WO2011021567A1 - Electrical conduction pattern inspection apparatus and inspection method - Google Patents
Electrical conduction pattern inspection apparatus and inspection method Download PDFInfo
- Publication number
- WO2011021567A1 WO2011021567A1 PCT/JP2010/063705 JP2010063705W WO2011021567A1 WO 2011021567 A1 WO2011021567 A1 WO 2011021567A1 JP 2010063705 W JP2010063705 W JP 2010063705W WO 2011021567 A1 WO2011021567 A1 WO 2011021567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive pattern
- electrode
- electrical signal
- detected
- kth
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
- G01R31/281—Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
- G01R31/2812—Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
- G01R31/2805—Bare printed circuit boards
Definitions
- the present invention relates to an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.
- the first is a method using a probe card.
- a pair of inspection styluses are formed on the probe card so as to contact both ends of the conductive pattern for each conductive pattern.
- a probe card is placed on the circuit board so that each inspection stylus is in exact contact with both ends of the corresponding conductive pattern.
- An electrical signal is sent from the probe card to the inspection stylus that contacts one end of the conductive pattern.
- the electrical signal is transmitted to the other end through the conductive pattern, and the electrical signal is transmitted from the other end to the probe card.
- the second method is to scan the probe.
- An electrode plate is disposed at one end of the conductive pattern on the circuit board.
- the electrode plate has such a width that electrostatic coupling can be established with all of one end of the conductive pattern on the circuit board through the circuit board.
- the probe is disposed on the other end side of the conductive pattern.
- the tip of the probe is formed so as to contact only one of the conductive patterns on the circuit board.
- An electrical signal is sent from the probe to the conductive pattern, and is transmitted through the conductive pattern to the electrode plate.
- a conductive test or the like of the conductive pattern is performed.
- a conductive test is performed for each conductive pattern by scanning the probe (Patent Document 1).
- a sensor unit can be installed at the end of the conductive pattern opposite to the probe instead of the electrode plate (Patent Document 2).
- the sensor unit is disposed on the conductive pattern in a non-contact manner.
- the sensor section is scanned in synchronism with the probe, and the presence or absence of a defect is inspected for each conductive pattern as described above. It is also possible to scan the probe in two directions (Patent Document 3).
- the inspection stylus is formed so as to contact both ends of the conductive pattern.
- a defective conductive pattern can be specified by unidirectional scanning of the probe.
- the position of the defect on the conductive pattern cannot be specified.
- the control function of the probe or the like becomes complicated and time is required.
- the camera When a camera is used, the camera itself and a control device for operating the camera are required.
- detection is performed using an image taken by a camera, the image quality is determined by pixels having color information (tone and gradation). A pixel is the smallest unit having color information, and there is a limit to its fineness. For this reason, there is a limit to detection via an image in a circuit board with a high density.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide means capable of quickly and easily specifying defect positions of a plurality of conductive patterns formed on a substrate.
- a conductive pattern inspection apparatus is an apparatus for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And an electric signal applied by the applying means from the conductive pattern, respectively, via an applying means for supplying a plurality of second electrodes arranged at a predetermined interval from the first electrode along the conductive pattern. Based on the electrical signal of each conductive pattern detected by the detection means, the scanning means for scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern And a disconnection determining means for determining the number of the conductive patterns having the disconnection and the position of the disconnection on the conductive pattern.
- the detection means detects the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode, and the detection means Short circuit determination means for determining the number of conductive patterns having a short circuit may be further provided based on the detected electrical signal.
- the first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern. .
- the disconnection determining means is configured to detect the kth conductive pattern when at least one of the electrical signals detected from the kth conductive pattern via the second electrode is smaller than a preset first reference value. May be determined to be disconnected.
- the disconnection determining means is configured to determine, based on the position of the second electrode where an electrical signal smaller than the first reference value is detected in each electrical signal detected from the kth conductive pattern via the second electrode.
- the disconnection position in the main conductive pattern may be determined.
- the short-circuit determining unit is configured to detect the k-th conductivity when the electrical signal obtained from the second electrode via the k-th conductive pattern detected by the detection unit is greater than a preset second reference value. It may be determined that the pattern is short-circuited.
- the short-circuit determining unit uses the kth conductive pattern detected by the detecting unit. When at least one of the respective electrical signals obtained from the second electrode is greater than a preset third reference value, the kth conductive pattern and the other conductive pattern are short-circuited. It may be determined.
- the short-circuit determining means is configured based on the position of the second electrode at which an electrical signal larger than the third reference value is detected for each electrical signal detected via the second electrode from the kth conductive pattern.
- the short-circuit position in the kth conductive pattern may be determined.
- a conductive pattern inspection method is a method for inspecting the state of N linear conductive patterns formed in parallel on a substrate, and an electric signal is transmitted to one of the conductive patterns via a first electrode. And detecting an electrical signal applied by the applying means from the conductive pattern through a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern.
- a scanning step of scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern, and an electrical signal of each conductive pattern detected in the detection step A disconnection position specifying step of specifying the number of conductive patterns having a disconnection and the position of the disconnection on the conductive pattern.
- the detecting step is a step of detecting the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode.
- a short-circuit determining step of determining the number of conductive patterns having a short circuit based on the detected electrical signal.
- the first electrode is preferably in contact with the conductive pattern, and the second electrode is preferably non-contact with the conductive pattern.
- the disconnection in the kth conductive pattern based on the position of the second electrode where the electrical signal smaller than the first reference value is detected. The position may be determined.
- the kth conductive pattern detected by the detection means When the electrical signal obtained from the second electrode through the kth conductive pattern detected by the detection means is greater than a preset second reference value, the kth conductive pattern is short-circuited. You may judge.
- each electric current obtained from the second electrode via the kth conductive pattern is provided.
- at least one of the signals is larger than a preset third reference value, it may be determined that the k-th conductive pattern and the other conductive pattern are short-circuited.
- the kth conductive pattern For each electrical signal detected via the second electrode from the kth conductive pattern, the kth conductive pattern based on the position of the second electrode where an electrical signal greater than the third reference value is detected.
- the short-circuit position at may be determined.
- the first electrode and the plurality of second electrodes are scanned with respect to the N conductive patterns formed on the substrate with respect to the respective conductive patterns, whereby the number of the disconnected conductive patterns and The position can be specified.
- FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention.
- FIG. 2 is a schematic side view of the conductive pattern inspection apparatus 10.
- FIG. 3 is a flowchart showing the conductive pattern inspection method.
- FIG. 4 is a flowchart showing determination of disconnection / short circuit.
- FIG. 5 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17.
- FIG. 6 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection.
- FIG. 7 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a disconnection.
- FIG. 8 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit.
- FIG. 9 is a schematic diagram showing an electrical signal detected from the normal conductive pattern 17.
- FIG. 10 is a schematic diagram showing an electrical signal detected from the conductive pattern 17 having a short circuit with the second conductive pattern 47.
- FIG. 1 is a schematic view of a conductive pattern inspection apparatus 10 according to an embodiment of the present invention.
- FIG. 2 is a schematic side view of a conductive pattern inspection apparatus according to an embodiment of the present invention. Further, in FIG. 2, the first electrode support member 18 described later is omitted.
- the conductive pattern inspection apparatus 10 mainly includes a supply unit 20, a first electrode 12, a receiving unit 13, a signal processing unit 21, a control unit 23, an operation unit 24, and a support base 30.
- the support table 30 is a base that holds an inspection target.
- the first electrode 12 and the receiving portion 13 are provided on the surface on which the inspection target of the support base 30 is held.
- the first electrode 12 is connected to the supply unit 20 by a conducting wire 26.
- the receiving portion 13 has a plurality of second electrodes 14 on the surface facing the support base 30.
- the second electrode 14 is connected to the signal processing unit 21 via a conducting wire 27.
- the supply unit 20 is connected to the control unit 23 via a conducting wire 28.
- control unit 23 is electrically connected to the signal processing unit 21 and the operation unit 24 through a conductive wire or the like. Details of each component will be described below.
- the supply unit 20 corresponds to the application unit in the present invention.
- the receiving part 13 corresponds to the detection means in the present invention.
- the operation unit 24 corresponds to the scanning unit in the present invention.
- the control unit 23 corresponds to a disconnection determination unit and a short circuit determination unit in the present invention.
- a substrate 11 to be inspected is shown. Further, the direction parallel to the conductive pattern 17 on the plane of the substrate 11 is used as the direction 101, and the direction perpendicular to the conductive pattern is used as the direction 102.
- the substrate 11 is a substrate used for a liquid crystal panel or the like, and the conductive pattern 17 is formed on the base portion 33.
- the base portion 33 is a thin layer plate made of an insulator, and examples of the main material include glass and plastic.
- Each conductive pattern 17 has substantially the same linear shape, and N pieces are formed in parallel on the base portion 33. That is, the N conductive patterns 17 are formed so as to be substantially parallel to each other and arranged on the upper surface of the base portion 33.
- the conductive pattern 17 is formed of a conductive material, and examples of such a material include indium and tin oxide (ITO), silver, and aluminum.
- ITO indium and tin oxide
- the first electrode 12 is electrically connected to the supply unit 20 by the conducting wire 26 as described above.
- the first electrode support member 18 supports the first electrode 12.
- the first electrode support member 18 supports the first electrode 12 from the side.
- the present invention is not limited to this configuration, and the first electrode 12 can be supported from the first electrode support member 18. It is.
- the tip of the first electrode 12 has a contact portion 16.
- the contact portion 16 is disposed so as to contact the vicinity of one first end 35 of the conductive pattern 17.
- the contact portion 16 of the first electrode 12 is smaller than the interval between the adjacent conductive patterns 17, and the contact portion 16 does not simultaneously contact the two adjacent conductive patterns 17. In other words, the contact part 16 can contact only one of the conductive patterns 17.
- the contact part 16 is a conductor.
- the conductor include a metal represented by a tungsten alloy.
- the diameter of the cross section is preferably about 50 to 70 ⁇ m.
- the receiving portion 13 includes a plurality of second electrodes 14 and a second electrode support member 19.
- the second electrode support member 19 makes each second electrode 14 face the substrate 11 and supports each second electrode 14 at a position away from the substrate 11 by a certain distance.
- the second electrode 14 disposed below the second electrode support member 19 is indicated by a dotted line.
- the plurality of second electrodes 14 supported by the second electrode support member 19 can be moved together in the direction 102.
- the plurality of second electrodes 14 are arranged in a line at predetermined intervals from the first end 35 in contact with the first electrode to the second end 36 on the opposite side along the conductive pattern 17 in contact with the first electrode 12. ing. That is, each second electrode 14 is not in contact with the conductive pattern 17 and detects an electrical signal from the conductive pattern 17 through electrostatic coupling.
- the second electrode 14 has a size facing the plurality of conductive patterns 17 including the conductive pattern 17 with which the first electrode 12 contacts and the conductive pattern 17 adjacent thereto. If an electrical signal is also given to the conductive pattern 17 other than the conductive pattern 17 with which the first electrode 12 contacts, the second electrode 14 can detect the electrical signal from the plurality of conductive patterns 17 simultaneously.
- the first electrode support member 18 and the second electrode support member 19 can be driven and transmitted from a motor (not shown) by the operation unit 24 and moved in the direction 102 as a unit.
- Drive transmission from the motor to the first electrode support member 18 and the second electrode support member 19 is realized by a known gear mechanism or belt mechanism.
- the position of the 1st electrode support member 18 and the 2nd electrode support member 19 can be grasped
- the first electrode support member 18 and the second electrode support member 19 are moved in the scanning direction 103, the first electrode 12 and the plurality of second electrodes 14 are scanned with respect to each conductive pattern 17.
- the signal processing unit 21 receives an electrical signal detected by the second electrode 14.
- the signal processing unit 21 amplifies the received signal, removes noise by a filter, and serially outputs the signal in a certain order.
- the control unit 23 is configured as an information processing apparatus like a computer, for example.
- a program for instructing the timing and magnitude of the electrical signal to be output from the supply unit 20 to the first electrode 12, and the first electrode support member 18 and the second electrode support member 19 at a predetermined timing A program for moving to a predetermined position, a program for specifying a position where the conductive pattern 17 is disconnected or short-circuited based on the electric signal output from the signal processing unit 21 are installed.
- the substrate 11 to be inspected is fixed on the support base 30 in advance.
- the fixing method is not particularly limited, and the substrate 11 is fixed at a predetermined position on the support base 30 by a robot or human power.
- the control unit 23 receives the inspection start instruction, the control unit 23 moves the first electrode support member 18 and the second electrode support member 19 to the inspection start position corresponding to the first conductive pattern 17 (S1).
- the first electrode 12 contacts the first conductive pattern 17 at the inspection start position.
- Each second electrode 14 faces a plurality of conductive patterns 17 including the first conductive pattern 17.
- the inspection start position is not necessarily limited to the first conductive pattern 17 on the substrate 11, but in this specification, the conductive pattern 17 at which the inspection is started is referred to as the first conductive pattern 17.
- the control unit 23 causes the supply unit 20 to apply an electric signal to the first conductive pattern 17 through the first electrode 12, and starts supplying the electric signal (S2).
- An example of this electric signal is an alternating voltage, and the voltage is about 20V.
- each second electrode 14 detects a sufficiently large electric signal, so that it is easy to distinguish between the detected electronic signal and noise.
- the controller 23 moves the first electrode support member 18 and the second electrode support member 19 from the first conductive pattern 17 toward the Nth conductive pattern 17 (S3). Since the first electrode 12 is in contact with any one of the conductive patterns 17, in this scanning, the electrical signals from the first electrode 12 are sequentially supplied from the first conductive pattern 17 to the Nth conductive pattern 17. Are applied respectively.
- the control unit 23 determines whether the first electrode 12 and the second electrode 14 are positioned at the measurement position (S4). If the first electrode 12 and the second electrode 14 have not reached the measurement position (S4: NO), the control unit 23 continues scanning the first electrode support member 18 and the second electrode support member 19.
- the measurement position is a position where an electric signal can be detected from each conductive pattern 17. For example, the movement distances of the first electrode support member 18 and the second electrode support member 19 are detected by a linear encoder or an encoder of a motor, and the first electrode 12 and the first electrode 12 It is determined whether the two electrodes 14 are located at the measurement position.
- the control part 23 will supply the electric signal supplied to the conductive pattern 17 and detected from each 2nd electrode 14, Received from the signal processing unit 21. This electric signal is stored in the RAM of the control unit 23 as an electric signal (S5).
- the control unit 23 determines whether the first electrode support member 18 and the second electrode support member 19 have reached the end positions after detecting an electrical signal from one conductive pattern 17 (S6).
- the inspection end position means that if N conductive patterns 17 are formed on the substrate 11, the first electrode 12 and the second electrode 14 move beyond the Nth conductive pattern 17 to the end side of the substrate 11. Is the position. At the inspection end position, the first electrode 12 contacts the Nth conductive pattern 17, and each second electrode 14 faces a plurality of conductive patterns 17 including the Nth conductive pattern 17. Note that the inspection end position is not necessarily limited to the position past the Nth conductive pattern 17 on the substrate 11.
- the control unit 23 determines the measurement position (S4) and measures the detected electrical signal. (S5) is repeated.
- the control unit 23 stops supplying and measuring the electrical signal (S7). Then, the control unit 23 extracts line data corresponding to each conductive pattern 17 from the stored electrical signal (S8), and determines whether the first to Nth conductive patterns 17 are disconnected or short-circuited. (S9).
- the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM (S21). Then, the read electrical signal of the kth conductive pattern 17 is compared with the first reference value (S22).
- the first reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is disconnected.
- the electrical signal detected by the fifth second electrode 14 is smaller than the first reference value among the electrical signals detected from the second electrodes 14 in the k-th conductive pattern 17 (S22). : YES), assuming that there is a break in the vicinity of the fifth second electrode 14 in the kth conductive pattern 17, the positions of the kth and fifth second electrodes 14 having the break are stored in the RAM (S23). .
- the control unit 23 compares the electrical signal with the second reference value (S24).
- the second reference value is a value set in advance based on the magnitude of the electrical signal detected when the conductive pattern 17 is short-circuited.
- the k-th conductive pattern 17 is (k + 1) -th between the second electrode 14 and the third second electrode 14 counted from the first electrode 12 side.
- the electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the (k + 1) th conductive pattern 17 so that each second electrode 14 , An electrical signal is detected from the kth conductive pattern 17 and the (k + 1) th conductive pattern 17. Therefore, the electrical signal detected from each second electrode 14 is detected with a magnitude about twice that when normal.
- a value slightly smaller than the magnitude of the electrical signal that will be detected from each second electrode 14 when there is a short circuit is preset as the second reference value.
- the control unit 23 If any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is larger than the second reference value (S24: YES), the control unit 23 has a short circuit in the kth conductive pattern 17. Then, the kth short-circuited is stored in the RAM (S25).
- the control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the second reference value (S24: NO). Is stored in the RAM (S26).
- the control unit 23 reads the disconnection position / short circuit position stored in the RAM and displays the result as a test result on a display unit such as a display (S10). ). Based on this display, the inspector can know at which position of the substrate 11 there is a disconnection or a short circuit.
- the present invention is not capable of inspecting only the substrate 11 shown in the embodiment.
- a liquid crystal composed of two layers in which a thin layer transistor (TFT) employed in a liquid crystal screen or the like is incorporated. A panel can be inspected.
- TFT thin layer transistor
- the substrate 51 is a substrate used for a liquid crystal panel or the like like the substrate 11, and a part of the base portion 33 is insulated from the conductive pattern 17 formed on the base portion 33.
- a second conductive pattern 47 is formed inside the base portion 33. That is, the conductive pattern 17 is formed as a surface layer of the base portion 33, and the second conductive pattern 47 is formed as an inner layer of the base portion 33. In each figure, the second conductive pattern 47 is indicated by a wavy line.
- Each second conductive pattern 47 has substantially the same linear shape, and X pieces are formed in parallel so as to be substantially orthogonal to the conductive pattern 17 in a plan view shown in FIG.
- the number of the second conductive patterns 47, that is, X, need not be the same as the number of the conductive patterns 17, that is, N.
- the control unit 23 sequentially reads out the electrical signals detected in the 1st to Nth conductive patterns 17 from the RAM, and uses the read electrical signal of the kth conductive pattern 17 as the third reference value. Compare.
- This third reference value is a value set in advance based on the magnitude of the electrical signal detected when there is a short circuit between the conductive pattern 17 and the second conductive pattern 47.
- the kth conductive As shown in FIG. 9, when there is no short circuit between the conductive pattern 17 and the second conductive pattern 47, that is, when there is no cross short between the conductive pattern 17 and the second conductive pattern 47, the kth conductive The magnitudes of electrical signals obtained from the seven second electrodes 14 facing the pattern 17 are substantially the same.
- a short circuit (cross) between the k-th conductive pattern 17 and the second conductive pattern 47 immediately below the fourth second electrode 14, counted from the first electrode 12 side. If a short circuit occurs, an electrical signal applied from the first electrode 12 to the kth conductive pattern 17 is also transmitted to the shorted second conductive pattern 47, and the fourth second electrode 14 An electric signal is detected from each of the first, k + 1th, and k + 2th conductive patterns 17. Therefore, the electrical signal detected from the fourth second electrode 14 is detected with a magnitude that is twice or more that of a normal one. Thus, a value slightly smaller than the magnitude of the electrical signal that will be detected from the second electrode 14 when there is a short circuit is preset as the third reference value.
- the control unit 23 performs the kth operation. It is determined that the conductive pattern 17 is short-circuited with the second conductive pattern 47 in the vicinity of the fourth second electrode 14, and the positions of the short-circuited k-th and fourth second electrodes 14 are stored in the RAM. Store. On the other hand, the control unit 23 determines that the kth conductive pattern 17 is normal if any of the electrical signals detected from the second electrodes 14 in the kth conductive pattern 17 is smaller than the third reference value. . In this way, the number and position of the short circuit between the conductive pattern 17 and the second conductive pattern 47 are specified for the substrate 51.
- the present invention can be used for an inspection apparatus and an inspection method for detecting an electrical defect of a conductive pattern formed on a substrate.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Description
図1は、本発明の一実施形態に係る導電パターン検査装置10の模式図である。図2は、本発明の一実施形態に係る導電パターン検査装置の概略側面図である。また、図2において、後から述べられる第一電極支持部材18は省略されている。 [Outline of Conductive Pattern Inspection Apparatus 10]
FIG. 1 is a schematic view of a conductive
基板11は、液晶パネル等に用いられる基板であり、基底部33上に導電パターン17が形成されている。基底部33は、絶縁体からなる薄層板であり、主な材料としてガラスやプラスチックが挙げられる。各々の導電パターン17は、概ね同一の直線形状であり、基底部33上にN本が並列に形成されている。すなわち、N本の導電パターン17は、相互がほぼ平行となって基底部33の上面に並ぶように形成されている。導電パターン17は、導電性の材料から形成されており、このような材料について、例えば、インジウムとスズの酸化物(ITO)、銀、アルミニウム等が挙げられる。 [Substrate 11]
The
第一電極12は、上述されたように導線26によって供給部20と電気的に接続されている。第一電極支持部材18は、第一電極12を支持している。図1において、第一電極支持部材18は第一電極12を横から支持しているが、この形態には限らず、第一電極支持部材18上から第一電極12を支持すること等も可能である。図2に示されるように、第一電極12の先端は接触部16を有する。接触部16は、導電パターン17の一方の第一端35付近に接触するように配置されている。第一電極12の接触部16は、隣り合う導電パターン17の間隔より小さいものであり、接触部16が、隣り合う2本の導電パターン17に同時に接触することはない。換言すると、接触部16は、導電パターン17のいずれか一本とのみ接触し得る。 [First electrode 12]
The
図1及び図2に示されるように、受容部13は、複数の第二電極14と第二電極支持部材19とを備える。第二電極支持部材19は、各第二電極14を基板11と対向させ、且つ各第二電極14を基板11から一定の距離だけ離れた位置に支持する。図1においては、第二電極支持部材19の下方に配置された第二電極14が点線で示されている。第二電極支持部材19によって支持された複数の第二電極14を、一体として方向102へ移動可能である。複数の第二電極14は、第一電極12が接触する導電パターン17に沿って、第1電極が接触する第一端35から反対側の第二端36まで、所定の間隔で一列に配置されている。すなわち、各第二電極14は導電パターン17と非接触であり、静電結合を通じて導電パターン17から電気信号を検出する。 [Reception part 13]
As shown in FIGS. 1 and 2, the receiving
第一電極支持部材18及び第二電極支持部材19は、操作部24によって、不図示のモータから駆動伝達されて、一体として方向102へ移動され得る。モータから第一電極支持部材18及び第二電極支持部材19への駆動伝達は、公知のギヤ機構やベルト機構などによって実現される。また、第一電極支持部材18及び第二電極支持部材19の位置は、センサやエンコーダ、ステッピングモータのステップ量に基づいて把握され得る。第一電極支持部材18及び第二電極支持部材19が走査方向103へ移動されることによって、第一電極12及び複数の第二電極14が、各導電パターン17に対して走査される。 [Operation unit 24]
The first
図1に示されるように、信号処理部21は、第二電極14が検出した電気信号を受信する。信号処理部21は、受信した信号を増幅するとともに、フィルタによってノイズが除去し、一定の順序でシリアルに出力する。 [Signal processing unit 21]
As shown in FIG. 1, the
制御部23は、例えば、コンピュータのように情報処理装置として構成されている。制御部23には、供給部20から第一電極12へ出力させる電気信号のタイミングや大きさを指示するためのプログラムや、第一電極支持部材18及び第二電極支持部材19を所定のタイミングで所定の位置に移動させるためのプログラム、信号処理部21から出力された電気信号に基づいて、導電パターン17が断線或いは短絡している位置を特定するためのプログラムなどがインストールされている。 [Control unit 23]
The
以下に、本発明の一実施形態に係る導電パターン検査装置10における導電パターン検査方法が説明される。 [Conductive pattern inspection method]
Below, the conductive pattern test | inspection method in the conductive pattern test |
制御部23は、供給部20に、第一電極12を通じて電気信号を1本目の導電パターン17に印加させて、電気信号の供給を開始する(S2)。この電気信号の一例として、交流電圧が挙げられ、電圧は20V程度である。電圧が20V以上であると、各第二電極14が十分な大きさの電気信号を検出するので、検出された電子信号とノイズとの判別が容易である。 [Applying process]
The
制御部23は、第一電極支持部材18及び第二電極支持部材19を、1本目の導電パターン17からN本目の導電パターン17へ向かって移動させる(S3)。第一電極12は、いずれか1本の導電パターン17と接触するので、この走査において、1本目の導電パターン17からN本目の導電パターン17に対して、順番に、第一電極12から電気信号がそれぞれ印加される。 [Scanning process]
The
制御部23は、第一電極支持部材18及び第二電極支持部材19の走査過程において、第一電極12及び第二電極14が測定位置に位置するかを判別する(S4)。第一電極12及び第二電極14が測定位置に到達していなければ(S4:NO)、制御部23は第一電極支持部材18及び第二電極支持部材19の走査を継続する。この測定位置とは、各導電パターン17から電気信号を検出し得る位置である。例えば、第一電極支持部材18及び第二電極支持部材19の移動距離が、リニアエンコーダやモータのエンコーダによって検出され、その移動距離及び各導電パターン17のピッチに基づいて、第一電極12及び第二電極14が測定位置に位置したかが判断される。そして、制御部23は、第一電極12及び第二電極14が測定位置に位置すれば(S4:YES)、その導電パターン17に供給されて各第二電極14から検出される電気信号を、信号処理部21から受信する。この電気信号は、電気信号として制御部23のRAMへ格納される(S5)。 [Detection process]
In the scanning process of the first
図4に示されるように、制御部23は、RAMから1からN本目の導電パターン17において検出された電気信号を順次読み出す(S21)。そして、読み出したk本目の導電パターン17の電気信号を第一基準値と比較する(S22)。この第一基準値は、導電パターン17に断線があったときに検出される電気信号の大きさに基づいて予め設定される値である。 [Disconnection determination process and short circuit determination process]
As shown in FIG. 4, the
図3に示されるように、制御部23は、断線・短絡の判断を終了した後、RAMに格納された断線位置・短絡位置を読み出して、検査結果としてディスプレイなどの表示部に表示する(S10)。この表示に基づいて、検査者は、基板11のいずれの位置に断線或いは短絡があるかを知り得る。 [Display process]
As shown in FIG. 3, after completing the determination of disconnection / short circuit, the
前述されたように、本実施形態によれば、第一電極12及び複数の第二電極14が基板11に対して一方向に走査されるのみによって、断線のある本数目及び位置が特定されるので、検査に要する時間が従来より格段に短縮される。また、同じ走査によって、短絡のある本数目についても特定される。また、第一電極12が導電パターン17に接触するので、第二電極14においてノイズと区別が可能な程度の大きな電気信号を検出することができる。また、第二電極14が導電パターン17に非接触なので、第二電極14を走査することによって導電パターン17が傷つけられることがない。さらには、各導電パターン17に対する各第二電極の位置が多少ズレても、断線・短絡の検査が可能である。 [Operational effects of this embodiment]
As described above, according to the present embodiment, only the
なお、本発明は、実施形態において示された基板11についてのみ検査を行い得るものではなく、例えば、液晶画面などに採用されている薄層トランジスタ(TFT)が組み込まれている二層から成る液晶パネルに対して検査を行い得る。 [Modification]
Note that the present invention is not capable of inspecting only the
図9に示されるように、基板51は、基板11と同様に液晶パネル等に用いられる基板であり、基底部33上に形成された導電パターン17に対して、基底部33の一部を絶縁層として、基底部33の内部に第二導電パターン47が形成されている。つまり、導電パターン17が基底部33の表層として形成され、第二導電パターン47が基底部33の内層として形成されている。なお、各図においては、第二導電パターン47が波線で示されている。 [Substrate 51]
As shown in FIG. 9, the
11,51・・・基板
12・・・第一電極
13・・・受容部
14・・・第二電極
17・・・導電パターン
18・・・支持部材
20・・・供給部
21・・・信号処理部
23・・・制御部
24・・・操作部
26,27,28・・・導線
30・・・支持台
33・・・基底部
35・・・第一端
36・・・第二端
47・・・第二導電パターン
101・・・導電パターン17に平行な方向
102・・・導電パターン17に垂直な方向
103・・・走査方向 DESCRIPTION OF
Claims (16)
- 基板に並列に形成されたN本の直線状の導電パターンの状態を検査する装置であって、
第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加手段と、
上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加手段によって印加された電気信号をそれぞれ検出する検出手段と、
上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査手段と、
上記検出手段が検出した各導電パターンの電気信号に基づいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を判断する断線判断手段と、を備える導電パターン検査装置。 An apparatus for inspecting the state of N linear conductive patterns formed in parallel on a substrate,
Applying means for supplying an electrical signal to any of the conductive patterns via the first electrode;
Detecting means for detecting each of the electrical signals applied by the applying means from the conductive pattern via a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern;
Scanning means for scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern;
A conductive pattern inspection apparatus comprising: a disconnection determining unit configured to determine the number of conductive patterns having a disconnection and a position of the disconnection on the conductive pattern based on an electrical signal of each conductive pattern detected by the detection unit. - 上記検出手段は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出するものであり、
上記検出手段が検出した電気信号に基づいて、短絡のある導電パターンの本数目を判断する短絡判断手段と、を更に備える請求項1に記載の導電パターン検査装置。 The detection means detects the electrical signal from the conductive pattern to which the electrical signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode,
2. The conductive pattern inspection apparatus according to claim 1, further comprising: a short-circuit determining unit that determines the number of the short-circuited conductive pattern based on the electrical signal detected by the detecting unit. - 上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものである請求項1又は請求項2に記載の導電パターン検査装置。 3. The conductive pattern inspection apparatus according to claim 1, wherein the first electrode is in contact with the conductive pattern, and the second electrode is non-contact with the conductive pattern.
- 上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断する請求項1から請求項3のいずれかに記載の導電パターン検査装置。 The disconnection determining means is configured to detect the kth conductive pattern when at least one of the electrical signals detected from the kth conductive pattern via the second electrode is smaller than a preset first reference value. The conductive pattern inspection apparatus according to claim 1, wherein it is determined that is disconnected.
- 上記断線判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号において、
上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断する請求項4に記載の導電パターン検査装置。 The disconnection determination means is configured to detect each electric signal detected from the kth conductive pattern through the second electrode.
The conductive pattern inspection apparatus according to claim 4, wherein a disconnection position in the kth conductive pattern is determined based on a position of the second electrode where an electrical signal smaller than the first reference value is detected. - 上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断する請求項2又は請求項3に記載の導電パターン検査装置。 The short-circuit determining unit is configured to detect the k-th conductivity when the electrical signal obtained from the second electrode via the k-th conductive pattern detected by the detection unit is greater than a preset second reference value. The conductive pattern inspection apparatus according to claim 2, wherein the pattern is determined to be short-circuited.
- 上記導電パターンに対して絶縁層を介して別の直線状の導電パターンが設けられた上記基板の検査において、
上記短絡判断手段は、上記検出手段が検出したk本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断する請求項2又は請求項3に記載の導電パターン検査装置。 In the inspection of the substrate provided with another linear conductive pattern via an insulating layer with respect to the conductive pattern,
The short-circuit determining unit is configured such that at least one of the electrical signals obtained from the second electrode through the kth conductive pattern detected by the detecting unit is greater than a preset third reference value. The conductive pattern inspection apparatus according to claim 2, wherein the k-th conductive pattern and the other conductive pattern are determined to be short-circuited. - 上記短絡判断手段は、k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断する請求項7に記載の導電パターン検査装置。 The short-circuit determining means is configured based on the position of the second electrode at which an electrical signal larger than the third reference value is detected for each electrical signal detected via the second electrode from the kth conductive pattern. The conductive pattern inspection apparatus according to claim 7, wherein a short-circuit position in the k-th conductive pattern is determined.
- 基板に並列に形成されたN本の直線状の導電パターンの状態を検査する方法であって、
第一電極を介して上記導電パターンのいずれかに電気信号を供給する印加工程と、
上記導電パターンに沿って上記第一電極から所定の間隔で配置された複数の第二電極を介して、上記導電パターンから上記印加工程において印加された電気信号をそれぞれ検出する検出工程と、
上記第一電極及び上記第二電極を、1本目の導電パターンからN本目の導電パターンへ向かって走査する走査工程と、
上記検出工程において検出された各導電パターンの電気信号にづいて、断線のある導電パターンの本数目及び当該導電パターン上における断線の位置を特定する断線位置特定工程と、を含む導電パターン検査方法。 A method for inspecting the state of N linear conductive patterns formed in parallel on a substrate,
An application step of supplying an electrical signal to any of the conductive patterns via the first electrode;
A detection step of detecting electrical signals applied in the application step from the conductive pattern via a plurality of second electrodes arranged at predetermined intervals from the first electrode along the conductive pattern;
A scanning step of scanning the first electrode and the second electrode from the first conductive pattern toward the Nth conductive pattern;
A disconnection position specifying step of specifying the number of disconnection conductive patterns and the position of disconnection on the conductive pattern based on the electrical signal of each conductive pattern detected in the detection step. - 上記検出工程は、上記第二電極を介して、上記第一電極により電気信号が印加された導電パターン及び当該導電パターンと隣接する導電パターンから当該電気信号を検出する工程であり、
上記検出工程において検出された電気信号に基づき短絡のある導電パターンの本数目を判断する短絡判断工程と、を更に含む請求項9に記載の導電パターン検査方法。 The detection step is a step of detecting the electric signal from the conductive pattern to which the electric signal is applied by the first electrode and the conductive pattern adjacent to the conductive pattern via the second electrode,
The conductive pattern inspection method according to claim 9, further comprising: a short-circuit determining step of determining the number of short-circuited conductive patterns based on the electrical signal detected in the detection step. - 上記第一電極は上記導電パターンに対して接触するものであり、上記第二電極は上記導電パターンに対して非接触のものである請求項9又は請求項10に記載の導電パターン検査方法。 The conductive pattern inspection method according to claim 9 or 10, wherein the first electrode is in contact with the conductive pattern, and the second electrode is non-contact with the conductive pattern. *
- k本目の導電パターンから上記第二電極を介して検出された各電気信号の少なくともいずれかが、予め設定された第一基準値より小さいときに、当該k本目の導電パターンが断線していると判断する請求項9又から請求項11のいずれかに記載の導電パターン検査方法。 When at least one of the electrical signals detected from the kth conductive pattern through the second electrode is smaller than a preset first reference value, the kth conductive pattern is disconnected. 12. The conductive pattern inspection method according to claim 9, wherein the conductive pattern inspection method is determined.
- k本目の導電パターンから上記第二電極を介して検出された各電気信号において、上記第一基準値より小さい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける断線位置を判断する請求項12に記載の導電パターン検査方法。 In each electrical signal detected from the kth conductive pattern via the second electrode, the disconnection in the kth conductive pattern based on the position of the second electrode where the electrical signal smaller than the first reference value is detected. The conductive pattern inspection method according to claim 12, wherein the position is determined.
- k本目の導電パターンを介して上記第二電極から得られた電気信号が、予め設定された第二基準値より大きいときに、当該k本目の導電パターンが短絡していると判断する請求項10又は請求項11に記載の導電パターン検査方法。 11. The k-th conductive pattern is judged to be short-circuited when an electrical signal obtained from the second electrode via the k-th conductive pattern is larger than a preset second reference value. Alternatively, the conductive pattern inspection method according to claim 11.
- 上記導電パターンに対して絶縁層を介して別の導電パターンが設けられた上記基板の検査において、
k本目の導電パターンを介して上記第二電極から得られた各電気信号の少なくともいずれかが、予め設定された第三基準値より大きいときに、当該k本目の導電パターンと上記別の導電パターンとが短絡していると判断する請求項10又は請求項11に記載の導電パターン検査方法。 In the inspection of the substrate provided with another conductive pattern through an insulating layer with respect to the conductive pattern,
When at least one of the electrical signals obtained from the second electrode via the kth conductive pattern is greater than a preset third reference value, the kth conductive pattern and the other conductive pattern The conductive pattern inspection method according to claim 10 or 11, wherein it is determined that the two are short-circuited. - k本目の導電パターンから上記第二電極を介して検出された各電気信号に対して、上記第三基準値より大きい電気信号が検出された第二電極の位置に基づいて当該k本目の導電パターンにおける短絡位置を判断する請求項15に記載の導電パターン検査方法。
For each electrical signal detected via the second electrode from the kth conductive pattern, the kth conductive pattern based on the position of the second electrode where an electrical signal greater than the third reference value is detected. The conductive pattern inspection method according to claim 15, wherein a short-circuit position is determined.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127004075A KR101384518B1 (en) | 2009-08-17 | 2010-08-12 | Electrical conduction pattern inspection apparatus and inspection method |
CN2010800294698A CN102472788A (en) | 2009-08-17 | 2010-08-12 | Electrical conduction pattern inspection apparatus and inspection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009188319A JP4723664B2 (en) | 2009-08-17 | 2009-08-17 | Conductive pattern inspection apparatus and inspection method |
JP2009-188319 | 2009-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011021567A1 true WO2011021567A1 (en) | 2011-02-24 |
Family
ID=43607022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063705 WO2011021567A1 (en) | 2009-08-17 | 2010-08-12 | Electrical conduction pattern inspection apparatus and inspection method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4723664B2 (en) |
KR (1) | KR101384518B1 (en) |
CN (1) | CN102472788A (en) |
TW (1) | TWI474012B (en) |
WO (1) | WO2011021567A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104105975A (en) * | 2012-02-06 | 2014-10-15 | 罗泽系统株式会社 | Electrode pattern test apparatus |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967378B2 (en) | 2005-03-29 | 2012-07-04 | セイコーエプソン株式会社 | Ink composition |
US20080132599A1 (en) | 2006-11-30 | 2008-06-05 | Seiko Epson Corporation. | Ink composition, two-pack curing ink composition set, and recording method and recorded matter using these |
JP5472670B2 (en) | 2007-01-29 | 2014-04-16 | セイコーエプソン株式会社 | Ink set, ink jet recording method and recorded matter |
JP4816976B2 (en) | 2007-08-09 | 2011-11-16 | セイコーエプソン株式会社 | Photocurable ink composition |
CN102336081A (en) | 2010-05-19 | 2012-02-01 | 富士胶片株式会社 | Printing method, method for preparing overprint, method for processing laminate, light-emitting diode curable coating composition, and light-emitting diode curable ink composition |
CN103391979A (en) | 2011-02-28 | 2013-11-13 | 富士胶片株式会社 | Ink composition, image forming method and printed material |
JP6014950B1 (en) * | 2015-12-22 | 2016-10-26 | オー・エイチ・ティー株式会社 | Conductor pattern inspection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07270476A (en) * | 1994-03-29 | 1995-10-20 | Dainippon Printing Co Ltd | Defect detection method and defect detection device for linear electrode |
JP2001084904A (en) * | 1999-09-14 | 2001-03-30 | Dainippon Printing Co Ltd | Electrode inspection device and method of electrode inspection |
JP2004191381A (en) * | 2002-11-30 | 2004-07-08 | Oht Inc | Circuit pattern inspection device and circuit pattern inspection method |
WO2006112543A1 (en) * | 2005-04-19 | 2006-10-26 | Oht Inc. | Inspection device and conductive pattern inspection method |
JP2008102031A (en) * | 2006-10-19 | 2008-05-01 | Tokyo Cathode Laboratory Co Ltd | Pattern inspection device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004184385A (en) * | 2002-11-30 | 2004-07-02 | Oht Inc | Circuit pattern inspection device and pattern inspection method |
JP2006200993A (en) * | 2005-01-19 | 2006-08-03 | Oht Inc | Circuit pattern inspection device and its method |
-
2009
- 2009-08-17 JP JP2009188319A patent/JP4723664B2/en not_active Expired - Fee Related
-
2010
- 2010-08-12 CN CN2010800294698A patent/CN102472788A/en active Pending
- 2010-08-12 WO PCT/JP2010/063705 patent/WO2011021567A1/en active Application Filing
- 2010-08-12 KR KR1020127004075A patent/KR101384518B1/en active IP Right Grant
- 2010-08-16 TW TW99127329A patent/TWI474012B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07270476A (en) * | 1994-03-29 | 1995-10-20 | Dainippon Printing Co Ltd | Defect detection method and defect detection device for linear electrode |
JP2001084904A (en) * | 1999-09-14 | 2001-03-30 | Dainippon Printing Co Ltd | Electrode inspection device and method of electrode inspection |
JP2004191381A (en) * | 2002-11-30 | 2004-07-08 | Oht Inc | Circuit pattern inspection device and circuit pattern inspection method |
WO2006112543A1 (en) * | 2005-04-19 | 2006-10-26 | Oht Inc. | Inspection device and conductive pattern inspection method |
JP2006300665A (en) * | 2005-04-19 | 2006-11-02 | Oht Inc | Inspection device, and conductive pattern inspection method |
JP2008102031A (en) * | 2006-10-19 | 2008-05-01 | Tokyo Cathode Laboratory Co Ltd | Pattern inspection device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104105975A (en) * | 2012-02-06 | 2014-10-15 | 罗泽系统株式会社 | Electrode pattern test apparatus |
CN104105975B (en) * | 2012-02-06 | 2016-03-30 | 罗泽系统株式会社 | Electrode pattern proving installation |
Also Published As
Publication number | Publication date |
---|---|
JP2011038962A (en) | 2011-02-24 |
KR101384518B1 (en) | 2014-04-11 |
CN102472788A (en) | 2012-05-23 |
TW201132996A (en) | 2011-10-01 |
JP4723664B2 (en) | 2011-07-13 |
TWI474012B (en) | 2015-02-21 |
KR20120056256A (en) | 2012-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011021567A1 (en) | Electrical conduction pattern inspection apparatus and inspection method | |
KR100799161B1 (en) | Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof | |
TWI401452B (en) | Circuit pattern inspection device and inspection method | |
KR20020001752A (en) | Tester and testing method, and testing unit | |
KR101013243B1 (en) | Circuit pattern inspection device and circuit pattern inspection method | |
JP2010139377A (en) | Circuit pattern inspection device and method of inspecting circuit pattern thereof | |
CN103380366A (en) | Defect inspection method, defect inspection apparatus, and method for manufacturing substrate | |
US20190311663A1 (en) | Substrate, panel, detection device and alignment detection method | |
JP5352066B2 (en) | Electronic circuit board manufacturing equipment | |
JP4748392B2 (en) | TFT array substrate inspection equipment | |
JP2000221227A (en) | Apparatus and method for inspecting conductive pattern | |
KR102260861B1 (en) | Inspection apparatus of printed circuit board and control method thereof | |
KR20080098088A (en) | Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof | |
TW200537112A (en) | Circuit pattern testing apparatus and circuit pattern testing method | |
WO2017168530A1 (en) | Inspection method and inspection system for wiring path of substrate | |
US9118331B2 (en) | Contact state detection apparatus | |
KR20120130123A (en) | Conductive pattern inspection device | |
JP2002310933A (en) | Apparatus and method for inspection of circuit board as well as electro-optical element | |
JP2012022512A (en) | Inspection device and inspection method | |
JP4717581B2 (en) | Display substrate inspection method | |
KR100627546B1 (en) | Apparatus and method for detecting the open/short location of electrode lines in flat panel circuit using a magnetic field sensor and a camera | |
KR100948062B1 (en) | Non-contact type single side probe | |
JP2013217841A (en) | Conductive pattern inspection device | |
TW201000930A (en) | Device and procedure for contactless forming a contact of conductive structures, in particular of thin film transistor liquid crystal displays | |
KR101235624B1 (en) | System for sensing the touch status of display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080029469.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10809912 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127004075 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10809912 Country of ref document: EP Kind code of ref document: A1 |