WO2011021411A1 - Esd protection device - Google Patents
Esd protection device Download PDFInfo
- Publication number
- WO2011021411A1 WO2011021411A1 PCT/JP2010/057859 JP2010057859W WO2011021411A1 WO 2011021411 A1 WO2011021411 A1 WO 2011021411A1 JP 2010057859 W JP2010057859 W JP 2010057859W WO 2011021411 A1 WO2011021411 A1 WO 2011021411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- esd protection
- protection device
- esd
- conductive pattern
- signal line
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 67
- 239000003990 capacitor Substances 0.000 claims description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 28
- 229910052710 silicon Inorganic materials 0.000 claims description 28
- 239000010703 silicon Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 2
- 238000000707 layer-by-layer assembly Methods 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 101100163833 Arabidopsis thaliana ARP6 gene Proteins 0.000 abstract description 32
- 230000003068 static effect Effects 0.000 abstract description 25
- 230000005611 electricity Effects 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 72
- 238000010586 diagram Methods 0.000 description 23
- 230000002093 peripheral effect Effects 0.000 description 12
- 230000002238 attenuated effect Effects 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002161 passivation Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/045—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
- H02H9/046—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere responsive to excess voltage appearing at terminals of integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0107—Non-linear filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1741—Comprising typical LC combinations, irrespective of presence and location of additional resistors
- H03H7/1766—Parallel LC in series path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05124—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05647—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/60—Protection against electrostatic charges or discharges, e.g. Faraday shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/645—Inductive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Definitions
- This invention relates to an electrostatic protection device (ESD protection device) for protecting a semiconductor IC or the like from static electricity.
- ESD protection device electrostatic protection device
- ESD Electro Static Discharge
- Such an ESD protection device includes a ⁇ -type ESD protection circuit 10P ′ as shown in FIG. 12A and a T-type ESD protection circuit 10T ′ as shown in FIG.
- FIG. 12 is an equivalent circuit diagram showing an example of a conventional ESD protection circuit.
- FIGS. 12A and 12C are circuit diagrams of the respective ESD protection circuits.
- FIGS. 12B and 12D are ESD diagrams. It is an equivalent circuit diagram in the state where an element is OFF.
- 12A and 12B show a ⁇ -type ESD protection circuit
- FIGS. 12C and 12D show a T-type ESD protection circuit.
- the ⁇ -type ESD protection circuit 10P ′ shown in FIG. 12A includes a resistor R and two ESD elements ESD1 and ESD2.
- the resistor R is inserted in a signal line between the input port Pi and the output port Po.
- Each of the two ESD elements ESD1, ESD2 has one end connected to both ends of the resistor R and the other end connected to the ground.
- This ⁇ -type ESD protection circuit is also described in Patent Document 1.
- the T-type ESD protection circuit 10T ′ shown in FIG. 12C includes two resistors R connected in series and an ESD element ESD. Two resistors R connected in series are inserted in a signal line between the input port Pi and the output port Po.
- the ESD element ESD has one end connected to the connection point of the two resistors R and the other end connected to the ground.
- the ⁇ -type ESD protection circuit 10P ′ as shown in FIG. 12A and the T-type ESD protection circuit 10T ′ as shown in FIG. 12C function as the capacitor Cv when the ESD element is OFF.
- the ⁇ -type ESD protection circuit 10P ′ shown in FIG. 12A functions as a CR-C type low pulse filter shown in FIG. 12B
- the circuit 10T ′ functions as an RCR type low pulse filter shown in FIG.
- such a low-pass filter including the ⁇ -type ESD protection circuit 10P ′ and the T-type ESD protection circuit 10T ′ has a characteristic that the amount of attenuation increases monotonously at the high band end of the pass band. Therefore, for example, when high-frequency noise exists at a frequency with a small attenuation at the high end of the pass band, the high-frequency noise cannot be attenuated.
- An object of the present invention is to realize an ESD protection device that can reliably perform ESD protection while sufficiently securing an attenuation amount of a desired frequency.
- An ESD protection device includes a resistor inserted in a signal line, two ESD elements for connecting both ends of the resistor and the ground, and a resistor connected in series on the signal line.
- An LC parallel resonator is
- a resistor and two ESD elements constitute a ⁇ -type ESD protection circuit having an ESD protection function and a low-pass filter function.
- the attenuation pole at the time of functioning as a low-pass filter is formed by LC parallel resonator.
- the resonance frequency of the LC parallel resonator is set to the frequency of the high frequency noise to be removed, an attenuation pole is formed at the frequency, and the high frequency noise is greatly attenuated.
- the line capacitance does not change, so that there is almost no influence on the transmission characteristics other than the formation of the attenuation pole.
- the LC parallel resonator of the ESD protection device of the present invention is connected between one end of the resistor in the signal line and the ESD element connected to the one end.
- the LC parallel resonator is arranged in the middle of two connection points where the two ESD elements are respectively connected to the signal line. Thereby, even if static electricity is superimposed from any direction of the signal line, it is discharged to the ground by the ESD element, and static electricity is not surged to the LC parallel resonator. Thereby, destruction of the capacitor of the LC parallel resonator can be prevented together with the normal ESD protection function.
- the inductor of the LC parallel resonator is formed with a spiral electrode described later, the resistance component of the inductor increases and current flows easily through the capacitor. Therefore, using this structure can prevent electrostatic breakdown of the capacitor. It is valid.
- the ESD protection device of the present invention connects two resistors inserted in a signal line and connected in series with each other, and a connection point between the two resistors connected in series and the ground.
- An ESD element, and an LC parallel resonator connected in series to a signal line between one of the resistors and the connection point.
- a T-type ESD protection circuit having an ESD protection function and a low-pass filter function is configured by two resistors and an ESD element.
- the attenuation pole at the time of functioning as a low-pass filter is formed by LC parallel resonator.
- the resonance frequency of the LC parallel resonator is set to the frequency of the high frequency noise to be removed, an attenuation pole is formed at the frequency, and the high frequency noise is greatly attenuated.
- the line capacitance does not change, so that there is almost no influence on the transmission characteristics other than the formation of the attenuation pole.
- the inductor constituting the LC parallel resonator of the ESD protection device of the present invention comprises a conductive pattern formed on a silicon substrate on which a signal line is formed.
- This configuration shows a specific method for forming an inductor of an LC parallel resonator, and can be formed integrally with a signal line by being formed on a silicon substrate. Further, by using the silicon substrate, it is possible to collectively form the capacitor of the LC parallel resonance circuit, the resistor R and the ESD element of the ESD protection device.
- the inductor of the ESD protection device includes a conductive pattern of a redistribution layer separated from a conductive pattern of a silicon substrate, a conductive pattern on the redistribution layer, and a silicon substrate. And a via hole that conducts the conductive pattern.
- the inductor is formed of the conductive pattern on the surface of the silicon substrate and the conductive pattern of the rewiring layer formed at a position spaced apart from the conductive pattern on the surface of the silicon substrate. And since these are electrically connected by a via hole, an inductor is formed by the electrode over a plurality of layers. As a result, it is possible to make the electrode length of the inductor longer than that of the single layer structure, and a high inductance can be realized. As a result, the Q value of the LC parallel resonator can be increased, and a steeper attenuation pole can be realized.
- the inductor of the ESD protection device of the present invention further includes a conductive pattern of at least one redistribution layer and a via hole that connects the conductive patterns of each redistribution layer.
- a higher inductance can be realized by further increasing the conductive pattern of the rewiring layer and connecting the conductive pattern on the silicon substrate and the conductive pattern of each rewiring layer.
- the Q value of the LC parallel resonator can be further increased, and a steeper attenuation pole can be realized.
- the conductive pattern of the rewiring layer of the ESD protection device of the present invention has a thicker electrode than the conductive pattern on the silicon substrate.
- the conductive pattern of the rewiring layer of the ESD protection device of the present invention is formed of a material having higher conductivity than the conductive pattern on the silicon substrate.
- the conductive pattern of the rewiring layer is used to increase the inductance of the inductor by increasing the electrode length of the inductor, but the rewiring layer has a high conductivity to further suppress an increase in resistance value. Can do. Thereby, the Q value of the LC parallel resonator can be made steeper, and a steeper attenuation pole can be realized.
- the conductive pattern on the silicon substrate of the ESD protection device of the present invention comprises a spiral electrode.
- This configuration shows a case where a spiral electrode is used as an example of a conductive pattern inductor formation pattern.
- the inductance can be made higher than that of the meander electrode having the same area.
- the Q value of the LC parallel resonator can be increased, and a steeper attenuation pole can be realized.
- the conductive pattern on the silicon substrate of the ESD protection device of the present invention and the conductive pattern of the redistribution layer have substantially the same shape and the same direction in the same region in a plan view of the silicon substrate. It consists of a spiral electrode wound around.
- the ESD protection device of the present invention further includes a capacitor having one end connected to the signal line between the resistor and the LC parallel resonator and the other end connected to the ground.
- the ESD protection device is composed of a plurality of resonance circuits, it is possible to make the attenuation pole have a steeper characteristic.
- the capacitor includes a third ESD element different from the two ESD elements.
- This configuration shows a specific example of capacitor formation.
- the resistor includes two partial resistors, and the two partial resistors are respectively connected to the two ESD elements from one end of the third ESD element. Individually connected on the signal line.
- the ESD that flows into the third ESD element can be lowered by the partial resistor, and the destruction of the third ESD element can be prevented.
- the capacitor is separated from the conductive pattern formed on the silicon substrate on which the signal line is formed and the conductive pattern formed on the silicon substrate. And a conductive pattern of the rewiring layer.
- This configuration shows a specific structure when the capacitor is not formed by an ESD element.
- the conductive pattern formed on the silicon substrate forming the capacitor also serves as the conductive pattern constituting the inductor of the LC parallel resonator.
- connection electrodes such as via holes for connecting the electrode pattern constituting the inductor of the LC parallel resonator on the Si substrate to the rewiring layer and the outside can be omitted, and the structure can be simplified.
- an ESD protection device that forms an attenuation pole at the frequency of the high-frequency noise to be removed, can sufficiently attenuate the high-frequency noise, and can reliably perform ESD protection.
- FIG. 4 is a circuit diagram of a ⁇ -type ESD protection circuit of the ESD protection device according to the present embodiment and an equivalent circuit diagram when an ESD element is in an OFF state. It is a passage characteristic figure of the ESD protection device concerning this embodiment, and the conventional ESD protection device.
- FIG. 4 is a circuit diagram of a T-type ESD protection circuit of the ESD protection device according to the present embodiment and an equivalent circuit diagram when an ESD element is in an OFF state. It is side surface sectional drawing for demonstrating the structure of the ESD protection device of this embodiment. It is the external appearance perspective view which shows the structure of the inductor Lr typically, and its exploded perspective view.
- FIG. 4 is a circuit diagram of a ⁇ -type ESD protection circuit of the ESD protection device according to the present embodiment and an equivalent circuit diagram when an ESD element is in an OFF state. It is a passage characteristic figure of the ESD protection device concerning this embodiment, and the conventional ESD protection device.
- FIG. 4 is a circuit diagram of
- FIG. 6 is a plan view and a side sectional view of the second spiral electrode 21B of the redistribution layer constituting the inductor Lr, and a plan view and a side sectional view of the first spiral electrode 21A formed on the surface of the Si substrate 20A.
- It is a passage characteristic diagram which shows the influence on the passage characteristic according to the number of spiral electrodes.
- It is a disassembled perspective view which shows typically the other structure of the inductor Lr.
- It is the circuit diagram of the ESD protection device which consists of another structure of this invention, and an equivalent circuit diagram in the state where an ESD element is OFF.
- It is a circuit diagram of the ESD protection device which consists of other composition of the present invention.
- FIG. 6 is a circuit diagram of a conventional ESD protection circuit and an equivalent circuit diagram when an ESD element is in an OFF state.
- FIG. 1A is a circuit diagram of the ⁇ -type ESD protection circuit 10P, and FIG. A circuit diagram is shown.
- a resistor R is connected between a predetermined position of the signal line, that is, the input port Pi and the output port Po of the signal line in FIG.
- One end of the resistor R is connected to one end of the ESD element ESD1, and the other end of the ESD element ESD1 is connected to the ground.
- One end of the ESD element ESD2 is connected to the other end of the resistor R via the LC parallel resonant circuit 1, and the other end of the ESD element ESD2 is connected to the ground.
- the LC parallel resonator 1 includes a parallel circuit of an inductor Lr and a capacitor Cr, and is connected in series with a resistor R on a signal line. At this time, the LC parallel resonant circuit 1 is connected so as to be inserted between the end of the resistor R on the ESD element ESD2 side and the connection point where the ESD element ESD2 is connected to the signal line.
- the ⁇ -type ESD protection circuit 10P In the ⁇ -type ESD protection circuit 10P having such a circuit configuration, unless static electricity is superimposed on the signal line, the ESD elements ESD1 and ESD2 are turned off, and the ESD elements ESD1 and ESD2 each function as a capacitor Cv. Therefore, when the ESD elements ESD1 and ESD2 are in the OFF state, as shown in FIG. 1B, the ⁇ -type ESD protection circuit 10P includes the resistor R and the LC parallel resonant circuit 1 connected in series on the signal line. Both ends of the series circuit are connected to the ground by the capacitor Cv. As a result, the ⁇ -type ESD protection circuit 10P functions as a CR-LC-R type low-pass filter.
- FIG. 2 shows the pass characteristics of the ⁇ -type ESD protection circuit 10P of this embodiment and the conventional ⁇ -type ESD protection circuit 10P ′ shown in FIG. 12, and the T-type ESD protection circuit 10T of this embodiment shown in FIG. It is a figure which shows the passage characteristic of the conventional T type ESD protection circuit 10T 'shown in FIG.
- the conventional ⁇ -type ESD protection circuit 10P ′ functions as a C—R—C type low-pass filter, as shown by a thick broken line in FIG. Characteristic that the passing amount decreases).
- the ⁇ -type ESD protection circuit 10P according to the present embodiment includes the LC parallel resonance circuit 1, and thus can provide an attenuation pole on the high band side of the pass band. Therefore, by setting the frequency of the attenuation pole to the desired high frequency noise frequency, the high frequency noise can be significantly attenuated. Then, the LC parallel resonant circuit 1 is connected in series to the signal line as in this embodiment, thereby forming the attenuation pole without changing the line capacitance, that is, the capacitance between the signal line and the ground. be able to. Thereby, generation
- the ESD element ESD1 when static electricity is superimposed on the signal line from the input port Pi, the ESD element ESD1 first shifts to the ON state and is discharged through the ESD element ESD1.
- the ESD element ESD2 when static electricity is superimposed on the signal line from the output port Po, the ESD element ESD2 first shifts to the ON state and is discharged through the ESD element ESD2.
- the ⁇ -type ESD protection circuit 10P functions as an ESD protection circuit.
- the LC parallel resonant circuit 1 is arranged between the connection points of the two ESD elements ESD1 and ESD2 to the signal line, so that static electricity from the input port Pi is also output to the output port. Since static electricity from Po is also discharged by the ESD elements ESD1 and ESD2, static electricity is not superimposed on the LC parallel resonant circuit 1. Therefore, the capacitor Cr of the LC parallel resonant circuit 1 can also be protected from static electricity.
- the inductor Lr of the LC parallel resonant circuit 1 is formed of a spiral electrode, the electrode length becomes long to obtain a large inductance, and the resistance component of the inductor Lr increases. In this case, when static electricity is surged into the LC parallel resonant circuit 1, a large current flows through the capacitor, and the capacitor is easily destroyed. Therefore, the above-described configuration is more effective for the destruction of the capacitor when the spiral electrode is used.
- the LC parallel resonant circuit 1 is not limited to the configuration in which the two ESD elements ESD1 and ESD2 are arranged between the connection points to the signal line, but on the input port Pi side from the ESD element ESD1 in the signal line or in the signal line. You may arrange
- FIG. 3A is a circuit diagram of the T-type ESD protection circuit 10T
- FIG. 3B is an equivalent circuit diagram of the ESD element ESD in the T-type ESD protection circuit 10T in an OFF state. Indicates.
- two resistors R and the LC parallel resonance circuit 1 are connected in series between predetermined positions of the signal line, that is, between the input port Pi and the output port Po of the signal line.
- the resistor R, the LC parallel resonant circuit 1, and the resistor R are connected in this order from the input port Pi side to the output port Po side.
- the one end of the ESD element ESD is connected to the connection point between the resistor R on the input port Pi side and the LC resonance circuit 1, and the other end of the ESD element ESD is connected to the ground.
- the T-type ESD protection circuit 10T In the T-type ESD protection circuit 10T having such a circuit configuration, unless static electricity is superimposed on the signal line, the ESD element ESD is turned off and functions as the capacitor Cv. Therefore, when the ESD element ESD is in the OFF state, as shown in FIG. 3B, the T-type ESD protection circuit 10T includes two resistors R and the LC parallel resonant circuit 1 connected in series on the signal line. A connection point between one resistor R of the series circuit and the LC parallel resonance circuit 1 is connected to the ground by a capacitor Cv. Thus, the T-type ESD protection circuit 10T functions as an RCLC-R-type low-pass filter.
- the T-type ESD protection circuit 10T ′ functions as an RCR type low-pass filter, the attenuation increases monotonously on the high band side of the passband as shown by the thin broken line in FIG. Characteristic (characteristic that the passing amount decreases).
- the T-type ESD protection circuit 10T according to the present embodiment includes the LC parallel resonance circuit 1, and thus can provide an attenuation pole on the high band side of the pass band. Therefore, similarly to the above-described ⁇ -type ESD protection circuit 10P, the high frequency noise can be greatly attenuated by setting the frequency of the attenuation pole to a desired frequency of the high frequency noise.
- the LC parallel resonant circuit 1 is connected in series to the signal line as in this embodiment, thereby forming the attenuation pole without changing the line capacitance, that is, the capacitance between the signal line and the ground. be able to. Thereby, generation
- the ESD element ESD changes to the ON state, and current flows from the signal line to the ground, so that the static electricity is discharged to the ground.
- the T-type ESD protection circuit 10T functions as an ESD protection circuit.
- connection relationship between the two resistors R, the ESD element ESD, and the LC parallel resonance circuit 1 shown in FIG. 3 is an example.
- two resistors R are provided on the signal line.
- the LC parallel resonance circuit 1 is further connected in series on the signal line, and the predetermined position between the two resistors R in the signal line is connected to the ground via the ESD element ESD. I just need it.
- the ESD protection can be surely functioned and also function as a low-pass filter having an attenuation pole at a desired frequency. it can. That is, it is possible to realize an ESD protection device that allows a signal having a desired frequency to pass therethrough with low loss, reliably removes desired high-frequency noise, and performs ESD protection.
- FIG. 4 is a side sectional view for explaining a schematic structure of the ESD protection device of the present embodiment.
- FIG. 4 shows circuit portions of the ESD element ESD1, the resistor R, and the inductor Lr of the LC parallel resonance circuit of the ⁇ -type ESD protection circuit 10P described above.
- the ESD protection device 10 of this embodiment is made of a so-called CSP (Chip Size Package) and includes a Si substrate 20A doped with p-type impurities.
- a predetermined position of one surface (the lower surface in FIG. 4) of the p-type Si substrate 20 is n-type doped in a predetermined area range at a predetermined depth from the one surface.
- a P well layer is formed so as to surround a specific pair of n type doping layer n + (two n type doping layers n + near the left end in FIG. 4) in the p type Si substrate 20A.
- the P well layer is a layer in which the p-type impurity concentration is increased with respect to the Si substrate 20A.
- the boundary between the p-type region (P well layer) and the n-type region can function as a diode or a capacitor, or the n-type region can function as a resistor.
- the P well layer is not necessarily formed, but it is desirable to form it.
- the contact layer 200 and the conductive pattern 201 are sequentially formed on the surface of the partially n-type doped p-type Si substrate 20A from the surface side.
- the conductive pattern 201 is realized by vapor deposition of a metal material such as Al (aluminum).
- the contact layer 200 and the conductive pattern 201 are patterned so as to realize a desired circuit configuration.
- the contact layer 200 and the conductive pattern 201 in the region where the ESD element ESD1 is formed are patterned on the surfaces of two n-type doping layers n + formed at a predetermined interval. Thereby, in this region, it is possible to realize a circuit configuration in which two diodes are connected in series in a state in which the forward directions do not match, and the ESD element ESD1 is realized.
- one pn junction is realized by one n-type doping layer n + and the P well, and another pn junction is realized by the other n-type doping layer n + and the P well. Is done.
- the structure is equivalent to a circuit in which two diodes are connected so that the forward directions are opposite to each other. Therefore, a diode having a predetermined threshold voltage positive and negative can be realized, and can function as an ESD protection circuit.
- the diode if the threshold voltage Vt is set higher than the voltage during normal operation, the diode is normally turned off (not turned on), and when static electricity exceeding the threshold voltage Vt is superimposed, the diode Becomes an ON state and functions as an ESD protection circuit that releases energy to the ground.
- the contact layer 200 and the conductive pattern 201 in the region where the resistor R is formed are patterned in two predetermined area ranges on both ends of the n-type doping layer n +.
- the resistor R using the resistance component of the n-type doping layer n + is realized.
- the resistor R is realized by using the n-type doping layer n +, but the p-type doping layer p + surrounded by the N well is formed on the Si substrate 20A, and the p The resistor R may be formed of the type doping layer p +.
- the contact layer 200 and the conductive pattern 201 in the region where the inductor Lr is formed are patterned in a spiral shape having a predetermined number of turns and a predetermined electrode width. Thereby, the first spiral electrode 21A formed on the Si substrate 20A is realized.
- the surface of the contact layer 200, the conductive pattern 201, and the Si substrate 20A on which the pattern is not formed is covered with the insulating passivation layer 20Bp except for the region where the UBM 40 is formed. It has been broken. And UBM40 is formed in the position which this passivation layer 20Bp opened.
- a rewiring layer made of a conductive pattern 202 having a predetermined pattern is formed so as to be connected to the UBM 40.
- the UBM 40 functions as a via hole that electrically connects the conductive pattern 201 on the surface of the Si substrate 20A and the conductive pattern 202 constituting the rewiring layer.
- the conductive pattern 202 of the rewiring layer has an electrode pattern that bridges the UBM 40 and the solder bump 50 that is an external connection bump as a CSP, and an electrode pattern that forms the second spiral electrode 21B.
- the electrode pattern that bridges the UBM 40 and the solder bump 50 is formed so as to extend in a predetermined pattern from the position where the UBM 40 is formed to the position where the solder bump 50 is formed, as shown in the vicinity of the left end of FIG.
- the electrode pattern that forms the second spiral electrode 21B has the same winding direction as the electrode pattern that forms the first spiral electrode 21A on the surface of the Si substrate 20A when the ESD protection device 10, that is, the Si substrate 20A is viewed in plan.
- the first spiral electrode 21A and the second spiral electrode 21B are connected by a via hole made of UBM40. Thereby, an inductor Lr composed of the first spiral electrode 21A and the second spiral electrode 21B is realized.
- an insulating protective layer 20Bi is formed so as to cover the conductive pattern 202 and the passivation layer 20Bp of the rewiring layer except for the solder bump formation position.
- This protective layer 20Bi is formed of polyimide, for example.
- the ESD protection device 10 of this embodiment can be realized by CSP by appropriately patterning the conductive pattern 201 on the surface of the Si substrate 20A, the conductive pattern 202 of the rewiring layer, the UBM 40, and the solder bump 50. .
- the inductor Lr of the LC parallel resonant circuit 1 includes a first spiral electrode 21A composed of a conductive pattern 201 formed in a wound shape on a Si substrate 20A, and a distance from the first spiral electrode 21A.
- the second spiral electrode 21 ⁇ / b> B made of the conductive pattern 202 that is also formed in a wound shape is provided at the position.
- the outer peripheral end of the first spiral electrode 21A is connected to a lead-out electrode 31 made of the conductive pattern 201 that is also formed on the Si substrate 20A.
- the first spiral electrode 21A is wound counterclockwise so that the diameter gradually decreases from the outer peripheral end to the inner peripheral end and in a plan view as shown in FIGS. 6 (C) and 6 (D). It is formed to turn.
- the inner peripheral end of the first spiral electrode 21A is connected to the inner peripheral end of the second spiral electrode 21B by a via hole 41 made of UBM 40.
- the second spiral electrode 21B has a shape having substantially the same electrode width as that of the first spiral electrode 21A, and gradually increases in diameter from the inner peripheral end to the outer peripheral end. ), The electrode is formed to be wound counterclockwise in a plan view. As shown in FIGS. 5 and 6B, the outer peripheral end of the second spiral electrode 21B is connected to the lead-out electrode 32 made of the conductive pattern 201 on the Si substrate 20A by a conductive via hole.
- the first spiral electrode 21A and the second spiral electrode 21B are formed as a spiral electrode having a two-layer structure in which they are connected so that their winding directions coincide with each other. Thereby, the directions of the magnetic fields generated by the first spiral electrode 21A and the second spiral electrode 21B coincide. And since the electrode surfaces of the first spiral electrode 21A and the second spiral electrode 21B are close to each other, these magnetic fields are coupled, strong magnetic coupling is obtained, and a large mutual inductance can be generated. As a result, the inductance of the inductor Lr composed of the first spiral electrode 21A and the second spiral electrode 21B can be increased.
- the Q value of resonance of the LC parallel resonant circuit 1 using the inductor Lr can be increased, and the attenuation pole when the ESD protection device functions as a low-pass filter can be a steep characteristic pole. Therefore, desired high frequency noise can be effectively removed.
- the resistance value of the second spiral electrode 21B can be further lowered, and the resistance component can be further increased while improving the inductance of the inductor Lr than when the entire inductor Lr is formed of the first spiral electrode 21A. Can be suppressed. Also by this, the Q value of the LC parallel resonant circuit 1 including the inductor Lr can be improved, and a steeper attenuation pole can be formed.
- FIG. 7 is a pass characteristic diagram showing the influence on the pass characteristic according to the number of spiral electrodes.
- the thick solid line indicates the pass characteristic of the ⁇ -type ESD protection circuit 10P when the inductor Lr is configured by the first spiral electrode 21A on the Si substrate 20A
- the thin solid line indicates the first spiral electrode 21A on the Si substrate 21A.
- a thick broken line indicates a passing characteristic of the ⁇ -type ESD protection circuit 10P when the inductor Lr is configured by the first spiral electrode 21A on the Si substrate 20A and the second spiral electrode 21B of the rewiring layer
- the thin broken line indicates the Si substrate 20A.
- the pass characteristics of the T-type ESD protection circuit 10T when the inductor Lr is composed of the upper first spiral electrode 21A and the second spiral electrode 21B of the rewiring layer are shown.
- the attenuation pole can be obtained only by forming the first spiral electrode 21A on the Si substrate 20A. Further, by using the above-described two-layer structure of the first spiral electrode 21A and the second spiral electrode 21B, the attenuation amount of the attenuation pole can be further increased and steep characteristics can be obtained.
- FIG. 8 is an exploded perspective view schematically showing another structure of the inductor Lr.
- the first spiral electrode 21A and the second spiral electrode 21B are the same as those shown in FIGS. 5 and 6, and will not be described.
- the third spiral electrode 21C has substantially the same electrode width as that of the first spiral electrode 21A and the second spiral electrode 21B, and substantially the same area.
- the outer peripheral end of the third spiral electrode 21C is connected to the outer peripheral end of the second spiral electrode 21B by a via hole 41 '.
- the third spiral electrode 21C is formed to be wound counterclockwise in a plan view so that the diameter gradually decreases from the outer peripheral end to the inner peripheral end. That is, the third spiral electrode 21C is formed in the same winding direction as the first spiral electrode 21A and the second spiral electrode 21B.
- the length of the electrode as the inductor Lr can be further extended to increase the inductance, and the mutual relationship between the first spiral electrode 21A, the second spiral electrode 21B, and the third spiral electrode 21C can be increased.
- the inductance By the inductance, the inductance as the inductor Lr can be further increased.
- the Q value of the LC parallel resonance circuit 1 can be further increased, and a steeper attenuation pole can be formed.
- the number of spiral electrodes of the rewiring layer to be formed is not limited to one and two as described above, but may be three or more according to product specifications. At this time, as described above, the winding direction of each spiral electrode coincides, that is, the directions of the generated magnetic fields are the same, and the magnetic fields are strengthened to increase the inductance, The Q value of the LC parallel resonant circuit can be increased.
- an ESD protection device that functions as a low-pass filter having an attenuation pole at a desired frequency when the ESD protection function is not activated. That is, an ESD protection device that attenuates desired high-frequency noise while discharging a signal (communication signal) in a frequency band to be passed with low loss, and discharges the static electricity to the ground when the static electricity is superimposed on the signal line. Can be realized. At this time, by realizing the ESD protection device by CSP, such a multifunctional and high-performance ESD protection device can be formed in a small size.
- FIG. 9A is a circuit diagram of an ESD protection circuit 11P having the configuration of the present invention
- FIG. 9B is an equivalent circuit diagram when the ESD elements ESD1, ESD2, and ESD3 of the ESD protection circuit 11P are in an OFF state. .
- the connection point between the resistor R and the LC resonance circuit 1 is further connected to the ground by the ESD element ESD3 with respect to the ESD protection circuit 10P shown in FIG. It has a configuration.
- three low-pass filters can be configured in the ESD protection circuit 11P. Specifically, a first filter 1A composed of ESD elements ESD1, ESD3 and a resistor R, a second filter 1B composed of ESD elements ESD2, ESD3 and an inductor Lr and a capacitor Cr of the LC resonance circuit 1, The ESD elements ESD1, ESD2, the resistor R, and the third filter 1C including the inductor Lr and the capacitor Cr of the LC resonance circuit 1 are configured.
- the first filter 1A has a configuration in which both ends of the resistor R are connected to the ground by ESD elements ESD1 and ESD3, respectively.
- This circuit is a C—R—C ⁇ -type filter when the ESD elements ESD1 and ESD3 are OFF.
- the second filter 1B has a configuration in which both ends of the parallel circuit of the inductor Lr and the capacitor Cr are connected to the ground by ESD2 and ESD3, respectively.
- This circuit is a C-LC-C ⁇ -type filter when the ESD elements ESD2 and ESD3 are OFF.
- the third filter 1C has a configuration in which both ends of a circuit in which a resistor R and a parallel circuit of an inductor Lr and a capacitor Cr are connected in series are connected to the ground by ESD elements ESD1 and ESD2, respectively.
- This circuit is a CR-LC-C ⁇ -type filter when the ESD elements ESD1 and ESD2 are OFF.
- FIG. 10 is a diagram showing pass characteristics of an ESD protection device including the circuits of FIGS. As described above, by using the configuration of FIG. 9, an ESD protection device having a superior high-frequency attenuation characteristic can be formed.
- FIG. 11 is a circuit diagram of an ESD protection device having still another configuration according to the present invention.
- a resistor Rb is connected between one end of the ESD element ESD3 and the LC resonance circuit 1.
- a resistor Rb is connected between one end of the ESD element ESD3 and one end of the ESD element ESD2.
- the resistance value of the resistor Ra connected between the ESD element ESD1 and the ESD element ESD3 is appropriately adjusted by inserting the resistor Rb. For example, if the resistor R in FIG. 1 has a resistance value of 100 ⁇ , the resistor Ra may be set to 90 ⁇ and the resistor Rb to 10 ⁇ .
- the ESD element ESD3 may be simply constituted by a capacitor.
- the capacitor may be formed by an electrode pattern on the surface of the Si substrate and an electrode pattern on the rewiring layer.
- a capacitor for adjusting the attenuation pole can be formed with a simple configuration.
- the inductor Lr formed on the Si substrate is formed by using the electrode pattern of the inductor Lr formed on the Si substrate as one counter electrode of the capacitor and forming the other counter electrode on the rewiring layer. There is no need to form a connection electrode (such as a conductive via hole) for connecting to the rewiring layer.
- an ESD protection device can be realized with a simpler configuration.
- a meander electrode can also be used as the inductor Lr of the LC parallel resonant circuit.
- the inductor Lr of the LC parallel resonant circuit is formed using the rewiring layer.
- the inductor Lr may be formed only by the conductive pattern on the Si substrate.
- the two spiral electrodes do not necessarily have to be formed in the same shape, the same region, and the same direction. .
- the ESD element is realized by a series circuit of diodes.
- a Si substrate if a Si substrate is used, a Zener diode or FET may be used, or a varistor may be used.
- achieves an ESD protection device by CSP using Si substrate was shown, the above-mentioned ESD protection circuit is comprised from the resin-type laminated substrate, the pattern electrode formed in the said laminated substrate, and mounting components. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Coils Or Transformers For Communication (AREA)
- Semiconductor Integrated Circuits (AREA)
- Filters And Equalizers (AREA)
Abstract
Disclosed is an ESD protection device which can reliably perform ESD protection, while sufficiently ensuring an attenuation at a desired frequency.
The ESD protection device is provided with a configuration wherein a resistor (R) and an LC parallel resonance circuit (1) are connected in series on a signal line. Both the ends of the series circuit of the resistor (R) and the LC parallel resonance circuit (1) are connected to the ground by means of ESD elements (ESD1, ESD2). In such circuit configuration, when a signal line has a surge of static electricity, the ESD elements (ESD1, ESD2) are in the ON-state, and static electricity is discharged to the ground. When the ESD elements (ESD1, ESD2) are in the OFF-state, the ESD protection device functions as a lowpass filter, which is composed of a π-type C-R-LC-C connection and has an attenuation pole with respect to the desired frequency.
Description
この発明は、半導体IC等を静電気から保護する静電気保護デバイス(ESD保護デバイス)に関するものである。
This invention relates to an electrostatic protection device (ESD protection device) for protecting a semiconductor IC or the like from static electricity.
現在、携帯端末等には、半導体集積IC等の各種電子デバイスが搭載されている。そして、このような端末では、電子デバイスを静電気から保護する静電気保護デバイス(ESD(Electro Stastic Discharge)デバイス)が、搭載されている。
Currently, various electronic devices such as semiconductor integrated ICs are mounted on portable terminals and the like. In such a terminal, an electrostatic protection device (ESD (Electro Static Discharge) device) that protects the electronic device from static electricity is mounted.
このようなESD保護デバイスとしては、図12(A)に示すようなπ型ESD保護回路10P’や、図12(C)に示すようなT型ESD保護回路10T’を備える。図12は、従来のESD保護回路の例を示す等価回路図であり、図12(A),(C)は各ESD保護回路の回路図であり、図12(B),(D)はESD素子がOFF状態での等価回路図である。また、図12(A),(B)はπ型ESD保護回路を示し、図12(C),(D)はT型ESD保護回路を示す。
Such an ESD protection device includes a π-type ESD protection circuit 10P ′ as shown in FIG. 12A and a T-type ESD protection circuit 10T ′ as shown in FIG. FIG. 12 is an equivalent circuit diagram showing an example of a conventional ESD protection circuit. FIGS. 12A and 12C are circuit diagrams of the respective ESD protection circuits. FIGS. 12B and 12D are ESD diagrams. It is an equivalent circuit diagram in the state where an element is OFF. 12A and 12B show a π-type ESD protection circuit, and FIGS. 12C and 12D show a T-type ESD protection circuit.
図12(A)に示すπ型ESD保護回路10P’は、抵抗器Rと、2個のESD素子ESD1,ESD2とを備える。抵抗器Rは、入力ポートPiと出力ポートPoとの間の信号ラインに挿入されている。2個のESD素子ESD1,ESD2は、それぞれ、当該抵抗器Rの両端に一方端が接続され、他方端がグランドに接続されている。このπ型ESD保護回路は、特許文献1にも記載されている。
The π-type ESD protection circuit 10P ′ shown in FIG. 12A includes a resistor R and two ESD elements ESD1 and ESD2. The resistor R is inserted in a signal line between the input port Pi and the output port Po. Each of the two ESD elements ESD1, ESD2 has one end connected to both ends of the resistor R and the other end connected to the ground. This π-type ESD protection circuit is also described in Patent Document 1.
また、図12(C)に示すT型ESD保護回路10T’は、直列接続された2個の抵抗器Rと、ESD素子ESDとを備える。直列接続された2個の抵抗器Rは、入力ポートPiと出力ポートPoとの間の信号ラインに挿入されている。ESD素子ESDは、当該2個の抵抗器Rの接続点に一方端が接続され、他方端がグランドに接続されている。
The T-type ESD protection circuit 10T ′ shown in FIG. 12C includes two resistors R connected in series and an ESD element ESD. Two resistors R connected in series are inserted in a signal line between the input port Pi and the output port Po. The ESD element ESD has one end connected to the connection point of the two resistors R and the other end connected to the ground.
ところで、図12(A)に示すようなπ型ESD保護回路10P’や、図12(C)に示すようなT型ESD保護回路10T’は、ESD素子がOFF状態の時、キャパシタCvとして機能する。したがって、図12(A)に示すπ型ESD保護回路10P’は、図12(B)に示すC-R-C型のローパルスフィルタとして機能し、図12(C)に示すT型ESD保護回路10T’は、図12(D)に示すR-C-R型のローパルスフィルタとして機能する。
By the way, the π-type ESD protection circuit 10P ′ as shown in FIG. 12A and the T-type ESD protection circuit 10T ′ as shown in FIG. 12C function as the capacitor Cv when the ESD element is OFF. To do. Accordingly, the π-type ESD protection circuit 10P ′ shown in FIG. 12A functions as a CR-C type low pulse filter shown in FIG. 12B, and the T-type ESD protection shown in FIG. The circuit 10T ′ functions as an RCR type low pulse filter shown in FIG.
しかしながら、このようなπ型ESD保護回路10P’やT型ESD保護回路10T’からなるローパスフィルタは、通過帯域の高域端では、単調に減衰量が増加する特性となる。したがって、例えば、この通過帯域の高域端で減衰量が少ない周波数に、高周波ノイズが存在した場合、当該高周波ノイズを減衰させることができない。
However, such a low-pass filter including the π-type ESD protection circuit 10P ′ and the T-type ESD protection circuit 10T ′ has a characteristic that the amount of attenuation increases monotonously at the high band end of the pass band. Therefore, for example, when high-frequency noise exists at a frequency with a small attenuation at the high end of the pass band, the high-frequency noise cannot be attenuated.
本発明の目的は、所望の周波数の減衰量を十分に確保しながら、確実にESD保護を行えるESD保護デバイスを実現することにある。
An object of the present invention is to realize an ESD protection device that can reliably perform ESD protection while sufficiently securing an attenuation amount of a desired frequency.
(1)この発明のESD保護デバイスは、信号ラインに挿入された抵抗器と、該抵抗器の両端とグランドとをそれぞれに接続する2個のESD素子と、信号ライン上において抵抗器に直列接続されたLC並列共振器と、を備える。
(1) An ESD protection device according to the present invention includes a resistor inserted in a signal line, two ESD elements for connecting both ends of the resistor and the ground, and a resistor connected in series on the signal line. An LC parallel resonator.
この構成では、抵抗器と2個のESD素子とによりESD保護機能とローパスフィルタ機能とを有するπ型ESD保護回路が構成される。そして、LC並列共振器によりローパスフィルタとして機能する際の減衰極が形成される。ここで、LC並列共振器の共振周波数を、除去したい高周波ノイズの周波数に設定すれば、当該周波数に減衰極が形成され、高周波ノイズが大幅に減衰される。また、LC並列共振器を信号ラインへ挿入しても、ライン容量は変化しないので、減衰極を形成する以外の伝送特性に殆ど影響を与えない。
In this configuration, a resistor and two ESD elements constitute a π-type ESD protection circuit having an ESD protection function and a low-pass filter function. And the attenuation pole at the time of functioning as a low-pass filter is formed by LC parallel resonator. Here, if the resonance frequency of the LC parallel resonator is set to the frequency of the high frequency noise to be removed, an attenuation pole is formed at the frequency, and the high frequency noise is greatly attenuated. Further, even if the LC parallel resonator is inserted into the signal line, the line capacitance does not change, so that there is almost no influence on the transmission characteristics other than the formation of the attenuation pole.
(2)また、この発明のESD保護デバイスのLC並列共振器は、信号ラインにおける抵抗器の一方端と該一方端に接続するESD素子との間に接続されている。
(2) Further, the LC parallel resonator of the ESD protection device of the present invention is connected between one end of the resistor in the signal line and the ESD element connected to the one end.
この構成では、LC並列共振器が、2個のESD素子がそれぞれ信号ラインへの接続する2個の接続点の中間に配置される。これにより、信号ラインのいずれの方向から、静電気が重畳されても、ESD素子によりグランドへ放電され、LC並列共振器へは静電気がサージされない。これにより、通常のESD保護機能とともに、LC並列共振器のキャパシタの破壊を防止できる。特に、LC並列共振器のインダクタを、後述のスパイラル電極で形成する場合、インダクタの抵抗成分が大きくなり、キャパシタに電流が流れやすいので、当該構造を用いれば、キャパシタの静電気破壊の防止に、より有効である。
In this configuration, the LC parallel resonator is arranged in the middle of two connection points where the two ESD elements are respectively connected to the signal line. Thereby, even if static electricity is superimposed from any direction of the signal line, it is discharged to the ground by the ESD element, and static electricity is not surged to the LC parallel resonator. Thereby, destruction of the capacitor of the LC parallel resonator can be prevented together with the normal ESD protection function. In particular, when the inductor of the LC parallel resonator is formed with a spiral electrode described later, the resistance component of the inductor increases and current flows easily through the capacitor. Therefore, using this structure can prevent electrostatic breakdown of the capacitor. It is valid.
(3)また、この発明のESD保護デバイスは、信号ラインに挿入され、互いに直列接続された2個の抵抗器と、該直列接続された2個の抵抗器の接続点とグランドとを接続するESD素子と、抵抗器のいずれか一方と接続点との間の信号ラインに直列接続されたLC並列共振器と、を備える。
(3) Further, the ESD protection device of the present invention connects two resistors inserted in a signal line and connected in series with each other, and a connection point between the two resistors connected in series and the ground. An ESD element, and an LC parallel resonator connected in series to a signal line between one of the resistors and the connection point.
この構成では、2個の抵抗器とESD素子とによりESD保護機能とローパスフィルタ機能とを有するT型ESD保護回路が構成される。そして、LC並列共振器によりローパスフィルタとして機能する際の減衰極が形成される。ここで、LC並列共振器の共振周波数を、除去したい高周波ノイズの周波数に設定すれば、当該周波数に減衰極が形成され、高周波ノイズが大幅に減衰される。また、LC並列共振器を信号ラインへ挿入しても、ライン容量は変化しないので、減衰極を形成する以外の伝送特性に殆ど影響を与えない。
In this configuration, a T-type ESD protection circuit having an ESD protection function and a low-pass filter function is configured by two resistors and an ESD element. And the attenuation pole at the time of functioning as a low-pass filter is formed by LC parallel resonator. Here, if the resonance frequency of the LC parallel resonator is set to the frequency of the high frequency noise to be removed, an attenuation pole is formed at the frequency, and the high frequency noise is greatly attenuated. Further, even if the LC parallel resonator is inserted into the signal line, the line capacitance does not change, so that there is almost no influence on the transmission characteristics other than the formation of the attenuation pole.
(4)また、この発明のESD保護デバイスのLC並列共振器を構成するインダクタは、信号ラインが形成されるシリコン基板上に形成された導電性パターンからなる。
(4) Further, the inductor constituting the LC parallel resonator of the ESD protection device of the present invention comprises a conductive pattern formed on a silicon substrate on which a signal line is formed.
この構成では、LC並列共振器のインダクタの具体的形成方法を示すものであり、シリコン基板上に形成することで、信号ラインと一体で形成することができる。また、シリコン基板を用いることで、LC並列共振回路のキャパシタや、ESD保護デバイスの抵抗器RやESD素子を集約的に形成することができる。
This configuration shows a specific method for forming an inductor of an LC parallel resonator, and can be formed integrally with a signal line by being formed on a silicon substrate. Further, by using the silicon substrate, it is possible to collectively form the capacitor of the LC parallel resonance circuit, the resistor R and the ESD element of the ESD protection device.
(5)また、この発明のESD保護デバイスのインダクタは、シリコン基板の導電性パターンに対して離間された再配線層の導電性パターンと、該再配線層上の導電性パターンとシリコン基板上の導電性パターンとを導通するビアホールと、をさらに備える。
(5) The inductor of the ESD protection device according to the present invention includes a conductive pattern of a redistribution layer separated from a conductive pattern of a silicon substrate, a conductive pattern on the redistribution layer, and a silicon substrate. And a via hole that conducts the conductive pattern.
この構成では、インダクタがシリコン基板表面の導電性パターンと、当該シリコン基板表面の導電性パターンから所定間隔離間された位置に形成された再配線層の導電性パターンとから形成される。そして、これらがビアホールにより電気的に接続されるので、複数層に亘る電極によりインダクタが形成される。これにより、一層構造よりもインダクタの電極長を長く取ることが可能になり、高いインダクタンスを実現できる。この結果、LC並列共振器のQ値を高めることができ、より急峻な減衰極を実現できる。
In this configuration, the inductor is formed of the conductive pattern on the surface of the silicon substrate and the conductive pattern of the rewiring layer formed at a position spaced apart from the conductive pattern on the surface of the silicon substrate. And since these are electrically connected by a via hole, an inductor is formed by the electrode over a plurality of layers. As a result, it is possible to make the electrode length of the inductor longer than that of the single layer structure, and a high inductance can be realized. As a result, the Q value of the LC parallel resonator can be increased, and a steeper attenuation pole can be realized.
(6)また、この発明のESD保護デバイスのインダクタは、さらなる少なくとも1つの再配線層の導電性パターンと、各再配線層の導電性パターン同士を接続するビアホールとを、さらに備える。
(6) Further, the inductor of the ESD protection device of the present invention further includes a conductive pattern of at least one redistribution layer and a via hole that connects the conductive patterns of each redistribution layer.
この構成では、さらに再配線層の導電性パターンを増やし、シリコン基板上の導電性パターンおよび各再配線層の導電性パターンを接続することで、より高いインダクタンスを実現できる。これにより、LC並列共振器のQ値をさらに高めることができ、より一層、急峻な減衰極を実現できる。
In this configuration, a higher inductance can be realized by further increasing the conductive pattern of the rewiring layer and connecting the conductive pattern on the silicon substrate and the conductive pattern of each rewiring layer. Thereby, the Q value of the LC parallel resonator can be further increased, and a steeper attenuation pole can be realized.
(7)また、この発明のESD保護デバイスの再配線層の導電性パターンは、シリコン基板上の導電性パターンよりも電極厚みが厚い。
(7) Further, the conductive pattern of the rewiring layer of the ESD protection device of the present invention has a thicker electrode than the conductive pattern on the silicon substrate.
この構成では、再配線層の導電性パターンを用いることでインダクタの電極長を長くしてインダクタンスを向上させながらも、再配線層の厚みが厚いことで抵抗値の増加を抑制することができる。これにより、LC並列共振器のQ値をさらに急峻にすることができ、より一層、急峻な減衰極を実現できる。
In this configuration, it is possible to suppress an increase in resistance value by increasing the thickness of the rewiring layer while using a conductive pattern of the rewiring layer to increase the inductor length and improve the inductance. Thereby, the Q value of the LC parallel resonator can be made steeper, and a steeper attenuation pole can be realized.
(8)また、この発明のESD保護デバイスの再配線層の導電性パターンは、シリコン基板上の導電性パターンよりも導電率が高い材料で形成されている。
(8) Further, the conductive pattern of the rewiring layer of the ESD protection device of the present invention is formed of a material having higher conductivity than the conductive pattern on the silicon substrate.
この構成では、再配線層の導電性パターンを用いることでインダクタの電極長を長くしてインダクタンスを向上させながらも、再配線層の導電率が高いことで、さらに抵抗値の増加を抑制することができる。これにより、LC並列共振器のQ値をさらに急峻にすることができ、より一層、急峻な減衰極を実現できる。
In this configuration, the conductive pattern of the rewiring layer is used to increase the inductance of the inductor by increasing the electrode length of the inductor, but the rewiring layer has a high conductivity to further suppress an increase in resistance value. Can do. Thereby, the Q value of the LC parallel resonator can be made steeper, and a steeper attenuation pole can be realized.
(9)また、この発明のESD保護デバイスのシリコン基板上の導電性パターンは、スパイラル電極からなる。
(9) Further, the conductive pattern on the silicon substrate of the ESD protection device of the present invention comprises a spiral electrode.
この構成では、導電性パターンのインダクタの形成パターンの一例として、スパイラル電極を用いる場合を示すものである。このようなスパイラル電極を用いることで、同じ面積からなるミアンダ電極よりもインダクタンスを高くすることができる。これにより、LC並列共振器のQ値を高めることができ、より急峻な減衰極を実現できる。
This configuration shows a case where a spiral electrode is used as an example of a conductive pattern inductor formation pattern. By using such a spiral electrode, the inductance can be made higher than that of the meander electrode having the same area. Thereby, the Q value of the LC parallel resonator can be increased, and a steeper attenuation pole can be realized.
(10)また、この発明のESD保護デバイスのシリコン基板上の導電性パターンと再配線層の導電性パターンは、略同一形状で、且つ、同一領域で、シリコン基板を平面視した状態で同一方向に巻回するスパイラル電極からなる。
(10) Further, the conductive pattern on the silicon substrate of the ESD protection device of the present invention and the conductive pattern of the redistribution layer have substantially the same shape and the same direction in the same region in a plan view of the silicon substrate. It consists of a spiral electrode wound around.
この構成では、各層に形成されるスパイラル電極が全て同方向に巻回して接続されることで、シリコン基板上のみにスパイラル電極を形成するよりも、巻数の多いインダクタを実現できる。これにより、インダクタンスを高くすることができる。さらに、各層のスパイラル電極の巻回面、すなわち各導電性パターン同士が近接し、各スパイラル電極同士が磁気結合することで、相互インダクタンスが発生して、さらにインダクタンスを高くすることができる。この結果、LC並列共振器のQ値をさらに高めることができ、より一層、急峻な減衰極を実現できる。
In this configuration, all the spiral electrodes formed in each layer are wound and connected in the same direction, so that an inductor having a larger number of turns can be realized than when the spiral electrode is formed only on the silicon substrate. Thereby, an inductance can be made high. Furthermore, the winding surfaces of the spiral electrodes of each layer, that is, the conductive patterns are close to each other and the spiral electrodes are magnetically coupled to each other, thereby generating mutual inductance and further increasing the inductance. As a result, the Q value of the LC parallel resonator can be further increased, and a steeper attenuation pole can be realized.
(11)また、この発明のESD保護デバイスでは、抵抗器とLC並列共振器との間の信号ラインに一方端が接続し、他方端がグランドへ接続するキャパシタをさらに備える。
(11) Further, the ESD protection device of the present invention further includes a capacitor having one end connected to the signal line between the resistor and the LC parallel resonator and the other end connected to the ground.
この構成では、ESD保護デバイスが複数の共振回路で構成されるので、減衰極をより急峻な特性にすることが可能になる。
In this configuration, since the ESD protection device is composed of a plurality of resonance circuits, it is possible to make the attenuation pole have a steeper characteristic.
(12)また、この発明のESD保護デバイスでは、キャパシタは、2個のESD素子とは異なる第3のESD素子からなる。
(12) Further, in the ESD protection device of the present invention, the capacitor includes a third ESD element different from the two ESD elements.
この構成では、キャパシタの具体的形成例を示している。
This configuration shows a specific example of capacitor formation.
(13)また、この発明のESD保護デバイスでは抵抗器は2個の部分抵抗器からなり、該2個の部分抵抗器は第3のESD素子の一方端から2個のESD素子に向かうそれぞれの信号ライン上に個別に接続されている。
(13) Further, in the ESD protection device of the present invention, the resistor includes two partial resistors, and the two partial resistors are respectively connected to the two ESD elements from one end of the third ESD element. Individually connected on the signal line.
この構成では、部分抵抗器により、第3のESD素子へ流入するESDを低くでき、当該第3のESD素子の破壊を防止できる。
In this configuration, the ESD that flows into the third ESD element can be lowered by the partial resistor, and the destruction of the third ESD element can be prevented.
(14)また、この発明のESD保護デバイスでは、キャパシタは、信号ラインが形成されるシリコン基板上に形成された導電性パターンと、シリコン基板上に形成された導電性パターンに対して離間された再配線層の導電性パターンと、から構成される。
(14) In the ESD protection device of the present invention, the capacitor is separated from the conductive pattern formed on the silicon substrate on which the signal line is formed and the conductive pattern formed on the silicon substrate. And a conductive pattern of the rewiring layer.
この構成では、キャパシタをESD素子で形成しない場合の具体的構造を示している。
This configuration shows a specific structure when the capacitor is not formed by an ESD element.
(15)また、この発明のESD保護デバイスでは、キャパシタを形成するシリコン基板上に形成された導電性パターンは、LC並列共振器のインダクタを構成する導電性パターンを兼ねる。
(15) In the ESD protection device of the present invention, the conductive pattern formed on the silicon substrate forming the capacitor also serves as the conductive pattern constituting the inductor of the LC parallel resonator.
この構成も、キャパシタの具体的構造を示している。このような構造とすれば、Si基板上のLC並列共振器のインダクタを構成する電極パターンを再配線層や外部へ接続するためのビアホール等の接続電極を省略でき、構造的に簡素化できる。
This configuration also shows the specific structure of the capacitor. With such a structure, connection electrodes such as via holes for connecting the electrode pattern constituting the inductor of the LC parallel resonator on the Si substrate to the rewiring layer and the outside can be omitted, and the structure can be simplified.
この発明によれば、除去したい高周波ノイズの周波数に減衰極を形成し、当該高周波ノイズを十分に減衰でき、且つ確実にESD保護を行えるESD保護デバイスを実現することができる。
According to the present invention, it is possible to realize an ESD protection device that forms an attenuation pole at the frequency of the high-frequency noise to be removed, can sufficiently attenuate the high-frequency noise, and can reliably perform ESD protection.
本発明の実施形態に係るESD保護デバイスについて、図を参照して説明する。なお、以下の回路説明では、入力ポートPiおよび出力ポートPoは説明の便宜上記載するものであり、これらが無い場合すなわち信号ラインのみの場合であっても、本実施形態の回路構成を適用することができる。
(1)π型ESD保護回路10Pの場合
図1(A)はπ型ESD保護回路10Pの回路図、図1(B)はπ型ESD保護回路10PにおけるESD素子ESD1,ESD2がOFF状態の等価回路図を示す。 An ESD protection device according to an embodiment of the present invention will be described with reference to the drawings. In the following circuit description, the input port Pi and the output port Po are described for convenience of description, and the circuit configuration of the present embodiment is applied even when there is no input port, that is, only a signal line. Can do.
(1) In the case of the π-typeESD protection circuit 10P FIG. 1A is a circuit diagram of the π-type ESD protection circuit 10P, and FIG. A circuit diagram is shown.
(1)π型ESD保護回路10Pの場合
図1(A)はπ型ESD保護回路10Pの回路図、図1(B)はπ型ESD保護回路10PにおけるESD素子ESD1,ESD2がOFF状態の等価回路図を示す。 An ESD protection device according to an embodiment of the present invention will be described with reference to the drawings. In the following circuit description, the input port Pi and the output port Po are described for convenience of description, and the circuit configuration of the present embodiment is applied even when there is no input port, that is, only a signal line. Can do.
(1) In the case of the π-type
π型ESD保護回路10Pは、信号ラインの所定位置、図1(A)であれば信号ラインの入力ポートPiと出力ポートPoとの間に抵抗器Rが接続されている。抵抗器Rの一方端には、ESD素子ESD1の一方端が接続され、当該ESD素子ESD1の他方端はグランドに接続されている。抵抗器Rの他方端には、LC並列共振回路1を介してESD素子ESD2の一方端が接続され、当該ESD素子ESD2の他方端はグランドに接続されている。
In the π-type ESD protection circuit 10P, a resistor R is connected between a predetermined position of the signal line, that is, the input port Pi and the output port Po of the signal line in FIG. One end of the resistor R is connected to one end of the ESD element ESD1, and the other end of the ESD element ESD1 is connected to the ground. One end of the ESD element ESD2 is connected to the other end of the resistor R via the LC parallel resonant circuit 1, and the other end of the ESD element ESD2 is connected to the ground.
LC並列共振器1は、インダクタLrとキャパシタCrとの並列回路からなり、信号ライン上において抵抗器Rと直列接続されている。この際、LC並列共振回路1は、抵抗器RのESD素子ESD2側の端部と、ESD素子ESD2が信号ラインに接続する接続点との間に挿入されるように接続されている。
The LC parallel resonator 1 includes a parallel circuit of an inductor Lr and a capacitor Cr, and is connected in series with a resistor R on a signal line. At this time, the LC parallel resonant circuit 1 is connected so as to be inserted between the end of the resistor R on the ESD element ESD2 side and the connection point where the ESD element ESD2 is connected to the signal line.
このような回路構成からなるπ型ESD保護回路10Pでは、信号ラインに静電気が重畳しなければ、ESD素子ESD1,ESD2はOFF状態となり、ESD素子ESD1,ESD2は、それぞれキャパシタCvとして機能する。したがって、ESD素子ESD1,ESD2がOFF状態では、π型ESD保護回路10Pは、図1(B)に示すように、抵抗器RとLC並列共振回路1とが信号ライン上で直列接続され、当該直列回路の両端が、キャパシタCvでそれぞれグランドへ接続される構造となる。これにより、π型ESD保護回路10Pは、C-R-LC-R型のローパスフィルタとして機能する。
In the π-type ESD protection circuit 10P having such a circuit configuration, unless static electricity is superimposed on the signal line, the ESD elements ESD1 and ESD2 are turned off, and the ESD elements ESD1 and ESD2 each function as a capacitor Cv. Therefore, when the ESD elements ESD1 and ESD2 are in the OFF state, as shown in FIG. 1B, the π-type ESD protection circuit 10P includes the resistor R and the LC parallel resonant circuit 1 connected in series on the signal line. Both ends of the series circuit are connected to the ground by the capacitor Cv. As a result, the π-type ESD protection circuit 10P functions as a CR-LC-R type low-pass filter.
図2は、本実施形態のπ型ESD保護回路10Pおよび図12に示した従来のπ型ESD保護回路10P’の通過特性と、後述の図3に示す本実施形態のT型ESD保護回路10Tおよび図12に示した従来のT型ESD保護回路10T’の通過特性とを示す図である。
2 shows the pass characteristics of the π-type ESD protection circuit 10P of this embodiment and the conventional π-type ESD protection circuit 10P ′ shown in FIG. 12, and the T-type ESD protection circuit 10T of this embodiment shown in FIG. It is a figure which shows the passage characteristic of the conventional T type ESD protection circuit 10T 'shown in FIG.
従来のπ型ESD保護回路10P’はC-R-C型のローパスフィルタとして機能するので、図2の太破線に示すように、通過帯域の高域側で単調に減衰量が増加する特性(通過量が低下する特性)となる。しかしながら、本実施形態のπ型ESD保護回路10Pは、LC並列共振回路1を有することで、通過帯域の高域側に減衰極を設けることができる。したがって、当該減衰極の周波数を、所望とする高周波ノイズの周波数に設定することで、当該高周波ノイズを大幅に減衰させることができる。そして、本実施形態のようにLC並列共振回路1を、信号ラインに直列接続する構成を備えることで、ライン容量すなわち信号ラインとグランドとの間の容量を変化させることなく、減衰極を形成することができる。これにより、当該π型ESD保護回路10Pを伝送する信号の歪みの発生を抑制できる。
Since the conventional π-type ESD protection circuit 10P ′ functions as a C—R—C type low-pass filter, as shown by a thick broken line in FIG. Characteristic that the passing amount decreases). However, the π-type ESD protection circuit 10P according to the present embodiment includes the LC parallel resonance circuit 1, and thus can provide an attenuation pole on the high band side of the pass band. Therefore, by setting the frequency of the attenuation pole to the desired high frequency noise frequency, the high frequency noise can be significantly attenuated. Then, the LC parallel resonant circuit 1 is connected in series to the signal line as in this embodiment, thereby forming the attenuation pole without changing the line capacitance, that is, the capacitance between the signal line and the ground. be able to. Thereby, generation | occurrence | production of the distortion of the signal which transmits the said (pi) -type ESD protection circuit 10P can be suppressed.
一方、入力ポートPiもしくは出力ポートPoから信号ラインに静電気が重畳されると、ESD素子ESD1,ESD2がON状態に遷移し、信号ラインからグランドへ電流を流すことで、静電気がグランドへ放電される。
On the other hand, when static electricity is superimposed on the signal line from the input port Pi or the output port Po, the ESD elements ESD1 and ESD2 are turned on, and current flows from the signal line to the ground, so that the static electricity is discharged to the ground. .
具体的には、入力ポートPiから静電気が信号ラインに重畳されると、ESD素子ESD1が先にON状態に遷移して、当該ESD素子ESD1を介して放電される。一方、出力ポートPoから静電気が信号ラインに重畳されると、ESD素子ESD2が先にON状態に遷移して、当該ESD素子ESD2を介して放電される。これにより、当該π型ESD保護回路10Pは、ESD保護回路として機能する。
Specifically, when static electricity is superimposed on the signal line from the input port Pi, the ESD element ESD1 first shifts to the ON state and is discharged through the ESD element ESD1. On the other hand, when static electricity is superimposed on the signal line from the output port Po, the ESD element ESD2 first shifts to the ON state and is discharged through the ESD element ESD2. Thereby, the π-type ESD protection circuit 10P functions as an ESD protection circuit.
そして、図1(A)に示すように、LC並列共振回路1を、2個のESD素子ESD1,ESD2の信号ラインへの接続点間に配置することで、入力ポートPiからの静電気も出力ポートPoからの静電気も、ESD素子ESD1,ESD2で放電されるので、LC並列共振回路1には静電気が重畳されない。したがって、LC並列共振回路1のキャパシタCrも静電気から保護することができる。特に、後述するように、LC並列共振回路1のインダクタLrをスパイラル電極で形成する場合、大きなインダクタンスを得るために電極長が長くなり、当該インダクタLrの抵抗成分が増加する。この場合、LC並列共振回路1へ静電気がサージされると、キャパシタに大電流が流れて、キャパシタが破壊されやすい。したがって、上述の構成とすることで、スパイラル電極を用いた場合におけるキャパシタの破壊に対して、より有効である。
As shown in FIG. 1A, the LC parallel resonant circuit 1 is arranged between the connection points of the two ESD elements ESD1 and ESD2 to the signal line, so that static electricity from the input port Pi is also output to the output port. Since static electricity from Po is also discharged by the ESD elements ESD1 and ESD2, static electricity is not superimposed on the LC parallel resonant circuit 1. Therefore, the capacitor Cr of the LC parallel resonant circuit 1 can also be protected from static electricity. In particular, as will be described later, when the inductor Lr of the LC parallel resonant circuit 1 is formed of a spiral electrode, the electrode length becomes long to obtain a large inductance, and the resistance component of the inductor Lr increases. In this case, when static electricity is surged into the LC parallel resonant circuit 1, a large current flows through the capacitor, and the capacitor is easily destroyed. Therefore, the above-described configuration is more effective for the destruction of the capacitor when the spiral electrode is used.
なお、LC並列共振回路1は、2個のESD素子ESD1,ESD2の信号ラインへの接続点間に配置する構成に限らず、信号ラインにおけるESD素子ESD1よりも入力ポートPi側や、信号ラインにおけるESD素子ESD2よりも出力ポートPo側に配置してもよい。この場合、入力ポートPi側にLC並列共振回路1を配置すれば出力ポートPoからの静電気によるLC並列共振回路1のキャパシタCrの破壊を防止でき、出力ポートPo側にLC並列共振回路1を配置すれば入力ポートPiからの静電気によるLC並列共振回路1のキャパシタCrの破壊を防止できる。
The LC parallel resonant circuit 1 is not limited to the configuration in which the two ESD elements ESD1 and ESD2 are arranged between the connection points to the signal line, but on the input port Pi side from the ESD element ESD1 in the signal line or in the signal line. You may arrange | position to the output port Po side rather than ESD element ESD2. In this case, if the LC parallel resonance circuit 1 is arranged on the input port Pi side, the destruction of the capacitor Cr of the LC parallel resonance circuit 1 due to static electricity from the output port Po can be prevented, and the LC parallel resonance circuit 1 is arranged on the output port Po side. This can prevent destruction of the capacitor Cr of the LC parallel resonant circuit 1 due to static electricity from the input port Pi.
(2)T型ESD保護回路10Tの場合
図3(A)はT型ESD保護回路10Tの回路図、図3(B)はT型ESD保護回路10TにおけるESD素子ESDがOFF状態の等価回路図を示す。 (2) Case of T-typeESD Protection Circuit 10T FIG. 3A is a circuit diagram of the T-type ESD protection circuit 10T, and FIG. 3B is an equivalent circuit diagram of the ESD element ESD in the T-type ESD protection circuit 10T in an OFF state. Indicates.
図3(A)はT型ESD保護回路10Tの回路図、図3(B)はT型ESD保護回路10TにおけるESD素子ESDがOFF状態の等価回路図を示す。 (2) Case of T-type
T型ESD保護回路10Tは、信号ラインの所定位置、すなわち信号ラインの入力ポートPiと出力ポートPoとの間に、2個の抵抗器RとLC並列共振回路1とが直列接続されている。例えば、図3(A)の場合であれば、入力ポートPi側から出力ポートPo側へ抵抗器R、LC並列共振回路1、抵抗器Rの順に接続されている。
In the T-type ESD protection circuit 10T, two resistors R and the LC parallel resonance circuit 1 are connected in series between predetermined positions of the signal line, that is, between the input port Pi and the output port Po of the signal line. For example, in the case of FIG. 3A, the resistor R, the LC parallel resonant circuit 1, and the resistor R are connected in this order from the input port Pi side to the output port Po side.
入力ポートPi側の抵抗器RとLC共振回路1との接続点には、ESD素子ESDの一方端が接続されており、当該ESD素子ESDの他方端はグランドに接続されている。
The one end of the ESD element ESD is connected to the connection point between the resistor R on the input port Pi side and the LC resonance circuit 1, and the other end of the ESD element ESD is connected to the ground.
このような回路構成からなるT型ESD保護回路10Tでは、信号ラインに静電気が重畳しなければ、ESD素子ESDはOFF状態となり、キャパシタCvとして機能する。したがって、ESD素子ESDがOFF状態では、T型ESD保護回路10Tは、図3(B)に示すように、2個の抵抗器RとLC並列共振回路1とが信号ライン上で直列接続され、当該直列回路の一方の抵抗器RとLC並列共振回路1との接続点が、キャパシタCvでグランドへ接続される構造となる。これにより、T型ESD保護回路10Tは、R-C-LC-R型のローパスフィルタとして機能する。
In the T-type ESD protection circuit 10T having such a circuit configuration, unless static electricity is superimposed on the signal line, the ESD element ESD is turned off and functions as the capacitor Cv. Therefore, when the ESD element ESD is in the OFF state, as shown in FIG. 3B, the T-type ESD protection circuit 10T includes two resistors R and the LC parallel resonant circuit 1 connected in series on the signal line. A connection point between one resistor R of the series circuit and the LC parallel resonance circuit 1 is connected to the ground by a capacitor Cv. Thus, the T-type ESD protection circuit 10T functions as an RCLC-R-type low-pass filter.
ここで、従来のT型ESD保護回路10T’はR-C-R型のローパスフィルタとして機能するので、図2の細破線に示すように、通過帯域の高域側で単調に減衰量が増加する特性(通過量が低下する特性)となる。しかしながら、本実施形態のT型ESD保護回路10Tは、LC並列共振回路1を有することで、通過帯域の高域側に減衰極を設けることができる。したがって、上述のπ型ESD保護回路10Pと同様に、当該減衰極の周波数を、所望とする高周波ノイズの周波数に設定することで、当該高周波ノイズを大幅に減衰させることができる。そして、本実施形態のようにLC並列共振回路1を、信号ラインに直列接続する構成を備えることで、ライン容量すなわち信号ラインとグランドとの間の容量を変化させることなく、減衰極を形成することができる。これにより、当該T型ESD保護回路10Tを伝送する信号の歪みの発生を抑制できる。
Here, since the conventional T-type ESD protection circuit 10T ′ functions as an RCR type low-pass filter, the attenuation increases monotonously on the high band side of the passband as shown by the thin broken line in FIG. Characteristic (characteristic that the passing amount decreases). However, the T-type ESD protection circuit 10T according to the present embodiment includes the LC parallel resonance circuit 1, and thus can provide an attenuation pole on the high band side of the pass band. Therefore, similarly to the above-described π-type ESD protection circuit 10P, the high frequency noise can be greatly attenuated by setting the frequency of the attenuation pole to a desired frequency of the high frequency noise. Then, the LC parallel resonant circuit 1 is connected in series to the signal line as in this embodiment, thereby forming the attenuation pole without changing the line capacitance, that is, the capacitance between the signal line and the ground. be able to. Thereby, generation | occurrence | production of the distortion of the signal which transmits the said T type ESD protection circuit 10T can be suppressed.
一方、入力ポートPiもしくは出力ポートPoから信号ラインに静電気が重畳されると、ESD素子ESDがON状態に遷移し、信号ラインからグランドへ電流を流すことで、静電気がグランドへ放電される。これにより、当該T型ESD保護回路10Tは、ESD保護回路として機能する。
On the other hand, when static electricity is superimposed on the signal line from the input port Pi or the output port Po, the ESD element ESD changes to the ON state, and current flows from the signal line to the ground, so that the static electricity is discharged to the ground. Thereby, the T-type ESD protection circuit 10T functions as an ESD protection circuit.
なお、図3に示した2個の抵抗器RとESD素子ESDとLC並列共振回路1との接続関係は一例であり、基本的な構成としては、信号ライン上に2個の抵抗器Rが直列接続され、当該信号ライン上にさらにLC並列共振回路1が直列接続される構成を備え、信号ラインにおける2つの抵抗器R間の所定位置がESD素子ESDを介してグランドへ接続される構成であればよい。
The connection relationship between the two resistors R, the ESD element ESD, and the LC parallel resonance circuit 1 shown in FIG. 3 is an example. As a basic configuration, two resistors R are provided on the signal line. The LC parallel resonance circuit 1 is further connected in series on the signal line, and the predetermined position between the two resistors R in the signal line is connected to the ground via the ESD element ESD. I just need it.
このように、LC並列共振回路をESD保護回路の信号ラインに挿入する回路構成を用いることで、ESD保護を確実に機能させるとともに、所望の周波数に減衰極を有するローパスフィルタとしても機能させることができる。すなわち、通過させたい周波数の信号を低損失で通過させ、所望とする高周波ノイズを確実に除去し、且つESD保護を行えるESD保護デバイスを実現することができる。
Thus, by using the circuit configuration in which the LC parallel resonant circuit is inserted into the signal line of the ESD protection circuit, the ESD protection can be surely functioned and also function as a low-pass filter having an attenuation pole at a desired frequency. it can. That is, it is possible to realize an ESD protection device that allows a signal having a desired frequency to pass therethrough with low loss, reliably removes desired high-frequency noise, and performs ESD protection.
次に、このようなESD保護デバイスの構造について図を参照して説明する。
図4は、本実施形態のESD保護デバイスの概略構造を説明する為の側面断面図である。なお、図4では、上述のπ型ESD保護回路10PのESD素子ESD1、抵抗器R、およびLC並列共振回路のインダクタLrの回路部分を示している。 Next, the structure of such an ESD protection device will be described with reference to the drawings.
FIG. 4 is a side sectional view for explaining a schematic structure of the ESD protection device of the present embodiment. FIG. 4 shows circuit portions of the ESD element ESD1, the resistor R, and the inductor Lr of the LC parallel resonance circuit of the π-typeESD protection circuit 10P described above.
図4は、本実施形態のESD保護デバイスの概略構造を説明する為の側面断面図である。なお、図4では、上述のπ型ESD保護回路10PのESD素子ESD1、抵抗器R、およびLC並列共振回路のインダクタLrの回路部分を示している。 Next, the structure of such an ESD protection device will be described with reference to the drawings.
FIG. 4 is a side sectional view for explaining a schematic structure of the ESD protection device of the present embodiment. FIG. 4 shows circuit portions of the ESD element ESD1, the resistor R, and the inductor Lr of the LC parallel resonance circuit of the π-type
また、以下ではp型のSi基板20Aを用いた場合を例に説明するが、n型のSi基板であっても以下の構造を適用することができる。
In the following, a case where a p-type Si substrate 20A is used will be described as an example, but the following structure can be applied even to an n-type Si substrate.
本実施形態のESD保護デバイス10は、所謂CSP(Chip Size Package)からなり、p型に不純物添加されたSi基板20Aを備える。当該p型のSi基板20の一方面(図4の下面)の所定位置は、当該一方面から所定深さで所定の面積範囲がn型ドーピングされている。また、p型のSi基板20Aにおける特定の対となるn型ドーピング層n+(図4の左端付近の2個のn型ドーピング層n+)を囲むように、Pウェル層が形成されている。Pウェル層とは、Si基板20Aの対してp型の不純物濃度を高くした層である。この構造により、p型領域(Pウェル層)とn型領域との境界を、ダイオードやキャパシタとして機能させたり、n型領域を抵抗器として機能させることができる。なお、Pウェル層は必ずしも形成しなければならないわけではないが、形成することが望ましい。
The ESD protection device 10 of this embodiment is made of a so-called CSP (Chip Size Package) and includes a Si substrate 20A doped with p-type impurities. A predetermined position of one surface (the lower surface in FIG. 4) of the p-type Si substrate 20 is n-type doped in a predetermined area range at a predetermined depth from the one surface. Further, a P well layer is formed so as to surround a specific pair of n type doping layer n + (two n type doping layers n + near the left end in FIG. 4) in the p type Si substrate 20A. The P well layer is a layer in which the p-type impurity concentration is increased with respect to the Si substrate 20A. With this structure, the boundary between the p-type region (P well layer) and the n-type region can function as a diode or a capacitor, or the n-type region can function as a resistor. The P well layer is not necessarily formed, but it is desirable to form it.
このような部分的にn型ドーピングされたp型のSi基板20Aの表面には、当該表面側からコンタクト層200および導電性パターン201が順に形成されている。導電性パターン201は、例えばAl(アルミニウム)等の金属材料の蒸着などによって実現される。
The contact layer 200 and the conductive pattern 201 are sequentially formed on the surface of the partially n-type doped p-type Si substrate 20A from the surface side. The conductive pattern 201 is realized by vapor deposition of a metal material such as Al (aluminum).
これらコンタクト層200および導電性パターン201は、所望とする回路構成を実現するようにパターン形成されている。
The contact layer 200 and the conductive pattern 201 are patterned so as to realize a desired circuit configuration.
例えば、ESD素子ESD1を形成する領域のコンタクト層200および導電性パターン201は、所定間隔で形成された2個のn型ドーピング層n+の各表面にパターン形成されている。これにより、この領域では、2個のダイオードを、順方向が不一致の状態で直列接続した回路構成を実現でき、ESD素子ESD1が実現される。
For example, the contact layer 200 and the conductive pattern 201 in the region where the ESD element ESD1 is formed are patterned on the surfaces of two n-type doping layers n + formed at a predetermined interval. Thereby, in this region, it is possible to realize a circuit configuration in which two diodes are connected in series in a state in which the forward directions do not match, and the ESD element ESD1 is realized.
より具体的には、一方のn型ドーピング層n+とPウェルとで、1個のpn接合が実現され、他方のn型ドーピング層n+と当該Pウェルとで、もう1個のpn接合が実現される。この際、2個のn型ドーピング層n+の間にPウェルが介在する構造となるので、順方向が互いに逆となるように2つのダイオードが接続された回路と等価な構成となる。したがって、正と負に所定の閾値電圧を有するダイオードを実現でき、ESD保護回路として機能させることができる。すなわち、閾値電圧Vtを通常動作時の電圧よりも高く設定しておけば、通常時にはダイオードがOFF状態となり(ON状態にならず)、閾値電圧Vtを超えるような静電気が重畳されると、ダイオードがON状態となり、グランドへエネルギーを放出するESD保護回路として機能する。
More specifically, one pn junction is realized by one n-type doping layer n + and the P well, and another pn junction is realized by the other n-type doping layer n + and the P well. Is done. At this time, since the P-well is interposed between the two n-type doping layers n +, the structure is equivalent to a circuit in which two diodes are connected so that the forward directions are opposite to each other. Therefore, a diode having a predetermined threshold voltage positive and negative can be realized, and can function as an ESD protection circuit. That is, if the threshold voltage Vt is set higher than the voltage during normal operation, the diode is normally turned off (not turned on), and when static electricity exceeding the threshold voltage Vt is superimposed, the diode Becomes an ON state and functions as an ESD protection circuit that releases energy to the ground.
また、抵抗器Rを形成する領域のコンタクト層200および導電性パターン201は、n型ドーピング層n+の離間した両端の2つの所定面積範囲にパターン形成されている。これにより、n型ドーピング層n+の抵抗成分を利用した抵抗器Rが実現される。なお、本実施形態の説明では、n型ドーピング層n+を用いて抵抗器Rを実現しているが、Si基板20Aに対してNウェルで囲まれたp型ドーピング層p+を形成し、当該p型ドーピング層p+で、抵抗器Rを形成してもよい。
In addition, the contact layer 200 and the conductive pattern 201 in the region where the resistor R is formed are patterned in two predetermined area ranges on both ends of the n-type doping layer n +. Thereby, the resistor R using the resistance component of the n-type doping layer n + is realized. In the description of the present embodiment, the resistor R is realized by using the n-type doping layer n +, but the p-type doping layer p + surrounded by the N well is formed on the Si substrate 20A, and the p The resistor R may be formed of the type doping layer p +.
また、さらに、インダクタLrを形成する領域のコンタクト層200および導電性パターン201は、所定の巻回数でかつ所定の電極幅からなるスパイラル形状にパターン形成されている。これにより、Si基板20A上に形成された第1スパイラル電極21Aが実現される。
Further, the contact layer 200 and the conductive pattern 201 in the region where the inductor Lr is formed are patterned in a spiral shape having a predetermined number of turns and a predetermined electrode width. Thereby, the first spiral electrode 21A formed on the Si substrate 20A is realized.
このように所定パターンで形成されたコンタクト層200、導電パターン201、および当該パターンが形成されていないSi基板20Aの表面は、UBM40の形成領域を除いて、絶縁性のパッシべーション層20Bpで覆われている。そして、このパッシべーション層20Bpが開口した位置にUBM40が形成されている。
The surface of the contact layer 200, the conductive pattern 201, and the Si substrate 20A on which the pattern is not formed is covered with the insulating passivation layer 20Bp except for the region where the UBM 40 is formed. It has been broken. And UBM40 is formed in the position which this passivation layer 20Bp opened.
さらに、当該UBM40に接続するように所定パターンの導電性パターン202からなる再配線層が形成されている。これにより、UBM40は、Si基板20A表面の導電性パターン201と、再配線層を構成する導電性パターン202とを電気的に接続するビアホールとして機能する。
Further, a rewiring layer made of a conductive pattern 202 having a predetermined pattern is formed so as to be connected to the UBM 40. Thereby, the UBM 40 functions as a via hole that electrically connects the conductive pattern 201 on the surface of the Si substrate 20A and the conductive pattern 202 constituting the rewiring layer.
再配線層の導電性パターン202は、UBM40とCSPとしての外部接続バンプである半田バンプ50とを橋渡しする電極パターンと、第2スパイラル電極21Bを形成する電極パターンとを有する。ここで、UBM40と半田バンプ50とを橋渡しする電極パターンは、図4の左端付近に示すように、UBM40の形成位置から半田バンプ50の形成位置まで所定パターンで延びるように形成されている。一方、第2スパイラル電極21Bを形成する電極パターンは、当該ESD保護デバイス10すなわちSi基板20Aを平面視して、Si基板20A表面の第1スパイラル電極21Aを形成する電極パターンと同じ巻回方向で且つ略同じ形状からなり、重なり合う領域に形成されている。そして、第1スパイラル電極21Aと第2スパイラル電極21Bとは、UBM40からなるビアホールにより接続されている。これにより、第1スパイラル電極21Aと第2スパイラル電極21BとからなるインダクタLrが実現される。
The conductive pattern 202 of the rewiring layer has an electrode pattern that bridges the UBM 40 and the solder bump 50 that is an external connection bump as a CSP, and an electrode pattern that forms the second spiral electrode 21B. Here, the electrode pattern that bridges the UBM 40 and the solder bump 50 is formed so as to extend in a predetermined pattern from the position where the UBM 40 is formed to the position where the solder bump 50 is formed, as shown in the vicinity of the left end of FIG. On the other hand, the electrode pattern that forms the second spiral electrode 21B has the same winding direction as the electrode pattern that forms the first spiral electrode 21A on the surface of the Si substrate 20A when the ESD protection device 10, that is, the Si substrate 20A is viewed in plan. Moreover, they have substantially the same shape and are formed in overlapping regions. The first spiral electrode 21A and the second spiral electrode 21B are connected by a via hole made of UBM40. Thereby, an inductor Lr composed of the first spiral electrode 21A and the second spiral electrode 21B is realized.
このような再配線層の導電性パターン202は、Si基板20A上の導電性パターン201よりも厚いCu電極等の金属電極により形成される。これにより、第2スパイラル電極21Bの抵抗成分を低くすることができる。
The conductive pattern 202 of the rewiring layer is formed of a metal electrode such as a Cu electrode that is thicker than the conductive pattern 201 on the Si substrate 20A. Thereby, the resistance component of the second spiral electrode 21B can be lowered.
さらに、半田バンプ形成位置を除いて、再配線層の導電性パターン202およびパッシべーション層20Bpを覆うように、絶縁性の保護層20Biが形成されている。この保護層20Biは例えばポリイミドにより形成される。
Further, an insulating protective layer 20Bi is formed so as to cover the conductive pattern 202 and the passivation layer 20Bp of the rewiring layer except for the solder bump formation position. This protective layer 20Bi is formed of polyimide, for example.
以上のように、ESD素子ESD1、抵抗器R、LC並列共振回路1のインダクタLrを形成し、さらに、ESD素子ESD2とLC並列共振回路1のキャパシタCrとをESD素子ESD1と同様の構造で形成し、Si基板20A表面の導電性パターン201、再配線層の導電性パターン202やUBM40、半田バンプ50を適宜パターン形成することで、本実施形態のESD保護デバイス10をCSPにより実現することができる。
As described above, the ESD element ESD1, the resistor R, and the inductor Lr of the LC parallel resonant circuit 1 are formed, and the ESD element ESD2 and the capacitor Cr of the LC parallel resonant circuit 1 are formed in the same structure as the ESD element ESD1. Then, the ESD protection device 10 of this embodiment can be realized by CSP by appropriately patterning the conductive pattern 201 on the surface of the Si substrate 20A, the conductive pattern 202 of the rewiring layer, the UBM 40, and the solder bump 50. .
次に、LC並列共振回路1のインダクタLrの構造について、図を参照して、より詳細に説明する。図5(A)はインダクタLrの構造を模式的に示す外観斜視図であり、図5(B)はその分解斜視図である。また、図6(A)は再配線層の第2スパイラル電極21Bの平面図であり、図6(B)はその側面断面図である。また、図6(C)はSi基板20A表面に形成された第1スパイラル電極21Aの平面図であり、図6(D)その側面断面図である。なお、図5、図6における絶縁性材料層20Bは、上述の図4で示すパッシべーション層20Bpや保護層20Biに相当するものであり、構造の説明を明確にするために基板状で表記している。
Next, the structure of the inductor Lr of the LC parallel resonant circuit 1 will be described in more detail with reference to the drawings. FIG. 5A is an external perspective view schematically showing the structure of the inductor Lr, and FIG. 5B is an exploded perspective view thereof. 6A is a plan view of the second spiral electrode 21B of the rewiring layer, and FIG. 6B is a side sectional view thereof. FIG. 6C is a plan view of the first spiral electrode 21A formed on the surface of the Si substrate 20A, and FIG. 6D is a side sectional view thereof. Note that the insulating material layer 20B in FIGS. 5 and 6 corresponds to the passivation layer 20Bp and the protective layer 20Bi shown in FIG. 4 described above, and is shown in the form of a substrate in order to clarify the structure. is doing.
図5に示すように、LC並列共振回路1のインダクタLrは、Si基板20A上に巻回形状で形成された導電性パターン201からなる第1スパイラル電極21Aと、当該第1スパイラル電極21Aから離間された位置に、同じく巻回形状で形成された導電性パターン202からなる第2スパイラル電極21Bと、を備える。
As shown in FIG. 5, the inductor Lr of the LC parallel resonant circuit 1 includes a first spiral electrode 21A composed of a conductive pattern 201 formed in a wound shape on a Si substrate 20A, and a distance from the first spiral electrode 21A. The second spiral electrode 21 </ b> B made of the conductive pattern 202 that is also formed in a wound shape is provided at the position.
この際、第1スパイラル電極21Aと第2スパイラル電極21Bとは、平面視した状態で略同じ領域に形成されている。また、第1スパイラル電極21Aと第2スパイラル電極21Bのそれぞれの中央開口領域も略一致するように形成されている。
At this time, the first spiral electrode 21A and the second spiral electrode 21B are formed in substantially the same region in a plan view. The central opening regions of the first spiral electrode 21A and the second spiral electrode 21B are also formed so as to substantially coincide with each other.
第1スパイラル電極21Aの外周端は、同じくSi基板20A上に形成された導電性パターン201からなる引き回し電極31に接続している。第1スパイラル電極21Aは、この外周端から内周端に亘り、徐々に径が短くなるように、且つ図6(C),(D)に示すように平面視した状態で反時計回りに巻回するように形成されている。第1スパイラル電極21Aの内周端は、図6(B)に示すように、UBM40からなるビアホール41によって、第2スパイラル電極21Bの内周端に接続している。
The outer peripheral end of the first spiral electrode 21A is connected to a lead-out electrode 31 made of the conductive pattern 201 that is also formed on the Si substrate 20A. The first spiral electrode 21A is wound counterclockwise so that the diameter gradually decreases from the outer peripheral end to the inner peripheral end and in a plan view as shown in FIGS. 6 (C) and 6 (D). It is formed to turn. As shown in FIG. 6B, the inner peripheral end of the first spiral electrode 21A is connected to the inner peripheral end of the second spiral electrode 21B by a via hole 41 made of UBM 40.
第2スパイラル電極21Bは、第1スパイラル電極21Aと略同じ電極幅を有する形状からなり、内周端から外周端に亘り、徐々に径が大きくなるように、且つ図6(A),(B)に示すように平面視した状態で反時計回りに電極が巻回するように形成されている。第2スパイラル電極21Bの外周端は、図5,図6(B)に示すように、導電性のビアホール42により、Si基板20A上の導電性パターン201からなる引き回し電極32に接続している。
The second spiral electrode 21B has a shape having substantially the same electrode width as that of the first spiral electrode 21A, and gradually increases in diameter from the inner peripheral end to the outer peripheral end. ), The electrode is formed to be wound counterclockwise in a plan view. As shown in FIGS. 5 and 6B, the outer peripheral end of the second spiral electrode 21B is connected to the lead-out electrode 32 made of the conductive pattern 201 on the Si substrate 20A by a conductive via hole.
このような構造とすることで、第1スパイラル電極21Aと第2スパイラル電極21Bとは、これらが接続されてなる二層構造のスパイラル電極として、巻回方向が一致するように形成される。これにより、第1スパイラル電極21Aと第2スパイラル電極21Bとで発生する磁界の向きが一致する。そして、第1スパイラル電極21Aと第2スパイラル電極21Bとの電極面同士が近接していることで、これらの磁界が結合し、強い磁気結合が得られ、大きな相互インダクタンスを生じることができる。この結果、第1スパイラル電極21Aと第2スパイラル電極21Bとから構成されるインダクタLrのインダクタンスを大きく取ることができる。したがって、当該インダクタLrを用いたLC並列共振回路1の共振のQ値を高くでき、ESD保護デバイスがローパスフィルタとして機能する際の減衰極を、急峻な特性の極にすることができる。よって、所望とする高周波ノイズを、効果的に除去することができる。
With such a structure, the first spiral electrode 21A and the second spiral electrode 21B are formed as a spiral electrode having a two-layer structure in which they are connected so that their winding directions coincide with each other. Thereby, the directions of the magnetic fields generated by the first spiral electrode 21A and the second spiral electrode 21B coincide. And since the electrode surfaces of the first spiral electrode 21A and the second spiral electrode 21B are close to each other, these magnetic fields are coupled, strong magnetic coupling is obtained, and a large mutual inductance can be generated. As a result, the inductance of the inductor Lr composed of the first spiral electrode 21A and the second spiral electrode 21B can be increased. Therefore, the Q value of resonance of the LC parallel resonant circuit 1 using the inductor Lr can be increased, and the attenuation pole when the ESD protection device functions as a low-pass filter can be a steep characteristic pole. Therefore, desired high frequency noise can be effectively removed.
さらに、第2スパイラル電極21Bは、再配線層の導電性パターン202を用いている。ここで、再配線層の導電性パターン202は、上述のようにCu等から形成されている。Cuは、Si基板20A上に蒸着形成したAlより導電率が高いので、第2スパイラル電極21Bの抵抗値を下げることができ、インダクタLrの全体を第1スパイラル電極21Aで形成するよりも、インダクタLrのインダクタンスを向上しながらも、抵抗成分の上昇を抑えることができる。また、再配線層の導電性パターン202は、Si基板20A上に蒸着形成したAl等からなる導電性パターン201と比較して、電極を厚く形成することができる。これにより、第2スパイラル電極21Bの抵抗値をさらに下げることができ、インダクタLrの全体を第1スパイラル電極21Aで形成するよりも、インダクタLrのインダクタンスを向上しながらも、抵抗成分の上昇をより抑えることができる。これによっても、インダクタLrを備えるLC並列共振回路1のQ値を向上させることができ、より急峻な減衰極を形成することができる。
Furthermore, the second spiral electrode 21B uses the conductive pattern 202 of the rewiring layer. Here, the conductive pattern 202 of the rewiring layer is formed of Cu or the like as described above. Since Cu has a higher conductivity than Al deposited on the Si substrate 20A, the resistance value of the second spiral electrode 21B can be lowered, and the inductor Lr is formed by the first spiral electrode 21A rather than the entire inductor Lr. While increasing the inductance of Lr, it is possible to suppress an increase in resistance component. Further, the conductive pattern 202 of the rewiring layer can be formed thicker than the conductive pattern 201 made of Al or the like deposited on the Si substrate 20A. As a result, the resistance value of the second spiral electrode 21B can be further lowered, and the resistance component can be further increased while improving the inductance of the inductor Lr than when the entire inductor Lr is formed of the first spiral electrode 21A. Can be suppressed. Also by this, the Q value of the LC parallel resonant circuit 1 including the inductor Lr can be improved, and a steeper attenuation pole can be formed.
図7はスパイラル電極の個数に応じた通過特性への影響を示す通過特性図である。図7において、太実線はSi基板20A上の第1スパイラル電極21AでインダクタLrを構成した場合のπ型ESD保護回路10Pの通過特性を示し、細実線はSi基板21A上の第1スパイラル電極21AでインダクタLrを構成した場合のT型ESD保護回路10Tの通過特性を示す。太破線はSi基板20A上の第1スパイラル電極21Aと再配線層の第2スパイラル電極21BとでインダクタLrを構成した場合のπ型ESD保護回路10Pの通過特性を示し、細破線はSi基板20A上の第1スパイラル電極21Aと再配線層の第2スパイラル電極21BとでインダクタLrを構成した場合のT型ESD保護回路10Tの通過特性を示す。
FIG. 7 is a pass characteristic diagram showing the influence on the pass characteristic according to the number of spiral electrodes. In FIG. 7, the thick solid line indicates the pass characteristic of the π-type ESD protection circuit 10P when the inductor Lr is configured by the first spiral electrode 21A on the Si substrate 20A, and the thin solid line indicates the first spiral electrode 21A on the Si substrate 21A. The pass characteristics of the T-type ESD protection circuit 10T when the inductor Lr is configured as shown in FIG. A thick broken line indicates a passing characteristic of the π-type ESD protection circuit 10P when the inductor Lr is configured by the first spiral electrode 21A on the Si substrate 20A and the second spiral electrode 21B of the rewiring layer, and the thin broken line indicates the Si substrate 20A. The pass characteristics of the T-type ESD protection circuit 10T when the inductor Lr is composed of the upper first spiral electrode 21A and the second spiral electrode 21B of the rewiring layer are shown.
図7に示すように、Si基板20A上に第1スパイラル電極21Aを形成しただけでも、減衰極を得られる。そして、さらに、上述の第1スパイラル電極21Aと第2スパイラル電極21Bとの二層構造を用いることにより、さらに減衰極の減衰量を大きくし、急峻な特性にすることができる。
As shown in FIG. 7, the attenuation pole can be obtained only by forming the first spiral electrode 21A on the Si substrate 20A. Further, by using the above-described two-layer structure of the first spiral electrode 21A and the second spiral electrode 21B, the attenuation amount of the attenuation pole can be further increased and steep characteristics can be obtained.
なお、図5、図6では、再配線層による第2スパイラル電極21Bを1個設けた例を示したが、図8に示すように、再配線層をさらに増加させ、第2スパイラル電極21Bに対してSi基板20Aと反対側に、さらに第3スパイラル電極21Cを形成してもよい。図8は、インダクタLrの他の構造を模式的に示す分解斜視図である。
5 and 6 show an example in which one second spiral electrode 21B is provided by a rewiring layer. However, as shown in FIG. 8, the number of rewiring layers is further increased, and the second spiral electrode 21B is formed on the second spiral electrode 21B. On the other hand, a third spiral electrode 21C may be further formed on the side opposite to the Si substrate 20A. FIG. 8 is an exploded perspective view schematically showing another structure of the inductor Lr.
第1スパイラル電極21Aと第2スパイラル電極21Bとは、上述の図5、図6に示した構成と同じであり、説明は省略する。
The first spiral electrode 21A and the second spiral electrode 21B are the same as those shown in FIGS. 5 and 6, and will not be described.
第3スパイラル電極21Cは、第1スパイラル電極21Aや第2スパイラル電極21Bと略同じ電極幅で、略一致する領域に略同じ面積で形成されている。第3スパイラル電極21Cの外周端は、第2スパイラル電極21Bの外周端とビアホール41’により接続している。第3スパイラル電極21Cは、当該外周端から内周端に亘り、徐々に径が短くなるように、平面視した状態で反時計回りに巻回するように形成されている。すなわち、第3スパイラル電極21Cは、第1スパイラル電極21Aおよび第2スパイラル電極21Bと同じ巻回方向で形成されている。
The third spiral electrode 21C has substantially the same electrode width as that of the first spiral electrode 21A and the second spiral electrode 21B, and substantially the same area. The outer peripheral end of the third spiral electrode 21C is connected to the outer peripheral end of the second spiral electrode 21B by a via hole 41 '. The third spiral electrode 21C is formed to be wound counterclockwise in a plan view so that the diameter gradually decreases from the outer peripheral end to the inner peripheral end. That is, the third spiral electrode 21C is formed in the same winding direction as the first spiral electrode 21A and the second spiral electrode 21B.
このような形状とすることで、インダクタLrとしての電極長をさらに伸延させて、インダクタンスを大きくすることができるとともに、第1スパイラル電極21A、第2スパイラル電極21Bおよび第3スパイラル電極21C間の相互インダクタンスにより、さらにインダクタLrとしてのインダクタンスを大きくすることができる。これにより、LC並列共振回路1のQ値をさらに高くし、より急峻な減衰極を形成することができる。なお、形成する再配線層のスパイラル電極の数は、上述の1個および2個に限らず、製品仕様に応じて、3個以上にしてもよい。この際、上述のように、各スパイラル電極の巻回方向が一致するように、すなわちそれぞれの発生する磁界の向きが同じになり、各磁界が強め合うようにすることで、インダクタンスを大きくし、LC並列共振回路のQ値を高めることができる。
With such a shape, the length of the electrode as the inductor Lr can be further extended to increase the inductance, and the mutual relationship between the first spiral electrode 21A, the second spiral electrode 21B, and the third spiral electrode 21C can be increased. By the inductance, the inductance as the inductor Lr can be further increased. Thereby, the Q value of the LC parallel resonance circuit 1 can be further increased, and a steeper attenuation pole can be formed. The number of spiral electrodes of the rewiring layer to be formed is not limited to one and two as described above, but may be three or more according to product specifications. At this time, as described above, the winding direction of each spiral electrode coincides, that is, the directions of the generated magnetic fields are the same, and the magnetic fields are strengthened to increase the inductance, The Q value of the LC parallel resonant circuit can be increased.
以上のように、本実施形態の回路構成および構造を用いることで、ESD保護機能が作動していない状態では所望の周波数に減衰極を有するローパスフィルタとして機能するESD保護デバイスを実現することができる。すなわち、通過させたい周波数帯域の信号(通信信号)を低損失で伝搬させながら、所望の高周波ノイズを減衰させ、且つ静電気が信号ラインに重畳された場合に当該静電気をグランドへ放電させるESD保護デバイスを実現することができる。この際、当該ESD保護デバイスをCSPにより実現することで、このような多機能で高性能なESD保護デバイスを小型に形成することができる。
As described above, by using the circuit configuration and structure of the present embodiment, it is possible to realize an ESD protection device that functions as a low-pass filter having an attenuation pole at a desired frequency when the ESD protection function is not activated. . That is, an ESD protection device that attenuates desired high-frequency noise while discharging a signal (communication signal) in a frequency band to be passed with low loss, and discharges the static electricity to the ground when the static electricity is superimposed on the signal line. Can be realized. At this time, by realizing the ESD protection device by CSP, such a multifunctional and high-performance ESD protection device can be formed in a small size.
なお、上述の説明では、C-R-LC-R型のローパスフィルタとして機能するπ型ESD保護回路10Pを例に説明した。しかしながら、次に示すような構成のESD保護回路11Pであってもよい。図9(A)は本発明の構成からなるESD保護回路11Pの回路図であり、図9(B)はESD保護回路11PのESD素子ESD1,ESD2,ESD3がOFF状態での等価回路図である。
In the above description, the π-type ESD protection circuit 10P functioning as a CR-LC-R type low-pass filter has been described as an example. However, the ESD protection circuit 11P having the following configuration may be used. FIG. 9A is a circuit diagram of an ESD protection circuit 11P having the configuration of the present invention, and FIG. 9B is an equivalent circuit diagram when the ESD elements ESD1, ESD2, and ESD3 of the ESD protection circuit 11P are in an OFF state. .
図9に示すESD保護回路11Pは、図1(A)に示したESD保護回路10Pに対して、さらに、抵抗器RとLC共振回路1との接続点がESD素子ESD3によりグランドに接続された構成を有する。このような構成とすることで、ESD保護回路11Pに、三個のローパスフィルタを構成することができる。具体的には、ESD素子ESD1,ESD3および抵抗器Rから構成される第1フィルタ1Aと、ESD素子ESD2,ESD3およびLC共振回路1のインダクタLrおよびキャパシタCrから構成される第2フィルタ1Bと、ESD素子ESD1,ESD2、抵抗器RおよびLC共振回路1のインダクタLrおよびキャパシタCrから構成される第3フィルタ1Cとが構成される。
In the ESD protection circuit 11P shown in FIG. 9, the connection point between the resistor R and the LC resonance circuit 1 is further connected to the ground by the ESD element ESD3 with respect to the ESD protection circuit 10P shown in FIG. It has a configuration. With this configuration, three low-pass filters can be configured in the ESD protection circuit 11P. Specifically, a first filter 1A composed of ESD elements ESD1, ESD3 and a resistor R, a second filter 1B composed of ESD elements ESD2, ESD3 and an inductor Lr and a capacitor Cr of the LC resonance circuit 1, The ESD elements ESD1, ESD2, the resistor R, and the third filter 1C including the inductor Lr and the capacitor Cr of the LC resonance circuit 1 are configured.
第1フィルタ1Aは、抵抗器Rの両端がESD素子ESD1,ESD3でそれぞれグランドへ接続された構成からなる。この回路は、ESD素子ESD1,ESD3がOFF状態で、C-R-Cのπ型フィルタとなる。
The first filter 1A has a configuration in which both ends of the resistor R are connected to the ground by ESD elements ESD1 and ESD3, respectively. This circuit is a C—R—C π-type filter when the ESD elements ESD1 and ESD3 are OFF.
第2フィルタ1Bは、インダクタLrとキャパシタCrの並列回路の両端がESD2,ESD3でそれぞれグランドへ接続された構成からなる。この回路は、ESD素子ESD2,ESD3がOFF状態で、C-LC-Cのπ型フィルタとなる。
The second filter 1B has a configuration in which both ends of the parallel circuit of the inductor Lr and the capacitor Cr are connected to the ground by ESD2 and ESD3, respectively. This circuit is a C-LC-C π-type filter when the ESD elements ESD2 and ESD3 are OFF.
第3フィルタ1Cは、抵抗器Rと、インダクタLrおよびキャパシタCrの並列回路とが直列接続された回路の両端が、ESD素子ESD1,ESD2でそれぞれグランドへ接続された構成からなる。この回路は、ESD素子ESD1,ESD2がOFF状態で、C-R-LC-Cのπ型フィルタとなる。
The third filter 1C has a configuration in which both ends of a circuit in which a resistor R and a parallel circuit of an inductor Lr and a capacitor Cr are connected in series are connected to the ground by ESD elements ESD1 and ESD2, respectively. This circuit is a CR-LC-C π-type filter when the ESD elements ESD1 and ESD2 are OFF.
このように複数のローパスフィルタが含まれる構造とし、各素子の素子値を適宜設定することで、図10に示すようにローパスの高域側に、さらに急峻な減衰極を形成することができる。図10は、図1,図9の回路からなるESD保護デバイスの通過特性を表す図である。このように、図9の構成を用いれば、より優れた高域の減衰特性を有するESD保護デバイスを形成することができる。
As described above, by adopting a structure including a plurality of low-pass filters and appropriately setting the element value of each element, a steep attenuation pole can be formed on the high-pass side of the low-pass as shown in FIG. FIG. 10 is a diagram showing pass characteristics of an ESD protection device including the circuits of FIGS. As described above, by using the configuration of FIG. 9, an ESD protection device having a superior high-frequency attenuation characteristic can be formed.
また、上述の図9の構成に対して、図11に示すように、入力ポートPi、出力ポートPo間に直列接続される抵抗の構成を変化させてもよい。図11は本発明のさらにその他の構成からなるESD保護デバイスの回路図である。
Further, as shown in FIG. 11, the configuration of the resistor connected in series between the input port Pi and the output port Po may be changed from the configuration of FIG. 9 described above. FIG. 11 is a circuit diagram of an ESD protection device having still another configuration according to the present invention.
図11(A)に示すESD保護回路12Pでは、ESD素子ESD3の一方端とLC共振回路1との間に抵抗器Rbが接続されている。図11(B)に示すESD保護回路13Pでは、ESD素子ESD3の一方端とESD素子ESD2の一方端との間に抵抗器Rbが接続されている。これらの場合、抵抗器Rbを挿入することで、ESD素子ESD1とESD素子ESD3との間に接続された抵抗器Raの抵抗値は適宜調整する。例えば、図1の抵抗器Rが抵抗値100Ωであれば、抵抗器Raを90Ω、抵抗器Rbを10Ωに設定するとよい。
In the ESD protection circuit 12P shown in FIG. 11A, a resistor Rb is connected between one end of the ESD element ESD3 and the LC resonance circuit 1. In the ESD protection circuit 13P shown in FIG. 11B, a resistor Rb is connected between one end of the ESD element ESD3 and one end of the ESD element ESD2. In these cases, the resistance value of the resistor Ra connected between the ESD element ESD1 and the ESD element ESD3 is appropriately adjusted by inserting the resistor Rb. For example, if the resistor R in FIG. 1 has a resistance value of 100Ω, the resistor Ra may be set to 90Ω and the resistor Rb to 10Ω.
このように、ESD素子ESD3の一方端(信号ライン側)に対して入力ポートPi側、出力ポートPo側にそれぞれ抵抗器Ra,Rbを挿入することで、入力ポートPi、出力ポートPoのいずれのポートからのESDが入力されても、ESD素子ESD3に到達する前に、抵抗器Ra,Rbで或程度減衰される。したがって、減衰極の調整用として接続されたESD素子ESD3のキャパシタンスが小さい場合であっても、当該ESD素子ESD3の破壊を防ぐことができる。逆に言えば、他のESD素子ESD1,ESD2とは異なる構成で減衰極の調整用のキャパシタを形成せず、ESD素子ESD1,ESD2と同じような構成でESD素子ESD3を形成しても、当該ESD素子ESD3の破壊を防止できる。これにより、優れた減衰特性で高信頼性のESD保護デバイスを実現できる。
In this way, by inserting the resistors Ra and Rb on the input port Pi side and the output port Po side with respect to one end (signal line side) of the ESD element ESD3, either of the input port Pi and the output port Po is selected. Even if ESD from the port is input, it is attenuated to some extent by the resistors Ra and Rb before reaching the ESD element ESD3. Therefore, even if the capacitance of the ESD element ESD3 connected for adjusting the attenuation pole is small, the ESD element ESD3 can be prevented from being destroyed. In other words, even if the ESD element ESD3 is formed in the same configuration as the ESD elements ESD1 and ESD2 without forming the capacitor for adjusting the attenuation pole in a different configuration from the other ESD elements ESD1 and ESD2, The destruction of the ESD element ESD3 can be prevented. Thereby, a highly reliable ESD protection device with excellent attenuation characteristics can be realized.
ところで、上述したように、ESD素子ESD3は、単にキャパシタで構成してもよい。この場合、当該キャパシタは、Si基板の表面の電極パターンと再配線層の電極パターンにより形成すればよい。これにより、簡素な構成で減衰極調整用のキャパシタを形成することができる。さらに、このようなキャパシタの一方の対向電極に、Si基板上に形成したインダクタLrの電極パターンを利用し、他方の対向電極を再配線層に形成することで、Si基板上に形成したインダクタLrを再配線層に接続するための接続電極(導電性ビアホール等)を形成する必要がなくなる。これにより、さらに簡素な構成で、ESD保護デバイスを実現することができる。
By the way, as described above, the ESD element ESD3 may be simply constituted by a capacitor. In this case, the capacitor may be formed by an electrode pattern on the surface of the Si substrate and an electrode pattern on the rewiring layer. Thereby, a capacitor for adjusting the attenuation pole can be formed with a simple configuration. Further, the inductor Lr formed on the Si substrate is formed by using the electrode pattern of the inductor Lr formed on the Si substrate as one counter electrode of the capacitor and forming the other counter electrode on the rewiring layer. There is no need to form a connection electrode (such as a conductive via hole) for connecting to the rewiring layer. Thereby, an ESD protection device can be realized with a simpler configuration.
なお、上述の説明では、スパイラル電極を用いた例を示したが、LC並列共振回路のインダクタLrとして、ミアンダ電極を用いることもできる。
In the above description, an example using a spiral electrode has been shown, but a meander electrode can also be used as the inductor Lr of the LC parallel resonant circuit.
また、上述の説明では、再配線層を用いてLC並列共振回路のインダクタLrを形成したが、Si基板上の導電性パターンのみによって、インダクタLrを形成してもよい。
In the above description, the inductor Lr of the LC parallel resonant circuit is formed using the rewiring layer. However, the inductor Lr may be formed only by the conductive pattern on the Si substrate.
また、再配線層を用いてLC並列共振回路のインダクタLrを形成する場合であっても、2つのスパイラル電極が必ずしも同一形状、同一領域、同一方向に巻回するように形成されなくてもよい。
Further, even when the inductor Lr of the LC parallel resonant circuit is formed using the rewiring layer, the two spiral electrodes do not necessarily have to be formed in the same shape, the same region, and the same direction. .
また、上述の説明では、ESD素子は、ダイオードの直列回路で実現する例を示したが、Si基板を用いる場合であればツェナーダイオードやFETを用いてもよく、バリスタを用いてもよい。また、ESD保護デバイスを、Si基板を用いたCSPで実現する例を示したが、樹脂系の積層基板と当該積層基板に形成されたパターン電極と実装部品とから、上述のESD保護回路を構成してもよい。
In the above description, an example in which the ESD element is realized by a series circuit of diodes has been shown. However, if a Si substrate is used, a Zener diode or FET may be used, or a varistor may be used. Moreover, although the example which implement | achieves an ESD protection device by CSP using Si substrate was shown, the above-mentioned ESD protection circuit is comprised from the resin-type laminated substrate, the pattern electrode formed in the said laminated substrate, and mounting components. May be.
1-LC並列共振回路、10-ESD保護デバイス、10P,10P’,11P,12P,13P-π型ESD保護回路、10T,10T’-T型ESD保護回路、20A-Si基板、20B-絶縁性材料層、20Bp-パッシべーション層、20Bi-保護層、21A-第1スパイラル電極、21B-第2スパイラル電極、21C-第3スパイラル電極、31,32-引き回し電極、40-UBM、41,41’,42-ビアホール、50-半田バンプ、200-コンタクト層、201-導電性パターン、202-導電性パターン
1-LC parallel resonant circuit, 10-ESD protection device, 10P, 10P ′, 11P, 12P, 13P-π type ESD protection circuit, 10T, 10T′-T type ESD protection circuit, 20A-Si substrate, 20B-insulating Material layer, 20Bp-passivation layer, 20Bi-protective layer, 21A-first spiral electrode, 21B-second spiral electrode, 21C-third spiral electrode, 31,32-leading electrode, 40-UBM, 41,41 ', 42-via hole, 50-solder bump, 200-contact layer, 201-conductive pattern, 202-conductive pattern
Claims (15)
- 信号ラインに挿入された抵抗器と、
該抵抗器の両端とグランドとをそれぞれに接続する2個のESD素子と、
前記信号ライン上において前記抵抗器に直列接続されたLC並列共振器と、
を備えたESD保護デバイス。 A resistor inserted in the signal line;
Two ESD elements connecting both ends of the resistor and the ground, respectively;
An LC parallel resonator connected in series with the resistor on the signal line;
ESD protection device. - 請求項1に記載のESD保護デバイスであって、
前記LC並列共振器は、
前記信号ラインにおける前記抵抗器の一方端と該一方端に接続する前記ESD素子との間に接続されている、ESD保護デバイス。 The ESD protection device according to claim 1,
The LC parallel resonator is
An ESD protection device connected between one end of the resistor in the signal line and the ESD element connected to the one end. - 信号ラインに挿入され、互いに直列接続された2個の抵抗器と、
該直列接続された2個の抵抗器の接続点とグランドとを接続するESD素子と、
前記抵抗器のいずれか一方と前記接続点との間の信号ラインに直列接続されたLC並列共振器と、
を備えたESD保護デバイス。 Two resistors inserted in the signal line and connected in series with each other;
An ESD element for connecting the connection point of the two resistors connected in series and the ground;
An LC parallel resonator connected in series to a signal line between any one of the resistors and the connection point;
ESD protection device. - 請求項1乃至請求項3のいずれかに記載のESD保護デバイスであって、
前記LC並列共振器を構成するインダクタは、
前記信号ラインが形成されるシリコン基板上に形成された導電性パターンからなる、ESD保護デバイス。 The ESD protection device according to any one of claims 1 to 3,
The inductor constituting the LC parallel resonator is:
An ESD protection device comprising a conductive pattern formed on a silicon substrate on which the signal line is formed. - 請求項4に記載のESD保護デバイスであって、
前記インダクタは、
前記シリコン基板上に形成された導電性パターンに対して離間された再配線層の導電性パターンと、
該再配線層の導電性パターンと、前記シリコン基板上の導電性パターンとを導通するビアホールと、をさらに備えるESD保護デバイス。 The ESD protection device according to claim 4,
The inductor is
A conductive pattern of a redistribution layer spaced from a conductive pattern formed on the silicon substrate;
An ESD protection device further comprising: a conductive pattern of the rewiring layer; and a via hole that conducts the conductive pattern on the silicon substrate. - 請求項5に記載のESD保護デバイスであって、
前記インダクタは、
さらなる少なくとも1つの前記再配線層の導電性パターンと、
各再配線層の導電性パターン同士を接続するビアホールとを、さらに備えるESD保護デバイス。 The ESD protection device according to claim 5,
The inductor is
A further at least one conductive pattern of the redistribution layer;
An ESD protection device further comprising a via hole connecting the conductive patterns of each redistribution layer. - 請求項5または請求項6のいずれかに記載のESD保護デバイスであって、
前記再配線層の導電性パターンは、前記シリコン基板上の導電性パターンよりも電極厚みが厚い、ESD保護デバイス。 An ESD protection device according to claim 5 or claim 6,
The ESD protection device, wherein the conductive pattern of the redistribution layer has a larger electrode thickness than the conductive pattern on the silicon substrate. - 請求項5乃至請求項7のいずれかに記載のESD保護デバイスであって、
前記再配線層の導電性パターンは、前記シリコン基板上の導電性パターンよりも導電率が高い材料で形成されている、ESD保護デバイス。 An ESD protection device according to any one of claims 5 to 7,
The ESD protection device, wherein the conductive pattern of the redistribution layer is formed of a material having higher conductivity than the conductive pattern on the silicon substrate. - 請求項4乃至請求項8のいずれかに記載のESD保護デバイスであって、
前記シリコン基板上の導電性パターンは、スパイラル電極からなるESD保護デバイス。 An ESD protection device according to any one of claims 4 to 8,
The conductive pattern on the silicon substrate is an ESD protection device comprising a spiral electrode. - 請求項5乃至請求項8のいずれかに記載のESD保護デバイスであって、
前記シリコン基板上の導電性パターンと前記再配線層の導電性パターンは、略同一形状で、且つ、同一領域で、前記シリコン基板を平面視した状態で同一方向に巻回するスパイラル電極からなるESD保護デバイス。 An ESD protection device according to any one of claims 5 to 8,
The conductive pattern on the silicon substrate and the conductive pattern on the rewiring layer have substantially the same shape, and are ESDs comprising spiral electrodes that are wound in the same direction in the same region in a plan view of the silicon substrate. Protective device. - 請求項2に記載のESD保護デバイスであって、
前記抵抗器と前記LC並列共振器との間の信号ラインに一方端が接続し、他方端がグランドへ接続するキャパシタをさらに備えたESD保護デバイス。 An ESD protection device according to claim 2,
An ESD protection device further comprising a capacitor having one end connected to a signal line between the resistor and the LC parallel resonator and the other end connected to the ground. - 請求項11に記載のESD保護デバイスであって、
前記キャパシタは、前記2個のESD素子とは異なる第3のESD素子からなる、ESD保護デバイス。 An ESD protection device according to claim 11, comprising:
The capacitor is an ESD protection device including a third ESD element different from the two ESD elements. - 請求項12に記載のESD保護デバイスであって、
前記抵抗器は2個の部分抵抗器からなり、該2個の部分抵抗器は前記第3のESD素子の一方端から前記2個のESD素子に向かうそれぞれの信号ライン上に個別に接続されている、ESD保護デバイス。 An ESD protection device according to claim 12, comprising:
The resistors are composed of two partial resistors, and the two partial resistors are individually connected on respective signal lines from one end of the third ESD element to the two ESD elements. An ESD protection device. - 請求項11に記載のESD保護デバイスであって、
前記キャパシタは、
前記信号ラインが形成されるシリコン基板上に形成された導電性パターンと、前記シリコン基板上に形成された導電性パターンに対して離間された再配線層の導電性パターンと、から構成される、ESD保護デバイス。 An ESD protection device according to claim 11, comprising:
The capacitor is
A conductive pattern formed on a silicon substrate on which the signal line is formed; and a conductive pattern on a redistribution layer spaced from the conductive pattern formed on the silicon substrate. ESD protection device. - 請求項14に記載のESD保護デバイスであって、
前記キャパシタを形成する前記シリコン基板上に形成された導電性パターンは、前記LC並列共振器のインダクタを構成する導電性パターンを兼ねる、ESD保護デバイス。 An ESD protection device according to claim 14, comprising:
The ESD protection device, wherein a conductive pattern formed on the silicon substrate forming the capacitor also serves as a conductive pattern constituting an inductor of the LC parallel resonator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099127412A TW201138052A (en) | 2009-08-21 | 2010-08-17 | ESD protection device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009192394 | 2009-08-21 | ||
JP2009-192394 | 2009-08-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011021411A1 true WO2011021411A1 (en) | 2011-02-24 |
Family
ID=43606869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057859 WO2011021411A1 (en) | 2009-08-21 | 2010-05-10 | Esd protection device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201138052A (en) |
WO (1) | WO2011021411A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014154870A (en) * | 2013-02-14 | 2014-08-25 | Rohm Co Ltd | Lsi esd protection circuit and semiconductor device |
WO2015151786A1 (en) * | 2014-04-03 | 2015-10-08 | 株式会社村田製作所 | Variable capacitance device and production method therefor |
CN105470241A (en) * | 2014-09-30 | 2016-04-06 | 亚德诺半导体集团 | Input/output termination for ripple prevention |
CN106601733A (en) * | 2016-12-30 | 2017-04-26 | 杭州迦美信芯通讯技术有限公司 | Circuit and packaging structure having electro-static discharge protecting function between radio frequency ground and analog ground |
WO2022220130A1 (en) * | 2021-04-13 | 2022-10-20 | 株式会社村田製作所 | Transient voltage absorbing element and transient voltage absorbing circuit |
CN117713024A (en) * | 2024-02-06 | 2024-03-15 | 深圳飞骧科技股份有限公司 | Protective circuit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI727518B (en) * | 2019-11-27 | 2021-05-11 | 香港商創發科技通訊股份有限公司 | On-chip surge protection circuit |
TWI780668B (en) * | 2020-05-28 | 2022-10-11 | 日商村田製作所股份有限公司 | Modules for semiconductor compound devices |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50115953A (en) * | 1974-02-25 | 1975-09-10 | ||
JPH0677711A (en) * | 1992-06-29 | 1994-03-18 | Takeshi Ikeda | Noise filter |
JPH11168175A (en) * | 1997-09-29 | 1999-06-22 | St Microelectron Sa | Protective circuit capable of being engaged with filter |
JP2004356119A (en) * | 2003-05-26 | 2004-12-16 | Oki Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2006351687A (en) * | 2005-06-14 | 2006-12-28 | Seiko Epson Corp | Semiconductor device |
JP2007103724A (en) * | 2005-10-05 | 2007-04-19 | Toshiba Corp | Emi filter |
JP2008271187A (en) * | 2007-04-20 | 2008-11-06 | Kyocera Corp | Branch circuit |
JP2009105555A (en) * | 2007-10-22 | 2009-05-14 | Toshiba Corp | Emi filter and electronic device |
JP2009124410A (en) * | 2007-11-14 | 2009-06-04 | Toshiba Corp | Emi filter, and electronic apparatus |
JP2009266908A (en) * | 2008-04-23 | 2009-11-12 | Sony Corp | Method for manufacturing semiconductor device and semiconductor device |
-
2010
- 2010-05-10 WO PCT/JP2010/057859 patent/WO2011021411A1/en active Application Filing
- 2010-08-17 TW TW099127412A patent/TW201138052A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50115953A (en) * | 1974-02-25 | 1975-09-10 | ||
JPH0677711A (en) * | 1992-06-29 | 1994-03-18 | Takeshi Ikeda | Noise filter |
JPH11168175A (en) * | 1997-09-29 | 1999-06-22 | St Microelectron Sa | Protective circuit capable of being engaged with filter |
JP2004356119A (en) * | 2003-05-26 | 2004-12-16 | Oki Electric Ind Co Ltd | Semiconductor device and its manufacturing method |
JP2006351687A (en) * | 2005-06-14 | 2006-12-28 | Seiko Epson Corp | Semiconductor device |
JP2007103724A (en) * | 2005-10-05 | 2007-04-19 | Toshiba Corp | Emi filter |
JP2008271187A (en) * | 2007-04-20 | 2008-11-06 | Kyocera Corp | Branch circuit |
JP2009105555A (en) * | 2007-10-22 | 2009-05-14 | Toshiba Corp | Emi filter and electronic device |
JP2009124410A (en) * | 2007-11-14 | 2009-06-04 | Toshiba Corp | Emi filter, and electronic apparatus |
JP2009266908A (en) * | 2008-04-23 | 2009-11-12 | Sony Corp | Method for manufacturing semiconductor device and semiconductor device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014154870A (en) * | 2013-02-14 | 2014-08-25 | Rohm Co Ltd | Lsi esd protection circuit and semiconductor device |
WO2015151786A1 (en) * | 2014-04-03 | 2015-10-08 | 株式会社村田製作所 | Variable capacitance device and production method therefor |
US9704847B2 (en) | 2014-04-03 | 2017-07-11 | Murata Manufacturing Co., Ltd. | Variable capacitance device |
US9991251B2 (en) | 2014-04-03 | 2018-06-05 | Murata Manufacturing Co., Ltd. | Semiconductor device |
CN105470241A (en) * | 2014-09-30 | 2016-04-06 | 亚德诺半导体集团 | Input/output termination for ripple prevention |
EP3002787A1 (en) * | 2014-09-30 | 2016-04-06 | Analog Devices Global | Input/output termination for ripple prevention |
CN105470241B (en) * | 2014-09-30 | 2018-07-10 | 亚德诺半导体集团 | For preventing the input/output terminal of ripple |
CN106601733A (en) * | 2016-12-30 | 2017-04-26 | 杭州迦美信芯通讯技术有限公司 | Circuit and packaging structure having electro-static discharge protecting function between radio frequency ground and analog ground |
WO2022220130A1 (en) * | 2021-04-13 | 2022-10-20 | 株式会社村田製作所 | Transient voltage absorbing element and transient voltage absorbing circuit |
CN117713024A (en) * | 2024-02-06 | 2024-03-15 | 深圳飞骧科技股份有限公司 | Protective circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201138052A (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011021411A1 (en) | Esd protection device | |
JP6222410B1 (en) | ESD protection circuit, differential transmission line, common mode filter circuit, ESD protection device and composite device | |
US9607976B2 (en) | Electrostatic discharge protection device | |
US10886730B2 (en) | Filter having an ESD protection device | |
US20060077646A1 (en) | Combined varistor and LC filter device | |
US7378900B2 (en) | EMI filter | |
TWI499027B (en) | Filter configured for esd protection and method of forming the filter | |
US20120314328A1 (en) | Esd protection device | |
WO2009128954A1 (en) | Applying trenched transient voltage suppressors (tvs) technology for distributed low pass filters | |
JP5843045B2 (en) | Semiconductor device | |
JP4715371B2 (en) | Surge absorbing element and surge absorbing circuit | |
US10770451B2 (en) | Thin-film ESD protection device | |
JP2021193799A (en) | Chip filter | |
US7606018B2 (en) | Surge absorbing circuit | |
TWI770378B (en) | Semiconductor devices and methods of making the same | |
KR101197393B1 (en) | Laminated chip device | |
WO2011037101A1 (en) | Electronic circuit device | |
WO2016181710A1 (en) | Thin film device | |
KR100771781B1 (en) | Resistor embeded-type emi filter | |
US10586774B2 (en) | Structure comprising an inductor and resistor | |
KR100786416B1 (en) | Laminated chip device | |
WO2023021994A1 (en) | Transient voltage absorbing element | |
KR100733816B1 (en) | Laminated chip device | |
KR100635156B1 (en) | a Array Varistor-Noise Filter Integrated Device | |
JP2008283594A (en) | Emi filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10809757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10809757 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |