[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011013668A1 - Pharmaceutical composition for treatment of ischemic events - Google Patents

Pharmaceutical composition for treatment of ischemic events Download PDF

Info

Publication number
WO2011013668A1
WO2011013668A1 PCT/JP2010/062631 JP2010062631W WO2011013668A1 WO 2011013668 A1 WO2011013668 A1 WO 2011013668A1 JP 2010062631 W JP2010062631 W JP 2010062631W WO 2011013668 A1 WO2011013668 A1 WO 2011013668A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegf
inhibitor
receptor
antibody
composition according
Prior art date
Application number
PCT/JP2010/062631
Other languages
French (fr)
Japanese (ja)
Inventor
享良 下畑
カーヴァー ローレンス
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010124374A external-priority patent/JP5823671B2/en
Priority claimed from JP2010124382A external-priority patent/JP5823672B2/en
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Publication of WO2011013668A1 publication Critical patent/WO2011013668A1/en
Priority to US13/359,281 priority Critical patent/US8652476B2/en
Priority to US14/151,507 priority patent/US9439961B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • A61K38/166Streptokinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1858Platelet-derived growth factor [PDGF]
    • A61K38/1866Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/49Urokinase; Tissue plasminogen activator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention relates to a pharmaceutical composition for the treatment of ischemic events, specifically comprising a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the receptor for vascular endothelial growth factor (VEGF),
  • VEGF vascular endothelial growth factor
  • the present invention relates to a pharmaceutical composition for the treatment of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • Serious ischemic events result from local blood flow blockage or ischemia.
  • cerebral infarction the central part of ischemia in the acute phase is irreversible and cell death occurs even when blood flow is resumed, but there is a reversible incomplete ischemic region around it, especially called penumbra .
  • the central part of the ischemia expands unless treated, and the penumbra gradually disappears.
  • the cerebral infarction portion is pathologically enlarged, clinically dysfunctional, and in the worst case, death occurs.
  • the purpose of treatment in the acute phase of cerebral infarction is to restore blood flow in the penumbra. The recovery depends on the degree of ischemia and its duration. That is, how quickly the blood flow to the penumbra is resumed determines the early recovery of cerebral infarction.
  • Tissue-type plasminogen activator (hereinafter sometimes referred to as “t-PA”) is effective as a thrombolytic therapy that reopens the blood supply to the penumbra by dissolving the thrombus causing ischemia. So it is approved as a treatment for the acute phase of ischemic events.
  • administration of t-PA to patients after the acute phase of an ischemic event is not effective.
  • cerebral infarction results in cerebral hemorrhage complications and prognostic exacerbations.
  • the administration of t-PA to patients after a period of time, ie, 3 hours or more after the onset of cerebral infarction is contraindicated.
  • the present invention relates to a therapeutic pharmaceutical composition that can be administered to patients after acute passing of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications such as cerebral hemorrhage.
  • the purpose is to provide.
  • VEGF vascular endothelial growth factor
  • cerebral hemorrhage can be achieved by using the thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the VEGF receptor, for example, an antibody against at least one of VEGF and VEGF receptor and other binding factors. It was found that the thrombolytic drug can be administered to patients who have caused severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications of the present invention. .
  • a therapeutic pharmaceutical composition or a treatment method using the composition as one embodiment is provided for the treatment of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • the composition comprises a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by at least one receptor for vascular endothelial growth factor (VEGF).
  • VEGF vascular endothelial growth factor
  • the inhibitor inhibits signal transduction mediated by the VEGF receptor, for example, by inhibiting the binding of VEGF to the receptor for vascular endothelial growth factor (VEGF).
  • composition or method according to ⁇ 1> wherein the inhibitor decreases binding of VEGF to the VEGF receptor.
  • the inhibitor is a specific binding partner for at least one of VEGF and a VEGF receptor.
  • the specific binding partner is at least one of the following (1) to (4).
  • VEGF peptide or small molecule mimic of VEGF peptide that binds to VEGF receptor but does not activate VEGF receptor (4) is used for stimulation of VEGF receptor VEGF receptor peptides or small molecule mimics of VEGF receptor peptides that reduce the effective level of VEGF.
  • ⁇ 5> At least one of an antibody that binds to a VEGF receptor and antagonizes the binding of VEGF to the VEGF receptor, and an antibody that binds to the VEGF and causes the removal of the VEGF from the blood.
  • the composition or method according to ⁇ 4> wherein ⁇ 6>
  • the composition or method according to ⁇ 1> wherein the inhibitor inhibits the release of VEGF from platelets.
  • the inhibitor reduces binding of ADP to adenosine diphosphate (ADP) receptor.
  • ADP adenosine diphosphate
  • the inhibitor is a specific binding partner for at least one of ADP and ADP receptor.
  • composition or method according to ⁇ 8> wherein the specific binding partner is at least one of the following (1) to (4).
  • the inhibitor is at least an inhibitor that interacts with a component of the VEGF receptor signaling pathway, and an inhibitor that interacts with an enzyme that modifies a component of the VEGF receptor signaling pathway
  • the composition or method according to ⁇ 1> which is any one of the above.
  • composition or method according to ⁇ 10> wherein the inhibitor is a tyrosine kinase inhibitor and an agonist of tyrosine phosphatase.
  • the inhibitor is the composition or method according to ⁇ 1>, wherein the inhibitor decreases production of at least one of VEGF and a VEGF receptor.
  • the inhibitor is at least one of an antisense nucleic acid, a small interfering RNA (siRNA), and a ribozyme.
  • siRNA small interfering RNA
  • ribozyme ⁇ 14>
  • the composition or method according to ⁇ 1> wherein the inhibitor is combined with a thrombolytic drug.
  • ⁇ 15> The composition or method according to ⁇ 14>, wherein the inhibitor binds to the thrombolytic drug as a fusion protein.
  • the thrombolytic drug is at least one of urokinase, streptokinase, tissue-type plasminogen activator (t-PA), and analogs thereof.
  • t-PA tissue-type plasminogen activator
  • VEGF receptor is VEGF receptor type 2 (VEGFR-2).
  • an acute phase of an ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • the acute phase of the ischemic event is 3 to 6 hours from the onset of the ischemic event.
  • composition or method according to ⁇ 18>, wherein the acute phase of cerebral infarction is within 3 hours from the onset of the cerebral infarction.
  • ⁇ 21> A polyclonal antibody or a monoclonal antibody, wherein the specific binding partner specifically binds to at least one of VEGF and the VEGF receptor, and inhibits the signal transduction of the VEGF, and an antigen of the antibody
  • the specific binding partner binds to at least one of VEGF-A and VEGF-A receptor, and inhibits a signal transduction pathway mediated by VEGF-A receptor ⁇ 3 > To ⁇ 5>.
  • the specific binding partner is the composition or method according to the above ⁇ 22>, wherein the specific binding partner is an anti-VEGF-A neutralizing antibody or a derivative thereof.
  • a polyclonal antibody or a monoclonal antibody, wherein the specific binding partner specifically binds to at least one of ADP and the ADP receptor and inhibits the signal transduction of the ADP, and an antigen of the antibody The composition or method according to any one of ⁇ 7> to ⁇ 9>, wherein the composition or method is selected from the group consisting of a binding fragment, a recombinant antibody or chimeric antibody containing the antigen-binding fragment, and derivatives thereof.
  • the present invention it is possible to solve the above-described problems and achieve the above-mentioned object, and to prevent serious complications including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications such as cerebral hemorrhage. It is possible to provide a therapeutic pharmaceutical composition that can be administered to a patient after an acute phase of a bloody event.
  • FIG. 1A is a schematic diagram showing a procedure for producing a conventional rat cerebral infarction model.
  • FIG. 1B is a schematic diagram showing a procedure for producing a rat cerebral infarction model in Example 1.
  • FIG. 2A is a photograph of a coronal section of an animal 24 hours after the onset of cerebral infarction due to thrombus injection.
  • FIG. 2B is a photograph of a coronal section of an animal to which t-PA was administered 1 hour after the onset of cerebral infarction due to thrombus injection.
  • FIG. 2C is a photograph of a coronal section of an animal administered with t-PA 4 hours after the onset of cerebral infarction due to thrombus injection.
  • FIG. 1A is a schematic diagram showing a procedure for producing a conventional rat cerebral infarction model.
  • FIG. 1B is a schematic diagram showing a procedure for producing a rat cerebral infarction model in Example 1.
  • FIG. 2A is a photograph of a cor
  • FIG. 4A is a bar graph showing the volume of cerebral infarction of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis volume of cerebral infarction (mm 3).
  • FIG. 4B is a bar graph showing the volume of edema of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • FIG. 4C is a bar graph showing the amount of cerebral hemorrhage of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis cerebral hemorrhage (mg / dL).
  • FIG. 4D is a band graph showing the motor function scale 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis Motor function scale.
  • FIG. 5A is a bar graph showing the volume of cerebral infarction in a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis cerebral infarction volume (mm 3 ).
  • FIG. 5B is a bar graph showing the volume of edema of TTC-stained coronal sections 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis volume of edema (mm 3 ).
  • FIG. 5C is a bar graph showing the amount of cerebral hemorrhage of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis cerebral hemorrhage (mg / dL).
  • FIG. 5D is a band graph showing a motor function scale 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Vertical axis Motor function scale.
  • the therapeutic pharmaceutical composition of the present invention comprises at least a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by a receptor for vascular endothelial growth factor (VEGF), and if necessary, other Contains the ingredients.
  • VEGF vascular endothelial growth factor
  • thrombolytic agents include serious ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism (“severe ischemic events”, “ischemic disease”, “ischemia”, “ischemic attack”, etc. Can be appropriately selected according to the purpose, for example, tissue type plasminogen activator (t-PA) or Derivatives thereof, urokinase (see Murray V. et al., J Inter Med. 2010, Feb; 267 (2): 191-208), streptokinase, single-chain urokinase-type plasminogen activator (u-PA), desmoteplase And other proteases that act on fibrin.
  • tissue type plasminogen activator t-PA
  • urokinase see Murray V. et al., J Inter Med. 2010, Feb; 267 (2): 191-208
  • streptokinase single-chain urokinase-type plasminogen activator (u-PA)
  • u-PA
  • the thrombolytic drug preferably contains urokinase, tissue-type plasminogen activator (t-PA), and derivatives or analogs thereof from the viewpoint of increasing the success rate of thrombolysis.
  • t-PA tissue-type plasminogen activator
  • the t-PA derivative is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the t-PA includes sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable products. And the like which are combined with additives and treatment agents.
  • one or several amino acids may be substituted in the amino acid sequence of t-PA.
  • Specific examples of the t-PA derivative include a t-PA derivative in which a part of amino acids are substituted in the amino acid sequence of the t-PA such as monteplase, pamitepase, and reteplase; and the t-PA such as tenecteplase and lanoteplase.
  • a t-PA derivative in which a part of the amino acid is substituted and the sugar chain is further modified.
  • the content of the serum dissolving drug in the therapeutic pharmaceutical composition is not particularly limited and can be appropriately selected depending on the type of the serum dissolving drug.
  • the “acute phase” in the present invention is an early stage of development of a serious ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • cerebral infarction cranial nerve function associated with a decrease in cerebral blood flow
  • the disorder refers to a time when recovery is possible only by rapid resumption of blood flow by the thrombolytic drug.
  • the acute phase generally refers to 3 to 6 hours from the onset of infarction, but in cerebral infarction, it is preferably within 3 hours from the onset.
  • Patient in the present invention includes humans but is not limited to humans.
  • VEGF vascular endothelial growth factor
  • the inhibitor that inhibits signal transduction mediated by the VEGF receptor is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Inhibitors that reduce the binding of VEGF to VEGF receptors, inhibitors that inhibit the release of VEGF from platelets, inhibitors that interact with components of the VEGF receptor signaling pathway, components of the VEGF receptor signaling pathway An inhibitor that interacts with an enzyme that modifies VEGF, an inhibitor that reduces the production of at least one of VEGF and VEGF receptors, and the like.
  • the inhibitor that decreases the binding of VEGF to the VEGF receptor is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a specific binding partner for example, a specific binding partner for VEGF and / or VEGF receptor ( And the like, which are sometimes referred to as “binding inhibitors” that inhibit the binding between VEGF and the VEGF receptor.
  • the specific binding partner is not particularly limited as long as it can inhibit the binding between the VEGF and the VEGF receptor, and can be appropriately selected according to the purpose. It is preferably one that specifically binds to at least one of the VEGF receptors. Thereby, the signal transduction mediated by the VEGF receptor can be inhibited.
  • the specific binding partner include a receptor or a ligand that specifically binds to at least one of the VEGF and the VEGF receptor.
  • the receptor or ligand is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include proteins such as antibodies, carbohydrates, nucleic acids, lipids, and other biopolymers.
  • Antibody in the present invention refers to an antibody that is generally defined, and includes a Fab fragment, a single chain Fv structure, a bispecific antibody in which two different Fab fragments are bound to one Fc, and a similar structure.
  • Fab fragment fragment fragment
  • bispecific antibody in which two different Fab fragments are bound to one Fc
  • similar structure See Bauerle PA. Et al., Cancer Res. 2009, Jun 15; 69 (12): 4941-4.
  • the antibody is human in sequence (transgenic animals expressing the human antibody repertoire (Jakobovits A. et al., Nat Biotechnol. 2007, Oct; 25 (10): 1134-43) or a human antibody gene recombination library (Benhar I.
  • Mimics of antibodies can also be used and include, for example, protein families based on fibronectin, transferrin, glutathione transferase, lens etc. (Wurch T. et al., Curr Pharm Biotechnol. 2008). Dec; 9 (6): 502-9).
  • Other mimetics include non-peptide binding factors such as aptamers consisting of nucleic acids (see Guo KT. Et al., Int J Mol Sci. 2008, Apr; 9 (4): 668-78). Similarly, small molecule peptides (see Holtzman JH. Et al., Biochemistry. 2007, Nov 27; 46 (47): 13541-53), peptide mimetics (eg, beta amino acids (Petersson EJ.
  • antibody mimic refers to all binding agents having the same function as the antibody.
  • an antibody mimic can be used instead of an antibody.
  • the inventors focused on antibodies in the embodiments as excellent examples of such binding factors, but the present invention is not limited thereto.
  • the VEGF is a group of glycoproteins involved in angiogenesis and angiogenesis.
  • the VEGF signaling system is activated.
  • severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism
  • the activation of the VEGF signal transduction system promotes the degradation of proteins that make up the vascular wall.
  • cerebral infarction It was confirmed in the present invention that a complication of cerebral hemorrhage occurs.
  • VEGF-A examples include VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PIGF) -1, and PIGF-2.
  • PIGF placental growth factor
  • Each member of the VEGF family has several additional subtypes.
  • human VEGF-A has 121 amino acids (VEGF-A 121 ), 165 amino acids (VEGF-A 165 ), 189 (VEGF-A 189 ), 206 (VEGF-A 206 ), 145 (VEGF-A 145 ), 183 (VEGF-A 183 ) and the like are known.
  • human VEGF-B is known to have 167 amino acids (VEGF-B 167 ), 186 amino acids (VEGF-B 186 ), and the like.
  • the specific binding partner that specifically binds to VEGF may bind to any of the VEGF families.
  • the specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the purpose.
  • a polyclonal antibody or a monoclonal antibody that recognizes VEGF, an antigen-binding fragment of the antibody A chimeric antibody or a recombinant antibody (hereinafter sometimes referred to as “anti-VEGF antibody” or the like) containing the antigen-binding fragment, or a derivative thereof, a part of a recombinant VEGF receptor (Chu QS. Expert) Opin Biol Ther. 2009, Feb; 9 (2): 263-71), a VEGF variant that competitively binds to VEGF receptor for VEGF but does not activate the VEGF receptor (Sieffle G.
  • the specific binding partner that specifically binds to VEGF is preferably a monoclonal antibody, and the anti-VEGF-A neutralizing antibody is a VEGF receptor of VEGF-A that is involved in vascular disruption during angiogenesis. It is more preferable in that the binding to can be efficiently inhibited.
  • the method for producing a specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a gene recombination method and a synthesis method. Moreover, you may use a commercial item.
  • the specific binding partner that specifically binds to VEGF may be at least one of the anti-VEGF antibody and the like and derivatives thereof, such as polyethylene glycol, other pharmaceutically acceptable additives, Other components such as a treatment agent may be combined or added.
  • the content of other components in the specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the purpose.
  • the polyclonal antibody is injected into any animal host of mammals (eg, mouse, rat, rabbit, sheep or goat) or birds (eg, chicken) using the VEGF or a fragment thereof as an immunogen.
  • mammals eg, mouse, rat, rabbit, sheep or goat
  • birds eg, chicken
  • an excellent immune response may be induced when linked to a carrier protein such as bovine serum albumin or keyhole limpet hemocyanine.
  • the immunogen is preferably injected into the animal host according to a predetermined schedule incorporating one or more booster immunizations.
  • the immunogen may be injected into the animal host in a mixture with complete or incomplete Freund's adjuvant or other immunopotentiators.
  • the polyclonal antibody is purified from the antiserum by, for example, affinity chromatography using VEGF bound to an appropriate solid support or a fragment thereof, and binding between VEGF and the VEGF receptor is inhibited, In some cases, it has been confirmed that inhibition of binding can inhibit VEGF signaling.
  • the polyclonal antibody include rabbit anti-rat VEGF antibody IgG (RB-222, 19 kDa to 22 kDa) prepared using human recombinant VEGF 165 as an immunogen. The RB-222 can recognize VEGF165 and VEGF121.
  • the monoclonal antibodies may be prepared using the technique of Kohler and Milstein (Eur. J. Immunol. 6: 511-519 (1976)) and improved techniques thereof. These methods involve the preparation of immortal cell lines that can produce antibodies with the desired specificity.
  • the immortal cell line may be prepared from spleen cells derived from an animal host immunized by the same method as the method for producing the polyclonal antibody.
  • the spleen cells are immortalized by various methods to prepare an immortalized cell line capable of producing an antibody.
  • the spleen cells are immortalized by, for example, fusion with myeloma cells derived from the same or different species of the immunized animal. Various fusion techniques known to those skilled in the art may be used.
  • the spleen cells and myeloma cells are mixed with a nonionic surfactant for several minutes and then plated at a low concentration in a selective medium that supports the growth of hybrid cells but does not support the growth of myeloma cells.
  • a preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. Hybrid colonies are usually observed after a sufficient time of about 1 to 2 weeks. A single colony is selected, and the single colony is cultured in a medium such as HAT (hypoxanthine, aminopterin, thymidine-added medium), and the culture supernatant is tested for binding activity to the VEGF and these fragments.
  • HAT hypoxanthine, aminopterin, thymidine
  • a hybridoma clone that stably produces a large amount of highly reactive and specific antibody is selected.
  • Monoclonal antibodies may be isolated from the supernatants of colonies of cell lines derived from selected growing hybridoma clones.
  • various techniques may be used to improve yield, such as injecting the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host such as a mouse.
  • the monoclonal antibody may be recovered from the hybridoma cell ascites or blood. Contaminants such as impure proteins from cell debris may be removed from the antibody by conventional techniques such as chromatography, gel filtration, precipitation and extraction.
  • the monoclonal antibody is, for example, bevacizumab obtained by genetically recombining the mouse monoclonal antibody against VEGF, or a Fab fragment of bevacizumab, and genetic modification is performed so that the binding to VEGF is further strengthened.
  • anti-VEGF-A neutralizing antibody of a monoclonal antibody preparation such as Ranibizumab.
  • the monoclonal antibody preparation has already been clinically applied to malignant tumors and has been confirmed to be safe for humans.
  • the antigen-binding fragment of the antibody refers to the part of the antibody that participates in antigen binding.
  • the antigen binding site is formed by amino acid residues in the variable (V) region at the N-terminus of the heavy (H) chain and light (L) chain.
  • the antigen-binding fragment of the antibody includes, in addition to the Fab fragment or F (ab ′) 2 fragment obtained by degrading an intact polyclonal antibody or monoclonal antibody with the proteolytic enzyme papain or pepsin, respectively, Includes Fv fragments containing non-covalent VH and VL region heterodimers containing antigen binding sites that retain much of the binding capacity.
  • the recombinant antibody may be prepared by expression cloning of an antibody gene including transformation into a suitable bacterial host, transfection into a suitable mammalian cell host, and the like.
  • the recombinant antibody can be prepared in large quantities using, for example, gene expression systems derived from prokaryotes and eukaryotes.
  • the chimeric antibody is a fusion protein supported by a constant domain of a homologous or heterologous antibody so that the antigen-binding site of the recombinant antibody can specifically bind to VEGF.
  • the chimeric antibody includes a short chain variable region antibody (scFv) comprising an antibody heavy chain variable region (VH) operably linked to an antibody light chain variable region (VL), camelidae (Camelidae, camel, dromedary, A camel heavy chain antibody (HCAb) or its heavy chain variable region domain (VHH), which is a class of IgG without light chain produced by animals (including llamas).
  • the derivative of the anti-VEGF antibody or the like having binding inhibitory activity between the VEGF and the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose.
  • the anti-VEGF antibody or Examples include chains, oligonucleotides, polynucleotides, polyethylene glycols, and other pharmaceutically acceptable additives and treatment agents bound thereto.
  • RNA aptamer pegaptanib that binds to the exon 7 portion of the VEGF gene and inhibits the production of VEGF.
  • sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable additives and treatment agents may be added to the anti-VEGF antibody and the like.
  • These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose.
  • the VEGF receptor is a kind of receptor tyrosine kinase, and is involved in expression of actions such as promotion of proliferation and migration of vascular endothelial cells by the ligand VEGF.
  • the VEGF receptor includes VEGFR-1 (sometimes referred to as Flt-1), VEGFR-2 (sometimes referred to as KDR and Flk-1), and VEGFR-3 (sometimes referred to as Flt-4). ), Soluble VEGFR-1, soluble VEGFR-2, soluble VEGFR-3, and the like are known.
  • the VEGF family binds to a specific receptor, VEGF-A binds to VEGFR-1 and VEGFR-2, VEGF-B, PlGF-1, and PlGF-2 bind to VEGFR1, VEGF-C and VEGF-D Binds to VEGFR-2 and VEGFR-3, and VEGF-E binds to VEGFR2.
  • the specific binding partner that specifically binds to the VEGF receptor may bind to any of the VEGF receptors.
  • the specific binding partner that specifically binds to the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose.
  • the VEGF analog, the VEGF antagonist, and the VEGF receptor A polyclonal or monoclonal antibody that recognizes, an aptamer, an antibody that antagonizes the binding of VEGF to the VEGF receptor, an antibody that binds to the VEGF and causes the removal of the VEGF from the blood, an antigen-binding fragment of these antibodies, A chimeric antibody or a recombinant antibody comprising the antigen-binding fragment (hereinafter sometimes referred to as “anti-VEGFR antibody etc.”), derivatives thereof, VEGF receptor that binds to VEGF receptor but does not activate VEGF receptor, Small molecule mimics of peptides or VEGF peptides Reducing the effective level of VEGF to be used for stimulation of VEGF receptor, VEGF receptor peptide or VEGF receptor small molecule mimetic peptide
  • the specific binding partner that specifically binds to the VEGF receptor is preferably a monoclonal antibody, more preferably an anti-VEGFR-1 neutralizing antibody or an anti-VEGFR-2 antibody.
  • the “small molecule mimic of VEGF peptide” means a molecule that is smaller than a peptide consisting of the complete form of VEGF and that has the same function as the VEGF peptide.
  • the “small mimic of VEGF receptor peptide” means a molecule that is smaller than a peptide consisting of the complete form of VEGF receptor and that has the same function as the VEGF receptor peptide.
  • the specific binding partner that specifically binds to the VEGF receptor may be at least one of the anti-VEGFR antibody and the like, or a derivative thereof, such as polyethylene glycol and other pharmaceutically acceptable additions. Other components such as agents and treatment agents may be combined or added.
  • the content of other components in the specific binding partner that specifically binds to the VEGF receptor is not particularly limited and can be appropriately selected depending on the purpose.
  • polyclonal antibody, monoclonal antibody, antigen-binding fragment can be produced in the same manner as the polyclonal antibody, monoclonal antibody, and antigen-binding fragment that recognize VEGF using the VEGF receptor or these fragments as an immunogen. it can.
  • the recombinant antibody can be produced in the same manner as the recombinant antibody recognizing VEGF.
  • the chimeric antibody recognizes the VEGF except that it is a fusion protein supported by the constant domain of the same or different antibody so that the antigen binding site of the recombinant antibody can specifically bind to the VEGF receptor. Examples thereof include antibodies similar to the chimeric antibody.
  • the derivative of the anti-VEGFR antibody or the like having binding inhibitory activity between the VEGF and the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose.
  • the anti-VEGF antibody or the like Examples include chains, oligonucleotides, polynucleotides, polyethylene glycols, and other pharmaceutically acceptable additives and treatment agents bound thereto.
  • sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable additives and treatment agents may be added to the anti-VEGF antibody and the like.
  • examples of the additive, treating agent, sugar chain, oligonucleotide, polynucleotide, polyethylene glycol, and the like are the same as those of the anti-VEGF antibody.
  • These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose.
  • the inhibitor that inhibits the release of VEGF from the platelet is not particularly limited and may be appropriately selected depending on the purpose.
  • an adenosine diphosphate (ADP) receptor Bambace NM
  • the inhibitor for reducing the binding of ADP to the ADP receptor is not particularly limited and may be appropriately selected depending on the purpose.
  • a specific binding partner for at least one of ADP and ADP receptor ( And the like, which are sometimes referred to as “binding inhibitors” that inhibit the binding between ADP and the ADP receptor).
  • the specific binding partner is not particularly limited as long as it specifically binds to at least one of the ADP and the ADP receptor and can inhibit the binding between the ADP and the ADP receptor.
  • ADP receptor competitive inhibitor, polyclonal or monoclonal antibody that recognizes ADP or ADP receptor, aptamer binds to ADP receptor but does not activate ADP receptor ADP peptide or ADP peptide small molecule mimic, ADP binding, ADP-binding ADP receptor peptide or ADP receptor peptide small molecule mimic, and the like.
  • the “small molecule mimic of ADP peptide” means a molecule that is smaller than a peptide consisting of the complete form of ADP and that has the same function as the ADP peptide.
  • the “small molecule mimic of the ADP receptor peptide” means a molecule that is smaller than a peptide consisting of the complete form of the ADP receptor and that has the same function as the ADP receptor peptide.
  • Inhibitor that interacts with components of VEGF receptor signaling pathway Inhibitor that interacts with enzymes that modify components of VEGF receptor signaling pathway >> At least one of an inhibitor that interacts with a component of the VEGF receptor signaling pathway and an inhibitor that interacts with an enzyme that modifies a component of the VEGF receptor signaling pathway (hereinafter referred to as “VEGF receptor signaling inhibition”). May be referred to as “agents.”) As bleeding caused by administering t-PA to patients after acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism Any VEGF receptor-mediated signal transduction inhibitor may be used provided that it can be inhibited.
  • the component of the VEGF receptor signal transduction pathway is not particularly limited and can be appropriately selected according to the purpose.
  • PLC ⁇ phospholipase
  • PLC protein kinase C
  • Raf map kinase kinase
  • MEK map kinase kinase
  • ERK Extracellular signal-regulated kinase
  • PI3K PI3 kinase
  • PDK1 pyruvate dehydrogenase kinase
  • Akt Akt and the like.
  • the enzyme that modifies the components of the VEGF receptor signaling pathway is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the VEGF receptor signaling inhibitor is capable of functioning other biomolecules, such as receptor kinases, provided that the side effects are in an acceptable range for treatment of patients who have caused ischemic events. Examples include those that inhibit other enzyme activities.
  • VEGF receptor signaling inhibitor examples include SU1498 ((E) -3- (3,5-Diisopropyl-4-hydroxyphenyl) -2-((3-phenyl-n-propyl) amino- carbonyl) acrylonitrile), SU5614 (5-Chloro-3-((3,5-dimethylpyrrol-2-yl) methylene) -2-indolinone), SU11248 (N- (2- (diethylamino) ethyl) -5-(( Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine) methyl) -2,4-dimethyl-1H-pyrrole-3-carbamide), A D2171 (4-((4-Fluoro-2-methyl-1H-indol-5-yl) oxy) -6-methyl-7- (3- (pyrrolidin-1-yl) propoxy) quinazoline), PTK
  • An agonist of tyrosine phosphatase can also reduce signal transduction via VEGF receptor tyrosine kinase (see Xu D. et al., Front Biosci. 2008, May 1; 13: 4925-32). These may be used alone or in combination of two or more.
  • the VEGF receptor signaling inhibitors include SU1498, SU5416, SU11248, AZD2171, PTK787 / ZK222584, sorafenib, GW78660B, and other VEGFR-2 kinase inhibitor preparations that are involved in angiogenesis. This is preferable in that it does not affect VEGFR-1-positive cells known to do.
  • VEGFR-2 kinase inhibitor preparation include cediranib (AZD2171), sunitinib (SU11248), varatinib (PTK787 / ZK222584), sorafenib (pazobib), pazobib Is mentioned.
  • ⁇ Inhibitor that reduces production of at least one of VEGF and VEGF receptor >> There is no restriction
  • siRNA small molecule interference RNA
  • the therapeutic pharmaceutical composition may use the thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the VEGF receptor, It may be a single factor having both a thrombolytic effect and an inhibitory effect on signal transduction mediated by the VEGF receptor.
  • Such factors include, for example, the Fab as the thrombolytic drug (Siller-Matula JM et al., Br J Pharmacol, 2010 Feb 1; 159 (3), 502-17, Epub 2009 Dec 24), Bispecific antibodies (fusion proteins) with Fab as an inhibitor can be made. According to this bispecific antibody, Fab as the thrombolytic agent acts on von Willebrand factor (vWF), and Fab as the inhibitor acts on VEGF or VEGF receptor.
  • vWF von Willebrand factor
  • the thrombolytic drug and the inhibitor may be a directly bound fusion protein (Baeuler PA et al., Curr Opin Mol There, 2009, Feb; 11 (1): 22-30).
  • the von Willebrand factor is a high-molecular glycoprotein that is produced in vascular endothelial cells and bone marrow megakaryocytes and is present in plasma, intravascular subcutaneous tissue and platelets.
  • the content of the inhibitor in the therapeutic pharmaceutical composition is not particularly limited and may be appropriately selected depending on the type of the inhibitor.
  • ⁇ Other ingredients> there is no restriction
  • excipients such as lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid; water, ethanol, propanol , Simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphate, polyvinylpyrrolidone, etc .; dry starch, sodium alginate, agar powder, hydrogen carbonate Disintegrating agents such as sodium, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, lactose; lubricants such as purified talc,
  • a flavoring / flavoring agent such as sucrose, orange peel, citric acid or tartaric acid
  • a buffering agent such as sodium citrate
  • a stable agent such as tragacanth, gum arabic and gelatin And the like.
  • pH adjusting agents and buffers such as sodium citrate, sodium acetate, and sodium phosphate; sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid, etc.
  • the therapeutic pharmaceutical composition may contain a sugar chain, an oligonucleotide, a polynucleotide, and the like. These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose. There is no restriction
  • the administration timing of the therapeutic pharmaceutical composition is not particularly limited and may be appropriately selected according to the purpose. However, after the onset of a serious ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism 3 hours or more are preferable, and 3 to 6 hours are more preferable.
  • the therapeutic pharmaceutical composition is advantageous in that it can be administered to patients after an acute phase of an ischemic event, and further, it can improve complications such as cerebral hemorrhage and prognostic exacerbation due to administration of the thrombolytic drug. is there.
  • the administration method of the therapeutic pharmaceutical composition is not particularly limited and can be appropriately selected according to the type and content of the thrombolytic drug or the inhibitor in the therapeutic pharmaceutical composition, for example, Oral administration method, injection method, inhalation method and the like.
  • the dose of the therapeutic pharmaceutical composition is not particularly limited, and various factors such as the age, weight, constitution, symptom of the administration subject and the presence or absence of administration of a drug containing other ingredients as active ingredients are considered. Can be selected as appropriate.
  • the animal species to be administered is not particularly limited and can be appropriately selected according to the purpose. For example, human, monkey, pig, cow, sheep, goat, dog, cat, mouse, rat, bird, etc. Among these, it is preferably used for humans.
  • the thrombolytic agent and the inhibitor in the therapeutic pharmaceutical composition may be administered in combination at the same time or may be administered separately. Further, the same composition may be used, the inhibitor may be administered prior to administration of the thrombolytic agent, or the thrombolytic agent may be administered within 30 minutes after administration of the inhibitor. Good.
  • the thrombolytic agent is t-PA
  • plasmin activated by the t-PA is involved in the processing of the VEGF, so that the inhibitor is administered in the brain prior to the administration of the t-PA.
  • the VEGF or the VEGF receptor binds to the inhibitor, and the site of the ischemic event such as the cerebral circulatory system is bound to the VEGF or the VEGF receptor. Therefore, the signal transduction of VEGF is more strongly inhibited. Therefore, the t-PA may be administered after the inhibitor is administered, and the t-PA may be administered within 30 minutes after the inhibitor is administered.
  • the dosage and administration method of the thrombolytic drug are not particularly limited and may be appropriately selected depending on the intended purpose. However, the dosage and administration method according to the instructions of each pharmaceutical manufacturer are preferable. For example, when the thrombolytic drug is alteplase, which is one of the t-PA preparations, the dosage and administration method are not particularly limited and can be appropriately selected according to the purpose.
  • the upper limit is a method of intravenously administering 60 mg to 90 mg per individual. Specifically, a method of intravenously injecting 10% of the total dose by bolus administration for 1 to 2 minutes and the remaining 90% by infusion administration for 1 hour can be mentioned.
  • indication are preferable.
  • the inhibitor is the anti-VEGF-A neutralizing antibody or a derivative thereof
  • a method of intravenously administering 5 mg / kg to 10 mg / kg is preferable.
  • the anti-VEGF-A neutralizing antibody is bevacizumab
  • the dosage and administration method include a method of orally administering 10 mg to 45 mg per individual per day.
  • the dosage and administration method include a method of orally administering 25 mg to 75 mg per individual once a day.
  • the dosage and administration method thereof are not particularly limited and can be appropriately selected according to the purpose.
  • 400 mg to 800 mg per individual Examples include a method of oral administration once a day.
  • the dosage and administration method thereof are not particularly limited and can be appropriately selected depending on the purpose.
  • 500 mg to 1,500 mg per individual is used.
  • a method of oral administration once a day for example, when the inhibitor is pazopanib, the dosage and administration method thereof are not particularly limited and can be appropriately selected according to the purpose.
  • 400 mg to 1,200 mg per individual is used.
  • a method of oral administration once a day is 400 mg to 1,200 mg per individual is used.
  • the dosage and administration method of the therapeutic pharmaceutical composition are not particularly limited, depending on the purpose. It can select suitably, According to the kind of said thrombolytic agent and the said inhibitor in the said composition, content, etc., it can select suitably.
  • the therapeutic pharmaceutical composition can also be administered to patients after an acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism, and can improve complications such as cerebral hemorrhage and prognostic deterioration Therefore, it can be suitably used for treating severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • an inhibitor that inhibits signal transduction mediated by the VEGF receptor at the same time as the step of administering a thrombolytic agent and the step of administering the thrombolytic agent or in advance. It is preferable to use a treatment method including the step of administering.
  • a kit containing the thrombolytic drug and the inhibitor is also included in the present invention.
  • the inhibitor in the kit may be an inhibitor that inhibits signal transduction caused by the binding of VEGF to the VEGF receptor, or an antibody that inhibits the binding between VEGF and the VEGF receptor, Other binding factors may be used.
  • Example 1 Preparation of rat cerebral infarction model
  • Example 2 Preparation of rat cerebral infarction model
  • Sprague-Dawley rats male, 8 weeks old, obtained from Charles River, Japan
  • FIG. 1A and FIG. 1B the preparation method of the rat cerebral infarction model of this invention is demonstrated.
  • a nylon thread is applied to the bifurcation of the external carotid artery (ECA) 1 and the common carotid artery (CCA) 3, or from the external carotid artery (ECA) 1 to the origin of the middle cerebral artery (MCA) 2.
  • the middle cerebral artery was blocked by invading (FIG. 1A).
  • the thrombus was obtained by coagulating rat autologous blood and thrombin as a gel in a polyethylene tube catheter (PE-50, manufactured by Becton Dickinson) with a diameter of 0.35 mm. After being allowed to stand overnight, it was cut into a length of 1 mm. It was. The thrombus was injected from the rat external carotid artery (ECA) 1 into the rat middle cerebral artery (MCA) 2 under 1% to 1.5% by weight halothane anesthesia using the catheter.
  • ECA rat external carotid artery
  • MCA rat middle cerebral artery
  • brain surface blood flow values were measured using a laser Doppler blood flow meter (AFL21, Advance Co., Ltd., Tokyo).
  • AFL21 Advance Co., Ltd., Tokyo
  • An animal having a cerebral blood flow value of less than 50% compared to that before infusion of thrombus was used as a rat cerebral infarction model animal in the following experiment.
  • t-PA (alteplase, manufactured by Mitsubishi Tanabe Pharma Corporation), a thrombolytic drug, was intravenously injected into the femoral vein for 1 hour or 4 hours after thrombus injection (30 minutes). 10 mg / kg, 10% bolus administration and 90% infusion administration).
  • FIG. 2A to 2C are photographs of coronal sections showing the cerebral infarction reducing effect and cerebral hemorrhage-inducing effect of t-PA administration.
  • a black part shows a healthy tissue, and a white part shows a cerebral infarction part.
  • Extensive cerebral infarction was observed in the operative cerebrum after 24 hours without administration of t-PA after thrombus injection (FIG. 2A).
  • t-PA was administered 1 hour after thrombus injection, a reduction in the cerebral infarction portion was observed as compared to animals not treated with t-PA (FIG. 2B).
  • Example 2 Inhibition of VEGF expression using anti-VEGF antibody
  • 100 ⁇ g of rabbit anti-rat VEGF antibody IgG (RB-222, Lab Vision- Neomarkers (hereinafter sometimes referred to as “anti-VEGF antibody”) was administered as a bolus with t-PA.
  • 100 ⁇ g of rabbit anti-human IgG (R5G10-048, manufactured by OEM Concepts, hereinafter sometimes referred to as “control antibody”) was administered as a bolus with t-PA.
  • an anti-VEGF antibody (SC-152, manufactured by Santa Cruz Biotechnologies, dilution ratio 1: 200) is used as a primary antibody, and a peroxidase-conjugated anti-rabbit IgG antibody (dilution ratio 1:10) is used as a secondary antibody. , 000) was used.
  • the anti- ⁇ -actin antibody (SC-1616, SC-1616, (Santa Cruz Biotechnologies, dilution ratio 1: 2,000) and the secondary antibody were reacted to detect ⁇ -actin.
  • FIG. 3 is a Western blot diagram showing that VEGF expression was suppressed after co-administration of t-PA and anti-VEGF antibody.
  • Lane 1 shows a sample of an animal that did not develop cerebral infarction due to thrombus injection
  • lane 2 shows a sample of an animal that did not develop cerebral infarction due to thrombus injection and administered t-PA and a control antibody.
  • 3 shows a sample of an animal to which only a control antibody was administered 1 hour after the onset of cerebral infarction due to thrombus injection
  • lane 4 represents an animal to which t-PA and a control antibody were administered 1 hour after the onset of cerebral infarction due to thrombus injection.
  • lane 5 shows a sample of an animal administered with t-PA and an anti-VEGF antibody in combination 1 hour after the onset of cerebral infarction due to thrombus injection
  • lane 6 shows a sample of t -Shows samples of animals administered PA and control antibody
  • lane 7 is an animal administered together with t-PA and anti-VEGF antibody 4 hours after cerebral infarction due to thrombus injection It illustrates a sample.
  • VEGF vascular endothelial cell damage and subsequent cerebral blood barrier dysfunction are related to cerebral hemorrhage after t-PA administration.
  • VEGF activates MMP-9
  • activated MMP-9 is known to degrade proteins involved in the brain blood barrier, such as Zona oculusens-1 and basement membrane type IV collagen. Therefore, without being bound by theory, the mechanism of action of the combined administration of t-PA and anti-VEGF antibody is to suppress the increase in VEGF by t-PA administration after acute cerebral infarction. It may be explained by preventing cerebral hemorrhage by preventing cerebral blood barrier dysfunction such as -9 activation.
  • Example 3 Evaluation of influence of combined administration of t-PA and anti-VEGF antibody
  • the co-administration of t-PA and anti-VEGF antibody was performed as described in Example 2.
  • the effect of the combined administration of t-PA and anti-VEGF antibody 4 hours after the onset of cerebral infarction due to thrombus injection is the effect of cerebral infarct volume, edema on the TTC-stained coronal section 24 hours after the onset of cerebral infarction due to thrombus injection. Volume, cerebral hemorrhage, and motor function scales were measured and evaluated.
  • the volume of cerebral infarction and edema of the TTC-stained coronal section is described in Swanson, R. et al. A. (J. Cereb.
  • 4A to 4C are bar graphs showing cerebral infarction volume, edema volume, and cerebral hemorrhage volume, respectively, of a TTC-stained coronal section 24 hours after the onset of cerebral infarction due to thrombus injection.
  • the white bar is the group that received only control antibody 4 hours after the onset of cerebral infarction due to thrombus injection, and the black bar is the group that received t-PA and control antibody 4 hours after the onset of cerebral infarction due to thrombus injection.
  • the gray bar is a group to which t-PA and anti-VEGF antibody were administered 4 hours after the onset of cerebral infarction due to thrombus injection.
  • FIG. 4D is a band graph showing the motor function scale 24 hours after the onset of cerebral infarction due to thrombus injection.
  • the different colored parts of the band represent the number of individuals in each of the five stages.
  • the left band shows a group (number of individuals 23) administered only with control antibody 4 hours after the onset of cerebral infarction due to thrombus injection, and the middle band shows t-PA and control 4 hours after the onset of cerebral infarction due to thrombus injection.
  • the group to which the antibody was administered (20 individuals) was shown, and the right band represents the group to which t-PA and anti-VEGF antibody were administered 4 hours after the onset of cerebral infarction due to thrombus injection (12 individuals).
  • the combined administration of t-PA and anti-VEGF antibody can prolong the time until administration of t-PA in patients who have developed cerebral infarction, and is associated with cerebral hemorrhage complications. It was shown that the motor function and the survival rate can be improved while preventing the above.
  • Example 4 Combined administration of t-PA and SU14978
  • a VEGF receptor kinase inhibitor included in the VEGF receptor.
  • Specific inhibitors for the VEGF receptor include SU1498 ((E) -3- (3,5-diisopropyl-4-hydroxyphenyl) -2-((3-phenyl-n-propyl) aminocarbonyl) acrylonitrile, Calbiochem. Catalog No. 572888) manufactured by the company was used.
  • SU1498 was dissolved in 1 mL of DMSO (dimethyl sulfoxide) per kg of the patient's body weight to give 20 mg / kg, and was administered as a single bolus with t-PA 4 hours after cerebral infarction.
  • DMSO dimethyl sulfoxide
  • 5A to 5C show the volume of cerebral infarction and the volume of edema, respectively, of TTC-stained coronal sections 24 hours after the onset of rats administered with t-PA and SU1498 at 4 hours after the onset of cerebral infarction due to thrombus injection.
  • a bar graph showing the amount of cerebral hemorrhage.
  • the black bar is a group administered with t-PA and DMSO 4 hours after the onset of cerebral infarction due to thrombus injection
  • the gray bar is a group administered with t-PA and SU1498 4 hours after the onset of cerebral infarction due to thrombus injection It is.
  • FIG. 5D is a band graph showing a motor function scale 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection.
  • Different colored bands represent each of the five levels.
  • the left band shows the group administered t-PA and DMSO 4 hours after the onset of cerebral infarction due to thrombus injection
  • the right band shows the group administered t-PA and SU1498 4 hours after the onset of cerebral infarction due to thrombus injection Indicates. The number of individuals was 10 in both cases. From the comparison of the left and right bands, the group administered t-PA and SU1498 4 hours after the onset of cerebral infarction tended to improve the prognosis more than the group administered t-PA and DMSO.
  • the combined administration of t-PA and SU1498 is similar to the combined administration of t-PA and anti-VEGF antibody in the time until administration of t-PA in patients with cerebral infarction. It has been shown that the motor function and survival rate can be improved while preventing cerebral hemorrhage complications.
  • the therapeutic pharmaceutical composition can also be administered to patients after an acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism, and can improve complications such as cerebral hemorrhage and prognostic deterioration Therefore, it can be suitably used for treating severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
  • ECA External carotid artery
  • MCA Middle cerebral artery
  • CCA Common carotid artery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Disclosed is a therapeutic pharmaceutical composition comprising a thrombolytic agent and an inhibitor capable of inhibiting a signaling that is mediated by a receptor of a vascular endothelial growth factor (VEGF). The therapeutic pharmaceutical composition can be used for the treatment of severe ischemic events including cerebral infarction, cardiac infarction and pulmonary embolism.

Description

虚血性イベントの治療用医薬品組成物Pharmaceutical composition for the treatment of ischemic events
 本発明は、虚血性イベントの治療用医薬品組成物に関し、具体的には、血栓溶解薬、及び、血管内皮増殖因子(VEGF)の受容体によって仲介されるシグナル伝達を阻害する阻害剤を含み、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの治療用医薬品組成物に関する。 The present invention relates to a pharmaceutical composition for the treatment of ischemic events, specifically comprising a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the receptor for vascular endothelial growth factor (VEGF), The present invention relates to a pharmaceutical composition for the treatment of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
 脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントは、局所的な血流の遮断即ち虚血によって生じる。例えば、脳梗塞では、急性期の虚血中心部分は血流を再開しても不可逆的で細胞死に至るが、その周囲には可逆的な不完全虚血領域が存在し、特に、ペナンブラと呼ばれる。前記虚血中心部分は治療を施さない限り拡大し、ペナンブラは徐々に消失する。この結果、病理学的には脳梗塞部分が拡大され、臨床的には機能障害が生じ、最悪の場合には死に至る。脳梗塞急性期の治療目的は、前記ペナンブラでの血流を回復することである。前記回復は、虚血の程度及びその持続時間に依存する。つまり、前記ペナンブラへの血流をいかに迅速に再開させるかが脳梗塞の早期回復を決定する。 Serious ischemic events, including cerebral infarction, myocardial infarction, and pulmonary embolism, result from local blood flow blockage or ischemia. For example, in cerebral infarction, the central part of ischemia in the acute phase is irreversible and cell death occurs even when blood flow is resumed, but there is a reversible incomplete ischemic region around it, especially called penumbra . The central part of the ischemia expands unless treated, and the penumbra gradually disappears. As a result, the cerebral infarction portion is pathologically enlarged, clinically dysfunctional, and in the worst case, death occurs. The purpose of treatment in the acute phase of cerebral infarction is to restore blood flow in the penumbra. The recovery depends on the degree of ischemia and its duration. That is, how quickly the blood flow to the penumbra is resumed determines the early recovery of cerebral infarction.
 組織型プラスミノゲン・アクチベーター(以下、「t-PA」と称することがある。)は、虚血の原因となっている血栓を溶解することによってペナンブラへの血液供給を再開させる血栓溶解療法として有効なので、虚血性イベントの急性期の治療薬として承認されている。
 しかし、虚血性イベントの急性期徒過後の患者へのt-PA投与は有効ではなく、例えば、脳梗塞においては、むしろ脳出血の合併症と、予後の増悪とをもたらすので、脳梗塞急性期徒過後、即ち、脳梗塞の発症から3時間以上経過後の患者へのt-PAの投与は禁忌とされている。また、心筋梗塞においては、心筋梗塞の発症から6時間以上経過後の患者へのt-PAの投与は禁忌とされている。
 このように、虚血発作処置に用いられる血栓溶解療法の際、脳出血などの危険性が特に高く、虚血症状の重症度を軽減するいかなる血栓溶解療法も、脳出血などの危険性を高める要因を有している点で問題である(非特許文献2参照)。
Tissue-type plasminogen activator (hereinafter sometimes referred to as “t-PA”) is effective as a thrombolytic therapy that reopens the blood supply to the penumbra by dissolving the thrombus causing ischemia. So it is approved as a treatment for the acute phase of ischemic events.
However, administration of t-PA to patients after the acute phase of an ischemic event is not effective. For example, cerebral infarction results in cerebral hemorrhage complications and prognostic exacerbations. The administration of t-PA to patients after a period of time, ie, 3 hours or more after the onset of cerebral infarction is contraindicated. In addition, in myocardial infarction, administration of t-PA to patients who have passed 6 hours or more after the onset of myocardial infarction is contraindicated.
In this way, the risk of cerebral hemorrhage is particularly high in thrombolytic therapy used for treatment of ischemic stroke, and any thrombolytic therapy that reduces the severity of ischemic symptoms may increase the risk of cerebral hemorrhage. It has a problem in that it has (see Non-Patent Document 2).
 したがって、脳出血などの合併症を引き起こすことなく、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にも投与できる治療用医薬品組成物の早急な開発が望まれているのが現状である。 Therefore, the rapid development of a therapeutic pharmaceutical composition that can be administered to patients after the acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications such as cerebral hemorrhage This is the current situation.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、脳出血などの合併症を引き起こすことなく、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にも投与できる治療用医薬品組成物を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention relates to a therapeutic pharmaceutical composition that can be administered to patients after acute passing of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications such as cerebral hemorrhage. The purpose is to provide.
 前記課題を解決するため、本発明者らは鋭意検討した結果、脳梗塞等の重篤な虚血性イベントの急性期徒過後の、前記血栓溶解薬の投与による脳出血などの合併症や予後の増悪は、血栓溶解薬の投与により血流が再開されると、血管内皮増殖因子(VEGF)の発現が増加し、これにより、VEGF受容体シグナル伝達系が活性化され、血管壁を構築しているタンパク質の分解が促進されることによるものであることを見出した。
 そこで、前記血栓溶解薬、及び、VEGF受容体によって仲介されるシグナル伝達を阻害する阻害剤、例えば、VEGF及びVEGF受容体の少なくともいずれかに対する抗体やその他の結合因子を併用することで、脳出血などの合併症を引き起こすことなく、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントを引き起こした患者にも前記血栓溶解薬を投与できることを知見し、本発明の完成に至った。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. When blood flow is resumed by administration of a thrombolytic drug, the expression of vascular endothelial growth factor (VEGF) increases, thereby activating the VEGF receptor signaling system and constructing the vascular wall It has been found that this is due to accelerated protein degradation.
Therefore, cerebral hemorrhage can be achieved by using the thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the VEGF receptor, for example, an antibody against at least one of VEGF and VEGF receptor and other binding factors. It was found that the thrombolytic drug can be administered to patients who have caused severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications of the present invention. .
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 一つの実施形態としての治療用医薬品組成物又は該組成物を用いた治療方法は、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの治療のために提供される。前記組成物は、血栓溶解薬、及び、少なくとも1つの、血管内皮増殖因子(VEGF)の受容体によって仲介されるシグナル伝達を阻害する阻害剤を含む。該阻害剤は、例えば、血管内皮増殖因子(VEGF)の受容体に対するVEGFの結合を阻害することにより、前記VEGF受容体によって仲介されるシグナル伝達を阻害する。
 <2> 阻害剤が、VEGF受容体へのVEGFの結合を減少させる前記<1>に記載の組成物又は方法である。
 <3> 阻害剤が、VEGF及びVEGF受容体の少なくともいずれかに対する特異的結合パートナーである前記<2>に記載の組成物又は方法である。
 <4> 特異的結合パートナーが、下記(1)~(4)の少なくともいずれかである前記<3>に記載の組成物又は方法である。(1)抗体、(2)アプタマー、(3)VEGF受容体に結合するがVEGF受容体を活性化しないVEGFペプチド又はVEGFペプチドの低分子模倣物、(4)VEGF受容体の刺激に利用されるVEGFの有効レベルを低下させるVEGF受容体ペプチド又はVEGF受容体ペプチドの低分子模倣物。
 <5> 阻害剤が、VEGF受容体に結合し且つ前記VEGF受容体へのVEGFの結合に拮抗する抗体、及び前記VEGFに結合して血液中からの前記VEGFの除去を引き起こす抗体の少なくともいずれかである前記<4>に記載の組成物又は方法である。
 <6> 一つの実施形態としては、阻害剤が、血小板からのVEGFの放出を阻害することを特徴とする前記<1>に記載の組成物又は方法である。
 <7> 阻害剤が、アデノシン二リン酸(ADP)受容体へのADPの結合を減少させる前記<6>に記載の組成物又は方法である。
 <8> 阻害剤が、ADP及びADP受容体の少なくともいずれかに対する特異的結合パートナーである前記<7>に記載の組成物又は方法である。
 <9> 特異的結合パートナーが、下記(1)~(4)の少なくともいずれかである前記<8>に記載の組成物又は方法である。(1)抗体、(2)アプタマー、(3)ADP受容体に結合するがADP受容体を活性化しないADPペプチド又はADPペプチドの低分子模倣物、(4)ADPを結合するADP受容体ペプチド又はADP受容体ペプチドの低分子模倣物である。
 <10> 一つの実施形態としては、阻害剤が、VEGF受容体シグナル伝達経路の成分と相互作用する阻害剤、及びVEGF受容体シグナル伝達経路の成分を修飾する酵素と相互作用する阻害剤の少なくともいずれかである前記<1>に記載の組成物又は方法である。
 <11> 阻害剤が、チロシンキナーゼ阻害剤、及びチロシンホスファターゼのアゴニストである前記<10>に記載の組成物又は方法である。
 <12> 一つの実施形態としては、阻害剤が、VEGF及びVEGF受容体の少なくともいずれかの産生を減少させる前記<1>に記載の組成物又は方法である。
 <13> 阻害剤が、アンチセンス核酸、小分子干渉RNA(siRNA)、及びリボザイムの少なくともいずれかである前記<10>及び<12>のいずれかに記載の組成物又は方法である。
 <14> 一つの実施形態としては、阻害剤が、血栓溶解薬と結合する前記<1>に記載の組成物又は方法である。
 <15> 阻害剤が、融合タンパク質として血栓溶解薬と結合する前記<14>に記載の組成物又は方法である。
 <16> 血栓溶解薬が、ウロキナーゼ、ストレプトキナーゼ、組織型プラスミノゲン・アクチベーター(t-PA)、及びこれらのアナログの少なくともいずれかである前記<1>に記載の組成物又は方法である。
 <17> VEGF受容体が、VEGF受容体2型(VEGFR-2)である前記<1>から<5>のいずれかに記載の組成物又は方法である。
 <18> 脳梗塞、心筋梗塞、及び肺塞栓症を含む虚血性イベントの急性期徒過後の患者に投与される前記<1>から<17>のいずれかに記載の組成物又は方法である。
 <19> 虚血性イベントの急性期が、該虚血性イベントの発症から3時間~6時間である前記<18>に記載の組成物又は方法である。
 <20> 脳梗塞急性期が、該脳梗塞の発症から3時間以内である前記<18>に記載の組成物又は方法である。
 <21> 特異的結合パートナーが、VEGF及び前記VEGFの受容体の少なくともいずれかと特異的に結合して、該VEGFのシグナル伝達を阻害する活性を有する、ポリクローナル抗体又はモノクローナル抗体と、該抗体の抗原結合断片と、該抗原結合断片を含む組換え抗体又はキメラ抗体と、これらの誘導体と、からなるグループから選択される前記<2>から<5>のいずれかに記載の組成物又は方法である。
 <22> 一つの実施形態としては、特異的結合パートナーが、VEGF-A及びVEGF-A受容体の少なくともいずれかと結合し、VEGF-A受容体によって仲介されるシグナル伝達経路を阻害する前記<3>から<5>のいずれかに記載の組成物又は方法である。
 <23> 一つの実施形態としては、特異的結合パートナーが、抗VEGF-A中和抗体又はその誘導体である前記<22>に記載の組成物又は方法である。
 <24> 特異的結合パートナーが、ADP及び前記ADPの受容体の少なくともいずれかと特異的に結合して、該ADPのシグナル伝達を阻害する活性を有する、ポリクローナル抗体又はモノクローナル抗体と、該抗体の抗原結合断片と、該抗原結合断片を含む組換え抗体又はキメラ抗体と、これらの誘導体と、からなるグループから選択される前記<7>から<9>のいずれかに記載の組成物又は方法である。
 <25> 阻害剤が、(E)-3-(3,5-Diisopropyl-4-hydroxyphenyl)-2-((3-phenyl-n-propyl)amino-carbonyl)acrylonitrile)である前記<10>から<11>のいずれかに記載の組成物又は方法である。
 <26> 血栓溶解薬、及び、血管内皮増殖因子(VEGF)の受容体によって仲介されるシグナル伝達を阻害する阻害剤を含むことを特徴とするキットである。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A therapeutic pharmaceutical composition or a treatment method using the composition as one embodiment is provided for the treatment of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism. The The composition comprises a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by at least one receptor for vascular endothelial growth factor (VEGF). The inhibitor inhibits signal transduction mediated by the VEGF receptor, for example, by inhibiting the binding of VEGF to the receptor for vascular endothelial growth factor (VEGF).
<2> The composition or method according to <1>, wherein the inhibitor decreases binding of VEGF to the VEGF receptor.
<3> The composition or method according to <2>, wherein the inhibitor is a specific binding partner for at least one of VEGF and a VEGF receptor.
<4> The composition or method according to <3>, wherein the specific binding partner is at least one of the following (1) to (4). (1) antibody, (2) aptamer, (3) VEGF peptide or small molecule mimic of VEGF peptide that binds to VEGF receptor but does not activate VEGF receptor, (4) is used for stimulation of VEGF receptor VEGF receptor peptides or small molecule mimics of VEGF receptor peptides that reduce the effective level of VEGF.
<5> At least one of an antibody that binds to a VEGF receptor and antagonizes the binding of VEGF to the VEGF receptor, and an antibody that binds to the VEGF and causes the removal of the VEGF from the blood The composition or method according to <4>, wherein
<6> In one embodiment, the composition or method according to <1>, wherein the inhibitor inhibits the release of VEGF from platelets.
<7> The composition or method according to <6>, wherein the inhibitor reduces binding of ADP to adenosine diphosphate (ADP) receptor.
<8> The composition or method according to <7>, wherein the inhibitor is a specific binding partner for at least one of ADP and ADP receptor.
<9> The composition or method according to <8>, wherein the specific binding partner is at least one of the following (1) to (4). (1) an antibody, (2) an aptamer, (3) an ADP peptide or a small molecule mimic of an ADP peptide that binds to an ADP receptor but does not activate the ADP receptor, (4) an ADP receptor peptide that binds ADP, or It is a small molecule mimic of the ADP receptor peptide.
<10> In one embodiment, the inhibitor is at least an inhibitor that interacts with a component of the VEGF receptor signaling pathway, and an inhibitor that interacts with an enzyme that modifies a component of the VEGF receptor signaling pathway The composition or method according to <1>, which is any one of the above.
<11> The composition or method according to <10>, wherein the inhibitor is a tyrosine kinase inhibitor and an agonist of tyrosine phosphatase.
<12> In one embodiment, the inhibitor is the composition or method according to <1>, wherein the inhibitor decreases production of at least one of VEGF and a VEGF receptor.
<13> The composition or method according to any one of <10> and <12>, wherein the inhibitor is at least one of an antisense nucleic acid, a small interfering RNA (siRNA), and a ribozyme.
<14> In one embodiment, the composition or method according to <1>, wherein the inhibitor is combined with a thrombolytic drug.
<15> The composition or method according to <14>, wherein the inhibitor binds to the thrombolytic drug as a fusion protein.
<16> The composition or method according to <1>, wherein the thrombolytic drug is at least one of urokinase, streptokinase, tissue-type plasminogen activator (t-PA), and analogs thereof.
<17> The composition or method according to any one of <1> to <5>, wherein the VEGF receptor is VEGF receptor type 2 (VEGFR-2).
<18> The composition or method according to any one of <1> to <17>, wherein the composition or method is administered to a patient after an acute phase of an ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism.
<19> The composition or method according to <18>, wherein the acute phase of the ischemic event is 3 to 6 hours from the onset of the ischemic event.
<20> The composition or method according to <18>, wherein the acute phase of cerebral infarction is within 3 hours from the onset of the cerebral infarction.
<21> A polyclonal antibody or a monoclonal antibody, wherein the specific binding partner specifically binds to at least one of VEGF and the VEGF receptor, and inhibits the signal transduction of the VEGF, and an antigen of the antibody The composition or method according to any one of <2> to <5>, selected from the group consisting of a binding fragment, a recombinant antibody or chimeric antibody containing the antigen-binding fragment, and derivatives thereof. .
<22> In one embodiment, the specific binding partner binds to at least one of VEGF-A and VEGF-A receptor, and inhibits a signal transduction pathway mediated by VEGF-A receptor <3 > To <5>.
<23> In one embodiment, the specific binding partner is the composition or method according to the above <22>, wherein the specific binding partner is an anti-VEGF-A neutralizing antibody or a derivative thereof.
<24> A polyclonal antibody or a monoclonal antibody, wherein the specific binding partner specifically binds to at least one of ADP and the ADP receptor and inhibits the signal transduction of the ADP, and an antigen of the antibody The composition or method according to any one of <7> to <9>, wherein the composition or method is selected from the group consisting of a binding fragment, a recombinant antibody or chimeric antibody containing the antigen-binding fragment, and derivatives thereof. .
<25> From the above <10>, wherein the inhibitor is (E) -3- (3,5-Diisopropyl-4-hydroxyphenyl) -2-((3-phenyl-n-propyl) amino-carbonyl) acrylonitrile) <11> The composition or method according to any one of the above.
<26> A kit comprising a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by a receptor for vascular endothelial growth factor (VEGF).
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、脳出血などの合併症を引き起こすことなく、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にも投与できる治療用医薬品組成物を提供することができる。 According to the present invention, it is possible to solve the above-described problems and achieve the above-mentioned object, and to prevent serious complications including cerebral infarction, myocardial infarction, and pulmonary embolism without causing complications such as cerebral hemorrhage. It is possible to provide a therapeutic pharmaceutical composition that can be administered to a patient after an acute phase of a bloody event.
図1Aは、従来のラット脳梗塞モデルの作製手順を示す模式図である。FIG. 1A is a schematic diagram showing a procedure for producing a conventional rat cerebral infarction model. 図1Bは、実施例1におけるラット脳梗塞モデルの作製手順を示す模式図である。FIG. 1B is a schematic diagram showing a procedure for producing a rat cerebral infarction model in Example 1. 図2Aは、血栓注入による脳梗塞発症24時間後の動物の脳冠状切片の写真である。FIG. 2A is a photograph of a coronal section of an animal 24 hours after the onset of cerebral infarction due to thrombus injection. 図2Bは、血栓注入による脳梗塞発症の1時間後にt-PAを投与した動物の脳冠状切片の写真である。FIG. 2B is a photograph of a coronal section of an animal to which t-PA was administered 1 hour after the onset of cerebral infarction due to thrombus injection. 図2Cは、血栓注入による脳梗塞発症の4時間後にt-PAを投与した動物の脳冠状切片の写真である。FIG. 2C is a photograph of a coronal section of an animal administered with t-PA 4 hours after the onset of cerebral infarction due to thrombus injection. 図3は、t-PA及び抗VEGF抗体の併用投与後にVEGFの発現が抑制されることを示すウエスタン・ブロットの結果を示す図である。FIG. 3 shows the results of Western blotting showing that the expression of VEGF is suppressed after the combined administration of t-PA and anti-VEGF antibody. 図4Aは、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を併用投与したラットの発症24時間後のTTC染色脳冠状切片の脳梗塞の体積を示す棒グラフである。縦軸:脳梗塞の体積(mm)。FIG. 4A is a bar graph showing the volume of cerebral infarction of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: volume of cerebral infarction (mm 3). 図4Bは、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を併用投与したラットの発症24時間後のTTC染色脳冠状切片の浮腫の体積を示す棒グラフである。縦軸:浮腫の体積(mm)。FIG. 4B is a bar graph showing the volume of edema of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: volume of edema (mm 3 ). 図4Cは、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を併用投与したラットの発症24時間後のTTC染色脳冠状切片の脳出血量を示す棒グラフである。縦軸:脳出血量(mg/dL)。FIG. 4C is a bar graph showing the amount of cerebral hemorrhage of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: cerebral hemorrhage (mg / dL). 図4Dは、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を併用投与したラットの発症24時間後の運動機能スケールを示す帯グラフである。縦軸:運動機能スケール。FIG. 4D is a band graph showing the motor function scale 24 hours after the onset of rats administered with t-PA and an anti-VEGF antibody in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: Motor function scale. 図5Aは、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後のTTC染色脳冠状切片の脳梗塞の体積を示す棒グラフである。縦軸:脳梗塞の体積(mm)。FIG. 5A is a bar graph showing the volume of cerebral infarction in a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: cerebral infarction volume (mm 3 ). 図5Bは、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後のTTC染色脳冠状切片の浮腫の体積を示す棒グラフである。縦軸:浮腫の体積(mm)。FIG. 5B is a bar graph showing the volume of edema of TTC-stained coronal sections 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: volume of edema (mm 3 ). 図5Cは、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後のTTC染色脳冠状切片の脳出血量を示す棒グラフである。縦軸:脳出血量(mg/dL)。FIG. 5C is a bar graph showing the amount of cerebral hemorrhage of a TTC-stained coronal section 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: cerebral hemorrhage (mg / dL). 図5Dは、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後の運動機能スケールを示す帯グラフである。縦軸:運動機能スケール。FIG. 5D is a band graph showing a motor function scale 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Vertical axis: Motor function scale.
(治療用医薬品組成物)
 本発明の治療用医薬品組成物は、血栓溶解薬、及び、血管内皮増殖因子(VEGF)の受容体によって仲介されるシグナル伝達を阻害する阻害剤と、を少なくとも含み、必要に応じて、更にその他の成分を含有する。
(Therapeutic pharmaceutical composition)
The therapeutic pharmaceutical composition of the present invention comprises at least a thrombolytic agent and an inhibitor that inhibits signal transduction mediated by a receptor for vascular endothelial growth factor (VEGF), and if necessary, other Contains the ingredients.
<血栓溶解薬>
 前記血栓溶解薬としては、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベント(“severe ischemic events”、「虚血性疾患」、「虚血症」、「虚血発作」などと称することもある。)の急性期の血栓溶解に適用することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、組織型プラスミノゲン・アクチベーター(t-PA)又はその誘導体、ウロキナーゼ(Murray V. et al., J Intern Med. 2010, Feb;267(2):191-208参照)、ストレプトキナーゼ、一本鎖ウロキナーゼ型プラスミノゲン・アクチベーター(u-PA)、デスモテプラーゼ、その他フィブリンに作用するプロテアーゼなどが挙げられる。また、フィブリンを切断できることが知られているその他の因子も本発明に含まれる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 これらの中でも、前記血栓溶解薬は、ウロキナーゼ、組織型プラスミノゲン・アクチベーター(t-PA)、及びこれらの誘導体又はアナログを含むことが、血栓溶解の成功率を高めることができる点で好ましい。
 前記血栓溶解薬の製造方法としては、特に制限はなく、前記血栓溶解薬の種類などに応じて適宜選択することができ、例えば、遺伝子組換え法、合成法などが挙げられる。また、市販品を用いてもよい。
 前記t-PAの誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記t-PAに、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤を結合したものなどが挙げられる。また、t-PAのアミノ酸配列において、1個又は数個のアミノ酸が置換されたものであってもよい。
 前記t-PA誘導体の具体的な例としては、モンテプラーゼ、パミテプラーゼ、レテプラーゼ等の前記t-PAのアミノ酸配列において一部のアミノ酸が置換されたt-PA誘導体;テネクテプラーゼ、ラノテプラーゼ等の前記t-PAのアミノ酸配列において一部のアミノ酸が置換され、更に糖鎖が修飾されたt-PA誘導体などが挙げられる。
<Thrombolytic drug>
Examples of the thrombolytic agents include serious ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism (“severe ischemic events”, “ischemic disease”, “ischemia”, “ischemic attack”, etc. Can be appropriately selected according to the purpose, for example, tissue type plasminogen activator (t-PA) or Derivatives thereof, urokinase (see Murray V. et al., J Inter Med. 2010, Feb; 267 (2): 191-208), streptokinase, single-chain urokinase-type plasminogen activator (u-PA), desmoteplase And other proteases that act on fibrin. Other factors known to be able to cleave fibrin are also included in the present invention. These may be used alone or in combination of two or more.
Among these, the thrombolytic drug preferably contains urokinase, tissue-type plasminogen activator (t-PA), and derivatives or analogs thereof from the viewpoint of increasing the success rate of thrombolysis.
There is no restriction | limiting in particular as a manufacturing method of the said thrombolytic agent, According to the kind etc. of the said thrombolytic agent, it can select suitably, For example, a gene recombination method, a synthesis method, etc. are mentioned. Moreover, you may use a commercial item.
The t-PA derivative is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the t-PA includes sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable products. And the like which are combined with additives and treatment agents. In addition, one or several amino acids may be substituted in the amino acid sequence of t-PA.
Specific examples of the t-PA derivative include a t-PA derivative in which a part of amino acids are substituted in the amino acid sequence of the t-PA such as monteplase, pamitepase, and reteplase; and the t-PA such as tenecteplase and lanoteplase. And a t-PA derivative in which a part of the amino acid is substituted and the sugar chain is further modified.
 前記治療用医薬品組成物における、前記血清溶解薬の含有量としては、特に制限はなく、前記血清溶解薬の種類などに応じて適宜選択することができる。 The content of the serum dissolving drug in the therapeutic pharmaceutical composition is not particularly limited and can be appropriately selected depending on the type of the serum dissolving drug.
 本発明における「急性期」とは、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの発症の初期で、例えば、脳梗塞においては、脳血流量の低下に伴う脳神経機能障害が認められるが、前記血栓溶解薬による迅速な血流再開のみによって回復可能な時期をいう。ここで、急性期は、一般的には梗塞の発症から3時間~6時間をいうが、脳梗塞においては、発症から3時間以内であることが好ましい。 The “acute phase” in the present invention is an early stage of development of a serious ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism. For example, in cerebral infarction, cranial nerve function associated with a decrease in cerebral blood flow Although the disorder is recognized, it refers to a time when recovery is possible only by rapid resumption of blood flow by the thrombolytic drug. Here, the acute phase generally refers to 3 to 6 hours from the onset of infarction, but in cerebral infarction, it is preferably within 3 hours from the onset.
 本発明における「患者」とは、ヒトを含むがヒトに限られない。 “Patient” in the present invention includes humans but is not limited to humans.
<血管内皮細胞増殖因子(VEGF)受容体によって仲介されるシグナル伝達を阻害する阻害剤>
 前記VEGF受容体によって仲介されるシグナル伝達を阻害する阻害剤(以下、単に「阻害剤」と称することがある。)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、VEGF受容体へのVEGFの結合を減少させる阻害剤、血小板からのVEGFの放出を阻害する阻害剤、VEGF受容体シグナル伝達経路の成分と相互作用する阻害剤、VEGF受容体シグナル伝達経路の成分を修飾する酵素と相互作用する阻害剤、VEGF及びVEGF受容体の少なくともいずれかの産生を減少させる阻害剤などが挙げられる。
<Inhibitor that inhibits signal transduction mediated by vascular endothelial growth factor (VEGF) receptor>
The inhibitor that inhibits signal transduction mediated by the VEGF receptor (hereinafter sometimes simply referred to as “inhibitor”) is not particularly limited and may be appropriately selected depending on the intended purpose. Inhibitors that reduce the binding of VEGF to VEGF receptors, inhibitors that inhibit the release of VEGF from platelets, inhibitors that interact with components of the VEGF receptor signaling pathway, components of the VEGF receptor signaling pathway An inhibitor that interacts with an enzyme that modifies VEGF, an inhibitor that reduces the production of at least one of VEGF and VEGF receptors, and the like.
<<VEGF受容体へのVEGFの結合を減少させる阻害剤>>
 前記VEGF受容体へのVEGFの結合を減少させる阻害剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、VEGF及びVEGF受容体の少なくともいずれかに対する特異的結合パートナー(VEGFとVEGF受容体との結合を阻害する「結合阻害剤」と称することもある。)などが挙げられる。
<< Inhibitors that reduce VEGF binding to VEGF receptors >>
The inhibitor that decreases the binding of VEGF to the VEGF receptor is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a specific binding partner (for example, a specific binding partner for VEGF and / or VEGF receptor ( And the like, which are sometimes referred to as “binding inhibitors” that inhibit the binding between VEGF and the VEGF receptor.
-特異的結合パートナー-
 前記特異的結合パートナー(結合阻害剤)は、前記VEGFと、前記VEGF受容体との結合を阻害することができれば、特に制限はなく、目的に応じて適宜選択することができるが、前記VEGF及び前記VEGF受容体の少なくともいずれかと特異的に結合するものであることが好ましい。これにより、前記VEGF受容体によって仲介されるシグナル伝達を阻害することができる。
 前記特異的結合パートナーとしては、例えば、前記VEGF及び前記VEGF受容体の少なくともいずれかと特異的に結合するレセプター又はリガンドなどが挙げられる。
 前記レセプター又はリガンドとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、抗体等のタンパク質、炭水化物、核酸、脂質、その他の生体高分子などが挙げられる。
-Specific binding partner-
The specific binding partner (binding inhibitor) is not particularly limited as long as it can inhibit the binding between the VEGF and the VEGF receptor, and can be appropriately selected according to the purpose. It is preferably one that specifically binds to at least one of the VEGF receptors. Thereby, the signal transduction mediated by the VEGF receptor can be inhibited.
Examples of the specific binding partner include a receptor or a ligand that specifically binds to at least one of the VEGF and the VEGF receptor.
The receptor or ligand is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include proteins such as antibodies, carbohydrates, nucleic acids, lipids, and other biopolymers.
 本発明における「抗体」は、一般的に定義される抗体をいい、Fab断片、単鎖Fv構造、1つのFcに2つの異なるFab断片を結合した二重特異性抗体、及びこれらに類する構造を含むことができる(Baeuerle PA. et al., Cancer Res. 2009, Jun 15;69(12):4941-4参照)。抗体を有用なものとするためには、ヒトにおける抗体の抗原性を最小限とする必要があり、従って抗体は、配列においてヒトのもの(ヒトの抗体レパートリーを発現するトランスジェニック動物(Jakobovits A. et al., Nat Biotechnol. 2007, Oct;25(10):1134-43参照)、又はヒト抗体遺伝子の組換えライブラリー(Benhar I. et al., Expert Opin Biol Ther. 2007, May;7(5):763-79参照)由来のもの)としてもよく、ヒト化されたもの(Almagro JC. et al., Front Biosci. 2008, Jan 1;13:1619-33参照)、又はヒトより単離されたもの(Collarini EJ. et al., J Immunol. 2009, Nov 15;183(10):6338-45参照)としてもよい。同様に、ラクダ(Deschacht N. et al., J Immunol. 2010, May 15;184(10):5696-704参照)やサメ(Wesolowski J. et al., Med Microbiol Immunol. 2009, Aug;198(3):157-74参照)で発見された抗体(天然の変異体)のように、分子量の小さい低分子抗体(nanobody)もまた利用できる。 “Antibody” in the present invention refers to an antibody that is generally defined, and includes a Fab fragment, a single chain Fv structure, a bispecific antibody in which two different Fab fragments are bound to one Fc, and a similar structure. (See Bauerle PA. Et al., Cancer Res. 2009, Jun 15; 69 (12): 4941-4). In order for an antibody to be useful, it is necessary to minimize the antigenicity of the antibody in humans, and thus the antibody is human in sequence (transgenic animals expressing the human antibody repertoire (Jakobovits A. et al., Nat Biotechnol. 2007, Oct; 25 (10): 1134-43) or a human antibody gene recombination library (Benhar I. et al., Expert Opin Biol Ther. 2007, May; 7 ( 5): 763-79)), or humanized (see Almagro JC. Et al., Front Biosci. 2008, Jan 1: 13: 1619-33) or isolated from humans Too (.. Collarini EJ et al, J Immunol 2009, Nov 15; 183 (10):. 6338-45 reference) may be. Similarly, camels (Deschach N. et al., J Immunol. 2010, May 15; 184 (10): 5696-704) and sharks (Weslowski J. et al., Med Microbiol Immunol. 2009, Aug; 3): low molecular weight antibodies (nanobodies) can also be used, such as the antibodies discovered in 157-74) (natural variants).
 抗体の模倣物を用いることもでき、該抗体の模倣物としては、例えば、フィブロネクチン、トランスフェリン、グルタチオントランスフェラーゼ、水晶体等を足場としたタンパク質ファミリーを含む(Wurch T. et al., Curr Pharm Biotechnol. 2008, Dec;9(6):502-9参照)。また、他の模倣物としては、例えば、核酸からなるアプタマー(Guo KT. et al., Int J Mol Sci. 2008, Apr;9(4):668-78参照)のような非ペプチド結合因子と同様に、小分子ペプチド(Holtzman JH. et al., Biochemistry. 2007, Nov 27;46(47):13541-53参照)、ペプチド模倣物(例えば、ベータアミノ酸(Petersson EJ. et al., J Am Chem Soc. 2008, Jan 23;130(3):821-3参照)、又はD-アミノ酸(Van Regenmortel MH. et al., Curr Opin Biotechnol. 1998, Aug;9(4):377-82参照)、又は構造的安定性を増すための化学架橋剤(Kutchukian PS. et al., J Am Chem Soc. 2009, Apr 8;131(13):4622-7参照)などを含む)などが挙げられる。
 即ち、「抗体の模倣物」とは、抗体と同じ機能を有する全ての結合因子をいう。本発明では、このような抗体の模倣物を抗体の代わりに用いることもできる。
 便宜上、開示の発明において、本発明者らは、このような結合因子の優れた例として、実施の形態において抗体に焦点を当てたが、本発明はこれに限られるものではない。
Mimics of antibodies can also be used and include, for example, protein families based on fibronectin, transferrin, glutathione transferase, lens etc. (Wurch T. et al., Curr Pharm Biotechnol. 2008). Dec; 9 (6): 502-9). Other mimetics include non-peptide binding factors such as aptamers consisting of nucleic acids (see Guo KT. Et al., Int J Mol Sci. 2008, Apr; 9 (4): 668-78). Similarly, small molecule peptides (see Holtzman JH. Et al., Biochemistry. 2007, Nov 27; 46 (47): 13541-53), peptide mimetics (eg, beta amino acids (Petersson EJ. Et al., J Am) Chem Soc. 2008, Jan 23; 130 (3): 821-3), or D-amino acid (Van Regennortel MH. Et al., Curr Opin Biotechnol. 1998, Aug; 9 (4): 377-82). Or structural stability Sutame chemical crosslinking agent (Kutchukian PS et al, J Am Chem Soc 2009, Apr 8; 131 (13):... 4622-7 reference), etc.) and the like.
That is, “antibody mimic” refers to all binding agents having the same function as the antibody. In the present invention, such an antibody mimic can be used instead of an antibody.
For convenience, in the disclosed invention, the inventors focused on antibodies in the embodiments as excellent examples of such binding factors, but the present invention is not limited thereto.
--VEGFに特異的に結合する特異的結合パートナー--
 前記VEGFとは、脈管形成及び血管新生に関与する一群の糖タンパク質である。前記VEGFが、血管内皮細胞表面に存在するVEGF受容体にリガンドとして結合すると、VEGFシグナル伝達系が活性化される。脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントにおいては、このVEGFシグナル伝達系の活性化により血管壁を構築しているタンパク質の分解が促進され、例えば、脳梗塞においては、脳出血の合併症が起こることが本発明において確認された。
 前記VEGFファミリーとしては、例えば、VEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E、胎盤増殖因子(PIGF)-1、PIGF-2などが挙げられる。VEGFファミリーのそれぞれのメンバーには、更にいくつかの亜型が存在し、例えば、ヒトのVEGF-Aには、アミノ酸数が121個(VEGF-A121)、165個(VEGF-A165)、189個(VEGF-A189)、206個(VEGF-A206)、145個(VEGF-A145)、183個(VEGF-A183)などが知られている。また、ヒトのVEGF-Bには、アミノ酸数が167個(VEGF-B167)、186個(VEGF-B186)などが知られている。
 前記VEGFに特異的に結合する特異的結合パートナーは、前記VEGFファミリーのいずれに結合するものであってもよい。
--Specific binding partner that specifically binds to VEGF--
The VEGF is a group of glycoproteins involved in angiogenesis and angiogenesis. When the VEGF binds to a VEGF receptor present on the surface of vascular endothelial cells as a ligand, the VEGF signaling system is activated. In severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism, the activation of the VEGF signal transduction system promotes the degradation of proteins that make up the vascular wall. For example, in cerebral infarction It was confirmed in the present invention that a complication of cerebral hemorrhage occurs.
Examples of the VEGF family include VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PIGF) -1, and PIGF-2. Each member of the VEGF family has several additional subtypes. For example, human VEGF-A has 121 amino acids (VEGF-A 121 ), 165 amino acids (VEGF-A 165 ), 189 (VEGF-A 189 ), 206 (VEGF-A 206 ), 145 (VEGF-A 145 ), 183 (VEGF-A 183 ) and the like are known. Further, human VEGF-B is known to have 167 amino acids (VEGF-B 167 ), 186 amino acids (VEGF-B 186 ), and the like.
The specific binding partner that specifically binds to VEGF may bind to any of the VEGF families.
 前記VEGFに特異的に結合する特異的結合パートナーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記VEGFを認識するポリクローナル抗体又はモノクローナル抗体、該抗体の抗原結合断片、該抗原結合断片を含むキメラ抗体又は組換え抗体(以下、「抗VEGF抗体など」と称することがある。)、又はこれらの誘導体、VEGF受容体の組換え体の一部(Chu QS. Expert Opin Biol Ther. 2009, Feb;9(2):263-71参照)、VEGFに対して競合的にVEGF受容体に結合するが該VEGF受容体を活性化しないVEGF変異体(Siemeister G. et al., Proc Natl Acad Sci U S A. 1998, Apr 14;95(8):4625-9参照)、などが挙げられる。これらの中でも、前記VEGFに特異的に結合する特異的結合パートナーは、モノクローナル抗体が好ましく、抗VEGF-A中和抗体が、血管新生時の血管の破綻に関与するVEGF-Aの、VEGF受容体への結合を効率よく阻害できる点でより好ましい。 The specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the purpose. For example, a polyclonal antibody or a monoclonal antibody that recognizes VEGF, an antigen-binding fragment of the antibody , A chimeric antibody or a recombinant antibody (hereinafter sometimes referred to as “anti-VEGF antibody” or the like) containing the antigen-binding fragment, or a derivative thereof, a part of a recombinant VEGF receptor (Chu QS. Expert) Opin Biol Ther. 2009, Feb; 9 (2): 263-71), a VEGF variant that competitively binds to VEGF receptor for VEGF but does not activate the VEGF receptor (Siemeister G. et al. , Proc Natl Acad Sci US A.19 8, Apr 14; 95 (8): see 4625-9), and the like. Among these, the specific binding partner that specifically binds to VEGF is preferably a monoclonal antibody, and the anti-VEGF-A neutralizing antibody is a VEGF receptor of VEGF-A that is involved in vascular disruption during angiogenesis. It is more preferable in that the binding to can be efficiently inhibited.
 前記VEGFに特異的に結合する特異的結合パートナーの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、遺伝子組換え法、合成法などが挙げられる。また、市販品を用いてもよい。
 また、前記VEGFに特異的に結合する特異的結合パートナーは、前記抗VEGF抗体など、及びこれらの誘導体の少なくともいずれかそのものであってもよく、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤等のその他の成分を結合又は添加してもかまわない。前記VEGFに特異的に結合する特異的結合パートナーにおける、その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
The method for producing a specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a gene recombination method and a synthesis method. Moreover, you may use a commercial item.
In addition, the specific binding partner that specifically binds to VEGF may be at least one of the anti-VEGF antibody and the like and derivatives thereof, such as polyethylene glycol, other pharmaceutically acceptable additives, Other components such as a treatment agent may be combined or added. The content of other components in the specific binding partner that specifically binds to VEGF is not particularly limited and may be appropriately selected depending on the purpose.
---ポリクローナル抗体---
 前記ポリクローナル抗体は、前記VEGFやこれらの断片を免疫原として、ほ乳類(例えば、マウス、ラット、ウサギ、ヒツジ又はヤギ)又は鳥類(例えば、ニワトリ)のいずれかの動物宿主に注射される。VEGFの断片を免疫原とする場合には、ウシ血清アルブミン又はスカシ貝ヘモシアニン(keyhole limpet hemocyanine)のような担体タンパク質と連結される場合に優れた免疫応答が誘発される場合がある。
 前記免疫原は、1回又は2回以上のブースター免疫を取り込んだ予め定められたスケジュールに従って、前記動物宿主に注射されることが好ましい。
 前記免疫原は、完全又は不完全フロイントアジュバントその他の免疫増強剤に混合して前記動物宿主に注射される場合がある。
 前記ポリクローナル抗体は、かかる抗血清から、例えば適当な固体支持体に結合されたVEGFやこれらの断片を用いるアフィニティクロマトグラフィーによって精製され、VEGFと、VEGF受容体との結合が阻害されることや、この結合阻害によりVEGFシグナル伝達を阻害できることを確認されたものの場合がある。
 前記ポリクローナル抗体としては、例えば、ヒト組換えVEGF165を免疫源として作製したウサギ抗ラットVEGF抗体IgG(RB-222、19kDa~22kDa)などが挙げられる。なお、前記RB-222は、VEGF165及びVEGF121を認識することができる。
--- Polyclonal antibody ---
The polyclonal antibody is injected into any animal host of mammals (eg, mouse, rat, rabbit, sheep or goat) or birds (eg, chicken) using the VEGF or a fragment thereof as an immunogen. When a VEGF fragment is used as an immunogen, an excellent immune response may be induced when linked to a carrier protein such as bovine serum albumin or keyhole limpet hemocyanine.
The immunogen is preferably injected into the animal host according to a predetermined schedule incorporating one or more booster immunizations.
The immunogen may be injected into the animal host in a mixture with complete or incomplete Freund's adjuvant or other immunopotentiators.
The polyclonal antibody is purified from the antiserum by, for example, affinity chromatography using VEGF bound to an appropriate solid support or a fragment thereof, and binding between VEGF and the VEGF receptor is inhibited, In some cases, it has been confirmed that inhibition of binding can inhibit VEGF signaling.
Examples of the polyclonal antibody include rabbit anti-rat VEGF antibody IgG (RB-222, 19 kDa to 22 kDa) prepared using human recombinant VEGF 165 as an immunogen. The RB-222 can recognize VEGF165 and VEGF121.
---モノクローナル抗体---
 前記モノクローナル抗体は、Kohler及びMilstein(Eur.J.Immunol.6:511-519(1976))の技術と、その改良技術を用いて調製される場合がある。これらの方法は、所望の特異性を有する抗体を産生できる不死性細胞株の調製を伴う。
 前記不死性細胞株は、前記ポリクローナル抗体の製造方法と同様の方法で免疫された動物宿主由来の脾臓細胞から作製される場合がある。前記脾臓細胞は、様々な方法で不死化され、抗体産生能を有する不死化細胞株が調製される。
 前記脾臓細胞は、例えば、前記免疫された動物と同種かあるいは異種の動物由来のミエローマ細胞との融合によって不死化される。当業者に周知の様々な融合技術を用いる場合がある。
--- Monoclonal antibody ---
The monoclonal antibodies may be prepared using the technique of Kohler and Milstein (Eur. J. Immunol. 6: 511-519 (1976)) and improved techniques thereof. These methods involve the preparation of immortal cell lines that can produce antibodies with the desired specificity.
The immortal cell line may be prepared from spleen cells derived from an animal host immunized by the same method as the method for producing the polyclonal antibody. The spleen cells are immortalized by various methods to prepare an immortalized cell line capable of producing an antibody.
The spleen cells are immortalized by, for example, fusion with myeloma cells derived from the same or different species of the immunized animal. Various fusion techniques known to those skilled in the art may be used.
 例えば、前記脾臓細胞とミエローマ細胞とは、非イオン性界面活性剤と数分間混合され、それから、ハイブリッド細胞の増殖は支持するがミエローマ細胞の増殖は支持しない選択培地に低濃度でプレートされる。好ましい選択技術は、HAT(ヒポキサンチン、アミノプテリン、チミジン)選択を用いる。通常約1週間~2週間の十分な時間の後、ハイブリッドのコロニーが観察される。シングルコロニーが選択され、該シングルコロニーは、HAT(ヒポキサンチン、アミノプテリン、チミジン添加培地)等の培地で培養され、その培養上清が、前記VEGFやこれらの断片に対する結合活性についてテストされ、更に、前記VEGFと、VEGF受容体との結合が阻害されることや、この結合阻害によりVEGFシグナル伝達を阻害する活性についてもテストされる。反応性及び特異性が高いハイブリドーマが好ましい。限界希釈法によるクローニングを繰り返すことにより、反応性及び特異的が高い抗体を安定的に大量に産生するハイブリドーマのクローンが選択される。モノクローナル抗体は増殖中の選択されたハイブリドーマクローン由来の細胞株のコロニーの上清から単離される場合がある。
 更に、マウスのような適当な脊椎動物宿主の腹腔内に前記ハイブリドーマ細胞株を注射するような、収率を向上させるための様々な技術が用いられる場合がある。
 前記モノクローナル抗体は、前記ハイブリドーマ細胞腹水又は血液から回収される場合がある。細胞屑由来の不純タンパク質等の汚染物は、クロマトグラフィー、ゲルろ過、沈殿及び抽出のような従来技術によって前記抗体から除去される場合がある。
For example, the spleen cells and myeloma cells are mixed with a nonionic surfactant for several minutes and then plated at a low concentration in a selective medium that supports the growth of hybrid cells but does not support the growth of myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. Hybrid colonies are usually observed after a sufficient time of about 1 to 2 weeks. A single colony is selected, and the single colony is cultured in a medium such as HAT (hypoxanthine, aminopterin, thymidine-added medium), and the culture supernatant is tested for binding activity to the VEGF and these fragments. Further, the inhibition of the binding between the VEGF and the VEGF receptor and the activity of inhibiting the VEGF signal transduction due to the inhibition of the binding are also tested. Hybridomas with high reactivity and specificity are preferred. By repeating the cloning by the limiting dilution method, a hybridoma clone that stably produces a large amount of highly reactive and specific antibody is selected. Monoclonal antibodies may be isolated from the supernatants of colonies of cell lines derived from selected growing hybridoma clones.
In addition, various techniques may be used to improve yield, such as injecting the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host such as a mouse.
The monoclonal antibody may be recovered from the hybridoma cell ascites or blood. Contaminants such as impure proteins from cell debris may be removed from the antibody by conventional techniques such as chromatography, gel filtration, precipitation and extraction.
 また、前記モノクローナル抗体は、例えば、前記VEGFに対するマウスモノクローナル抗体を遺伝子組み換えによってヒト化したベバシズマブ(Bevacizumab)、前記ベバシズマブのFabフラグメントであり、前記VEGFとの結合が更に強くなるように遺伝子改変が行われたラニビズマブ(Ranibizumab)等のモノクローナル抗体製剤の抗VEGF-A中和抗体などが挙げられる。前記モノクローナル抗体製剤は、既に悪性腫瘍に対して臨床応用され、ヒトに対する安全性が確認されている。 The monoclonal antibody is, for example, bevacizumab obtained by genetically recombining the mouse monoclonal antibody against VEGF, or a Fab fragment of bevacizumab, and genetic modification is performed so that the binding to VEGF is further strengthened. And anti-VEGF-A neutralizing antibody of a monoclonal antibody preparation such as Ranibizumab. The monoclonal antibody preparation has already been clinically applied to malignant tumors and has been confirmed to be safe for humans.
---抗原結合断片---
 前記抗体の抗原結合断片は、抗原結合に関与する抗体の部分を指す。前記抗原結合部位は、重(H)鎖及び軽(L)鎖のN末端の可変(V)領域のアミノ酸残基によって形成される。
 前記抗体の抗原結合断片は、それぞれタンパク質分解酵素パパイン又はペプシンでインタクトなポリクローナル抗体又はモノクローナル抗体を分解して得られるFab断片又はF(ab’)2断片の他、天然抗体分子の抗原認識能及び結合能の多くを保持する抗原結合部位を含む非共有結合的なVH及びVL領域のヘテロ2量体を含むFv断片を含む。
--- Antigen-binding fragment ---
The antigen-binding fragment of the antibody refers to the part of the antibody that participates in antigen binding. The antigen binding site is formed by amino acid residues in the variable (V) region at the N-terminus of the heavy (H) chain and light (L) chain.
The antigen-binding fragment of the antibody includes, in addition to the Fab fragment or F (ab ′) 2 fragment obtained by degrading an intact polyclonal antibody or monoclonal antibody with the proteolytic enzyme papain or pepsin, respectively, Includes Fv fragments containing non-covalent VH and VL region heterodimers containing antigen binding sites that retain much of the binding capacity.
---組換え抗体---
 前記組換え抗体は、適当な細菌宿主への形質転換や、適当なほ乳類細胞宿主へのトランスフェクションなどを含む抗体遺伝子の発現クローニングによって調製される場合がある。
 また、前記組換え抗体は、例えば、原核生物及び真核生物由来の遺伝子発現システムを用いて大量に調製することができる。
--- Recombinant antibody ---
The recombinant antibody may be prepared by expression cloning of an antibody gene including transformation into a suitable bacterial host, transfection into a suitable mammalian cell host, and the like.
The recombinant antibody can be prepared in large quantities using, for example, gene expression systems derived from prokaryotes and eukaryotes.
---キメラ抗体---
 前記キメラ抗体は、前記組換え抗体の抗原結合部位がVEGFと特異的に結合できるように同種又は異種の抗体の定常ドメインによって支持された融合タンパク質である。
 前記キメラ抗体には、抗体軽鎖可変領域(VL)に操作可能に連結された抗体重鎖可変領域(VH)を含む短鎖可変部抗体(scFv)と、ラクダ科(Camelidae、ラクダ、ヒトコブラクダ、ラマを含む)の動物が産生する軽鎖がないIgGのクラスであるラクダ重鎖抗体(HCAb)又はその重鎖可変部ドメイン(VHH)とを含む。
--- Chimeric antibody ---
The chimeric antibody is a fusion protein supported by a constant domain of a homologous or heterologous antibody so that the antigen-binding site of the recombinant antibody can specifically bind to VEGF.
The chimeric antibody includes a short chain variable region antibody (scFv) comprising an antibody heavy chain variable region (VH) operably linked to an antibody light chain variable region (VL), camelidae (Camelidae, camel, dromedary, A camel heavy chain antibody (HCAb) or its heavy chain variable region domain (VHH), which is a class of IgG without light chain produced by animals (including llamas).
---誘導体---
 前記VEGFと前記VEGF受容体との結合阻害活性を有する前記抗VEGF抗体などの誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記抗VEGF抗体などに、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤等を結合したものなどが挙げられる。
--- Derivatives ---
The derivative of the anti-VEGF antibody or the like having binding inhibitory activity between the VEGF and the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose. For example, the anti-VEGF antibody or Examples include chains, oligonucleotides, polynucleotides, polyethylene glycols, and other pharmaceutically acceptable additives and treatment agents bound thereto.
 前記抗VEGF抗体などの誘導体の具体的な例としては、前記VEGF遺伝子のエクソン7部分に結合し、前記VEGFの生成を阻害するRNAアプタマーのペガプタニブなどが挙げられる。 Specific examples of the derivative such as the anti-VEGF antibody include RNA aptamer pegaptanib that binds to the exon 7 portion of the VEGF gene and inhibits the production of VEGF.
 また、前記抗VEGF抗体などに、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤を添加したものであってもよい。
 これらの糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、添加剤や処理剤としては、特に制限はなく、目的に応じて適宜選択することができる。
In addition, sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable additives and treatment agents may be added to the anti-VEGF antibody and the like.
These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose.
--VEGF受容体に特異的に結合する特異的結合パートナー--
 前記VEGF受容体(VEGFR)とは、受容体型チロシンキナーゼの一種であり、リガンドである前記VEGFによる血管内皮細胞の増殖や遊走の促進などの作用の発現に関与している。
 VEGF受容体には、VEGFR-1(Flt-1と称することがある。)、VEGFR-2(KDR、Flk-1と称することがある。)、VEGFR-3(Flt-4と称することがある。)、可溶性VEGFR-1、可溶性VEGFR-2、可溶性VEGFR-3などが知られている。前記VEGFファミリーは、それぞれ決まった受容体に結合し、VEGF-AはVEGFR-1及びVEGFR-2に、VEGF-B、PlGF-1、及びPlGF-2はVEGFR1に、VEGF-C及びVEGF-DはVEGFR-2及びVEGFR-3に、VEGF-EはVEGFR2に結合する。
 前記VEGF受容体に特異的に結合する特異的結合パートナーは、前記VEGF受容体のいずれに結合するものであってもよい。
--Specific binding partner that specifically binds to VEGF receptor--
The VEGF receptor (VEGFR) is a kind of receptor tyrosine kinase, and is involved in expression of actions such as promotion of proliferation and migration of vascular endothelial cells by the ligand VEGF.
The VEGF receptor includes VEGFR-1 (sometimes referred to as Flt-1), VEGFR-2 (sometimes referred to as KDR and Flk-1), and VEGFR-3 (sometimes referred to as Flt-4). ), Soluble VEGFR-1, soluble VEGFR-2, soluble VEGFR-3, and the like are known. The VEGF family binds to a specific receptor, VEGF-A binds to VEGFR-1 and VEGFR-2, VEGF-B, PlGF-1, and PlGF-2 bind to VEGFR1, VEGF-C and VEGF-D Binds to VEGFR-2 and VEGFR-3, and VEGF-E binds to VEGFR2.
The specific binding partner that specifically binds to the VEGF receptor may bind to any of the VEGF receptors.
 前記VEGF受容体に特異的に結合する特異的結合パートナーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記VEGFのアナログ、VEGFの拮抗阻害剤、VEGF受容体を認識するポリクローナル抗体又はモノクローナル抗体、アプタマー、前記VEGF受容体へのVEGFの結合に拮抗する抗体、前記VEGFに結合して血液中からの前記VEGFの除去を引き起こす抗体、これらの抗体の抗原結合断片、該抗原結合断片を含むキメラ抗体又は組換え抗体(以下、「抗VEGFR抗体など」と称することがある。)、これらの誘導体、VEGF受容体に結合するが該VEGF受容体を活性化しない、VEGFペプチド又はVEGFペプチドの低分子模倣物(small molecule mimic)、VEGF受容体の刺激に利用されるVEGFの有効レベルを低下させる、VEGF受容体ペプチド又はVEGF受容体ペプチドの低分子模倣物(small molecule mimic)、からなるグループから選択される場合がある。これらの中でも、前記VEGF受容体に特異的に結合する特異的結合パートナーは、モノクローナル抗体が好ましく、抗VEGFR-1中和抗体、抗VEGFR-2抗体がより好ましい。
 ここで、前記「VEGFペプチドの低分子模倣物」とは、VEGFの完全形からなるペプチドより低分子であり、かつ該VEGFペプチドと同じ機能を奏するものを意味する。
 また、前記「VEGF受容体ペプチドの低分子模倣物」とは、VEGF受容体の完全形からなるペプチドより低分子であり、かつ該VEGF受容体ペプチドと同じ機能を奏するものを意味する。
The specific binding partner that specifically binds to the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose. For example, the VEGF analog, the VEGF antagonist, and the VEGF receptor A polyclonal or monoclonal antibody that recognizes, an aptamer, an antibody that antagonizes the binding of VEGF to the VEGF receptor, an antibody that binds to the VEGF and causes the removal of the VEGF from the blood, an antigen-binding fragment of these antibodies, A chimeric antibody or a recombinant antibody comprising the antigen-binding fragment (hereinafter sometimes referred to as “anti-VEGFR antibody etc.”), derivatives thereof, VEGF receptor that binds to VEGF receptor but does not activate VEGF receptor, Small molecule mimics of peptides or VEGF peptides Reducing the effective level of VEGF to be used for stimulation of VEGF receptor, VEGF receptor peptide or VEGF receptor small molecule mimetic peptides (small molecule mimic), may be selected from the group consisting of. Among these, the specific binding partner that specifically binds to the VEGF receptor is preferably a monoclonal antibody, more preferably an anti-VEGFR-1 neutralizing antibody or an anti-VEGFR-2 antibody.
Here, the “small molecule mimic of VEGF peptide” means a molecule that is smaller than a peptide consisting of the complete form of VEGF and that has the same function as the VEGF peptide.
The “small mimic of VEGF receptor peptide” means a molecule that is smaller than a peptide consisting of the complete form of VEGF receptor and that has the same function as the VEGF receptor peptide.
 前記VEGF受容体に特異的に結合する特異的結合パートナーの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、遺伝子組換え法、合成法などが挙げられる。また、市販品を用いてもよい。
 また、前記VEGF受容体に特異的に結合する特異的結合パートナーは、前記抗VEGFR抗体など、及びこれらの誘導体の少なくともいずれかそのものであってもよく、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤等のその他の成分を結合又は添加してもかまわない。前記VEGF受容体に特異的に結合する特異的結合パートナーにおける、その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as a manufacturing method of the specific binding partner couple | bonded specifically with the said VEGF receptor, According to the objective, it can select suitably, For example, a gene recombination method, a synthesis method, etc. are mentioned. Moreover, you may use a commercial item.
The specific binding partner that specifically binds to the VEGF receptor may be at least one of the anti-VEGFR antibody and the like, or a derivative thereof, such as polyethylene glycol and other pharmaceutically acceptable additions. Other components such as agents and treatment agents may be combined or added. The content of other components in the specific binding partner that specifically binds to the VEGF receptor is not particularly limited and can be appropriately selected depending on the purpose.
---ポリクローナル抗体、モノクローナル抗体、抗原結合断片---
 前記ポリクローナル抗体、モノクローナル抗体、及び抗原結合断片は、VEGF受容体や、これらの断片を免疫原として、前記VEGFを認識するポリクローナル抗体、モノクローナル抗体、及び抗原結合断片と同様の方法で製造することができる。
--- Polyclonal antibody, monoclonal antibody, antigen-binding fragment ---
The polyclonal antibody, monoclonal antibody, and antigen-binding fragment can be produced in the same manner as the polyclonal antibody, monoclonal antibody, and antigen-binding fragment that recognize VEGF using the VEGF receptor or these fragments as an immunogen. it can.
---組換え抗体---
 前記組換え抗体は、前記VEGFを認識する組換え抗体と同様の方法で製造することができる。
--- Recombinant antibody ---
The recombinant antibody can be produced in the same manner as the recombinant antibody recognizing VEGF.
---キメラ抗体---
 前記キメラ抗体は、前記組換え抗体の抗原結合部位がVEGF受容体と特異的に結合できるように同種又は異種の抗体の定常ドメインによって支持された融合タンパク質であること以外は、前記VEGFを認識するキメラ抗体と同様の抗体などが挙げられる。
--- Chimeric antibody ---
The chimeric antibody recognizes the VEGF except that it is a fusion protein supported by the constant domain of the same or different antibody so that the antigen binding site of the recombinant antibody can specifically bind to the VEGF receptor. Examples thereof include antibodies similar to the chimeric antibody.
---誘導体---
 前記VEGFと前記VEGF受容体との結合阻害活性を有する前記抗VEGFR抗体などの誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記抗VEGF抗体などに、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤等を結合したものなどが挙げられる。
--- Derivatives ---
The derivative of the anti-VEGFR antibody or the like having binding inhibitory activity between the VEGF and the VEGF receptor is not particularly limited and may be appropriately selected depending on the purpose. For example, the anti-VEGF antibody or the like Examples include chains, oligonucleotides, polynucleotides, polyethylene glycols, and other pharmaceutically acceptable additives and treatment agents bound thereto.
 また、前記抗VEGF抗体などに、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、その他の医薬品として許容される添加剤や処理剤を添加したものであってもよい。
 前記添加剤、処理剤、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコールなどは、前記抗VEGF抗体などと同様のものなどが挙げられる。
 これらの糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、添加剤や処理剤としては、特に制限はなく、目的に応じて適宜選択することができる。
In addition, sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, and other pharmaceutically acceptable additives and treatment agents may be added to the anti-VEGF antibody and the like.
Examples of the additive, treating agent, sugar chain, oligonucleotide, polynucleotide, polyethylene glycol, and the like are the same as those of the anti-VEGF antibody.
These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose.
<<血小板からのVEGFの放出を阻害する阻害剤>>
 前記血小板からのVEGFの放出を阻害する阻害剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、血小板上に存在するアデノシン二リン酸(ADP)受容体(Bambace NM. et al., Platelets. 2010, 21(2):85-93参照)へのADPの結合を減少させる阻害剤などが挙げられる。
 前記ADP受容体へのADPの結合を減少させる阻害剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ADP及びADP受容体の少なくともいずれかに対する特異的結合パートナー(ADPとADP受容体との結合を阻害する「結合阻害剤」と称することもある。)などが挙げられる。
<< Inhibitor that Inhibits VEGF Release from Platelets >>
The inhibitor that inhibits the release of VEGF from the platelet is not particularly limited and may be appropriately selected depending on the purpose. For example, an adenosine diphosphate (ADP) receptor (Bambace NM) present on platelets. Et al., Platelets. 2010, 21 (2): 85-93), and the like.
The inhibitor for reducing the binding of ADP to the ADP receptor is not particularly limited and may be appropriately selected depending on the purpose. For example, a specific binding partner (for at least one of ADP and ADP receptor ( And the like, which are sometimes referred to as “binding inhibitors” that inhibit the binding between ADP and the ADP receptor).
 前記特異的結合パートナーとしては、前記ADP及び前記ADP受容体の少なくともいずれかに特異的に結合し、前記ADPと、前記ADP受容体との結合を阻害することができれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ADP受容体の拮抗阻害剤、ADP又はADP受容体を認識するポリクローナル抗体又はモノクローナル抗体、アプタマー、ADP受容体に結合するがADP受容体を活性化しないADPペプチド又はADPペプチドの低分子模倣物(small molecule mimic)、ADPを結合する、ADPを結合するADP受容体ペプチド又はADP受容体ペプチドの低分子模倣物(small molecule mimic)、などが挙げられる。
 ここで、前記「ADPペプチドの低分子模倣物」とは、ADPの完全形からなるペプチドより低分子であり、かつ該ADPペプチドと同じ機能を奏するものを意味する。
 また、前記「ADP受容体ペプチドの低分子模倣物」とは、ADP受容体の完全形からなるペプチドより低分子であり、かつ該ADP受容体ペプチドと同じ機能を奏するものを意味する。
The specific binding partner is not particularly limited as long as it specifically binds to at least one of the ADP and the ADP receptor and can inhibit the binding between the ADP and the ADP receptor. For example, ADP receptor competitive inhibitor, polyclonal or monoclonal antibody that recognizes ADP or ADP receptor, aptamer, binds to ADP receptor but does not activate ADP receptor ADP peptide or ADP peptide small molecule mimic, ADP binding, ADP-binding ADP receptor peptide or ADP receptor peptide small molecule mimic, and the like.
Here, the “small molecule mimic of ADP peptide” means a molecule that is smaller than a peptide consisting of the complete form of ADP and that has the same function as the ADP peptide.
In addition, the “small molecule mimic of the ADP receptor peptide” means a molecule that is smaller than a peptide consisting of the complete form of the ADP receptor and that has the same function as the ADP receptor peptide.
<<VEGF受容体シグナル伝達経路の成分と相互作用する阻害剤、VEGF受容体シグナル伝達経路の成分を修飾する酵素と相互作用する阻害剤>>
 前記VEGF受容体シグナル伝達経路の成分と相互作用する阻害剤、及び前記VEGF受容体シグナル伝達経路の成分を修飾する酵素と相互作用する阻害剤の少なくともいずれか(以下、「VEGF受容体シグナル伝達阻害剤」と称することがある。)としては、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にt-PAを投与することによって惹起される出血を阻害できることを条件として、いかなるVEGF受容体を介するシグナル伝達の阻害剤でもかまわない。
 前記VEGF受容体シグナル伝達経路の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホスホリパーゼ(PLCγ)、プロテインキナーゼC(PKC)、Raf、マップキナーゼ・キナーゼ(MEK)、細胞外シグナル制御キナーゼ(ERK)、PI3キナーゼ(PI3K)、ピルビン酸デヒドロゲナーゼ・キナーゼ(PDK1)、Aktなどが挙げられる。
 前記VEGF受容体シグナル伝達経路の成分を修飾する酵素としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、PLCγ阻害酵素、PKC阻害酵素、Raf阻害酵素、MEK阻害酵素、ERK阻害酵素、PI3K阻害酵素、PDK1阻害酵素、Akt阻害酵素などが挙げられる。
 また、前記VEGF受容体シグナル伝達阻害剤は、副作用が虚血性イベントを引き起こした患者の治療のために許容できる範囲内であることを条件として、他の生体分子の機能、例えば、受容体キナーゼ、その他の酵素活性を阻害するものなどが挙げられる。
<< Inhibitor that interacts with components of VEGF receptor signaling pathway, Inhibitor that interacts with enzymes that modify components of VEGF receptor signaling pathway >>
At least one of an inhibitor that interacts with a component of the VEGF receptor signaling pathway and an inhibitor that interacts with an enzyme that modifies a component of the VEGF receptor signaling pathway (hereinafter referred to as “VEGF receptor signaling inhibition”). May be referred to as “agents.”) As bleeding caused by administering t-PA to patients after acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism Any VEGF receptor-mediated signal transduction inhibitor may be used provided that it can be inhibited.
The component of the VEGF receptor signal transduction pathway is not particularly limited and can be appropriately selected according to the purpose. For example, phospholipase (PLCγ), protein kinase C (PKC), Raf, map kinase kinase (MEK) ), Extracellular signal-regulated kinase (ERK), PI3 kinase (PI3K), pyruvate dehydrogenase kinase (PDK1), Akt and the like.
The enzyme that modifies the components of the VEGF receptor signaling pathway is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include PLCγ inhibitory enzyme, PKC inhibitory enzyme, Raf inhibitory enzyme, MEK inhibitory enzyme, ERK inhibitory enzyme, PI3K inhibitory enzyme, PDK1 inhibitory enzyme, Akt inhibitory enzyme and the like can be mentioned.
In addition, the VEGF receptor signaling inhibitor is capable of functioning other biomolecules, such as receptor kinases, provided that the side effects are in an acceptable range for treatment of patients who have caused ischemic events. Examples include those that inhibit other enzyme activities.
 前記VEGF受容体シグナル伝達阻害剤の具体的な例としては、SU1498((E)-3-(3,5-Diisopropyl-4-hydroxyphenyl)-2-((3-phenyl-n-propyl)amino-carbonyl)acrylonitrile)、SU5614(5-Chloro-3-((3,5-dimethylpyrrol-2-yl)methylene)-2-indolinone)、SU11248(N-(2-(diethylamino)ethyl)-5-((Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide)、AZD2171(4-((4-Fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline)、PTK787/ZK222584(N-(4-Chlorophenyl)-4-(pyridin-4-ylmethyl)phthalazin-1-amine succinate)、sorafenib(4-(4-((4-chloro-3-(trifluoromethyl)phenyl)carbamoylamino)phenoxy)-N-methyl-pyridine-2-carboxamide)、GW786034B(5-(4-((2,3-dimethyl-2H-indazol-6-yl)methylamino)-2-pyrimidinyl)amino)-2-methyl-monohydrochloride)、CBO-P11(cyclic(D-F-PQIMRIKPHQGQHIGE);Cyclo-VEGI;D-Phe-Pro(79-93)、VEGF-Aの第79-93番目のアミノ酸配列を有する環状ペプチド)、Je-11((RTELNVGIDFNWEYPAS)2K-NH、VEGFR-2の第247-261番目のアミノ酸配列に相当する免疫グロブリン様ドメイン由来のペプチドダイマー)、V1(ATWLPPR、VEGFR-2に結合するアミノ酸8個のペプチド)、VEGFR-2キナーゼインヒビターI((Z)-3-((2,4-Dimethyl-3-(ethoxycarbonyl)pyrrol-5-yl)methylidenyl)indolin-2-one)、VEGFR-2キナーゼインヒビターII((Z)-5-Bromo-3-(4,5,6,7-tetrahydro-1H-indol-2-ylmethylene)-1,3-dihydroindol-2-one)、VEGFR-2キナーゼインヒビターIII又はSU5416(3-((2,4-Dimethylpyrrol-5-yl)methylidene)-indolin-2-one)、VEGFR-2キナーゼインヒビターIV(3-(3-Thienyl)-6-(4-methoxyphenyl)pyrazolo(1,5-a)pyrimidine)、VEGFR-2/3チロシンキナーゼインヒビター(3-(Indole-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5-dione)、GW654652(N-(5-(ethylsulphonyl)-2-methoxyphenyl)-N4-methyl-N4-(3-methyl-1H-indazol-6-yl)pyrimidine-2,4-diamine)などが挙げられる。また、チロシンホスファターゼのアゴニストもVEGF受容体型チロシンキナーゼを介してシグナル伝達を低下させることができる(Xu D. et al., Front Biosci. 2008, May 1;13:4925-32参照)。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the VEGF receptor signaling inhibitor include SU1498 ((E) -3- (3,5-Diisopropyl-4-hydroxyphenyl) -2-((3-phenyl-n-propyl) amino- carbonyl) acrylonitrile), SU5614 (5-Chloro-3-((3,5-dimethylpyrrol-2-yl) methylene) -2-indolinone), SU11248 (N- (2- (diethylamino) ethyl) -5-(( Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine) methyl) -2,4-dimethyl-1H-pyrrole-3-carbamide), A D2171 (4-((4-Fluoro-2-methyl-1H-indol-5-yl) oxy) -6-methyl-7- (3- (pyrrolidin-1-yl) propoxy) quinazoline), PTK787 / ZK222584 ( N- (4-Chlorophenyl) -4- (pyridin-4-ylmethyl) phthalazin-1-amine succinate), sorafenib (4- (4-((4-chloro-3-methyl) phenyl) carbamoylamine) N-methyl-pyridine-2-carboxamide), GW78660B (5- (4-((2,3-dimethyl-2H-inda ol-6-yl) methylamino) -2-pyrimidinyl) amino) -2-methyl-monohydrochloride), CBO-P11 (cyclic (DF-PQIMRIPHPHQGQHIGE); Cyclo-VEGI-Pro-P93-D-P93 , A cyclic peptide having the 79th to 93rd amino acid sequence of VEGF-A), Je-11 ((RTELNVGIDFNWEYPAS ) 2 K-NH 2 , an immunoglobulin-like equivalent to the 247th to 261st amino acid sequence of VEGFR-2 Domain-derived peptide dimer), V1 (ATWLPPR, peptide of 8 amino acids binding to VEGFR-2), VEGFR-2 kinase inhibitor I ((Z) -3-((2,4-Dimethyl) 3- (ethoxycarbonyl) pyrol-5-yl) methylidyl) indolin-2-one), VEGFR-2 kinase inhibitor II ((Z) -5-Bromo-3- (4,5,6,7-tetrahydro-1H-) indol-2-ylmethylene) -1,3-dihydroindol-2-one), VEGFR-2 kinase inhibitor III or SU5416 (3-((2,4-Dimethylpyrrole-5-yl) methyllidene) -indolin-2-one) VEGFR-2 kinase inhibitor IV (3- (3-Thienyl) -6- (4-methoxyphenyl) pyrazolo (1,5-a) pyrimidine), VEGFR-2 3 tyrosine kinase inhibitor (3- (Indole-3-yl ) -4- (3,4,5-trimethoxyphenyl) -1H-pyrrole-2,5-dione), GW654652 (N 2 - (5- (ethylsulphonyl) - 2-methoxyphenyl) -N4-methyl-N4- (3-methyl-1H-indazol-6-yl) pyrimidine-2,4-diaminine). An agonist of tyrosine phosphatase can also reduce signal transduction via VEGF receptor tyrosine kinase (see Xu D. et al., Front Biosci. 2008, May 1; 13: 4925-32). These may be used alone or in combination of two or more.
 これらの中でも、前記VEGF受容体シグナル伝達阻害剤は、SU1498、SU5416、SU11248、AZD2171、PTK787/ZK222584、sorafenib、GW786034B等のVEGFR-2キナーゼ阻害剤製剤が、骨髄中に存在し、血管新生に関与することが知られるVEGFR-1陽性細胞に影響を与えない点で好ましい。
 前記VEGFR-2キナーゼ阻害剤製剤の具体的な例としては、セジラニブ(cediranib:AZD2171)、スニチニブ(sunitinib:SU11248)ヴァラチニブ(valatinib:PTK787/ZK222584)、ソラフェニブ(sorafenib)、パゾパニブ(pazopanib:GW786034B)などが挙げられる。
Among these, the VEGF receptor signaling inhibitors include SU1498, SU5416, SU11248, AZD2171, PTK787 / ZK222584, sorafenib, GW78660B, and other VEGFR-2 kinase inhibitor preparations that are involved in angiogenesis. This is preferable in that it does not affect VEGFR-1-positive cells known to do.
Specific examples of the VEGFR-2 kinase inhibitor preparation include cediranib (AZD2171), sunitinib (SU11248), varatinib (PTK787 / ZK222584), sorafenib (pazobib), pazobib Is mentioned.
<<VEGF及びVEGF受容体の少なくともいずれかの産生を減少させる阻害剤>>
 前記VEGF及びVEGF受容体の少なくともいずれかの産生を減少させる阻害剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アンチセンス核酸、小分子干渉RNA(siRNA)(Morris KV. Oligonucleotides. 2009, Dec;19(4):299-306参照)、リボザイム(Franzen S. et al., Curr Opin Mol Ther. 2010, Apr;12(2):223-32参照)などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 これらの阻害剤は、VEGFの転写又は翻訳を阻害することにより、前記VEGF及びVEGF受容体の少なくともいずれかの産生を減少させることができる。
<< Inhibitor that reduces production of at least one of VEGF and VEGF receptor >>
There is no restriction | limiting in particular as an inhibitor which reduces the production of at least any one of the said VEGF and a VEGF receptor, According to the objective, it can select suitably, For example, antisense nucleic acid, small molecule interference RNA (siRNA) ( Morris KV.Oligoncleotides.2009, Dec; 19 (4): 299-306), ribozyme (Franzen S. et al., Curr Mol Mol Ther. 2010, Apr; 12 (2): 223-32) and the like. Can be mentioned. These may be used alone or in combination of two or more.
These inhibitors can reduce the production of at least one of the VEGF and VEGF receptors by inhibiting the transcription or translation of VEGF.
 また、前記治療用医薬品組成物は、上記のように、前記血栓溶解薬と、前記VEGFの受容体によって仲介されるシグナル伝達を阻害する阻害剤とをそれぞれ用いるものであってもよいが、前記血栓溶解作用と、前記VEGFの受容体によって仲介されるシグナル伝達の阻害作用とを両方有する単一の因子であってもよい。
 このような因子としては、例えば、前記血栓溶解薬(Siller-Matula JM et al., Br J Pharmacol, 2010 Feb 1;159(3), 502-17, Epub 2009 Dec 24)としてのFabと、前記阻害剤としてのFabとを有する二重特異性抗体(融合タンパク質)を作製することができる。この二重特異性抗体によれば、前記血栓溶解薬としてのFabがフォン・ヴィルブランド因子(von Willebrand factor:vWF)に対して作用し、前記阻害剤としてのFabがVEGF又はVEGF受容体に対して作用することで、1つの因子で2つの機能を同時に担うことができる。また、前記血栓溶解薬と、前記阻害剤とは、直接結合した融合タンパク質であってもよい(Baeuerle PA et al., Curr Opin Mol There, 2009, Feb;11(1):22-30)。
 なお、前記フォン・ヴィルブランド因子とは、血管内皮細胞及び骨髄巨核球で産生され,血漿,血管内皮下組織及び血小板に存在する高分子糖蛋白である。
In addition, as described above, the therapeutic pharmaceutical composition may use the thrombolytic agent and an inhibitor that inhibits signal transduction mediated by the VEGF receptor, It may be a single factor having both a thrombolytic effect and an inhibitory effect on signal transduction mediated by the VEGF receptor.
Such factors include, for example, the Fab as the thrombolytic drug (Siller-Matula JM et al., Br J Pharmacol, 2010 Feb 1; 159 (3), 502-17, Epub 2009 Dec 24), Bispecific antibodies (fusion proteins) with Fab as an inhibitor can be made. According to this bispecific antibody, Fab as the thrombolytic agent acts on von Willebrand factor (vWF), and Fab as the inhibitor acts on VEGF or VEGF receptor. The two functions can be performed simultaneously by one factor. Further, the thrombolytic drug and the inhibitor may be a directly bound fusion protein (Baeuler PA et al., Curr Opin Mol There, 2009, Feb; 11 (1): 22-30).
The von Willebrand factor is a high-molecular glycoprotein that is produced in vascular endothelial cells and bone marrow megakaryocytes and is present in plasma, intravascular subcutaneous tissue and platelets.
 前記治療用医薬品組成物における、前記阻害剤の含有量としては、特に制限はなく、前記阻害剤の種類などに応じて適宜選択することができる。 The content of the inhibitor in the therapeutic pharmaceutical composition is not particularly limited and may be appropriately selected depending on the type of the inhibitor.
<その他の成分>
 前記その他の成分としては、特に制限はなく、薬理学上許容される担体の中から投与方法や剤型などに応じて適宜選択することができる。
 例えば、前記治療用医薬品組成物が、経口固形剤として用いられる場合、乳糖、白糖、塩化ナトリウム、ブドウ糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、珪酸等の賦形剤;水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドン等の結合剤;乾燥デンプン、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖等の崩壊剤;精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコール等の滑沢剤;酸化チタン、酸化鉄等の着色剤;白糖、橙皮、クエン酸、酒石酸等の矯味/矯臭剤などが挙げられる。
 例えば、前記治療用医薬品組成物が、経口液剤として用いられる場合、白糖、橙皮、クエン酸、酒石酸等の矯味/矯臭剤;クエン酸ナトリウム等の緩衝剤;トラガント、アラビアゴム、ゼラチン等の安定化剤などが挙げられる。
 例えば、前記治療用医薬品組成物が、注射剤として用いられる場合、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等のpH調節剤及び緩衝剤;ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等の安定化剤;塩化ナトリウム、ブドウ糖等の等張化剤;塩酸プロカイン、塩酸リドカイン等の局所麻酔剤;ジメチルスルホキシド(DMSO)、ポリエチレングリコール等の界面活性剤などが挙げられる。
 また、前記治療用医薬品組成物は、糖鎖、オリゴヌクレオチド、ポリヌクレオチド、などを含有していてもよい。これらの糖鎖、オリゴヌクレオチド、ポリヌクレオチド、ポリエチレングリコール、添加剤や処理剤としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記治療用医薬品組成物における前記その他の成分の含有量としても、特に制限はなく、目的に応じて適宜選択することができる。
<Other ingredients>
There is no restriction | limiting in particular as said other component, According to an administration method, a dosage form, etc., it can select suitably from the carriers accept | permitted pharmacologically.
For example, when the therapeutic pharmaceutical composition is used as an oral solid preparation, excipients such as lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid; water, ethanol, propanol , Simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphate, polyvinylpyrrolidone, etc .; dry starch, sodium alginate, agar powder, hydrogen carbonate Disintegrating agents such as sodium, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, lactose; lubricants such as purified talc, stearate, borax, polyethylene glycol; Coloring agents such as iron oxide; sucrose, orange peel, citric acid, and the like flavoring / flavoring of tartaric acid.
For example, when the therapeutic pharmaceutical composition is used as an oral solution, a flavoring / flavoring agent such as sucrose, orange peel, citric acid or tartaric acid; a buffering agent such as sodium citrate; a stable agent such as tragacanth, gum arabic and gelatin And the like.
For example, when the therapeutic pharmaceutical composition is used as an injection, pH adjusting agents and buffers such as sodium citrate, sodium acetate, and sodium phosphate; sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid, etc. Stabilizers; isotonic agents such as sodium chloride and glucose; local anesthetics such as procaine hydrochloride and lidocaine hydrochloride; surfactants such as dimethyl sulfoxide (DMSO) and polyethylene glycol.
The therapeutic pharmaceutical composition may contain a sugar chain, an oligonucleotide, a polynucleotide, and the like. These sugar chains, oligonucleotides, polynucleotides, polyethylene glycol, additives and treatment agents are not particularly limited and can be appropriately selected depending on the purpose.
There is no restriction | limiting in particular as content of the said other component in the said therapeutic pharmaceutical composition, According to the objective, it can select suitably.
<投与>
 前記治療用医薬品組成物の投与時期としては、特に制限はなく、目的に応じて適宜選択することができるが、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの発症後3時間以降が好ましく、3時間~6時間がより好ましい。前記治療用医薬品組成物は、虚血性イベントの発急性期徒過後の患者に対しても投与でき、更に前記血栓溶解薬の投与による脳出血などの合併症や予後の増悪を改善できる点で有利である。
 前記治療用医薬品組成物の投与方法としては、特に制限はなく、該治療用医薬品組成物における、前記血栓溶解薬や前記阻害剤の種類や含有量などに応じて適宜選択することができ、例えば、経口投与法、注射による方法、吸入による方法などが挙げられる。
 前記治療用医薬品組成物の投与量としても、特に制限はなく、投与対象個体の年齢、体重、体質、症状、他の成分を有効成分とする医薬の投与の有無など、様々な要因を考慮して適宜選択することができる。
 前記投与対象となる動物種としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒト、サル、ブタ、ウシ、ヒツジ、ヤギ、イヌ、ネコ、マウス、ラット、トリなどが挙げられるが、これらの中でもヒトに好適に用いられる。
<Administration>
The administration timing of the therapeutic pharmaceutical composition is not particularly limited and may be appropriately selected according to the purpose. However, after the onset of a serious ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism 3 hours or more are preferable, and 3 to 6 hours are more preferable. The therapeutic pharmaceutical composition is advantageous in that it can be administered to patients after an acute phase of an ischemic event, and further, it can improve complications such as cerebral hemorrhage and prognostic exacerbation due to administration of the thrombolytic drug. is there.
The administration method of the therapeutic pharmaceutical composition is not particularly limited and can be appropriately selected according to the type and content of the thrombolytic drug or the inhibitor in the therapeutic pharmaceutical composition, for example, Oral administration method, injection method, inhalation method and the like.
The dose of the therapeutic pharmaceutical composition is not particularly limited, and various factors such as the age, weight, constitution, symptom of the administration subject and the presence or absence of administration of a drug containing other ingredients as active ingredients are considered. Can be selected as appropriate.
The animal species to be administered is not particularly limited and can be appropriately selected according to the purpose. For example, human, monkey, pig, cow, sheep, goat, dog, cat, mouse, rat, bird, etc. Among these, it is preferably used for humans.
 前記治療用医薬品組成物における、前記血栓溶解薬と、前記阻害剤とは、同時に併用して投与されてもよく、別々に投与されてもよい。また、同一の組成物であってもよく、前記阻害剤が前記血栓溶解薬の投与に先立って投与されてもよく、前記阻害剤の投与後30分間以内に前記血栓溶解薬が投与されてもよい。
 また、前記血栓溶解薬がt-PAである場合、該t-PAによって活性化されるプラスミンが前記VEGFのプロセッシングに関与するため、前記t-PAの投与に先立って前記阻害剤を脳内などの虚血性イベントの発生部位に送達しておくと、前記VEGF又は前記VEGF受容体と、前記阻害剤とが結合し、前記VEGF又は前記VEGF受容体を脳循環系などの虚血性イベントの発生部位から除去することができるため、前記VEGFのシグナル伝達をより強く阻害することにつながる。したがって、前記阻害剤を投与された後に前記t-PAを投与されてもよく、前記阻害剤の投与後30分間以内に前記t-PAが投与されてもよい。
The thrombolytic agent and the inhibitor in the therapeutic pharmaceutical composition may be administered in combination at the same time or may be administered separately. Further, the same composition may be used, the inhibitor may be administered prior to administration of the thrombolytic agent, or the thrombolytic agent may be administered within 30 minutes after administration of the inhibitor. Good.
In addition, when the thrombolytic agent is t-PA, plasmin activated by the t-PA is involved in the processing of the VEGF, so that the inhibitor is administered in the brain prior to the administration of the t-PA. When the ischemic event is delivered to the site of the ischemic event, the VEGF or the VEGF receptor binds to the inhibitor, and the site of the ischemic event such as the cerebral circulatory system is bound to the VEGF or the VEGF receptor. Therefore, the signal transduction of VEGF is more strongly inhibited. Therefore, the t-PA may be administered after the inhibitor is administered, and the t-PA may be administered within 30 minutes after the inhibitor is administered.
 前記血栓溶解薬の投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができるが、各医薬製造メーカーの指示に従った投与量及び投与方法が好ましい。
 例えば、前記血栓溶解薬が、前記t-PA製剤の1つであるアルテプラーゼである場合、その投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができるが、0.6mg/kg~0.9mg/kgであり、上限としては、1個体当たり60mg~90mgを、静脈内投与する方法などが挙げられる。具体的には、全投与量の10%を1分間~2分間のボーラス投与で、残り90%を1時間の点滴投与で静脈内注射する方法などが挙げられる。
The dosage and administration method of the thrombolytic drug are not particularly limited and may be appropriately selected depending on the intended purpose. However, the dosage and administration method according to the instructions of each pharmaceutical manufacturer are preferable.
For example, when the thrombolytic drug is alteplase, which is one of the t-PA preparations, the dosage and administration method are not particularly limited and can be appropriately selected according to the purpose. The upper limit is a method of intravenously administering 60 mg to 90 mg per individual. Specifically, a method of intravenously injecting 10% of the total dose by bolus administration for 1 to 2 minutes and the remaining 90% by infusion administration for 1 hour can be mentioned.
 前記阻害剤の投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができるが、各医薬製造メーカーの指示に従った投与量及び投与方法が好ましい。
 例えば、前記阻害剤が、前記抗VEGF-A中和抗体又はその誘導体である場合、5mg/kg~10mg/kgを静脈内投与する方法が好ましい。
 また、前記抗VEGF-A中和抗体が、ベバシズマブである場合、5mg/kg~10mg/kgを生理食塩水100mLに溶解し、90分間かけて静注投与することが好ましい。
 例えば、前記阻害剤が、前記セジラニブである場合、その投与量及び投与方法としては、1日に、1個体当たり、10mg~45mgを経口投与する方法などが挙げられる。
 例えば、前記阻害剤が、前記スニチニブである場合、その投与量及び投与方法としては、1個体当たり、25mg~75mgを、1日1回経口投与する方法などが挙げられる。
 例えば、前記阻害剤が、前記ソラフェニブである場合、その投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1個体当たり、400mg~800mgを、1日1回経口投与する方法などが挙げられる。
 例えば、前記阻害剤が、前記ヴァラチニブである場合、その投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1個体当たり、500mg~1,500mgを、1日1回経口投与する方法などが挙げられる。
 例えば、前記阻害剤が、前記パゾパニブである場合、その投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1個体当たり、400mg~1,200mgを、1日1回経口投与する方法などが挙げられる。
There is no restriction | limiting in particular as a dosage and administration method of the said inhibitor, Although it can select suitably according to the objective, The dosage and administration method according to each pharmaceutical manufacturer's instruction | indication are preferable.
For example, when the inhibitor is the anti-VEGF-A neutralizing antibody or a derivative thereof, a method of intravenously administering 5 mg / kg to 10 mg / kg is preferable.
When the anti-VEGF-A neutralizing antibody is bevacizumab, it is preferable to dissolve 5 mg / kg to 10 mg / kg in 100 mL of physiological saline and administer intravenously over 90 minutes.
For example, when the inhibitor is cediranib, the dosage and administration method include a method of orally administering 10 mg to 45 mg per individual per day.
For example, when the inhibitor is sunitinib, the dosage and administration method include a method of orally administering 25 mg to 75 mg per individual once a day.
For example, when the inhibitor is sorafenib, the dosage and administration method thereof are not particularly limited and can be appropriately selected according to the purpose. For example, 400 mg to 800 mg per individual Examples include a method of oral administration once a day.
For example, when the inhibitor is the varatinib, the dosage and administration method thereof are not particularly limited and can be appropriately selected depending on the purpose. For example, 500 mg to 1,500 mg per individual is used. And a method of oral administration once a day.
For example, when the inhibitor is pazopanib, the dosage and administration method thereof are not particularly limited and can be appropriately selected according to the purpose. For example, 400 mg to 1,200 mg per individual is used. And a method of oral administration once a day.
 前記治療用医薬品組成物における、前記血栓溶解薬と、前記阻害剤とが、同時に投与される場合、前記治療用医薬品組成物の投与量及び投与方法としては、特に制限はなく、目的に応じて適宜選択することができ、前記組成物における前記血栓溶解薬及び前記阻害剤の種類、含有量などに応じて、適宜選択することができる。 When the thrombolytic drug and the inhibitor in the therapeutic pharmaceutical composition are administered simultaneously, the dosage and administration method of the therapeutic pharmaceutical composition are not particularly limited, depending on the purpose. It can select suitably, According to the kind of said thrombolytic agent and the said inhibitor in the said composition, content, etc., it can select suitably.
<用途>
 前記治療用医薬品組成物は、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にも投与でき、脳出血などの合併症や予後の増悪を改善できるため、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの治療に好適に利用可能である。
 前記重篤な虚血性イベントの治療においては、血栓溶解薬を投与するステップと、該血栓溶解薬を投与するステップと同時に、あるいは、先だって、VEGF受容体によって仲介されるシグナル伝達を阻害する阻害剤を投与するステップとを含む治療方法を用いることが好ましい。
 また、前記血栓溶解薬と、前記阻害剤とを含むキットも本願発明に含まれる。前記キットにおける、前記血栓溶解薬及び前記阻害剤の濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、それぞれ投与に用いる所望量であることが好ましい。前記キットにおける阻害剤としては、VEGFのVEGF受容体への結合により引き起こされるシグナル伝達を阻害する阻害剤であってもよく、VEGFとVEGF受容体との結合を阻害する抗体であってもよく、その他の結合因子であってもよい。
<Application>
The therapeutic pharmaceutical composition can also be administered to patients after an acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism, and can improve complications such as cerebral hemorrhage and prognostic deterioration Therefore, it can be suitably used for treating severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
In the treatment of the severe ischemic event, an inhibitor that inhibits signal transduction mediated by the VEGF receptor at the same time as the step of administering a thrombolytic agent and the step of administering the thrombolytic agent or in advance. It is preferable to use a treatment method including the step of administering.
A kit containing the thrombolytic drug and the inhibitor is also included in the present invention. There is no restriction | limiting in particular as the density | concentration of the said thrombolytic agent and the said inhibitor in the said kit, Although it can select suitably according to the objective, It is preferable that it is a desired amount used for each administration. The inhibitor in the kit may be an inhibitor that inhibits signal transduction caused by the binding of VEGF to the VEGF receptor, or an antibody that inhibits the binding between VEGF and the VEGF receptor, Other binding factors may be used.
 以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の実施例は、新潟大学動物実験倫理委員会によって承認された後に実施された。 Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not limited to these examples. The following examples were carried out after approval by the Niigata University Animal Experiment Ethics Committee.
(実施例1:ラット脳梗塞モデルの作製)
<実験動物>
 ラット脳梗塞モデルを作製するためにスプラーグ-ドーリーラット(オス、8週齢、日本チャールス・リバー株式会社より入手)を用いた。
(Example 1: Preparation of rat cerebral infarction model)
<Experimental animals>
In order to prepare a rat cerebral infarction model, Sprague-Dawley rats (male, 8 weeks old, obtained from Charles River, Japan) were used.
<ラット脳梗塞モデルの作製>
 図1A及び図1Bを参照して、本願発明のラット脳梗塞モデルの作製方法を説明する。
 従来の中大脳動脈閉塞モデルでは、外頸動脈(ECA)1と総頸動脈(CCA)3の分岐部、若しくは外頚動脈(ECA)1から中大脳動脈(MCA)2起始部にナイロン糸を侵入させて中大脳動脈を閉塞させていた(図1A)。
 しかし、血栓溶解療法の治療可能時間を超えて血栓溶解薬を投与することによる脳出血併発を再現させるために、本実施例では、図1Bに示すラット脳塞栓モデルを作製した。血栓は、ラットの自家血液及びトロンビンを、直径0.35mmのポリエチレンチューブカテーテル(PE-50、ベクトン・ディクティンソン社製)中でゲルとして凝固させ、終夜放置後、1mmの長さに切断された。前記血栓は、前記カテーテルを用いて、1質量%~1.5質量%のハロタン麻酔下でラットの外頸動脈(ECA)1からラットの中大脳動脈(MCA)2に注入された。その後、血栓注入前と、血栓注入の30分間後又は24時間後に、レーザードップラー血流計(AFL21、株式会社アドバンス製、東京)を用いて脳表血流値(CBF)が測定された。脳表血流値が血栓注入前と比べて50%未満の動物を以下の実験でラット脳梗塞モデル動物として用いた。
<Production of rat cerebral infarction model>
With reference to FIG. 1A and FIG. 1B, the preparation method of the rat cerebral infarction model of this invention is demonstrated.
In the conventional middle cerebral artery occlusion model, a nylon thread is applied to the bifurcation of the external carotid artery (ECA) 1 and the common carotid artery (CCA) 3, or from the external carotid artery (ECA) 1 to the origin of the middle cerebral artery (MCA) 2. The middle cerebral artery was blocked by invading (FIG. 1A).
However, a rat cerebral embolism model shown in FIG. 1B was prepared in this example in order to reproduce the concurrent cerebral hemorrhage caused by administering a thrombolytic drug beyond the possible treatment time of thrombolytic therapy. The thrombus was obtained by coagulating rat autologous blood and thrombin as a gel in a polyethylene tube catheter (PE-50, manufactured by Becton Dickinson) with a diameter of 0.35 mm. After being allowed to stand overnight, it was cut into a length of 1 mm. It was. The thrombus was injected from the rat external carotid artery (ECA) 1 into the rat middle cerebral artery (MCA) 2 under 1% to 1.5% by weight halothane anesthesia using the catheter. Thereafter, before blood clot injection and 30 minutes or 24 hours after blood clot injection, brain surface blood flow values (CBF) were measured using a laser Doppler blood flow meter (AFL21, Advance Co., Ltd., Tokyo). An animal having a cerebral blood flow value of less than 50% compared to that before infusion of thrombus was used as a rat cerebral infarction model animal in the following experiment.
<栓溶解療法>
 ラット脳梗塞モデルに対する血栓溶解療法には、血栓溶解薬であるt-PA(アルテプラーゼ、田辺三菱製薬株式会社製)が、血栓注入の1時間又は4時間後に大腿静脈に30分間静注された(10mg/kg、10%ボーラス投与及び90%点滴投与)。
<Plug dissolution therapy>
In thrombolytic therapy for rat cerebral infarction model, t-PA (alteplase, manufactured by Mitsubishi Tanabe Pharma Corporation), a thrombolytic drug, was intravenously injected into the femoral vein for 1 hour or 4 hours after thrombus injection (30 minutes). 10 mg / kg, 10% bolus administration and 90% infusion administration).
<TTC染色>
 血栓注入の24時間後にハロタン過剰投与で安楽死させたラットにPBSを潅流して、非固定の脳冠状切片が作製された。前記脳冠状切片は、37℃で15分間、2質量%トリフェニルテトラゾリウム塩(TTC)を含むPBS(pH7.4)中でTTC染色され、スキャナー(CanoScaner、Canon社製)を用いて走査された。
 脳梗塞及び浮腫の体積は、Swanson、R.A.ら(J. Cereb. Blood Flow Metab.,10:290-293(1990))に基づいて算出された。
<TTC staining>
Rats euthanized with halothane overdose 24 hours after thrombus infusion were perfused with PBS to produce unfixed coronal coronal sections. The coronal sections were stained with TTC in PBS (pH 7.4) containing 2% by mass of triphenyltetrazolium salt (TTC) for 15 minutes at 37 ° C., and scanned using a scanner (CanoScanner, Canon). .
The volume of cerebral infarction and edema was measured by Swanson, R .; A. (J. Cereb. Blood Flow Metab., 10: 290-293 (1990)).
<結果>
 図2A~図2Cは、t-PA投与の脳梗塞軽減効果と、脳出血惹起効果とを示す脳冠状切片の写真である。黒色部分は、健常組織を示し、白色部分は、脳梗塞部分を示す。
 血栓注入後t-PAを投与せずに24時間経過すると、術側大脳に広範な脳梗塞が観察された(図2A)。
 血栓注入の1時間後にt-PAを投与すると、t-PA非投与動物と比較して脳梗塞部分の縮小が観察された(図2B)。
 しかし、血栓注入の4時間後にt-PAを投与すると、1時間後にt-PAを投与した動物と比較して、脳梗塞部分の拡大と、前記部分での出血とが観察された(図2C)。
 以上の結果から、前記ラット脳梗塞モデルは、ヒトにおける脳梗塞急性期徒過後のt-PA投与に伴う、脳出血合併症と脳梗塞の増悪とを再現できることが示された。
<Result>
2A to 2C are photographs of coronal sections showing the cerebral infarction reducing effect and cerebral hemorrhage-inducing effect of t-PA administration. A black part shows a healthy tissue, and a white part shows a cerebral infarction part.
Extensive cerebral infarction was observed in the operative cerebrum after 24 hours without administration of t-PA after thrombus injection (FIG. 2A).
When t-PA was administered 1 hour after thrombus injection, a reduction in the cerebral infarction portion was observed as compared to animals not treated with t-PA (FIG. 2B).
However, when t-PA was administered 4 hours after thrombus injection, enlargement of the cerebral infarction part and bleeding in the part were observed as compared to animals administered t-PA 1 hour later (FIG. 2C). ).
From the above results, it was shown that the rat cerebral infarction model can reproduce cerebral hemorrhage complications and exacerbation of cerebral infarction accompanying t-PA administration after acute cerebral infarction in humans.
(実施例2:抗VEGF抗体を用いたVEGFの発現抑制)
 ヒトにおける脳梗塞急性期徒過後のt-PA投与に伴う、脳出血合併症と、脳梗塞の増悪とを抑制又は軽減するために、100μgのウサギ抗ラットVEGF抗体IgG(RB-222、Lab Vision-Neomarkers社製、以下、「抗VEGF抗体」と称することがある。)がt-PAとともにボーラス投与された。対照実験では、100μgのウサギ抗ヒトIgG(R5G10-048、OEM Concepts社製、以下、「対照抗体」と称することがある。)がt-PAとともにボーラス投与された。
(Example 2: Inhibition of VEGF expression using anti-VEGF antibody)
In order to suppress or reduce cerebral hemorrhage complications and exacerbation of cerebral infarction associated with administration of t-PA after acute cerebral infarction in humans, 100 μg of rabbit anti-rat VEGF antibody IgG (RB-222, Lab Vision- Neomarkers (hereinafter sometimes referred to as “anti-VEGF antibody”) was administered as a bolus with t-PA. In a control experiment, 100 μg of rabbit anti-human IgG (R5G10-048, manufactured by OEM Concepts, hereinafter sometimes referred to as “control antibody”) was administered as a bolus with t-PA.
<ウエスタン・ブロット法>
 ウエスタン・ブロット法は、全細胞抽出液をサンプルとして用いてShimohata、 T.ら(J. Cereb. Blood Flow Metab.,27:1463-1475 (2007))に記載の方法に従って実施された。
 VEGFの検出には、1次抗体として抗VEGF抗体(SC-152、Santa Cruz Biotechnologies社製、希釈比1:200)が、2次抗体としてペルオキダーゼ・コンジュゲート抗ウサギIgG抗体(希釈比1:10,000)が用いられた。
 また、適用されたタンパク質の量がどのサンプルでも均一であることを確認するために、前記1次抗体及び前記2次抗体を除去した後のブロッティング膜に、抗β-アクチン抗体(SC-1616、Santa Cruz Biotechnologies社製、希釈比1:2,000)及び前記2次抗体を反応させてβ-アクチンが検出された。
<Western blot method>
Western blotting is performed using a whole cell extract as a sample by Shimahata, T. et al. (J. Cereb. Blood Flow Metab., 27: 1463-1475 (2007)).
For detection of VEGF, an anti-VEGF antibody (SC-152, manufactured by Santa Cruz Biotechnologies, dilution ratio 1: 200) is used as a primary antibody, and a peroxidase-conjugated anti-rabbit IgG antibody (dilution ratio 1:10) is used as a secondary antibody. , 000) was used.
In addition, in order to confirm that the amount of applied protein is uniform in any sample, the anti-β-actin antibody (SC-1616, SC-1616, (Santa Cruz Biotechnologies, dilution ratio 1: 2,000) and the secondary antibody were reacted to detect β-actin.
<結果>
 図3は、t-PA及び抗VEGF抗体の併用投与後に、VEGFの発現が抑制されたことを示すウエスタン・ブロット図である。
 レーン1は、血栓注入による脳梗塞発症を行わなかった動物のサンプルを示し、レーン2は、血栓注入による脳梗塞発症を行わないでt-PA及び対照抗体を投与した動物のサンプルを示し、レーン3は、血栓注入による脳梗塞発症の1時間後に対照抗体のみを投与した動物のサンプルを示し、レーン4は、血栓注入による脳梗塞発症の1時間後にt-PA及び対照抗体を投与した動物のサンプルを示し、レーン5は、血栓注入による脳梗塞発症の1時間後にt-PA及び抗VEGF抗体を併用投与した動物のサンプルを示し、レーン6は、血栓注入による脳梗塞発症の4時間後にt-PA及び対照抗体を投与した動物のサンプルを示し、レーン7は、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を併用投与した動物のサンプルを示す。
<Result>
FIG. 3 is a Western blot diagram showing that VEGF expression was suppressed after co-administration of t-PA and anti-VEGF antibody.
Lane 1 shows a sample of an animal that did not develop cerebral infarction due to thrombus injection, and lane 2 shows a sample of an animal that did not develop cerebral infarction due to thrombus injection and administered t-PA and a control antibody. 3 shows a sample of an animal to which only a control antibody was administered 1 hour after the onset of cerebral infarction due to thrombus injection, and lane 4 represents an animal to which t-PA and a control antibody were administered 1 hour after the onset of cerebral infarction due to thrombus injection. Samples are shown, lane 5 shows a sample of an animal administered with t-PA and an anti-VEGF antibody in combination 1 hour after the onset of cerebral infarction due to thrombus injection, and lane 6 shows a sample of t -Shows samples of animals administered PA and control antibody, lane 7 is an animal administered together with t-PA and anti-VEGF antibody 4 hours after cerebral infarction due to thrombus injection It illustrates a sample.
 レーン3及びレーン4では、VEGFの発現が観察された。レーン6では、非常に多くのVEGFの発現が観察された。一方、レーン1、レーン2、レーン5、及びレーン7では、ほとんどVEGFの発現は観察されなかった。
 これらのレーンで検出されたVEGF量の相違は、β-アクチンの量の相違とは全く相関しなかった。レーン3、レーン4、及びレーン5の比較から、血栓注入による脳梗塞発症の4時間後にt-PAを投与すると、VEGFの発現量が非常に増大したことがわかった。また、レーン4とレーン5との比較、並びに、レーン6とレーン7との比較によって、t-PA及び抗VEGF抗体の併用投与は、VEGFの発現を顕著に抑制したことがわかった。
In lane 3 and lane 4, VEGF expression was observed. In lane 6, very much VEGF expression was observed. On the other hand, in lane 1, lane 2, lane 5, and lane 7, almost no VEGF expression was observed.
The difference in the amount of VEGF detected in these lanes did not correlate with the difference in the amount of β-actin. Comparison of lane 3, lane 4, and lane 5 showed that when t-PA was administered 4 hours after the onset of cerebral infarction due to thrombus injection, the expression level of VEGF was greatly increased. Moreover, it was found from the comparison between lane 4 and lane 5 and the comparison between lane 6 and lane 7 that the combined administration of t-PA and anti-VEGF antibody significantly suppressed the expression of VEGF.
 虚血性血管内皮細胞障害と、その後の脳血液関門の機能不全とがt-PA投与後の脳出血に関係することが知られている。また、VEGFは、MMP-9を活性化し、活性化されたMMP-9は、ゾナオクルデンス-1や基底膜IV型コラーゲンのような脳血液関門に関与するタンパク質を分解することが知られている。したがって、理論的に拘泥するわけではないが、t-PA及び抗VEGF抗体の併用投与の作用機序は、脳梗塞急性期徒過後のt-PA投与によるVEGFの増加を抑制することによって、MMP-9活性化のような脳血液関門の機能不全を防止して、脳出血を予防することで説明できる可能性がある。 It is known that ischemic vascular endothelial cell damage and subsequent cerebral blood barrier dysfunction are related to cerebral hemorrhage after t-PA administration. In addition, VEGF activates MMP-9, and activated MMP-9 is known to degrade proteins involved in the brain blood barrier, such as Zona oculusens-1 and basement membrane type IV collagen. Therefore, without being bound by theory, the mechanism of action of the combined administration of t-PA and anti-VEGF antibody is to suppress the increase in VEGF by t-PA administration after acute cerebral infarction. It may be explained by preventing cerebral hemorrhage by preventing cerebral blood barrier dysfunction such as -9 activation.
(実施例3:t-PA及び抗VEGF抗体の併用投与の影響評価)
 t-PA及び抗VEGF抗体の併用投与は、実施例2で説明されたとおり実施された。血栓注入による脳梗塞発症から4時間後のt-PA及び抗VEGF抗体の併用投与の効果は、血栓注入による脳梗塞発症の24時間後のTTC染色脳冠状切片の、脳梗塞の体積、浮腫の体積、脳出血量、及び運動機能スケールを測定して評価された。
 前記TTC染色脳冠状切片の、脳梗塞の体積及び浮腫の体積は、Swanson、R.A.ら(J. Cereb. Blood Flow Metab.、10:290-293(1990))に基づいて算出され、統計的有意性は、ANOVA(分散分析)にて検証され、事後比較(post hoc比較)は、Tukey法で行った。
 脳出血量は、分光光度計で術側脳組織1dL当たりのヘモグロビン濃度(単位:g/dL)が測定された。
 運動機能スケールは、Andersen、M.ら(Stroke、30: 1464-1471(1999))に基づいて5段階で評価された(段階0:運動障害なし、段階1:術側と反対側の前肢の屈曲、段階2:麻痺側へ身体を押し動かすことへの抵抗力の減少、段階3:麻痺側への自発的な回転、段階4:死亡)。運動機能スケールを比較する際の統計的有意性は、ANOVA(分散分析)にて検証され、事後比較(post hoc比較)はTukey法で行った。
(Example 3: Evaluation of influence of combined administration of t-PA and anti-VEGF antibody)
The co-administration of t-PA and anti-VEGF antibody was performed as described in Example 2. The effect of the combined administration of t-PA and anti-VEGF antibody 4 hours after the onset of cerebral infarction due to thrombus injection is the effect of cerebral infarct volume, edema on the TTC-stained coronal section 24 hours after the onset of cerebral infarction due to thrombus injection. Volume, cerebral hemorrhage, and motor function scales were measured and evaluated.
The volume of cerebral infarction and edema of the TTC-stained coronal section is described in Swanson, R. et al. A. (J. Cereb. Blood Flow Metab., 10: 290-293 (1990)), statistical significance was verified by ANOVA (ANOVA), and post hoc comparison (post hoc comparison) was , Performed by Tukey method.
As for the amount of cerebral hemorrhage, the hemoglobin concentration (unit: g / dL) per 1 dL of the operated brain tissue was measured with a spectrophotometer.
The motor function scale is described by Andersen, M .; (Stroke, 30: 1464-1471 (1999)) (Stage 0: no movement disorder, Stage 1: flexion of the forelimb opposite to the surgical side, Stage 2: body to the paralyzed side Decrease in resistance to pushing, stage 3: spontaneous rotation to the paralyzed side, stage 4: death). Statistical significance in comparing motor function scales was verified by ANOVA (ANOVA), and post hoc comparison (post hoc comparison) was performed by Tukey method.
<脳梗塞及び浮腫の体積と、脳出血量との結果>
 図4A~図4Cは、それぞれ、血栓注入による脳梗塞発症の24時間後のTTC染色脳冠状切片の、脳梗塞の体積、浮腫の体積、及び脳出血量を示す棒グラフである。白色の棒は、血栓注入による脳梗塞発症の4時間後に対照抗体のみを投与した群で、黒色の棒は、血栓注入による脳梗塞発症の4時間後にt-PA及び対照抗体を投与した群で、灰色の棒は、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を投与した群である。各群の個体数は6であった。
 これらの結果から、t-PA及び抗VEGF抗体の併合投与は、t-PA及び抗VEGF抗体を投与した場合に比べて脳梗塞及び浮腫の体積を低減することはできなかったが、脳出血量を低減することはできた(P=0.013)。
<Results of cerebral infarction and edema volume and cerebral hemorrhage>
4A to 4C are bar graphs showing cerebral infarction volume, edema volume, and cerebral hemorrhage volume, respectively, of a TTC-stained coronal section 24 hours after the onset of cerebral infarction due to thrombus injection. The white bar is the group that received only control antibody 4 hours after the onset of cerebral infarction due to thrombus injection, and the black bar is the group that received t-PA and control antibody 4 hours after the onset of cerebral infarction due to thrombus injection. The gray bar is a group to which t-PA and anti-VEGF antibody were administered 4 hours after the onset of cerebral infarction due to thrombus injection. The number of individuals in each group was 6.
From these results, the combined administration of t-PA and anti-VEGF antibody was not able to reduce the volume of cerebral infarction and edema compared to the administration of t-PA and anti-VEGF antibody, but the amount of cerebral hemorrhage was reduced. It was possible to reduce (P = 0.013).
<運動機能スケール評価結果>
 図4Dは、血栓注入による脳梗塞発症の24時間後の運動機能スケールを示す帯グラフである。帯の異なる色の部分は、5段階のそれぞれの個体数を表す。左側の帯は、血栓注入による脳梗塞発症の4時間後に対照抗体のみを投与した群(個体数23)を示し、中央の帯は、血栓注入による脳梗塞発症の4時間後にt-PA及び対照抗体を投与した群(個体数20)を示し、右側の帯は、血栓注入による脳梗塞発症の4時間後にt-PA及び抗VEGF抗体を投与した群(個体数12)を示す。
 左側の帯と中央の帯との比較から、脳梗塞発症の4時間後にt-PA及び対照抗体を投与した群は、対照抗体のみを投与した群より予後が悪かった。この結果から、前記ラット脳梗塞モデルが、ヒトにおける脳梗塞急性期徒過後のt-PA投与に伴う、脳出血合併症と脳梗塞の増悪とを再現することを確認できた。
 中央の帯と右側の帯との比較から、t-PA及び抗VEGF抗体の併合投与は、t-PA及び対照抗体の併合投与より予後が改善された(P=0.0001)。更に、左側の帯と右側の帯との比較から、t-PA及び抗VEGF抗体の併合投与は、対照抗体のみの投与よりも予後が改善された(P=0.045)。
 なお、t-PA及び抗VEGF抗体を併合投与されたラット個体を病理学的に剖検したところ、抗原抗体複合体の存在は肝臓、膵臓及び腎臓に認められなかった。
<Motor function scale evaluation results>
FIG. 4D is a band graph showing the motor function scale 24 hours after the onset of cerebral infarction due to thrombus injection. The different colored parts of the band represent the number of individuals in each of the five stages. The left band shows a group (number of individuals 23) administered only with control antibody 4 hours after the onset of cerebral infarction due to thrombus injection, and the middle band shows t-PA and control 4 hours after the onset of cerebral infarction due to thrombus injection. The group to which the antibody was administered (20 individuals) was shown, and the right band represents the group to which t-PA and anti-VEGF antibody were administered 4 hours after the onset of cerebral infarction due to thrombus injection (12 individuals).
From the comparison of the left and middle bands, the group administered t-PA and the control antibody 4 hours after the onset of cerebral infarction had a worse prognosis than the group administered only the control antibody. From this result, it was confirmed that the rat cerebral infarction model reproduces cerebral hemorrhage complications and exacerbation of cerebral infarction accompanying t-PA administration after acute cerebral infarction in humans.
From the comparison of the middle band and the right band, the combined administration of t-PA and anti-VEGF antibody had a better prognosis than the combined administration of t-PA and control antibody (P = 0.0001). Furthermore, from the comparison of the left and right bands, the combined administration of t-PA and anti-VEGF antibody improved the prognosis over the control antibody alone (P = 0.045).
In addition, when a rat individual administered with t-PA and anti-VEGF antibody in combination was pathologically examined, the presence of the antigen-antibody complex was not observed in the liver, pancreas and kidney.
 以上の実験結果から、t-PA及び抗VEGF抗体の併用投与は、脳梗塞を発症した患者において、t-PAを投与するまでの時間を従来よりも延長することができ、かつ、脳出血合併症を予防しつつ運動機能及び生存割合を改善できることが示された。 From the above experimental results, the combined administration of t-PA and anti-VEGF antibody can prolong the time until administration of t-PA in patients who have developed cerebral infarction, and is associated with cerebral hemorrhage complications. It was shown that the motor function and the survival rate can be improved while preventing the above.
(実施例4:t-PA及びSU1498の併用投与)
 VEGF受容体キナーゼ阻害剤で抗VEGF抗体を代替する可能性を以下に検討した。
 VEGF受容体に対する特異的な阻害剤として、SU1498((E)-3-(3,5-ジイソプロピル-4-ヒドロキシフェニル)-2-((3-フェニル-n-プロピル)アミノカルボニル)アクリロニトリル、Calbiochem社製、カタログNo.572888)を用いた。SU1498は、患者の体重1kg当たり1mLのDMSO(ジメチルスルホキシド)中に20mg/kgとなるように溶解して、脳梗塞から4時間後にt-PAとともに単回ボーラス投与された。対照実験としては、溶媒のDMSOのみが、患者の体重1kg当たり1mL投与された。
(Example 4: Combined administration of t-PA and SU1498)
The possibility of substituting an anti-VEGF antibody with a VEGF receptor kinase inhibitor was examined below.
Specific inhibitors for the VEGF receptor include SU1498 ((E) -3- (3,5-diisopropyl-4-hydroxyphenyl) -2-((3-phenyl-n-propyl) aminocarbonyl) acrylonitrile, Calbiochem. Catalog No. 572888) manufactured by the company was used. SU1498 was dissolved in 1 mL of DMSO (dimethyl sulfoxide) per kg of the patient's body weight to give 20 mg / kg, and was administered as a single bolus with t-PA 4 hours after cerebral infarction. As a control experiment, only the solvent DMSO was administered at 1 mL per kg patient body weight.
<t-PA及びSU1498の併用投与の影響評価>
 脳梗塞から4時間後のt-PA及びSU1498の併用投与の効果は、実施例3と同様の方法で、血栓注入による脳梗塞発症の24時間後のTTC染色脳冠状切片の、脳梗塞の堆積、浮腫の体積、脳出血量、及び運動機能スケールを測定して評価された。
<Evaluation of effects of combined administration of t-PA and SU1498>
The effect of the combined administration of t-PA and SU1498 4 hours after cerebral infarction is the same as in Example 3, and the deposition of cerebral infarction in the TTC-stained coronal section 24 hours after the onset of cerebral infarction by thrombus injection It was evaluated by measuring edema volume, cerebral hemorrhage volume, and motor function scale.
<脳梗塞及び浮腫の体積と、脳出血量との結果>
 図5A~図5Cは、それぞれ、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後のTTC染色脳冠状切片の、脳梗塞の体積、浮腫の体積、及び脳出血量を示す棒グラフである。黒色の棒は、血栓注入による脳梗塞発症の4時間後にt-PA及びDMSOを投与した群で、灰色の棒は、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を投与した群である。各群の個体数は6であった。
 これらの結果から、t-PA及びSU1498の併合投与は、t-PA及びDMSOを投与した場合に比べて脳梗塞の体積及び浮腫の体積を低減することはできなかったが、脳出血量を低減することはできた(P=0.005)。
<Results of cerebral infarction and edema volume and cerebral hemorrhage>
5A to 5C show the volume of cerebral infarction and the volume of edema, respectively, of TTC-stained coronal sections 24 hours after the onset of rats administered with t-PA and SU1498 at 4 hours after the onset of cerebral infarction due to thrombus injection. And a bar graph showing the amount of cerebral hemorrhage. The black bar is a group administered with t-PA and DMSO 4 hours after the onset of cerebral infarction due to thrombus injection, and the gray bar is a group administered with t-PA and SU1498 4 hours after the onset of cerebral infarction due to thrombus injection It is. The number of individuals in each group was 6.
From these results, the combined administration of t-PA and SU1498 failed to reduce the volume of cerebral infarction and edema, but reduced the amount of cerebral hemorrhage compared with the administration of t-PA and DMSO. (P = 0.005).
<運動機能スケール評価結果>
 図5Dは、血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を併用投与したラットの発症24時間後の運動機能スケールを示す帯グラフである。異なる色の帯は5段階のそれぞれを表す。左側の帯は、血栓注入による脳梗塞発症の4時間後にt-PA及びDMSOを投与した群を示し、右側の帯は血栓注入による脳梗塞発症の4時間後にt-PA及びSU1498を投与した群を示す。個体数は、ともに10であった。
 左側の帯と右側の帯との比較から、脳梗塞発症の4時間後にt-PA及びSU1498を投与した群は、t-PA及びDMSOを投与した群より予後が改善する傾向を認めた。
<Motor function scale evaluation results>
FIG. 5D is a band graph showing a motor function scale 24 hours after the onset of rats administered with t-PA and SU1498 in combination 4 hours after the onset of cerebral infarction due to thrombus injection. Different colored bands represent each of the five levels. The left band shows the group administered t-PA and DMSO 4 hours after the onset of cerebral infarction due to thrombus injection, and the right band shows the group administered t-PA and SU1498 4 hours after the onset of cerebral infarction due to thrombus injection Indicates. The number of individuals was 10 in both cases.
From the comparison of the left and right bands, the group administered t-PA and SU1498 4 hours after the onset of cerebral infarction tended to improve the prognosis more than the group administered t-PA and DMSO.
 以上の実験結果から、t-PA及びSU1498の併用投与は、t-PA及び抗VEGF抗体の併用投与と同様に、脳梗塞を発症した患者において、t-PAを投与するまでの時間を従来よりも延長することができ、かつ、脳出血合併症を予防しつつ運動機能及び生存割合を改善できることが示された。 Based on the above experimental results, the combined administration of t-PA and SU1498 is similar to the combined administration of t-PA and anti-VEGF antibody in the time until administration of t-PA in patients with cerebral infarction. It has been shown that the motor function and survival rate can be improved while preventing cerebral hemorrhage complications.
 前記治療用医薬品組成物は、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの急性期徒過後の患者にも投与でき、脳出血などの合併症や予後の増悪を改善できるため、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの治療に好適に利用可能である。 The therapeutic pharmaceutical composition can also be administered to patients after an acute phase of severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism, and can improve complications such as cerebral hemorrhage and prognostic deterioration Therefore, it can be suitably used for treating severe ischemic events including cerebral infarction, myocardial infarction, and pulmonary embolism.
   1  外頸動脈(ECA)
   2  中大脳動脈(MCA)
   3  総頸動脈(CCA)
1 External carotid artery (ECA)
2 Middle cerebral artery (MCA)
3 Common carotid artery (CCA)

Claims (20)

  1.  血栓溶解薬、及び、血管内皮増殖因子(VEGF)の受容体によって仲介されるシグナル伝達を阻害する阻害剤を含み、脳梗塞、心筋梗塞、及び肺塞栓症を含む重篤な虚血性イベントの治療に用いられることを特徴とする治療用医薬品組成物。 Treatment of severe ischemic events, including cerebral infarction, myocardial infarction, and pulmonary embolism, including thrombolytic agents and inhibitors that inhibit receptor mediated by vascular endothelial growth factor (VEGF) receptors A therapeutic pharmaceutical composition, characterized by being used in the above.
  2.  阻害剤が、VEGF受容体へのVEGFの結合を減少させる請求項1に記載の組成物。 The composition according to claim 1, wherein the inhibitor reduces the binding of VEGF to the VEGF receptor.
  3.  阻害剤が、VEGF及びVEGF受容体の少なくともいずれかに対する特異的結合パートナーである請求項2に記載の組成物。 The composition according to claim 2, wherein the inhibitor is a specific binding partner for at least one of VEGF and a VEGF receptor.
  4.  特異的結合パートナーが、下記(1)~(4)の少なくともいずれかである請求項3に記載の組成物。
    (1)抗体、
    (2)アプタマー、
    (3)VEGF受容体に結合するがVEGF受容体を活性化しないVEGFペプチド又はVEGFペプチドの低分子模倣物、
    (4)VEGF受容体の刺激に利用されるVEGFの有効レベルを低下させるVEGF受容体ペプチド又はVEGF受容体ペプチドの低分子模倣物。
    The composition according to claim 3, wherein the specific binding partner is at least one of the following (1) to (4).
    (1) antibodies,
    (2) aptamer,
    (3) a VEGF peptide that binds to the VEGF receptor but does not activate the VEGF receptor or a small molecule mimic of the VEGF peptide,
    (4) VEGF receptor peptides or small molecule mimics of VEGF receptor peptides that reduce the effective level of VEGF used to stimulate VEGF receptors.
  5.  阻害剤が、VEGF受容体に結合し且つ前記VEGF受容体へのVEGFの結合に拮抗する抗体、及び前記VEGFに結合して血液中からの前記VEGFの除去を引き起こす抗体の少なくともいずれかである請求項4に記載の組成物。 The inhibitor is at least one of an antibody that binds to a VEGF receptor and antagonizes the binding of VEGF to the VEGF receptor, and an antibody that binds to the VEGF and causes the removal of the VEGF from blood. Item 5. The composition according to Item 4.
  6.  阻害剤が、血小板からのVEGFの放出を阻害することを特徴とする請求項1に記載の組成物。 The composition according to claim 1, wherein the inhibitor inhibits release of VEGF from platelets.
  7.  阻害剤が、アデノシン二リン酸(ADP)受容体へのADPの結合を減少させる請求項6に記載の組成物。 7. The composition of claim 6, wherein the inhibitor reduces ADP binding to the adenosine diphosphate (ADP) receptor.
  8.  阻害剤が、ADP及びADP受容体の少なくともいずれかに対する特異的結合パートナーである請求項7に記載の組成物。 The composition according to claim 7, wherein the inhibitor is a specific binding partner for at least one of ADP and ADP receptor.
  9.  特異的結合パートナーが、下記(1)~(4)の少なくともいずれかである請求項8に記載の組成物。
    (1)抗体、
    (2)アプタマー、
    (3)ADP受容体に結合するがADP受容体を活性化しないADPペプチド又はADPペプチドの低分子模倣物、
    (4)ADPを結合するADP受容体ペプチド又はADP受容体ペプチドの低分子模倣物。
    The composition according to claim 8, wherein the specific binding partner is at least one of the following (1) to (4).
    (1) antibodies,
    (2) aptamer,
    (3) an ADP peptide or a small molecule mimic of an ADP peptide that binds to an ADP receptor but does not activate the ADP receptor;
    (4) ADP receptor peptide that binds ADP or a small molecule mimic of ADP receptor peptide.
  10.  阻害剤が、VEGF受容体シグナル伝達経路の成分と相互作用する阻害剤、及びVEGF受容体シグナル伝達経路の成分を修飾する酵素と相互作用する阻害剤の少なくともいずれかである請求項1に記載の組成物。 The inhibitor according to claim 1, wherein the inhibitor is at least one of an inhibitor that interacts with a component of the VEGF receptor signaling pathway and an inhibitor that interacts with an enzyme that modifies a component of the VEGF receptor signaling pathway. Composition.
  11.  阻害剤が、チロシンキナーゼ阻害剤、及びチロシンホスファターゼのアゴニストである請求項10に記載の組成物。 The composition according to claim 10, wherein the inhibitor is a tyrosine kinase inhibitor and an agonist of tyrosine phosphatase.
  12.  阻害剤が、VEGF及びVEGF受容体の少なくともいずれかの産生を減少させる請求項1に記載の組成物。 The composition according to claim 1, wherein the inhibitor decreases production of at least one of VEGF and a VEGF receptor.
  13.  阻害剤が、アンチセンス核酸、小分子干渉RNA(siRNA)、及びリボザイムの少なくともいずれかである請求項10に記載の組成物。 The composition according to claim 10, wherein the inhibitor is at least one of an antisense nucleic acid, a small interfering RNA (siRNA), and a ribozyme.
  14.  阻害剤が、血栓溶解薬と結合する請求項1に記載の組成物。 The composition according to claim 1, wherein the inhibitor binds to the thrombolytic agent.
  15.  阻害剤が、融合タンパク質として血栓溶解薬と結合する請求項14に記載の組成物。 The composition according to claim 14, wherein the inhibitor binds to the thrombolytic drug as a fusion protein.
  16.  血栓溶解薬が、ウロキナーゼ、ストレプトキナーゼ、組織型プラスミノゲン・アクチベーター(t-PA)、及びこれらのアナログの少なくともいずれかである請求項1に記載の組成物。 2. The composition according to claim 1, wherein the thrombolytic drug is at least one of urokinase, streptokinase, tissue-type plasminogen activator (t-PA), and analogs thereof.
  17.  VEGF受容体が、VEGF受容体2型(VEGFR-2)である請求項1に記載の組成物。 The composition according to claim 1, wherein the VEGF receptor is VEGF receptor type 2 (VEGFR-2).
  18.  脳梗塞、心筋梗塞、及び肺塞栓症を含む虚血性イベントの急性期徒過後の患者に投与される請求項1から17のいずれかに記載の組成物。 The composition according to any one of claims 1 to 17, which is administered to a patient after an acute phase of an ischemic event including cerebral infarction, myocardial infarction, and pulmonary embolism.
  19.  虚血性イベントの急性期が、該虚血性イベントの発症から3時間~6時間である請求項18に記載の組成物。 The composition according to claim 18, wherein the acute phase of the ischemic event is 3 to 6 hours from the onset of the ischemic event.
  20.  脳梗塞急性期が、該脳梗塞の発症から3時間以内である請求項18に記載の組成物。 The composition according to claim 18, wherein the acute phase of cerebral infarction is within 3 hours from the onset of the cerebral infarction.
PCT/JP2010/062631 2009-07-27 2010-07-27 Pharmaceutical composition for treatment of ischemic events WO2011013668A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/359,281 US8652476B2 (en) 2009-07-27 2012-01-26 Pharmaceutical composition for treating ischemic events
US14/151,507 US9439961B2 (en) 2009-07-27 2014-01-09 Pharmaceutical composition for treating ischemic events

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009174099 2009-07-27
JP2009174098 2009-07-27
JP2009-174098 2009-07-27
JP2009-174099 2009-07-27
JP2010-124382 2010-05-31
JP2010124374A JP5823671B2 (en) 2009-07-27 2010-05-31 Pharmaceutical composition for the treatment of cerebral infarction comprising immunological preparation
JP2010-124374 2010-05-31
JP2010124382A JP5823672B2 (en) 2009-07-27 2010-05-31 Pharmaceutical composition for treating cerebral infarction comprising receptor signaling inhibitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/359,281 Continuation-In-Part US8652476B2 (en) 2009-07-27 2012-01-26 Pharmaceutical composition for treating ischemic events

Publications (1)

Publication Number Publication Date
WO2011013668A1 true WO2011013668A1 (en) 2011-02-03

Family

ID=43529322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062631 WO2011013668A1 (en) 2009-07-27 2010-07-27 Pharmaceutical composition for treatment of ischemic events

Country Status (1)

Country Link
WO (1) WO2011013668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9913899B2 (en) 2014-03-13 2018-03-13 Shimojani, LLC Diagnostic marker for treatment of cerebral ischemia
US10617756B2 (en) 2017-01-05 2020-04-14 Shimojani, LLC Drug regimen for treatment of cerebral ischemia

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322026A (en) * 1986-05-12 1988-01-29 ザ ウエルカム フアウンデ−シヨン リミテツド Medicinal composition
JPH11515010A (en) * 1995-10-25 1999-12-21 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Injection of neuroprotective and thrombolytic agents
JP2002534359A (en) * 1998-12-22 2002-10-15 ジェネンテック・インコーポレーテッド Vascular endothelial cell growth factor antagonist and its use
WO2007128526A2 (en) * 2006-05-04 2007-11-15 Fovea Pharmaceuticals Sa Combination comprising a vegf inhibitor and a serine protease for treating neovascular diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322026A (en) * 1986-05-12 1988-01-29 ザ ウエルカム フアウンデ−シヨン リミテツド Medicinal composition
JPH11515010A (en) * 1995-10-25 1999-12-21 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Injection of neuroprotective and thrombolytic agents
JP2002534359A (en) * 1998-12-22 2002-10-15 ジェネンテック・インコーポレーテッド Vascular endothelial cell growth factor antagonist and its use
WO2007128526A2 (en) * 2006-05-04 2007-11-15 Fovea Pharmaceuticals Sa Combination comprising a vegf inhibitor and a serine protease for treating neovascular diseases

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Annual Meeting of the Japan Neurosurgical Society Abstract, 2007", vol. 66TH, article YOSHIYUKI CHIBA: "Rat No Kyoketsu Model ni Okeru VEGF Receptor Kikkozai no Koka", pages: 1K - 01-1-2 *
MASATO KANAZAWA ET AL.: "Rat Chu Daino Domyaku Sokusen Model ni Okeru Kekkan Naihi Saibo no VEGF Hatsugen", PROGRAM AND ABSTRACTS OF THE MEETING OF THE JAPANESE SOCIETY OF NEUROLOGY, vol. 49TH, 2008, pages 267 *
RYOTA KIMURA ET AL.: "VEGF Chuwa Kotai no No Jomyaku Kosoku ni Taisuru No Hogo Koka", JOMYAKU, vol. 15, no. 2, 2004, pages 155 *
TAKAYOSHI SHIMOHATA ET AL.: "Post t-PA Jidai no Shinkei-Kekkan Hogo Ryoho", NIIGATA MEDICAL ASSOCIATION KAIHO, January 2009 (2009-01-01), pages 2 - 6 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9913899B2 (en) 2014-03-13 2018-03-13 Shimojani, LLC Diagnostic marker for treatment of cerebral ischemia
US10617756B2 (en) 2017-01-05 2020-04-14 Shimojani, LLC Drug regimen for treatment of cerebral ischemia
US11077188B2 (en) 2017-01-05 2021-08-03 Shimojani, LLC Drug regimen for treatment of cerebral ischemia
EP4289430A2 (en) 2017-01-05 2023-12-13 Shimojani LLC Thrombolytic agent and bevacizumab for treatment of cerebral ischemia
US12109265B2 (en) 2017-01-05 2024-10-08 Shimojani, LLC Drug regimen for treatment of cerebral ischemia

Similar Documents

Publication Publication Date Title
JP6941148B2 (en) Complement component C5 antibody
CN108178789B (en) Endoglin polypeptides and uses thereof
AU2009291747B2 (en) Methods for inhibiting ocular angiogenesis
JP6643244B2 (en) Complement factor Bb antibody
EP2170366B1 (en) Use of tlr-2 antagonists for treatment of reperfusion injury and tissue damage
AU2003215337B2 (en) Methods of extending corneal graft survival
JP2023025005A (en) Factor 1 protein, factor 2 protein and inhibitors thereof for use in treating or preventing diseases
JP2003520826A (en) Treatment methods to suppress angiogenesis
JP2002539076A (en) Methods and compositions for inhibiting angiogenesis
JP2018158948A (en) Pharmaceutical compositions comprising immunological formulations for treating cerebral infarction
US9439961B2 (en) Pharmaceutical composition for treating ischemic events
JP2014221769A (en) Methods for inhibiting angiogenesis using egfl8 antagonists
EP4305070A1 (en) Modulation of wnt signaling in gastrointestinal disorders
JPWO2005018671A1 (en) Cancer metastasis inhibitor
WO2011013668A1 (en) Pharmaceutical composition for treatment of ischemic events
JP2003508352A (en) Novel methods and compositions for inhibiting angiogenesis using antagonists based on MMP-9 and β1 integrin
Jin et al. FP3: a novel VEGF blocker with antiangiogenic effects in vitro and antitumour effects in vivo
JP5823672B2 (en) Pharmaceutical composition for treating cerebral infarction comprising receptor signaling inhibitor
CN114980929B (en) Preventive or therapeutic agent for diabetic autonomic dysfunction
US20240254259A1 (en) Dpep-1 binding agents and methods of use
Arrigo et al. Towards the Development of Longer and More Efficacious Therapies for Wet and Dry Age-related Macular Degeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804414

Country of ref document: EP

Kind code of ref document: A1