WO2011024581A1 - 燃料電池システム及び燃料電池システムの運転方法 - Google Patents
燃料電池システム及び燃料電池システムの運転方法 Download PDFInfo
- Publication number
- WO2011024581A1 WO2011024581A1 PCT/JP2010/062177 JP2010062177W WO2011024581A1 WO 2011024581 A1 WO2011024581 A1 WO 2011024581A1 JP 2010062177 W JP2010062177 W JP 2010062177W WO 2011024581 A1 WO2011024581 A1 WO 2011024581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- fuel cell
- gas
- nitrogen gas
- water vapor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04228—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04231—Purging of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04303—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/045—Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/04529—Humidity; Ambient humidity; Water content of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the fuel cell 1 has a plurality of single cells 2, the amount of heat release, pressure loss, and the like differ depending on the position in the cell stacking direction. There is. Therefore, it is desirable to use the cell inlet temperature Tin , i, etc. in consideration of this point. This consideration will be described later.
- the voltage value of each single cell 2 i detected by a cell monitor can be used as the cell voltage V i .
- the cell voltage V i can be set by providing each single cell 2 i with an IV map (depending on power generation amount, air flow rate, hydrogen flow rate, air back pressure, hydrogen pressure). It can also be estimated.
- the heat generation amount Q cell, i is caused by heat generation due to T ⁇ S and heat loss due to overvoltage.
- the pump gas flow rate Q PUMP is obtained by a general function f (rpm, ⁇ P, T). ⁇ P maps the relationship with the current value of the pump by prior evaluation. In addition, rpm is the rotation speed of the pump, and T is the temperature in the pump. Further, the hydrogen gas flow rate Q H2. INJ is obtained by a general function f (P, Flag). P is an upstream pressure of the injector 45, and Flag is an open signal of the injector.
- the pump gas flow rate Q PUMP is constituted by the flow rates of hydrogen gas, nitrogen gas, and water vapor.
- step S44 a current distribution and a relative humidity distribution in the cell plane are calculated.
- Functions I and RH indicating these are expressed as follows. Incidentally, each of the parameters (T d of the function I and RH, CA, T d, AN , T OUT, i, P air, i, P H2, i, Q H2, i, Q N2, AN, i, V N2 , CA ⁇ AN , i x ) is mapped in advance. Further, the overvoltage distribution in the cell plane may be calculated from these parameters.
- the distribution of the amount of water vapor and the amount of nitrogen gas that is, the amount of residual water, the water content, and the amount of nitrogen gas at a plurality of predetermined positions in the electrolyte membrane 23 and reaction gas flow path of the fuel cell 1 are as follows. Presumed. The estimation of the water vapor amount and the nitrogen gas amount is performed continuously, intermittently or periodically. Next, it is determined whether or not the intermittent operation is stopped. If the intermittent operation is stopped, the amount of water vapor and the amount of nitrogen gas at each predetermined position in the electrolyte membrane 23 and the reaction gas flow path are determined. , The threshold value at that position is compared.
- the threshold value considers the stacking direction of the single cells 2 and the flow direction of the reaction gas flow path, the frequency and timing of gas flow are optimized, and as a result, water vapor and nitrogen gas are efficiently reduced. This can suppress the excessive supply of gas.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
図1及び図2に示すように、スタック構造の燃料電池1は、固体高分子電解質型の単セル2を複数積層してなるセル積層体3を有する。セル積層体3の両端にある単セル2(以下、「端部セル2a」という。)の外側に、それぞれ、集電板5a、5b、絶縁板6a、6b及びエンドプレート7a、7bが配置される。テンションプレート8,8がエンドプレート7a、7b間に架け渡されてボルト9で固定され、エンドプレート7bと絶縁板6bとの間に弾性モジュール10が設けられる。
図6に示すように、燃料電池システム100は、空気配管系300、水素配管系400、冷媒配管系500及び制御装置600を備える。燃料電池システム100は、車両、船舶、飛行機、ロボットなどの各種移動体に搭載できるほか、定置型電源にも適用可能である。ここでは、自動車に搭載した燃料電池システム100を例に説明する。
本実施形態の水蒸気量の推定方法では、残水量と含水量とを区別して推定し、その際、アノード側とカソード側とを分けて残水量分布を推定する。また、残水量と含水量について、セル面内での分布のみならずセル積層方向での分布も推定する。以下では、先ず、セル面内での水蒸気分布(残水量分布及び含水量分布)の推定方法について説明する。次いで、推定に際してセル積層方向の温度バラツキ・配流バラツキをどのように考慮するかについて説明し、セル積層方向での水蒸気分布の推定方法に言及する。
図8に示すように、先ず、電流値I、セル入口温度Tin,i、セル出口温度TOUT,i、エア流量Qair,i、水素流量QH2,i、エア背圧Pair,i及び水素圧PH2,iを読み込む(ステップS1)。
Tin,i:温度センサT1による検出値
TOUT,i:温度センサT2による検出値
Qair,i:流量センサF1による検出値
QH2,i:流量センサF2による検出値から求めた水素供給流量
Pair,i:圧力センサP1による検出値
PH2,i::圧力センサP2による検出値
Td、CA=Td、AN=Tin,i
VH2O、CA→AN=DH2O×(PH2O、CA-PH2O、AN)
I=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、Qair,i、QH2,i、VH2O、CA→AN、ix)
RH=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、Qair,i、QH2,i、VH2O、CA→AN、ix)
Vvap→liq=k1×σ1
Vliq→vap=k2×σ2
ここで、係数k1、k2は、温度や撥水性による因子であり、反応ガス流路の物性によるものである。係数k1、k2は、実験から予めマップ化される。
V_liq=k3×V_gas
各単セル2iについてのTIN,i、TOUT,i、Pair,i、PH2,i、Qair,i及びQH2,iを求めるには、次のように行う。
図14に示すように、先ず、スタック入口温度Tin、冷媒流量QLLC、外気温T外気、及び車速V車速を読み込む(ステップS11)。ここで、Tinは、温度センサT1による検出値である。QLLCは、燃料電池1に供給される冷媒流量であり、冷却ポンプ50の回転数その他の検出値から推定することができる。あるいは、冷媒流路51に流量センサを設け、流量センサによる検出値を用いてもよい。T外気は、外気温センサ62による検出値であり、V車速は、車速センサ63による検出値である。
TIN,i=f(QLLC、TIN、T外気、V車速)
これにより、上記したQLLC、TIN、T外気及び車速の各値からセルチャンネルiに対応するセル入口温度TIN,iを求めることができる。
図16に示すように、先ず、エア流量Qair、エア背圧Pair、スタック入口温度TIN、スタック出口温度TOUT及び電流値Iを読み込む(ステップS21)。ここで、エア流量Qair、エア背圧Pair及びスタック出口温度TOUTは、それぞれ、流量センサF1、圧力センサP1及び温度センサT2による検出値である。また、ステップS21では、マニホールド15aに流入するエアのガス密度をスタック入口温度TIN及びエア流量Qairの関数として算出する。
図19に示すように、先ず、温度センサT2の検出値として、スタック出口温度TOUTを読み込む(ステップS31)。また、上述したスタック入口温度TINの場合と同様に、冷媒流量QLLC、外気温T外気、及び車速V車速を読み込む。さらに、セル電圧Vi及び電流値Iを読み込み、単セル2iごとのI-V特性から各単セル2iの発熱量Qcell,iを推定する。
TOUT,i=f(Qcell,i、QLLC,i、TOUT、T外気、V車速)
これにより、これらのパラメータに示す各検出値又は推定値からセルチャンネルiに対応するセル出口温度TOUT,iを求めることができる。
本実施形態の窒素ガス量の推定方法は、上記水蒸気量の推定方法と同様の手法を使って行う。その際、アノード側とカソード側とを分けて窒素ガス量分布を推定する。また、セル面内での分布のみならずセル積層方向での分布も推定する。以下では、先ず、セル面内での窒素ガス分布の推定方法について説明する。次いで、推定に際してセル積層方向の温度バラツキ・配流バラツキをどのように考慮するかについて説明し、セル積層方向での窒素ガス分布の推定方法に言及する。
図21に示すように、先ず、電流値I、セル入口温度Tin,i、セル出口温度TOUT,i、エア流量Qair,i(酸素流量QO2,i、窒素流量QN2,CA、i、酸素:窒素=21:79)、水素流量QH2,i、窒素流量QN2,AN、i、エア背圧Pair,i及び水素圧PH2,iを読み込む(ステップS41)。
Tin,i:温度センサT1による検出値
TOUT,i:温度センサT2による検出値
Qair,i:流量センサF1による検出値
QH2,i:流量センサF2による検出値から求めた水素供給流量
Pair,i:圧力センサP1による検出値
PH2,i::圧力センサP2による検出値
アノード側に流入するガスのガス流量QAN,iは、水素流量QH2,i、窒素流量QN2,AN、i、水蒸気流量QH2O.iの合計であり、インジェクタ45からの水素ガス流量QH2.INJと、水素ポンプ46によるポンプガス流量QPUMPの合計(水素ガス流量QH2.INJ+ポンプガス流量QPUMP)で求められる。
また、水素ガス流量QH2.INJは、一般的な関数f(P,Flag)により求められる。Pは、インジェクタ45の上流圧であり、Flagは、インジェクタの開信号である。ポンプガス流量QPUMPは、水素ガスと窒素ガスと水蒸気の流量で構成されている。ポンプガス流量QPUMP中の水素ガスと窒素ガスの割合は、ポンプ消費動力から求められ、水蒸気流量は、上述で推定された水蒸気分布による水素出口27bの水分量から求められる。これによって、ポンプガス流量QPUMP中の水素ガス流量QH2.PUMPと窒素ガス流量QN2.PUMPと水蒸気流量QH2O.PUMPが求められる。したがって、ガス流量QAN,i=水素ガス流量QH2.INJ+水素ガス流量QH2.PUMP+窒素ガス流量QN2.PUMP+水蒸気流量QH2O.PUMPが求められ、水素流量QH2,iが水素ガス流量QH2.INJ+水素ガス流量QH2.PUMPとなり、窒素流量QN2,AN、iが窒素ガス流量QN2.PUMPとなる。
Td、CA=Td、AN=Tin,i
VN2、CA→AN=DN2×(PN2、CA-PN2、AN)
I=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、QH2,i、QN2,AN、i、VH2O、CA→AN、VN2、CA→AN、ix)
RH=f(Td、CA、Td、AN、TOUT,i、Pair,i、PH2,i、QH2,i、QN2,AN、i、VH2O、CA→AN、VN2、CA→AN、ix)
次に、上記推定方法による推定結果を利用した制御例について説明する。
Claims (8)
- アノード電極、カソード電極、これらの間の電解質膜、及び反応ガス流路を有する単セルを複数積層してなるセル積層体を含む燃料電池を備えた燃料電池システムであって、
電解質膜内又は反応ガス流路内の少なくとも一方の複数の所定位置の水蒸気量及び窒素ガス量を推定する推定部と、
間欠運転の運転停止時において、前記推定部により推定された前記所定位置毎の前記水蒸気量又は窒素ガス量の少なくとも一方と、前記単セルの積層方向及び前記反応ガス流路の流路方向を考慮して設定された前記所定位置毎の閾値とを比較し、少なくとも一つの位置において前記水蒸気量又は窒素ガス量の少なくとも一方が前記閾値を超えた場合に、前記反応ガス流路に水素ガスを含むガスを供給して、前記燃料電池内から水蒸気及び窒素ガスを排出する運転制御部と、を有する、燃料電池システム。 - 前記反応ガス流路は、前記燃料電池から排出されたガスを処理して前記燃料電池に供給する循環流路に連通しており、
前記運転制御部は、前記閾値を超えた場合に、前記循環流路のガス循環を行う、請求項1に記載の燃料電池システム。 - 前記循環流路には、当該燃料電池システムの外部に通じる排出流路が開閉弁を介して接続されており、
前記運転制御部は、ガス循環時に前記開閉弁を開放し、前記排出流路を通じて水蒸気、窒素ガスの排出を行う、請求項2に記載の燃料電池システム。 - 前記推定部は、前記水蒸気量の推定として、前記電解質膜を介して前記アノード電極と前記カソード電極との間で行われる水移動を考慮して各単セルのセル面内における前記反応ガス流路の残水量分布及び前記電解質膜の含水量分布を推定し、前記窒素ガス量の推定として、前記電解質膜を介して前記アノード電極と前記カソード電極との間で行われる窒素ガス移動を考慮して各単セルのセル面内における前記反応ガス流路の窒素ガス量分布を推定する、請求項1~3のいずれかに記載の燃料電池システム。
- アノード電極、カソード電極、これらの間の電解質膜、及び反応ガス流路を有する単セルを複数積層してなるセル積層体を含む燃料電池を備えた燃料電池システムの運転方法であって、
電解質膜内又は反応ガス流路内の少なくとも一方の複数の所定位置の水蒸気量及び窒素ガス量を推定する工程と、
間欠運転の運転停止時において、前記推定部により推定された前記所定位置毎の前記水蒸気量又は窒素ガス量の少なくとも一方と、前記単セルの積層方向及び前記反応ガス流路の流路方向を考慮して設定された前記所定位置毎の閾値とを比較し、少なくとも一つの位置において前記水蒸気量又は窒素ガス量の少なくとも一方が前記閾値を超えた場合に、前記反応ガス流路に水素ガスを含むガスを供給して、前記燃料電池内から水蒸気及び窒素ガスを排出する工程と、を有する、燃料電池システムの運転方法。 - 前記閾値を超えた場合に、前記燃料電池の反応ガス流路から排出されたガスを処理して前記燃料電池の反応ガス流路に供給するガス循環を行う、請求項5に記載の燃料電池システムの運転方法。
- ガス循環時に、当該ガス循環が行われる循環流路に接続された排出流路を通じて水蒸気、窒素ガスの排出を行う、請求項6に記載の燃料電池システムの運転方法。
- 前記水蒸気量及び窒素ガス量の推定工程は、前記水蒸気量の推定として、前記電解質膜を介して前記アノード電極と前記カソード電極との間で行われる水移動を考慮して各単セルのセル面内における前記反応ガス流路の残水量分布及び前記電解質膜の含水量分布を推定し、前記窒素ガス量の推定として、前記電解質膜を介して前記アノード電極と前記カソード電極との間で行われる窒素ガス移動を考慮して各単セルのセル面内における前記反応ガス流路の窒素ガス量分布を推定する、請求項5~7のいずれかに記載の燃料電池システムの運転方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112010003392.7T DE112010003392B4 (de) | 2009-08-26 | 2010-07-20 | Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems |
CN201080037659.4A CN102484262B (zh) | 2009-08-26 | 2010-07-20 | 燃料电池系统以及燃料电池系统的运转方法 |
JP2011528708A JP4849195B2 (ja) | 2009-08-26 | 2010-07-20 | 燃料電池システム及び燃料電池システムの運転方法 |
US13/260,015 US8338040B2 (en) | 2009-08-26 | 2010-07-20 | Fuel cell system and method of operating fuel cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009064881 | 2009-08-26 | ||
JPPCT/JP2009/064881 | 2009-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024581A1 true WO2011024581A1 (ja) | 2011-03-03 |
Family
ID=43627691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062177 WO2011024581A1 (ja) | 2009-08-26 | 2010-07-20 | 燃料電池システム及び燃料電池システムの運転方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8338040B2 (ja) |
CN (1) | CN102484262B (ja) |
DE (1) | DE112010003392B4 (ja) |
WO (1) | WO2011024581A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11053581B2 (en) | 2013-06-20 | 2021-07-06 | Applied Materials, Inc. | Plasma erosion resistant rare-earth oxide based thin film coatings |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6102893B2 (ja) * | 2014-11-14 | 2017-03-29 | トヨタ自動車株式会社 | 燃料電池システムおよび燃料電池搭載車両 |
JP6168032B2 (ja) * | 2014-11-14 | 2017-07-26 | トヨタ自動車株式会社 | 燃料電池システム |
JP6834718B2 (ja) * | 2017-04-06 | 2021-02-24 | トヨタ自動車株式会社 | 燃料電池システムおよびその制御方法 |
DE102021201386A1 (de) | 2021-02-15 | 2022-08-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Zellstapel für ein Brennstoffzellensystem und dessen Herstellung |
DE102021201387A1 (de) | 2021-02-15 | 2022-08-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Zellstapel für ein Brennstoffzellensystem und dessen Herstellung |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004179000A (ja) * | 2002-11-27 | 2004-06-24 | Nissan Motor Co Ltd | 燃料電池システム |
JP2004335444A (ja) * | 2003-04-16 | 2004-11-25 | Toyota Motor Corp | 燃料電池の制御方法 |
JP2005116220A (ja) * | 2003-10-03 | 2005-04-28 | Nissan Motor Co Ltd | 燃料電池システムの制御装置 |
JP2005222854A (ja) * | 2004-02-06 | 2005-08-18 | Toyota Motor Corp | 燃料電池システム |
JP2005327596A (ja) * | 2004-05-14 | 2005-11-24 | Toyota Motor Corp | 燃料電池システム |
JP2005339845A (ja) * | 2004-05-24 | 2005-12-08 | Toyota Motor Corp | 燃料電池システム |
JP2006019121A (ja) * | 2004-07-01 | 2006-01-19 | Nissan Motor Co Ltd | 燃料電池システム |
JP2007115492A (ja) * | 2005-10-19 | 2007-05-10 | Toyota Motor Corp | 燃料電池システム及びその制御方法 |
WO2008056518A1 (fr) * | 2006-10-19 | 2008-05-15 | Toyota Jidosha Kabushiki Kaisha | Pile à combustible |
JP2008293805A (ja) * | 2007-05-24 | 2008-12-04 | Toyota Motor Corp | 燃料電池面内状態推定システム及び燃料電池面内状態推定方法 |
JP2009004151A (ja) * | 2007-06-20 | 2009-01-08 | Toyota Motor Corp | 燃料電池システム |
JP2009211940A (ja) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | 燃料電池面内状態推定システム及び燃料電池面内状態推定方法 |
JP2009211919A (ja) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | 燃料電池システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4372725B2 (ja) * | 2005-06-17 | 2009-11-25 | 本田技研工業株式会社 | 燃料電池システム |
US7740964B2 (en) | 2006-04-04 | 2010-06-22 | Gm Global Technology Operations, Inc. | Adaptive anode nitrogen management control |
JP2007288850A (ja) | 2006-04-13 | 2007-11-01 | Honda Motor Co Ltd | 燃料電池車両 |
JP2008041505A (ja) | 2006-08-08 | 2008-02-21 | Toyota Motor Corp | 燃料電池システム、燃料電池の水分量推定装置及び方法 |
-
2010
- 2010-07-20 CN CN201080037659.4A patent/CN102484262B/zh not_active Expired - Fee Related
- 2010-07-20 US US13/260,015 patent/US8338040B2/en active Active
- 2010-07-20 WO PCT/JP2010/062177 patent/WO2011024581A1/ja active Application Filing
- 2010-07-20 DE DE112010003392.7T patent/DE112010003392B4/de active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004179000A (ja) * | 2002-11-27 | 2004-06-24 | Nissan Motor Co Ltd | 燃料電池システム |
JP2004335444A (ja) * | 2003-04-16 | 2004-11-25 | Toyota Motor Corp | 燃料電池の制御方法 |
JP2005116220A (ja) * | 2003-10-03 | 2005-04-28 | Nissan Motor Co Ltd | 燃料電池システムの制御装置 |
JP2005222854A (ja) * | 2004-02-06 | 2005-08-18 | Toyota Motor Corp | 燃料電池システム |
JP2005327596A (ja) * | 2004-05-14 | 2005-11-24 | Toyota Motor Corp | 燃料電池システム |
JP2005339845A (ja) * | 2004-05-24 | 2005-12-08 | Toyota Motor Corp | 燃料電池システム |
JP2006019121A (ja) * | 2004-07-01 | 2006-01-19 | Nissan Motor Co Ltd | 燃料電池システム |
JP2007115492A (ja) * | 2005-10-19 | 2007-05-10 | Toyota Motor Corp | 燃料電池システム及びその制御方法 |
WO2008056518A1 (fr) * | 2006-10-19 | 2008-05-15 | Toyota Jidosha Kabushiki Kaisha | Pile à combustible |
JP2008293805A (ja) * | 2007-05-24 | 2008-12-04 | Toyota Motor Corp | 燃料電池面内状態推定システム及び燃料電池面内状態推定方法 |
JP2009004151A (ja) * | 2007-06-20 | 2009-01-08 | Toyota Motor Corp | 燃料電池システム |
JP2009211940A (ja) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | 燃料電池面内状態推定システム及び燃料電池面内状態推定方法 |
JP2009211919A (ja) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | 燃料電池システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11053581B2 (en) | 2013-06-20 | 2021-07-06 | Applied Materials, Inc. | Plasma erosion resistant rare-earth oxide based thin film coatings |
Also Published As
Publication number | Publication date |
---|---|
US20120189925A1 (en) | 2012-07-26 |
DE112010003392B4 (de) | 2024-08-14 |
CN102484262B (zh) | 2014-09-03 |
DE112010003392T5 (de) | 2012-06-06 |
CN102484262A (zh) | 2012-05-30 |
US8338040B2 (en) | 2012-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5397387B2 (ja) | 燃料電池システム | |
US8173311B2 (en) | Method for dynamic adaptive relative humidity control in the cathode of a fuel cell stack | |
JP4871219B2 (ja) | スタック入口のrhを増大させるためのシステムレベル調整 | |
JP5273251B2 (ja) | 燃料電池の含水量制御方法及び燃料電池システム | |
JP5310738B2 (ja) | 燃料電池の水分量推定装置及び燃料電池システム | |
JP5459223B2 (ja) | 燃料電池システム | |
US8580447B2 (en) | Fuel cell system and control method for the same | |
WO2011024581A1 (ja) | 燃料電池システム及び燃料電池システムの運転方法 | |
JP2007220538A (ja) | 燃料電池システム | |
JP2014127452A (ja) | 燃料電池システム | |
JP5310739B2 (ja) | 燃料電池システム | |
JP5773084B2 (ja) | 燃料電池システム | |
JP5310740B2 (ja) | 燃料電池システム | |
JP4849195B2 (ja) | 燃料電池システム及び燃料電池システムの運転方法 | |
JP5517098B2 (ja) | 燃料電池システム | |
JP2013089335A (ja) | 燃料電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080037659.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811632 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011528708 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13260015 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120100033927 Country of ref document: DE Ref document number: 112010003392 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811632 Country of ref document: EP Kind code of ref document: A1 |