[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011021567A1 - Electrical conduction pattern inspection apparatus and inspection method - Google Patents

Electrical conduction pattern inspection apparatus and inspection method Download PDF

Info

Publication number
WO2011021567A1
WO2011021567A1 PCT/JP2010/063705 JP2010063705W WO2011021567A1 WO 2011021567 A1 WO2011021567 A1 WO 2011021567A1 JP 2010063705 W JP2010063705 W JP 2010063705W WO 2011021567 A1 WO2011021567 A1 WO 2011021567A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
electrode
electrical signal
detected
kth
Prior art date
Application number
PCT/JP2010/063705
Other languages
French (fr)
Japanese (ja)
Inventor
秀嗣 山岡
Original Assignee
株式会社エフカム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフカム filed Critical 株式会社エフカム
Priority to KR1020127004075A priority Critical patent/KR101384518B1/en
Priority to CN2010800294698A priority patent/CN102472788A/en
Publication of WO2011021567A1 publication Critical patent/WO2011021567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2805Bare printed circuit boards

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.
  • the first is a method using a probe card.
  • a pair of inspection styluses are formed on the probe card so as to contact both ends of the conductive pattern for each conductive pattern.
  • a probe card is placed on the circuit board so that each inspection stylus is in exact contact with both ends of the corresponding conductive pattern.
  • An electrical signal is sent from the probe card to the inspection stylus that contacts one end of the conductive pattern.
  • the electrical signal is transmitted to the other end through the conductive pattern, and the electrical signal is transmitted from the other end to the probe card.
  • the second method is to scan the probe.
  • An electrode plate is disposed at one end of the conductive pattern on the circuit board.
  • the electrode plate has such a width that electrostatic coupling can be established with all of one end of the conductive pattern on the circuit board through the circuit board.
  • the probe is disposed on the other end side of the conductive pattern.
  • the tip of the probe is formed so as to contact only one of the conductive patterns on the circuit board.
  • An electrical signal is sent from the probe to the conductive pattern, and is transmitted through the conductive pattern to the electrode plate.
  • a conductive test or the like of the conductive pattern is performed.
  • a conductive test is performed for each conductive pattern by scanning the probe (Patent Document 1).
  • a sensor unit can be installed at the end of the conductive pattern opposite to the probe instead of the electrode plate (Patent Document 2).
  • the sensor unit is disposed on the conductive pattern in a non-contact manner.
  • the sensor section is scanned in synchronism with the probe, and the presence or absence of a defect is inspected for each conductive pattern as described above. It is also possible to scan the probe in two directions (Patent Document 3).
  • the inspection stylus is formed so as to contact both ends of the conductive pattern.
  • a defective conductive pattern can be specified by unidirectional scanning of the probe.
  • the position of the defect on the conductive pattern cannot be specified.
  • the control function of the probe or the like becomes complicated and time is required.
  • the camera When a camera is used, the camera itself and a control device for operating the camera are required.
  • detection is performed using an image taken by a camera, the image quality is determined by pixels having color information (tone and gradation). A pixel is the smallest unit having color information, and there is a limit to its fineness. For this reason, there is a limit to detection via an image in a circuit board with a high density.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide means capable of quickly and easily specifying defect positions of a plurality of conductive patterns formed on a substrate.
  • a conductive pattern inspection apparatus is an apparatus for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And an electric signal applied by the applying means from the conductive pattern, respectively, via an applying means for supplying a plurality of second electrodes arranged at a predetermined interval from the first electrode along the conductive pattern. Based on the electrical signal of each conductive pattern detected by the detection means, the scanning means for scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern And a disconnection determining means for determining the number of the conductive patterns having the disconnection and the position of the disconnection on the conductive pattern.
  • the detection means detects the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode, and the detection means Short circuit determination means for determining the number of conductive patterns having a short circuit may be further provided based on the detected electrical signal.
  • the first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern. .
  • the disconnection determining means is configured to detect the kth conductive pattern when at least one of the electrical signals detected from the kth conductive pattern via the second electrode is smaller than a preset first reference value. May be determined to be disconnected.
  • the disconnection determining means is configured to determine, based on the position of the second electrode where an electrical signal smaller than the first reference value is detected in each electrical signal detected from the kth conductive pattern via the second electrode.
  • the disconnection position in the main conductive pattern may be determined.
  • the short-circuit determining unit is configured to detect the k-th conductivity when the electrical signal obtained from the second electrode via the k-th conductive pattern detected by the detection unit is greater than a preset second reference value. It may be determined that the pattern is short-circuited.
  • the short-circuit determining unit uses the kth conductive pattern detected by the detecting unit. When at least one of the respective electrical signals obtained from the second electrode is greater than a preset third reference value, the kth conductive pattern and the other conductive pattern are short-circuited. It may be determined.
  • the short-circuit determining means is configured based on the position of the second electrode at which an electrical signal larger than the third reference value is detected for each electrical signal detected via the second electrode from the kth conductive pattern.
  • the short-circuit position in the kth conductive pattern may be determined.
  • a conductive pattern inspection method is a method for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And detecting an electrical signal applied by the applying means from the conductive pattern through a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern.
  • a scanning step of scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern, and an electrical signal of each conductive pattern detected in the detection step A disconnection position specifying step of specifying the number of conductive patterns having a disconnection and the position of the disconnection on the conductive pattern.
  • the detecting step is a step of detecting the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode.
  • a short-circuit determining step of determining the number of conductive patterns having a short circuit based on the detected electrical signal.
  • the first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern.
  • the disconnection in the kth conductive pattern based on the position of the second electrode where the electrical signal smaller than the first reference value is detected. The position may be determined.
  • the kth conductive pattern detected by the detection means When the electrical signal obtained from the second electrode through the kth conductive pattern detected by the detection means is greater than a preset second reference value, the kth conductive pattern is short-circuited. You may judge.
  • each electric current obtained from the second electrode via the kth conductive pattern is provided.
  • at least one of the signals is larger than a preset third reference value, it may be determined that the k-th conductive pattern and the other conductive pattern are short-circuited.
  • the kth conductive pattern For each electrical signal detected via the second electrode from the kth conductive pattern, the kth conductive pattern based on the position of the second electrode where an electrical signal greater than the third reference value is detected.
  • the short-circuit position at may be determined.
  • the first electrode and the plurality of second electrodes are scanned with respect to the N conductive patterns formed on the substrate with respect to the respective conductive patterns, whereby the number of the disconnected conductive patterns and The position can be specified.
  • FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the conductive pattern inspection apparatus 10.
  • FIG. 3 is a flowchart showing the conductive pattern inspection method.
  • FIG. 4 is a flowchart showing determination of disconnection / short circuit.
  • FIG. 5 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17.
  • FIG. 6 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection.
  • FIG. 7 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection.
  • FIG. 8 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit.
  • FIG. 9 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17.
  • FIG. 10 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit with the second conductive pattern 47.
  • FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of a conductive pattern inspection apparatus according to an embodiment of the present invention. Further, in FIG. 2, the first electrode support member 18 described later is omitted.
  • the conductive pattern inspection apparatus 10 mainly includes a supply unit 20, a first electrode 12, a receiving unit 13, a signal processing unit 21, a control unit 23, an operation unit 24, and a support base 30.
  • the support table 30 is a base that holds an inspection target.
  • the first electrode 12 and the receiving portion 13 are provided on the surface on which the inspection target of the support base 30 is held.
  • the first electrode 12 is connected to the supply unit 20 by a conducting wire 26.
  • the receiving portion 13 has a plurality of second electrodes 14 on the surface facing the support base 30.
  • the second electrode 14 is connected to the signal processing unit 21 via a conducting wire 27.
  • the supply unit 20 is connected to the control unit 23 via a conducting wire 28.
  • control unit 23 is electrically connected to the signal processing unit 21 and the operation unit 24 through a conductive wire or the like. Details of each component will be described below.
  • the supply unit 20 corresponds to the application unit in the present invention.
  • the receiving part 13 corresponds to the detection means in the present invention.
  • the operation unit 24 corresponds to the scanning unit in the present invention.
  • the control unit 23 corresponds to a disconnection determination unit and a short circuit determination unit in the present invention.
  • a substrate 11 to be inspected is shown. Further, the direction parallel to the conductive pattern 17 on the plane of the substrate 11 is used as the direction 101, and the direction perpendicular to the conductive pattern is used as the direction 102.
  • the substrate 11 is a substrate used for a liquid crystal panel or the like, and the conductive pattern 17 is formed on the base portion 33.
  • the base portion 33 is a thin layer plate made of an insulator, and examples of the main material include glass and plastic.
  • Each conductive pattern 17 has substantially the same linear shape, and N pieces are formed in parallel on the base portion 33. That is, the N conductive patterns 17 are formed so as to be substantially parallel to each other and arranged on the upper surface of the base portion 33.
  • the conductive pattern 17 is formed of a conductive material, and examples of such a material include indium and tin oxide (ITO), silver, and aluminum.
  • ITO indium and tin oxide
  • the first electrode 12 is electrically connected to the supply unit 20 by the conducting wire 26 as described above.
  • the first electrode support member 18 supports the first electrode 12.
  • the first electrode support member 18 supports the first electrode 12 from the side.
  • the present invention is not limited to this configuration, and the first electrode 12 can be supported from the first electrode support member 18. It is.
  • the tip of the first electrode 12 has a contact portion 16.
  • the contact portion 16 is disposed so as to contact the vicinity of one first end 35 of the conductive pattern 17.
  • the contact portion 16 of the first electrode 12 is smaller than the interval between the adjacent conductive patterns 17, and the contact portion 16 does not simultaneously contact the two adjacent conductive patterns 17. In other words, the contact part 16 can contact only one of the conductive patterns 17.
  • the contact part 16 is a conductor.
  • the conductor include a metal represented by a tungsten alloy.
  • the diameter of the cross section is preferably about 50 to 70 ⁇ m.
  • the receiving portion 13 includes a plurality of second electrodes 14 and a second electrode support member 19.
  • the second electrode support member 19 makes each second electrode 14 face the substrate 11 and supports each second electrode 14 at a position away from the substrate 11 by a certain distance.
  • the second electrode 14 disposed below the second electrode support member 19 is indicated by a dotted line.
  • the plurality of second electrodes 14 supported by the second electrode support member 19 can be moved together in the direction 102.
  • the plurality of second electrodes 14 are arranged in a line at predetermined intervals from the first end 35 in contact with the first electrode to the second end 36 on the opposite side along the conductive pattern 17 in contact with the first electrode 12. ing. That is, each second electrode 14 is not in contact with the conductive pattern 17 and detects an electrical signal from the conductive pattern 17 through electrostatic coupling.
  • the second electrode 14 has a size facing the plurality of conductive patterns 17 including the conductive pattern 17 with which the first electrode 12 contacts and the conductive pattern 17 adjacent thereto. If an electrical signal is also given to the conductive pattern 17 other than the conductive pattern 17 with which the first electrode 12 contacts, the second electrode 14 can detect the electrical signal from the plurality of conductive patterns 17 simultaneously.
  • the first electrode support member 18 and the second electrode support member 19 can be driven and transmitted from a motor (not shown) by the operation unit 24 and moved in the direction 102 as a unit.
  • Drive transmission from the motor to the first electrode support member 18 and the second electrode support member 19 is realized by a known gear mechanism or belt mechanism.
  • the position of the 1st electrode support member 18 and the 2nd electrode support member 19 can be grasped
  • the first electrode support member 18 and the second electrode support member 19 are moved in the scanning direction 103, the first electrode 12 and the plurality of second electrodes 14 are scanned with respect to each conductive pattern 17.
  • the signal processing unit 21 receives an electrical signal detected by the second electrode 14.
  • the signal processing unit 21 amplifies the received signal, removes noise by a filter, and serially outputs the signal in a certain order.
  • the control unit 23 is configured as an information processing apparatus like a computer, for example.
  • a program for instructing the timing and magnitude of the electrical signal to be output from the supply unit 20 to the first electrode 12, and the first electrode support member 18 and the second electrode support member 19 at a predetermined timing A program for moving to a predetermined position, a program for specifying a position where the conductive pattern 17 is disconnected or short-circuited based on the electric signal output from the signal processing unit 21 are installed.
  • the substrate 11 to be inspected is fixed on the support base 30 in advance.
  • the fixing method is not particularly limited, and the substrate 11 is fixed at a predetermined position on the support base 30 by a robot or human power.
  • the control unit 23 receives the inspection start instruction, the control unit 23 moves the first electrode support member 18 and the second electrode support member 19 to the inspection start position corresponding to the first conductive pattern 17 (S1).
  • the first electrode 12 contacts the first conductive pattern 17 at the inspection start position.
  • Each second electrode 14 faces a plurality of conductive patterns 17 including the first conductive pattern 17.
  • the inspection start position is not necessarily limited to the first conductive pattern 17 on the substrate 11, but in this specification, the conductive pattern 17 at which the inspection is started is referred to as the first conductive pattern 17.
  • the control unit 23 causes the supply unit 20 to apply an electric signal to the first conductive pattern 17 through the first electrode 12, and starts supplying the electric signal (S2).
  • An example of this electric signal is an alternating voltage, and the voltage is about 20V.
  • each second electrode 14 detects a sufficiently large electric signal, so that it is easy to distinguish between the detected electronic signal and noise.
  • the controller 23 moves the first electrode support member 18 and the second electrode support member 19 from the first conductive pattern 17 toward the Nth conductive pattern 17 (S3). Since the first electrode 12 is in contact with any one of the conductive patterns 17, in this scanning, the electrical signals from the first electrode 12 are sequentially supplied from the first conductive pattern 17 to the Nth conductive pattern 17. Are applied respectively.
  • the control unit 23 determines whether the first electrode 12 and the second electrode 14 are positioned at the measurement position (S4). If the first electrode 12 and the second electrode 14 have not reached the measurement position (S4: NO), the control unit 23 continues scanning the first electrode support member 18 and the second electrode support member 19.
  • the measurement position is a position where an electric signal can be detected from each conductive pattern 17. For example, the movement distances of the first electrode support member 18 and the second electrode support member 19 are detected by a linear encoder or an encoder of a motor, and the first electrode 12 and the first electrode 12 It is determined whether the two electrodes 14 are located at the measurement position.
  • the control part 23 will supply the electric signal supplied to the conductive pattern 17 and detected from each 2nd electrode 14, Received from the signal processing unit 21. This electric signal is stored in the RAM of the control unit 23 as an electric signal (S5).
  • the control unit 23 determines whether the first electrode support member 18 and the second electrode support member 19 have reached the end positions after detecting an electrical signal from one conductive pattern 17 (S6).
  • the inspection end position means that if N conductive patterns 17 are formed on the substrate 11, the first electrode 12 and the second electrode 14 move beyond the Nth conductive pattern 17 to the end side of the substrate 11. Is the position. At the inspection end position, the first electrode 12 contacts the Nth conductive pattern 17, and each second electrode 14 faces a plurality of conductive patterns 17 including the Nth conductive pattern 17. Note that the inspection end position is not necessarily limited to the position past the Nth conductive pattern 17 on the substrate 11.
  • the control unit 23 determines the measurement position (S4) and measures the detected electrical signal. (S5) is repeated.
  • the control unit 23 stops supplying and measuring the electrical signal (S7). Then, the control unit 23 extracts line data corresponding to each conductive pattern 17 from the stored electrical signal (S8), and determines whether the first to Nth conductive patterns 17 are disconnected or short-circuited. (S9).
  • the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM (S21). Then, the read electrical signal of the kth conductive pattern 17 is compared with the first reference value (S22).
  • the first reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is disconnected.
  • the electrical signal detected by the fifth second electrode 14 is smaller than the first reference value among the electrical signals detected from the second electrodes 14 in the k-th conductive pattern 17 (S22). : YES), assuming that there is a break in the vicinity of the fifth second electrode 14 in the kth conductive pattern 17, the positions of the kth and fifth second electrodes 14 having the break are stored in the RAM (S23). .
  • the control unit 23 compares the electrical signal with the second reference value (S24).
  • the second reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is short-circuited.
  • the k-th conductive pattern 17 is (k + 1) -th between the second electrode 14 and the third second electrode 14 counted from the first electrode 12 side.
  • the electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the (k + 1) th conductive pattern 17 so that each second electrode 14 , An electrical signal is detected from the kth conductive pattern 17 and the (k + 1) th conductive pattern 17. Therefore, the electrical signal detected from each second electrode 14 is detected with a magnitude about twice that when normal.
  • a value slightly smaller than the magnitude of the electrical signal that will be detected from each second electrode 14 when there is a short circuit is preset as the second reference value.
  • the control unit 23 If any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is larger than the second reference value (S24: YES), the control unit 23 has a short circuit in the kth conductive pattern 17. Then, the kth short-circuited is stored in the RAM (S25).
  • the control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the second reference value (S24: NO). Is stored in the RAM (S26).
  • the control unit 23 reads the disconnection position / short circuit position stored in the RAM and displays the result as a test result on a display unit such as a display (S10). ). Based on this display, the inspector can know at which position of the substrate 11 there is a disconnection or a short circuit.
  • the present invention is not capable of inspecting only the substrate 11 shown in the embodiment.
  • a liquid crystal composed of two layers in which a thin layer transistor (TFT) employed in a liquid crystal screen or the like is incorporated. A panel can be inspected.
  • TFT thin layer transistor
  • the substrate 51 is a substrate used for a liquid crystal panel or the like like the substrate 11, and a part of the base portion 33 is insulated from the conductive pattern 17 formed on the base portion 33.
  • a second conductive pattern 47 is formed inside the base portion 33. That is, the conductive pattern 17 is formed as a surface layer of the base portion 33, and the second conductive pattern 47 is formed as an inner layer of the base portion 33. In each figure, the second conductive pattern 47 is indicated by a wavy line.
  • Each second conductive pattern 47 has substantially the same linear shape, and X pieces are formed in parallel so as to be substantially orthogonal to the conductive pattern 17 in a plan view shown in FIG.
  • the number of the second conductive patterns 47, that is, X, need not be the same as the number of the conductive patterns 17, that is, N.
  • the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM, and uses the read electrical signal of the kth conductive pattern 17 as the third reference value. Compare.
  • This third reference value is a value set in advance based on the magnitude of the electrical signal detected when there is a short circuit between the conductive pattern 17 and the second conductive pattern 47.
  • the kth conductive As shown in FIG. 9, when there is no short circuit between the conductive pattern 17 and the second conductive pattern 47, that is, when there is no cross short between the conductive pattern 17 and the second conductive pattern 47, the kth conductive The magnitudes of electrical signals obtained from the seven second electrodes 14 facing the pattern 17 are substantially the same.
  • a short circuit (cross) between the k-th conductive pattern 17 and the second conductive pattern 47 immediately below the fourth second electrode 14, counted from the first electrode 12 side. If a short circuit occurs, an electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the shorted second conductive pattern 47, and the fourth second electrode 14 An electric signal is detected from each of the first, k + 1th, and k + 2th conductive patterns 17. Therefore, the electrical signal detected from the fourth second electrode 14 is detected with a magnitude that is twice or more that of a normal one. Thus, a value slightly smaller than the magnitude of the electrical signal that will be detected from the second electrode 14 when there is a short circuit is preset as the third reference value.
  • the control unit 23 performs the kth operation. It is determined that the conductive pattern 17 is short-circuited with the second conductive pattern 47 in the vicinity of the fourth second electrode 14, and the positions of the short-circuited k-th and fourth second electrodes 14 are stored in the RAM. Store. On the other hand, the control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the third reference value. . In this way, the number and position of the short circuit between the conductive pattern 17 and the second conductive pattern 47 are specified for the substrate 51.
  • the present invention can be used for an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Provided is a means for promptly and easily identifying defect locations in a plurality of electrical conduction patterns formed on a board. An electrical conduction pattern inspection apparatus (10) is provided with a supply unit (20) which supplies electrical signals to electrical conduction patterns (17) via a first electrode (12); a receiving unit (13) whereby electrical signals applied by the supply unit (20) are all detected from the electrical conduction patterns (17) via a plurality of second electrodes (14) that are disposed, starting from near the first electrode (12), at specified intervals along several electrical conduction patterns (17); an operation unit (24) which scans the first electrode (12) and the second electrodes (14), starting with the first electrical conduction pattern (17) and proceeding to the Nth electrical conduction pattern (17); and a control unit (23) whereby on the basis of electrical signals that are supplied to all electrical conduction patterns (17) and are detected by the receiving unit (13), there are determined the ordinal number of the electrical conduction pattern (17) having a broken wire and the location of the broken wire in the aforementioned electrical conduction pattern (17).

Description

導電パターン検査装置及び検査方法Conductive pattern inspection apparatus and inspection method
 本発明は、基板上に形成された導電パターンの電気的欠陥を検出する検査装置及び検査方法に関する。 The present invention relates to an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.
 近年、電子機器の小型化及び軽量化に伴い、回路基板は小型化され、回路基板上の導電パターンは高密度化されている。導電パターンの高密度化により、短絡や断線などの欠陥が起こり易くなった。このため、細密な導電パターンを検査する方法や装置について研究が行われている。この導電パターンの短絡及び断線状況を検査する方法は、大きく二つに分類される。 In recent years, with the miniaturization and weight reduction of electronic devices, circuit boards have been miniaturized and the conductive patterns on the circuit boards have been densified. Due to the increase in the density of the conductive pattern, defects such as short circuits and disconnections are likely to occur. For this reason, research has been conducted on methods and apparatuses for inspecting fine conductive patterns. There are roughly two methods for inspecting the short-circuit state and the disconnection state of the conductive pattern.
 一つ目は、プローブカードを用いる方法である。プローブカード上に、導電パターン毎に一対の検査用触針が、導電パターンの両端に接触するように形成される。検査時には、それぞれの検査用触針が、それぞれ対応する導電パターンの両端に正確に接触するように、回路基板上にプローブカードが設置される。プローブカードから導電パターンの一端に接する検査用触針に、電気信号が流される。電気信号は導電パターンを介して他端に伝達され、他端から電気信号がプローブカードへと伝達される。この方法により、導電パターンの欠陥の有無の検査が行われる。 The first is a method using a probe card. A pair of inspection styluses are formed on the probe card so as to contact both ends of the conductive pattern for each conductive pattern. At the time of inspection, a probe card is placed on the circuit board so that each inspection stylus is in exact contact with both ends of the corresponding conductive pattern. An electrical signal is sent from the probe card to the inspection stylus that contacts one end of the conductive pattern. The electrical signal is transmitted to the other end through the conductive pattern, and the electrical signal is transmitted from the other end to the probe card. By this method, the presence or absence of defects in the conductive pattern is inspected.
 二つ目は、プローブを走査させる方法である。回路基板上の導電パターンの一端に電極板が配置される。電極板は回路基板上の導電パターンの一端全てと回路基板を介して静電結合が可能とされる広さを有する。プローブは、導電パターンの他端側に配置される。プローブの先端部は、回路基板上の導電パターンのいづれか一つにのみに接触するように形成されている。電気信号がプローブから導電パターンに流され、導電パターンを伝わり電極板へと伝達される。これにより導電パターンの導電テスト等が行われる。また、プローブを走査させることにより、導電パターン毎に導電テストが行われる(特許文献1)。この方法においては、電極板の代わりにセンサ部が、プローブと反対側の導電パターンの端に設置されることも可能である(特許文献2)。センサ部は導電パターン上に非接触で配置される。センサ部はプローブと同調して走査され、上記と同様に導電パターンごとに欠陥の有無の検査が行われる。プローブを二方向に走査させることも可能である(特許文献3)。 The second method is to scan the probe. An electrode plate is disposed at one end of the conductive pattern on the circuit board. The electrode plate has such a width that electrostatic coupling can be established with all of one end of the conductive pattern on the circuit board through the circuit board. The probe is disposed on the other end side of the conductive pattern. The tip of the probe is formed so as to contact only one of the conductive patterns on the circuit board. An electrical signal is sent from the probe to the conductive pattern, and is transmitted through the conductive pattern to the electrode plate. As a result, a conductive test or the like of the conductive pattern is performed. Moreover, a conductive test is performed for each conductive pattern by scanning the probe (Patent Document 1). In this method, a sensor unit can be installed at the end of the conductive pattern opposite to the probe instead of the electrode plate (Patent Document 2). The sensor unit is disposed on the conductive pattern in a non-contact manner. The sensor section is scanned in synchronism with the probe, and the presence or absence of a defect is inspected for each conductive pattern as described above. It is also possible to scan the probe in two directions (Patent Document 3).
特開2003-344474号公報JP 2003-344474 A 特開2006-300665号公報JP 2006-300665 A 特開2008-281576号公報JP 2008-281576 A
 上述された一つ目の方法においては、検査用触針が導電パターンの両端に接触するように形成されている。この方法によって、短絡等の有無は検出されるが、検出された欠陥の位置を特定することは不可能である。 In the first method described above, the inspection stylus is formed so as to contact both ends of the conductive pattern. By this method, the presence or absence of a short circuit or the like is detected, but it is impossible to specify the position of the detected defect.
 上述された二つ目の方法においては、プローブの一方向の走査によって、欠陥のある導電パターンを特定することはできる。しかし、導電パターン上における欠陥の位置は特定できない。位置を特定するためには、再度プローブやカメラなどを走査して探索する必要がある。また、プローブ等を動かす方向が2次元に増えることにより、プローブ等の制御機能が複雑になる上、時間も要する。カメラが使用される場合は、カメラ自体及びカメラを操作する制御装置が必要となる。カメラで撮った画像によって検出する場合、画質は色情報(色調や階調)を持つ画素によって決定される。画素は色情報を持つ最小の単位であり、細かさには限界がある。このため、高密度化された回路基板において、画像を介する検出には限界がある。 In the second method described above, a defective conductive pattern can be specified by unidirectional scanning of the probe. However, the position of the defect on the conductive pattern cannot be specified. In order to specify the position, it is necessary to scan again with a probe or a camera. Further, since the direction in which the probe or the like is moved in two dimensions increases, the control function of the probe or the like becomes complicated and time is required. When a camera is used, the camera itself and a control device for operating the camera are required. When detection is performed using an image taken by a camera, the image quality is determined by pixels having color information (tone and gradation). A pixel is the smallest unit having color information, and there is a limit to its fineness. For this reason, there is a limit to detection via an image in a circuit board with a high density.
 本発明は、前述された問題に鑑みてなされたものであり、その目的は、基板上に形成された複数本の導電パターンの欠陥位置を迅速かつ簡易に特定できる手段を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide means capable of quickly and easily specifying defect positions of a plurality of conductive patterns formed on a substrate.
 本発明に係る導電パターン検査装置は、基板に並列に形成されたN本の直線状の導電パターンの状態を検査する装置であって、第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加手段と、上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加手段によって印加された電気信号をそれぞれ検出する検出手段と、上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査手段と、上記検出手段が検出した各導電パターンの電気信号に基づいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を判断する断線判断手段と、を備える。 A conductive pattern inspection apparatus according to the present invention is an apparatus for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And an electric signal applied by the applying means from the conductive pattern, respectively, via an applying means for supplying a plurality of second electrodes arranged at a predetermined interval from the first electrode along the conductive pattern. Based on the electrical signal of each conductive pattern detected by the detection means, the scanning means for scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern And a disconnection determining means for determining the number of the conductive patterns having the disconnection and the position of the disconnection on the conductive pattern.
 上記検出手段は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出するものであり、上記検出手段が検出した電気信号に基づいて、短絡のある導電パターンの本数目を判断する短絡判断手段と、を更に備えてもよい。 The detection means detects the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode, and the detection means Short circuit determination means for determining the number of conductive patterns having a short circuit may be further provided based on the detected electrical signal.
 上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものであることが好ましい。       The first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern. .
 上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断するものであってもよい。 The disconnection determining means is configured to detect the kth conductive pattern when at least one of the electrical signals detected from the kth conductive pattern via the second electrode is smaller than a preset first reference value. May be determined to be disconnected.
 上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号において、上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断するものであってもよい。 The disconnection determining means is configured to determine, based on the position of the second electrode where an electrical signal smaller than the first reference value is detected in each electrical signal detected from the kth conductive pattern via the second electrode. The disconnection position in the main conductive pattern may be determined.
 上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断するものであってもよい。 The short-circuit determining unit is configured to detect the k-th conductivity when the electrical signal obtained from the second electrode via the k-th conductive pattern detected by the detection unit is greater than a preset second reference value. It may be determined that the pattern is short-circuited.
  上記導電パターン検査装置は、上記導電パターンに対して絶縁層を介して別の導電パターンが設けられた上記基板の検査において、上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断するものであってもよい。   In the inspection of the substrate in which another conductive pattern is provided on the conductive pattern via an insulating layer with respect to the conductive pattern, the short-circuit determining unit uses the kth conductive pattern detected by the detecting unit. When at least one of the respective electrical signals obtained from the second electrode is greater than a preset third reference value, the kth conductive pattern and the other conductive pattern are short-circuited. It may be determined.
 上記短絡判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断するものであってもよい。 The short-circuit determining means is configured based on the position of the second electrode at which an electrical signal larger than the third reference value is detected for each electrical signal detected via the second electrode from the kth conductive pattern. The short-circuit position in the kth conductive pattern may be determined.
 本発明に係る導電パターン検査方法は、基板に並列に形成されたN本の直線状の導電パターンの状態を検査する方法であって、第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加工程と、上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加手段によって印加された電気信号をそれぞれ検出する検出工程と、上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査工程と、上記検出工程において検出された各導電パターンの電気信号に基づいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を特定する断線位置特定工程と、を含む。 A conductive pattern inspection method according to the present invention is a method for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And detecting an electrical signal applied by the applying means from the conductive pattern through a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern. A scanning step of scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern, and an electrical signal of each conductive pattern detected in the detection step A disconnection position specifying step of specifying the number of conductive patterns having a disconnection and the position of the disconnection on the conductive pattern.
 上記検出工程は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出する工程であり、上記検出工程において検出された電気信号に基づき短絡のある導電パターンの本数目を判断する短絡判断工程と、を更に含んでもよい。 The detecting step is a step of detecting the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode. In the detecting step, A short-circuit determining step of determining the number of conductive patterns having a short circuit based on the detected electrical signal.
 上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものであることが好ましい。  The first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern.
 k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断してもよい。 When at least one of the electrical signals detected from the kth conductive pattern through the second electrode is smaller than a preset first reference value, the kth conductive pattern is disconnected. You may judge.
 k本目の導電パターンから上記第二電極を介して検出された各電気信号において、上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断してもよい。 In each electrical signal detected from the kth conductive pattern via the second electrode, the disconnection in the kth conductive pattern based on the position of the second electrode where the electrical signal smaller than the first reference value is detected. The position may be determined.
 上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断してもよい。 When the electrical signal obtained from the second electrode through the kth conductive pattern detected by the detection means is greater than a preset second reference value, the kth conductive pattern is short-circuited. You may judge.
  上記導電パターン検査方法は、上記導電パターンに対して絶縁層を介して別の導電パターンが設けられた上記基板の検査において、k本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断してもよい。   In the conductive pattern inspection method, in the inspection of the substrate in which another conductive pattern is provided on the conductive pattern via an insulating layer, each electric current obtained from the second electrode via the kth conductive pattern is provided. When at least one of the signals is larger than a preset third reference value, it may be determined that the k-th conductive pattern and the other conductive pattern are short-circuited.
 k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断してもよい。 For each electrical signal detected via the second electrode from the kth conductive pattern, the kth conductive pattern based on the position of the second electrode where an electrical signal greater than the third reference value is detected. The short-circuit position at may be determined.
 本発明によれば、基板上に形成されたN本の導電パターンに対して第一電極及び複数の第二電極を各導電パターンに対して走査することによって、断線のある導電パターンの本数目及び位置を特定することができる。 According to the present invention, the first electrode and the plurality of second electrodes are scanned with respect to the N conductive patterns formed on the substrate with respect to the respective conductive patterns, whereby the number of the disconnected conductive patterns and The position can be specified.
図1は、本発明の一実施形態に係る導電パターン検査装置10の模式図である。FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention. 図2は、導電パターン検査装置10の概略側面図である。FIG. 2 is a schematic side view of the conductive pattern inspection apparatus 10. 図3は、導電パターン検査方法を示すフローチャートである。FIG. 3 is a flowchart showing the conductive pattern inspection method. 図4は、断線・短絡の判断を示すフローチャートである。FIG. 4 is a flowchart showing determination of disconnection / short circuit. 図5は、正常な導電パターン17から検出された電気信号を示す模式図である。FIG. 5 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17. 図6は、断線のある導電パターン17から検出された電気信号を示す模式図である。FIG. 6 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection. 図7は、断線のある導電パターン17から検出された電気信号を示す模式図である。FIG. 7 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection. 図8は、短絡のある導電パターン17から検出された電気信号を示す模式図である。FIG. 8 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit. 図9は、正常な導電パターン17から検出された電気信号を示す模式図である。FIG. 9 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17. 図10は、第二導電パターン47との間に短絡のある導電パターン17から検出された電気信号を示す模式図である。FIG. 10 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit with the second conductive pattern 47.
 以下に、適宜図面が参照されて、本発明の好ましい実施形態が説明される。なお、以下に説明される各実施形態は本発明の一例にすぎず、本発明の要旨を変更しない範囲で、本発明の実施形態を適宜変更できることは言うまでもない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as appropriate. Note that each embodiment described below is merely an example of the present invention, and it is needless to say that the embodiment of the present invention can be appropriately changed without departing from the gist of the present invention.
[導電パターン検査装置10の概略]
 図1は、本発明の一実施形態に係る導電パターン検査装置10の模式図である。図2は、本発明の一実施形態に係る導電パターン検査装置の概略側面図である。また、図2において、後から述べられる第一電極支持部材18は省略されている。
[Outline of Conductive Pattern Inspection Apparatus 10]
FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention. FIG. 2 is a schematic side view of a conductive pattern inspection apparatus according to an embodiment of the present invention. Further, in FIG. 2, the first electrode support member 18 described later is omitted.
 導電パターン検査装置10は主として、供給部20、第一電極12、受容部13、信号処理部21、制御部23、操作部24及び支持台30を備える。支持台30は検査対象を保持する基台である。第一電極12及び受容部13は、支持台30の検査対象が保持される面上に設けられている。第一電極12は供給部20と導線26で接続されている。受容部13は、支持台30と向かい合う面に複数の第二電極14を有する。第二電極14は、導線27を介して信号処理部21と接続されている。供給部20は、導線28を介して制御部23と接続されている。また、制御部23は、信号処理部21、操作部24と電気的に導線等を介して接続されている。各構成についての詳細は、以下に説明される。供給部20が、本発明における印加手段に相当する。受容部13が、本発明における検出手段に相当する。操作部24が、本発明における走査手段に相当する。制御部23が、本発明における断線判断手段及び短絡判断手段に相当する。 The conductive pattern inspection apparatus 10 mainly includes a supply unit 20, a first electrode 12, a receiving unit 13, a signal processing unit 21, a control unit 23, an operation unit 24, and a support base 30. The support table 30 is a base that holds an inspection target. The first electrode 12 and the receiving portion 13 are provided on the surface on which the inspection target of the support base 30 is held. The first electrode 12 is connected to the supply unit 20 by a conducting wire 26. The receiving portion 13 has a plurality of second electrodes 14 on the surface facing the support base 30. The second electrode 14 is connected to the signal processing unit 21 via a conducting wire 27. The supply unit 20 is connected to the control unit 23 via a conducting wire 28. Further, the control unit 23 is electrically connected to the signal processing unit 21 and the operation unit 24 through a conductive wire or the like. Details of each component will be described below. The supply unit 20 corresponds to the application unit in the present invention. The receiving part 13 corresponds to the detection means in the present invention. The operation unit 24 corresponds to the scanning unit in the present invention. The control unit 23 corresponds to a disconnection determination unit and a short circuit determination unit in the present invention.
 導電パターン検査装置及び方法を説明するために、検査対象である基板11が、図示されている。また、基板11平面上における導電パターン17に平行な方向を方向101、導電パターンに垂直な方向を方向102として使用する。 In order to explain the conductive pattern inspection apparatus and method, a substrate 11 to be inspected is shown. Further, the direction parallel to the conductive pattern 17 on the plane of the substrate 11 is used as the direction 101, and the direction perpendicular to the conductive pattern is used as the direction 102.
[基板11]
 基板11は、液晶パネル等に用いられる基板であり、基底部33上に導電パターン17が形成されている。基底部33は、絶縁体からなる薄層板であり、主な材料としてガラスやプラスチックが挙げられる。各々の導電パターン17は、概ね同一の直線形状であり、基底部33上にN本が並列に形成されている。すなわち、N本の導電パターン17は、相互がほぼ平行となって基底部33の上面に並ぶように形成されている。導電パターン17は、導電性の材料から形成されており、このような材料について、例えば、インジウムとスズの酸化物(ITO)、銀、アルミニウム等が挙げられる。
[Substrate 11]
The substrate 11 is a substrate used for a liquid crystal panel or the like, and the conductive pattern 17 is formed on the base portion 33. The base portion 33 is a thin layer plate made of an insulator, and examples of the main material include glass and plastic. Each conductive pattern 17 has substantially the same linear shape, and N pieces are formed in parallel on the base portion 33. That is, the N conductive patterns 17 are formed so as to be substantially parallel to each other and arranged on the upper surface of the base portion 33. The conductive pattern 17 is formed of a conductive material, and examples of such a material include indium and tin oxide (ITO), silver, and aluminum.
[第一電極12]
 第一電極12は、上述されたように導線26によって供給部20と電気的に接続されている。第一電極支持部材18は、第一電極12を支持している。図1において、第一電極支持部材18は第一電極12を横から支持しているが、この形態には限らず、第一電極支持部材18上から第一電極12を支持すること等も可能である。図2に示されるように、第一電極12の先端は接触部16を有する。接触部16は、導電パターン17の一方の第一端35付近に接触するように配置されている。第一電極12の接触部16は、隣り合う導電パターン17の間隔より小さいものであり、接触部16が、隣り合う2本の導電パターン17に同時に接触することはない。換言すると、接触部16は、導電パターン17のいずれか一本とのみ接触し得る。
[First electrode 12]
The first electrode 12 is electrically connected to the supply unit 20 by the conducting wire 26 as described above. The first electrode support member 18 supports the first electrode 12. In FIG. 1, the first electrode support member 18 supports the first electrode 12 from the side. However, the present invention is not limited to this configuration, and the first electrode 12 can be supported from the first electrode support member 18. It is. As shown in FIG. 2, the tip of the first electrode 12 has a contact portion 16. The contact portion 16 is disposed so as to contact the vicinity of one first end 35 of the conductive pattern 17. The contact portion 16 of the first electrode 12 is smaller than the interval between the adjacent conductive patterns 17, and the contact portion 16 does not simultaneously contact the two adjacent conductive patterns 17. In other words, the contact part 16 can contact only one of the conductive patterns 17.
 第一電極12は導電パターン17と接触しているので、導電パターン17に対して印加可能な電気信号の大きさが、非接触な電極に比べて大きい。その結果、各第二電極14が検出する電気信号においてノイズが小さくなる。接触部16は導電体である。導電体として、例えばタングステン合金に代表される金属等が挙げられる。接触部16が導電パターン17のいずれか一本とのみ接触するには、仮に接触部16が金属繊維とすれば、その断面の直径が50~70μm程度であることが好適である。 Since the first electrode 12 is in contact with the conductive pattern 17, the magnitude of the electric signal that can be applied to the conductive pattern 17 is larger than that of the non-contact electrode. As a result, noise is reduced in the electrical signal detected by each second electrode 14. The contact part 16 is a conductor. Examples of the conductor include a metal represented by a tungsten alloy. In order for the contact portion 16 to contact only one of the conductive patterns 17, if the contact portion 16 is a metal fiber, the diameter of the cross section is preferably about 50 to 70 μm.
[受容部13]        
 図1及び図2に示されるように、受容部13は、複数の第二電極14と第二電極支持部材19とを備える。第二電極支持部材19は、各第二電極14を基板11と対向させ、且つ各第二電極14を基板11から一定の距離だけ離れた位置に支持する。図1においては、第二電極支持部材19の下方に配置された第二電極14が点線で示されている。第二電極支持部材19によって支持された複数の第二電極14を、一体として方向102へ移動可能である。複数の第二電極14は、第一電極12が接触する導電パターン17に沿って、第1電極が接触する第一端35から反対側の第二端36まで、所定の間隔で一列に配置されている。すなわち、各第二電極14は導電パターン17と非接触であり、静電結合を通じて導電パターン17から電気信号を検出する。
[Reception part 13]
As shown in FIGS. 1 and 2, the receiving portion 13 includes a plurality of second electrodes 14 and a second electrode support member 19. The second electrode support member 19 makes each second electrode 14 face the substrate 11 and supports each second electrode 14 at a position away from the substrate 11 by a certain distance. In FIG. 1, the second electrode 14 disposed below the second electrode support member 19 is indicated by a dotted line. The plurality of second electrodes 14 supported by the second electrode support member 19 can be moved together in the direction 102. The plurality of second electrodes 14 are arranged in a line at predetermined intervals from the first end 35 in contact with the first electrode to the second end 36 on the opposite side along the conductive pattern 17 in contact with the first electrode 12. ing. That is, each second electrode 14 is not in contact with the conductive pattern 17 and detects an electrical signal from the conductive pattern 17 through electrostatic coupling.
 第二電極14は、第一電極12が接触する導電パターン17及びそれに隣り合う導電パターン17を含む複数の導電パターン17と対向する大きさである。仮に、第一電極12が接触する導電パターン17以外の導電パターン17にも電気信号が与えられていれば、第二電極14はその複数の導電パターン17から同時に電気信号を検出し得る。 The second electrode 14 has a size facing the plurality of conductive patterns 17 including the conductive pattern 17 with which the first electrode 12 contacts and the conductive pattern 17 adjacent thereto. If an electrical signal is also given to the conductive pattern 17 other than the conductive pattern 17 with which the first electrode 12 contacts, the second electrode 14 can detect the electrical signal from the plurality of conductive patterns 17 simultaneously.
[操作部24]
 第一電極支持部材18及び第二電極支持部材19は、操作部24によって、不図示のモータから駆動伝達されて、一体として方向102へ移動され得る。モータから第一電極支持部材18及び第二電極支持部材19への駆動伝達は、公知のギヤ機構やベルト機構などによって実現される。また、第一電極支持部材18及び第二電極支持部材19の位置は、センサやエンコーダ、ステッピングモータのステップ量に基づいて把握され得る。第一電極支持部材18及び第二電極支持部材19が走査方向103へ移動されることによって、第一電極12及び複数の第二電極14が、各導電パターン17に対して走査される。
[Operation unit 24]
The first electrode support member 18 and the second electrode support member 19 can be driven and transmitted from a motor (not shown) by the operation unit 24 and moved in the direction 102 as a unit. Drive transmission from the motor to the first electrode support member 18 and the second electrode support member 19 is realized by a known gear mechanism or belt mechanism. Moreover, the position of the 1st electrode support member 18 and the 2nd electrode support member 19 can be grasped | ascertained based on the step amount of a sensor, an encoder, or a stepping motor. As the first electrode support member 18 and the second electrode support member 19 are moved in the scanning direction 103, the first electrode 12 and the plurality of second electrodes 14 are scanned with respect to each conductive pattern 17.
[信号処理部21]
 図1に示されるように、信号処理部21は、第二電極14が検出した電気信号を受信する。信号処理部21は、受信した信号を増幅するとともに、フィルタによってノイズが除去し、一定の順序でシリアルに出力する。
[Signal processing unit 21]
As shown in FIG. 1, the signal processing unit 21 receives an electrical signal detected by the second electrode 14. The signal processing unit 21 amplifies the received signal, removes noise by a filter, and serially outputs the signal in a certain order.
[制御部23]
 制御部23は、例えば、コンピュータのように情報処理装置として構成されている。制御部23には、供給部20から第一電極12へ出力させる電気信号のタイミングや大きさを指示するためのプログラムや、第一電極支持部材18及び第二電極支持部材19を所定のタイミングで所定の位置に移動させるためのプログラム、信号処理部21から出力された電気信号に基づいて、導電パターン17が断線或いは短絡している位置を特定するためのプログラムなどがインストールされている。
[Control unit 23]
The control unit 23 is configured as an information processing apparatus like a computer, for example. In the control unit 23, a program for instructing the timing and magnitude of the electrical signal to be output from the supply unit 20 to the first electrode 12, and the first electrode support member 18 and the second electrode support member 19 at a predetermined timing. A program for moving to a predetermined position, a program for specifying a position where the conductive pattern 17 is disconnected or short-circuited based on the electric signal output from the signal processing unit 21 are installed.
[導電パターン検査方法]
 以下に、本発明の一実施形態に係る導電パターン検査装置10における導電パターン検査方法が説明される。
[Conductive pattern inspection method]
Below, the conductive pattern test | inspection method in the conductive pattern test | inspection apparatus 10 which concerns on one Embodiment of this invention is demonstrated.
 検査対象である基板11は、予め支持台30上に固定される。この固定方法は特に限定されず、ロボットや人力によって基板11が支持台30の所定の位置に固定される。制御部23は検査開始の指示を受け付けると、第一電極支持部材18及び第2電極支持部材19を1本目の導電パターン17に対応する検査開始位置へ移動させる(S1)。検査開始位置において、第一電極12が1本目の導電パターン17と接触する。また、各第二電極14は、1本目の導電パターン17を含む複数の導電パターン17に対向する。なお、検査開始位置は、必ずしも基板11における1本目の導電パターン17に限定されないが、本明細書においては、検査が開始される導電パターン17が1本目の導電パターン17と称される。 The substrate 11 to be inspected is fixed on the support base 30 in advance. The fixing method is not particularly limited, and the substrate 11 is fixed at a predetermined position on the support base 30 by a robot or human power. When the control unit 23 receives the inspection start instruction, the control unit 23 moves the first electrode support member 18 and the second electrode support member 19 to the inspection start position corresponding to the first conductive pattern 17 (S1). The first electrode 12 contacts the first conductive pattern 17 at the inspection start position. Each second electrode 14 faces a plurality of conductive patterns 17 including the first conductive pattern 17. The inspection start position is not necessarily limited to the first conductive pattern 17 on the substrate 11, but in this specification, the conductive pattern 17 at which the inspection is started is referred to as the first conductive pattern 17.
[印加工程]
 制御部23は、供給部20に、第一電極12を通じて電気信号を1本目の導電パターン17に印加させて、電気信号の供給を開始する(S2)。この電気信号の一例として、交流電圧が挙げられ、電圧は20V程度である。電圧が20V以上であると、各第二電極14が十分な大きさの電気信号を検出するので、検出された電子信号とノイズとの判別が容易である。
[Applying process]
The control unit 23 causes the supply unit 20 to apply an electric signal to the first conductive pattern 17 through the first electrode 12, and starts supplying the electric signal (S2). An example of this electric signal is an alternating voltage, and the voltage is about 20V. When the voltage is 20 V or more, each second electrode 14 detects a sufficiently large electric signal, so that it is easy to distinguish between the detected electronic signal and noise.
[走査工程] 
 制御部23は、第一電極支持部材18及び第二電極支持部材19を、1本目の導電パターン17からN本目の導電パターン17へ向かって移動させる(S3)。第一電極12は、いずれか1本の導電パターン17と接触するので、この走査において、1本目の導電パターン17からN本目の導電パターン17に対して、順番に、第一電極12から電気信号がそれぞれ印加される。
[Scanning process]
The controller 23 moves the first electrode support member 18 and the second electrode support member 19 from the first conductive pattern 17 toward the Nth conductive pattern 17 (S3). Since the first electrode 12 is in contact with any one of the conductive patterns 17, in this scanning, the electrical signals from the first electrode 12 are sequentially supplied from the first conductive pattern 17 to the Nth conductive pattern 17. Are applied respectively.
[検出工程]
 制御部23は、第一電極支持部材18及び第二電極支持部材19の走査過程において、第一電極12及び第二電極14が測定位置に位置するかを判別する(S4)。第一電極12及び第二電極14が測定位置に到達していなければ(S4:NO)、制御部23は第一電極支持部材18及び第二電極支持部材19の走査を継続する。この測定位置とは、各導電パターン17から電気信号を検出し得る位置である。例えば、第一電極支持部材18及び第二電極支持部材19の移動距離が、リニアエンコーダやモータのエンコーダによって検出され、その移動距離及び各導電パターン17のピッチに基づいて、第一電極12及び第二電極14が測定位置に位置したかが判断される。そして、制御部23は、第一電極12及び第二電極14が測定位置に位置すれば(S4:YES)、その導電パターン17に供給されて各第二電極14から検出される電気信号を、信号処理部21から受信する。この電気信号は、電気信号として制御部23のRAMへ格納される(S5)。
[Detection process]
In the scanning process of the first electrode support member 18 and the second electrode support member 19, the control unit 23 determines whether the first electrode 12 and the second electrode 14 are positioned at the measurement position (S4). If the first electrode 12 and the second electrode 14 have not reached the measurement position (S4: NO), the control unit 23 continues scanning the first electrode support member 18 and the second electrode support member 19. The measurement position is a position where an electric signal can be detected from each conductive pattern 17. For example, the movement distances of the first electrode support member 18 and the second electrode support member 19 are detected by a linear encoder or an encoder of a motor, and the first electrode 12 and the first electrode 12 It is determined whether the two electrodes 14 are located at the measurement position. And if the 1st electrode 12 and the 2nd electrode 14 are located in a measurement position (S4: YES), the control part 23 will supply the electric signal supplied to the conductive pattern 17 and detected from each 2nd electrode 14, Received from the signal processing unit 21. This electric signal is stored in the RAM of the control unit 23 as an electric signal (S5).
 制御部23は、1本の導電パターン17からの電気信号を検出した後に、第一電極支持部材18及び第二電極支持部材19が終了位置に到達したかを判断する(S6)。検査終了位置とは、基板11にN本の導電パターン17が形成されているのであれば、第一電極12及び第二電極14がN本目の導電パターン17を超えて基板11の端側へ移動した位置である。検査終了位置では、第一電極12がN本目の導電パターン17と接触し、各第二電極14は、N本目の導電パターン17を含む複数の導電パターン17に対向する。なお、検査終了位置は、必ずしも基板11におけるN本目の導電パターン17を過ぎた位置に限定されない。 The control unit 23 determines whether the first electrode support member 18 and the second electrode support member 19 have reached the end positions after detecting an electrical signal from one conductive pattern 17 (S6). The inspection end position means that if N conductive patterns 17 are formed on the substrate 11, the first electrode 12 and the second electrode 14 move beyond the Nth conductive pattern 17 to the end side of the substrate 11. Is the position. At the inspection end position, the first electrode 12 contacts the Nth conductive pattern 17, and each second electrode 14 faces a plurality of conductive patterns 17 including the Nth conductive pattern 17. Note that the inspection end position is not necessarily limited to the position past the Nth conductive pattern 17 on the substrate 11.
 制御部23は、第一電極支持部材18及び第二電極支持部材19が終了位置へ到達していなければ(S6:NO)、前述された測定位置の判断(S4)及び測定と検出した電気信号の格納(S5)を繰り返す。制御部23は、第一電極支持部材18及び第二電極支持部材19がが終了位置に到達すれば(S6:YES)、電気信号の供給及び測定を停止する(S7)。そして、制御部23は、格納された電気信号からそれぞれの導電パターン17に対応するラインデータを抽出して(S8)、1本目からN本目の導電パターン17のそれぞれ対して、断線及び短絡を判断する(S9)。 If the first electrode support member 18 and the second electrode support member 19 have not reached the end position (S6: NO), the control unit 23 determines the measurement position (S4) and measures the detected electrical signal. (S5) is repeated. When the first electrode support member 18 and the second electrode support member 19 reach the end positions (S6: YES), the control unit 23 stops supplying and measuring the electrical signal (S7). Then, the control unit 23 extracts line data corresponding to each conductive pattern 17 from the stored electrical signal (S8), and determines whether the first to Nth conductive patterns 17 are disconnected or short-circuited. (S9).
[断線判断工程及び短絡判断工程]
 図4に示されるように、制御部23は、RAMから1からN本目の導電パターン17において検出された電気信号を順次読み出す(S21)。そして、読み出したk本目の導電パターン17の電気信号を第一基準値と比較する(S22)。この第一基準値は、導電パターン17に断線があったときに検出される電気信号の大きさに基づいて予め設定される値である。
[Disconnection determination process and short circuit determination process]
As shown in FIG. 4, the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM (S21). Then, the read electrical signal of the kth conductive pattern 17 is compared with the first reference value (S22). The first reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is disconnected.
 図5に示されるように、導電パターン17に断線或いは短絡がないとき、つまり導電パターン17が正常であるときには、k本目の導電パターン17に対向された7個の第二電極14からそれぞれ得られる電気信号の大きさは、ほぼ同じである。 As shown in FIG. 5, when the conductive pattern 17 is not disconnected or short-circuited, that is, when the conductive pattern 17 is normal, it is obtained from the seven second electrodes 14 opposed to the kth conductive pattern 17, respectively. The magnitude of the electrical signal is almost the same.
 図6に示されるように、仮に第一電極12側から数えて5個目の第二電極14と6個目の第二電極14との間において導電パターン17に断線が生じていると、第一電極12から印加された電気信号は5個目の第二電極14からは正常に検出されるが、6個目の第二電極14からは検出されないか微弱な電気信号が検出される。 As shown in FIG. 6, if a break occurs in the conductive pattern 17 between the fifth second electrode 14 and the sixth second electrode 14 counted from the first electrode 12 side, The electric signal applied from one electrode 12 is normally detected from the fifth second electrode 14, but is not detected from the sixth second electrode 14 or a weak electric signal is detected.
 また、図7に示されるように、仮に第一電極12側から数えて5個目の第二電極14の直下において導電パターン17に断線が生じていると、第一電極12から印加された電気信号は5個目の第二電極14から正常なときの半分程度の大きさで検出され、6個目の第二電極14からは検出されないか微弱な電気信号が検出される。このように、断線のある位置の直上の第二電極14により検出されるであろう電気信号の大きさより若干大きな値が第一基準値として予め設定されている。 In addition, as shown in FIG. 7, if a break occurs in the conductive pattern 17 immediately below the fifth second electrode 14 counted from the first electrode 12 side, the electric power applied from the first electrode 12 The signal is detected from the fifth second electrode 14 at about half the normal level, and from the sixth second electrode 14, a weak or weak electric signal is detected. In this way, a value slightly larger than the magnitude of the electric signal that will be detected by the second electrode 14 immediately above the position where there is a break is preset as the first reference value.
 制御部23は、k本目の導電パターン17において各第二電極14から検出された電気信号のうち、仮に5個目の第二電極14が検出した電気信号が第一基準値より小さければ(S22:YES)、k本目の導電パターン17における5個目の第二電極14付近に断線があるとして、断線のあるk本目と5個目の第二電極14の位置をRAMに格納する(S23)。 If the electrical signal detected by the fifth second electrode 14 is smaller than the first reference value among the electrical signals detected from the second electrodes 14 in the k-th conductive pattern 17 (S22). : YES), assuming that there is a break in the vicinity of the fifth second electrode 14 in the kth conductive pattern 17, the positions of the kth and fifth second electrodes 14 having the break are stored in the RAM (S23). .
 制御部23は、k本目の導電パターン17の電気信号のいずれもが第一基準値より大きければ(S22:NO)、その電気信号を第二基準値と比較する(S24)。この第二基準値は、導電パターン17に短絡があったときに検出される電気信号の大きさに基づいて予め設定される値である。 If all of the electrical signals of the kth conductive pattern 17 are larger than the first reference value (S22: NO), the control unit 23 compares the electrical signal with the second reference value (S24). The second reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is short-circuited.
 図8に示されるように、仮に第一電極12側から数えて2個目の第二電極14と3個目の第二電極14との間において、k本目の導電パターン17が(k+1)本目の導電パターン17と短絡していると、第一電極12からk本目の導電パターン17に印加された電気信号は、(k+1)本目の導電パターン17にも伝達されて、各第二電極14は、k本目の導電パターン17及び(k+1)本目の導電パターン17から電気信号を検出する。したがって、各第二電極14から検出される電気信号は、正常なときの2倍程度の大きさで検出される。このように、短絡があるときに各第二電極14より検出されるであろう電気信号の大きさより若干小さな値が第二基準値として予め設定されている。 As shown in FIG. 8, the k-th conductive pattern 17 is (k + 1) -th between the second electrode 14 and the third second electrode 14 counted from the first electrode 12 side. The electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the (k + 1) th conductive pattern 17 so that each second electrode 14 , An electrical signal is detected from the kth conductive pattern 17 and the (k + 1) th conductive pattern 17. Therefore, the electrical signal detected from each second electrode 14 is detected with a magnitude about twice that when normal. Thus, a value slightly smaller than the magnitude of the electrical signal that will be detected from each second electrode 14 when there is a short circuit is preset as the second reference value.
 制御部23は、k本目の導電パターン17において各第二電極14から検出された電気信号のいずれかが第二基準値より大きければ(S24:YES)、k本目の導電パターン17に短絡があるとして、短絡のあるk本目をRAMに格納する(S25)。 If any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is larger than the second reference value (S24: YES), the control unit 23 has a short circuit in the kth conductive pattern 17. Then, the kth short-circuited is stored in the RAM (S25).
 制御部23は、k本目の導電パターン17において各第二電極14から検出された電気信号のいずれもが第二基準値より小さければ(S24:NO)、k本目の導電パターン17は正常であるとしてRAMに格納する(S26)。 The control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the second reference value (S24: NO). Is stored in the RAM (S26).
 制御部23は、読み出したk本目をカウントアップして(S27)、k=Nでなければ(S28:NO)、次の(k+1)本目の導電パターン17の電気信号をRAMから読み出して同様の断線・短絡の判断を行い、k=Nであれば(S28:YES)、断線・短絡の判断を終了する。 The control unit 23 counts up the kth read out (S27), and if k = N is not satisfied (S28: NO), reads out the electrical signal of the next (k + 1) th conductive pattern 17 from the RAM and performs the same operation. The disconnection / short circuit is determined. If k = N (S28: YES), the disconnection / short circuit determination is terminated.
[表示工程] 
 図3に示されるように、制御部23は、断線・短絡の判断を終了した後、RAMに格納された断線位置・短絡位置を読み出して、検査結果としてディスプレイなどの表示部に表示する(S10)。この表示に基づいて、検査者は、基板11のいずれの位置に断線或いは短絡があるかを知り得る。
[Display process]
As shown in FIG. 3, after completing the determination of disconnection / short circuit, the control unit 23 reads the disconnection position / short circuit position stored in the RAM and displays the result as a test result on a display unit such as a display (S10). ). Based on this display, the inspector can know at which position of the substrate 11 there is a disconnection or a short circuit.
[本実施形態の作用効果]
 前述されたように、本実施形態によれば、第一電極12及び複数の第二電極14が基板11に対して一方向に走査されるのみによって、断線のある本数目及び位置が特定されるので、検査に要する時間が従来より格段に短縮される。また、同じ走査によって、短絡のある本数目についても特定される。また、第一電極12が導電パターン17に接触するので、第二電極14においてノイズと区別が可能な程度の大きな電気信号を検出することができる。また、第二電極14が導電パターン17に非接触なので、第二電極14を走査することによって導電パターン17が傷つけられることがない。さらには、各導電パターン17に対する各第二電極の位置が多少ズレても、断線・短絡の検査が可能である。
[Operational effects of this embodiment]
As described above, according to the present embodiment, only the first electrode 12 and the plurality of second electrodes 14 are scanned in one direction with respect to the substrate 11 to identify the number and position of the broken wire. Therefore, the time required for the inspection is remarkably shortened than before. Further, the same number of short circuits is identified by the same scanning. Further, since the first electrode 12 is in contact with the conductive pattern 17, it is possible to detect a large electrical signal that can be distinguished from noise in the second electrode 14. Further, since the second electrode 14 is not in contact with the conductive pattern 17, the conductive pattern 17 is not damaged by scanning the second electrode 14. Furthermore, even if the position of each second electrode with respect to each conductive pattern 17 is slightly shifted, inspection for disconnection / short circuit is possible.
[変形例]
 なお、本発明は、実施形態において示された基板11についてのみ検査を行い得るものではなく、例えば、液晶画面などに採用されている薄層トランジスタ(TFT)が組み込まれている二層から成る液晶パネルに対して検査を行い得る。
[Modification]
Note that the present invention is not capable of inspecting only the substrate 11 shown in the embodiment. For example, a liquid crystal composed of two layers in which a thin layer transistor (TFT) employed in a liquid crystal screen or the like is incorporated. A panel can be inspected.
[基板51]
 図9に示されるように、基板51は、基板11と同様に液晶パネル等に用いられる基板であり、基底部33上に形成された導電パターン17に対して、基底部33の一部を絶縁層として、基底部33の内部に第二導電パターン47が形成されている。つまり、導電パターン17が基底部33の表層として形成され、第二導電パターン47が基底部33の内層として形成されている。なお、各図においては、第二導電パターン47が波線で示されている。
[Substrate 51]
As shown in FIG. 9, the substrate 51 is a substrate used for a liquid crystal panel or the like like the substrate 11, and a part of the base portion 33 is insulated from the conductive pattern 17 formed on the base portion 33. As a layer, a second conductive pattern 47 is formed inside the base portion 33. That is, the conductive pattern 17 is formed as a surface layer of the base portion 33, and the second conductive pattern 47 is formed as an inner layer of the base portion 33. In each figure, the second conductive pattern 47 is indicated by a wavy line.
 各第二導電パターン47は、概ね同一の直線形状であり、図9に示される平面視において導電パターン17とほぼ直交するようにX本が並列に形成されている。第二導電パターン47の本数、つまりX本は導電パターン17の本数、つまりN本と同じである必要はない。 Each second conductive pattern 47 has substantially the same linear shape, and X pieces are formed in parallel so as to be substantially orthogonal to the conductive pattern 17 in a plan view shown in FIG. The number of the second conductive patterns 47, that is, X, need not be the same as the number of the conductive patterns 17, that is, N.
 前述された短絡判断工程において、制御部23は、RAMから1からN本目の導電パターン17において検出された電気信号を順次読み出し、読み出したk本目の導電パターン17の電気信号を第三基準値と比較する。この第三基準値は、導電パターン17と第二導電パターン47との間に短絡があったときに検出される電気信号の大きさに基づいて予め設定される値である。 In the short-circuit determination step described above, the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM, and uses the read electrical signal of the kth conductive pattern 17 as the third reference value. Compare. This third reference value is a value set in advance based on the magnitude of the electrical signal detected when there is a short circuit between the conductive pattern 17 and the second conductive pattern 47.
 図9に示されるように、導電パターン17と第二導電パターン47との間に短絡がないとき、つまり導電パターン17と第二導電パターン47との間にクロスショートがないときには、k本目の導電パターン17に対向された7個の第二電極14からそれぞれ得られる電気信号の大きさは、ほぼ同じである。 As shown in FIG. 9, when there is no short circuit between the conductive pattern 17 and the second conductive pattern 47, that is, when there is no cross short between the conductive pattern 17 and the second conductive pattern 47, the kth conductive The magnitudes of electrical signals obtained from the seven second electrodes 14 facing the pattern 17 are substantially the same.
 図10において×印で示されるように、仮に第一電極12側から数えて4個目の第二電極14の直下においてk本目の導電パターン17と第二導電パターン47との間に短絡(クロスショート)が生じていると、第一電極12からk本目の導電パターン17に印加された電気信号が、短絡した第二導電パターン47にも伝達され、4個目の第二電極14は、k本目、k+1本目、k+2本目の各導電パターン17から電気信号を検出する。したがって、4個目の第二電極14から検出される電気信号は、正常なときの2倍以上の大きさで検出される。このように、短絡があるときに第二電極14より検出されるであろう電気信号の大きさより若干小さな値が第三基準値として予め設定されている。 As indicated by a cross in FIG. 10, a short circuit (cross) between the k-th conductive pattern 17 and the second conductive pattern 47 immediately below the fourth second electrode 14, counted from the first electrode 12 side. If a short circuit occurs, an electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the shorted second conductive pattern 47, and the fourth second electrode 14 An electric signal is detected from each of the first, k + 1th, and k + 2th conductive patterns 17. Therefore, the electrical signal detected from the fourth second electrode 14 is detected with a magnitude that is twice or more that of a normal one. Thus, a value slightly smaller than the magnitude of the electrical signal that will be detected from the second electrode 14 when there is a short circuit is preset as the third reference value.
 制御部23は、k本目の導電パターン17において第二電極14から検出された電気信号のうち、仮に4個目の第二電極14が検出した電気信号が第三基準値より大きければ、k本目の導電パターン17が、4個目の第二電極14付近において第二導電パターン47と短絡していると判断して、短絡のあるk本目と4個目の第二電極14の位置をRAMに格納する。一方、制御部23は、k本目の導電パターン17において各第二電極14から検出された電気信号のいずれもが第三基準値より小さければ、k本目の導電パターン17は正常であると判断する。このようにして、基板51に対して、導電パターン17と第二導電パターン47との間における短絡のある本数目及び位置が特定される。 If the electrical signal detected by the fourth second electrode 14 among the electrical signals detected from the second electrode 14 in the kth conductive pattern 17 is greater than the third reference value, the control unit 23 performs the kth operation. It is determined that the conductive pattern 17 is short-circuited with the second conductive pattern 47 in the vicinity of the fourth second electrode 14, and the positions of the short-circuited k-th and fourth second electrodes 14 are stored in the RAM. Store. On the other hand, the control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the third reference value. . In this way, the number and position of the short circuit between the conductive pattern 17 and the second conductive pattern 47 are specified for the substrate 51.
産業上の利用分野Industrial application fields
 本発明は、基板上に形成された導電パターンの電気的欠陥を検出する検査装置及び検査方法に利用可能である。 The present invention can be used for an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.
10・・・導電パターン検査装置
11,51・・・基板
12・・・第一電極
13・・・受容部
14・・・第二電極
17・・・導電パターン
18・・・支持部材
20・・・供給部
21・・・信号処理部
23・・・制御部
24・・・操作部
26,27,28・・・導線
30・・・支持台
33・・・基底部
35・・・第一端
36・・・第二端
47・・・第二導電パターン
101・・・導電パターン17に平行な方向
102・・・導電パターン17に垂直な方向
103・・・走査方向
DESCRIPTION OF SYMBOLS 10 ... Conductive pattern inspection apparatus 11, 51 ... Board | substrate 12 ... 1st electrode 13 ... Receiving part 14 ... 2nd electrode 17 ... Conductive pattern 18 ... Supporting member 20 ... -Supply part 21 ... Signal processing part 23 ... Control part 24 ... Operation part 26, 27, 28 ... Conductor 30 ... Support base 33 ... Base part 35 ... First end 36 ... second end 47 ... second conductive pattern 101 ... direction parallel to conductive pattern 17 ... direction perpendicular to conductive pattern 17 103 ... scanning direction

Claims (16)

  1.  基板に並列に形成されたN本の直線状の導電パターンの状態を検査する装置であって、
     第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加手段と、
     上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加手段によって印加された電気信号をそれぞれ検出する検出手段と、
     上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査手段と、
     上記検出手段が検出した各導電パターンの電気信号に基づいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を判断する断線判断手段と、を備える導電パターン検査装置。
    An apparatus for inspecting the state of N linear conductive patterns formed in parallel on a substrate,
    Applying means for supplying an electrical signal to any of the conductive patterns via the first electrode;
    Detecting means for detecting each of the electrical signals applied by the applying means from the conductive pattern via a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern;
    Scanning means for scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern;
    A conductive pattern inspection apparatus comprising: a disconnection determining unit configured to determine the number of conductive patterns having a disconnection and a position of the disconnection on the conductive pattern based on an electrical signal of each conductive pattern detected by the detection unit.
  2.  上記検出手段は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出するものであり、
     上記検出手段が検出した電気信号に基づいて、短絡のある導電パターンの本数目を判断する短絡判断手段と、を更に備える請求項1に記載の導電パターン検査装置。
    The detection means detects the electrical signal from the conductive pattern to which the electrical signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode,
    2. The conductive pattern inspection apparatus according to claim 1, further comprising: a short-circuit determining unit that determines the number of the short-circuited conductive pattern based on the electrical signal detected by the detecting unit.
  3.  上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものである請求項1又は請求項2に記載の導電パターン検査装置。 3. The conductive pattern inspection apparatus according to claim 1, wherein the first electrode is in contact with the conductive pattern, and the second electrode is non-contact with the conductive pattern.
  4.  上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断する請求項1から請求項3のいずれかに記載の導電パターン検査装置。 The disconnection determining means is configured to detect the kth conductive pattern when at least one of the electrical signals detected from the kth conductive pattern via the second electrode is smaller than a preset first reference value. The conductive pattern inspection apparatus according to claim 1, wherein it is determined that is disconnected.
  5.  上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号において、
    上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断する請求項4に記載の導電パターン検査装置。
    The disconnection determination means is configured to detect each electric signal detected from the kth conductive pattern through the second electrode.
    The conductive pattern inspection apparatus according to claim 4, wherein a disconnection position in the kth conductive pattern is determined based on a position of the second electrode where an electrical signal smaller than the first reference value is detected.
  6.  上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断する請求項2又は請求項3に記載の導電パターン検査装置。 The short-circuit determining unit is configured to detect the k-th conductivity when the electrical signal obtained from the second electrode via the k-th conductive pattern detected by the detection unit is greater than a preset second reference value. The conductive pattern inspection apparatus according to claim 2, wherein the pattern is determined to be short-circuited.
  7.   上記導電パターンに対して絶縁層を介して別の直線状の導電パターンが設けられた上記基板の検査において、
     上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断する請求項2又は請求項3に記載の導電パターン検査装置。
      In the inspection of the substrate provided with another linear conductive pattern via an insulating layer with respect to the conductive pattern,
    The short-circuit determining unit is configured such that at least one of the electrical signals obtained from the second electrode through the kth conductive pattern detected by the detecting unit is greater than a preset third reference value. The conductive pattern inspection apparatus according to claim 2, wherein the k-th conductive pattern and the other conductive pattern are determined to be short-circuited.
  8.  上記短絡判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断する請求項7に記載の導電パターン検査装置。 The short-circuit determining means is configured based on the position of the second electrode at which an electrical signal larger than the third reference value is detected for each electrical signal detected via the second electrode from the kth conductive pattern. The conductive pattern inspection apparatus according to claim 7, wherein a short-circuit position in the k-th conductive pattern is determined.
  9.  基板に並列に形成されたN本の直線状の導電パターンの状態を検査する方法であって、
     第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加工程と、
     上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加工程において印加された電気信号をそれぞれ検出する検出工程と、
     上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査工程と、
     上記検出工程において検出された各導電パターンの電気信号にづいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を特定する断線位置特定工程と、を含む導電パターン検査方法。
    A method for inspecting the state of N linear conductive patterns formed in parallel on a substrate,
    An application step of supplying an electrical signal to any of the conductive patterns via the first electrode;
    A detection step of detecting electrical signals applied in the application step from the conductive pattern via a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern;
    A scanning step of scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern;
    A disconnection position specifying step of specifying the number of disconnection conductive patterns and the position of disconnection on the conductive pattern based on the electrical signal of each conductive pattern detected in the detection step.
  10.  上記検出工程は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出する工程であり、
     上記検出工程において検出された電気信号に基づき短絡のある導電パターンの本数目を判断する短絡判断工程と、を更に含む請求項9に記載の導電パターン検査方法。
    The detection step is a step of detecting the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode,
    The conductive pattern inspection method according to claim 9, further comprising: a short-circuit determining step of determining the number of short-circuited conductive patterns based on the electrical signal detected in the detection step.
  11.  上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものである請求項9又は請求項10に記載の導電パターン検査方法。  The conductive pattern inspection method according to claim 9 or 10, wherein the first electrode is in contact with the conductive pattern, and the second electrode is non-contact with the conductive pattern. *
  12.  k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断する請求項9又から請求項11のいずれかに記載の導電パターン検査方法。 When at least one of the electrical signals detected from the kth conductive pattern through the second electrode is smaller than a preset first reference value, the kth conductive pattern is disconnected. 12. The conductive pattern inspection method according to claim 9, wherein the conductive pattern inspection method is determined.
  13.  k本目の導電パターンから上記第二電極を介して検出された各電気信号において、上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断する請求項12に記載の導電パターン検査方法。 In each electrical signal detected from the kth conductive pattern via the second electrode, the disconnection in the kth conductive pattern based on the position of the second electrode where the electrical signal smaller than the first reference value is detected. The conductive pattern inspection method according to claim 12, wherein the position is determined.
  14.  k本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断する請求項10又は請求項11に記載の導電パターン検査方法。 11. The k-th conductive pattern is judged to be short-circuited when an electrical signal obtained from the second electrode via the k-th conductive pattern is larger than a preset second reference value. Alternatively, the conductive pattern inspection method according to claim 11.
  15.  上記導電パターンに対して絶縁層を介して別の導電パターンが設けられた上記基板の検査において、
     k本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断する請求項10又は請求項11に記載の導電パターン検査方法。
    In the inspection of the substrate provided with another conductive pattern through an insulating layer with respect to the conductive pattern,
    When at least one of the electrical signals obtained from the second electrode via the kth conductive pattern is greater than a preset third reference value, the kth conductive pattern and the other conductive pattern The conductive pattern inspection method according to claim 10 or 11, wherein it is determined that the two are short-circuited.
  16.  k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断する請求項15に記載の導電パターン検査方法。
     
     
      
    For each electrical signal detected via the second electrode from the kth conductive pattern, the kth conductive pattern based on the position of the second electrode where an electrical signal greater than the third reference value is detected. The conductive pattern inspection method according to claim 15, wherein a short-circuit position is determined.


PCT/JP2010/063705 2009-08-17 2010-08-12 Electrical conduction pattern inspection apparatus and inspection method WO2011021567A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127004075A KR101384518B1 (en) 2009-08-17 2010-08-12 Electrical conduction pattern inspection apparatus and inspection method
CN2010800294698A CN102472788A (en) 2009-08-17 2010-08-12 Electrical conduction pattern inspection apparatus and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009188319A JP4723664B2 (en) 2009-08-17 2009-08-17 Conductive pattern inspection apparatus and inspection method
JP2009-188319 2009-08-17

Publications (1)

Publication Number Publication Date
WO2011021567A1 true WO2011021567A1 (en) 2011-02-24

Family

ID=43607022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063705 WO2011021567A1 (en) 2009-08-17 2010-08-12 Electrical conduction pattern inspection apparatus and inspection method

Country Status (5)

Country Link
JP (1) JP4723664B2 (en)
KR (1) KR101384518B1 (en)
CN (1) CN102472788A (en)
TW (1) TWI474012B (en)
WO (1) WO2011021567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105975A (en) * 2012-02-06 2014-10-15 罗泽系统株式会社 Electrode pattern test apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967378B2 (en) 2005-03-29 2012-07-04 セイコーエプソン株式会社 Ink composition
US20080132599A1 (en) 2006-11-30 2008-06-05 Seiko Epson Corporation. Ink composition, two-pack curing ink composition set, and recording method and recorded matter using these
JP5472670B2 (en) 2007-01-29 2014-04-16 セイコーエプソン株式会社 Ink set, ink jet recording method and recorded matter
JP4816976B2 (en) 2007-08-09 2011-11-16 セイコーエプソン株式会社 Photocurable ink composition
CN102336081A (en) 2010-05-19 2012-02-01 富士胶片株式会社 Printing method, method for preparing overprint, method for processing laminate, light-emitting diode curable coating composition, and light-emitting diode curable ink composition
CN103391979A (en) 2011-02-28 2013-11-13 富士胶片株式会社 Ink composition, image forming method and printed material
JP6014950B1 (en) * 2015-12-22 2016-10-26 オー・エイチ・ティー株式会社 Conductor pattern inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270476A (en) * 1994-03-29 1995-10-20 Dainippon Printing Co Ltd Defect detection method and defect detection device for linear electrode
JP2001084904A (en) * 1999-09-14 2001-03-30 Dainippon Printing Co Ltd Electrode inspection device and method of electrode inspection
JP2004191381A (en) * 2002-11-30 2004-07-08 Oht Inc Circuit pattern inspection device and circuit pattern inspection method
WO2006112543A1 (en) * 2005-04-19 2006-10-26 Oht Inc. Inspection device and conductive pattern inspection method
JP2008102031A (en) * 2006-10-19 2008-05-01 Tokyo Cathode Laboratory Co Ltd Pattern inspection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184385A (en) * 2002-11-30 2004-07-02 Oht Inc Circuit pattern inspection device and pattern inspection method
JP2006200993A (en) * 2005-01-19 2006-08-03 Oht Inc Circuit pattern inspection device and its method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270476A (en) * 1994-03-29 1995-10-20 Dainippon Printing Co Ltd Defect detection method and defect detection device for linear electrode
JP2001084904A (en) * 1999-09-14 2001-03-30 Dainippon Printing Co Ltd Electrode inspection device and method of electrode inspection
JP2004191381A (en) * 2002-11-30 2004-07-08 Oht Inc Circuit pattern inspection device and circuit pattern inspection method
WO2006112543A1 (en) * 2005-04-19 2006-10-26 Oht Inc. Inspection device and conductive pattern inspection method
JP2006300665A (en) * 2005-04-19 2006-11-02 Oht Inc Inspection device, and conductive pattern inspection method
JP2008102031A (en) * 2006-10-19 2008-05-01 Tokyo Cathode Laboratory Co Ltd Pattern inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105975A (en) * 2012-02-06 2014-10-15 罗泽系统株式会社 Electrode pattern test apparatus
CN104105975B (en) * 2012-02-06 2016-03-30 罗泽系统株式会社 Electrode pattern proving installation

Also Published As

Publication number Publication date
JP2011038962A (en) 2011-02-24
KR101384518B1 (en) 2014-04-11
CN102472788A (en) 2012-05-23
TW201132996A (en) 2011-10-01
JP4723664B2 (en) 2011-07-13
TWI474012B (en) 2015-02-21
KR20120056256A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
WO2011021567A1 (en) Electrical conduction pattern inspection apparatus and inspection method
KR100799161B1 (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
TWI401452B (en) Circuit pattern inspection device and inspection method
KR20020001752A (en) Tester and testing method, and testing unit
KR101013243B1 (en) Circuit pattern inspection device and circuit pattern inspection method
JP2010139377A (en) Circuit pattern inspection device and method of inspecting circuit pattern thereof
CN103380366A (en) Defect inspection method, defect inspection apparatus, and method for manufacturing substrate
US20190311663A1 (en) Substrate, panel, detection device and alignment detection method
JP5352066B2 (en) Electronic circuit board manufacturing equipment
JP4748392B2 (en) TFT array substrate inspection equipment
JP2000221227A (en) Apparatus and method for inspecting conductive pattern
KR102260861B1 (en) Inspection apparatus of printed circuit board and control method thereof
KR20080098088A (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
TW200537112A (en) Circuit pattern testing apparatus and circuit pattern testing method
WO2017168530A1 (en) Inspection method and inspection system for wiring path of substrate
US9118331B2 (en) Contact state detection apparatus
KR20120130123A (en) Conductive pattern inspection device
JP2002310933A (en) Apparatus and method for inspection of circuit board as well as electro-optical element
JP2012022512A (en) Inspection device and inspection method
JP4717581B2 (en) Display substrate inspection method
KR100627546B1 (en) Apparatus and method for detecting the open/short location of electrode lines in flat panel circuit using a magnetic field sensor and a camera
KR100948062B1 (en) Non-contact type single side probe
JP2013217841A (en) Conductive pattern inspection device
TW201000930A (en) Device and procedure for contactless forming a contact of conductive structures, in particular of thin film transistor liquid crystal displays
KR101235624B1 (en) System for sensing the touch status of display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029469.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127004075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809912

Country of ref document: EP

Kind code of ref document: A1