission as the number of turns increases.
  • the second conductive wire 201 is thick, it is difficult to increase the number of turns. It is preferable that the number of windings is appropriate in relation to the thickness of the two conductive wires 201. However, the number of turns may be constant regardless of the diameter of the membrane element 10.
  • the external communication device 202 is provided at a position facing the internal communication device 103 outside the pressure vessel 40.
  • the external communication device 202 functions as a relay device that receives data from the internal communication device 103 and transmits the received data to a management device or the like wirelessly.
  • Data communication between the internal communication device 103 and the external communication device 202 is performed by transmitting and receiving radio waves in a frequency band of 2.4 GHz, for example.
  • the IC chip 203 constitutes a power feeding device that wirelessly supplies power from the second conductive line 201 to the first conductive line 102.
  • the IC chip 203 includes an oscillation circuit and an amplification circuit, and performs power supply by transmitting radio waves from the second conductive line 201 to the first conductive line 102 in a frequency band of 13.56 MHz, for example.
  • the IC chip 203 may be formed integrally with the external communication device 202.
  • the pressure vessel 40 is preferably made of non-metal, and is made of resin. More preferred.
  • the power supplied wirelessly from the second conductive line 201 to the first conductive line 102 is supplied to the sensors 104, 105, 106, etc. via the wiring.
  • the sensors 104, 105, and 106 are activated only when power is supplied, and after data is transmitted from the sensors 104, 105, and 106 to the internal communication device 103, the sensors 104, 105, and 106 are inactivated again.
  • Data obtained by operating the sensors 104, 105, 106 by supplying power is immediately transmitted from the internal communication device 103 to the external communication device 202, and the external communication device 202 is used as a relay device to the management device. Aggregated.
  • the operation time (measurement time) of each sensor 104, 105, 106 is preferably set to a time that is different between when the membrane element 10 is immediately loaded or when it is restarted after being stopped and during steady operation.
  • the acquired raw data information that has been digitally converted. Is transmitted to the outside of the pressure vessel 40 as it is, and calculation is preferably performed by a management device or the like.
  • the power supply to each electrical component provided in the external unit 200 may be performed wirelessly or may be configured wiredly.
  • the first conductive wire 102 connected to the sensors 104, 105, 106 is provided in a shape along the outer peripheral surface of the internal unit 100, power is supplied from the outside via the first conductive wire 102.
  • the distance between the external device and the first conductive line 102 can be made as short as possible. Therefore, it is possible to satisfactorily supply power from the outside to the sensors 104, 105, 106, etc. via the first conductive wire 102, and output signals from the sensors 104, 105, 106 via the first conductive wire 102. Can be transmitted to the outside satisfactorily.
  • electric power can be easily supplied to the electrical components arranged in the vicinity of the internal unit 100 via the first conductive wire 102 provided in the internal unit 100 which is a separate body from the membrane element 10. Can do.
  • the sensors 104, 105, and 106 are disposed in the pressure resistant container 40 as in the case where the sensors 104, 105, and 106 are provided in the internal unit 100, power supply and / or data is wired.
  • power supply and / or data communication can be easily performed wirelessly via the first conductive line 102.
  • the first conductive wire 102 is compared with a configuration in which the first conductive wire 102 is provided in the membrane element 10. Can be easily provided.
  • the first conductive wire 102 may be filtered (raw water) or less than the first conductive wire 102 provided in the membrane element 10. It is possible to reduce the chance of contact with the permeate (permeated water), whereby the durability of the first conductive wire 102 can be improved.
  • the first conductive line 102 and the sensors 104, 105, 106 are both provided in the internal unit 100, thereby shortening the wiring between the first conductive line 102 and the sensors 104, 105, 106. Therefore, power supply and / or data communication can be performed better.
  • the first conductive wire 102 provided in a shape along the outer peripheral surface of the internal unit 100 in the pressure vessel 40 and the second conductive provided in a shape along the outer peripheral surface of the pressure vessel 40 are provided. Power supply and / or data communication can be performed satisfactorily through the line 201.
  • the second conductive line 201 is provided at a position facing the first conductive line 102 in the pressure vessel 40, the first conductive line 102 and the second conductive line 201 can be relatively close to each other. Therefore, even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel 40, power supply and / or data communication can be performed satisfactorily.
  • the internal communication device 103 is provided so as to face the inner peripheral surface of the pressure vessel 40, and the external communication device 202 is provided at a position facing the internal communication device 103 outside the pressure vessel 40. Therefore, the internal communication device 103 and the external communication device 202 can be relatively close to each other. Therefore, the data from the sensors 104, 105, and 106 can be transmitted satisfactorily even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel 40. . Further, by supplying power wirelessly from the second conductive line 201 to the first conductive line 102, the sensors 104, 105, 106, and the like are provided in the pressure resistant container 40 as in the present embodiment, for example. Even if it is a structure, the electric power supply to the said sensor 104,105,106 etc. can be performed easily.
  • FIG. 5 is a view showing a configuration example of the internal unit 100 provided in the membrane filtration device 50 according to the second embodiment of the present invention, where (a) is a sectional view and (b) is a front view. ing. However, in FIG.5 (b), the internal structure of the internal unit 100 is shown with the continuous line instead of the broken line. Only the configuration different from the first embodiment will be described below.
  • the internal unit 100 includes a main body 101, a first conductive wire 102, a plurality of sensors 104, 105, and 106 and an IC chip 107 that are respectively held by the main body 101. As shown in the first embodiment. Unlike the configuration described above, the internal communication device 103 is not provided.
  • the IC chip 107 is provided with a modulation / demodulation circuit 108.
  • the modulation / demodulation circuit 108 is a modulation / demodulation device for modulating a radio signal transmitted through the first conductive line 102 and demodulating a radio signal received through the first conductive line 102.
  • the modulation / demodulation circuit 108 is not limited to the configuration formed integrally with the IC chip 107, and may be a configuration provided separately from the IC chip 107.
  • FIG. 6 is a schematic cross-sectional view showing the internal configuration of the membrane filtration device 50 according to the second embodiment of the present invention.
  • the internal configuration of the internal unit 100 is indicated by a solid line instead of a broken line.
  • the external unit 200 provided outside the pressure vessel 40 includes a second conductive line 201, an external communication device 202, and an IC chip 203.
  • the IC chip 203 is provided with a modulation / demodulation circuit 204.
  • the modulation / demodulation circuit 204 is a modulation / demodulation device for modulating a radio signal transmitted through the second conductive line 201 and demodulating a radio signal received through the second conductive line 201.
  • the modulation / demodulation circuit 204 is not limited to the configuration formed integrally with the IC chip 203, and may be a configuration provided separately from the IC chip 203.
  • the output signals of the sensors 104, 105, and 106 are modulated by the modulation / demodulation circuit 108 and transmitted wirelessly from the first conductive line 102. Demodulated.
  • the signal demodulated by the modulation / demodulation circuit 204 is received by the external communication device 202 functioning as a repeater and transmitted wirelessly to a management device or the like.
  • the modem circuit 204 when power is supplied wirelessly from the IC chip 203 via the second conductive line 201 and the first conductive line 102, it is modulated by the modem circuit 204 and is modulated from the second conductive line 201 to the first conductive line.
  • a signal transmitted wirelessly to 102 is demodulated by the modem circuit 108.
  • the electric power supplied wirelessly from the second conductive line 201 to the first conductive line 102 is supplied to the sensors 104, 105, 106, etc. via the wiring.
  • the sensors 104, 105, and 106 are activated only when power is supplied. After data is transmitted from the sensors 104, 105, and 106 via the first conductive line 102 and the second conductive line 201, the sensors 104, 105, and 106 are not activated again. It becomes a state.
  • the second conductive line 201 and the first conductive line 102 are both used when supplying power wirelessly by the IC chip 203 and when receiving data wirelessly by the external communication device 202.
  • the wireless signal is transmitted and received through the second conductive line 201, and the second conductive line 201 and the first conductive line 102 can be shared for power supply and data communication.
  • the frequency band of radio waves when power supply and data communication are performed via the second conductive line 201 and the first conductive line 102 is, for example, 13.56 MHz.
  • Power supply and data communication can be performed satisfactorily by modulating and demodulating a radio signal in different modes when performing data communication.
  • at least one of the amplitude, frequency, and phase of the wireless signal is set to a different value depending on whether the power is supplied wirelessly by the IC chip 203 or the data communication is performed wirelessly by the external communication device 202. It may be a simple configuration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Disclosed is a membrane filtration device capable of successfully performing power supply to a sensor or the like. An internal unit (100), the outer peripheral surface of which is close to the inner peripheral surface of a pressure-resistant container (40) is provided separately from a membrane element (10). A first conductive line (102) is provided in a shape along the outer peripheral surface of the internal unit (100), and the first conductive line (102) is connected to sensors (104, 105, 106) which detect properties of either an object to be filtrated and/or a permeation material. As a result, when power supply and/or data communication is performed from outside via the first conductive line (102), the distance between an external device and the first conductive line (102) can be reduced as much as possible, so that the power supply to the sensors (104, 105, 106) or the like can be successfully performed from the outside via the first conductive line (102), and also the output signals from the sensors (104, 105, 106) can be successfully transmitted to the outside via the first conductive line (102).

Description

膜濾過装置Membrane filtration device
 本発明は、濾過膜で濾過対象物を濾過することにより透過物を生成する膜濾過装置に関するものである。 The present invention relates to a membrane filtration device that generates a permeate by filtering an object to be filtered with a filtration membrane.
 耐圧容器内に複数の膜エレメントを一直線上に並べて配置することにより構成された膜濾過装置が知られている(例えば、下記特許文献1参照)。この種の膜濾過装置は、一般的に、排水や海水などの原水(濾過対象物)を濾過して、浄化された透過水(透過物)を得るために用いられる。特に大型のプラントなどでは、多数本の膜濾過装置がトレーンと呼ばれるラックで保持されることにより、トレーンごとに処理特性(圧力、透過水の水質及び水量など)の管理が行われている。 A membrane filtration device configured by arranging a plurality of membrane elements in a straight line in a pressure vessel is known (for example, see Patent Document 1 below). This type of membrane filtration device is generally used to obtain purified permeated water (permeate) by filtering raw water (filtered object) such as waste water or seawater. In particular, in a large plant or the like, a large number of membrane filtration devices are held in a rack called a train, so that processing characteristics (pressure, quality of permeated water, amount of water, etc.) are managed for each train.
 しかしながら、上記のようにトレーンごとに処理特性の管理を行う場合には、トレーンにより保持されている多数本の膜濾過装置のうち、一部の膜濾過装置における膜エレメント又は連結部にのみ不具合がある場合に、その不具合箇所を特定することが困難であり、当該特定作業に多大な労力がかかるという問題があった。 However, when processing characteristics are managed for each train as described above, only a membrane element or a connection part in some membrane filtration devices out of a large number of membrane filtration devices held by the train has a problem. In some cases, it is difficult to identify the defective portion, and there is a problem that a great deal of labor is required for the identification work.
 また、上記のように複数の膜エレメントを備えた膜濾過装置がトレーンにより多数本保持された構成では、トレーンにおける各膜濾過装置の位置、又は、各膜濾過装置内における各膜エレメントの位置に応じて、濾過膜の汚染具合及び当該濾過膜により原水が濾過される際の負荷が異なる。そのため、膜エレメントを交換する際には、新しい膜エレメントと、まだ使用可能な膜エレメントを適宜に組み合わせて耐圧容器内に収容することにより、最終的にトレーン全体で最適な処理性能を発揮できるように、各膜エレメントの配置及び組み合わせの最適化を行っている。しかしながら、現状では、使用期間のみに基づいて最適化を行っている場合が多いため、十分に最適化が行われているとは言えない。 Moreover, in the configuration in which a large number of membrane filtration devices each having a plurality of membrane elements are held by a train as described above, the position of each membrane filtration device in the train or the position of each membrane element in each membrane filtration device Accordingly, the degree of contamination of the filtration membrane and the load when raw water is filtered by the filtration membrane are different. Therefore, when replacing a membrane element, a new membrane element and a membrane element that can still be used are appropriately combined and housed in a pressure-resistant vessel so that the optimum performance of the entire train can be finally achieved. In addition, the arrangement and combination of each membrane element is optimized. However, at present, since there are many cases where optimization is performed based only on the period of use, it cannot be said that the optimization is sufficiently performed.
 上記のような問題に対し、特許文献1に開示されているような技術を用いれば、膜エレメントごとに、その膜エレメントに備えられた無線タグ(RFIDタグ)に上記処理特性に関するデータを予め格納しておき、各無線タグからデータを読み出すことにより、膜エレメントごとに上記処理特性の管理を行うことが可能である。しかし、このような無線タグに予め格納されているデータのみに基づいて管理を行う場合であっても、各膜エレメントの状態は時々刻々と変化するため、管理の精度が十分であるとは言えず、各膜エレメントの状態をリアルタイムで検知することができれば、より精度よく管理を行うことが可能である。 If the technique disclosed in Patent Document 1 is used to solve the above-described problems, data relating to the processing characteristics is stored in advance in each wireless element (RFID tag) provided in the membrane element. In addition, the processing characteristics can be managed for each membrane element by reading data from each wireless tag. However, even if management is performed based only on data stored in advance in such a wireless tag, the state of each membrane element changes from moment to moment, so it can be said that the management accuracy is sufficient. If the state of each membrane element can be detected in real time, management can be performed with higher accuracy.
 下記特許文献2には、運転性能に関するデータを収集するために、複数の膜エレメントに対して、流量センサ、電導度センサ等を設ける点が記載されている。この特許文献2に開示されている構成では、各種センサから収集されたデータがRFIDに一旦格納され、そのデータが読み出されるようになっているが、この場合、データの演算や記憶、さらには各種センサを動作させるために十分な電力を確保する必要がある。 The following Patent Document 2 describes that a flow sensor, an electrical conductivity sensor, and the like are provided for a plurality of membrane elements in order to collect data relating to operation performance. In the configuration disclosed in Patent Document 2, data collected from various sensors is temporarily stored in the RFID, and the data is read out. In this case, data calculation and storage, and further It is necessary to secure sufficient power to operate the sensor.
 しかし、原水などの濾過対象物や透過水などの透過物が流れる膜濾過装置内への電力供給は、配線の引き回しが比較的難しいという問題がある。特に、複数の膜エレメントが耐圧容器内に一直線上に並べて配置された構成の場合、耐圧容器の両端部に設けられた膜エレメント以外の膜エレメントについては、その膜エレメントに対応付けられたセンサなどが耐圧容器内の中央寄りに設けられるため、電力の供給がより困難になる。このような問題は、配線を介して膜濾過装置内のセンサからのデータを外部に送信する際にも、同様に生じる問題である。 However, there is a problem that it is relatively difficult to supply power to the membrane filtration apparatus through which permeate such as raw water or permeate such as raw water flows. In particular, in the case of a configuration in which a plurality of membrane elements are arranged in a straight line in a pressure vessel, for membrane elements other than the membrane elements provided at both ends of the pressure vessel, sensors associated with the membrane elements, etc. Is provided closer to the center of the pressure vessel, it becomes more difficult to supply power. Such a problem is a problem that also occurs when data from a sensor in the membrane filtration device is transmitted to the outside via a wiring.
 下記特許文献3には、複数のろ過モジュール内に、それぞれろ過膜の破断、破損を検出するためのセンサが組み込まれた構成が記載されている。 Patent Document 3 below describes a configuration in which sensors for detecting breakage and breakage of a filtration membrane are incorporated in a plurality of filtration modules, respectively.
 下記特許文献4には、読み取り手段によって読み取り可能な情報を記憶する記憶装置を備えた電子ラベルを含むフィルタと、ろ過装置との組立体が記載されている。 The following Patent Document 4 describes an assembly of a filter including an electronic label provided with a storage device that stores information that can be read by a reading means, and a filtration device.
 下記特許文献5には、交換部材に特有のデータを当該交換部材に設けられたメモリに保存し、そのデータを読み取り装置で読み込むことができるような構成が記載されている。 Patent Document 5 listed below describes a configuration in which data unique to an exchange member is stored in a memory provided in the exchange member, and the data can be read by a reading device.
特表2007-527318号公報Special table 2007-527318 国際公開第2007/030647号パンフレットInternational Publication No. 2007/030647 Pamphlet 特開2008-80254号公報JP 2008-80254 A 特表平9-500816号公報Japanese National Patent Publication No. 9-500816 特表2003-519880号公報Special table 2003-519880 gazette
 本発明は、上記実情に鑑みてなされたものであり、センサなどへの電力供給を良好に行うことができる膜濾過装置を提供することを目的とする。また、本発明は、センサからのデータを良好に送信することができる膜濾過装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a membrane filtration device that can satisfactorily supply power to a sensor or the like. Another object of the present invention is to provide a membrane filtration device that can satisfactorily transmit data from a sensor.
 本発明に係る膜濾過装置は、濾過膜で濾過対象物を濾過することにより透過物を生成する膜エレメントと、前記膜エレメントを収容する耐圧容器と、前記膜エレメントとは別体として設けられ、その外周面が前記耐圧容器の内周面に近接する内部ユニットと、濾過対象物及び透過物の少なくとも一方の性状を検知するセンサと、前記センサに接続され、前記内部ユニットの外周面に沿った形状で設けられた第1導電線とを備えたことを特徴とする。 A membrane filtration device according to the present invention is provided as a separate body from a membrane element that generates a permeate by filtering an object to be filtered with a filtration membrane, a pressure-resistant container that houses the membrane element, and the membrane element. An outer unit whose outer peripheral surface is close to the inner peripheral surface of the pressure vessel, a sensor for detecting the property of at least one of the filtration object and the permeate, and connected to the sensor, along the outer peripheral surface of the internal unit And a first conductive line provided in a shape.
 このような構成によれば、センサに接続された第1導電線が内部ユニットの外周面に沿った形状で設けられているので、外部から第1導電線を介して電力供給及び/又はデータ通信などを行う場合に、外部の装置と第1導電線との距離をできるだけ短くすることができる。したがって、第1導電線を介して外部からセンサなどへの電力供給を良好に行うことができるとともに、第1導電線を介してセンサからの出力信号を外部へ良好に送信することができる。 According to such a configuration, since the first conductive line connected to the sensor is provided in a shape along the outer peripheral surface of the internal unit, power supply and / or data communication from the outside via the first conductive line For example, the distance between the external device and the first conductive line can be made as short as possible. Accordingly, it is possible to satisfactorily supply power from the outside to the sensor or the like via the first conductive line, and it is possible to satisfactorily transmit an output signal from the sensor to the outside via the first conductive line.
 また、膜エレメントとは別体である内部ユニットに設けられた第1導電線を介して、当該内部ユニットの近傍に配置されている電気部品に対して容易に電力を供給することができる。例えば、センサが内部ユニットに設けられている場合のように、センサが耐圧容器内に配置されている場合には、有線で電力供給及び/又はデータ通信を行うことは比較的困難であるが、本発明によれば、第1導電線を介して無線で容易に電力供給及び/又はデータ通信を行うことができる。 Moreover, electric power can be easily supplied to the electrical components arranged in the vicinity of the internal unit via the first conductive wire provided in the internal unit separate from the membrane element. For example, when the sensor is arranged in the pressure vessel as in the case where the sensor is provided in the internal unit, it is relatively difficult to perform power supply and / or data communication by wire, According to the present invention, power supply and / or data communication can be easily performed wirelessly via the first conductive line.
 さらに、膜エレメントとは別個に設けられた内部ユニットに第1導電線を設けることにより、膜エレメントに第1導電線を設けるような構成と比較して、第1導電線を容易に設けることができる。また、内部ユニットに第1導電線を埋設するなどすれば、膜エレメントに第1導電線を設ける場合よりも、第1導電線が濾過対象物や透過物と接触する機会を減らすことが可能であり、これにより第1導電線の耐久性を向上することができる。 Furthermore, by providing the first conductive wire in the internal unit provided separately from the membrane element, the first conductive wire can be easily provided as compared with the configuration in which the first conductive wire is provided in the membrane element. it can. In addition, if the first conductive wire is embedded in the internal unit, it is possible to reduce the chance that the first conductive wire comes into contact with the object to be filtered or the permeate than when the first conductive wire is provided in the membrane element. With this, the durability of the first conductive wire can be improved.
 本発明に係る膜濾過装置は、前記耐圧容器における前記第1導電線に対向する位置に、前記耐圧容器の外周面に沿った形状で設けられた第2導電線を備えたことを特徴とする。 The membrane filtration device according to the present invention includes a second conductive wire provided in a shape along the outer peripheral surface of the pressure-resistant vessel at a position facing the first conductive wire in the pressure-resistant vessel. .
 このような構成によれば、耐圧容器内の内部ユニットの外周面に沿った形状で設けられた第1導電線と、耐圧容器の外周面に沿った形状で設けられた第2導電線とを介して、電力供給及び/又はデータ通信などを良好に行うことができる。 According to such a configuration, the first conductive wire provided in a shape along the outer peripheral surface of the internal unit in the pressure vessel, and the second conductive wire provided in a shape along the outer peripheral surface of the pressure vessel. Thus, power supply and / or data communication can be performed satisfactorily.
 特に、耐圧容器における第1導電線に対向する位置に第2導電線が設けられているので、第1導電線と第2導電線を比較的近接させることができる。したがって、原水などの濾過対象物や透過水などの透過物が耐圧容器内を流れているような環境下であっても、電力供給及び/又はデータ通信などを良好に行うことができる。 In particular, since the second conductive line is provided at a position facing the first conductive line in the pressure vessel, the first conductive line and the second conductive line can be relatively close to each other. Therefore, even in an environment in which an object to be filtered such as raw water or a permeate such as permeate flows through the pressure vessel, power supply and / or data communication can be performed satisfactorily.
 本発明に係る膜濾過装置は、前記第1導電線及び前記第2導電線の少なくとも一方が、コイル状であることを特徴とする。 The membrane filtration device according to the present invention is characterized in that at least one of the first conductive wire and the second conductive wire is coiled.
 このような構成によれば、少なくとも一方がコイル状である第1導電線及び第2導電線を介して、電力供給及び/又はデータ通信などを良好に行うことができる。 According to such a configuration, power supply and / or data communication can be satisfactorily performed via the first conductive wire and the second conductive wire, at least one of which is coiled.
 本発明に係る膜濾過装置は、前記第2導電線から前記第1導電線へと無線で電力を供給する給電装置を備えたことを特徴とする。 The membrane filtration device according to the present invention includes a power feeding device that wirelessly supplies power from the second conductive wire to the first conductive wire.
 このような構成によれば、第2導電線から第1導電線へと無線で電力を供給することにより、例えばセンサなどが耐圧容器内に設けられているような構成であっても、当該センサなどへの電力供給を容易に行うことができる。 According to such a structure, even if it is a structure where a sensor etc. are provided in a pressure-resistant container by supplying electric power wirelessly from the 2nd conductive line to the 1st conductive line, the sensor concerned Etc. can be easily supplied with power.
 本発明に係る膜濾過装置は、前記耐圧容器の内周面に対向するように設けられ、前記センサからのデータを無線で送信する内部通信装置と、前記耐圧容器の外部における前記内部通信装置に対向する位置に設けられ、前記内部通信装置からのデータを受信する外部通信装置とを備えたことを特徴とする。 The membrane filtration device according to the present invention is provided so as to face the inner peripheral surface of the pressure vessel, and an internal communication device that wirelessly transmits data from the sensor, and the internal communication device outside the pressure vessel And an external communication device that is provided at an opposing position and receives data from the internal communication device.
 このような構成によれば、耐圧容器の内周面に対向するように内部通信装置が設けられ、耐圧容器の外部における内部通信装置に対向する位置に外部通信装置が設けられているので、内部通信装置と外部通信装置を比較的近接させることができる。したがって、原水などの濾過対象物や透過水などの透過物が耐圧容器内を流れているような環境下であっても、センサからのデータを良好に送信することができる。ただし、周波数帯(例えば2.4GHz)によっては、必ずしも内部通信装置と外部通信装置を近接させる必要はない。 According to such a configuration, the internal communication device is provided so as to face the inner peripheral surface of the pressure vessel, and the external communication device is provided at a position facing the internal communication device outside the pressure vessel. The communication device and the external communication device can be relatively close to each other. Therefore, the data from the sensor can be satisfactorily transmitted even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel. However, depending on the frequency band (for example, 2.4 GHz), the internal communication device and the external communication device do not necessarily have to be close to each other.
 本発明に係る膜濾過装置は、前記耐圧容器の外部に設けられ、前記第1導電線及び前記第2導電線を介して前記センサからのデータを無線で受信する外部通信装置と、前記給電装置により無線で電力を供給する場合と、前記外部通信装置により無線でデータ通信を行う場合とで、無線信号を異なる態様で変復調するための変復調装置とを備えたことを特徴とする。 The membrane filtration device according to the present invention is provided outside the pressure vessel, and receives an external communication device wirelessly via the first conductive wire and the second conductive wire, and the power feeding device. And a modulation / demodulation device for modulating / demodulating a radio signal in different modes depending on whether power is supplied wirelessly and data communication is performed wirelessly by the external communication device.
 このような構成によれば、第1導電線及び第2導電線を電力供給とデータ通信とに共用することができる。このような場合であっても、給電装置により無線で電力を供給する場合と、外部通信装置により無線でデータ通信を行う場合とで、無線信号を異なる態様で変復調するため、電力供給及びデータ通信を良好に行うことができる。 According to such a configuration, the first conductive line and the second conductive line can be shared for power supply and data communication. Even in such a case, the power supply and the data communication are performed in order to modulate and demodulate the radio signal in different modes depending on whether the power is supplied wirelessly by the power supply device and the data communication is performed wirelessly by the external communication device. Can be performed satisfactorily.
 本発明に係る膜濾過装置は、前記センサが、前記内部ユニットに設けられていることを特徴とする。 The membrane filtration device according to the present invention is characterized in that the sensor is provided in the internal unit.
 このような構成によれば、第1導電線及びセンサがいずれも内部ユニットに設けられることにより、第1導電線とセンサとの間の配線をより短くすることができるので、電力供給及び/又はデータ通信などをより良好に行うことができる。 According to such a configuration, since the first conductive line and the sensor are both provided in the internal unit, the wiring between the first conductive line and the sensor can be further shortened, so that power supply and / or Data communication and the like can be performed better.
 本発明に係る膜濾過装置は、前記内部ユニットが、着脱可能であることを特徴とする。 The membrane filtration device according to the present invention is characterized in that the internal unit is detachable.
 このような構成によれば、着脱可能な内部ユニットに第1導電線が設けられているので、膜エレメントを交換する場合であっても、古い膜エレメントに取り付けられていた内部ユニットを新しい膜エレメントに付け替えることにより、第1導電線を再利用することができる。また、膜エレメントには変更を加える必要がないので、従来の膜エレメントをそのまま使用することができる。 According to such a configuration, since the first conductive wire is provided in the detachable internal unit, even if the membrane element is replaced, the internal unit attached to the old membrane element is replaced with the new membrane element. The first conductive line can be reused by changing to. Further, since there is no need to change the membrane element, the conventional membrane element can be used as it is.
 本発明に係る膜濾過装置は、前記センサには、透過物の電導度を測定するための電導度センサ、透過物の流量を測定するための流量センサ、及び、濾過対象物の圧力を測定するための圧力センサの少なくとも1つが含まれることを特徴とする。 In the membrane filtration apparatus according to the present invention, the sensor includes a conductivity sensor for measuring the conductivity of the permeate, a flow sensor for measuring the flow rate of the permeate, and a pressure of the filtration object. At least one of the pressure sensors is included.
 このような構成によれば、電導度センサ、流量センサ及び圧力センサの少なくとも1つについて、第1導電線を介して電力供給を良好に行うことができるとともに、第1導電線を介して出力信号を外部へ良好に送信することができる。 According to such a configuration, at least one of the conductivity sensor, the flow rate sensor, and the pressure sensor can be satisfactorily supplied with electric power via the first conductive wire, and an output signal can be output via the first conductive wire. Can be transmitted to the outside satisfactorily.
 本発明によれば、外部から第1導電線を介して電力供給及び/又はデータ通信などを行う場合に、外部の装置と第1導電線との距離をできるだけ短くすることができるので、第1導電線を介して外部からセンサなどへの電力供給を良好に行うことができるとともに、第1導電線を介してセンサからの出力信号を外部へ良好に送信することができる。 According to the present invention, when power supply and / or data communication is performed from the outside via the first conductive line, the distance between the external device and the first conductive line can be made as short as possible. Power can be satisfactorily supplied from the outside to the sensor or the like via the conductive line, and an output signal from the sensor can be satisfactorily transmitted to the outside via the first conductive line.
本発明の第1実施形態に係る膜濾過装置の一例を示した概略断面図である。It is the schematic sectional drawing which showed an example of the membrane filtration apparatus which concerns on 1st Embodiment of this invention. 図1の膜エレメントの内部構成の一部を示した斜視図である。It is the perspective view which showed a part of internal structure of the membrane element of FIG. 内部ユニットの一構成例を示した図であり、(a)は断面図、(b)は正面図を示している。It is the figure which showed one structural example of the internal unit, (a) is sectional drawing, (b) has shown the front view. 膜濾過装置の内部構成を示した概略断面図である。It is the schematic sectional drawing which showed the internal structure of the membrane filtration apparatus. 本発明の第2実施形態に係る膜濾過装置に備えられた内部ユニットの一構成例を示した図であり、(a)は断面図、(b)は正面図を示している。It is the figure which showed one structural example of the internal unit with which the membrane filtration apparatus which concerns on 2nd Embodiment of this invention was equipped, (a) is sectional drawing, (b) has shown the front view. 本発明の第2実施形態にかかる膜濾過装置の内部構成を示した概略断面図である。It is the schematic sectional drawing which showed the internal structure of the membrane filtration apparatus concerning 2nd Embodiment of this invention.
 本発明に係る膜濾過装置は、膜エレメントを収容する耐圧容器と、前記膜エレメントとは別体として設けられ、その外周面が前記耐圧容器の内周面に近接する内部ユニットと、濾過対象物及び透過物の少なくとも一方の性状を検知するセンサと、前記センサに接続され、前記内部ユニットの外周面に沿った形状で設けられた第1導電線とを備えている点を特徴としている。したがって、本発明の一実施形態として、耐圧容器における第1導電線に対向する位置に、耐圧容器の外周面に沿った形状で第2導電線を設けた構成を例示できるが、第2導電線を備えた構成に限られるものではない。 A membrane filtration device according to the present invention is provided with a pressure vessel containing a membrane element, an internal unit provided as a separate body from the membrane element, an outer peripheral surface of which is close to an inner circumferential surface of the pressure vessel, and a filtration object And a sensor for detecting the property of at least one of the permeate, and a first conductive wire connected to the sensor and provided in a shape along the outer peripheral surface of the internal unit. Therefore, as an embodiment of the present invention, a configuration in which the second conductive line is provided in a shape along the outer peripheral surface of the pressure resistant container at a position facing the first conductive line in the pressure resistant container can be exemplified. It is not restricted to the structure provided with.
 前記耐圧容器は、円筒状のものを例示することができるが、円筒状のものに限らない。したがって、耐圧容器内に収容される膜エレメント及び内部ユニットも円形の断面形状を有するものに限らず、耐圧容器の形状に対応する他の断面形状を有するものであってもよい。また、導電線についても、円形状に巻回されたコイル状のものに限らず、耐圧容器の形状に対応する他の形状を有するものであってもよいし、耐圧容器の形状に対応しない形状を有するものであってもよい。 The pressure vessel can be exemplified by a cylindrical one, but is not limited to a cylindrical one. Therefore, the membrane element and the internal unit housed in the pressure vessel are not limited to those having a circular cross-sectional shape, and may have other cross-sectional shapes corresponding to the shape of the pressure vessel. In addition, the conductive wire is not limited to a coil shape wound in a circular shape, but may have other shapes corresponding to the shape of the pressure vessel, or a shape that does not correspond to the shape of the pressure vessel. It may have.
 濾過対象物及び透過物としては、液体又は気体などを例示することができ、例えば水処理においては液体である。センサは、濾過対象物及び透過物の少なくとも一方の性状を検知するものであれば、各種センサを採用することができる。センサは、1つであってもよいし、複数設けられていてもよい。 As the filtration object and permeate, liquid or gas can be exemplified. For example, in water treatment, it is liquid. Various sensors can be adopted as long as the sensor detects at least one property of the filtration object and the permeate. There may be one sensor or a plurality of sensors.
 膜エレメントの一例として、中心管の周囲に濾過膜がスパイラル状に巻回されたスパイラル型膜エレメントを例示することができるが、中空糸構造(キャピラリー構造)を有する膜エレメントなどの他の膜エレメントであってもよい。例えば、特開2008-183561号公報に開示されているような濾過膜積層型の膜エレメントなどであってもよい。スパイラル型膜エレメントの場合には、隣接する膜エレメントは、その中心管同士がインターコネクタにより連結されていてもよい。 As an example of the membrane element, a spiral membrane element having a filtration membrane spirally wound around a central tube can be exemplified, but other membrane elements such as a membrane element having a hollow fiber structure (capillary structure) It may be. For example, it may be a membrane filter type membrane element as disclosed in Japanese Patent Application Laid-Open No. 2008-183561. In the case of a spiral membrane element, adjacent membrane elements may have their central tubes connected by an interconnector.
 導電線は、膜エレメントとは別体である内部ユニットに設けられる。内部ユニットは、専用に設けられた部材に限らず、スペシャルアダプタ、スラストリング、テレスコープ防止部材などの従来設けられている部材を流用することも可能である。スパイラル型膜エレメントの場合には、内部ユニットが、中心管又はインターコネクタに設けられていてもよいし、中心管又はインターコネクタとは別個に設けられていてもよい。内部ユニットは、隣接する膜エレメント間に設けられていてもよいし、端部に位置する膜エレメントに対して隣接する膜エレメントとは反対側、すなわち耐圧容器内の最端部に設けられていてもよい。また、内部ユニットは、隣接する全ての膜エレメント間に設けられていてもよいし、一部の膜エレメント間にのみ設けられていてもよい。内部ユニットは、膜エレメントに対して着脱可能に設けられていてもよいし、一体的に形成されていてもよい。 The conductive wire is provided in an internal unit that is separate from the membrane element. The internal unit is not limited to a dedicated member, and a conventionally provided member such as a special adapter, a thrust ring, or a telescope prevention member can also be used. In the case of a spiral membrane element, the internal unit may be provided in the central tube or the interconnector, or may be provided separately from the central tube or the interconnector. The internal unit may be provided between adjacent membrane elements, or provided on the side opposite to the adjacent membrane element with respect to the membrane element located at the end, that is, at the extreme end in the pressure vessel. Also good. The internal unit may be provided between all adjacent membrane elements, or may be provided only between some membrane elements. The internal unit may be provided detachably with respect to the membrane element, or may be integrally formed.
 内部ユニットの外側には、内部ユニットとの間で電力供給及びデータ通信の少なくとも一方を無線で行う外部ユニットが設けられていてもよい。外部ユニットは、耐圧容器と一体的に形成された構成であってもよいし、例えば移動式かつ給電式のリーダライタの他、FPC(フレキシブルプリント基板)等によるシール式、あるいは、デバイスとFPCの複合型などのような別部材として構成されていてもよい。外部ユニットを耐圧容器とは別部材として構成する場合には、当該外部ユニットが耐圧容器の外周面に取り付けられていてもよいし、耐圧容器の外周面から離間して配置された構成であってもよい。 An external unit that wirelessly performs at least one of power supply and data communication with the internal unit may be provided outside the internal unit. The external unit may have a structure formed integrally with the pressure vessel, for example, a movable and feeding type reader / writer, a seal type using an FPC (flexible printed circuit board), or the device and the FPC. It may be configured as a separate member such as a composite type. When the external unit is configured as a separate member from the pressure vessel, the external unit may be attached to the outer peripheral surface of the pressure vessel, or may be arranged away from the outer peripheral surface of the pressure vessel. Also good.
<第1実施形態>
 図1は、本発明の第1実施形態に係る膜濾過装置50の一例を示した概略断面図である。また、図2は、図1の膜エレメント10の内部構成の一部を示した斜視図である。この膜濾過装置50は、膜エレメント10を耐圧容器40内に一直線上に複数配置することにより構成されている。ただし、耐圧容器40内に膜エレメント10が複数設けられた構成に限らず、膜エレメント10が1つだけ設けられた構成であってもよい。
<First Embodiment>
FIG. 1 is a schematic cross-sectional view showing an example of a membrane filtration device 50 according to the first embodiment of the present invention. FIG. 2 is a perspective view showing a part of the internal configuration of the membrane element 10 of FIG. The membrane filtration device 50 is configured by arranging a plurality of membrane elements 10 in a straight line in the pressure vessel 40. However, the configuration is not limited to a configuration in which a plurality of membrane elements 10 are provided in the pressure vessel 40, and may be a configuration in which only one membrane element 10 is provided.
 耐圧容器40は、ベッセルと呼ばれる樹脂製の筒体であり、例えばFRP(Fiberglass Reinforced Plastics)により形成される。この例では、耐圧容器40は、円筒状に形成されている。 The pressure vessel 40 is a resin cylinder called a vessel, and is formed of, for example, FRP (Fiberglass Reinforced Plastics). In this example, the pressure vessel 40 is formed in a cylindrical shape.
 耐圧容器40の一端部には、排水や海水などの原水(濾過対象物)が流入する原水流入口48が形成されており、当該原水流入口48から流入する原水が複数の膜エレメント10で濾過されることにより、浄化された透過水(透過物)と、濾過後の原水である濃縮水(濃縮液)とが得られる。耐圧容器40の他端部には、透過水が流出する透過水流出口46と、濃縮水が流出する濃縮水流出口44とが形成されている。 At one end of the pressure vessel 40, a raw water inlet 48 into which raw water (filtered object) such as drainage and seawater flows is formed. The raw water flowing from the raw water inlet 48 is filtered by the plurality of membrane elements 10. By doing so, purified permeated water (permeate) and concentrated water (concentrated liquid) that is raw water after filtration are obtained. At the other end of the pressure vessel 40, a permeate outlet 46 through which permeate flows out and a concentrated water outlet 44 through which concentrated water flows out are formed.
 図2に示すように、膜エレメント10は、濾過膜12と供給側流路材18と透過側流路材14とが積層された状態で中心管20の周囲にスパイラル状に巻回されることにより形成されたRO(Reverse Osmosis:逆浸透)エレメントである。 As shown in FIG. 2, the membrane element 10 is spirally wound around the central tube 20 in a state in which the filtration membrane 12, the supply-side channel material 18, and the permeation-side channel material 14 are laminated. RO (Reverse Osmosis) element formed by
 樹脂製の網状部材からなる矩形形状の透過側流路材14の両面には、同一の矩形形状からなる濾過膜12が重ね合わせられ、その3辺が接着されることにより、1辺に開口部を有する袋状の膜部材16が形成される。そして、この膜部材16の開口部が中心管20の外周面に取り付けられ、樹脂製の網状部材からなる供給側流路材18とともに中心管20の周囲に巻回されることにより、上記膜エレメント10が形成される。上記濾過膜12は、例えば不織布層上に多孔性支持体及びスキン層(緻密層)が順次に積層されることにより形成される。 Filtration membranes 12 having the same rectangular shape are superposed on both sides of a rectangular permeation-side flow path material 14 made of a resin-made net-like member, and the three sides are bonded to each other so that an opening is formed on one side. A bag-like film member 16 having the above is formed. And the opening part of this membrane member 16 is attached to the outer peripheral surface of the center pipe | tube 20, and it winds around the center pipe | tube 20 with the supply side flow-path material 18 which consists of resin-made mesh members, The said membrane element 10 is formed. The filtration membrane 12 is formed, for example, by sequentially laminating a porous support and a skin layer (dense layer) on a nonwoven fabric layer.
 上記のようにして形成された膜エレメント10の一端側から原水を供給すると、原水スペーサとして機能する供給側流路材18により形成された原水流路を介して、膜エレメント10内を原水が通過する。その際、原水が濾過膜12により濾過され、原水から濾過された透過水が、透過水スペーサとして機能する透過側流路材14により形成された透過水流路内に浸透する。 When raw water is supplied from one end side of the membrane element 10 formed as described above, the raw water passes through the membrane element 10 through the raw water flow path formed by the supply-side flow path material 18 that functions as a raw water spacer. To do. At that time, the raw water is filtered by the filtration membrane 12, and the permeated water filtered from the raw water penetrates into the permeated water flow path formed by the permeate side flow path material 14 functioning as a permeated water spacer.
 その後、透過水流路内に浸透した透過水が、当該透過水流路を通って中心管20側に流れ、中心管20の外周面に形成された複数の通水孔(図示せず)から中心管20内に導かれる。これにより、膜エレメント10の他端側から、中心管20を介して透過水が流出するとともに、供給側流路材18により形成された原水流路を介して濃縮水が流出することとなる。 Thereafter, the permeated water that has permeated into the permeated water flow path flows to the central tube 20 side through the permeated water flow path, and the central tube is formed from a plurality of water passage holes (not shown) formed on the outer peripheral surface of the central tube 20. 20 is led. As a result, the permeated water flows out from the other end side of the membrane element 10 through the central tube 20, and the concentrated water flows out through the raw water flow path formed by the supply side flow path material 18.
 図1に示すように、耐圧容器40内に収容されている複数の膜エレメント10は、隣接する膜エレメント10の中心管20同士が管状のインターコネクタ(連結部)42で連結されている。したがって、原水流入口48から流入した原水は、当該原水流入口48側の膜エレメント10から順に原水流路内に流れ込み、各膜エレメント10で原水から濾過された透過水が、インターコネクタ42により接続された1本の中心管20を介して透過水流出口46から流出する。一方、各膜エレメント10の原水流路を通過することにより透過水が濾過されて濃縮された濃縮水は、濃縮水流出口44から流出する。 As shown in FIG. 1, in the plurality of membrane elements 10 accommodated in the pressure vessel 40, the central tubes 20 of the adjacent membrane elements 10 are connected by a tubular interconnector (connecting portion) 42. Therefore, the raw water flowing in from the raw water inlet 48 flows into the raw water flow path in order from the membrane element 10 on the raw water inlet 48 side, and the permeated water filtered from the raw water in each membrane element 10 is connected by the interconnector 42. The permeated water outlet 46 flows out through the single central pipe 20. On the other hand, the concentrated water that is filtered and concentrated by passing through the raw water flow path of each membrane element 10 flows out from the concentrated water outlet 44.
 本実施形態では、膜エレメント10とは別体として内部ユニット100が設けられている。内部ユニット100は、その外周面が膜エレメント10の外周面に対応する形状を有しており、当該内部ユニット100の外周面は、耐圧容器40の内周面に近接して対向している。内部ユニット100の外周面と耐圧容器40の内周面との距離、すなわち内部ユニット100の外周面と耐圧容器40の内周面との間に存在する液体(この例では原水)の厚みは、10cm以内であることが好ましい。この場合、後述する第1導電線102及び/又はアンテナ103Aと耐圧容器40の内周面との距離は、必ずしも10cm以内である必要はなく、仮に10cmより離れていたとしても第1導電線102及び/又はアンテナ103Aを用いて電波を送受信することができる。この例では、内部ユニット100が、インターコネクタ42に取り付けられている。インターコネクタ42は、各膜エレメント10の中心管20に対して着脱可能であり、これにより、内部ユニット100が着脱可能となっている。 In this embodiment, the internal unit 100 is provided as a separate body from the membrane element 10. The internal unit 100 has a shape in which the outer peripheral surface thereof corresponds to the outer peripheral surface of the membrane element 10, and the outer peripheral surface of the internal unit 100 is opposed to the inner peripheral surface of the pressure vessel 40. The distance between the outer peripheral surface of the internal unit 100 and the inner peripheral surface of the pressure vessel 40, that is, the thickness of the liquid (raw water in this example) existing between the outer peripheral surface of the internal unit 100 and the inner peripheral surface of the pressure vessel 40 is It is preferably within 10 cm. In this case, the distance between the first conductive wire 102 and / or the antenna 103A, which will be described later, and the inner peripheral surface of the pressure vessel 40 does not necessarily have to be within 10 cm. And / or radio waves can be transmitted and received using the antenna 103A. In this example, the internal unit 100 is attached to the interconnector 42. The interconnector 42 can be attached to and detached from the central tube 20 of each membrane element 10, whereby the internal unit 100 can be attached and detached.
 耐圧容器40の外部における内部ユニット100に対向する位置には、外部ユニット200が設けられている。この外部ユニット200は、内部ユニット100との間で電力供給及びデータ通信を無線で行うためのものであり、この例では耐圧容器40と一体的に形成されている。 The external unit 200 is provided at a position facing the internal unit 100 outside the pressure vessel 40. The external unit 200 is for performing power supply and data communication wirelessly with the internal unit 100, and is formed integrally with the pressure vessel 40 in this example.
 図3は、内部ユニット100の一構成例を示した図であり、(a)は断面図、(b)は正面図を示している。ただし、図3(b)では、内部ユニット100の内部構成が、破線ではなく実線で示されている。 3A and 3B are diagrams showing a configuration example of the internal unit 100, where FIG. 3A is a cross-sectional view and FIG. 3B is a front view. However, in FIG.3 (b), the internal structure of the internal unit 100 is shown with the continuous line instead of the broken line.
 内部ユニット100には、本体101と、当該本体101によりそれぞれ保持された第1導電線102、内部通信装置103、複数のセンサ104,105,106及びICチップ107とが備えられている。本体101は、第1環状部111と、当該第1環状部111よりも小径の第2環状部112とが、リブ113を介して連結されることにより一体的に形成された構成を有している。この例では、本体101は樹脂により形成されているが、他の材料で形成されていてもよい。 The internal unit 100 includes a main body 101, a first conductive wire 102 held by the main body 101, an internal communication device 103, a plurality of sensors 104, 105, 106, and an IC chip 107. The main body 101 has a configuration in which a first annular portion 111 and a second annular portion 112 having a smaller diameter than the first annular portion 111 are connected through a rib 113 so as to be integrally formed. Yes. In this example, the main body 101 is formed of resin, but may be formed of other materials.
 第1環状部111は、外径が膜エレメント10の外径とほぼ一致しており、その外周面が耐圧容器40の内周面に近接して対向するように配置される。第2環状部112は、その内周面が透過水の流路を構成している。リブ113は、第1環状部111の内周面と第2環状部112の外周面とを連結する部材であり、複数設けられていることが好ましい。ただし、本体101は、上記のような形状に限らず、例えば円板状などの他の形状であってもよい。 The first annular portion 111 has an outer diameter that is substantially the same as the outer diameter of the membrane element 10, and is disposed so that its outer peripheral surface is close to and faces the inner peripheral surface of the pressure vessel 40. As for the 2nd annular part 112, the internal peripheral surface comprises the flow path of permeated water. The rib 113 is a member that connects the inner peripheral surface of the first annular portion 111 and the outer peripheral surface of the second annular portion 112, and a plurality of ribs 113 are preferably provided. However, the main body 101 is not limited to the shape as described above, and may be another shape such as a disk shape.
 第1導電線102は、導電線が巻回されることにより形成されたコイル状の導電線であり、本体101の第1環状部111に取り付けられている。第1導電線102は、第1環状部111の内部において当該第1環状部111の外周面に沿った形状(状態)で設けられている。これにより、第1導電線102は、耐圧容器40の内周面に近接して対向するように設けられている。第1導電線102は、内部ユニット100の外周面に沿った形状であれば、内部ユニット100の外側に設けられていてもよいし、内側に設けられていてもよい。第1導電線102と耐圧容器40の内周面との距離は、耐圧容器40の外部との間で電波の送受信を良好に行う観点から、できるだけ短いことが好ましい。具体的には、上記距離は、15cm以内であることが好ましく、5cm以内であればより好ましく、3cm以内であればさらに好ましい。 The first conductive wire 102 is a coiled conductive wire formed by winding a conductive wire, and is attached to the first annular portion 111 of the main body 101. The first conductive wire 102 is provided in a shape (state) along the outer peripheral surface of the first annular portion 111 inside the first annular portion 111. Thus, the first conductive wire 102 is provided so as to face the inner peripheral surface of the pressure resistant container 40 in the vicinity thereof. As long as the first conductive wire 102 has a shape along the outer peripheral surface of the internal unit 100, the first conductive wire 102 may be provided outside the internal unit 100 or may be provided inside. The distance between the first conductive wire 102 and the inner peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves to and from the outside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm.
 また、第1導電線102の太さは、送受信の感度の観点から、その断面積が5mm以上であることが好ましい。膜エレメント10の径が大きくなると第1導電線102の導体抵抗が大きくなるため、第1導電線102の太さは、膜エレメント10の径が大きいほど太くすることが好ましい。例えば、外径が8インチの膜エレメント10を使用する場合よりも、外径が16インチの膜エレメント10を使用する場合の方が第1導電線102を太くしてもよい。第1導電線102としては、直径1.2mm以上、例えば直径2mm又は3mmなどの銅線を使用することができる。ただし、第1導電線102の材料は、銅に限らず、金、銀、アルミ導体などであってもよい。第1導電線102は、円形の断面形状を有するものであってもよいし、平板状などの他の形状のものであってもよい。第1導電線102により形成されるコイルは、その巻き数が多いほど磁束密度が増し、電力伝送が容易になるが、第1導電線102が太いと巻き数を増やすことが難しくなるため、第1導電線102の太さとの関係で適正な巻き数とすることが好ましい。ただし、上記巻き数は、膜エレメント10の径にかかわらず一定であってもよい。 Moreover, it is preferable that the cross-sectional area of the thickness of the 1st conductive wire 102 is 5 mm < 2 > or more from a viewpoint of the sensitivity of transmission / reception. When the diameter of the membrane element 10 increases, the conductor resistance of the first conductive wire 102 increases. Therefore, the thickness of the first conductive wire 102 is preferably increased as the diameter of the membrane element 10 increases. For example, the first conductive wire 102 may be made thicker when the membrane element 10 having an outer diameter of 16 inches is used than when the membrane element 10 having an outer diameter of 8 inches is used. As the first conductive wire 102, a copper wire having a diameter of 1.2 mm or more, for example, a diameter of 2 mm or 3 mm can be used. However, the material of the first conductive wire 102 is not limited to copper, but may be gold, silver, an aluminum conductor, or the like. The first conductive wire 102 may have a circular cross-sectional shape, or may have another shape such as a flat plate shape. The coil formed by the first conductive wire 102 increases the magnetic flux density and facilitates power transmission as the number of turns increases. However, if the first conductive wire 102 is thick, it is difficult to increase the number of turns. It is preferable to set an appropriate number of turns in relation to the thickness of one conductive wire 102. However, the number of turns may be constant regardless of the diameter of the membrane element 10.
 内部通信装置103は、本体101の第1環状部111に取り付けられている。この内部通信装置103はアンテナ103Aを備えており、当該アンテナ103Aを介してデータを送受信することができるようになっている。内部通信装置103は、RFID(Radio Frequency Identification)を含むような構成であってもよい。内部通信装置103は、後述するセンサ104,105,106の出力信号をアンテナ103Aから無線で送信することができる。 The internal communication device 103 is attached to the first annular portion 111 of the main body 101. The internal communication device 103 includes an antenna 103A, and can transmit and receive data via the antenna 103A. The internal communication device 103 may be configured to include RFID (Radio Frequency Identification). The internal communication device 103 can wirelessly transmit output signals of sensors 104, 105, and 106 described later from the antenna 103A.
 アンテナ103Aは、耐圧容器40の内周面に近接して対向するように設けられている。内部通信装置103のアンテナ103Aと耐圧容器40の内周面との距離は、耐圧容器40の外部との間で電波の送受信を良好に行う観点から、できるだけ短いことが好ましい。具体的には、上記距離は、15cm以内であることが好ましく、5cm以内であればより好ましく、3cm以内であればさらに好ましい。 The antenna 103A is provided so as to face and face the inner peripheral surface of the pressure vessel 40. The distance between the antenna 103A of the internal communication device 103 and the inner peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves to and from the outside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm.
 電導度センサ104及び流量センサ105は、それぞれ本体101の第2環状部112に取り付けられ、第2環状部112の内側を流れる透過水の性状を検知するセンサである。具体的には、電導度センサ104は、透過水の電導度を検知するセンサであり、流量センサ105は、透過水の流量を検知するセンサである。圧力センサ106は、本体101のリブ113に取り付けられ、原水の性状を検知するセンサである。具体的には、圧力センサ106は、原水の圧力を検知するセンサであり、例えば圧電素子や歪みゲージなどにより構成することができる。 The conductivity sensor 104 and the flow rate sensor 105 are sensors that are attached to the second annular portion 112 of the main body 101 and detect the properties of the permeated water flowing inside the second annular portion 112. Specifically, the conductivity sensor 104 is a sensor that detects the conductivity of the permeated water, and the flow rate sensor 105 is a sensor that detects the flow rate of the permeated water. The pressure sensor 106 is a sensor that is attached to the rib 113 of the main body 101 and detects the property of raw water. Specifically, the pressure sensor 106 is a sensor that detects the pressure of raw water, and can be configured by, for example, a piezoelectric element or a strain gauge.
 本実施形態では、内部ユニット100に電導度センサ104、流量センサ105及び圧力センサ106が設けられた構成が示されているが、このような構成に限らず、耐圧容器40内を流れる液体の性状を検知するセンサであれば、その特性に応じて、公知の物理センサ、化学センサ、スマートセンサ(情報処理機能付きセンサ)などの各種センサを内部ユニット100に設けることができる。ただし、電導度センサ104、流量センサ105及び圧力センサ106の少なくとも1つが内部ユニット100に設けられていることが好ましい。なお、内部ユニット100に設けられるセンサにより検知される液体の性状としては、例えば流量、圧力、電導度、温度、汚染状況(イオン濃度など)を挙げることができる。 In the present embodiment, a configuration in which the electrical conductivity sensor 104, the flow sensor 105, and the pressure sensor 106 are provided in the internal unit 100 is shown. However, the configuration of the liquid flowing in the pressure vessel 40 is not limited to this configuration. If it is a sensor which detects this, various sensors, such as a well-known physical sensor, a chemical sensor, and a smart sensor (sensor with an information processing function), can be provided in the internal unit 100 according to the characteristic. However, it is preferable that at least one of the conductivity sensor 104, the flow sensor 105, and the pressure sensor 106 is provided in the internal unit 100. Examples of the properties of the liquid detected by the sensor provided in the internal unit 100 include flow rate, pressure, conductivity, temperature, and contamination status (ion concentration, etc.).
 ICチップ107は、内部ユニット100に設けられている上記のような各電気部品に対する電力制御、センサ制御、通信制御などを司るマイクロコンピュータである。このICチップ107は、複数のチップからなるような構成であってもよいし、ワンチップ化された構成であってもよい。 The IC chip 107 is a microcomputer that controls power control, sensor control, communication control, and the like for each of the electrical components described above provided in the internal unit 100. The IC chip 107 may be configured by a plurality of chips, or may be configured as a single chip.
 以上のような内部ユニット100の本体101により保持された電気部品、すなわち第1導電線102、内部通信装置103、複数のセンサ104,105,106及びICチップ107は、それぞれ本体101の内部に埋設されることにより周囲が樹脂で覆われている。また、上記のような各部品同士を電気的に接続する配線も、本体101の内部に埋設されることにより周囲が樹脂で覆われている。これにより、海水や廃水、洗浄の際に使用する酸、アルカリなどによって、各部品の腐食や損傷を抑制することができる。ただし、センサについては、その検知部分を本体101の外部に露出させる必要があるため、上記検知部分を除く他の部分が本体101の内部に埋設された構成であることが好ましい。 The electrical components held by the main body 101 of the internal unit 100 as described above, that is, the first conductive wire 102, the internal communication device 103, the plurality of sensors 104, 105, 106, and the IC chip 107 are embedded in the main body 101, respectively. As a result, the periphery is covered with resin. Further, the wiring for electrically connecting the components as described above is also embedded in the main body 101 so that the periphery is covered with resin. Thereby, corrosion and damage of each component can be suppressed by seawater, wastewater, acid, alkali used at the time of washing, or the like. However, since it is necessary to expose the detection part of the sensor to the outside of the main body 101, it is preferable that the other part excluding the detection part is embedded in the main body 101.
 本実施形態では、着脱可能な内部ユニット100に第1導電線102、内部通信装置103、センサ104,105,106及びICチップ107が設けられているので、膜エレメント10を交換する場合であっても、古い膜エレメント10に取り付けられていた内部ユニット100を新しい膜エレメント10に付け替えることにより、これらの電気部品を再利用することができる。また、膜エレメント10には変更を加える必要がないので、従来の膜エレメント10をそのまま使用することができる。 In the present embodiment, since the first conductive wire 102, the internal communication device 103, the sensors 104, 105, 106 and the IC chip 107 are provided in the removable internal unit 100, the membrane element 10 is replaced. However, by replacing the internal unit 100 attached to the old membrane element 10 with the new membrane element 10, these electrical components can be reused. In addition, since it is not necessary to change the membrane element 10, the conventional membrane element 10 can be used as it is.
 図4は、膜濾過装置50の内部構成を示した概略断面図である。図4では、図3(b)と同様、内部ユニット100の内部構成が、破線ではなく実線で示されている。この図4に示すように、耐圧容器40の外部に設けられた外部ユニット200には、第2導電線201、外部通信装置202及びICチップ203が備えられている。 FIG. 4 is a schematic cross-sectional view showing the internal configuration of the membrane filtration device 50. In FIG. 4, as in FIG. 3B, the internal configuration of the internal unit 100 is indicated by a solid line instead of a broken line. As shown in FIG. 4, the external unit 200 provided outside the pressure vessel 40 includes a second conductive wire 201, an external communication device 202, and an IC chip 203.
 第2導電線201は、導電線が巻回されることにより形成されたコイル状の導電線であり、第1導電線102に対向する位置に、耐圧容器40の外周面に沿った形状(状態)で設けられている。当該第2導電線201は、耐圧容器40の外周面に接触していてもよいし、離間していてもよいが、離間した構成を採用する場合には、耐圧容器40の外周面に対して近接して対向していることが好ましい。また、第2導電線201は、耐圧容器40を構成する材料(例えば樹脂材料)に埋め込まれていてもよい。互いに対向する第1導電線102と第2導電線201の組は、1組に限らず複数組設けられていてもよく、複数組設けても同様の効果が得られる。 The second conductive wire 201 is a coiled conductive wire formed by winding the conductive wire, and has a shape (state) along the outer peripheral surface of the pressure-resistant container 40 at a position facing the first conductive wire 102. ). The second conductive wire 201 may be in contact with the outer peripheral surface of the pressure-resistant container 40 or may be separated from the outer peripheral surface of the pressure-resistant container 40 when adopting a separated configuration. It is preferable that they face each other in close proximity. In addition, the second conductive line 201 may be embedded in a material (for example, a resin material) constituting the pressure resistant container 40. The set of the first conductive line 102 and the second conductive line 201 facing each other is not limited to one set, and a plurality of sets may be provided, and the same effect can be obtained by providing a plurality of sets.
 第2導電線201と耐圧容器40の外周面との距離は、耐圧容器40の内部との間で電波の送受信を良好に行う観点から、できるだけ短いことが好ましい。具体的には、上記距離は、15cm以内であることが好ましく、5cm以内であればより好ましく、3cm以内であればさらに好ましい。また、第2導電線201の太さは、送受信の感度の観点から、その断面積が5mm以上であることが好ましい。膜エレメント10の径が大きくなると第2導電線201の導体抵抗が大きくなるため、第2導電線201の太さは、膜エレメント10の径が大きいほど太くすることが好ましい。例えば、外径が8インチの膜エレメント10を使用する場合よりも、外径が16インチの膜エレメント10を使用する場合の方が第2導電線201を太くしてもよい。外径が8インチの膜エレメント10を収容する耐圧容器40は、その外径が例えば約24.1cmであり、その外周が例えば約75.77cmである。外径が16インチの膜エレメント10を収容する耐圧容器40は、その外径が例えば約44.6cmであり、外周が例えば約140.1cmである。第2導電線201としては、直径1.2mm以上、例えば直径2mm又は3mmなどの銅線を使用することができる。ただし、第2導電線201の材料は、銅に限らず、金、銀、アルミ導体などであってもよい。第2導電線201は、円形の断面形状を有するものであってもよいし、平板状などの他の形状のものであってもよい。第2導電線201により形成されるコイルは、その巻き数が多いほど磁束密度が増し、電力伝送が容易になるが、第2導電線201が太いと巻き数を増やすことが難しくなるため、第2導電線201の太さとの関係で適正な巻き数とすることが好ましい。ただし、上記巻き数は、膜エレメント10の径にかかわらず一定であってもよい。 The distance between the second conductive wire 201 and the outer peripheral surface of the pressure vessel 40 is preferably as short as possible from the viewpoint of satisfactorily transmitting and receiving radio waves between the inside of the pressure vessel 40. Specifically, the distance is preferably within 15 cm, more preferably within 5 cm, and even more preferably within 3 cm. Moreover, it is preferable that the cross-sectional area of the thickness of the 2nd conductive wire 201 is 5 mm < 2 > or more from a viewpoint of the sensitivity of transmission / reception. When the diameter of the membrane element 10 increases, the conductor resistance of the second conductive wire 201 increases. Therefore, the thickness of the second conductive wire 201 is preferably increased as the diameter of the membrane element 10 increases. For example, the second conductive wire 201 may be made thicker when the membrane element 10 having an outer diameter of 16 inches is used than when the membrane element 10 having an outer diameter of 8 inches is used. The pressure vessel 40 accommodating the membrane element 10 having an outer diameter of 8 inches has an outer diameter of, for example, about 24.1 cm and an outer periphery of, for example, about 75.77 cm. The pressure vessel 40 that houses the membrane element 10 having an outer diameter of 16 inches has an outer diameter of, for example, about 44.6 cm and an outer periphery of, for example, about 140.1 cm. As the second conductive wire 201, a copper wire having a diameter of 1.2 mm or more, for example, a diameter of 2 mm or 3 mm can be used. However, the material of the second conductive wire 201 is not limited to copper, but may be gold, silver, an aluminum conductor, or the like. The second conductive wire 201 may have a circular cross-sectional shape, or may have another shape such as a flat plate shape. The coil formed by the second conductive wire 201 increases the magnetic flux density and facilitates power transmission as the number of turns increases. However, if the second conductive wire 201 is thick, it is difficult to increase the number of turns. It is preferable that the number of windings is appropriate in relation to the thickness of the two conductive wires 201. However, the number of turns may be constant regardless of the diameter of the membrane element 10.
 外部通信装置202は、耐圧容器40の外部における内部通信装置103に対向する位置に設けられている。この外部通信装置202は、内部通信装置103からのデータを受信するとともに、その受信したデータを管理装置などに無線で送信する中継機として機能する。内部通信装置103と外部通信装置202との間でのデータ通信は、例えば2.4GHzの周波数帯で電波を送受信することにより行われる。 The external communication device 202 is provided at a position facing the internal communication device 103 outside the pressure vessel 40. The external communication device 202 functions as a relay device that receives data from the internal communication device 103 and transmits the received data to a management device or the like wirelessly. Data communication between the internal communication device 103 and the external communication device 202 is performed by transmitting and receiving radio waves in a frequency band of 2.4 GHz, for example.
 ICチップ203は、第2導電線201から第1導電線102へと無線で電力を供給する給電装置を構成している。ICチップ203は、発振回路及び増幅回路を備えており、例えば13.56MHzの周波数帯で第2導電線201から第1導電線102へと電波を送信することにより給電を行う。なお、ICチップ203は、外部通信装置202と一体的に形成された構成であってもよい。 The IC chip 203 constitutes a power feeding device that wirelessly supplies power from the second conductive line 201 to the first conductive line 102. The IC chip 203 includes an oscillation circuit and an amplification circuit, and performs power supply by transmitting radio waves from the second conductive line 201 to the first conductive line 102 in a frequency band of 13.56 MHz, for example. The IC chip 203 may be formed integrally with the external communication device 202.
 耐圧容器40を挟んで配置された第1導電線102及び第2導電線201を介して電波を良好に送受信する観点から、耐圧容器40は非金属製であることが好ましく、樹脂製であればより好ましい。 From the viewpoint of satisfactorily transmitting and receiving radio waves via the first conductive wire 102 and the second conductive wire 201 arranged with the pressure vessel 40 in between, the pressure vessel 40 is preferably made of non-metal, and is made of resin. More preferred.
 第2導電線201から第1導電線102へと無線で供給される電力は、配線を介してセンサ104,105,106などへ供給される。センサ104,105,106は、電力供給されたときのみ起動し、当該センサ104,105,106から内部通信装置103にデータが伝送された後は、再び非作動状態となる。各センサ104,105,106に電力が供給されて作動することにより得られたデータは、直ちに内部通信装置103から外部通信装置202へと送信され、当該外部通信装置202を中継装置として管理装置に集約される。 The power supplied wirelessly from the second conductive line 201 to the first conductive line 102 is supplied to the sensors 104, 105, 106, etc. via the wiring. The sensors 104, 105, and 106 are activated only when power is supplied, and after data is transmitted from the sensors 104, 105, and 106 to the internal communication device 103, the sensors 104, 105, and 106 are inactivated again. Data obtained by operating the sensors 104, 105, 106 by supplying power is immediately transmitted from the internal communication device 103 to the external communication device 202, and the external communication device 202 is used as a relay device to the management device. Aggregated.
 各センサ104,105,106の作動時間(測定時間)は、膜エレメント10の装填直後又は停止後の再稼動時と定常運転時とで異なる時間に設定することが好ましい。また、各センサ104,105,106で取得したデータに対して演算を行う場合には、耐圧容器40内での消費電力を削減させる観点から、取得した生のデータ(デジタル変換したままの情報)をそのまま耐圧容器40の外部に送信し、管理装置などで演算を行うことが好ましい。外部ユニット200に備えられた各電気部品への電力供給は、無線で行われるような構成であってもよいし、有線で行われるような構成であってもよい。 The operation time (measurement time) of each sensor 104, 105, 106 is preferably set to a time that is different between when the membrane element 10 is immediately loaded or when it is restarted after being stopped and during steady operation. In addition, when performing calculations on data acquired by the sensors 104, 105, and 106, from the viewpoint of reducing power consumption in the pressure resistant container 40, the acquired raw data (information that has been digitally converted). Is transmitted to the outside of the pressure vessel 40 as it is, and calculation is preferably performed by a management device or the like. The power supply to each electrical component provided in the external unit 200 may be performed wirelessly or may be configured wiredly.
 本実施形態では、センサ104,105,106に接続された第1導電線102が内部ユニット100の外周面に沿った形状で設けられているので、外部から第1導電線102を介して電力供給及び/又はデータ通信などを行う場合に、外部の装置と第1導電線102との距離をできるだけ短くすることができる。したがって、第1導電線102を介して外部からセンサ104,105,106などへの電力供給を良好に行うことができるとともに、第1導電線102を介してセンサ104,105,106からの出力信号を外部へ良好に送信することができる。 In the present embodiment, since the first conductive wire 102 connected to the sensors 104, 105, 106 is provided in a shape along the outer peripheral surface of the internal unit 100, power is supplied from the outside via the first conductive wire 102. When performing data communication and / or the like, the distance between the external device and the first conductive line 102 can be made as short as possible. Therefore, it is possible to satisfactorily supply power from the outside to the sensors 104, 105, 106, etc. via the first conductive wire 102, and output signals from the sensors 104, 105, 106 via the first conductive wire 102. Can be transmitted to the outside satisfactorily.
 また、膜エレメント10とは別体である内部ユニット100に設けられた第1導電線102を介して、当該内部ユニット100の近傍に配置されている電気部品に対して容易に電力を供給することができる。例えば、センサ104,105,106が内部ユニット100に設けられている場合のように、センサ104,105,106が耐圧容器40内に配置されている場合には、有線で電力供給及び/又はデータ通信を行うことは比較的困難であるが、本実施形態では、第1導電線102を介して無線で容易に電力供給及び/又はデータ通信を行うことができる。 Further, electric power can be easily supplied to the electrical components arranged in the vicinity of the internal unit 100 via the first conductive wire 102 provided in the internal unit 100 which is a separate body from the membrane element 10. Can do. For example, when the sensors 104, 105, and 106 are disposed in the pressure resistant container 40 as in the case where the sensors 104, 105, and 106 are provided in the internal unit 100, power supply and / or data is wired. Although communication is relatively difficult, in the present embodiment, power supply and / or data communication can be easily performed wirelessly via the first conductive line 102.
 さらに、膜エレメント10とは別個に設けられた内部ユニット100に第1導電線102を設けることにより、膜エレメント10に第1導電線102を設けるような構成と比較して、第1導電線102を容易に設けることができる。また、本実施形態のように内部ユニット100に第1導電線102を埋設すれば、膜エレメント10に第1導電線102を設ける場合よりも、第1導電線102が濾過対象物(原水)や透過物(透過水)と接触する機会を減らすことが可能であり、これにより第1導電線102の耐久性を向上することができる。 Further, by providing the first conductive wire 102 in the internal unit 100 provided separately from the membrane element 10, the first conductive wire 102 is compared with a configuration in which the first conductive wire 102 is provided in the membrane element 10. Can be easily provided. In addition, if the first conductive wire 102 is embedded in the internal unit 100 as in the present embodiment, the first conductive wire 102 may be filtered (raw water) or less than the first conductive wire 102 provided in the membrane element 10. It is possible to reduce the chance of contact with the permeate (permeated water), whereby the durability of the first conductive wire 102 can be improved.
 本実施形態では、第1導電線102及びセンサ104,105,106がいずれも内部ユニット100に設けられることにより、第1導電線102とセンサ104,105,106との間の配線をより短くすることができるので、電力供給及び/又はデータ通信などをより良好に行うことができる。 In the present embodiment, the first conductive line 102 and the sensors 104, 105, 106 are both provided in the internal unit 100, thereby shortening the wiring between the first conductive line 102 and the sensors 104, 105, 106. Therefore, power supply and / or data communication can be performed better.
 また、本実施形態では、耐圧容器40内の内部ユニット100の外周面に沿った形状で設けられた第1導電線102と、耐圧容器40の外周面に沿った形状で設けられた第2導電線201とを介して、電力供給及び/又はデータ通信などを良好に行うことができる。特に、耐圧容器40における第1導電線102に対向する位置に第2導電線201が設けられているので、第1導電線102と第2導電線201を比較的近接させることができる。したがって、原水などの濾過対象物や透過水などの透過物が耐圧容器40内を流れているような環境下であっても、電力供給及び/又はデータ通信などを良好に行うことができる。 In the present embodiment, the first conductive wire 102 provided in a shape along the outer peripheral surface of the internal unit 100 in the pressure vessel 40 and the second conductive provided in a shape along the outer peripheral surface of the pressure vessel 40 are provided. Power supply and / or data communication can be performed satisfactorily through the line 201. In particular, since the second conductive line 201 is provided at a position facing the first conductive line 102 in the pressure vessel 40, the first conductive line 102 and the second conductive line 201 can be relatively close to each other. Therefore, even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel 40, power supply and / or data communication can be performed satisfactorily.
 特に、本実施形態では、耐圧容器40の内周面に対向するように内部通信装置103が設けられ、耐圧容器40の外部における内部通信装置103に対向する位置に外部通信装置202が設けられているので、内部通信装置103と外部通信装置202を比較的近接させることができる。したがって、原水などの濾過対象物や透過水などの透過物が耐圧容器40内を流れているような環境下であっても、センサ104,105,106からのデータを良好に送信することができる。また、第2導電線201から第1導電線102へと無線で電力を供給することにより、例えば本実施形態のようにセンサ104,105,106などが耐圧容器40内に設けられているような構成であっても、当該センサ104,105,106などへの電力供給を容易に行うことができる。 In particular, in this embodiment, the internal communication device 103 is provided so as to face the inner peripheral surface of the pressure vessel 40, and the external communication device 202 is provided at a position facing the internal communication device 103 outside the pressure vessel 40. Therefore, the internal communication device 103 and the external communication device 202 can be relatively close to each other. Therefore, the data from the sensors 104, 105, and 106 can be transmitted satisfactorily even in an environment where a filtration object such as raw water or a permeate such as permeate flows through the pressure vessel 40. . Further, by supplying power wirelessly from the second conductive line 201 to the first conductive line 102, the sensors 104, 105, 106, and the like are provided in the pressure resistant container 40 as in the present embodiment, for example. Even if it is a structure, the electric power supply to the said sensor 104,105,106 etc. can be performed easily.
<第2実施形態> <Second Embodiment>
 図5は、本発明の第2実施形態に係る膜濾過装置50に備えられた内部ユニット100の一構成例を示した図であり、(a)は断面図、(b)は正面図を示している。ただし、図5(b)では、内部ユニット100の内部構成が、破線ではなく実線で示されている。以下では、第1実施形態と異なる構成についてのみ説明する。 FIG. 5 is a view showing a configuration example of the internal unit 100 provided in the membrane filtration device 50 according to the second embodiment of the present invention, where (a) is a sectional view and (b) is a front view. ing. However, in FIG.5 (b), the internal structure of the internal unit 100 is shown with the continuous line instead of the broken line. Only the configuration different from the first embodiment will be described below.
 内部ユニット100には、本体101と、当該本体101によりそれぞれ保持された第1導電線102、複数のセンサ104,105,106及びICチップ107とが備えられているが、第1実施形態に示した構成とは異なり、内部通信装置103が備えられていない。 The internal unit 100 includes a main body 101, a first conductive wire 102, a plurality of sensors 104, 105, and 106 and an IC chip 107 that are respectively held by the main body 101. As shown in the first embodiment. Unlike the configuration described above, the internal communication device 103 is not provided.
 ICチップ107には、変復調回路108が備えられている。当該変復調回路108は、第1導電線102を介して送信する無線信号を変調するとともに、第1導電線102を介して受信する無線信号を復調するための変復調装置である。ただし、変復調回路108は、ICチップ107と一体的に形成された構成に限らず、ICチップ107とは分離して設けられた構成であってもよい。 The IC chip 107 is provided with a modulation / demodulation circuit 108. The modulation / demodulation circuit 108 is a modulation / demodulation device for modulating a radio signal transmitted through the first conductive line 102 and demodulating a radio signal received through the first conductive line 102. However, the modulation / demodulation circuit 108 is not limited to the configuration formed integrally with the IC chip 107, and may be a configuration provided separately from the IC chip 107.
 図6は、本発明の第2実施形態にかかる膜濾過装置50の内部構成を示した概略断面図である。図6では、図5(b)と同様、内部ユニット100の内部構成が、破線ではなく実線で示されている。この図6に示すように、耐圧容器40の外部に設けられた外部ユニット200には、第2導電線201、外部通信装置202及びICチップ203が備えられている。 FIG. 6 is a schematic cross-sectional view showing the internal configuration of the membrane filtration device 50 according to the second embodiment of the present invention. In FIG. 6, as in FIG. 5B, the internal configuration of the internal unit 100 is indicated by a solid line instead of a broken line. As shown in FIG. 6, the external unit 200 provided outside the pressure vessel 40 includes a second conductive line 201, an external communication device 202, and an IC chip 203.
 ICチップ203には、変復調回路204が備えられている。当該変復調回路204は、第2導電線201を介して送信する無線信号を変調するとともに、第2導電線201を介して受信する無線信号を復調するための変復調装置である。ただし、変復調回路204は、ICチップ203と一体的に形成された構成に限らず、ICチップ203とは分離して設けられた構成であってもよい。 The IC chip 203 is provided with a modulation / demodulation circuit 204. The modulation / demodulation circuit 204 is a modulation / demodulation device for modulating a radio signal transmitted through the second conductive line 201 and demodulating a radio signal received through the second conductive line 201. However, the modulation / demodulation circuit 204 is not limited to the configuration formed integrally with the IC chip 203, and may be a configuration provided separately from the IC chip 203.
 本実施形態では、センサ104,105,106の出力信号が変復調回路108により変調されて第1導電線102から無線で送信され、第2導電線201を介して受信した無線信号が変復調回路204により復調されるようになっている。変復調回路204により復調された信号は、中継機として機能する外部通信装置202により受信され、管理装置などに無線で送信される。 In the present embodiment, the output signals of the sensors 104, 105, and 106 are modulated by the modulation / demodulation circuit 108 and transmitted wirelessly from the first conductive line 102. Demodulated. The signal demodulated by the modulation / demodulation circuit 204 is received by the external communication device 202 functioning as a repeater and transmitted wirelessly to a management device or the like.
 また、本実施形態では、ICチップ203から第2導電線201及び第1導電線102を介して無線で電力を供給する際、変復調回路204により変調されて第2導電線201から第1導電線102へと無線で送信された信号が、変復調回路108により復調されるようになっている。第2導電線201から第1導電線102へと無線で供給される電力は、配線を介してセンサ104,105,106などへ供給される。センサ104,105,106は、電力供給されたときのみ起動し、当該センサ104,105,106から第1導電線102及び第2導電線201を介してデータが伝送された後は、再び非作動状態となる。 In the present embodiment, when power is supplied wirelessly from the IC chip 203 via the second conductive line 201 and the first conductive line 102, it is modulated by the modem circuit 204 and is modulated from the second conductive line 201 to the first conductive line. A signal transmitted wirelessly to 102 is demodulated by the modem circuit 108. The electric power supplied wirelessly from the second conductive line 201 to the first conductive line 102 is supplied to the sensors 104, 105, 106, etc. via the wiring. The sensors 104, 105, and 106 are activated only when power is supplied. After data is transmitted from the sensors 104, 105, and 106 via the first conductive line 102 and the second conductive line 201, the sensors 104, 105, and 106 are not activated again. It becomes a state.
 このように、本実施形態では、ICチップ203により無線で電力を供給する場合と、外部通信装置202により無線でデータを受信する場合とで、いずれも第2導電線201及び第1導電線102を介して無線信号が送受信されるようになっており、第2導電線201及び第1導電線102を電力供給とデータ通信とに共用することができる。第2導電線201及び第1導電線102を介して電力供給及びデータ通信を行う際の電波の周波数帯は、例えば13.56MHzである。 As described above, in this embodiment, the second conductive line 201 and the first conductive line 102 are both used when supplying power wirelessly by the IC chip 203 and when receiving data wirelessly by the external communication device 202. The wireless signal is transmitted and received through the second conductive line 201, and the second conductive line 201 and the first conductive line 102 can be shared for power supply and data communication. The frequency band of radio waves when power supply and data communication are performed via the second conductive line 201 and the first conductive line 102 is, for example, 13.56 MHz.
 このように第2導電線201及び第1導電線102を電力供給とデータ通信とに共用した場合であっても、ICチップ203により無線で電力を供給する場合と、外部通信装置202により無線でデータ通信を行う場合とで、無線信号を異なる態様で変復調することにより、電力供給及びデータ通信を良好に行うことができる。例えば、ICチップ203により無線で電力を供給する場合と、外部通信装置202により無線でデータ通信を行う場合とで、無線信号の振幅、周波数及び位相のうち少なくとも1つを異なる値に設定するような構成であってもよい。 Thus, even when the second conductive line 201 and the first conductive line 102 are shared for power supply and data communication, when the power is supplied wirelessly by the IC chip 203 and when the external communication device 202 is wirelessly connected. Power supply and data communication can be performed satisfactorily by modulating and demodulating a radio signal in different modes when performing data communication. For example, at least one of the amplitude, frequency, and phase of the wireless signal is set to a different value depending on whether the power is supplied wirelessly by the IC chip 203 or the data communication is performed wirelessly by the external communication device 202. It may be a simple configuration.
   10  膜エレメント
   40  耐圧容器
   50  膜濾過装置
  100  内部ユニット
  101  本体
  102  第1導電線
  103  内部通信装置
  104  電導度センサ
  105  流量センサ
  106  圧力センサ
  107  ICチップ
  108  変復調回路
  200  外部ユニット
  201  第2導電線
  202  外部通信装置
  203  ICチップ
  204  変復調回路
DESCRIPTION OF SYMBOLS 10 Membrane element 40 Pressure-resistant container 50 Membrane filtration device 100 Internal unit 101 Main body 102 First conductive wire 103 Internal communication device 104 Conductivity sensor 105 Flow rate sensor 106 Pressure sensor 107 IC chip 108 Modulation / demodulation circuit 200 External unit 201 Second conductive wire 202 External Communication device 203 IC chip 204 Modulation / demodulation circuit

Claims (9)

  1.  濾過膜で濾過対象物を濾過することにより透過物を生成する膜エレメントと、
     前記膜エレメントを収容する耐圧容器と、
     前記膜エレメントとは別体として設けられ、その外周面が前記耐圧容器の内周面に近接する内部ユニットと、
     濾過対象物及び透過物の少なくとも一方の性状を検知するセンサと、
     前記センサに接続され、前記内部ユニットの外周面に沿った形状で設けられた第1導電線とを備えたことを特徴とする膜濾過装置。
    A membrane element that generates a permeate by filtering an object to be filtered with a filtration membrane;
    A pressure vessel containing the membrane element;
    An internal unit provided as a separate body from the membrane element, the outer peripheral surface of which is close to the inner peripheral surface of the pressure vessel;
    A sensor for detecting the property of at least one of the filtration object and the permeate;
    A membrane filtration apparatus comprising: a first conductive line connected to the sensor and provided in a shape along an outer peripheral surface of the internal unit.
  2.  前記耐圧容器における前記第1導電線に対向する位置に、前記耐圧容器の外周面に沿った形状で設けられた第2導電線を備えたことを特徴とする請求項1に記載の膜濾過装置。 2. The membrane filtration device according to claim 1, further comprising: a second conductive wire provided in a shape along an outer peripheral surface of the pressure resistant vessel at a position facing the first conductive wire in the pressure resistant vessel. .
  3.  前記第1導電線及び前記第2導電線の少なくとも一方が、コイル状であることを特徴とする請求項2に記載の膜濾過装置。 The membrane filtration device according to claim 2, wherein at least one of the first conductive wire and the second conductive wire is coiled.
  4.  前記第2導電線から前記第1導電線へと無線で電力を供給する給電装置を備えたことを特徴とする請求項2に記載の膜濾過装置。 The membrane filtration device according to claim 2, further comprising a power feeding device that wirelessly supplies power from the second conductive wire to the first conductive wire.
  5.  前記耐圧容器の内周面に対向するように設けられ、前記センサからのデータを無線で送信する内部通信装置と、
     前記耐圧容器の外部における前記内部通信装置に対向する位置に設けられ、前記内部通信装置からのデータを受信する外部通信装置とを備えたことを特徴とする請求項4に記載の膜濾過装置。
    An internal communication device that is provided so as to face the inner peripheral surface of the pressure vessel and wirelessly transmits data from the sensor;
    The membrane filtration device according to claim 4, further comprising an external communication device provided at a position facing the internal communication device outside the pressure vessel and receiving data from the internal communication device.
  6.  前記耐圧容器の外部に設けられ、前記第1導電線及び前記第2導電線を介して前記センサからのデータを無線で受信する外部通信装置と、
     前記給電装置により無線で電力を供給する場合と、前記外部通信装置により無線でデータ通信を行う場合とで、無線信号を異なる態様で変復調するための変復調装置とを備えたことを特徴とする請求項4に記載の膜濾過装置。
    An external communication device that is provided outside the pressure vessel and wirelessly receives data from the sensor via the first conductive line and the second conductive line;
    A modulation / demodulation device for modulating / demodulating a radio signal in different modes depending on whether power is supplied wirelessly by the power supply device and data communication is performed wirelessly by the external communication device. Item 5. The membrane filtration device according to Item 4.
  7.  前記センサが、前記内部ユニットに設けられていることを特徴とする請求項1に記載の膜濾過装置。 The membrane filtration device according to claim 1, wherein the sensor is provided in the internal unit.
  8.  前記内部ユニットが、着脱可能であることを特徴とする請求項1に記載の膜濾過装置。 The membrane filtration device according to claim 1, wherein the internal unit is detachable.
  9.  前記センサには、透過物の電導度を測定するための電導度センサ、透過物の流量を測定するための流量センサ、及び、濾過対象物の圧力を測定するための圧力センサの少なくとも1つが含まれることを特徴とする請求項1~8のいずれかに記載の膜濾過装置。 The sensor includes at least one of a conductivity sensor for measuring the conductivity of the permeate, a flow sensor for measuring the flow rate of the permeate, and a pressure sensor for measuring the pressure of the filtration object. The membrane filtration device according to any one of claims 1 to 8, wherein
PCT/JP2010/064266 2009-08-27 2010-08-24 Membrane filtration device WO2011024801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009197175A JP2011045843A (en) 2009-08-27 2009-08-27 Membrane filtration apparatus
JP2009-197175 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024801A1 true WO2011024801A1 (en) 2011-03-03

Family

ID=43627902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064266 WO2011024801A1 (en) 2009-08-27 2010-08-24 Membrane filtration device

Country Status (2)

Country Link
JP (1) JP2011045843A (en)
WO (1) WO2011024801A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356521A (en) * 2017-07-27 2020-06-30 美国Ddp特种电子材料公司 Spiral wound membrane module including integrated differential pressure monitoring
WO2020159792A1 (en) * 2019-01-29 2020-08-06 Dow Global Technologies Llc Measurement of pressure differences within a vessel of spiral wound membrane modules

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176370A (en) * 2011-02-28 2012-09-13 Nitto Denko Corp Connecting member and isolating film module
JP2012176372A (en) * 2011-02-28 2012-09-13 Nitto Denko Corp Connecting member and isolating film module
JP5628709B2 (en) * 2011-02-28 2014-11-19 日東電工株式会社 Separation membrane module
JP5656718B2 (en) * 2011-03-31 2015-01-21 三菱重工業株式会社 Reverse osmosis membrane desalination apparatus and inspection method thereof
US11198098B2 (en) 2017-04-05 2021-12-14 Ddp Specialty Electronic Materials Us, Llc Spiral wound module assembly including integrated pressure monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283297A (en) * 2006-04-12 2007-11-01 Millipore Corp Filter with memory, communication and pressure sensor
JP2008100224A (en) * 2006-10-17 2008-05-01 Millipore Corp Powered cartridge and another device in housing
JP2009166034A (en) * 2007-12-17 2009-07-30 Nitto Denko Corp Spiral type membrane filter and mounting member and system and method for management of membrane fiber using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283297A (en) * 2006-04-12 2007-11-01 Millipore Corp Filter with memory, communication and pressure sensor
JP2008100224A (en) * 2006-10-17 2008-05-01 Millipore Corp Powered cartridge and another device in housing
JP2009166034A (en) * 2007-12-17 2009-07-30 Nitto Denko Corp Spiral type membrane filter and mounting member and system and method for management of membrane fiber using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356521A (en) * 2017-07-27 2020-06-30 美国Ddp特种电子材料公司 Spiral wound membrane module including integrated differential pressure monitoring
US11148098B2 (en) * 2017-07-27 2021-10-19 Ddp Specialty Electronic Materials Us, Llc Spiral wound membrane module including integrated differential pressure monitoring
CN111356521B (en) * 2017-07-27 2022-07-05 美国Ddp特种电子材料公司 Spiral wound membrane module including integrated differential pressure monitoring
WO2020159792A1 (en) * 2019-01-29 2020-08-06 Dow Global Technologies Llc Measurement of pressure differences within a vessel of spiral wound membrane modules
CN114144254A (en) * 2019-01-29 2022-03-04 Ddp特种电子材料美国有限责任公司 Differential pressure measurement in spiral wound membrane module vessels
EP4335536A1 (en) * 2019-01-29 2024-03-13 DDP Specialty Electronic Materials US, LLC Measurement of pressure differences within a vessel of spiral wound membrane modules

Also Published As

Publication number Publication date
JP2011045843A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5473482B2 (en) Membrane filtration device
WO2011024801A1 (en) Membrane filtration device
JP5578783B2 (en) Spiral membrane filtration device, mounting member, membrane filtration device management system and membrane filtration device management method using the same
JP5379464B2 (en) Spiral type membrane element and spiral type membrane filtration device provided with the same
US8568596B2 (en) Membrane filtering device managing system and membrane filtering device for use therein, and membrane filtering device managing method
AU2008339450B2 (en) Spiral film element, spiral film-filtration device having the film element, and film-filtration device managing system and film-filtration device managing method using the device
WO2011024796A1 (en) Membrane element and membrane filtration device
WO2012093694A1 (en) Membrane filtration device and operating method for membrane filtration device
KR20130137038A (en) Separation membrane module and joining member
EP2682176A1 (en) Separation membrane module
JP2012176370A (en) Connecting member and isolating film module
JP5225953B2 (en) Electronic device and membrane filtration apparatus provided with the same
JP5107020B2 (en) Spiral membrane module and membrane filtration device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811851

Country of ref document: EP

Kind code of ref document: A1